1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * isp.c
4 *
5 * TI OMAP3 ISP - Core
6 *
7 * Copyright (C) 2006-2010 Nokia Corporation
8 * Copyright (C) 2007-2009 Texas Instruments, Inc.
9 *
10 * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
11 *	     Sakari Ailus <sakari.ailus@iki.fi>
12 *
13 * Contributors:
14 *	Laurent Pinchart <laurent.pinchart@ideasonboard.com>
15 *	Sakari Ailus <sakari.ailus@iki.fi>
16 *	David Cohen <dacohen@gmail.com>
17 *	Stanimir Varbanov <svarbanov@mm-sol.com>
18 *	Vimarsh Zutshi <vimarsh.zutshi@gmail.com>
19 *	Tuukka Toivonen <tuukkat76@gmail.com>
20 *	Sergio Aguirre <saaguirre@ti.com>
21 *	Antti Koskipaa <akoskipa@gmail.com>
22 *	Ivan T. Ivanov <iivanov@mm-sol.com>
23 *	RaniSuneela <r-m@ti.com>
24 *	Atanas Filipov <afilipov@mm-sol.com>
25 *	Gjorgji Rosikopulos <grosikopulos@mm-sol.com>
26 *	Hiroshi DOYU <hiroshi.doyu@nokia.com>
27 *	Nayden Kanchev <nkanchev@mm-sol.com>
28 *	Phil Carmody <ext-phil.2.carmody@nokia.com>
29 *	Artem Bityutskiy <artem.bityutskiy@nokia.com>
30 *	Dominic Curran <dcurran@ti.com>
31 *	Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi>
32 *	Pallavi Kulkarni <p-kulkarni@ti.com>
33 *	Vaibhav Hiremath <hvaibhav@ti.com>
34 *	Mohit Jalori <mjalori@ti.com>
35 *	Sameer Venkatraman <sameerv@ti.com>
36 *	Senthilvadivu Guruswamy <svadivu@ti.com>
37 *	Thara Gopinath <thara@ti.com>
38 *	Toni Leinonen <toni.leinonen@nokia.com>
39 *	Troy Laramy <t-laramy@ti.com>
40 */
41
42#include <linux/clk.h>
43#include <linux/clkdev.h>
44#include <linux/delay.h>
45#include <linux/device.h>
46#include <linux/dma-mapping.h>
47#include <linux/i2c.h>
48#include <linux/interrupt.h>
49#include <linux/mfd/syscon.h>
50#include <linux/module.h>
51#include <linux/omap-iommu.h>
52#include <linux/platform_device.h>
53#include <linux/property.h>
54#include <linux/regulator/consumer.h>
55#include <linux/slab.h>
56#include <linux/sched.h>
57#include <linux/vmalloc.h>
58
59#ifdef CONFIG_ARM_DMA_USE_IOMMU
60#include <asm/dma-iommu.h>
61#endif
62
63#include <media/v4l2-common.h>
64#include <media/v4l2-fwnode.h>
65#include <media/v4l2-device.h>
66#include <media/v4l2-mc.h>
67
68#include "isp.h"
69#include "ispreg.h"
70#include "ispccdc.h"
71#include "isppreview.h"
72#include "ispresizer.h"
73#include "ispcsi2.h"
74#include "ispccp2.h"
75#include "isph3a.h"
76#include "isphist.h"
77
78static unsigned int autoidle;
79module_param(autoidle, int, 0444);
80MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support");
81
82static void isp_save_ctx(struct isp_device *isp);
83
84static void isp_restore_ctx(struct isp_device *isp);
85
86static const struct isp_res_mapping isp_res_maps[] = {
87	{
88		.isp_rev = ISP_REVISION_2_0,
89		.offset = {
90			/* first MMIO area */
91			0x0000, /* base, len 0x0070 */
92			0x0400, /* ccp2, len 0x01f0 */
93			0x0600, /* ccdc, len 0x00a8 */
94			0x0a00, /* hist, len 0x0048 */
95			0x0c00, /* h3a, len 0x0060 */
96			0x0e00, /* preview, len 0x00a0 */
97			0x1000, /* resizer, len 0x00ac */
98			0x1200, /* sbl, len 0x00fc */
99			/* second MMIO area */
100			0x0000, /* csi2a, len 0x0170 */
101			0x0170, /* csiphy2, len 0x000c */
102		},
103		.phy_type = ISP_PHY_TYPE_3430,
104	},
105	{
106		.isp_rev = ISP_REVISION_15_0,
107		.offset = {
108			/* first MMIO area */
109			0x0000, /* base, len 0x0070 */
110			0x0400, /* ccp2, len 0x01f0 */
111			0x0600, /* ccdc, len 0x00a8 */
112			0x0a00, /* hist, len 0x0048 */
113			0x0c00, /* h3a, len 0x0060 */
114			0x0e00, /* preview, len 0x00a0 */
115			0x1000, /* resizer, len 0x00ac */
116			0x1200, /* sbl, len 0x00fc */
117			/* second MMIO area */
118			0x0000, /* csi2a, len 0x0170 (1st area) */
119			0x0170, /* csiphy2, len 0x000c */
120			0x01c0, /* csi2a, len 0x0040 (2nd area) */
121			0x0400, /* csi2c, len 0x0170 (1st area) */
122			0x0570, /* csiphy1, len 0x000c */
123			0x05c0, /* csi2c, len 0x0040 (2nd area) */
124		},
125		.phy_type = ISP_PHY_TYPE_3630,
126	},
127};
128
129/* Structure for saving/restoring ISP module registers */
130static struct isp_reg isp_reg_list[] = {
131	{OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0},
132	{OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0},
133	{OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0},
134	{0, ISP_TOK_TERM, 0}
135};
136
137/*
138 * omap3isp_flush - Post pending L3 bus writes by doing a register readback
139 * @isp: OMAP3 ISP device
140 *
141 * In order to force posting of pending writes, we need to write and
142 * readback the same register, in this case the revision register.
143 *
144 * See this link for reference:
145 *   https://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html
146 */
147void omap3isp_flush(struct isp_device *isp)
148{
149	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
150	isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
151}
152
153/* -----------------------------------------------------------------------------
154 * XCLK
155 */
156
157#define to_isp_xclk(_hw)	container_of(_hw, struct isp_xclk, hw)
158
159static void isp_xclk_update(struct isp_xclk *xclk, u32 divider)
160{
161	switch (xclk->id) {
162	case ISP_XCLK_A:
163		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
164				ISPTCTRL_CTRL_DIVA_MASK,
165				divider << ISPTCTRL_CTRL_DIVA_SHIFT);
166		break;
167	case ISP_XCLK_B:
168		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
169				ISPTCTRL_CTRL_DIVB_MASK,
170				divider << ISPTCTRL_CTRL_DIVB_SHIFT);
171		break;
172	}
173}
174
175static int isp_xclk_prepare(struct clk_hw *hw)
176{
177	struct isp_xclk *xclk = to_isp_xclk(hw);
178
179	omap3isp_get(xclk->isp);
180
181	return 0;
182}
183
184static void isp_xclk_unprepare(struct clk_hw *hw)
185{
186	struct isp_xclk *xclk = to_isp_xclk(hw);
187
188	omap3isp_put(xclk->isp);
189}
190
191static int isp_xclk_enable(struct clk_hw *hw)
192{
193	struct isp_xclk *xclk = to_isp_xclk(hw);
194	unsigned long flags;
195
196	spin_lock_irqsave(&xclk->lock, flags);
197	isp_xclk_update(xclk, xclk->divider);
198	xclk->enabled = true;
199	spin_unlock_irqrestore(&xclk->lock, flags);
200
201	return 0;
202}
203
204static void isp_xclk_disable(struct clk_hw *hw)
205{
206	struct isp_xclk *xclk = to_isp_xclk(hw);
207	unsigned long flags;
208
209	spin_lock_irqsave(&xclk->lock, flags);
210	isp_xclk_update(xclk, 0);
211	xclk->enabled = false;
212	spin_unlock_irqrestore(&xclk->lock, flags);
213}
214
215static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw,
216					  unsigned long parent_rate)
217{
218	struct isp_xclk *xclk = to_isp_xclk(hw);
219
220	return parent_rate / xclk->divider;
221}
222
223static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate)
224{
225	u32 divider;
226
227	if (*rate >= parent_rate) {
228		*rate = parent_rate;
229		return ISPTCTRL_CTRL_DIV_BYPASS;
230	}
231
232	if (*rate == 0)
233		*rate = 1;
234
235	divider = DIV_ROUND_CLOSEST(parent_rate, *rate);
236	if (divider >= ISPTCTRL_CTRL_DIV_BYPASS)
237		divider = ISPTCTRL_CTRL_DIV_BYPASS - 1;
238
239	*rate = parent_rate / divider;
240	return divider;
241}
242
243static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate,
244				unsigned long *parent_rate)
245{
246	isp_xclk_calc_divider(&rate, *parent_rate);
247	return rate;
248}
249
250static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate,
251			     unsigned long parent_rate)
252{
253	struct isp_xclk *xclk = to_isp_xclk(hw);
254	unsigned long flags;
255	u32 divider;
256
257	divider = isp_xclk_calc_divider(&rate, parent_rate);
258
259	spin_lock_irqsave(&xclk->lock, flags);
260
261	xclk->divider = divider;
262	if (xclk->enabled)
263		isp_xclk_update(xclk, divider);
264
265	spin_unlock_irqrestore(&xclk->lock, flags);
266
267	dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n",
268		__func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider);
269	return 0;
270}
271
272static const struct clk_ops isp_xclk_ops = {
273	.prepare = isp_xclk_prepare,
274	.unprepare = isp_xclk_unprepare,
275	.enable = isp_xclk_enable,
276	.disable = isp_xclk_disable,
277	.recalc_rate = isp_xclk_recalc_rate,
278	.round_rate = isp_xclk_round_rate,
279	.set_rate = isp_xclk_set_rate,
280};
281
282static const char *isp_xclk_parent_name = "cam_mclk";
283
284static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data)
285{
286	unsigned int idx = clkspec->args[0];
287	struct isp_device *isp = data;
288
289	if (idx >= ARRAY_SIZE(isp->xclks))
290		return ERR_PTR(-ENOENT);
291
292	return isp->xclks[idx].clk;
293}
294
295static int isp_xclk_init(struct isp_device *isp)
296{
297	struct device_node *np = isp->dev->of_node;
298	struct clk_init_data init = {};
299	unsigned int i;
300
301	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i)
302		isp->xclks[i].clk = ERR_PTR(-EINVAL);
303
304	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
305		struct isp_xclk *xclk = &isp->xclks[i];
306
307		xclk->isp = isp;
308		xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B;
309		xclk->divider = 1;
310		spin_lock_init(&xclk->lock);
311
312		init.name = i == 0 ? "cam_xclka" : "cam_xclkb";
313		init.ops = &isp_xclk_ops;
314		init.parent_names = &isp_xclk_parent_name;
315		init.num_parents = 1;
316
317		xclk->hw.init = &init;
318		/*
319		 * The first argument is NULL in order to avoid circular
320		 * reference, as this driver takes reference on the
321		 * sensor subdevice modules and the sensors would take
322		 * reference on this module through clk_get().
323		 */
324		xclk->clk = clk_register(NULL, &xclk->hw);
325		if (IS_ERR(xclk->clk))
326			return PTR_ERR(xclk->clk);
327	}
328
329	if (np)
330		of_clk_add_provider(np, isp_xclk_src_get, isp);
331
332	return 0;
333}
334
335static void isp_xclk_cleanup(struct isp_device *isp)
336{
337	struct device_node *np = isp->dev->of_node;
338	unsigned int i;
339
340	if (np)
341		of_clk_del_provider(np);
342
343	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
344		struct isp_xclk *xclk = &isp->xclks[i];
345
346		if (!IS_ERR(xclk->clk))
347			clk_unregister(xclk->clk);
348	}
349}
350
351/* -----------------------------------------------------------------------------
352 * Interrupts
353 */
354
355/*
356 * isp_enable_interrupts - Enable ISP interrupts.
357 * @isp: OMAP3 ISP device
358 */
359static void isp_enable_interrupts(struct isp_device *isp)
360{
361	static const u32 irq = IRQ0ENABLE_CSIA_IRQ
362			     | IRQ0ENABLE_CSIB_IRQ
363			     | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ
364			     | IRQ0ENABLE_CCDC_LSC_DONE_IRQ
365			     | IRQ0ENABLE_CCDC_VD0_IRQ
366			     | IRQ0ENABLE_CCDC_VD1_IRQ
367			     | IRQ0ENABLE_HS_VS_IRQ
368			     | IRQ0ENABLE_HIST_DONE_IRQ
369			     | IRQ0ENABLE_H3A_AWB_DONE_IRQ
370			     | IRQ0ENABLE_H3A_AF_DONE_IRQ
371			     | IRQ0ENABLE_PRV_DONE_IRQ
372			     | IRQ0ENABLE_RSZ_DONE_IRQ;
373
374	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
375	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
376}
377
378/*
379 * isp_disable_interrupts - Disable ISP interrupts.
380 * @isp: OMAP3 ISP device
381 */
382static void isp_disable_interrupts(struct isp_device *isp)
383{
384	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
385}
386
387/*
388 * isp_core_init - ISP core settings
389 * @isp: OMAP3 ISP device
390 * @idle: Consider idle state.
391 *
392 * Set the power settings for the ISP and SBL bus and configure the HS/VS
393 * interrupt source.
394 *
395 * We need to configure the HS/VS interrupt source before interrupts get
396 * enabled, as the sensor might be free-running and the ISP default setting
397 * (HS edge) would put an unnecessary burden on the CPU.
398 */
399static void isp_core_init(struct isp_device *isp, int idle)
400{
401	isp_reg_writel(isp,
402		       ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY :
403				ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) <<
404			ISP_SYSCONFIG_MIDLEMODE_SHIFT) |
405			((isp->revision == ISP_REVISION_15_0) ?
406			  ISP_SYSCONFIG_AUTOIDLE : 0),
407		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
408
409	isp_reg_writel(isp,
410		       (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) |
411		       ISPCTRL_SYNC_DETECT_VSRISE,
412		       OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
413}
414
415/*
416 * Configure the bridge and lane shifter. Valid inputs are
417 *
418 * CCDC_INPUT_PARALLEL: Parallel interface
419 * CCDC_INPUT_CSI2A: CSI2a receiver
420 * CCDC_INPUT_CCP2B: CCP2b receiver
421 * CCDC_INPUT_CSI2C: CSI2c receiver
422 *
423 * The bridge and lane shifter are configured according to the selected input
424 * and the ISP platform data.
425 */
426void omap3isp_configure_bridge(struct isp_device *isp,
427			       enum ccdc_input_entity input,
428			       const struct isp_parallel_cfg *parcfg,
429			       unsigned int shift, unsigned int bridge)
430{
431	u32 ispctrl_val;
432
433	ispctrl_val  = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
434	ispctrl_val &= ~ISPCTRL_SHIFT_MASK;
435	ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV;
436	ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK;
437	ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK;
438	ispctrl_val |= bridge;
439
440	switch (input) {
441	case CCDC_INPUT_PARALLEL:
442		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL;
443		ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT;
444		shift += parcfg->data_lane_shift;
445		break;
446
447	case CCDC_INPUT_CSI2A:
448		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA;
449		break;
450
451	case CCDC_INPUT_CCP2B:
452		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB;
453		break;
454
455	case CCDC_INPUT_CSI2C:
456		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC;
457		break;
458
459	default:
460		return;
461	}
462
463	ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK;
464
465	isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
466}
467
468void omap3isp_hist_dma_done(struct isp_device *isp)
469{
470	if (omap3isp_ccdc_busy(&isp->isp_ccdc) ||
471	    omap3isp_stat_pcr_busy(&isp->isp_hist)) {
472		/* Histogram cannot be enabled in this frame anymore */
473		atomic_set(&isp->isp_hist.buf_err, 1);
474		dev_dbg(isp->dev,
475			"hist: Out of synchronization with CCDC. Ignoring next buffer.\n");
476	}
477}
478
479static inline void isp_isr_dbg(struct isp_device *isp, u32 irqstatus)
480{
481	static const char *name[] = {
482		"CSIA_IRQ",
483		"res1",
484		"res2",
485		"CSIB_LCM_IRQ",
486		"CSIB_IRQ",
487		"res5",
488		"res6",
489		"res7",
490		"CCDC_VD0_IRQ",
491		"CCDC_VD1_IRQ",
492		"CCDC_VD2_IRQ",
493		"CCDC_ERR_IRQ",
494		"H3A_AF_DONE_IRQ",
495		"H3A_AWB_DONE_IRQ",
496		"res14",
497		"res15",
498		"HIST_DONE_IRQ",
499		"CCDC_LSC_DONE",
500		"CCDC_LSC_PREFETCH_COMPLETED",
501		"CCDC_LSC_PREFETCH_ERROR",
502		"PRV_DONE_IRQ",
503		"CBUFF_IRQ",
504		"res22",
505		"res23",
506		"RSZ_DONE_IRQ",
507		"OVF_IRQ",
508		"res26",
509		"res27",
510		"MMU_ERR_IRQ",
511		"OCP_ERR_IRQ",
512		"SEC_ERR_IRQ",
513		"HS_VS_IRQ",
514	};
515	int i;
516
517	dev_dbg(isp->dev, "ISP IRQ: ");
518
519	for (i = 0; i < ARRAY_SIZE(name); i++) {
520		if ((1 << i) & irqstatus)
521			printk(KERN_CONT "%s ", name[i]);
522	}
523	printk(KERN_CONT "\n");
524}
525
526static void isp_isr_sbl(struct isp_device *isp)
527{
528	struct device *dev = isp->dev;
529	struct isp_pipeline *pipe;
530	u32 sbl_pcr;
531
532	/*
533	 * Handle shared buffer logic overflows for video buffers.
534	 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored.
535	 */
536	sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
537	isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
538	sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF;
539
540	if (sbl_pcr)
541		dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr);
542
543	if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) {
544		pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity);
545		if (pipe != NULL)
546			pipe->error = true;
547	}
548
549	if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) {
550		pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity);
551		if (pipe != NULL)
552			pipe->error = true;
553	}
554
555	if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) {
556		pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity);
557		if (pipe != NULL)
558			pipe->error = true;
559	}
560
561	if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) {
562		pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity);
563		if (pipe != NULL)
564			pipe->error = true;
565	}
566
567	if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF
568		       | ISPSBL_PCR_RSZ2_WBL_OVF
569		       | ISPSBL_PCR_RSZ3_WBL_OVF
570		       | ISPSBL_PCR_RSZ4_WBL_OVF)) {
571		pipe = to_isp_pipeline(&isp->isp_res.subdev.entity);
572		if (pipe != NULL)
573			pipe->error = true;
574	}
575
576	if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF)
577		omap3isp_stat_sbl_overflow(&isp->isp_af);
578
579	if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF)
580		omap3isp_stat_sbl_overflow(&isp->isp_aewb);
581}
582
583/*
584 * isp_isr - Interrupt Service Routine for Camera ISP module.
585 * @irq: Not used currently.
586 * @_isp: Pointer to the OMAP3 ISP device
587 *
588 * Handles the corresponding callback if plugged in.
589 */
590static irqreturn_t isp_isr(int irq, void *_isp)
591{
592	static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ |
593				       IRQ0STATUS_CCDC_LSC_DONE_IRQ |
594				       IRQ0STATUS_CCDC_VD0_IRQ |
595				       IRQ0STATUS_CCDC_VD1_IRQ |
596				       IRQ0STATUS_HS_VS_IRQ;
597	struct isp_device *isp = _isp;
598	u32 irqstatus;
599
600	irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
601	isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
602
603	isp_isr_sbl(isp);
604
605	if (irqstatus & IRQ0STATUS_CSIA_IRQ)
606		omap3isp_csi2_isr(&isp->isp_csi2a);
607
608	if (irqstatus & IRQ0STATUS_CSIB_IRQ)
609		omap3isp_ccp2_isr(&isp->isp_ccp2);
610
611	if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) {
612		if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW)
613			omap3isp_preview_isr_frame_sync(&isp->isp_prev);
614		if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER)
615			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
616		omap3isp_stat_isr_frame_sync(&isp->isp_aewb);
617		omap3isp_stat_isr_frame_sync(&isp->isp_af);
618		omap3isp_stat_isr_frame_sync(&isp->isp_hist);
619	}
620
621	if (irqstatus & ccdc_events)
622		omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events);
623
624	if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) {
625		if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER)
626			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
627		omap3isp_preview_isr(&isp->isp_prev);
628	}
629
630	if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ)
631		omap3isp_resizer_isr(&isp->isp_res);
632
633	if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ)
634		omap3isp_stat_isr(&isp->isp_aewb);
635
636	if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ)
637		omap3isp_stat_isr(&isp->isp_af);
638
639	if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ)
640		omap3isp_stat_isr(&isp->isp_hist);
641
642	omap3isp_flush(isp);
643
644#if defined(DEBUG) && defined(ISP_ISR_DEBUG)
645	isp_isr_dbg(isp, irqstatus);
646#endif
647
648	return IRQ_HANDLED;
649}
650
651static const struct media_device_ops isp_media_ops = {
652	.link_notify = v4l2_pipeline_link_notify,
653};
654
655/* -----------------------------------------------------------------------------
656 * Pipeline stream management
657 */
658
659/*
660 * isp_pipeline_enable - Enable streaming on a pipeline
661 * @pipe: ISP pipeline
662 * @mode: Stream mode (single shot or continuous)
663 *
664 * Walk the entities chain starting at the pipeline output video node and start
665 * all modules in the chain in the given mode.
666 *
667 * Return 0 if successful, or the return value of the failed video::s_stream
668 * operation otherwise.
669 */
670static int isp_pipeline_enable(struct isp_pipeline *pipe,
671			       enum isp_pipeline_stream_state mode)
672{
673	struct isp_device *isp = pipe->output->isp;
674	struct media_entity *entity;
675	struct media_pad *pad;
676	struct v4l2_subdev *subdev;
677	unsigned long flags;
678	int ret;
679
680	/* Refuse to start streaming if an entity included in the pipeline has
681	 * crashed. This check must be performed before the loop below to avoid
682	 * starting entities if the pipeline won't start anyway (those entities
683	 * would then likely fail to stop, making the problem worse).
684	 */
685	if (media_entity_enum_intersects(&pipe->ent_enum, &isp->crashed))
686		return -EIO;
687
688	spin_lock_irqsave(&pipe->lock, flags);
689	pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT);
690	spin_unlock_irqrestore(&pipe->lock, flags);
691
692	pipe->do_propagation = false;
693
694	entity = &pipe->output->video.entity;
695	while (1) {
696		pad = &entity->pads[0];
697		if (!(pad->flags & MEDIA_PAD_FL_SINK))
698			break;
699
700		pad = media_entity_remote_pad(pad);
701		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
702			break;
703
704		entity = pad->entity;
705		subdev = media_entity_to_v4l2_subdev(entity);
706
707		ret = v4l2_subdev_call(subdev, video, s_stream, mode);
708		if (ret < 0 && ret != -ENOIOCTLCMD)
709			return ret;
710
711		if (subdev == &isp->isp_ccdc.subdev) {
712			v4l2_subdev_call(&isp->isp_aewb.subdev, video,
713					s_stream, mode);
714			v4l2_subdev_call(&isp->isp_af.subdev, video,
715					s_stream, mode);
716			v4l2_subdev_call(&isp->isp_hist.subdev, video,
717					s_stream, mode);
718			pipe->do_propagation = true;
719		}
720
721		/* Stop at the first external sub-device. */
722		if (subdev->dev != isp->dev)
723			break;
724	}
725
726	return 0;
727}
728
729static int isp_pipeline_wait_resizer(struct isp_device *isp)
730{
731	return omap3isp_resizer_busy(&isp->isp_res);
732}
733
734static int isp_pipeline_wait_preview(struct isp_device *isp)
735{
736	return omap3isp_preview_busy(&isp->isp_prev);
737}
738
739static int isp_pipeline_wait_ccdc(struct isp_device *isp)
740{
741	return omap3isp_stat_busy(&isp->isp_af)
742	    || omap3isp_stat_busy(&isp->isp_aewb)
743	    || omap3isp_stat_busy(&isp->isp_hist)
744	    || omap3isp_ccdc_busy(&isp->isp_ccdc);
745}
746
747#define ISP_STOP_TIMEOUT	msecs_to_jiffies(1000)
748
749static int isp_pipeline_wait(struct isp_device *isp,
750			     int(*busy)(struct isp_device *isp))
751{
752	unsigned long timeout = jiffies + ISP_STOP_TIMEOUT;
753
754	while (!time_after(jiffies, timeout)) {
755		if (!busy(isp))
756			return 0;
757	}
758
759	return 1;
760}
761
762/*
763 * isp_pipeline_disable - Disable streaming on a pipeline
764 * @pipe: ISP pipeline
765 *
766 * Walk the entities chain starting at the pipeline output video node and stop
767 * all modules in the chain. Wait synchronously for the modules to be stopped if
768 * necessary.
769 *
770 * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module
771 * can't be stopped (in which case a software reset of the ISP is probably
772 * necessary).
773 */
774static int isp_pipeline_disable(struct isp_pipeline *pipe)
775{
776	struct isp_device *isp = pipe->output->isp;
777	struct media_entity *entity;
778	struct media_pad *pad;
779	struct v4l2_subdev *subdev;
780	int failure = 0;
781	int ret;
782
783	/*
784	 * We need to stop all the modules after CCDC first or they'll
785	 * never stop since they may not get a full frame from CCDC.
786	 */
787	entity = &pipe->output->video.entity;
788	while (1) {
789		pad = &entity->pads[0];
790		if (!(pad->flags & MEDIA_PAD_FL_SINK))
791			break;
792
793		pad = media_entity_remote_pad(pad);
794		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
795			break;
796
797		entity = pad->entity;
798		subdev = media_entity_to_v4l2_subdev(entity);
799
800		if (subdev == &isp->isp_ccdc.subdev) {
801			v4l2_subdev_call(&isp->isp_aewb.subdev,
802					 video, s_stream, 0);
803			v4l2_subdev_call(&isp->isp_af.subdev,
804					 video, s_stream, 0);
805			v4l2_subdev_call(&isp->isp_hist.subdev,
806					 video, s_stream, 0);
807		}
808
809		ret = v4l2_subdev_call(subdev, video, s_stream, 0);
810
811		/* Stop at the first external sub-device. */
812		if (subdev->dev != isp->dev)
813			break;
814
815		if (subdev == &isp->isp_res.subdev)
816			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer);
817		else if (subdev == &isp->isp_prev.subdev)
818			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview);
819		else if (subdev == &isp->isp_ccdc.subdev)
820			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc);
821
822		/* Handle stop failures. An entity that fails to stop can
823		 * usually just be restarted. Flag the stop failure nonetheless
824		 * to trigger an ISP reset the next time the device is released,
825		 * just in case.
826		 *
827		 * The preview engine is a special case. A failure to stop can
828		 * mean a hardware crash. When that happens the preview engine
829		 * won't respond to read/write operations on the L4 bus anymore,
830		 * resulting in a bus fault and a kernel oops next time it gets
831		 * accessed. Mark it as crashed to prevent pipelines including
832		 * it from being started.
833		 */
834		if (ret) {
835			dev_info(isp->dev, "Unable to stop %s\n", subdev->name);
836			isp->stop_failure = true;
837			if (subdev == &isp->isp_prev.subdev)
838				media_entity_enum_set(&isp->crashed,
839						      &subdev->entity);
840			failure = -ETIMEDOUT;
841		}
842	}
843
844	return failure;
845}
846
847/*
848 * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline
849 * @pipe: ISP pipeline
850 * @state: Stream state (stopped, single shot or continuous)
851 *
852 * Set the pipeline to the given stream state. Pipelines can be started in
853 * single-shot or continuous mode.
854 *
855 * Return 0 if successful, or the return value of the failed video::s_stream
856 * operation otherwise. The pipeline state is not updated when the operation
857 * fails, except when stopping the pipeline.
858 */
859int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe,
860				 enum isp_pipeline_stream_state state)
861{
862	int ret;
863
864	if (state == ISP_PIPELINE_STREAM_STOPPED)
865		ret = isp_pipeline_disable(pipe);
866	else
867		ret = isp_pipeline_enable(pipe, state);
868
869	if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED)
870		pipe->stream_state = state;
871
872	return ret;
873}
874
875/*
876 * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline
877 * @pipe: ISP pipeline
878 *
879 * Cancelling a stream mark all buffers on all video nodes in the pipeline as
880 * erroneous and makes sure no new buffer can be queued. This function is called
881 * when a fatal error that prevents any further operation on the pipeline
882 * occurs.
883 */
884void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe)
885{
886	if (pipe->input)
887		omap3isp_video_cancel_stream(pipe->input);
888	if (pipe->output)
889		omap3isp_video_cancel_stream(pipe->output);
890}
891
892/*
893 * isp_pipeline_resume - Resume streaming on a pipeline
894 * @pipe: ISP pipeline
895 *
896 * Resume video output and input and re-enable pipeline.
897 */
898static void isp_pipeline_resume(struct isp_pipeline *pipe)
899{
900	int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT;
901
902	omap3isp_video_resume(pipe->output, !singleshot);
903	if (singleshot)
904		omap3isp_video_resume(pipe->input, 0);
905	isp_pipeline_enable(pipe, pipe->stream_state);
906}
907
908/*
909 * isp_pipeline_suspend - Suspend streaming on a pipeline
910 * @pipe: ISP pipeline
911 *
912 * Suspend pipeline.
913 */
914static void isp_pipeline_suspend(struct isp_pipeline *pipe)
915{
916	isp_pipeline_disable(pipe);
917}
918
919/*
920 * isp_pipeline_is_last - Verify if entity has an enabled link to the output
921 *			  video node
922 * @me: ISP module's media entity
923 *
924 * Returns 1 if the entity has an enabled link to the output video node or 0
925 * otherwise. It's true only while pipeline can have no more than one output
926 * node.
927 */
928static int isp_pipeline_is_last(struct media_entity *me)
929{
930	struct isp_pipeline *pipe;
931	struct media_pad *pad;
932
933	if (!me->pipe)
934		return 0;
935	pipe = to_isp_pipeline(me);
936	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED)
937		return 0;
938	pad = media_entity_remote_pad(&pipe->output->pad);
939	return pad->entity == me;
940}
941
942/*
943 * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module
944 * @me: ISP module's media entity
945 *
946 * Suspend the whole pipeline if module's entity has an enabled link to the
947 * output video node. It works only while pipeline can have no more than one
948 * output node.
949 */
950static void isp_suspend_module_pipeline(struct media_entity *me)
951{
952	if (isp_pipeline_is_last(me))
953		isp_pipeline_suspend(to_isp_pipeline(me));
954}
955
956/*
957 * isp_resume_module_pipeline - Resume pipeline to which belongs the module
958 * @me: ISP module's media entity
959 *
960 * Resume the whole pipeline if module's entity has an enabled link to the
961 * output video node. It works only while pipeline can have no more than one
962 * output node.
963 */
964static void isp_resume_module_pipeline(struct media_entity *me)
965{
966	if (isp_pipeline_is_last(me))
967		isp_pipeline_resume(to_isp_pipeline(me));
968}
969
970/*
971 * isp_suspend_modules - Suspend ISP submodules.
972 * @isp: OMAP3 ISP device
973 *
974 * Returns 0 if suspend left in idle state all the submodules properly,
975 * or returns 1 if a general Reset is required to suspend the submodules.
976 */
977static int __maybe_unused isp_suspend_modules(struct isp_device *isp)
978{
979	unsigned long timeout;
980
981	omap3isp_stat_suspend(&isp->isp_aewb);
982	omap3isp_stat_suspend(&isp->isp_af);
983	omap3isp_stat_suspend(&isp->isp_hist);
984	isp_suspend_module_pipeline(&isp->isp_res.subdev.entity);
985	isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity);
986	isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity);
987	isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity);
988	isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity);
989
990	timeout = jiffies + ISP_STOP_TIMEOUT;
991	while (omap3isp_stat_busy(&isp->isp_af)
992	    || omap3isp_stat_busy(&isp->isp_aewb)
993	    || omap3isp_stat_busy(&isp->isp_hist)
994	    || omap3isp_preview_busy(&isp->isp_prev)
995	    || omap3isp_resizer_busy(&isp->isp_res)
996	    || omap3isp_ccdc_busy(&isp->isp_ccdc)) {
997		if (time_after(jiffies, timeout)) {
998			dev_info(isp->dev, "can't stop modules.\n");
999			return 1;
1000		}
1001		msleep(1);
1002	}
1003
1004	return 0;
1005}
1006
1007/*
1008 * isp_resume_modules - Resume ISP submodules.
1009 * @isp: OMAP3 ISP device
1010 */
1011static void __maybe_unused isp_resume_modules(struct isp_device *isp)
1012{
1013	omap3isp_stat_resume(&isp->isp_aewb);
1014	omap3isp_stat_resume(&isp->isp_af);
1015	omap3isp_stat_resume(&isp->isp_hist);
1016	isp_resume_module_pipeline(&isp->isp_res.subdev.entity);
1017	isp_resume_module_pipeline(&isp->isp_prev.subdev.entity);
1018	isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity);
1019	isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity);
1020	isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity);
1021}
1022
1023/*
1024 * isp_reset - Reset ISP with a timeout wait for idle.
1025 * @isp: OMAP3 ISP device
1026 */
1027static int isp_reset(struct isp_device *isp)
1028{
1029	unsigned long timeout = 0;
1030
1031	isp_reg_writel(isp,
1032		       isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG)
1033		       | ISP_SYSCONFIG_SOFTRESET,
1034		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
1035	while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN,
1036			       ISP_SYSSTATUS) & 0x1)) {
1037		if (timeout++ > 10000) {
1038			dev_alert(isp->dev, "cannot reset ISP\n");
1039			return -ETIMEDOUT;
1040		}
1041		udelay(1);
1042	}
1043
1044	isp->stop_failure = false;
1045	media_entity_enum_zero(&isp->crashed);
1046	return 0;
1047}
1048
1049/*
1050 * isp_save_context - Saves the values of the ISP module registers.
1051 * @isp: OMAP3 ISP device
1052 * @reg_list: Structure containing pairs of register address and value to
1053 *            modify on OMAP.
1054 */
1055static void
1056isp_save_context(struct isp_device *isp, struct isp_reg *reg_list)
1057{
1058	struct isp_reg *next = reg_list;
1059
1060	for (; next->reg != ISP_TOK_TERM; next++)
1061		next->val = isp_reg_readl(isp, next->mmio_range, next->reg);
1062}
1063
1064/*
1065 * isp_restore_context - Restores the values of the ISP module registers.
1066 * @isp: OMAP3 ISP device
1067 * @reg_list: Structure containing pairs of register address and value to
1068 *            modify on OMAP.
1069 */
1070static void
1071isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list)
1072{
1073	struct isp_reg *next = reg_list;
1074
1075	for (; next->reg != ISP_TOK_TERM; next++)
1076		isp_reg_writel(isp, next->val, next->mmio_range, next->reg);
1077}
1078
1079/*
1080 * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1081 * @isp: OMAP3 ISP device
1082 *
1083 * Routine for saving the context of each module in the ISP.
1084 * CCDC, HIST, H3A, PREV, RESZ and MMU.
1085 */
1086static void isp_save_ctx(struct isp_device *isp)
1087{
1088	isp_save_context(isp, isp_reg_list);
1089	omap_iommu_save_ctx(isp->dev);
1090}
1091
1092/*
1093 * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1094 * @isp: OMAP3 ISP device
1095 *
1096 * Routine for restoring the context of each module in the ISP.
1097 * CCDC, HIST, H3A, PREV, RESZ and MMU.
1098 */
1099static void isp_restore_ctx(struct isp_device *isp)
1100{
1101	isp_restore_context(isp, isp_reg_list);
1102	omap_iommu_restore_ctx(isp->dev);
1103	omap3isp_ccdc_restore_context(isp);
1104	omap3isp_preview_restore_context(isp);
1105}
1106
1107/* -----------------------------------------------------------------------------
1108 * SBL resources management
1109 */
1110#define OMAP3_ISP_SBL_READ	(OMAP3_ISP_SBL_CSI1_READ | \
1111				 OMAP3_ISP_SBL_CCDC_LSC_READ | \
1112				 OMAP3_ISP_SBL_PREVIEW_READ | \
1113				 OMAP3_ISP_SBL_RESIZER_READ)
1114#define OMAP3_ISP_SBL_WRITE	(OMAP3_ISP_SBL_CSI1_WRITE | \
1115				 OMAP3_ISP_SBL_CSI2A_WRITE | \
1116				 OMAP3_ISP_SBL_CSI2C_WRITE | \
1117				 OMAP3_ISP_SBL_CCDC_WRITE | \
1118				 OMAP3_ISP_SBL_PREVIEW_WRITE)
1119
1120void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res)
1121{
1122	u32 sbl = 0;
1123
1124	isp->sbl_resources |= res;
1125
1126	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)
1127		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1128
1129	if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)
1130		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1131
1132	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)
1133		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1134
1135	if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)
1136		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1137
1138	if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE)
1139		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1140
1141	if (isp->sbl_resources & OMAP3_ISP_SBL_READ)
1142		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1143
1144	isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1145}
1146
1147void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res)
1148{
1149	u32 sbl = 0;
1150
1151	isp->sbl_resources &= ~res;
1152
1153	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ))
1154		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1155
1156	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ))
1157		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1158
1159	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE))
1160		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1161
1162	if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE))
1163		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1164
1165	if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE))
1166		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1167
1168	if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ))
1169		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1170
1171	isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1172}
1173
1174/*
1175 * isp_module_sync_idle - Helper to sync module with its idle state
1176 * @me: ISP submodule's media entity
1177 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1178 * @stopping: flag which tells module wants to stop
1179 *
1180 * This function checks if ISP submodule needs to wait for next interrupt. If
1181 * yes, makes the caller to sleep while waiting for such event.
1182 */
1183int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait,
1184			      atomic_t *stopping)
1185{
1186	struct isp_pipeline *pipe = to_isp_pipeline(me);
1187
1188	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED ||
1189	    (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT &&
1190	     !isp_pipeline_ready(pipe)))
1191		return 0;
1192
1193	/*
1194	 * atomic_set() doesn't include memory barrier on ARM platform for SMP
1195	 * scenario. We'll call it here to avoid race conditions.
1196	 */
1197	atomic_set(stopping, 1);
1198	smp_mb();
1199
1200	/*
1201	 * If module is the last one, it's writing to memory. In this case,
1202	 * it's necessary to check if the module is already paused due to
1203	 * DMA queue underrun or if it has to wait for next interrupt to be
1204	 * idle.
1205	 * If it isn't the last one, the function won't sleep but *stopping
1206	 * will still be set to warn next submodule caller's interrupt the
1207	 * module wants to be idle.
1208	 */
1209	if (isp_pipeline_is_last(me)) {
1210		struct isp_video *video = pipe->output;
1211		unsigned long flags;
1212		spin_lock_irqsave(&video->irqlock, flags);
1213		if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) {
1214			spin_unlock_irqrestore(&video->irqlock, flags);
1215			atomic_set(stopping, 0);
1216			smp_mb();
1217			return 0;
1218		}
1219		spin_unlock_irqrestore(&video->irqlock, flags);
1220		if (!wait_event_timeout(*wait, !atomic_read(stopping),
1221					msecs_to_jiffies(1000))) {
1222			atomic_set(stopping, 0);
1223			smp_mb();
1224			return -ETIMEDOUT;
1225		}
1226	}
1227
1228	return 0;
1229}
1230
1231/*
1232 * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping
1233 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1234 * @stopping: flag which tells module wants to stop
1235 *
1236 * This function checks if ISP submodule was stopping. In case of yes, it
1237 * notices the caller by setting stopping to 0 and waking up the wait queue.
1238 * Returns 1 if it was stopping or 0 otherwise.
1239 */
1240int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait,
1241				     atomic_t *stopping)
1242{
1243	if (atomic_cmpxchg(stopping, 1, 0)) {
1244		wake_up(wait);
1245		return 1;
1246	}
1247
1248	return 0;
1249}
1250
1251/* --------------------------------------------------------------------------
1252 * Clock management
1253 */
1254
1255#define ISPCTRL_CLKS_MASK	(ISPCTRL_H3A_CLK_EN | \
1256				 ISPCTRL_HIST_CLK_EN | \
1257				 ISPCTRL_RSZ_CLK_EN | \
1258				 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \
1259				 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN))
1260
1261static void __isp_subclk_update(struct isp_device *isp)
1262{
1263	u32 clk = 0;
1264
1265	/* AEWB and AF share the same clock. */
1266	if (isp->subclk_resources &
1267	    (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF))
1268		clk |= ISPCTRL_H3A_CLK_EN;
1269
1270	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST)
1271		clk |= ISPCTRL_HIST_CLK_EN;
1272
1273	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER)
1274		clk |= ISPCTRL_RSZ_CLK_EN;
1275
1276	/* NOTE: For CCDC & Preview submodules, we need to affect internal
1277	 *       RAM as well.
1278	 */
1279	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC)
1280		clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN;
1281
1282	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW)
1283		clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN;
1284
1285	isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL,
1286			ISPCTRL_CLKS_MASK, clk);
1287}
1288
1289void omap3isp_subclk_enable(struct isp_device *isp,
1290			    enum isp_subclk_resource res)
1291{
1292	isp->subclk_resources |= res;
1293
1294	__isp_subclk_update(isp);
1295}
1296
1297void omap3isp_subclk_disable(struct isp_device *isp,
1298			     enum isp_subclk_resource res)
1299{
1300	isp->subclk_resources &= ~res;
1301
1302	__isp_subclk_update(isp);
1303}
1304
1305/*
1306 * isp_enable_clocks - Enable ISP clocks
1307 * @isp: OMAP3 ISP device
1308 *
1309 * Return 0 if successful, or clk_prepare_enable return value if any of them
1310 * fails.
1311 */
1312static int isp_enable_clocks(struct isp_device *isp)
1313{
1314	int r;
1315	unsigned long rate;
1316
1317	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]);
1318	if (r) {
1319		dev_err(isp->dev, "failed to enable cam_ick clock\n");
1320		goto out_clk_enable_ick;
1321	}
1322	r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ);
1323	if (r) {
1324		dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n");
1325		goto out_clk_enable_mclk;
1326	}
1327	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]);
1328	if (r) {
1329		dev_err(isp->dev, "failed to enable cam_mclk clock\n");
1330		goto out_clk_enable_mclk;
1331	}
1332	rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]);
1333	if (rate != CM_CAM_MCLK_HZ)
1334		dev_warn(isp->dev, "unexpected cam_mclk rate:\n"
1335				   " expected : %d\n"
1336				   " actual   : %ld\n", CM_CAM_MCLK_HZ, rate);
1337	r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]);
1338	if (r) {
1339		dev_err(isp->dev, "failed to enable csi2_fck clock\n");
1340		goto out_clk_enable_csi2_fclk;
1341	}
1342	return 0;
1343
1344out_clk_enable_csi2_fclk:
1345	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1346out_clk_enable_mclk:
1347	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1348out_clk_enable_ick:
1349	return r;
1350}
1351
1352/*
1353 * isp_disable_clocks - Disable ISP clocks
1354 * @isp: OMAP3 ISP device
1355 */
1356static void isp_disable_clocks(struct isp_device *isp)
1357{
1358	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1359	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1360	clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]);
1361}
1362
1363static const char *isp_clocks[] = {
1364	"cam_ick",
1365	"cam_mclk",
1366	"csi2_96m_fck",
1367	"l3_ick",
1368};
1369
1370static int isp_get_clocks(struct isp_device *isp)
1371{
1372	struct clk *clk;
1373	unsigned int i;
1374
1375	for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) {
1376		clk = devm_clk_get(isp->dev, isp_clocks[i]);
1377		if (IS_ERR(clk)) {
1378			dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]);
1379			return PTR_ERR(clk);
1380		}
1381
1382		isp->clock[i] = clk;
1383	}
1384
1385	return 0;
1386}
1387
1388/*
1389 * omap3isp_get - Acquire the ISP resource.
1390 *
1391 * Initializes the clocks for the first acquire.
1392 *
1393 * Increment the reference count on the ISP. If the first reference is taken,
1394 * enable clocks and power-up all submodules.
1395 *
1396 * Return a pointer to the ISP device structure, or NULL if an error occurred.
1397 */
1398static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq)
1399{
1400	struct isp_device *__isp = isp;
1401
1402	if (isp == NULL)
1403		return NULL;
1404
1405	mutex_lock(&isp->isp_mutex);
1406	if (isp->ref_count > 0)
1407		goto out;
1408
1409	if (isp_enable_clocks(isp) < 0) {
1410		__isp = NULL;
1411		goto out;
1412	}
1413
1414	/* We don't want to restore context before saving it! */
1415	if (isp->has_context)
1416		isp_restore_ctx(isp);
1417
1418	if (irq)
1419		isp_enable_interrupts(isp);
1420
1421out:
1422	if (__isp != NULL)
1423		isp->ref_count++;
1424	mutex_unlock(&isp->isp_mutex);
1425
1426	return __isp;
1427}
1428
1429struct isp_device *omap3isp_get(struct isp_device *isp)
1430{
1431	return __omap3isp_get(isp, true);
1432}
1433
1434/*
1435 * omap3isp_put - Release the ISP
1436 *
1437 * Decrement the reference count on the ISP. If the last reference is released,
1438 * power-down all submodules, disable clocks and free temporary buffers.
1439 */
1440static void __omap3isp_put(struct isp_device *isp, bool save_ctx)
1441{
1442	if (isp == NULL)
1443		return;
1444
1445	mutex_lock(&isp->isp_mutex);
1446	BUG_ON(isp->ref_count == 0);
1447	if (--isp->ref_count == 0) {
1448		isp_disable_interrupts(isp);
1449		if (save_ctx) {
1450			isp_save_ctx(isp);
1451			isp->has_context = 1;
1452		}
1453		/* Reset the ISP if an entity has failed to stop. This is the
1454		 * only way to recover from such conditions.
1455		 */
1456		if (!media_entity_enum_empty(&isp->crashed) ||
1457		    isp->stop_failure)
1458			isp_reset(isp);
1459		isp_disable_clocks(isp);
1460	}
1461	mutex_unlock(&isp->isp_mutex);
1462}
1463
1464void omap3isp_put(struct isp_device *isp)
1465{
1466	__omap3isp_put(isp, true);
1467}
1468
1469/* --------------------------------------------------------------------------
1470 * Platform device driver
1471 */
1472
1473/*
1474 * omap3isp_print_status - Prints the values of the ISP Control Module registers
1475 * @isp: OMAP3 ISP device
1476 */
1477#define ISP_PRINT_REGISTER(isp, name)\
1478	dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \
1479		isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name))
1480#define SBL_PRINT_REGISTER(isp, name)\
1481	dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \
1482		isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name))
1483
1484void omap3isp_print_status(struct isp_device *isp)
1485{
1486	dev_dbg(isp->dev, "-------------ISP Register dump--------------\n");
1487
1488	ISP_PRINT_REGISTER(isp, SYSCONFIG);
1489	ISP_PRINT_REGISTER(isp, SYSSTATUS);
1490	ISP_PRINT_REGISTER(isp, IRQ0ENABLE);
1491	ISP_PRINT_REGISTER(isp, IRQ0STATUS);
1492	ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH);
1493	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY);
1494	ISP_PRINT_REGISTER(isp, CTRL);
1495	ISP_PRINT_REGISTER(isp, TCTRL_CTRL);
1496	ISP_PRINT_REGISTER(isp, TCTRL_FRAME);
1497	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY);
1498	ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY);
1499	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY);
1500	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH);
1501	ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH);
1502	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH);
1503
1504	SBL_PRINT_REGISTER(isp, PCR);
1505	SBL_PRINT_REGISTER(isp, SDR_REQ_EXP);
1506
1507	dev_dbg(isp->dev, "--------------------------------------------\n");
1508}
1509
1510#ifdef CONFIG_PM
1511
1512/*
1513 * Power management support.
1514 *
1515 * As the ISP can't properly handle an input video stream interruption on a non
1516 * frame boundary, the ISP pipelines need to be stopped before sensors get
1517 * suspended. However, as suspending the sensors can require a running clock,
1518 * which can be provided by the ISP, the ISP can't be completely suspended
1519 * before the sensor.
1520 *
1521 * To solve this problem power management support is split into prepare/complete
1522 * and suspend/resume operations. The pipelines are stopped in prepare() and the
1523 * ISP clocks get disabled in suspend(). Similarly, the clocks are re-enabled in
1524 * resume(), and the the pipelines are restarted in complete().
1525 *
1526 * TODO: PM dependencies between the ISP and sensors are not modelled explicitly
1527 * yet.
1528 */
1529static int isp_pm_prepare(struct device *dev)
1530{
1531	struct isp_device *isp = dev_get_drvdata(dev);
1532	int reset;
1533
1534	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1535
1536	if (isp->ref_count == 0)
1537		return 0;
1538
1539	reset = isp_suspend_modules(isp);
1540	isp_disable_interrupts(isp);
1541	isp_save_ctx(isp);
1542	if (reset)
1543		isp_reset(isp);
1544
1545	return 0;
1546}
1547
1548static int isp_pm_suspend(struct device *dev)
1549{
1550	struct isp_device *isp = dev_get_drvdata(dev);
1551
1552	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1553
1554	if (isp->ref_count)
1555		isp_disable_clocks(isp);
1556
1557	return 0;
1558}
1559
1560static int isp_pm_resume(struct device *dev)
1561{
1562	struct isp_device *isp = dev_get_drvdata(dev);
1563
1564	if (isp->ref_count == 0)
1565		return 0;
1566
1567	return isp_enable_clocks(isp);
1568}
1569
1570static void isp_pm_complete(struct device *dev)
1571{
1572	struct isp_device *isp = dev_get_drvdata(dev);
1573
1574	if (isp->ref_count == 0)
1575		return;
1576
1577	isp_restore_ctx(isp);
1578	isp_enable_interrupts(isp);
1579	isp_resume_modules(isp);
1580}
1581
1582#else
1583
1584#define isp_pm_prepare	NULL
1585#define isp_pm_suspend	NULL
1586#define isp_pm_resume	NULL
1587#define isp_pm_complete	NULL
1588
1589#endif /* CONFIG_PM */
1590
1591static void isp_unregister_entities(struct isp_device *isp)
1592{
1593	media_device_unregister(&isp->media_dev);
1594
1595	omap3isp_csi2_unregister_entities(&isp->isp_csi2a);
1596	omap3isp_ccp2_unregister_entities(&isp->isp_ccp2);
1597	omap3isp_ccdc_unregister_entities(&isp->isp_ccdc);
1598	omap3isp_preview_unregister_entities(&isp->isp_prev);
1599	omap3isp_resizer_unregister_entities(&isp->isp_res);
1600	omap3isp_stat_unregister_entities(&isp->isp_aewb);
1601	omap3isp_stat_unregister_entities(&isp->isp_af);
1602	omap3isp_stat_unregister_entities(&isp->isp_hist);
1603
1604	v4l2_device_unregister(&isp->v4l2_dev);
1605	media_device_cleanup(&isp->media_dev);
1606}
1607
1608static int isp_link_entity(
1609	struct isp_device *isp, struct media_entity *entity,
1610	enum isp_interface_type interface)
1611{
1612	struct media_entity *input;
1613	unsigned int flags;
1614	unsigned int pad;
1615	unsigned int i;
1616
1617	/* Connect the sensor to the correct interface module.
1618	 * Parallel sensors are connected directly to the CCDC, while
1619	 * serial sensors are connected to the CSI2a, CCP2b or CSI2c
1620	 * receiver through CSIPHY1 or CSIPHY2.
1621	 */
1622	switch (interface) {
1623	case ISP_INTERFACE_PARALLEL:
1624		input = &isp->isp_ccdc.subdev.entity;
1625		pad = CCDC_PAD_SINK;
1626		flags = 0;
1627		break;
1628
1629	case ISP_INTERFACE_CSI2A_PHY2:
1630		input = &isp->isp_csi2a.subdev.entity;
1631		pad = CSI2_PAD_SINK;
1632		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1633		break;
1634
1635	case ISP_INTERFACE_CCP2B_PHY1:
1636	case ISP_INTERFACE_CCP2B_PHY2:
1637		input = &isp->isp_ccp2.subdev.entity;
1638		pad = CCP2_PAD_SINK;
1639		flags = 0;
1640		break;
1641
1642	case ISP_INTERFACE_CSI2C_PHY1:
1643		input = &isp->isp_csi2c.subdev.entity;
1644		pad = CSI2_PAD_SINK;
1645		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1646		break;
1647
1648	default:
1649		dev_err(isp->dev, "%s: invalid interface type %u\n", __func__,
1650			interface);
1651		return -EINVAL;
1652	}
1653
1654	/*
1655	 * Not all interfaces are available on all revisions of the
1656	 * ISP. The sub-devices of those interfaces aren't initialised
1657	 * in such a case. Check this by ensuring the num_pads is
1658	 * non-zero.
1659	 */
1660	if (!input->num_pads) {
1661		dev_err(isp->dev, "%s: invalid input %u\n", entity->name,
1662			interface);
1663		return -EINVAL;
1664	}
1665
1666	for (i = 0; i < entity->num_pads; i++) {
1667		if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE)
1668			break;
1669	}
1670	if (i == entity->num_pads) {
1671		dev_err(isp->dev, "%s: no source pad in external entity %s\n",
1672			__func__, entity->name);
1673		return -EINVAL;
1674	}
1675
1676	return media_create_pad_link(entity, i, input, pad, flags);
1677}
1678
1679static int isp_register_entities(struct isp_device *isp)
1680{
1681	int ret;
1682
1683	isp->media_dev.dev = isp->dev;
1684	strscpy(isp->media_dev.model, "TI OMAP3 ISP",
1685		sizeof(isp->media_dev.model));
1686	isp->media_dev.hw_revision = isp->revision;
1687	isp->media_dev.ops = &isp_media_ops;
1688	media_device_init(&isp->media_dev);
1689
1690	isp->v4l2_dev.mdev = &isp->media_dev;
1691	ret = v4l2_device_register(isp->dev, &isp->v4l2_dev);
1692	if (ret < 0) {
1693		dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n",
1694			__func__, ret);
1695		goto done;
1696	}
1697
1698	/* Register internal entities */
1699	ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev);
1700	if (ret < 0)
1701		goto done;
1702
1703	ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev);
1704	if (ret < 0)
1705		goto done;
1706
1707	ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev);
1708	if (ret < 0)
1709		goto done;
1710
1711	ret = omap3isp_preview_register_entities(&isp->isp_prev,
1712						 &isp->v4l2_dev);
1713	if (ret < 0)
1714		goto done;
1715
1716	ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev);
1717	if (ret < 0)
1718		goto done;
1719
1720	ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev);
1721	if (ret < 0)
1722		goto done;
1723
1724	ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev);
1725	if (ret < 0)
1726		goto done;
1727
1728	ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev);
1729	if (ret < 0)
1730		goto done;
1731
1732done:
1733	if (ret < 0)
1734		isp_unregister_entities(isp);
1735
1736	return ret;
1737}
1738
1739/*
1740 * isp_create_links() - Create links for internal and external ISP entities
1741 * @isp : Pointer to ISP device
1742 *
1743 * This function creates all links between ISP internal and external entities.
1744 *
1745 * Return: A negative error code on failure or zero on success. Possible error
1746 * codes are those returned by media_create_pad_link().
1747 */
1748static int isp_create_links(struct isp_device *isp)
1749{
1750	int ret;
1751
1752	/* Create links between entities and video nodes. */
1753	ret = media_create_pad_link(
1754			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1755			&isp->isp_csi2a.video_out.video.entity, 0, 0);
1756	if (ret < 0)
1757		return ret;
1758
1759	ret = media_create_pad_link(
1760			&isp->isp_ccp2.video_in.video.entity, 0,
1761			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SINK, 0);
1762	if (ret < 0)
1763		return ret;
1764
1765	ret = media_create_pad_link(
1766			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1767			&isp->isp_ccdc.video_out.video.entity, 0, 0);
1768	if (ret < 0)
1769		return ret;
1770
1771	ret = media_create_pad_link(
1772			&isp->isp_prev.video_in.video.entity, 0,
1773			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1774	if (ret < 0)
1775		return ret;
1776
1777	ret = media_create_pad_link(
1778			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1779			&isp->isp_prev.video_out.video.entity, 0, 0);
1780	if (ret < 0)
1781		return ret;
1782
1783	ret = media_create_pad_link(
1784			&isp->isp_res.video_in.video.entity, 0,
1785			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1786	if (ret < 0)
1787		return ret;
1788
1789	ret = media_create_pad_link(
1790			&isp->isp_res.subdev.entity, RESZ_PAD_SOURCE,
1791			&isp->isp_res.video_out.video.entity, 0, 0);
1792
1793	if (ret < 0)
1794		return ret;
1795
1796	/* Create links between entities. */
1797	ret = media_create_pad_link(
1798			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1799			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1800	if (ret < 0)
1801		return ret;
1802
1803	ret = media_create_pad_link(
1804			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE,
1805			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1806	if (ret < 0)
1807		return ret;
1808
1809	ret = media_create_pad_link(
1810			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1811			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1812	if (ret < 0)
1813		return ret;
1814
1815	ret = media_create_pad_link(
1816			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1817			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1818	if (ret < 0)
1819		return ret;
1820
1821	ret = media_create_pad_link(
1822			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1823			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1824	if (ret < 0)
1825		return ret;
1826
1827	ret = media_create_pad_link(
1828			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1829			&isp->isp_aewb.subdev.entity, 0,
1830			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1831	if (ret < 0)
1832		return ret;
1833
1834	ret = media_create_pad_link(
1835			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1836			&isp->isp_af.subdev.entity, 0,
1837			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1838	if (ret < 0)
1839		return ret;
1840
1841	ret = media_create_pad_link(
1842			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1843			&isp->isp_hist.subdev.entity, 0,
1844			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1845	if (ret < 0)
1846		return ret;
1847
1848	return 0;
1849}
1850
1851static void isp_cleanup_modules(struct isp_device *isp)
1852{
1853	omap3isp_h3a_aewb_cleanup(isp);
1854	omap3isp_h3a_af_cleanup(isp);
1855	omap3isp_hist_cleanup(isp);
1856	omap3isp_resizer_cleanup(isp);
1857	omap3isp_preview_cleanup(isp);
1858	omap3isp_ccdc_cleanup(isp);
1859	omap3isp_ccp2_cleanup(isp);
1860	omap3isp_csi2_cleanup(isp);
1861	omap3isp_csiphy_cleanup(isp);
1862}
1863
1864static int isp_initialize_modules(struct isp_device *isp)
1865{
1866	int ret;
1867
1868	ret = omap3isp_csiphy_init(isp);
1869	if (ret < 0) {
1870		dev_err(isp->dev, "CSI PHY initialization failed\n");
1871		return ret;
1872	}
1873
1874	ret = omap3isp_csi2_init(isp);
1875	if (ret < 0) {
1876		dev_err(isp->dev, "CSI2 initialization failed\n");
1877		goto error_csi2;
1878	}
1879
1880	ret = omap3isp_ccp2_init(isp);
1881	if (ret < 0) {
1882		if (ret != -EPROBE_DEFER)
1883			dev_err(isp->dev, "CCP2 initialization failed\n");
1884		goto error_ccp2;
1885	}
1886
1887	ret = omap3isp_ccdc_init(isp);
1888	if (ret < 0) {
1889		dev_err(isp->dev, "CCDC initialization failed\n");
1890		goto error_ccdc;
1891	}
1892
1893	ret = omap3isp_preview_init(isp);
1894	if (ret < 0) {
1895		dev_err(isp->dev, "Preview initialization failed\n");
1896		goto error_preview;
1897	}
1898
1899	ret = omap3isp_resizer_init(isp);
1900	if (ret < 0) {
1901		dev_err(isp->dev, "Resizer initialization failed\n");
1902		goto error_resizer;
1903	}
1904
1905	ret = omap3isp_hist_init(isp);
1906	if (ret < 0) {
1907		dev_err(isp->dev, "Histogram initialization failed\n");
1908		goto error_hist;
1909	}
1910
1911	ret = omap3isp_h3a_aewb_init(isp);
1912	if (ret < 0) {
1913		dev_err(isp->dev, "H3A AEWB initialization failed\n");
1914		goto error_h3a_aewb;
1915	}
1916
1917	ret = omap3isp_h3a_af_init(isp);
1918	if (ret < 0) {
1919		dev_err(isp->dev, "H3A AF initialization failed\n");
1920		goto error_h3a_af;
1921	}
1922
1923	return 0;
1924
1925error_h3a_af:
1926	omap3isp_h3a_aewb_cleanup(isp);
1927error_h3a_aewb:
1928	omap3isp_hist_cleanup(isp);
1929error_hist:
1930	omap3isp_resizer_cleanup(isp);
1931error_resizer:
1932	omap3isp_preview_cleanup(isp);
1933error_preview:
1934	omap3isp_ccdc_cleanup(isp);
1935error_ccdc:
1936	omap3isp_ccp2_cleanup(isp);
1937error_ccp2:
1938	omap3isp_csi2_cleanup(isp);
1939error_csi2:
1940	omap3isp_csiphy_cleanup(isp);
1941
1942	return ret;
1943}
1944
1945static void isp_detach_iommu(struct isp_device *isp)
1946{
1947#ifdef CONFIG_ARM_DMA_USE_IOMMU
1948	arm_iommu_detach_device(isp->dev);
1949	arm_iommu_release_mapping(isp->mapping);
1950	isp->mapping = NULL;
1951#endif
1952}
1953
1954static int isp_attach_iommu(struct isp_device *isp)
1955{
1956#ifdef CONFIG_ARM_DMA_USE_IOMMU
1957	struct dma_iommu_mapping *mapping;
1958	int ret;
1959
1960	/*
1961	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
1962	 * VAs. This will allocate a corresponding IOMMU domain.
1963	 */
1964	mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G);
1965	if (IS_ERR(mapping)) {
1966		dev_err(isp->dev, "failed to create ARM IOMMU mapping\n");
1967		return PTR_ERR(mapping);
1968	}
1969
1970	isp->mapping = mapping;
1971
1972	/* Attach the ARM VA mapping to the device. */
1973	ret = arm_iommu_attach_device(isp->dev, mapping);
1974	if (ret < 0) {
1975		dev_err(isp->dev, "failed to attach device to VA mapping\n");
1976		goto error;
1977	}
1978
1979	return 0;
1980
1981error:
1982	arm_iommu_release_mapping(isp->mapping);
1983	isp->mapping = NULL;
1984	return ret;
1985#else
1986	return -ENODEV;
1987#endif
1988}
1989
1990/*
1991 * isp_remove - Remove ISP platform device
1992 * @pdev: Pointer to ISP platform device
1993 *
1994 * Always returns 0.
1995 */
1996static int isp_remove(struct platform_device *pdev)
1997{
1998	struct isp_device *isp = platform_get_drvdata(pdev);
1999
2000	v4l2_async_notifier_unregister(&isp->notifier);
2001	isp_unregister_entities(isp);
2002	isp_cleanup_modules(isp);
2003	isp_xclk_cleanup(isp);
2004
2005	__omap3isp_get(isp, false);
2006	isp_detach_iommu(isp);
2007	__omap3isp_put(isp, false);
2008
2009	media_entity_enum_cleanup(&isp->crashed);
2010	v4l2_async_notifier_cleanup(&isp->notifier);
2011
2012	kfree(isp);
2013
2014	return 0;
2015}
2016
2017enum isp_of_phy {
2018	ISP_OF_PHY_PARALLEL = 0,
2019	ISP_OF_PHY_CSIPHY1,
2020	ISP_OF_PHY_CSIPHY2,
2021};
2022
2023static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async)
2024{
2025	struct isp_device *isp = container_of(async, struct isp_device,
2026					      notifier);
2027	struct v4l2_device *v4l2_dev = &isp->v4l2_dev;
2028	struct v4l2_subdev *sd;
2029	int ret;
2030
2031	ret = media_entity_enum_init(&isp->crashed, &isp->media_dev);
2032	if (ret)
2033		return ret;
2034
2035	list_for_each_entry(sd, &v4l2_dev->subdevs, list) {
2036		if (sd->notifier != &isp->notifier)
2037			continue;
2038
2039		ret = isp_link_entity(isp, &sd->entity,
2040				      v4l2_subdev_to_bus_cfg(sd)->interface);
2041		if (ret < 0)
2042			return ret;
2043	}
2044
2045	ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
2046	if (ret < 0)
2047		return ret;
2048
2049	return media_device_register(&isp->media_dev);
2050}
2051
2052static void isp_parse_of_parallel_endpoint(struct device *dev,
2053					   struct v4l2_fwnode_endpoint *vep,
2054					   struct isp_bus_cfg *buscfg)
2055{
2056	buscfg->interface = ISP_INTERFACE_PARALLEL;
2057	buscfg->bus.parallel.data_lane_shift = vep->bus.parallel.data_shift;
2058	buscfg->bus.parallel.clk_pol =
2059		!!(vep->bus.parallel.flags & V4L2_MBUS_PCLK_SAMPLE_FALLING);
2060	buscfg->bus.parallel.hs_pol =
2061		!!(vep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW);
2062	buscfg->bus.parallel.vs_pol =
2063		!!(vep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW);
2064	buscfg->bus.parallel.fld_pol =
2065		!!(vep->bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW);
2066	buscfg->bus.parallel.data_pol =
2067		!!(vep->bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW);
2068	buscfg->bus.parallel.bt656 = vep->bus_type == V4L2_MBUS_BT656;
2069}
2070
2071static void isp_parse_of_csi2_endpoint(struct device *dev,
2072				       struct v4l2_fwnode_endpoint *vep,
2073				       struct isp_bus_cfg *buscfg)
2074{
2075	unsigned int i;
2076
2077	buscfg->bus.csi2.lanecfg.clk.pos = vep->bus.mipi_csi2.clock_lane;
2078	buscfg->bus.csi2.lanecfg.clk.pol =
2079		vep->bus.mipi_csi2.lane_polarities[0];
2080	dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2081		buscfg->bus.csi2.lanecfg.clk.pol,
2082		buscfg->bus.csi2.lanecfg.clk.pos);
2083
2084	buscfg->bus.csi2.num_data_lanes = vep->bus.mipi_csi2.num_data_lanes;
2085
2086	for (i = 0; i < buscfg->bus.csi2.num_data_lanes; i++) {
2087		buscfg->bus.csi2.lanecfg.data[i].pos =
2088			vep->bus.mipi_csi2.data_lanes[i];
2089		buscfg->bus.csi2.lanecfg.data[i].pol =
2090			vep->bus.mipi_csi2.lane_polarities[i + 1];
2091		dev_dbg(dev,
2092			"data lane %u polarity %u, pos %u\n", i,
2093			buscfg->bus.csi2.lanecfg.data[i].pol,
2094			buscfg->bus.csi2.lanecfg.data[i].pos);
2095	}
2096	/*
2097	 * FIXME: now we assume the CRC is always there. Implement a way to
2098	 * obtain this information from the sensor. Frame descriptors, perhaps?
2099	 */
2100	buscfg->bus.csi2.crc = 1;
2101}
2102
2103static void isp_parse_of_csi1_endpoint(struct device *dev,
2104				       struct v4l2_fwnode_endpoint *vep,
2105				       struct isp_bus_cfg *buscfg)
2106{
2107	buscfg->bus.ccp2.lanecfg.clk.pos = vep->bus.mipi_csi1.clock_lane;
2108	buscfg->bus.ccp2.lanecfg.clk.pol = vep->bus.mipi_csi1.lane_polarity[0];
2109	dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2110		buscfg->bus.ccp2.lanecfg.clk.pol,
2111	buscfg->bus.ccp2.lanecfg.clk.pos);
2112
2113	buscfg->bus.ccp2.lanecfg.data[0].pos = vep->bus.mipi_csi1.data_lane;
2114	buscfg->bus.ccp2.lanecfg.data[0].pol =
2115		vep->bus.mipi_csi1.lane_polarity[1];
2116
2117	dev_dbg(dev, "data lane polarity %u, pos %u\n",
2118		buscfg->bus.ccp2.lanecfg.data[0].pol,
2119		buscfg->bus.ccp2.lanecfg.data[0].pos);
2120
2121	buscfg->bus.ccp2.strobe_clk_pol = vep->bus.mipi_csi1.clock_inv;
2122	buscfg->bus.ccp2.phy_layer = vep->bus.mipi_csi1.strobe;
2123	buscfg->bus.ccp2.ccp2_mode = vep->bus_type == V4L2_MBUS_CCP2;
2124	buscfg->bus.ccp2.vp_clk_pol = 1;
2125
2126	buscfg->bus.ccp2.crc = 1;
2127}
2128
2129static struct {
2130	u32 phy;
2131	u32 csi2_if;
2132	u32 csi1_if;
2133} isp_bus_interfaces[2] = {
2134	{ ISP_OF_PHY_CSIPHY1,
2135	  ISP_INTERFACE_CSI2C_PHY1, ISP_INTERFACE_CCP2B_PHY1 },
2136	{ ISP_OF_PHY_CSIPHY2,
2137	  ISP_INTERFACE_CSI2A_PHY2, ISP_INTERFACE_CCP2B_PHY2 },
2138};
2139
2140static int isp_parse_of_endpoints(struct isp_device *isp)
2141{
2142	struct fwnode_handle *ep;
2143	struct isp_async_subdev *isd = NULL;
2144	struct v4l2_async_subdev *asd;
2145	unsigned int i;
2146
2147	ep = fwnode_graph_get_endpoint_by_id(
2148		dev_fwnode(isp->dev), ISP_OF_PHY_PARALLEL, 0,
2149		FWNODE_GRAPH_ENDPOINT_NEXT);
2150
2151	if (ep) {
2152		struct v4l2_fwnode_endpoint vep = {
2153			.bus_type = V4L2_MBUS_PARALLEL
2154		};
2155		int ret;
2156
2157		dev_dbg(isp->dev, "parsing parallel interface\n");
2158
2159		ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2160
2161		if (!ret) {
2162			asd = v4l2_async_notifier_add_fwnode_remote_subdev(
2163				&isp->notifier, ep, sizeof(*isd));
2164			if (!IS_ERR(asd)) {
2165				isd = container_of(asd, struct isp_async_subdev, asd);
2166				isp_parse_of_parallel_endpoint(isp->dev, &vep, &isd->bus);
2167			}
2168		}
2169
2170		fwnode_handle_put(ep);
2171	}
2172
2173	for (i = 0; i < ARRAY_SIZE(isp_bus_interfaces); i++) {
2174		struct v4l2_fwnode_endpoint vep = {
2175			.bus_type = V4L2_MBUS_CSI2_DPHY
2176		};
2177		int ret;
2178
2179		ep = fwnode_graph_get_endpoint_by_id(
2180			dev_fwnode(isp->dev), isp_bus_interfaces[i].phy, 0,
2181			FWNODE_GRAPH_ENDPOINT_NEXT);
2182
2183		if (!ep)
2184			continue;
2185
2186		dev_dbg(isp->dev, "parsing serial interface %u, node %pOF\n", i,
2187			to_of_node(ep));
2188
2189		ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2190		if (ret == -ENXIO) {
2191			vep = (struct v4l2_fwnode_endpoint)
2192				{ .bus_type = V4L2_MBUS_CSI1 };
2193			ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2194
2195			if (ret == -ENXIO) {
2196				vep = (struct v4l2_fwnode_endpoint)
2197					{ .bus_type = V4L2_MBUS_CCP2 };
2198				ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2199			}
2200		}
2201
2202		if (!ret) {
2203			asd = v4l2_async_notifier_add_fwnode_remote_subdev(
2204				&isp->notifier, ep, sizeof(*isd));
2205
2206			if (!IS_ERR(asd)) {
2207				isd = container_of(asd, struct isp_async_subdev, asd);
2208
2209				switch (vep.bus_type) {
2210				case V4L2_MBUS_CSI2_DPHY:
2211					isd->bus.interface =
2212						isp_bus_interfaces[i].csi2_if;
2213					isp_parse_of_csi2_endpoint(isp->dev, &vep, &isd->bus);
2214					break;
2215				case V4L2_MBUS_CSI1:
2216				case V4L2_MBUS_CCP2:
2217					isd->bus.interface =
2218						isp_bus_interfaces[i].csi1_if;
2219					isp_parse_of_csi1_endpoint(isp->dev, &vep,
2220								   &isd->bus);
2221					break;
2222				default:
2223					break;
2224				}
2225			}
2226		}
2227
2228		fwnode_handle_put(ep);
2229	}
2230
2231	return 0;
2232}
2233
2234static const struct v4l2_async_notifier_operations isp_subdev_notifier_ops = {
2235	.complete = isp_subdev_notifier_complete,
2236};
2237
2238/*
2239 * isp_probe - Probe ISP platform device
2240 * @pdev: Pointer to ISP platform device
2241 *
2242 * Returns 0 if successful,
2243 *   -ENOMEM if no memory available,
2244 *   -ENODEV if no platform device resources found
2245 *     or no space for remapping registers,
2246 *   -EINVAL if couldn't install ISR,
2247 *   or clk_get return error value.
2248 */
2249static int isp_probe(struct platform_device *pdev)
2250{
2251	struct isp_device *isp;
2252	struct resource *mem;
2253	int ret;
2254	int i, m;
2255
2256	isp = kzalloc(sizeof(*isp), GFP_KERNEL);
2257	if (!isp) {
2258		dev_err(&pdev->dev, "could not allocate memory\n");
2259		return -ENOMEM;
2260	}
2261
2262	ret = fwnode_property_read_u32(of_fwnode_handle(pdev->dev.of_node),
2263				       "ti,phy-type", &isp->phy_type);
2264	if (ret)
2265		goto error_release_isp;
2266
2267	isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2268						      "syscon");
2269	if (IS_ERR(isp->syscon)) {
2270		ret = PTR_ERR(isp->syscon);
2271		goto error_release_isp;
2272	}
2273
2274	ret = of_property_read_u32_index(pdev->dev.of_node,
2275					 "syscon", 1, &isp->syscon_offset);
2276	if (ret)
2277		goto error_release_isp;
2278
2279	isp->autoidle = autoidle;
2280
2281	mutex_init(&isp->isp_mutex);
2282	spin_lock_init(&isp->stat_lock);
2283	v4l2_async_notifier_init(&isp->notifier);
2284	isp->dev = &pdev->dev;
2285
2286	ret = isp_parse_of_endpoints(isp);
2287	if (ret < 0)
2288		goto error;
2289
2290	isp->ref_count = 0;
2291
2292	ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32));
2293	if (ret)
2294		goto error;
2295
2296	platform_set_drvdata(pdev, isp);
2297
2298	/* Regulators */
2299	isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1");
2300	if (IS_ERR(isp->isp_csiphy1.vdd)) {
2301		ret = PTR_ERR(isp->isp_csiphy1.vdd);
2302		goto error;
2303	}
2304
2305	isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2");
2306	if (IS_ERR(isp->isp_csiphy2.vdd)) {
2307		ret = PTR_ERR(isp->isp_csiphy2.vdd);
2308		goto error;
2309	}
2310
2311	/* Clocks
2312	 *
2313	 * The ISP clock tree is revision-dependent. We thus need to enable ICLK
2314	 * manually to read the revision before calling __omap3isp_get().
2315	 *
2316	 * Start by mapping the ISP MMIO area, which is in two pieces.
2317	 * The ISP IOMMU is in between. Map both now, and fill in the
2318	 * ISP revision specific portions a little later in the
2319	 * function.
2320	 */
2321	for (i = 0; i < 2; i++) {
2322		unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0;
2323
2324		mem = platform_get_resource(pdev, IORESOURCE_MEM, i);
2325		isp->mmio_base[map_idx] =
2326			devm_ioremap_resource(isp->dev, mem);
2327		if (IS_ERR(isp->mmio_base[map_idx])) {
2328			ret = PTR_ERR(isp->mmio_base[map_idx]);
2329			goto error;
2330		}
2331	}
2332
2333	ret = isp_get_clocks(isp);
2334	if (ret < 0)
2335		goto error;
2336
2337	ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]);
2338	if (ret < 0)
2339		goto error;
2340
2341	isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
2342	dev_info(isp->dev, "Revision %d.%d found\n",
2343		 (isp->revision & 0xf0) >> 4, isp->revision & 0x0f);
2344
2345	clk_disable(isp->clock[ISP_CLK_CAM_ICK]);
2346
2347	if (__omap3isp_get(isp, false) == NULL) {
2348		ret = -ENODEV;
2349		goto error;
2350	}
2351
2352	ret = isp_reset(isp);
2353	if (ret < 0)
2354		goto error_isp;
2355
2356	ret = isp_xclk_init(isp);
2357	if (ret < 0)
2358		goto error_isp;
2359
2360	/* Memory resources */
2361	for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++)
2362		if (isp->revision == isp_res_maps[m].isp_rev)
2363			break;
2364
2365	if (m == ARRAY_SIZE(isp_res_maps)) {
2366		dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n",
2367			(isp->revision & 0xf0) >> 4, isp->revision & 0xf);
2368		ret = -ENODEV;
2369		goto error_isp;
2370	}
2371
2372	for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++)
2373		isp->mmio_base[i] =
2374			isp->mmio_base[0] + isp_res_maps[m].offset[i];
2375
2376	for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++)
2377		isp->mmio_base[i] =
2378			isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1]
2379			+ isp_res_maps[m].offset[i];
2380
2381	isp->mmio_hist_base_phys =
2382		mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST];
2383
2384	/* IOMMU */
2385	ret = isp_attach_iommu(isp);
2386	if (ret < 0) {
2387		dev_err(&pdev->dev, "unable to attach to IOMMU\n");
2388		goto error_isp;
2389	}
2390
2391	/* Interrupt */
2392	ret = platform_get_irq(pdev, 0);
2393	if (ret <= 0) {
2394		ret = -ENODEV;
2395		goto error_iommu;
2396	}
2397	isp->irq_num = ret;
2398
2399	if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED,
2400			     "OMAP3 ISP", isp)) {
2401		dev_err(isp->dev, "Unable to request IRQ\n");
2402		ret = -EINVAL;
2403		goto error_iommu;
2404	}
2405
2406	/* Entities */
2407	ret = isp_initialize_modules(isp);
2408	if (ret < 0)
2409		goto error_iommu;
2410
2411	ret = isp_register_entities(isp);
2412	if (ret < 0)
2413		goto error_modules;
2414
2415	ret = isp_create_links(isp);
2416	if (ret < 0)
2417		goto error_register_entities;
2418
2419	isp->notifier.ops = &isp_subdev_notifier_ops;
2420
2421	ret = v4l2_async_notifier_register(&isp->v4l2_dev, &isp->notifier);
2422	if (ret)
2423		goto error_register_entities;
2424
2425	isp_core_init(isp, 1);
2426	omap3isp_put(isp);
2427
2428	return 0;
2429
2430error_register_entities:
2431	isp_unregister_entities(isp);
2432error_modules:
2433	isp_cleanup_modules(isp);
2434error_iommu:
2435	isp_detach_iommu(isp);
2436error_isp:
2437	isp_xclk_cleanup(isp);
2438	__omap3isp_put(isp, false);
2439error:
2440	v4l2_async_notifier_cleanup(&isp->notifier);
2441	mutex_destroy(&isp->isp_mutex);
2442error_release_isp:
2443	kfree(isp);
2444
2445	return ret;
2446}
2447
2448static const struct dev_pm_ops omap3isp_pm_ops = {
2449	.prepare = isp_pm_prepare,
2450	.suspend = isp_pm_suspend,
2451	.resume = isp_pm_resume,
2452	.complete = isp_pm_complete,
2453};
2454
2455static const struct platform_device_id omap3isp_id_table[] = {
2456	{ "omap3isp", 0 },
2457	{ },
2458};
2459MODULE_DEVICE_TABLE(platform, omap3isp_id_table);
2460
2461static const struct of_device_id omap3isp_of_table[] = {
2462	{ .compatible = "ti,omap3-isp" },
2463	{ },
2464};
2465MODULE_DEVICE_TABLE(of, omap3isp_of_table);
2466
2467static struct platform_driver omap3isp_driver = {
2468	.probe = isp_probe,
2469	.remove = isp_remove,
2470	.id_table = omap3isp_id_table,
2471	.driver = {
2472		.name = "omap3isp",
2473		.pm	= &omap3isp_pm_ops,
2474		.of_match_table = omap3isp_of_table,
2475	},
2476};
2477
2478module_platform_driver(omap3isp_driver);
2479
2480MODULE_AUTHOR("Nokia Corporation");
2481MODULE_DESCRIPTION("TI OMAP3 ISP driver");
2482MODULE_LICENSE("GPL");
2483MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION);
2484