1// SPDX-License-Identifier: GPL-2.0
2/*
3 * V4L2 Driver for Renesas Capture Engine Unit (CEU) interface
4 * Copyright (C) 2017-2018 Jacopo Mondi <jacopo+renesas@jmondi.org>
5 *
6 * Based on soc-camera driver "soc_camera/sh_mobile_ceu_camera.c"
7 * Copyright (C) 2008 Magnus Damm
8 *
9 * Based on V4L2 Driver for PXA camera host - "pxa_camera.c",
10 * Copyright (C) 2006, Sascha Hauer, Pengutronix
11 * Copyright (C) 2008, Guennadi Liakhovetski <kernel@pengutronix.de>
12 */
13
14#include <linux/delay.h>
15#include <linux/device.h>
16#include <linux/dma-mapping.h>
17#include <linux/err.h>
18#include <linux/errno.h>
19#include <linux/interrupt.h>
20#include <linux/io.h>
21#include <linux/kernel.h>
22#include <linux/mm.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/of_graph.h>
27#include <linux/platform_device.h>
28#include <linux/pm_runtime.h>
29#include <linux/slab.h>
30#include <linux/time.h>
31#include <linux/videodev2.h>
32
33#include <media/v4l2-async.h>
34#include <media/v4l2-common.h>
35#include <media/v4l2-ctrls.h>
36#include <media/v4l2-dev.h>
37#include <media/v4l2-device.h>
38#include <media/v4l2-event.h>
39#include <media/v4l2-fwnode.h>
40#include <media/v4l2-image-sizes.h>
41#include <media/v4l2-ioctl.h>
42#include <media/v4l2-mediabus.h>
43#include <media/videobuf2-dma-contig.h>
44
45#include <media/drv-intf/renesas-ceu.h>
46
47#define DRIVER_NAME	"renesas-ceu"
48
49/* CEU registers offsets and masks. */
50#define CEU_CAPSR	0x00 /* Capture start register			*/
51#define CEU_CAPCR	0x04 /* Capture control register		*/
52#define CEU_CAMCR	0x08 /* Capture interface control register	*/
53#define CEU_CAMOR	0x10 /* Capture interface offset register	*/
54#define CEU_CAPWR	0x14 /* Capture interface width register	*/
55#define CEU_CAIFR	0x18 /* Capture interface input format register */
56#define CEU_CRCNTR	0x28 /* CEU register control register		*/
57#define CEU_CRCMPR	0x2c /* CEU register forcible control register	*/
58#define CEU_CFLCR	0x30 /* Capture filter control register		*/
59#define CEU_CFSZR	0x34 /* Capture filter size clip register	*/
60#define CEU_CDWDR	0x38 /* Capture destination width register	*/
61#define CEU_CDAYR	0x3c /* Capture data address Y register		*/
62#define CEU_CDACR	0x40 /* Capture data address C register		*/
63#define CEU_CFWCR	0x5c /* Firewall operation control register	*/
64#define CEU_CDOCR	0x64 /* Capture data output control register	*/
65#define CEU_CEIER	0x70 /* Capture event interrupt enable register	*/
66#define CEU_CETCR	0x74 /* Capture event flag clear register	*/
67#define CEU_CSTSR	0x7c /* Capture status register			*/
68#define CEU_CSRTR	0x80 /* Capture software reset register		*/
69
70/* Data synchronous fetch mode. */
71#define CEU_CAMCR_JPEG			BIT(4)
72
73/* Input components ordering: CEU_CAMCR.DTARY field. */
74#define CEU_CAMCR_DTARY_8_UYVY		(0x00 << 8)
75#define CEU_CAMCR_DTARY_8_VYUY		(0x01 << 8)
76#define CEU_CAMCR_DTARY_8_YUYV		(0x02 << 8)
77#define CEU_CAMCR_DTARY_8_YVYU		(0x03 << 8)
78/* TODO: input components ordering for 16 bits input. */
79
80/* Bus transfer MTU. */
81#define CEU_CAPCR_BUS_WIDTH256		(0x3 << 20)
82
83/* Bus width configuration. */
84#define CEU_CAMCR_DTIF_16BITS		BIT(12)
85
86/* No downsampling to planar YUV420 in image fetch mode. */
87#define CEU_CDOCR_NO_DOWSAMPLE		BIT(4)
88
89/* Swap all input data in 8-bit, 16-bits and 32-bits units (Figure 46.45). */
90#define CEU_CDOCR_SWAP_ENDIANNESS	(7)
91
92/* Capture reset and enable bits. */
93#define CEU_CAPSR_CPKIL			BIT(16)
94#define CEU_CAPSR_CE			BIT(0)
95
96/* CEU operating flag bit. */
97#define CEU_CAPCR_CTNCP			BIT(16)
98#define CEU_CSTRST_CPTON		BIT(0)
99
100/* Platform specific IRQ source flags. */
101#define CEU_CETCR_ALL_IRQS_RZ		0x397f313
102#define CEU_CETCR_ALL_IRQS_SH4		0x3d7f313
103
104/* Prohibited register access interrupt bit. */
105#define CEU_CETCR_IGRW			BIT(4)
106/* One-frame capture end interrupt. */
107#define CEU_CEIER_CPE			BIT(0)
108/* VBP error. */
109#define CEU_CEIER_VBP			BIT(20)
110#define CEU_CEIER_MASK			(CEU_CEIER_CPE | CEU_CEIER_VBP)
111
112#define CEU_MAX_WIDTH	2560
113#define CEU_MAX_HEIGHT	1920
114#define CEU_MAX_BPL	8188
115#define CEU_W_MAX(w)	((w) < CEU_MAX_WIDTH ? (w) : CEU_MAX_WIDTH)
116#define CEU_H_MAX(h)	((h) < CEU_MAX_HEIGHT ? (h) : CEU_MAX_HEIGHT)
117
118/*
119 * ceu_bus_fmt - describe a 8-bits yuyv format the sensor can produce
120 *
121 * @mbus_code: bus format code
122 * @fmt_order: CEU_CAMCR.DTARY ordering of input components (Y, Cb, Cr)
123 * @fmt_order_swap: swapped CEU_CAMCR.DTARY ordering of input components
124 *		    (Y, Cr, Cb)
125 * @swapped: does Cr appear before Cb?
126 * @bps: number of bits sent over bus for each sample
127 * @bpp: number of bits per pixels unit
128 */
129struct ceu_mbus_fmt {
130	u32	mbus_code;
131	u32	fmt_order;
132	u32	fmt_order_swap;
133	bool	swapped;
134	u8	bps;
135	u8	bpp;
136};
137
138/*
139 * ceu_buffer - Link vb2 buffer to the list of available buffers.
140 */
141struct ceu_buffer {
142	struct vb2_v4l2_buffer vb;
143	struct list_head queue;
144};
145
146static inline struct ceu_buffer *vb2_to_ceu(struct vb2_v4l2_buffer *vbuf)
147{
148	return container_of(vbuf, struct ceu_buffer, vb);
149}
150
151/*
152 * ceu_subdev - Wraps v4l2 sub-device and provides async subdevice.
153 */
154struct ceu_subdev {
155	struct v4l2_subdev *v4l2_sd;
156	struct v4l2_async_subdev asd;
157
158	/* per-subdevice mbus configuration options */
159	unsigned int mbus_flags;
160	struct ceu_mbus_fmt mbus_fmt;
161};
162
163static struct ceu_subdev *to_ceu_subdev(struct v4l2_async_subdev *asd)
164{
165	return container_of(asd, struct ceu_subdev, asd);
166}
167
168/*
169 * ceu_device - CEU device instance
170 */
171struct ceu_device {
172	struct device		*dev;
173	struct video_device	vdev;
174	struct v4l2_device	v4l2_dev;
175
176	/* subdevices descriptors */
177	struct ceu_subdev	*subdevs;
178	/* the subdevice currently in use */
179	struct ceu_subdev	*sd;
180	unsigned int		sd_index;
181	unsigned int		num_sd;
182
183	/* platform specific mask with all IRQ sources flagged */
184	u32			irq_mask;
185
186	/* currently configured field and pixel format */
187	enum v4l2_field	field;
188	struct v4l2_pix_format_mplane v4l2_pix;
189
190	/* async subdev notification helpers */
191	struct v4l2_async_notifier notifier;
192
193	/* vb2 queue, capture buffer list and active buffer pointer */
194	struct vb2_queue	vb2_vq;
195	struct list_head	capture;
196	struct vb2_v4l2_buffer	*active;
197	unsigned int		sequence;
198
199	/* mlock - lock access to interface reset and vb2 queue */
200	struct mutex	mlock;
201
202	/* lock - lock access to capture buffer queue and active buffer */
203	spinlock_t	lock;
204
205	/* base - CEU memory base address */
206	void __iomem	*base;
207};
208
209static inline struct ceu_device *v4l2_to_ceu(struct v4l2_device *v4l2_dev)
210{
211	return container_of(v4l2_dev, struct ceu_device, v4l2_dev);
212}
213
214/* --- CEU memory output formats --- */
215
216/*
217 * ceu_fmt - describe a memory output format supported by CEU interface.
218 *
219 * @fourcc: memory layout fourcc format code
220 * @bpp: number of bits for each pixel stored in memory
221 */
222struct ceu_fmt {
223	u32	fourcc;
224	u32	bpp;
225};
226
227/*
228 * ceu_format_list - List of supported memory output formats
229 *
230 * If sensor provides any YUYV bus format, all the following planar memory
231 * formats are available thanks to CEU re-ordering and sub-sampling
232 * capabilities.
233 */
234static const struct ceu_fmt ceu_fmt_list[] = {
235	{
236		.fourcc	= V4L2_PIX_FMT_NV16,
237		.bpp	= 16,
238	},
239	{
240		.fourcc = V4L2_PIX_FMT_NV61,
241		.bpp	= 16,
242	},
243	{
244		.fourcc	= V4L2_PIX_FMT_NV12,
245		.bpp	= 12,
246	},
247	{
248		.fourcc	= V4L2_PIX_FMT_NV21,
249		.bpp	= 12,
250	},
251	{
252		.fourcc	= V4L2_PIX_FMT_YUYV,
253		.bpp	= 16,
254	},
255	{
256		.fourcc	= V4L2_PIX_FMT_UYVY,
257		.bpp	= 16,
258	},
259	{
260		.fourcc	= V4L2_PIX_FMT_YVYU,
261		.bpp	= 16,
262	},
263	{
264		.fourcc	= V4L2_PIX_FMT_VYUY,
265		.bpp	= 16,
266	},
267};
268
269static const struct ceu_fmt *get_ceu_fmt_from_fourcc(unsigned int fourcc)
270{
271	const struct ceu_fmt *fmt = &ceu_fmt_list[0];
272	unsigned int i;
273
274	for (i = 0; i < ARRAY_SIZE(ceu_fmt_list); i++, fmt++)
275		if (fmt->fourcc == fourcc)
276			return fmt;
277
278	return NULL;
279}
280
281static bool ceu_fmt_mplane(struct v4l2_pix_format_mplane *pix)
282{
283	switch (pix->pixelformat) {
284	case V4L2_PIX_FMT_YUYV:
285	case V4L2_PIX_FMT_UYVY:
286	case V4L2_PIX_FMT_YVYU:
287	case V4L2_PIX_FMT_VYUY:
288		return false;
289	case V4L2_PIX_FMT_NV16:
290	case V4L2_PIX_FMT_NV61:
291	case V4L2_PIX_FMT_NV12:
292	case V4L2_PIX_FMT_NV21:
293		return true;
294	default:
295		return false;
296	}
297}
298
299/* --- CEU HW operations --- */
300
301static void ceu_write(struct ceu_device *priv, unsigned int reg_offs, u32 data)
302{
303	iowrite32(data, priv->base + reg_offs);
304}
305
306static u32 ceu_read(struct ceu_device *priv, unsigned int reg_offs)
307{
308	return ioread32(priv->base + reg_offs);
309}
310
311/*
312 * ceu_soft_reset() - Software reset the CEU interface.
313 * @ceu_device: CEU device.
314 *
315 * Returns 0 for success, -EIO for error.
316 */
317static int ceu_soft_reset(struct ceu_device *ceudev)
318{
319	unsigned int i;
320
321	ceu_write(ceudev, CEU_CAPSR, CEU_CAPSR_CPKIL);
322
323	for (i = 0; i < 100; i++) {
324		if (!(ceu_read(ceudev, CEU_CSTSR) & CEU_CSTRST_CPTON))
325			break;
326		udelay(1);
327	}
328
329	if (i == 100) {
330		dev_err(ceudev->dev, "soft reset time out\n");
331		return -EIO;
332	}
333
334	for (i = 0; i < 100; i++) {
335		if (!(ceu_read(ceudev, CEU_CAPSR) & CEU_CAPSR_CPKIL))
336			return 0;
337		udelay(1);
338	}
339
340	/* If we get here, CEU has not reset properly. */
341	return -EIO;
342}
343
344/* --- CEU Capture Operations --- */
345
346/*
347 * ceu_hw_config() - Configure CEU interface registers.
348 */
349static int ceu_hw_config(struct ceu_device *ceudev)
350{
351	u32 camcr, cdocr, cfzsr, cdwdr, capwr;
352	struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
353	struct ceu_subdev *ceu_sd = ceudev->sd;
354	struct ceu_mbus_fmt *mbus_fmt = &ceu_sd->mbus_fmt;
355	unsigned int mbus_flags = ceu_sd->mbus_flags;
356
357	/* Start configuring CEU registers */
358	ceu_write(ceudev, CEU_CAIFR, 0);
359	ceu_write(ceudev, CEU_CFWCR, 0);
360	ceu_write(ceudev, CEU_CRCNTR, 0);
361	ceu_write(ceudev, CEU_CRCMPR, 0);
362
363	/* Set the frame capture period for both image capture and data sync. */
364	capwr = (pix->height << 16) | pix->width * mbus_fmt->bpp / 8;
365
366	/*
367	 * Swap input data endianness by default.
368	 * In data fetch mode bytes are received in chunks of 8 bytes.
369	 * D0, D1, D2, D3, D4, D5, D6, D7 (D0 received first)
370	 * The data is however by default written to memory in reverse order:
371	 * D7, D6, D5, D4, D3, D2, D1, D0 (D7 written to lowest byte)
372	 *
373	 * Use CEU_CDOCR[2:0] to swap data ordering.
374	 */
375	cdocr = CEU_CDOCR_SWAP_ENDIANNESS;
376
377	/*
378	 * Configure CAMCR and CDOCR:
379	 * match input components ordering with memory output format and
380	 * handle downsampling to YUV420.
381	 *
382	 * If the memory output planar format is 'swapped' (Cr before Cb) and
383	 * input format is not, use the swapped version of CAMCR.DTARY.
384	 *
385	 * If the memory output planar format is not 'swapped' (Cb before Cr)
386	 * and input format is, use the swapped version of CAMCR.DTARY.
387	 *
388	 * CEU by default downsample to planar YUV420 (CDCOR[4] = 0).
389	 * If output is planar YUV422 set CDOCR[4] = 1
390	 *
391	 * No downsample for data fetch sync mode.
392	 */
393	switch (pix->pixelformat) {
394	/* Data fetch sync mode */
395	case V4L2_PIX_FMT_YUYV:
396	case V4L2_PIX_FMT_YVYU:
397	case V4L2_PIX_FMT_UYVY:
398	case V4L2_PIX_FMT_VYUY:
399		camcr	= CEU_CAMCR_JPEG;
400		cdocr	|= CEU_CDOCR_NO_DOWSAMPLE;
401		cfzsr	= (pix->height << 16) | pix->width;
402		cdwdr	= pix->plane_fmt[0].bytesperline;
403		break;
404
405	/* Non-swapped planar image capture mode. */
406	case V4L2_PIX_FMT_NV16:
407		cdocr	|= CEU_CDOCR_NO_DOWSAMPLE;
408		fallthrough;
409	case V4L2_PIX_FMT_NV12:
410		if (mbus_fmt->swapped)
411			camcr = mbus_fmt->fmt_order_swap;
412		else
413			camcr = mbus_fmt->fmt_order;
414
415		cfzsr	= (pix->height << 16) | pix->width;
416		cdwdr	= pix->width;
417		break;
418
419	/* Swapped planar image capture mode. */
420	case V4L2_PIX_FMT_NV61:
421		cdocr	|= CEU_CDOCR_NO_DOWSAMPLE;
422		fallthrough;
423	case V4L2_PIX_FMT_NV21:
424		if (mbus_fmt->swapped)
425			camcr = mbus_fmt->fmt_order;
426		else
427			camcr = mbus_fmt->fmt_order_swap;
428
429		cfzsr	= (pix->height << 16) | pix->width;
430		cdwdr	= pix->width;
431		break;
432
433	default:
434		return -EINVAL;
435	}
436
437	camcr |= mbus_flags & V4L2_MBUS_VSYNC_ACTIVE_LOW ? 1 << 1 : 0;
438	camcr |= mbus_flags & V4L2_MBUS_HSYNC_ACTIVE_LOW ? 1 << 0 : 0;
439
440	/* TODO: handle 16 bit bus width with DTIF bit in CAMCR */
441	ceu_write(ceudev, CEU_CAMCR, camcr);
442	ceu_write(ceudev, CEU_CDOCR, cdocr);
443	ceu_write(ceudev, CEU_CAPCR, CEU_CAPCR_BUS_WIDTH256);
444
445	/*
446	 * TODO: make CAMOR offsets configurable.
447	 * CAMOR wants to know the number of blanks between a VS/HS signal
448	 * and valid data. This value should actually come from the sensor...
449	 */
450	ceu_write(ceudev, CEU_CAMOR, 0);
451
452	/* TODO: 16 bit bus width require re-calculation of cdwdr and cfzsr */
453	ceu_write(ceudev, CEU_CAPWR, capwr);
454	ceu_write(ceudev, CEU_CFSZR, cfzsr);
455	ceu_write(ceudev, CEU_CDWDR, cdwdr);
456
457	return 0;
458}
459
460/*
461 * ceu_capture() - Trigger start of a capture sequence.
462 *
463 * Program the CEU DMA registers with addresses where to transfer image data.
464 */
465static int ceu_capture(struct ceu_device *ceudev)
466{
467	struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
468	dma_addr_t phys_addr_top;
469
470	phys_addr_top =
471		vb2_dma_contig_plane_dma_addr(&ceudev->active->vb2_buf, 0);
472	ceu_write(ceudev, CEU_CDAYR, phys_addr_top);
473
474	/* Ignore CbCr plane for non multi-planar image formats. */
475	if (ceu_fmt_mplane(pix)) {
476		phys_addr_top =
477			vb2_dma_contig_plane_dma_addr(&ceudev->active->vb2_buf,
478						      1);
479		ceu_write(ceudev, CEU_CDACR, phys_addr_top);
480	}
481
482	/*
483	 * Trigger new capture start: once for each frame, as we work in
484	 * one-frame capture mode.
485	 */
486	ceu_write(ceudev, CEU_CAPSR, CEU_CAPSR_CE);
487
488	return 0;
489}
490
491static irqreturn_t ceu_irq(int irq, void *data)
492{
493	struct ceu_device *ceudev = data;
494	struct vb2_v4l2_buffer *vbuf;
495	struct ceu_buffer *buf;
496	u32 status;
497
498	/* Clean interrupt status. */
499	status = ceu_read(ceudev, CEU_CETCR);
500	ceu_write(ceudev, CEU_CETCR, ~ceudev->irq_mask);
501
502	/* Unexpected interrupt. */
503	if (!(status & CEU_CEIER_MASK))
504		return IRQ_NONE;
505
506	spin_lock(&ceudev->lock);
507
508	/* Stale interrupt from a released buffer, ignore it. */
509	vbuf = ceudev->active;
510	if (!vbuf) {
511		spin_unlock(&ceudev->lock);
512		return IRQ_HANDLED;
513	}
514
515	/*
516	 * When a VBP interrupt occurs, no capture end interrupt will occur
517	 * and the image of that frame is not captured correctly.
518	 */
519	if (status & CEU_CEIER_VBP) {
520		dev_err(ceudev->dev, "VBP interrupt: abort capture\n");
521		goto error_irq_out;
522	}
523
524	/* Prepare to return the 'previous' buffer. */
525	vbuf->vb2_buf.timestamp = ktime_get_ns();
526	vbuf->sequence = ceudev->sequence++;
527	vbuf->field = ceudev->field;
528
529	/* Prepare a new 'active' buffer and trigger a new capture. */
530	if (!list_empty(&ceudev->capture)) {
531		buf = list_first_entry(&ceudev->capture, struct ceu_buffer,
532				       queue);
533		list_del(&buf->queue);
534		ceudev->active = &buf->vb;
535
536		ceu_capture(ceudev);
537	}
538
539	/* Return the 'previous' buffer. */
540	vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE);
541
542	spin_unlock(&ceudev->lock);
543
544	return IRQ_HANDLED;
545
546error_irq_out:
547	/* Return the 'previous' buffer and all queued ones. */
548	vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_ERROR);
549
550	list_for_each_entry(buf, &ceudev->capture, queue)
551		vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
552
553	spin_unlock(&ceudev->lock);
554
555	return IRQ_HANDLED;
556}
557
558/* --- CEU Videobuf2 operations --- */
559
560static void ceu_update_plane_sizes(struct v4l2_plane_pix_format *plane,
561				   unsigned int bpl, unsigned int szimage)
562{
563	memset(plane, 0, sizeof(*plane));
564
565	plane->sizeimage = szimage;
566	if (plane->bytesperline < bpl || plane->bytesperline > CEU_MAX_BPL)
567		plane->bytesperline = bpl;
568}
569
570/*
571 * ceu_calc_plane_sizes() - Fill per-plane 'struct v4l2_plane_pix_format'
572 *			    information according to the currently configured
573 *			    pixel format.
574 * @ceu_device: CEU device.
575 * @ceu_fmt: Active image format.
576 * @pix: Pixel format information (store line width and image sizes)
577 */
578static void ceu_calc_plane_sizes(struct ceu_device *ceudev,
579				 const struct ceu_fmt *ceu_fmt,
580				 struct v4l2_pix_format_mplane *pix)
581{
582	unsigned int bpl, szimage;
583
584	switch (pix->pixelformat) {
585	case V4L2_PIX_FMT_YUYV:
586	case V4L2_PIX_FMT_UYVY:
587	case V4L2_PIX_FMT_YVYU:
588	case V4L2_PIX_FMT_VYUY:
589		pix->num_planes	= 1;
590		bpl		= pix->width * ceu_fmt->bpp / 8;
591		szimage		= pix->height * bpl;
592		ceu_update_plane_sizes(&pix->plane_fmt[0], bpl, szimage);
593		break;
594
595	case V4L2_PIX_FMT_NV12:
596	case V4L2_PIX_FMT_NV21:
597		pix->num_planes	= 2;
598		bpl		= pix->width;
599		szimage		= pix->height * pix->width;
600		ceu_update_plane_sizes(&pix->plane_fmt[0], bpl, szimage);
601		ceu_update_plane_sizes(&pix->plane_fmt[1], bpl, szimage / 2);
602		break;
603
604	case V4L2_PIX_FMT_NV16:
605	case V4L2_PIX_FMT_NV61:
606	default:
607		pix->num_planes	= 2;
608		bpl		= pix->width;
609		szimage		= pix->height * pix->width;
610		ceu_update_plane_sizes(&pix->plane_fmt[0], bpl, szimage);
611		ceu_update_plane_sizes(&pix->plane_fmt[1], bpl, szimage);
612		break;
613	}
614}
615
616/*
617 * ceu_vb2_setup() - is called to check whether the driver can accept the
618 *		     requested number of buffers and to fill in plane sizes
619 *		     for the current frame format, if required.
620 */
621static int ceu_vb2_setup(struct vb2_queue *vq, unsigned int *count,
622			 unsigned int *num_planes, unsigned int sizes[],
623			 struct device *alloc_devs[])
624{
625	struct ceu_device *ceudev = vb2_get_drv_priv(vq);
626	struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
627	unsigned int i;
628
629	/* num_planes is set: just check plane sizes. */
630	if (*num_planes) {
631		for (i = 0; i < pix->num_planes; i++)
632			if (sizes[i] < pix->plane_fmt[i].sizeimage)
633				return -EINVAL;
634
635		return 0;
636	}
637
638	/* num_planes not set: called from REQBUFS, just set plane sizes. */
639	*num_planes = pix->num_planes;
640	for (i = 0; i < pix->num_planes; i++)
641		sizes[i] = pix->plane_fmt[i].sizeimage;
642
643	return 0;
644}
645
646static void ceu_vb2_queue(struct vb2_buffer *vb)
647{
648	struct ceu_device *ceudev = vb2_get_drv_priv(vb->vb2_queue);
649	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
650	struct ceu_buffer *buf = vb2_to_ceu(vbuf);
651	unsigned long irqflags;
652
653	spin_lock_irqsave(&ceudev->lock, irqflags);
654	list_add_tail(&buf->queue, &ceudev->capture);
655	spin_unlock_irqrestore(&ceudev->lock, irqflags);
656}
657
658static int ceu_vb2_prepare(struct vb2_buffer *vb)
659{
660	struct ceu_device *ceudev = vb2_get_drv_priv(vb->vb2_queue);
661	struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
662	unsigned int i;
663
664	for (i = 0; i < pix->num_planes; i++) {
665		if (vb2_plane_size(vb, i) < pix->plane_fmt[i].sizeimage) {
666			dev_err(ceudev->dev,
667				"Plane size too small (%lu < %u)\n",
668				vb2_plane_size(vb, i),
669				pix->plane_fmt[i].sizeimage);
670			return -EINVAL;
671		}
672
673		vb2_set_plane_payload(vb, i, pix->plane_fmt[i].sizeimage);
674	}
675
676	return 0;
677}
678
679static int ceu_start_streaming(struct vb2_queue *vq, unsigned int count)
680{
681	struct ceu_device *ceudev = vb2_get_drv_priv(vq);
682	struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
683	struct ceu_buffer *buf;
684	unsigned long irqflags;
685	int ret;
686
687	/* Program the CEU interface according to the CEU image format. */
688	ret = ceu_hw_config(ceudev);
689	if (ret)
690		goto error_return_bufs;
691
692	ret = v4l2_subdev_call(v4l2_sd, video, s_stream, 1);
693	if (ret && ret != -ENOIOCTLCMD) {
694		dev_dbg(ceudev->dev,
695			"Subdevice failed to start streaming: %d\n", ret);
696		goto error_return_bufs;
697	}
698
699	spin_lock_irqsave(&ceudev->lock, irqflags);
700	ceudev->sequence = 0;
701
702	/* Grab the first available buffer and trigger the first capture. */
703	buf = list_first_entry(&ceudev->capture, struct ceu_buffer,
704			       queue);
705	if (!buf) {
706		spin_unlock_irqrestore(&ceudev->lock, irqflags);
707		dev_dbg(ceudev->dev,
708			"No buffer available for capture.\n");
709		goto error_stop_sensor;
710	}
711
712	list_del(&buf->queue);
713	ceudev->active = &buf->vb;
714
715	/* Clean and program interrupts for first capture. */
716	ceu_write(ceudev, CEU_CETCR, ~ceudev->irq_mask);
717	ceu_write(ceudev, CEU_CEIER, CEU_CEIER_MASK);
718
719	ceu_capture(ceudev);
720
721	spin_unlock_irqrestore(&ceudev->lock, irqflags);
722
723	return 0;
724
725error_stop_sensor:
726	v4l2_subdev_call(v4l2_sd, video, s_stream, 0);
727
728error_return_bufs:
729	spin_lock_irqsave(&ceudev->lock, irqflags);
730	list_for_each_entry(buf, &ceudev->capture, queue)
731		vb2_buffer_done(&ceudev->active->vb2_buf,
732				VB2_BUF_STATE_QUEUED);
733	ceudev->active = NULL;
734	spin_unlock_irqrestore(&ceudev->lock, irqflags);
735
736	return ret;
737}
738
739static void ceu_stop_streaming(struct vb2_queue *vq)
740{
741	struct ceu_device *ceudev = vb2_get_drv_priv(vq);
742	struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
743	struct ceu_buffer *buf;
744	unsigned long irqflags;
745
746	/* Clean and disable interrupt sources. */
747	ceu_write(ceudev, CEU_CETCR,
748		  ceu_read(ceudev, CEU_CETCR) & ceudev->irq_mask);
749	ceu_write(ceudev, CEU_CEIER, CEU_CEIER_MASK);
750
751	v4l2_subdev_call(v4l2_sd, video, s_stream, 0);
752
753	spin_lock_irqsave(&ceudev->lock, irqflags);
754	if (ceudev->active) {
755		vb2_buffer_done(&ceudev->active->vb2_buf,
756				VB2_BUF_STATE_ERROR);
757		ceudev->active = NULL;
758	}
759
760	/* Release all queued buffers. */
761	list_for_each_entry(buf, &ceudev->capture, queue)
762		vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
763	INIT_LIST_HEAD(&ceudev->capture);
764
765	spin_unlock_irqrestore(&ceudev->lock, irqflags);
766
767	ceu_soft_reset(ceudev);
768}
769
770static const struct vb2_ops ceu_vb2_ops = {
771	.queue_setup		= ceu_vb2_setup,
772	.buf_queue		= ceu_vb2_queue,
773	.buf_prepare		= ceu_vb2_prepare,
774	.wait_prepare		= vb2_ops_wait_prepare,
775	.wait_finish		= vb2_ops_wait_finish,
776	.start_streaming	= ceu_start_streaming,
777	.stop_streaming		= ceu_stop_streaming,
778};
779
780/* --- CEU image formats handling --- */
781
782/*
783 * __ceu_try_fmt() - test format on CEU and sensor
784 * @ceudev: The CEU device.
785 * @v4l2_fmt: format to test.
786 * @sd_mbus_code: the media bus code accepted by the subdevice; output param.
787 *
788 * Returns 0 for success, < 0 for errors.
789 */
790static int __ceu_try_fmt(struct ceu_device *ceudev, struct v4l2_format *v4l2_fmt,
791			 u32 *sd_mbus_code)
792{
793	struct ceu_subdev *ceu_sd = ceudev->sd;
794	struct v4l2_pix_format_mplane *pix = &v4l2_fmt->fmt.pix_mp;
795	struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
796	struct v4l2_subdev_pad_config pad_cfg;
797	const struct ceu_fmt *ceu_fmt;
798	u32 mbus_code_old;
799	u32 mbus_code;
800	int ret;
801
802	/*
803	 * Set format on sensor sub device: bus format used to produce memory
804	 * format is selected depending on YUV component ordering or
805	 * at initialization time.
806	 */
807	struct v4l2_subdev_format sd_format = {
808		.which	= V4L2_SUBDEV_FORMAT_TRY,
809	};
810
811	mbus_code_old = ceu_sd->mbus_fmt.mbus_code;
812
813	switch (pix->pixelformat) {
814	case V4L2_PIX_FMT_YUYV:
815		mbus_code = MEDIA_BUS_FMT_YUYV8_2X8;
816		break;
817	case V4L2_PIX_FMT_UYVY:
818		mbus_code = MEDIA_BUS_FMT_UYVY8_2X8;
819		break;
820	case V4L2_PIX_FMT_YVYU:
821		mbus_code = MEDIA_BUS_FMT_YVYU8_2X8;
822		break;
823	case V4L2_PIX_FMT_VYUY:
824		mbus_code = MEDIA_BUS_FMT_VYUY8_2X8;
825		break;
826	case V4L2_PIX_FMT_NV16:
827	case V4L2_PIX_FMT_NV61:
828	case V4L2_PIX_FMT_NV12:
829	case V4L2_PIX_FMT_NV21:
830		mbus_code = ceu_sd->mbus_fmt.mbus_code;
831		break;
832
833	default:
834		pix->pixelformat = V4L2_PIX_FMT_NV16;
835		mbus_code = ceu_sd->mbus_fmt.mbus_code;
836		break;
837	}
838
839	ceu_fmt = get_ceu_fmt_from_fourcc(pix->pixelformat);
840
841	/* CFSZR requires height and width to be 4-pixel aligned. */
842	v4l_bound_align_image(&pix->width, 2, CEU_MAX_WIDTH, 4,
843			      &pix->height, 4, CEU_MAX_HEIGHT, 4, 0);
844
845	v4l2_fill_mbus_format_mplane(&sd_format.format, pix);
846
847	/*
848	 * Try with the mbus_code matching YUYV components ordering first,
849	 * if that one fails, fallback to default selected at initialization
850	 * time.
851	 */
852	sd_format.format.code = mbus_code;
853	ret = v4l2_subdev_call(v4l2_sd, pad, set_fmt, &pad_cfg, &sd_format);
854	if (ret) {
855		if (ret == -EINVAL) {
856			/* fallback */
857			sd_format.format.code = mbus_code_old;
858			ret = v4l2_subdev_call(v4l2_sd, pad, set_fmt,
859					       &pad_cfg, &sd_format);
860		}
861
862		if (ret)
863			return ret;
864	}
865
866	/* Apply size returned by sensor as the CEU can't scale. */
867	v4l2_fill_pix_format_mplane(pix, &sd_format.format);
868
869	/* Calculate per-plane sizes based on image format. */
870	ceu_calc_plane_sizes(ceudev, ceu_fmt, pix);
871
872	/* Report to caller the configured mbus format. */
873	*sd_mbus_code = sd_format.format.code;
874
875	return 0;
876}
877
878/*
879 * ceu_try_fmt() - Wrapper for __ceu_try_fmt; discard configured mbus_fmt
880 */
881static int ceu_try_fmt(struct ceu_device *ceudev, struct v4l2_format *v4l2_fmt)
882{
883	u32 mbus_code;
884
885	return __ceu_try_fmt(ceudev, v4l2_fmt, &mbus_code);
886}
887
888/*
889 * ceu_set_fmt() - Apply the supplied format to both sensor and CEU
890 */
891static int ceu_set_fmt(struct ceu_device *ceudev, struct v4l2_format *v4l2_fmt)
892{
893	struct ceu_subdev *ceu_sd = ceudev->sd;
894	struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
895	u32 mbus_code;
896	int ret;
897
898	/*
899	 * Set format on sensor sub device: bus format used to produce memory
900	 * format is selected at initialization time.
901	 */
902	struct v4l2_subdev_format format = {
903		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
904	};
905
906	ret = __ceu_try_fmt(ceudev, v4l2_fmt, &mbus_code);
907	if (ret)
908		return ret;
909
910	format.format.code = mbus_code;
911	v4l2_fill_mbus_format_mplane(&format.format, &v4l2_fmt->fmt.pix_mp);
912	ret = v4l2_subdev_call(v4l2_sd, pad, set_fmt, NULL, &format);
913	if (ret)
914		return ret;
915
916	ceudev->v4l2_pix = v4l2_fmt->fmt.pix_mp;
917	ceudev->field = V4L2_FIELD_NONE;
918
919	return 0;
920}
921
922/*
923 * ceu_set_default_fmt() - Apply default NV16 memory output format with VGA
924 *			   sizes.
925 */
926static int ceu_set_default_fmt(struct ceu_device *ceudev)
927{
928	int ret;
929
930	struct v4l2_format v4l2_fmt = {
931		.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
932		.fmt.pix_mp = {
933			.width		= VGA_WIDTH,
934			.height		= VGA_HEIGHT,
935			.field		= V4L2_FIELD_NONE,
936			.pixelformat	= V4L2_PIX_FMT_NV16,
937			.num_planes	= 2,
938			.plane_fmt	= {
939				[0]	= {
940					.sizeimage = VGA_WIDTH * VGA_HEIGHT * 2,
941					.bytesperline = VGA_WIDTH * 2,
942				},
943				[1]	= {
944					.sizeimage = VGA_WIDTH * VGA_HEIGHT * 2,
945					.bytesperline = VGA_WIDTH * 2,
946				},
947			},
948		},
949	};
950
951	ret = ceu_try_fmt(ceudev, &v4l2_fmt);
952	if (ret)
953		return ret;
954
955	ceudev->v4l2_pix = v4l2_fmt.fmt.pix_mp;
956	ceudev->field = V4L2_FIELD_NONE;
957
958	return 0;
959}
960
961/*
962 * ceu_init_mbus_fmt() - Query sensor for supported formats and initialize
963 *			 CEU media bus format used to produce memory formats.
964 *
965 * Find out if sensor can produce a permutation of 8-bits YUYV bus format.
966 * From a single 8-bits YUYV bus format the CEU can produce several memory
967 * output formats:
968 * - NV[12|21|16|61] through image fetch mode;
969 * - YUYV422 if sensor provides YUYV422
970 *
971 * TODO: Other YUYV422 permutations through data fetch sync mode and DTARY
972 * TODO: Binary data (eg. JPEG) and raw formats through data fetch sync mode
973 */
974static int ceu_init_mbus_fmt(struct ceu_device *ceudev)
975{
976	struct ceu_subdev *ceu_sd = ceudev->sd;
977	struct ceu_mbus_fmt *mbus_fmt = &ceu_sd->mbus_fmt;
978	struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
979	bool yuyv_bus_fmt = false;
980
981	struct v4l2_subdev_mbus_code_enum sd_mbus_fmt = {
982		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
983		.index = 0,
984	};
985
986	/* Find out if sensor can produce any permutation of 8-bits YUYV422. */
987	while (!yuyv_bus_fmt &&
988	       !v4l2_subdev_call(v4l2_sd, pad, enum_mbus_code,
989				 NULL, &sd_mbus_fmt)) {
990		switch (sd_mbus_fmt.code) {
991		case MEDIA_BUS_FMT_YUYV8_2X8:
992		case MEDIA_BUS_FMT_YVYU8_2X8:
993		case MEDIA_BUS_FMT_UYVY8_2X8:
994		case MEDIA_BUS_FMT_VYUY8_2X8:
995			yuyv_bus_fmt = true;
996			break;
997		default:
998			/*
999			 * Only support 8-bits YUYV bus formats at the moment;
1000			 *
1001			 * TODO: add support for binary formats (data sync
1002			 * fetch mode).
1003			 */
1004			break;
1005		}
1006
1007		sd_mbus_fmt.index++;
1008	}
1009
1010	if (!yuyv_bus_fmt)
1011		return -ENXIO;
1012
1013	/*
1014	 * Save the first encountered YUYV format as "mbus_fmt" and use it
1015	 * to output all planar YUV422 and YUV420 (NV*) formats to memory as
1016	 * well as for data synch fetch mode (YUYV - YVYU etc. ).
1017	 */
1018	mbus_fmt->mbus_code	= sd_mbus_fmt.code;
1019	mbus_fmt->bps		= 8;
1020
1021	/* Annotate the selected bus format components ordering. */
1022	switch (sd_mbus_fmt.code) {
1023	case MEDIA_BUS_FMT_YUYV8_2X8:
1024		mbus_fmt->fmt_order		= CEU_CAMCR_DTARY_8_YUYV;
1025		mbus_fmt->fmt_order_swap	= CEU_CAMCR_DTARY_8_YVYU;
1026		mbus_fmt->swapped		= false;
1027		mbus_fmt->bpp			= 16;
1028		break;
1029
1030	case MEDIA_BUS_FMT_YVYU8_2X8:
1031		mbus_fmt->fmt_order		= CEU_CAMCR_DTARY_8_YVYU;
1032		mbus_fmt->fmt_order_swap	= CEU_CAMCR_DTARY_8_YUYV;
1033		mbus_fmt->swapped		= true;
1034		mbus_fmt->bpp			= 16;
1035		break;
1036
1037	case MEDIA_BUS_FMT_UYVY8_2X8:
1038		mbus_fmt->fmt_order		= CEU_CAMCR_DTARY_8_UYVY;
1039		mbus_fmt->fmt_order_swap	= CEU_CAMCR_DTARY_8_VYUY;
1040		mbus_fmt->swapped		= false;
1041		mbus_fmt->bpp			= 16;
1042		break;
1043
1044	case MEDIA_BUS_FMT_VYUY8_2X8:
1045		mbus_fmt->fmt_order		= CEU_CAMCR_DTARY_8_VYUY;
1046		mbus_fmt->fmt_order_swap	= CEU_CAMCR_DTARY_8_UYVY;
1047		mbus_fmt->swapped		= true;
1048		mbus_fmt->bpp			= 16;
1049		break;
1050	}
1051
1052	return 0;
1053}
1054
1055/* --- Runtime PM Handlers --- */
1056
1057/*
1058 * ceu_runtime_resume() - soft-reset the interface and turn sensor power on.
1059 */
1060static int __maybe_unused ceu_runtime_resume(struct device *dev)
1061{
1062	struct ceu_device *ceudev = dev_get_drvdata(dev);
1063	struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
1064
1065	v4l2_subdev_call(v4l2_sd, core, s_power, 1);
1066
1067	ceu_soft_reset(ceudev);
1068
1069	return 0;
1070}
1071
1072/*
1073 * ceu_runtime_suspend() - disable capture and interrupts and soft-reset.
1074 *			   Turn sensor power off.
1075 */
1076static int __maybe_unused ceu_runtime_suspend(struct device *dev)
1077{
1078	struct ceu_device *ceudev = dev_get_drvdata(dev);
1079	struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
1080
1081	v4l2_subdev_call(v4l2_sd, core, s_power, 0);
1082
1083	ceu_write(ceudev, CEU_CEIER, 0);
1084	ceu_soft_reset(ceudev);
1085
1086	return 0;
1087}
1088
1089/* --- File Operations --- */
1090
1091static int ceu_open(struct file *file)
1092{
1093	struct ceu_device *ceudev = video_drvdata(file);
1094	int ret;
1095
1096	ret = v4l2_fh_open(file);
1097	if (ret)
1098		return ret;
1099
1100	mutex_lock(&ceudev->mlock);
1101	/* Causes soft-reset and sensor power on on first open */
1102	pm_runtime_get_sync(ceudev->dev);
1103	mutex_unlock(&ceudev->mlock);
1104
1105	return 0;
1106}
1107
1108static int ceu_release(struct file *file)
1109{
1110	struct ceu_device *ceudev = video_drvdata(file);
1111
1112	vb2_fop_release(file);
1113
1114	mutex_lock(&ceudev->mlock);
1115	/* Causes soft-reset and sensor power down on last close */
1116	pm_runtime_put(ceudev->dev);
1117	mutex_unlock(&ceudev->mlock);
1118
1119	return 0;
1120}
1121
1122static const struct v4l2_file_operations ceu_fops = {
1123	.owner			= THIS_MODULE,
1124	.open			= ceu_open,
1125	.release		= ceu_release,
1126	.unlocked_ioctl		= video_ioctl2,
1127	.mmap			= vb2_fop_mmap,
1128	.poll			= vb2_fop_poll,
1129};
1130
1131/* --- Video Device IOCTLs --- */
1132
1133static int ceu_querycap(struct file *file, void *priv,
1134			struct v4l2_capability *cap)
1135{
1136	struct ceu_device *ceudev = video_drvdata(file);
1137
1138	strscpy(cap->card, "Renesas CEU", sizeof(cap->card));
1139	strscpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
1140	snprintf(cap->bus_info, sizeof(cap->bus_info),
1141		 "platform:renesas-ceu-%s", dev_name(ceudev->dev));
1142
1143	return 0;
1144}
1145
1146static int ceu_enum_fmt_vid_cap(struct file *file, void *priv,
1147				struct v4l2_fmtdesc *f)
1148{
1149	const struct ceu_fmt *fmt;
1150
1151	if (f->index >= ARRAY_SIZE(ceu_fmt_list))
1152		return -EINVAL;
1153
1154	fmt = &ceu_fmt_list[f->index];
1155	f->pixelformat = fmt->fourcc;
1156
1157	return 0;
1158}
1159
1160static int ceu_try_fmt_vid_cap(struct file *file, void *priv,
1161			       struct v4l2_format *f)
1162{
1163	struct ceu_device *ceudev = video_drvdata(file);
1164
1165	return ceu_try_fmt(ceudev, f);
1166}
1167
1168static int ceu_s_fmt_vid_cap(struct file *file, void *priv,
1169			     struct v4l2_format *f)
1170{
1171	struct ceu_device *ceudev = video_drvdata(file);
1172
1173	if (vb2_is_streaming(&ceudev->vb2_vq))
1174		return -EBUSY;
1175
1176	return ceu_set_fmt(ceudev, f);
1177}
1178
1179static int ceu_g_fmt_vid_cap(struct file *file, void *priv,
1180			     struct v4l2_format *f)
1181{
1182	struct ceu_device *ceudev = video_drvdata(file);
1183
1184	f->fmt.pix_mp = ceudev->v4l2_pix;
1185
1186	return 0;
1187}
1188
1189static int ceu_enum_input(struct file *file, void *priv,
1190			  struct v4l2_input *inp)
1191{
1192	struct ceu_device *ceudev = video_drvdata(file);
1193	struct ceu_subdev *ceusd;
1194
1195	if (inp->index >= ceudev->num_sd)
1196		return -EINVAL;
1197
1198	ceusd = &ceudev->subdevs[inp->index];
1199
1200	inp->type = V4L2_INPUT_TYPE_CAMERA;
1201	inp->std = 0;
1202	snprintf(inp->name, sizeof(inp->name), "Camera%u: %s",
1203		 inp->index, ceusd->v4l2_sd->name);
1204
1205	return 0;
1206}
1207
1208static int ceu_g_input(struct file *file, void *priv, unsigned int *i)
1209{
1210	struct ceu_device *ceudev = video_drvdata(file);
1211
1212	*i = ceudev->sd_index;
1213
1214	return 0;
1215}
1216
1217static int ceu_s_input(struct file *file, void *priv, unsigned int i)
1218{
1219	struct ceu_device *ceudev = video_drvdata(file);
1220	struct ceu_subdev *ceu_sd_old;
1221	int ret;
1222
1223	if (i >= ceudev->num_sd)
1224		return -EINVAL;
1225
1226	if (vb2_is_streaming(&ceudev->vb2_vq))
1227		return -EBUSY;
1228
1229	if (i == ceudev->sd_index)
1230		return 0;
1231
1232	ceu_sd_old = ceudev->sd;
1233	ceudev->sd = &ceudev->subdevs[i];
1234
1235	/*
1236	 * Make sure we can generate output image formats and apply
1237	 * default one.
1238	 */
1239	ret = ceu_init_mbus_fmt(ceudev);
1240	if (ret) {
1241		ceudev->sd = ceu_sd_old;
1242		return -EINVAL;
1243	}
1244
1245	ret = ceu_set_default_fmt(ceudev);
1246	if (ret) {
1247		ceudev->sd = ceu_sd_old;
1248		return -EINVAL;
1249	}
1250
1251	/* Now that we're sure we can use the sensor, power off the old one. */
1252	v4l2_subdev_call(ceu_sd_old->v4l2_sd, core, s_power, 0);
1253	v4l2_subdev_call(ceudev->sd->v4l2_sd, core, s_power, 1);
1254
1255	ceudev->sd_index = i;
1256
1257	return 0;
1258}
1259
1260static int ceu_g_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
1261{
1262	struct ceu_device *ceudev = video_drvdata(file);
1263
1264	return v4l2_g_parm_cap(video_devdata(file), ceudev->sd->v4l2_sd, a);
1265}
1266
1267static int ceu_s_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
1268{
1269	struct ceu_device *ceudev = video_drvdata(file);
1270
1271	return v4l2_s_parm_cap(video_devdata(file), ceudev->sd->v4l2_sd, a);
1272}
1273
1274static int ceu_enum_framesizes(struct file *file, void *fh,
1275			       struct v4l2_frmsizeenum *fsize)
1276{
1277	struct ceu_device *ceudev = video_drvdata(file);
1278	struct ceu_subdev *ceu_sd = ceudev->sd;
1279	const struct ceu_fmt *ceu_fmt;
1280	struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
1281	int ret;
1282
1283	struct v4l2_subdev_frame_size_enum fse = {
1284		.code	= ceu_sd->mbus_fmt.mbus_code,
1285		.index	= fsize->index,
1286		.which	= V4L2_SUBDEV_FORMAT_ACTIVE,
1287	};
1288
1289	/* Just check if user supplied pixel format is supported. */
1290	ceu_fmt = get_ceu_fmt_from_fourcc(fsize->pixel_format);
1291	if (!ceu_fmt)
1292		return -EINVAL;
1293
1294	ret = v4l2_subdev_call(v4l2_sd, pad, enum_frame_size,
1295			       NULL, &fse);
1296	if (ret)
1297		return ret;
1298
1299	fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
1300	fsize->discrete.width = CEU_W_MAX(fse.max_width);
1301	fsize->discrete.height = CEU_H_MAX(fse.max_height);
1302
1303	return 0;
1304}
1305
1306static int ceu_enum_frameintervals(struct file *file, void *fh,
1307				   struct v4l2_frmivalenum *fival)
1308{
1309	struct ceu_device *ceudev = video_drvdata(file);
1310	struct ceu_subdev *ceu_sd = ceudev->sd;
1311	const struct ceu_fmt *ceu_fmt;
1312	struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
1313	int ret;
1314
1315	struct v4l2_subdev_frame_interval_enum fie = {
1316		.code	= ceu_sd->mbus_fmt.mbus_code,
1317		.index = fival->index,
1318		.width = fival->width,
1319		.height = fival->height,
1320		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
1321	};
1322
1323	/* Just check if user supplied pixel format is supported. */
1324	ceu_fmt = get_ceu_fmt_from_fourcc(fival->pixel_format);
1325	if (!ceu_fmt)
1326		return -EINVAL;
1327
1328	ret = v4l2_subdev_call(v4l2_sd, pad, enum_frame_interval, NULL,
1329			       &fie);
1330	if (ret)
1331		return ret;
1332
1333	fival->type = V4L2_FRMIVAL_TYPE_DISCRETE;
1334	fival->discrete = fie.interval;
1335
1336	return 0;
1337}
1338
1339static const struct v4l2_ioctl_ops ceu_ioctl_ops = {
1340	.vidioc_querycap		= ceu_querycap,
1341
1342	.vidioc_enum_fmt_vid_cap	= ceu_enum_fmt_vid_cap,
1343	.vidioc_try_fmt_vid_cap_mplane	= ceu_try_fmt_vid_cap,
1344	.vidioc_s_fmt_vid_cap_mplane	= ceu_s_fmt_vid_cap,
1345	.vidioc_g_fmt_vid_cap_mplane	= ceu_g_fmt_vid_cap,
1346
1347	.vidioc_enum_input		= ceu_enum_input,
1348	.vidioc_g_input			= ceu_g_input,
1349	.vidioc_s_input			= ceu_s_input,
1350
1351	.vidioc_reqbufs			= vb2_ioctl_reqbufs,
1352	.vidioc_querybuf		= vb2_ioctl_querybuf,
1353	.vidioc_qbuf			= vb2_ioctl_qbuf,
1354	.vidioc_expbuf			= vb2_ioctl_expbuf,
1355	.vidioc_dqbuf			= vb2_ioctl_dqbuf,
1356	.vidioc_create_bufs		= vb2_ioctl_create_bufs,
1357	.vidioc_prepare_buf		= vb2_ioctl_prepare_buf,
1358	.vidioc_streamon		= vb2_ioctl_streamon,
1359	.vidioc_streamoff		= vb2_ioctl_streamoff,
1360
1361	.vidioc_g_parm			= ceu_g_parm,
1362	.vidioc_s_parm			= ceu_s_parm,
1363	.vidioc_enum_framesizes		= ceu_enum_framesizes,
1364	.vidioc_enum_frameintervals	= ceu_enum_frameintervals,
1365
1366	.vidioc_log_status              = v4l2_ctrl_log_status,
1367	.vidioc_subscribe_event         = v4l2_ctrl_subscribe_event,
1368	.vidioc_unsubscribe_event       = v4l2_event_unsubscribe,
1369};
1370
1371/*
1372 * ceu_vdev_release() - release CEU video device memory when last reference
1373 *			to this driver is closed
1374 */
1375static void ceu_vdev_release(struct video_device *vdev)
1376{
1377	struct ceu_device *ceudev = video_get_drvdata(vdev);
1378
1379	kfree(ceudev);
1380}
1381
1382static int ceu_notify_bound(struct v4l2_async_notifier *notifier,
1383			    struct v4l2_subdev *v4l2_sd,
1384			    struct v4l2_async_subdev *asd)
1385{
1386	struct v4l2_device *v4l2_dev = notifier->v4l2_dev;
1387	struct ceu_device *ceudev = v4l2_to_ceu(v4l2_dev);
1388	struct ceu_subdev *ceu_sd = to_ceu_subdev(asd);
1389
1390	ceu_sd->v4l2_sd = v4l2_sd;
1391	ceudev->num_sd++;
1392
1393	return 0;
1394}
1395
1396static int ceu_notify_complete(struct v4l2_async_notifier *notifier)
1397{
1398	struct v4l2_device *v4l2_dev = notifier->v4l2_dev;
1399	struct ceu_device *ceudev = v4l2_to_ceu(v4l2_dev);
1400	struct video_device *vdev = &ceudev->vdev;
1401	struct vb2_queue *q = &ceudev->vb2_vq;
1402	struct v4l2_subdev *v4l2_sd;
1403	int ret;
1404
1405	/* Initialize vb2 queue. */
1406	q->type			= V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1407	q->io_modes		= VB2_MMAP | VB2_DMABUF;
1408	q->drv_priv		= ceudev;
1409	q->ops			= &ceu_vb2_ops;
1410	q->mem_ops		= &vb2_dma_contig_memops;
1411	q->buf_struct_size	= sizeof(struct ceu_buffer);
1412	q->timestamp_flags	= V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
1413	q->min_buffers_needed	= 2;
1414	q->lock			= &ceudev->mlock;
1415	q->dev			= ceudev->v4l2_dev.dev;
1416
1417	ret = vb2_queue_init(q);
1418	if (ret)
1419		return ret;
1420
1421	/*
1422	 * Make sure at least one sensor is primary and use it to initialize
1423	 * ceu formats.
1424	 */
1425	if (!ceudev->sd) {
1426		ceudev->sd = &ceudev->subdevs[0];
1427		ceudev->sd_index = 0;
1428	}
1429
1430	v4l2_sd = ceudev->sd->v4l2_sd;
1431
1432	ret = ceu_init_mbus_fmt(ceudev);
1433	if (ret)
1434		return ret;
1435
1436	ret = ceu_set_default_fmt(ceudev);
1437	if (ret)
1438		return ret;
1439
1440	/* Register the video device. */
1441	strscpy(vdev->name, DRIVER_NAME, sizeof(vdev->name));
1442	vdev->v4l2_dev		= v4l2_dev;
1443	vdev->lock		= &ceudev->mlock;
1444	vdev->queue		= &ceudev->vb2_vq;
1445	vdev->ctrl_handler	= v4l2_sd->ctrl_handler;
1446	vdev->fops		= &ceu_fops;
1447	vdev->ioctl_ops		= &ceu_ioctl_ops;
1448	vdev->release		= ceu_vdev_release;
1449	vdev->device_caps	= V4L2_CAP_VIDEO_CAPTURE_MPLANE |
1450				  V4L2_CAP_STREAMING;
1451	video_set_drvdata(vdev, ceudev);
1452
1453	ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
1454	if (ret < 0) {
1455		v4l2_err(vdev->v4l2_dev,
1456			 "video_register_device failed: %d\n", ret);
1457		return ret;
1458	}
1459
1460	return 0;
1461}
1462
1463static const struct v4l2_async_notifier_operations ceu_notify_ops = {
1464	.bound		= ceu_notify_bound,
1465	.complete	= ceu_notify_complete,
1466};
1467
1468/*
1469 * ceu_init_async_subdevs() - Initialize CEU subdevices and async_subdevs in
1470 *			      ceu device. Both DT and platform data parsing use
1471 *			      this routine.
1472 *
1473 * Returns 0 for success, -ENOMEM for failure.
1474 */
1475static int ceu_init_async_subdevs(struct ceu_device *ceudev, unsigned int n_sd)
1476{
1477	/* Reserve memory for 'n_sd' ceu_subdev descriptors. */
1478	ceudev->subdevs = devm_kcalloc(ceudev->dev, n_sd,
1479				       sizeof(*ceudev->subdevs), GFP_KERNEL);
1480	if (!ceudev->subdevs)
1481		return -ENOMEM;
1482
1483	ceudev->sd = NULL;
1484	ceudev->sd_index = 0;
1485	ceudev->num_sd = 0;
1486
1487	return 0;
1488}
1489
1490/*
1491 * ceu_parse_platform_data() - Initialize async_subdevices using platform
1492 *			       device provided data.
1493 */
1494static int ceu_parse_platform_data(struct ceu_device *ceudev,
1495				   const struct ceu_platform_data *pdata)
1496{
1497	const struct ceu_async_subdev *async_sd;
1498	struct ceu_subdev *ceu_sd;
1499	unsigned int i;
1500	int ret;
1501
1502	if (pdata->num_subdevs == 0)
1503		return -ENODEV;
1504
1505	ret = ceu_init_async_subdevs(ceudev, pdata->num_subdevs);
1506	if (ret)
1507		return ret;
1508
1509	for (i = 0; i < pdata->num_subdevs; i++) {
1510
1511		/* Setup the ceu subdevice and the async subdevice. */
1512		async_sd = &pdata->subdevs[i];
1513		ceu_sd = &ceudev->subdevs[i];
1514
1515		INIT_LIST_HEAD(&ceu_sd->asd.list);
1516
1517		ceu_sd->mbus_flags	= async_sd->flags;
1518		ceu_sd->asd.match_type	= V4L2_ASYNC_MATCH_I2C;
1519		ceu_sd->asd.match.i2c.adapter_id = async_sd->i2c_adapter_id;
1520		ceu_sd->asd.match.i2c.address = async_sd->i2c_address;
1521
1522		ret = v4l2_async_notifier_add_subdev(&ceudev->notifier,
1523						     &ceu_sd->asd);
1524		if (ret) {
1525			v4l2_async_notifier_cleanup(&ceudev->notifier);
1526			return ret;
1527		}
1528	}
1529
1530	return pdata->num_subdevs;
1531}
1532
1533/*
1534 * ceu_parse_dt() - Initialize async_subdevs parsing device tree graph.
1535 */
1536static int ceu_parse_dt(struct ceu_device *ceudev)
1537{
1538	struct device_node *of = ceudev->dev->of_node;
1539	struct device_node *ep, *remote;
1540	struct ceu_subdev *ceu_sd;
1541	unsigned int i;
1542	int num_ep;
1543	int ret;
1544
1545	num_ep = of_graph_get_endpoint_count(of);
1546	if (!num_ep)
1547		return -ENODEV;
1548
1549	ret = ceu_init_async_subdevs(ceudev, num_ep);
1550	if (ret)
1551		return ret;
1552
1553	for (i = 0; i < num_ep; i++) {
1554		struct v4l2_fwnode_endpoint fw_ep = {
1555			.bus_type = V4L2_MBUS_PARALLEL,
1556			.bus = {
1557				.parallel = {
1558					.flags = V4L2_MBUS_HSYNC_ACTIVE_HIGH |
1559						 V4L2_MBUS_VSYNC_ACTIVE_HIGH,
1560					.bus_width = 8,
1561				},
1562			},
1563		};
1564
1565		ep = of_graph_get_endpoint_by_regs(of, 0, i);
1566		if (!ep) {
1567			dev_err(ceudev->dev,
1568				"No subdevice connected on endpoint %u.\n", i);
1569			ret = -ENODEV;
1570			goto error_cleanup;
1571		}
1572
1573		ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep), &fw_ep);
1574		if (ret) {
1575			dev_err(ceudev->dev,
1576				"Unable to parse endpoint #%u: %d.\n", i, ret);
1577			goto error_cleanup;
1578		}
1579
1580		/* Setup the ceu subdevice and the async subdevice. */
1581		ceu_sd = &ceudev->subdevs[i];
1582		INIT_LIST_HEAD(&ceu_sd->asd.list);
1583
1584		remote = of_graph_get_remote_port_parent(ep);
1585		ceu_sd->mbus_flags = fw_ep.bus.parallel.flags;
1586		ceu_sd->asd.match_type = V4L2_ASYNC_MATCH_FWNODE;
1587		ceu_sd->asd.match.fwnode = of_fwnode_handle(remote);
1588
1589		ret = v4l2_async_notifier_add_subdev(&ceudev->notifier,
1590						     &ceu_sd->asd);
1591		if (ret) {
1592			of_node_put(remote);
1593			goto error_cleanup;
1594		}
1595
1596		of_node_put(ep);
1597	}
1598
1599	return num_ep;
1600
1601error_cleanup:
1602	v4l2_async_notifier_cleanup(&ceudev->notifier);
1603	of_node_put(ep);
1604	return ret;
1605}
1606
1607/*
1608 * struct ceu_data - Platform specific CEU data
1609 * @irq_mask: CETCR mask with all interrupt sources enabled. The mask differs
1610 *	      between SH4 and RZ platforms.
1611 */
1612struct ceu_data {
1613	u32 irq_mask;
1614};
1615
1616static const struct ceu_data ceu_data_rz = {
1617	.irq_mask = CEU_CETCR_ALL_IRQS_RZ,
1618};
1619
1620static const struct ceu_data ceu_data_sh4 = {
1621	.irq_mask = CEU_CETCR_ALL_IRQS_SH4,
1622};
1623
1624#if IS_ENABLED(CONFIG_OF)
1625static const struct of_device_id ceu_of_match[] = {
1626	{ .compatible = "renesas,r7s72100-ceu", .data = &ceu_data_rz },
1627	{ .compatible = "renesas,r8a7740-ceu", .data = &ceu_data_rz },
1628	{ }
1629};
1630MODULE_DEVICE_TABLE(of, ceu_of_match);
1631#endif
1632
1633static int ceu_probe(struct platform_device *pdev)
1634{
1635	struct device *dev = &pdev->dev;
1636	const struct ceu_data *ceu_data;
1637	struct ceu_device *ceudev;
1638	struct resource *res;
1639	unsigned int irq;
1640	int num_subdevs;
1641	int ret;
1642
1643	ceudev = kzalloc(sizeof(*ceudev), GFP_KERNEL);
1644	if (!ceudev)
1645		return -ENOMEM;
1646
1647	platform_set_drvdata(pdev, ceudev);
1648	ceudev->dev = dev;
1649
1650	INIT_LIST_HEAD(&ceudev->capture);
1651	spin_lock_init(&ceudev->lock);
1652	mutex_init(&ceudev->mlock);
1653
1654	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1655	ceudev->base = devm_ioremap_resource(dev, res);
1656	if (IS_ERR(ceudev->base)) {
1657		ret = PTR_ERR(ceudev->base);
1658		goto error_free_ceudev;
1659	}
1660
1661	ret = platform_get_irq(pdev, 0);
1662	if (ret < 0)
1663		goto error_free_ceudev;
1664	irq = ret;
1665
1666	ret = devm_request_irq(dev, irq, ceu_irq,
1667			       0, dev_name(dev), ceudev);
1668	if (ret) {
1669		dev_err(&pdev->dev, "Unable to request CEU interrupt.\n");
1670		goto error_free_ceudev;
1671	}
1672
1673	pm_runtime_enable(dev);
1674
1675	ret = v4l2_device_register(dev, &ceudev->v4l2_dev);
1676	if (ret)
1677		goto error_pm_disable;
1678
1679	v4l2_async_notifier_init(&ceudev->notifier);
1680
1681	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
1682		ceu_data = of_match_device(ceu_of_match, dev)->data;
1683		num_subdevs = ceu_parse_dt(ceudev);
1684	} else if (dev->platform_data) {
1685		/* Assume SH4 if booting with platform data. */
1686		ceu_data = &ceu_data_sh4;
1687		num_subdevs = ceu_parse_platform_data(ceudev,
1688						      dev->platform_data);
1689	} else {
1690		num_subdevs = -EINVAL;
1691	}
1692
1693	if (num_subdevs < 0) {
1694		ret = num_subdevs;
1695		goto error_v4l2_unregister;
1696	}
1697	ceudev->irq_mask = ceu_data->irq_mask;
1698
1699	ceudev->notifier.v4l2_dev	= &ceudev->v4l2_dev;
1700	ceudev->notifier.ops		= &ceu_notify_ops;
1701	ret = v4l2_async_notifier_register(&ceudev->v4l2_dev,
1702					   &ceudev->notifier);
1703	if (ret)
1704		goto error_cleanup;
1705
1706	dev_info(dev, "Renesas Capture Engine Unit %s\n", dev_name(dev));
1707
1708	return 0;
1709
1710error_cleanup:
1711	v4l2_async_notifier_cleanup(&ceudev->notifier);
1712error_v4l2_unregister:
1713	v4l2_device_unregister(&ceudev->v4l2_dev);
1714error_pm_disable:
1715	pm_runtime_disable(dev);
1716error_free_ceudev:
1717	kfree(ceudev);
1718
1719	return ret;
1720}
1721
1722static int ceu_remove(struct platform_device *pdev)
1723{
1724	struct ceu_device *ceudev = platform_get_drvdata(pdev);
1725
1726	pm_runtime_disable(ceudev->dev);
1727
1728	v4l2_async_notifier_unregister(&ceudev->notifier);
1729
1730	v4l2_async_notifier_cleanup(&ceudev->notifier);
1731
1732	v4l2_device_unregister(&ceudev->v4l2_dev);
1733
1734	video_unregister_device(&ceudev->vdev);
1735
1736	return 0;
1737}
1738
1739static const struct dev_pm_ops ceu_pm_ops = {
1740	SET_RUNTIME_PM_OPS(ceu_runtime_suspend,
1741			   ceu_runtime_resume,
1742			   NULL)
1743};
1744
1745static struct platform_driver ceu_driver = {
1746	.driver		= {
1747		.name	= DRIVER_NAME,
1748		.pm	= &ceu_pm_ops,
1749		.of_match_table = of_match_ptr(ceu_of_match),
1750	},
1751	.probe		= ceu_probe,
1752	.remove		= ceu_remove,
1753};
1754
1755module_platform_driver(ceu_driver);
1756
1757MODULE_DESCRIPTION("Renesas CEU camera driver");
1758MODULE_AUTHOR("Jacopo Mondi <jacopo+renesas@jmondi.org>");
1759MODULE_LICENSE("GPL v2");
1760