1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Driver for Renesas R-Car MIPI CSI-2 Receiver
4 *
5 * Copyright (C) 2018 Renesas Electronics Corp.
6 */
7
8#include <linux/delay.h>
9#include <linux/interrupt.h>
10#include <linux/io.h>
11#include <linux/module.h>
12#include <linux/of.h>
13#include <linux/of_device.h>
14#include <linux/of_graph.h>
15#include <linux/platform_device.h>
16#include <linux/pm_runtime.h>
17#include <linux/reset.h>
18#include <linux/sys_soc.h>
19
20#include <media/v4l2-ctrls.h>
21#include <media/v4l2-device.h>
22#include <media/v4l2-fwnode.h>
23#include <media/v4l2-mc.h>
24#include <media/v4l2-subdev.h>
25
26struct rcar_csi2;
27
28/* Register offsets and bits */
29
30/* Control Timing Select */
31#define TREF_REG			0x00
32#define TREF_TREF			BIT(0)
33
34/* Software Reset */
35#define SRST_REG			0x04
36#define SRST_SRST			BIT(0)
37
38/* PHY Operation Control */
39#define PHYCNT_REG			0x08
40#define PHYCNT_SHUTDOWNZ		BIT(17)
41#define PHYCNT_RSTZ			BIT(16)
42#define PHYCNT_ENABLECLK		BIT(4)
43#define PHYCNT_ENABLE_3			BIT(3)
44#define PHYCNT_ENABLE_2			BIT(2)
45#define PHYCNT_ENABLE_1			BIT(1)
46#define PHYCNT_ENABLE_0			BIT(0)
47
48/* Checksum Control */
49#define CHKSUM_REG			0x0c
50#define CHKSUM_ECC_EN			BIT(1)
51#define CHKSUM_CRC_EN			BIT(0)
52
53/*
54 * Channel Data Type Select
55 * VCDT[0-15]:  Channel 0 VCDT[16-31]:  Channel 1
56 * VCDT2[0-15]: Channel 2 VCDT2[16-31]: Channel 3
57 */
58#define VCDT_REG			0x10
59#define VCDT2_REG			0x14
60#define VCDT_VCDTN_EN			BIT(15)
61#define VCDT_SEL_VC(n)			(((n) & 0x3) << 8)
62#define VCDT_SEL_DTN_ON			BIT(6)
63#define VCDT_SEL_DT(n)			(((n) & 0x3f) << 0)
64
65/* Frame Data Type Select */
66#define FRDT_REG			0x18
67
68/* Field Detection Control */
69#define FLD_REG				0x1c
70#define FLD_FLD_NUM(n)			(((n) & 0xff) << 16)
71#define FLD_DET_SEL(n)			(((n) & 0x3) << 4)
72#define FLD_FLD_EN4			BIT(3)
73#define FLD_FLD_EN3			BIT(2)
74#define FLD_FLD_EN2			BIT(1)
75#define FLD_FLD_EN			BIT(0)
76
77/* Automatic Standby Control */
78#define ASTBY_REG			0x20
79
80/* Long Data Type Setting 0 */
81#define LNGDT0_REG			0x28
82
83/* Long Data Type Setting 1 */
84#define LNGDT1_REG			0x2c
85
86/* Interrupt Enable */
87#define INTEN_REG			0x30
88#define INTEN_INT_AFIFO_OF		BIT(27)
89#define INTEN_INT_ERRSOTHS		BIT(4)
90#define INTEN_INT_ERRSOTSYNCHS		BIT(3)
91
92/* Interrupt Source Mask */
93#define INTCLOSE_REG			0x34
94
95/* Interrupt Status Monitor */
96#define INTSTATE_REG			0x38
97#define INTSTATE_INT_ULPS_START		BIT(7)
98#define INTSTATE_INT_ULPS_END		BIT(6)
99
100/* Interrupt Error Status Monitor */
101#define INTERRSTATE_REG			0x3c
102
103/* Short Packet Data */
104#define SHPDAT_REG			0x40
105
106/* Short Packet Count */
107#define SHPCNT_REG			0x44
108
109/* LINK Operation Control */
110#define LINKCNT_REG			0x48
111#define LINKCNT_MONITOR_EN		BIT(31)
112#define LINKCNT_REG_MONI_PACT_EN	BIT(25)
113#define LINKCNT_ICLK_NONSTOP		BIT(24)
114
115/* Lane Swap */
116#define LSWAP_REG			0x4c
117#define LSWAP_L3SEL(n)			(((n) & 0x3) << 6)
118#define LSWAP_L2SEL(n)			(((n) & 0x3) << 4)
119#define LSWAP_L1SEL(n)			(((n) & 0x3) << 2)
120#define LSWAP_L0SEL(n)			(((n) & 0x3) << 0)
121
122/* PHY Test Interface Write Register */
123#define PHTW_REG			0x50
124#define PHTW_DWEN			BIT(24)
125#define PHTW_TESTDIN_DATA(n)		(((n & 0xff)) << 16)
126#define PHTW_CWEN			BIT(8)
127#define PHTW_TESTDIN_CODE(n)		((n & 0xff))
128
129struct phtw_value {
130	u16 data;
131	u16 code;
132};
133
134struct rcsi2_mbps_reg {
135	u16 mbps;
136	u16 reg;
137};
138
139static const struct rcsi2_mbps_reg phtw_mbps_h3_v3h_m3n[] = {
140	{ .mbps =   80, .reg = 0x86 },
141	{ .mbps =   90, .reg = 0x86 },
142	{ .mbps =  100, .reg = 0x87 },
143	{ .mbps =  110, .reg = 0x87 },
144	{ .mbps =  120, .reg = 0x88 },
145	{ .mbps =  130, .reg = 0x88 },
146	{ .mbps =  140, .reg = 0x89 },
147	{ .mbps =  150, .reg = 0x89 },
148	{ .mbps =  160, .reg = 0x8a },
149	{ .mbps =  170, .reg = 0x8a },
150	{ .mbps =  180, .reg = 0x8b },
151	{ .mbps =  190, .reg = 0x8b },
152	{ .mbps =  205, .reg = 0x8c },
153	{ .mbps =  220, .reg = 0x8d },
154	{ .mbps =  235, .reg = 0x8e },
155	{ .mbps =  250, .reg = 0x8e },
156	{ /* sentinel */ },
157};
158
159static const struct rcsi2_mbps_reg phtw_mbps_v3m_e3[] = {
160	{ .mbps =   80, .reg = 0x00 },
161	{ .mbps =   90, .reg = 0x20 },
162	{ .mbps =  100, .reg = 0x40 },
163	{ .mbps =  110, .reg = 0x02 },
164	{ .mbps =  130, .reg = 0x22 },
165	{ .mbps =  140, .reg = 0x42 },
166	{ .mbps =  150, .reg = 0x04 },
167	{ .mbps =  170, .reg = 0x24 },
168	{ .mbps =  180, .reg = 0x44 },
169	{ .mbps =  200, .reg = 0x06 },
170	{ .mbps =  220, .reg = 0x26 },
171	{ .mbps =  240, .reg = 0x46 },
172	{ .mbps =  250, .reg = 0x08 },
173	{ .mbps =  270, .reg = 0x28 },
174	{ .mbps =  300, .reg = 0x0a },
175	{ .mbps =  330, .reg = 0x2a },
176	{ .mbps =  360, .reg = 0x4a },
177	{ .mbps =  400, .reg = 0x0c },
178	{ .mbps =  450, .reg = 0x2c },
179	{ .mbps =  500, .reg = 0x0e },
180	{ .mbps =  550, .reg = 0x2e },
181	{ .mbps =  600, .reg = 0x10 },
182	{ .mbps =  650, .reg = 0x30 },
183	{ .mbps =  700, .reg = 0x12 },
184	{ .mbps =  750, .reg = 0x32 },
185	{ .mbps =  800, .reg = 0x52 },
186	{ .mbps =  850, .reg = 0x72 },
187	{ .mbps =  900, .reg = 0x14 },
188	{ .mbps =  950, .reg = 0x34 },
189	{ .mbps = 1000, .reg = 0x54 },
190	{ .mbps = 1050, .reg = 0x74 },
191	{ .mbps = 1125, .reg = 0x16 },
192	{ /* sentinel */ },
193};
194
195/* PHY Test Interface Clear */
196#define PHTC_REG			0x58
197#define PHTC_TESTCLR			BIT(0)
198
199/* PHY Frequency Control */
200#define PHYPLL_REG			0x68
201#define PHYPLL_HSFREQRANGE(n)		((n) << 16)
202
203static const struct rcsi2_mbps_reg hsfreqrange_h3_v3h_m3n[] = {
204	{ .mbps =   80, .reg = 0x00 },
205	{ .mbps =   90, .reg = 0x10 },
206	{ .mbps =  100, .reg = 0x20 },
207	{ .mbps =  110, .reg = 0x30 },
208	{ .mbps =  120, .reg = 0x01 },
209	{ .mbps =  130, .reg = 0x11 },
210	{ .mbps =  140, .reg = 0x21 },
211	{ .mbps =  150, .reg = 0x31 },
212	{ .mbps =  160, .reg = 0x02 },
213	{ .mbps =  170, .reg = 0x12 },
214	{ .mbps =  180, .reg = 0x22 },
215	{ .mbps =  190, .reg = 0x32 },
216	{ .mbps =  205, .reg = 0x03 },
217	{ .mbps =  220, .reg = 0x13 },
218	{ .mbps =  235, .reg = 0x23 },
219	{ .mbps =  250, .reg = 0x33 },
220	{ .mbps =  275, .reg = 0x04 },
221	{ .mbps =  300, .reg = 0x14 },
222	{ .mbps =  325, .reg = 0x25 },
223	{ .mbps =  350, .reg = 0x35 },
224	{ .mbps =  400, .reg = 0x05 },
225	{ .mbps =  450, .reg = 0x16 },
226	{ .mbps =  500, .reg = 0x26 },
227	{ .mbps =  550, .reg = 0x37 },
228	{ .mbps =  600, .reg = 0x07 },
229	{ .mbps =  650, .reg = 0x18 },
230	{ .mbps =  700, .reg = 0x28 },
231	{ .mbps =  750, .reg = 0x39 },
232	{ .mbps =  800, .reg = 0x09 },
233	{ .mbps =  850, .reg = 0x19 },
234	{ .mbps =  900, .reg = 0x29 },
235	{ .mbps =  950, .reg = 0x3a },
236	{ .mbps = 1000, .reg = 0x0a },
237	{ .mbps = 1050, .reg = 0x1a },
238	{ .mbps = 1100, .reg = 0x2a },
239	{ .mbps = 1150, .reg = 0x3b },
240	{ .mbps = 1200, .reg = 0x0b },
241	{ .mbps = 1250, .reg = 0x1b },
242	{ .mbps = 1300, .reg = 0x2b },
243	{ .mbps = 1350, .reg = 0x3c },
244	{ .mbps = 1400, .reg = 0x0c },
245	{ .mbps = 1450, .reg = 0x1c },
246	{ .mbps = 1500, .reg = 0x2c },
247	{ /* sentinel */ },
248};
249
250static const struct rcsi2_mbps_reg hsfreqrange_m3w_h3es1[] = {
251	{ .mbps =   80,	.reg = 0x00 },
252	{ .mbps =   90,	.reg = 0x10 },
253	{ .mbps =  100,	.reg = 0x20 },
254	{ .mbps =  110,	.reg = 0x30 },
255	{ .mbps =  120,	.reg = 0x01 },
256	{ .mbps =  130,	.reg = 0x11 },
257	{ .mbps =  140,	.reg = 0x21 },
258	{ .mbps =  150,	.reg = 0x31 },
259	{ .mbps =  160,	.reg = 0x02 },
260	{ .mbps =  170,	.reg = 0x12 },
261	{ .mbps =  180,	.reg = 0x22 },
262	{ .mbps =  190,	.reg = 0x32 },
263	{ .mbps =  205,	.reg = 0x03 },
264	{ .mbps =  220,	.reg = 0x13 },
265	{ .mbps =  235,	.reg = 0x23 },
266	{ .mbps =  250,	.reg = 0x33 },
267	{ .mbps =  275,	.reg = 0x04 },
268	{ .mbps =  300,	.reg = 0x14 },
269	{ .mbps =  325,	.reg = 0x05 },
270	{ .mbps =  350,	.reg = 0x15 },
271	{ .mbps =  400,	.reg = 0x25 },
272	{ .mbps =  450,	.reg = 0x06 },
273	{ .mbps =  500,	.reg = 0x16 },
274	{ .mbps =  550,	.reg = 0x07 },
275	{ .mbps =  600,	.reg = 0x17 },
276	{ .mbps =  650,	.reg = 0x08 },
277	{ .mbps =  700,	.reg = 0x18 },
278	{ .mbps =  750,	.reg = 0x09 },
279	{ .mbps =  800,	.reg = 0x19 },
280	{ .mbps =  850,	.reg = 0x29 },
281	{ .mbps =  900,	.reg = 0x39 },
282	{ .mbps =  950,	.reg = 0x0a },
283	{ .mbps = 1000,	.reg = 0x1a },
284	{ .mbps = 1050,	.reg = 0x2a },
285	{ .mbps = 1100,	.reg = 0x3a },
286	{ .mbps = 1150,	.reg = 0x0b },
287	{ .mbps = 1200,	.reg = 0x1b },
288	{ .mbps = 1250,	.reg = 0x2b },
289	{ .mbps = 1300,	.reg = 0x3b },
290	{ .mbps = 1350,	.reg = 0x0c },
291	{ .mbps = 1400,	.reg = 0x1c },
292	{ .mbps = 1450,	.reg = 0x2c },
293	{ .mbps = 1500,	.reg = 0x3c },
294	{ /* sentinel */ },
295};
296
297/* PHY ESC Error Monitor */
298#define PHEERM_REG			0x74
299
300/* PHY Clock Lane Monitor */
301#define PHCLM_REG			0x78
302#define PHCLM_STOPSTATECKL		BIT(0)
303
304/* PHY Data Lane Monitor */
305#define PHDLM_REG			0x7c
306
307/* CSI0CLK Frequency Configuration Preset Register */
308#define CSI0CLKFCPR_REG			0x260
309#define CSI0CLKFREQRANGE(n)		((n & 0x3f) << 16)
310
311struct rcar_csi2_format {
312	u32 code;
313	unsigned int datatype;
314	unsigned int bpp;
315};
316
317static const struct rcar_csi2_format rcar_csi2_formats[] = {
318	{ .code = MEDIA_BUS_FMT_RGB888_1X24,	.datatype = 0x24, .bpp = 24 },
319	{ .code = MEDIA_BUS_FMT_UYVY8_1X16,	.datatype = 0x1e, .bpp = 16 },
320	{ .code = MEDIA_BUS_FMT_YUYV8_1X16,	.datatype = 0x1e, .bpp = 16 },
321	{ .code = MEDIA_BUS_FMT_UYVY8_2X8,	.datatype = 0x1e, .bpp = 16 },
322	{ .code = MEDIA_BUS_FMT_YUYV10_2X10,	.datatype = 0x1e, .bpp = 20 },
323	{ .code = MEDIA_BUS_FMT_SBGGR8_1X8,     .datatype = 0x2a, .bpp = 8 },
324	{ .code = MEDIA_BUS_FMT_SGBRG8_1X8,     .datatype = 0x2a, .bpp = 8 },
325	{ .code = MEDIA_BUS_FMT_SGRBG8_1X8,     .datatype = 0x2a, .bpp = 8 },
326	{ .code = MEDIA_BUS_FMT_SRGGB8_1X8,     .datatype = 0x2a, .bpp = 8 },
327};
328
329static const struct rcar_csi2_format *rcsi2_code_to_fmt(unsigned int code)
330{
331	unsigned int i;
332
333	for (i = 0; i < ARRAY_SIZE(rcar_csi2_formats); i++)
334		if (rcar_csi2_formats[i].code == code)
335			return &rcar_csi2_formats[i];
336
337	return NULL;
338}
339
340enum rcar_csi2_pads {
341	RCAR_CSI2_SINK,
342	RCAR_CSI2_SOURCE_VC0,
343	RCAR_CSI2_SOURCE_VC1,
344	RCAR_CSI2_SOURCE_VC2,
345	RCAR_CSI2_SOURCE_VC3,
346	NR_OF_RCAR_CSI2_PAD,
347};
348
349struct rcar_csi2_info {
350	int (*init_phtw)(struct rcar_csi2 *priv, unsigned int mbps);
351	int (*phy_post_init)(struct rcar_csi2 *priv);
352	const struct rcsi2_mbps_reg *hsfreqrange;
353	unsigned int csi0clkfreqrange;
354	unsigned int num_channels;
355	bool clear_ulps;
356};
357
358struct rcar_csi2 {
359	struct device *dev;
360	void __iomem *base;
361	const struct rcar_csi2_info *info;
362	struct reset_control *rstc;
363
364	struct v4l2_subdev subdev;
365	struct media_pad pads[NR_OF_RCAR_CSI2_PAD];
366
367	struct v4l2_async_notifier notifier;
368	struct v4l2_subdev *remote;
369	unsigned int remote_pad;
370
371	struct v4l2_mbus_framefmt mf;
372
373	struct mutex lock;
374	int stream_count;
375
376	unsigned short lanes;
377	unsigned char lane_swap[4];
378};
379
380static inline struct rcar_csi2 *sd_to_csi2(struct v4l2_subdev *sd)
381{
382	return container_of(sd, struct rcar_csi2, subdev);
383}
384
385static inline struct rcar_csi2 *notifier_to_csi2(struct v4l2_async_notifier *n)
386{
387	return container_of(n, struct rcar_csi2, notifier);
388}
389
390static u32 rcsi2_read(struct rcar_csi2 *priv, unsigned int reg)
391{
392	return ioread32(priv->base + reg);
393}
394
395static void rcsi2_write(struct rcar_csi2 *priv, unsigned int reg, u32 data)
396{
397	iowrite32(data, priv->base + reg);
398}
399
400static void rcsi2_enter_standby(struct rcar_csi2 *priv)
401{
402	rcsi2_write(priv, PHYCNT_REG, 0);
403	rcsi2_write(priv, PHTC_REG, PHTC_TESTCLR);
404	reset_control_assert(priv->rstc);
405	usleep_range(100, 150);
406	pm_runtime_put(priv->dev);
407}
408
409static void rcsi2_exit_standby(struct rcar_csi2 *priv)
410{
411	pm_runtime_get_sync(priv->dev);
412	reset_control_deassert(priv->rstc);
413}
414
415static int rcsi2_wait_phy_start(struct rcar_csi2 *priv,
416				unsigned int lanes)
417{
418	unsigned int timeout;
419
420	/* Wait for the clock and data lanes to enter LP-11 state. */
421	for (timeout = 0; timeout <= 20; timeout++) {
422		const u32 lane_mask = (1 << lanes) - 1;
423
424		if ((rcsi2_read(priv, PHCLM_REG) & PHCLM_STOPSTATECKL)  &&
425		    (rcsi2_read(priv, PHDLM_REG) & lane_mask) == lane_mask)
426			return 0;
427
428		usleep_range(1000, 2000);
429	}
430
431	dev_err(priv->dev, "Timeout waiting for LP-11 state\n");
432
433	return -ETIMEDOUT;
434}
435
436static int rcsi2_set_phypll(struct rcar_csi2 *priv, unsigned int mbps)
437{
438	const struct rcsi2_mbps_reg *hsfreq;
439	const struct rcsi2_mbps_reg *hsfreq_prev = NULL;
440
441	for (hsfreq = priv->info->hsfreqrange; hsfreq->mbps != 0; hsfreq++) {
442		if (hsfreq->mbps >= mbps)
443			break;
444		hsfreq_prev = hsfreq;
445	}
446
447	if (!hsfreq->mbps) {
448		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
449		return -ERANGE;
450	}
451
452	if (hsfreq_prev &&
453	    ((mbps - hsfreq_prev->mbps) <= (hsfreq->mbps - mbps)))
454		hsfreq = hsfreq_prev;
455
456	rcsi2_write(priv, PHYPLL_REG, PHYPLL_HSFREQRANGE(hsfreq->reg));
457
458	return 0;
459}
460
461static int rcsi2_calc_mbps(struct rcar_csi2 *priv, unsigned int bpp,
462			   unsigned int lanes)
463{
464	struct v4l2_subdev *source;
465	struct v4l2_ctrl *ctrl;
466	u64 mbps;
467
468	if (!priv->remote)
469		return -ENODEV;
470
471	source = priv->remote;
472
473	/* Read the pixel rate control from remote. */
474	ctrl = v4l2_ctrl_find(source->ctrl_handler, V4L2_CID_PIXEL_RATE);
475	if (!ctrl) {
476		dev_err(priv->dev, "no pixel rate control in subdev %s\n",
477			source->name);
478		return -EINVAL;
479	}
480
481	/*
482	 * Calculate the phypll in mbps.
483	 * link_freq = (pixel_rate * bits_per_sample) / (2 * nr_of_lanes)
484	 * bps = link_freq * 2
485	 */
486	mbps = v4l2_ctrl_g_ctrl_int64(ctrl) * bpp;
487	do_div(mbps, lanes * 1000000);
488
489	return mbps;
490}
491
492static int rcsi2_get_active_lanes(struct rcar_csi2 *priv,
493				  unsigned int *lanes)
494{
495	struct v4l2_mbus_config mbus_config = { 0 };
496	unsigned int num_lanes = UINT_MAX;
497	int ret;
498
499	*lanes = priv->lanes;
500
501	ret = v4l2_subdev_call(priv->remote, pad, get_mbus_config,
502			       priv->remote_pad, &mbus_config);
503	if (ret == -ENOIOCTLCMD) {
504		dev_dbg(priv->dev, "No remote mbus configuration available\n");
505		return 0;
506	}
507
508	if (ret) {
509		dev_err(priv->dev, "Failed to get remote mbus configuration\n");
510		return ret;
511	}
512
513	if (mbus_config.type != V4L2_MBUS_CSI2_DPHY) {
514		dev_err(priv->dev, "Unsupported media bus type %u\n",
515			mbus_config.type);
516		return -EINVAL;
517	}
518
519	if (mbus_config.flags & V4L2_MBUS_CSI2_1_LANE)
520		num_lanes = 1;
521	else if (mbus_config.flags & V4L2_MBUS_CSI2_2_LANE)
522		num_lanes = 2;
523	else if (mbus_config.flags & V4L2_MBUS_CSI2_3_LANE)
524		num_lanes = 3;
525	else if (mbus_config.flags & V4L2_MBUS_CSI2_4_LANE)
526		num_lanes = 4;
527
528	if (num_lanes > priv->lanes) {
529		dev_err(priv->dev,
530			"Unsupported mbus config: too many data lanes %u\n",
531			num_lanes);
532		return -EINVAL;
533	}
534
535	*lanes = num_lanes;
536
537	return 0;
538}
539
540static int rcsi2_start_receiver(struct rcar_csi2 *priv)
541{
542	const struct rcar_csi2_format *format;
543	u32 phycnt, vcdt = 0, vcdt2 = 0, fld = 0;
544	unsigned int lanes;
545	unsigned int i;
546	int mbps, ret;
547
548	dev_dbg(priv->dev, "Input size (%ux%u%c)\n",
549		priv->mf.width, priv->mf.height,
550		priv->mf.field == V4L2_FIELD_NONE ? 'p' : 'i');
551
552	/* Code is validated in set_fmt. */
553	format = rcsi2_code_to_fmt(priv->mf.code);
554	if (!format)
555		return -EINVAL;
556
557	/*
558	 * Enable all supported CSI-2 channels with virtual channel and
559	 * data type matching.
560	 *
561	 * NOTE: It's not possible to get individual datatype for each
562	 *       source virtual channel. Once this is possible in V4L2
563	 *       it should be used here.
564	 */
565	for (i = 0; i < priv->info->num_channels; i++) {
566		u32 vcdt_part;
567
568		vcdt_part = VCDT_SEL_VC(i) | VCDT_VCDTN_EN | VCDT_SEL_DTN_ON |
569			VCDT_SEL_DT(format->datatype);
570
571		/* Store in correct reg and offset. */
572		if (i < 2)
573			vcdt |= vcdt_part << ((i % 2) * 16);
574		else
575			vcdt2 |= vcdt_part << ((i % 2) * 16);
576	}
577
578	if (priv->mf.field == V4L2_FIELD_ALTERNATE) {
579		fld = FLD_DET_SEL(1) | FLD_FLD_EN4 | FLD_FLD_EN3 | FLD_FLD_EN2
580			| FLD_FLD_EN;
581
582		if (priv->mf.height == 240)
583			fld |= FLD_FLD_NUM(0);
584		else
585			fld |= FLD_FLD_NUM(1);
586	}
587
588	/*
589	 * Get the number of active data lanes inspecting the remote mbus
590	 * configuration.
591	 */
592	ret = rcsi2_get_active_lanes(priv, &lanes);
593	if (ret)
594		return ret;
595
596	phycnt = PHYCNT_ENABLECLK;
597	phycnt |= (1 << lanes) - 1;
598
599	mbps = rcsi2_calc_mbps(priv, format->bpp, lanes);
600	if (mbps < 0)
601		return mbps;
602
603	/* Enable interrupts. */
604	rcsi2_write(priv, INTEN_REG, INTEN_INT_AFIFO_OF | INTEN_INT_ERRSOTHS
605		    | INTEN_INT_ERRSOTSYNCHS);
606
607	/* Init */
608	rcsi2_write(priv, TREF_REG, TREF_TREF);
609	rcsi2_write(priv, PHTC_REG, 0);
610
611	/* Configure */
612	rcsi2_write(priv, VCDT_REG, vcdt);
613	if (vcdt2)
614		rcsi2_write(priv, VCDT2_REG, vcdt2);
615	/* Lanes are zero indexed. */
616	rcsi2_write(priv, LSWAP_REG,
617		    LSWAP_L0SEL(priv->lane_swap[0] - 1) |
618		    LSWAP_L1SEL(priv->lane_swap[1] - 1) |
619		    LSWAP_L2SEL(priv->lane_swap[2] - 1) |
620		    LSWAP_L3SEL(priv->lane_swap[3] - 1));
621
622	/* Start */
623	if (priv->info->init_phtw) {
624		ret = priv->info->init_phtw(priv, mbps);
625		if (ret)
626			return ret;
627	}
628
629	if (priv->info->hsfreqrange) {
630		ret = rcsi2_set_phypll(priv, mbps);
631		if (ret)
632			return ret;
633	}
634
635	if (priv->info->csi0clkfreqrange)
636		rcsi2_write(priv, CSI0CLKFCPR_REG,
637			    CSI0CLKFREQRANGE(priv->info->csi0clkfreqrange));
638
639	rcsi2_write(priv, PHYCNT_REG, phycnt);
640	rcsi2_write(priv, LINKCNT_REG, LINKCNT_MONITOR_EN |
641		    LINKCNT_REG_MONI_PACT_EN | LINKCNT_ICLK_NONSTOP);
642	rcsi2_write(priv, FLD_REG, fld);
643	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ);
644	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ | PHYCNT_RSTZ);
645
646	ret = rcsi2_wait_phy_start(priv, lanes);
647	if (ret)
648		return ret;
649
650	/* Run post PHY start initialization, if needed. */
651	if (priv->info->phy_post_init) {
652		ret = priv->info->phy_post_init(priv);
653		if (ret)
654			return ret;
655	}
656
657	/* Clear Ultra Low Power interrupt. */
658	if (priv->info->clear_ulps)
659		rcsi2_write(priv, INTSTATE_REG,
660			    INTSTATE_INT_ULPS_START |
661			    INTSTATE_INT_ULPS_END);
662	return 0;
663}
664
665static int rcsi2_start(struct rcar_csi2 *priv)
666{
667	int ret;
668
669	rcsi2_exit_standby(priv);
670
671	ret = rcsi2_start_receiver(priv);
672	if (ret) {
673		rcsi2_enter_standby(priv);
674		return ret;
675	}
676
677	ret = v4l2_subdev_call(priv->remote, video, s_stream, 1);
678	if (ret) {
679		rcsi2_enter_standby(priv);
680		return ret;
681	}
682
683	return 0;
684}
685
686static void rcsi2_stop(struct rcar_csi2 *priv)
687{
688	rcsi2_enter_standby(priv);
689	v4l2_subdev_call(priv->remote, video, s_stream, 0);
690}
691
692static int rcsi2_s_stream(struct v4l2_subdev *sd, int enable)
693{
694	struct rcar_csi2 *priv = sd_to_csi2(sd);
695	int ret = 0;
696
697	mutex_lock(&priv->lock);
698
699	if (!priv->remote) {
700		ret = -ENODEV;
701		goto out;
702	}
703
704	if (enable && priv->stream_count == 0) {
705		ret = rcsi2_start(priv);
706		if (ret)
707			goto out;
708	} else if (!enable && priv->stream_count == 1) {
709		rcsi2_stop(priv);
710	}
711
712	priv->stream_count += enable ? 1 : -1;
713out:
714	mutex_unlock(&priv->lock);
715
716	return ret;
717}
718
719static int rcsi2_set_pad_format(struct v4l2_subdev *sd,
720				struct v4l2_subdev_pad_config *cfg,
721				struct v4l2_subdev_format *format)
722{
723	struct rcar_csi2 *priv = sd_to_csi2(sd);
724	struct v4l2_mbus_framefmt *framefmt;
725
726	if (!rcsi2_code_to_fmt(format->format.code))
727		format->format.code = rcar_csi2_formats[0].code;
728
729	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
730		priv->mf = format->format;
731	} else {
732		framefmt = v4l2_subdev_get_try_format(sd, cfg, 0);
733		*framefmt = format->format;
734	}
735
736	return 0;
737}
738
739static int rcsi2_get_pad_format(struct v4l2_subdev *sd,
740				struct v4l2_subdev_pad_config *cfg,
741				struct v4l2_subdev_format *format)
742{
743	struct rcar_csi2 *priv = sd_to_csi2(sd);
744
745	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
746		format->format = priv->mf;
747	else
748		format->format = *v4l2_subdev_get_try_format(sd, cfg, 0);
749
750	return 0;
751}
752
753static const struct v4l2_subdev_video_ops rcar_csi2_video_ops = {
754	.s_stream = rcsi2_s_stream,
755};
756
757static const struct v4l2_subdev_pad_ops rcar_csi2_pad_ops = {
758	.set_fmt = rcsi2_set_pad_format,
759	.get_fmt = rcsi2_get_pad_format,
760};
761
762static const struct v4l2_subdev_ops rcar_csi2_subdev_ops = {
763	.video	= &rcar_csi2_video_ops,
764	.pad	= &rcar_csi2_pad_ops,
765};
766
767static irqreturn_t rcsi2_irq(int irq, void *data)
768{
769	struct rcar_csi2 *priv = data;
770	u32 status, err_status;
771
772	status = rcsi2_read(priv, INTSTATE_REG);
773	err_status = rcsi2_read(priv, INTERRSTATE_REG);
774
775	if (!status)
776		return IRQ_HANDLED;
777
778	rcsi2_write(priv, INTSTATE_REG, status);
779
780	if (!err_status)
781		return IRQ_HANDLED;
782
783	rcsi2_write(priv, INTERRSTATE_REG, err_status);
784
785	dev_info(priv->dev, "Transfer error, restarting CSI-2 receiver\n");
786
787	return IRQ_WAKE_THREAD;
788}
789
790static irqreturn_t rcsi2_irq_thread(int irq, void *data)
791{
792	struct rcar_csi2 *priv = data;
793
794	mutex_lock(&priv->lock);
795	rcsi2_stop(priv);
796	usleep_range(1000, 2000);
797	if (rcsi2_start(priv))
798		dev_warn(priv->dev, "Failed to restart CSI-2 receiver\n");
799	mutex_unlock(&priv->lock);
800
801	return IRQ_HANDLED;
802}
803
804/* -----------------------------------------------------------------------------
805 * Async handling and registration of subdevices and links.
806 */
807
808static int rcsi2_notify_bound(struct v4l2_async_notifier *notifier,
809			      struct v4l2_subdev *subdev,
810			      struct v4l2_async_subdev *asd)
811{
812	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
813	int pad;
814
815	pad = media_entity_get_fwnode_pad(&subdev->entity, asd->match.fwnode,
816					  MEDIA_PAD_FL_SOURCE);
817	if (pad < 0) {
818		dev_err(priv->dev, "Failed to find pad for %s\n", subdev->name);
819		return pad;
820	}
821
822	priv->remote = subdev;
823	priv->remote_pad = pad;
824
825	dev_dbg(priv->dev, "Bound %s pad: %d\n", subdev->name, pad);
826
827	return media_create_pad_link(&subdev->entity, pad,
828				     &priv->subdev.entity, 0,
829				     MEDIA_LNK_FL_ENABLED |
830				     MEDIA_LNK_FL_IMMUTABLE);
831}
832
833static void rcsi2_notify_unbind(struct v4l2_async_notifier *notifier,
834				struct v4l2_subdev *subdev,
835				struct v4l2_async_subdev *asd)
836{
837	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
838
839	priv->remote = NULL;
840
841	dev_dbg(priv->dev, "Unbind %s\n", subdev->name);
842}
843
844static const struct v4l2_async_notifier_operations rcar_csi2_notify_ops = {
845	.bound = rcsi2_notify_bound,
846	.unbind = rcsi2_notify_unbind,
847};
848
849static int rcsi2_parse_v4l2(struct rcar_csi2 *priv,
850			    struct v4l2_fwnode_endpoint *vep)
851{
852	unsigned int i;
853
854	/* Only port 0 endpoint 0 is valid. */
855	if (vep->base.port || vep->base.id)
856		return -ENOTCONN;
857
858	if (vep->bus_type != V4L2_MBUS_CSI2_DPHY) {
859		dev_err(priv->dev, "Unsupported bus: %u\n", vep->bus_type);
860		return -EINVAL;
861	}
862
863	priv->lanes = vep->bus.mipi_csi2.num_data_lanes;
864	if (priv->lanes != 1 && priv->lanes != 2 && priv->lanes != 4) {
865		dev_err(priv->dev, "Unsupported number of data-lanes: %u\n",
866			priv->lanes);
867		return -EINVAL;
868	}
869
870	for (i = 0; i < ARRAY_SIZE(priv->lane_swap); i++) {
871		priv->lane_swap[i] = i < priv->lanes ?
872			vep->bus.mipi_csi2.data_lanes[i] : i;
873
874		/* Check for valid lane number. */
875		if (priv->lane_swap[i] < 1 || priv->lane_swap[i] > 4) {
876			dev_err(priv->dev, "data-lanes must be in 1-4 range\n");
877			return -EINVAL;
878		}
879	}
880
881	return 0;
882}
883
884static int rcsi2_parse_dt(struct rcar_csi2 *priv)
885{
886	struct v4l2_async_subdev *asd;
887	struct fwnode_handle *fwnode;
888	struct device_node *ep;
889	struct v4l2_fwnode_endpoint v4l2_ep = { .bus_type = 0 };
890	int ret;
891
892	ep = of_graph_get_endpoint_by_regs(priv->dev->of_node, 0, 0);
893	if (!ep) {
894		dev_err(priv->dev, "Not connected to subdevice\n");
895		return -EINVAL;
896	}
897
898	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep), &v4l2_ep);
899	if (ret) {
900		dev_err(priv->dev, "Could not parse v4l2 endpoint\n");
901		of_node_put(ep);
902		return -EINVAL;
903	}
904
905	ret = rcsi2_parse_v4l2(priv, &v4l2_ep);
906	if (ret) {
907		of_node_put(ep);
908		return ret;
909	}
910
911	fwnode = fwnode_graph_get_remote_endpoint(of_fwnode_handle(ep));
912	of_node_put(ep);
913
914	dev_dbg(priv->dev, "Found '%pOF'\n", to_of_node(fwnode));
915
916	v4l2_async_notifier_init(&priv->notifier);
917	priv->notifier.ops = &rcar_csi2_notify_ops;
918
919	asd = v4l2_async_notifier_add_fwnode_subdev(&priv->notifier, fwnode,
920						    sizeof(*asd));
921	fwnode_handle_put(fwnode);
922	if (IS_ERR(asd))
923		return PTR_ERR(asd);
924
925	ret = v4l2_async_subdev_notifier_register(&priv->subdev,
926						  &priv->notifier);
927	if (ret)
928		v4l2_async_notifier_cleanup(&priv->notifier);
929
930	return ret;
931}
932
933/* -----------------------------------------------------------------------------
934 * PHTW initialization sequences.
935 *
936 * NOTE: Magic values are from the datasheet and lack documentation.
937 */
938
939static int rcsi2_phtw_write(struct rcar_csi2 *priv, u16 data, u16 code)
940{
941	unsigned int timeout;
942
943	rcsi2_write(priv, PHTW_REG,
944		    PHTW_DWEN | PHTW_TESTDIN_DATA(data) |
945		    PHTW_CWEN | PHTW_TESTDIN_CODE(code));
946
947	/* Wait for DWEN and CWEN to be cleared by hardware. */
948	for (timeout = 0; timeout <= 20; timeout++) {
949		if (!(rcsi2_read(priv, PHTW_REG) & (PHTW_DWEN | PHTW_CWEN)))
950			return 0;
951
952		usleep_range(1000, 2000);
953	}
954
955	dev_err(priv->dev, "Timeout waiting for PHTW_DWEN and/or PHTW_CWEN\n");
956
957	return -ETIMEDOUT;
958}
959
960static int rcsi2_phtw_write_array(struct rcar_csi2 *priv,
961				  const struct phtw_value *values)
962{
963	const struct phtw_value *value;
964	int ret;
965
966	for (value = values; value->data || value->code; value++) {
967		ret = rcsi2_phtw_write(priv, value->data, value->code);
968		if (ret)
969			return ret;
970	}
971
972	return 0;
973}
974
975static int rcsi2_phtw_write_mbps(struct rcar_csi2 *priv, unsigned int mbps,
976				 const struct rcsi2_mbps_reg *values, u16 code)
977{
978	const struct rcsi2_mbps_reg *value;
979	const struct rcsi2_mbps_reg *prev_value = NULL;
980
981	for (value = values; value->mbps; value++) {
982		if (value->mbps >= mbps)
983			break;
984		prev_value = value;
985	}
986
987	if (prev_value &&
988	    ((mbps - prev_value->mbps) <= (value->mbps - mbps)))
989		value = prev_value;
990
991	if (!value->mbps) {
992		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
993		return -ERANGE;
994	}
995
996	return rcsi2_phtw_write(priv, value->reg, code);
997}
998
999static int __rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv,
1000					unsigned int mbps)
1001{
1002	static const struct phtw_value step1[] = {
1003		{ .data = 0xcc, .code = 0xe2 },
1004		{ .data = 0x01, .code = 0xe3 },
1005		{ .data = 0x11, .code = 0xe4 },
1006		{ .data = 0x01, .code = 0xe5 },
1007		{ .data = 0x10, .code = 0x04 },
1008		{ /* sentinel */ },
1009	};
1010
1011	static const struct phtw_value step2[] = {
1012		{ .data = 0x38, .code = 0x08 },
1013		{ .data = 0x01, .code = 0x00 },
1014		{ .data = 0x4b, .code = 0xac },
1015		{ .data = 0x03, .code = 0x00 },
1016		{ .data = 0x80, .code = 0x07 },
1017		{ /* sentinel */ },
1018	};
1019
1020	int ret;
1021
1022	ret = rcsi2_phtw_write_array(priv, step1);
1023	if (ret)
1024		return ret;
1025
1026	if (mbps != 0 && mbps <= 250) {
1027		ret = rcsi2_phtw_write(priv, 0x39, 0x05);
1028		if (ret)
1029			return ret;
1030
1031		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_h3_v3h_m3n,
1032					    0xf1);
1033		if (ret)
1034			return ret;
1035	}
1036
1037	return rcsi2_phtw_write_array(priv, step2);
1038}
1039
1040static int rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps)
1041{
1042	return __rcsi2_init_phtw_h3_v3h_m3n(priv, mbps);
1043}
1044
1045static int rcsi2_init_phtw_h3es2(struct rcar_csi2 *priv, unsigned int mbps)
1046{
1047	return __rcsi2_init_phtw_h3_v3h_m3n(priv, 0);
1048}
1049
1050static int rcsi2_init_phtw_v3m_e3(struct rcar_csi2 *priv, unsigned int mbps)
1051{
1052	return rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3m_e3, 0x44);
1053}
1054
1055static int rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 *priv)
1056{
1057	static const struct phtw_value step1[] = {
1058		{ .data = 0xee, .code = 0x34 },
1059		{ .data = 0xee, .code = 0x44 },
1060		{ .data = 0xee, .code = 0x54 },
1061		{ .data = 0xee, .code = 0x84 },
1062		{ .data = 0xee, .code = 0x94 },
1063		{ /* sentinel */ },
1064	};
1065
1066	return rcsi2_phtw_write_array(priv, step1);
1067}
1068
1069/* -----------------------------------------------------------------------------
1070 * Platform Device Driver.
1071 */
1072
1073static const struct media_entity_operations rcar_csi2_entity_ops = {
1074	.link_validate = v4l2_subdev_link_validate,
1075};
1076
1077static int rcsi2_probe_resources(struct rcar_csi2 *priv,
1078				 struct platform_device *pdev)
1079{
1080	struct resource *res;
1081	int irq, ret;
1082
1083	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1084	priv->base = devm_ioremap_resource(&pdev->dev, res);
1085	if (IS_ERR(priv->base))
1086		return PTR_ERR(priv->base);
1087
1088	irq = platform_get_irq(pdev, 0);
1089	if (irq < 0)
1090		return irq;
1091
1092	ret = devm_request_threaded_irq(&pdev->dev, irq, rcsi2_irq,
1093					rcsi2_irq_thread, IRQF_SHARED,
1094					KBUILD_MODNAME, priv);
1095	if (ret)
1096		return ret;
1097
1098	priv->rstc = devm_reset_control_get(&pdev->dev, NULL);
1099
1100	return PTR_ERR_OR_ZERO(priv->rstc);
1101}
1102
1103static const struct rcar_csi2_info rcar_csi2_info_r8a7795 = {
1104	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1105	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1106	.csi0clkfreqrange = 0x20,
1107	.num_channels = 4,
1108	.clear_ulps = true,
1109};
1110
1111static const struct rcar_csi2_info rcar_csi2_info_r8a7795es1 = {
1112	.hsfreqrange = hsfreqrange_m3w_h3es1,
1113	.num_channels = 4,
1114};
1115
1116static const struct rcar_csi2_info rcar_csi2_info_r8a7795es2 = {
1117	.init_phtw = rcsi2_init_phtw_h3es2,
1118	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1119	.csi0clkfreqrange = 0x20,
1120	.num_channels = 4,
1121	.clear_ulps = true,
1122};
1123
1124static const struct rcar_csi2_info rcar_csi2_info_r8a7796 = {
1125	.hsfreqrange = hsfreqrange_m3w_h3es1,
1126	.num_channels = 4,
1127};
1128
1129static const struct rcar_csi2_info rcar_csi2_info_r8a77965 = {
1130	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1131	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1132	.csi0clkfreqrange = 0x20,
1133	.num_channels = 4,
1134	.clear_ulps = true,
1135};
1136
1137static const struct rcar_csi2_info rcar_csi2_info_r8a77970 = {
1138	.init_phtw = rcsi2_init_phtw_v3m_e3,
1139	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1140	.num_channels = 4,
1141};
1142
1143static const struct rcar_csi2_info rcar_csi2_info_r8a77980 = {
1144	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1145	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1146	.csi0clkfreqrange = 0x20,
1147	.clear_ulps = true,
1148};
1149
1150static const struct rcar_csi2_info rcar_csi2_info_r8a77990 = {
1151	.init_phtw = rcsi2_init_phtw_v3m_e3,
1152	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1153	.num_channels = 2,
1154};
1155
1156static const struct of_device_id rcar_csi2_of_table[] = {
1157	{
1158		.compatible = "renesas,r8a774a1-csi2",
1159		.data = &rcar_csi2_info_r8a7796,
1160	},
1161	{
1162		.compatible = "renesas,r8a774b1-csi2",
1163		.data = &rcar_csi2_info_r8a77965,
1164	},
1165	{
1166		.compatible = "renesas,r8a774c0-csi2",
1167		.data = &rcar_csi2_info_r8a77990,
1168	},
1169	{
1170		.compatible = "renesas,r8a774e1-csi2",
1171		.data = &rcar_csi2_info_r8a7795,
1172	},
1173	{
1174		.compatible = "renesas,r8a7795-csi2",
1175		.data = &rcar_csi2_info_r8a7795,
1176	},
1177	{
1178		.compatible = "renesas,r8a7796-csi2",
1179		.data = &rcar_csi2_info_r8a7796,
1180	},
1181	{
1182		.compatible = "renesas,r8a77965-csi2",
1183		.data = &rcar_csi2_info_r8a77965,
1184	},
1185	{
1186		.compatible = "renesas,r8a77970-csi2",
1187		.data = &rcar_csi2_info_r8a77970,
1188	},
1189	{
1190		.compatible = "renesas,r8a77980-csi2",
1191		.data = &rcar_csi2_info_r8a77980,
1192	},
1193	{
1194		.compatible = "renesas,r8a77990-csi2",
1195		.data = &rcar_csi2_info_r8a77990,
1196	},
1197	{ /* sentinel */ },
1198};
1199MODULE_DEVICE_TABLE(of, rcar_csi2_of_table);
1200
1201static const struct soc_device_attribute r8a7795[] = {
1202	{
1203		.soc_id = "r8a7795", .revision = "ES1.*",
1204		.data = &rcar_csi2_info_r8a7795es1,
1205	},
1206	{
1207		.soc_id = "r8a7795", .revision = "ES2.*",
1208		.data = &rcar_csi2_info_r8a7795es2,
1209	},
1210	{ /* sentinel */ },
1211};
1212
1213static int rcsi2_probe(struct platform_device *pdev)
1214{
1215	const struct soc_device_attribute *attr;
1216	struct rcar_csi2 *priv;
1217	unsigned int i;
1218	int ret;
1219
1220	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1221	if (!priv)
1222		return -ENOMEM;
1223
1224	priv->info = of_device_get_match_data(&pdev->dev);
1225
1226	/*
1227	 * The different ES versions of r8a7795 (H3) behave differently but
1228	 * share the same compatible string.
1229	 */
1230	attr = soc_device_match(r8a7795);
1231	if (attr)
1232		priv->info = attr->data;
1233
1234	priv->dev = &pdev->dev;
1235
1236	mutex_init(&priv->lock);
1237	priv->stream_count = 0;
1238
1239	ret = rcsi2_probe_resources(priv, pdev);
1240	if (ret) {
1241		dev_err(priv->dev, "Failed to get resources\n");
1242		return ret;
1243	}
1244
1245	platform_set_drvdata(pdev, priv);
1246
1247	ret = rcsi2_parse_dt(priv);
1248	if (ret)
1249		return ret;
1250
1251	priv->subdev.owner = THIS_MODULE;
1252	priv->subdev.dev = &pdev->dev;
1253	v4l2_subdev_init(&priv->subdev, &rcar_csi2_subdev_ops);
1254	v4l2_set_subdevdata(&priv->subdev, &pdev->dev);
1255	snprintf(priv->subdev.name, V4L2_SUBDEV_NAME_SIZE, "%s %s",
1256		 KBUILD_MODNAME, dev_name(&pdev->dev));
1257	priv->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
1258
1259	priv->subdev.entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
1260	priv->subdev.entity.ops = &rcar_csi2_entity_ops;
1261
1262	priv->pads[RCAR_CSI2_SINK].flags = MEDIA_PAD_FL_SINK;
1263	for (i = RCAR_CSI2_SOURCE_VC0; i < NR_OF_RCAR_CSI2_PAD; i++)
1264		priv->pads[i].flags = MEDIA_PAD_FL_SOURCE;
1265
1266	ret = media_entity_pads_init(&priv->subdev.entity, NR_OF_RCAR_CSI2_PAD,
1267				     priv->pads);
1268	if (ret)
1269		goto error;
1270
1271	pm_runtime_enable(&pdev->dev);
1272
1273	ret = v4l2_async_register_subdev(&priv->subdev);
1274	if (ret < 0)
1275		goto error;
1276
1277	dev_info(priv->dev, "%d lanes found\n", priv->lanes);
1278
1279	return 0;
1280
1281error:
1282	v4l2_async_notifier_unregister(&priv->notifier);
1283	v4l2_async_notifier_cleanup(&priv->notifier);
1284
1285	return ret;
1286}
1287
1288static int rcsi2_remove(struct platform_device *pdev)
1289{
1290	struct rcar_csi2 *priv = platform_get_drvdata(pdev);
1291
1292	v4l2_async_notifier_unregister(&priv->notifier);
1293	v4l2_async_notifier_cleanup(&priv->notifier);
1294	v4l2_async_unregister_subdev(&priv->subdev);
1295
1296	pm_runtime_disable(&pdev->dev);
1297
1298	return 0;
1299}
1300
1301static struct platform_driver rcar_csi2_pdrv = {
1302	.remove	= rcsi2_remove,
1303	.probe	= rcsi2_probe,
1304	.driver	= {
1305		.name	= "rcar-csi2",
1306		.of_match_table	= rcar_csi2_of_table,
1307	},
1308};
1309
1310module_platform_driver(rcar_csi2_pdrv);
1311
1312MODULE_AUTHOR("Niklas Söderlund <niklas.soderlund@ragnatech.se>");
1313MODULE_DESCRIPTION("Renesas R-Car MIPI CSI-2 receiver driver");
1314MODULE_LICENSE("GPL");
1315