1// SPDX-License-Identifier: GPL-2.0
2/*
3 * V4L2 sensor driver for Aptina MT9V111 image sensor
4 * Copyright (C) 2018 Jacopo Mondi <jacopo@jmondi.org>
5 *
6 * Based on mt9v032 driver
7 * Copyright (C) 2010, Laurent Pinchart <laurent.pinchart@ideasonboard.com>
8 * Copyright (C) 2008, Guennadi Liakhovetski <kernel@pengutronix.de>
9 *
10 * Based on mt9v011 driver
11 * Copyright (c) 2009 Mauro Carvalho Chehab <mchehab@kernel.org>
12 */
13
14#include <linux/clk.h>
15#include <linux/delay.h>
16#include <linux/gpio/consumer.h>
17#include <linux/i2c.h>
18#include <linux/of.h>
19#include <linux/slab.h>
20#include <linux/videodev2.h>
21#include <linux/v4l2-mediabus.h>
22#include <linux/module.h>
23
24#include <media/v4l2-ctrls.h>
25#include <media/v4l2-device.h>
26#include <media/v4l2-fwnode.h>
27#include <media/v4l2-image-sizes.h>
28#include <media/v4l2-subdev.h>
29
30/*
31 * MT9V111 is a 1/4-Inch CMOS digital image sensor with an integrated
32 * Image Flow Processing (IFP) engine and a sensor core loosely based on
33 * MT9V011.
34 *
35 * The IFP can produce several output image formats from the sensor core
36 * output. This driver currently supports only YUYV format permutations.
37 *
38 * The driver allows manual frame rate control through s_frame_interval subdev
39 * operation or V4L2_CID_V/HBLANK controls, but it is known that the
40 * auto-exposure algorithm might modify the programmed frame rate. While the
41 * driver initially programs the sensor with auto-exposure and
42 * auto-white-balancing enabled, it is possible to disable them and more
43 * precisely control the frame rate.
44 *
45 * While it seems possible to instruct the auto-exposure control algorithm to
46 * respect a programmed frame rate when adjusting the pixel integration time,
47 * registers controlling this feature are not documented in the public
48 * available sensor manual used to develop this driver (09005aef80e90084,
49 * MT9V111_1.fm - Rev. G 1/05 EN).
50 */
51
52#define MT9V111_CHIP_ID_HIGH				0x82
53#define MT9V111_CHIP_ID_LOW				0x3a
54
55#define MT9V111_R01_ADDR_SPACE				0x01
56#define MT9V111_R01_IFP					0x01
57#define MT9V111_R01_CORE				0x04
58
59#define MT9V111_IFP_R06_OPMODE_CTRL			0x06
60#define		MT9V111_IFP_R06_OPMODE_CTRL_AWB_EN	BIT(1)
61#define		MT9V111_IFP_R06_OPMODE_CTRL_AE_EN	BIT(14)
62#define MT9V111_IFP_R07_IFP_RESET			0x07
63#define		MT9V111_IFP_R07_IFP_RESET_MASK		BIT(0)
64#define MT9V111_IFP_R08_OUTFMT_CTRL			0x08
65#define		MT9V111_IFP_R08_OUTFMT_CTRL_FLICKER	BIT(11)
66#define		MT9V111_IFP_R08_OUTFMT_CTRL_PCLK	BIT(5)
67#define MT9V111_IFP_R3A_OUTFMT_CTRL2			0x3a
68#define		MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_CBCR	BIT(0)
69#define		MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_YC	BIT(1)
70#define		MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_MASK	GENMASK(2, 0)
71#define MT9V111_IFP_RA5_HPAN				0xa5
72#define MT9V111_IFP_RA6_HZOOM				0xa6
73#define MT9V111_IFP_RA7_HOUT				0xa7
74#define MT9V111_IFP_RA8_VPAN				0xa8
75#define MT9V111_IFP_RA9_VZOOM				0xa9
76#define MT9V111_IFP_RAA_VOUT				0xaa
77#define MT9V111_IFP_DECIMATION_MASK			GENMASK(9, 0)
78#define MT9V111_IFP_DECIMATION_FREEZE			BIT(15)
79
80#define MT9V111_CORE_R03_WIN_HEIGHT			0x03
81#define		MT9V111_CORE_R03_WIN_V_OFFS		2
82#define MT9V111_CORE_R04_WIN_WIDTH			0x04
83#define		MT9V111_CORE_R04_WIN_H_OFFS		114
84#define MT9V111_CORE_R05_HBLANK				0x05
85#define		MT9V111_CORE_R05_MIN_HBLANK		0x09
86#define		MT9V111_CORE_R05_MAX_HBLANK		GENMASK(9, 0)
87#define		MT9V111_CORE_R05_DEF_HBLANK		0x26
88#define MT9V111_CORE_R06_VBLANK				0x06
89#define		MT9V111_CORE_R06_MIN_VBLANK		0x03
90#define		MT9V111_CORE_R06_MAX_VBLANK		GENMASK(11, 0)
91#define		MT9V111_CORE_R06_DEF_VBLANK		0x04
92#define MT9V111_CORE_R07_OUT_CTRL			0x07
93#define		MT9V111_CORE_R07_OUT_CTRL_SAMPLE	BIT(4)
94#define MT9V111_CORE_R09_PIXEL_INT			0x09
95#define		MT9V111_CORE_R09_PIXEL_INT_MASK		GENMASK(11, 0)
96#define MT9V111_CORE_R0D_CORE_RESET			0x0d
97#define		MT9V111_CORE_R0D_CORE_RESET_MASK	BIT(0)
98#define MT9V111_CORE_RFF_CHIP_VER			0xff
99
100#define MT9V111_PIXEL_ARRAY_WIDTH			640
101#define MT9V111_PIXEL_ARRAY_HEIGHT			480
102
103#define MT9V111_MAX_CLKIN				27000000
104
105/* The default sensor configuration at startup time. */
106static const struct v4l2_mbus_framefmt mt9v111_def_fmt = {
107	.width		= 640,
108	.height		= 480,
109	.code		= MEDIA_BUS_FMT_UYVY8_2X8,
110	.field		= V4L2_FIELD_NONE,
111	.colorspace	= V4L2_COLORSPACE_SRGB,
112	.ycbcr_enc	= V4L2_YCBCR_ENC_601,
113	.quantization	= V4L2_QUANTIZATION_LIM_RANGE,
114	.xfer_func	= V4L2_XFER_FUNC_SRGB,
115};
116
117struct mt9v111_dev {
118	struct device *dev;
119	struct i2c_client *client;
120
121	u8 addr_space;
122
123	struct v4l2_subdev sd;
124#if IS_ENABLED(CONFIG_MEDIA_CONTROLLER)
125	struct media_pad pad;
126#endif
127
128	struct v4l2_ctrl *auto_awb;
129	struct v4l2_ctrl *auto_exp;
130	struct v4l2_ctrl *hblank;
131	struct v4l2_ctrl *vblank;
132	struct v4l2_ctrl_handler ctrls;
133
134	/* Output image format and sizes. */
135	struct v4l2_mbus_framefmt fmt;
136	unsigned int fps;
137
138	/* Protects power up/down sequences. */
139	struct mutex pwr_mutex;
140	int pwr_count;
141
142	/* Protects stream on/off sequences. */
143	struct mutex stream_mutex;
144	bool streaming;
145
146	/* Flags to mark HW settings as not yet applied. */
147	bool pending;
148
149	/* Clock provider and system clock frequency. */
150	struct clk *clk;
151	u32 sysclk;
152
153	struct gpio_desc *oe;
154	struct gpio_desc *standby;
155	struct gpio_desc *reset;
156};
157
158#define sd_to_mt9v111(__sd) container_of((__sd), struct mt9v111_dev, sd)
159
160/*
161 * mt9v111_mbus_fmt - List all media bus formats supported by the driver.
162 *
163 * Only list the media bus code here. The image sizes are freely configurable
164 * in the pixel array sizes range.
165 *
166 * The desired frame interval, in the supported frame interval range, is
167 * obtained by configuring blanking as the sensor does not have a PLL but
168 * only a fixed clock divider that generates the output pixel clock.
169 */
170static struct mt9v111_mbus_fmt {
171	u32	code;
172} mt9v111_formats[] = {
173	{
174		.code	= MEDIA_BUS_FMT_UYVY8_2X8,
175	},
176	{
177		.code	= MEDIA_BUS_FMT_YUYV8_2X8,
178	},
179	{
180		.code	= MEDIA_BUS_FMT_VYUY8_2X8,
181	},
182	{
183		.code	= MEDIA_BUS_FMT_YVYU8_2X8,
184	},
185};
186
187static u32 mt9v111_frame_intervals[] = {5, 10, 15, 20, 30};
188
189/*
190 * mt9v111_frame_sizes - List sensor's supported resolutions.
191 *
192 * Resolution generated through decimation in the IFP block from the
193 * full VGA pixel array.
194 */
195static struct v4l2_rect mt9v111_frame_sizes[] = {
196	{
197		.width	= 640,
198		.height	= 480,
199	},
200	{
201		.width	= 352,
202		.height	= 288
203	},
204	{
205		.width	= 320,
206		.height	= 240,
207	},
208	{
209		.width	= 176,
210		.height	= 144,
211	},
212	{
213		.width	= 160,
214		.height	= 120,
215	},
216};
217
218/* --- Device I/O access --- */
219
220static int __mt9v111_read(struct i2c_client *c, u8 reg, u16 *val)
221{
222	struct i2c_msg msg[2];
223	__be16 buf;
224	int ret;
225
226	msg[0].addr = c->addr;
227	msg[0].flags = 0;
228	msg[0].len = 1;
229	msg[0].buf = &reg;
230
231	msg[1].addr = c->addr;
232	msg[1].flags = I2C_M_RD;
233	msg[1].len = 2;
234	msg[1].buf = (char *)&buf;
235
236	ret = i2c_transfer(c->adapter, msg, 2);
237	if (ret < 0) {
238		dev_err(&c->dev, "i2c read transfer error: %d\n", ret);
239		return ret;
240	}
241
242	*val = be16_to_cpu(buf);
243
244	dev_dbg(&c->dev, "%s: %x=%x\n", __func__, reg, *val);
245
246	return 0;
247}
248
249static int __mt9v111_write(struct i2c_client *c, u8 reg, u16 val)
250{
251	struct i2c_msg msg;
252	u8 buf[3] = { 0 };
253	int ret;
254
255	buf[0] = reg;
256	buf[1] = val >> 8;
257	buf[2] = val & 0xff;
258
259	msg.addr = c->addr;
260	msg.flags = 0;
261	msg.len = 3;
262	msg.buf = (char *)buf;
263
264	dev_dbg(&c->dev, "%s: %x = %x%x\n", __func__, reg, buf[1], buf[2]);
265
266	ret = i2c_transfer(c->adapter, &msg, 1);
267	if (ret < 0) {
268		dev_err(&c->dev, "i2c write transfer error: %d\n", ret);
269		return ret;
270	}
271
272	return 0;
273}
274
275static int __mt9v111_addr_space_select(struct i2c_client *c, u16 addr_space)
276{
277	struct v4l2_subdev *sd = i2c_get_clientdata(c);
278	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
279	u16 val;
280	int ret;
281
282	if (mt9v111->addr_space == addr_space)
283		return 0;
284
285	ret = __mt9v111_write(c, MT9V111_R01_ADDR_SPACE, addr_space);
286	if (ret)
287		return ret;
288
289	/* Verify address space has been updated */
290	ret = __mt9v111_read(c, MT9V111_R01_ADDR_SPACE, &val);
291	if (ret)
292		return ret;
293
294	if (val != addr_space)
295		return -EINVAL;
296
297	mt9v111->addr_space = addr_space;
298
299	return 0;
300}
301
302static int mt9v111_read(struct i2c_client *c, u8 addr_space, u8 reg, u16 *val)
303{
304	int ret;
305
306	/* Select register address space first. */
307	ret = __mt9v111_addr_space_select(c, addr_space);
308	if (ret)
309		return ret;
310
311	ret = __mt9v111_read(c, reg, val);
312	if (ret)
313		return ret;
314
315	return 0;
316}
317
318static int mt9v111_write(struct i2c_client *c, u8 addr_space, u8 reg, u16 val)
319{
320	int ret;
321
322	/* Select register address space first. */
323	ret = __mt9v111_addr_space_select(c, addr_space);
324	if (ret)
325		return ret;
326
327	ret = __mt9v111_write(c, reg, val);
328	if (ret)
329		return ret;
330
331	return 0;
332}
333
334static int mt9v111_update(struct i2c_client *c, u8 addr_space, u8 reg,
335			  u16 mask, u16 val)
336{
337	u16 current_val;
338	int ret;
339
340	/* Select register address space first. */
341	ret = __mt9v111_addr_space_select(c, addr_space);
342	if (ret)
343		return ret;
344
345	/* Read the current register value, then update it. */
346	ret = __mt9v111_read(c, reg, &current_val);
347	if (ret)
348		return ret;
349
350	current_val &= ~mask;
351	current_val |= (val & mask);
352	ret = __mt9v111_write(c, reg, current_val);
353	if (ret)
354		return ret;
355
356	return 0;
357}
358
359/* --- Sensor HW operations --- */
360
361static int __mt9v111_power_on(struct v4l2_subdev *sd)
362{
363	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
364	int ret;
365
366	ret = clk_prepare_enable(mt9v111->clk);
367	if (ret)
368		return ret;
369
370	clk_set_rate(mt9v111->clk, mt9v111->sysclk);
371
372	gpiod_set_value(mt9v111->standby, 0);
373	usleep_range(500, 1000);
374
375	gpiod_set_value(mt9v111->oe, 1);
376	usleep_range(500, 1000);
377
378	return 0;
379}
380
381static int __mt9v111_power_off(struct v4l2_subdev *sd)
382{
383	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
384
385	gpiod_set_value(mt9v111->oe, 0);
386	usleep_range(500, 1000);
387
388	gpiod_set_value(mt9v111->standby, 1);
389	usleep_range(500, 1000);
390
391	clk_disable_unprepare(mt9v111->clk);
392
393	return 0;
394}
395
396static int __mt9v111_hw_reset(struct mt9v111_dev *mt9v111)
397{
398	if (!mt9v111->reset)
399		return -EINVAL;
400
401	gpiod_set_value(mt9v111->reset, 1);
402	usleep_range(500, 1000);
403
404	gpiod_set_value(mt9v111->reset, 0);
405	usleep_range(500, 1000);
406
407	return 0;
408}
409
410static int __mt9v111_sw_reset(struct mt9v111_dev *mt9v111)
411{
412	struct i2c_client *c = mt9v111->client;
413	int ret;
414
415	/* Software reset core and IFP blocks. */
416
417	ret = mt9v111_update(c, MT9V111_R01_CORE,
418			     MT9V111_CORE_R0D_CORE_RESET,
419			     MT9V111_CORE_R0D_CORE_RESET_MASK, 1);
420	if (ret)
421		return ret;
422	usleep_range(500, 1000);
423
424	ret = mt9v111_update(c, MT9V111_R01_CORE,
425			     MT9V111_CORE_R0D_CORE_RESET,
426			     MT9V111_CORE_R0D_CORE_RESET_MASK, 0);
427	if (ret)
428		return ret;
429	usleep_range(500, 1000);
430
431	ret = mt9v111_update(c, MT9V111_R01_IFP,
432			     MT9V111_IFP_R07_IFP_RESET,
433			     MT9V111_IFP_R07_IFP_RESET_MASK, 1);
434	if (ret)
435		return ret;
436	usleep_range(500, 1000);
437
438	ret = mt9v111_update(c, MT9V111_R01_IFP,
439			     MT9V111_IFP_R07_IFP_RESET,
440			     MT9V111_IFP_R07_IFP_RESET_MASK, 0);
441	if (ret)
442		return ret;
443	usleep_range(500, 1000);
444
445	return 0;
446}
447
448static int mt9v111_calc_frame_rate(struct mt9v111_dev *mt9v111,
449				   struct v4l2_fract *tpf)
450{
451	unsigned int fps = tpf->numerator ?
452			   tpf->denominator / tpf->numerator :
453			   tpf->denominator;
454	unsigned int best_diff;
455	unsigned int frm_cols;
456	unsigned int row_pclk;
457	unsigned int best_fps;
458	unsigned int pclk;
459	unsigned int diff;
460	unsigned int idx;
461	unsigned int hb;
462	unsigned int vb;
463	unsigned int i;
464	int ret;
465
466	/* Approximate to the closest supported frame interval. */
467	best_diff = ~0L;
468	for (i = 0, idx = 0; i < ARRAY_SIZE(mt9v111_frame_intervals); i++) {
469		diff = abs(fps - mt9v111_frame_intervals[i]);
470		if (diff < best_diff) {
471			idx = i;
472			best_diff = diff;
473		}
474	}
475	fps = mt9v111_frame_intervals[idx];
476
477	/*
478	 * The sensor does not provide a PLL circuitry and pixel clock is
479	 * generated dividing the master clock source by two.
480	 *
481	 * Trow = (W + Hblank + 114) * 2 * (1 / SYSCLK)
482	 * TFrame = Trow * (H + Vblank + 2)
483	 *
484	 * FPS = (SYSCLK / 2) / (Trow * (H + Vblank + 2))
485	 *
486	 * This boils down to tune H and V blanks to best approximate the
487	 * above equation.
488	 *
489	 * Test all available H/V blank values, until we reach the
490	 * desired frame rate.
491	 */
492	best_fps = vb = hb = 0;
493	pclk = DIV_ROUND_CLOSEST(mt9v111->sysclk, 2);
494	row_pclk = MT9V111_PIXEL_ARRAY_WIDTH + 7 + MT9V111_CORE_R04_WIN_H_OFFS;
495	frm_cols = MT9V111_PIXEL_ARRAY_HEIGHT + 7 + MT9V111_CORE_R03_WIN_V_OFFS;
496
497	best_diff = ~0L;
498	for (vb = MT9V111_CORE_R06_MIN_VBLANK;
499	     vb < MT9V111_CORE_R06_MAX_VBLANK; vb++) {
500		for (hb = MT9V111_CORE_R05_MIN_HBLANK;
501		     hb < MT9V111_CORE_R05_MAX_HBLANK; hb += 10) {
502			unsigned int t_frame = (row_pclk + hb) *
503					       (frm_cols + vb);
504			unsigned int t_fps = DIV_ROUND_CLOSEST(pclk, t_frame);
505
506			diff = abs(fps - t_fps);
507			if (diff < best_diff) {
508				best_diff = diff;
509				best_fps = t_fps;
510
511				if (diff == 0)
512					break;
513			}
514		}
515
516		if (diff == 0)
517			break;
518	}
519
520	ret = v4l2_ctrl_s_ctrl_int64(mt9v111->hblank, hb);
521	if (ret)
522		return ret;
523
524	ret = v4l2_ctrl_s_ctrl_int64(mt9v111->vblank, vb);
525	if (ret)
526		return ret;
527
528	tpf->numerator = 1;
529	tpf->denominator = best_fps;
530
531	return 0;
532}
533
534static int mt9v111_hw_config(struct mt9v111_dev *mt9v111)
535{
536	struct i2c_client *c = mt9v111->client;
537	unsigned int ret;
538	u16 outfmtctrl2;
539
540	/* Force device reset. */
541	ret = __mt9v111_hw_reset(mt9v111);
542	if (ret == -EINVAL)
543		ret = __mt9v111_sw_reset(mt9v111);
544	if (ret)
545		return ret;
546
547	/* Configure internal clock sample rate. */
548	ret = mt9v111->sysclk < DIV_ROUND_CLOSEST(MT9V111_MAX_CLKIN, 2) ?
549				mt9v111_update(c, MT9V111_R01_CORE,
550					MT9V111_CORE_R07_OUT_CTRL,
551					MT9V111_CORE_R07_OUT_CTRL_SAMPLE, 1) :
552				mt9v111_update(c, MT9V111_R01_CORE,
553					MT9V111_CORE_R07_OUT_CTRL,
554					MT9V111_CORE_R07_OUT_CTRL_SAMPLE, 0);
555	if (ret)
556		return ret;
557
558	/*
559	 * Configure output image format components ordering.
560	 *
561	 * TODO: IFP block can also output several RGB permutations, we only
562	 *	 support YUYV permutations at the moment.
563	 */
564	switch (mt9v111->fmt.code) {
565	case MEDIA_BUS_FMT_YUYV8_2X8:
566			outfmtctrl2 = MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_YC;
567			break;
568	case MEDIA_BUS_FMT_VYUY8_2X8:
569			outfmtctrl2 = MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_CBCR;
570			break;
571	case MEDIA_BUS_FMT_YVYU8_2X8:
572			outfmtctrl2 = MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_YC |
573				      MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_CBCR;
574			break;
575	case MEDIA_BUS_FMT_UYVY8_2X8:
576	default:
577			outfmtctrl2 = 0;
578			break;
579	}
580
581	ret = mt9v111_update(c, MT9V111_R01_IFP, MT9V111_IFP_R3A_OUTFMT_CTRL2,
582			     MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_MASK,
583			     outfmtctrl2);
584	if (ret)
585		return ret;
586
587	/*
588	 * Do not change default sensor's core configuration:
589	 * output the whole 640x480 pixel array, skip 18 columns and 6 rows.
590	 *
591	 * Instead, control the output image size through IFP block.
592	 *
593	 * TODO: No zoom&pan support. Currently we control the output image
594	 *	 size only through decimation, with no zoom support.
595	 */
596	ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA5_HPAN,
597			    MT9V111_IFP_DECIMATION_FREEZE);
598	if (ret)
599		return ret;
600
601	ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA8_VPAN,
602			    MT9V111_IFP_DECIMATION_FREEZE);
603	if (ret)
604		return ret;
605
606	ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA6_HZOOM,
607			    MT9V111_IFP_DECIMATION_FREEZE |
608			    MT9V111_PIXEL_ARRAY_WIDTH);
609	if (ret)
610		return ret;
611
612	ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA9_VZOOM,
613			    MT9V111_IFP_DECIMATION_FREEZE |
614			    MT9V111_PIXEL_ARRAY_HEIGHT);
615	if (ret)
616		return ret;
617
618	ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA7_HOUT,
619			    MT9V111_IFP_DECIMATION_FREEZE |
620			    mt9v111->fmt.width);
621	if (ret)
622		return ret;
623
624	ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RAA_VOUT,
625			    mt9v111->fmt.height);
626	if (ret)
627		return ret;
628
629	/* Apply controls to set auto exp, auto awb and timings */
630	ret = v4l2_ctrl_handler_setup(&mt9v111->ctrls);
631	if (ret)
632		return ret;
633
634	/*
635	 * Set pixel integration time to the whole frame time.
636	 * This value controls the the shutter delay when running with AE
637	 * disabled. If longer than frame time, it affects the output
638	 * frame rate.
639	 */
640	return mt9v111_write(c, MT9V111_R01_CORE, MT9V111_CORE_R09_PIXEL_INT,
641			     MT9V111_PIXEL_ARRAY_HEIGHT);
642}
643
644/* ---  V4L2 subdev operations --- */
645
646static int mt9v111_s_power(struct v4l2_subdev *sd, int on)
647{
648	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
649	int pwr_count;
650	int ret = 0;
651
652	mutex_lock(&mt9v111->pwr_mutex);
653
654	/*
655	 * Make sure we're transitioning from 0 to 1, or viceversa,
656	 * before actually changing the power state.
657	 */
658	pwr_count = mt9v111->pwr_count;
659	pwr_count += on ? 1 : -1;
660	if (pwr_count == !!on) {
661		ret = on ? __mt9v111_power_on(sd) :
662			   __mt9v111_power_off(sd);
663		if (!ret)
664			/* All went well, updated power counter. */
665			mt9v111->pwr_count = pwr_count;
666
667		mutex_unlock(&mt9v111->pwr_mutex);
668
669		return ret;
670	}
671
672	/*
673	 * Update power counter to keep track of how many nested calls we
674	 * received.
675	 */
676	WARN_ON(pwr_count < 0 || pwr_count > 1);
677	mt9v111->pwr_count = pwr_count;
678
679	mutex_unlock(&mt9v111->pwr_mutex);
680
681	return ret;
682}
683
684static int mt9v111_s_stream(struct v4l2_subdev *subdev, int enable)
685{
686	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(subdev);
687	int ret;
688
689	mutex_lock(&mt9v111->stream_mutex);
690
691	if (mt9v111->streaming == enable) {
692		mutex_unlock(&mt9v111->stream_mutex);
693		return 0;
694	}
695
696	ret = mt9v111_s_power(subdev, enable);
697	if (ret)
698		goto error_unlock;
699
700	if (enable && mt9v111->pending) {
701		ret = mt9v111_hw_config(mt9v111);
702		if (ret)
703			goto error_unlock;
704
705		/*
706		 * No need to update control here as far as only H/VBLANK are
707		 * supported and immediately programmed to registers in .s_ctrl
708		 */
709
710		mt9v111->pending = false;
711	}
712
713	mt9v111->streaming = enable ? true : false;
714	mutex_unlock(&mt9v111->stream_mutex);
715
716	return 0;
717
718error_unlock:
719	mutex_unlock(&mt9v111->stream_mutex);
720
721	return ret;
722}
723
724static int mt9v111_s_frame_interval(struct v4l2_subdev *sd,
725				    struct v4l2_subdev_frame_interval *ival)
726{
727	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
728	struct v4l2_fract *tpf = &ival->interval;
729	unsigned int fps = tpf->numerator ?
730			   tpf->denominator / tpf->numerator :
731			   tpf->denominator;
732	unsigned int max_fps;
733
734	if (!tpf->numerator)
735		tpf->numerator = 1;
736
737	mutex_lock(&mt9v111->stream_mutex);
738
739	if (mt9v111->streaming) {
740		mutex_unlock(&mt9v111->stream_mutex);
741		return -EBUSY;
742	}
743
744	if (mt9v111->fps == fps) {
745		mutex_unlock(&mt9v111->stream_mutex);
746		return 0;
747	}
748
749	/* Make sure frame rate/image sizes constraints are respected. */
750	if (mt9v111->fmt.width < QVGA_WIDTH &&
751	    mt9v111->fmt.height < QVGA_HEIGHT)
752		max_fps = 90;
753	else if (mt9v111->fmt.width < CIF_WIDTH &&
754		 mt9v111->fmt.height < CIF_HEIGHT)
755		max_fps = 60;
756	else
757		max_fps = mt9v111->sysclk <
758				DIV_ROUND_CLOSEST(MT9V111_MAX_CLKIN, 2) ? 15 :
759									  30;
760
761	if (fps > max_fps) {
762		mutex_unlock(&mt9v111->stream_mutex);
763		return -EINVAL;
764	}
765
766	mt9v111_calc_frame_rate(mt9v111, tpf);
767
768	mt9v111->fps = fps;
769	mt9v111->pending = true;
770
771	mutex_unlock(&mt9v111->stream_mutex);
772
773	return 0;
774}
775
776static int mt9v111_g_frame_interval(struct v4l2_subdev *sd,
777				    struct v4l2_subdev_frame_interval *ival)
778{
779	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
780	struct v4l2_fract *tpf = &ival->interval;
781
782	mutex_lock(&mt9v111->stream_mutex);
783
784	tpf->numerator = 1;
785	tpf->denominator = mt9v111->fps;
786
787	mutex_unlock(&mt9v111->stream_mutex);
788
789	return 0;
790}
791
792static struct v4l2_mbus_framefmt *__mt9v111_get_pad_format(
793					struct mt9v111_dev *mt9v111,
794					struct v4l2_subdev_pad_config *cfg,
795					unsigned int pad,
796					enum v4l2_subdev_format_whence which)
797{
798	switch (which) {
799	case V4L2_SUBDEV_FORMAT_TRY:
800#if IS_ENABLED(CONFIG_VIDEO_V4L2_SUBDEV_API)
801		return v4l2_subdev_get_try_format(&mt9v111->sd, cfg, pad);
802#else
803		return &cfg->try_fmt;
804#endif
805	case V4L2_SUBDEV_FORMAT_ACTIVE:
806		return &mt9v111->fmt;
807	default:
808		return NULL;
809	}
810}
811
812static int mt9v111_enum_mbus_code(struct v4l2_subdev *subdev,
813				  struct v4l2_subdev_pad_config *cfg,
814				  struct v4l2_subdev_mbus_code_enum *code)
815{
816	if (code->pad || code->index > ARRAY_SIZE(mt9v111_formats) - 1)
817		return -EINVAL;
818
819	code->code = mt9v111_formats[code->index].code;
820
821	return 0;
822}
823
824static int mt9v111_enum_frame_interval(struct v4l2_subdev *sd,
825				struct v4l2_subdev_pad_config *cfg,
826				struct v4l2_subdev_frame_interval_enum *fie)
827{
828	unsigned int i;
829
830	if (fie->pad || fie->index >= ARRAY_SIZE(mt9v111_frame_intervals))
831		return -EINVAL;
832
833	for (i = 0; i < ARRAY_SIZE(mt9v111_frame_sizes); i++)
834		if (fie->width == mt9v111_frame_sizes[i].width &&
835		    fie->height == mt9v111_frame_sizes[i].height)
836			break;
837
838	if (i == ARRAY_SIZE(mt9v111_frame_sizes))
839		return -EINVAL;
840
841	fie->interval.numerator = 1;
842	fie->interval.denominator = mt9v111_frame_intervals[fie->index];
843
844	return 0;
845}
846
847static int mt9v111_enum_frame_size(struct v4l2_subdev *subdev,
848				   struct v4l2_subdev_pad_config *cfg,
849				   struct v4l2_subdev_frame_size_enum *fse)
850{
851	if (fse->pad || fse->index >= ARRAY_SIZE(mt9v111_frame_sizes))
852		return -EINVAL;
853
854	fse->min_width = mt9v111_frame_sizes[fse->index].width;
855	fse->max_width = mt9v111_frame_sizes[fse->index].width;
856	fse->min_height = mt9v111_frame_sizes[fse->index].height;
857	fse->max_height = mt9v111_frame_sizes[fse->index].height;
858
859	return 0;
860}
861
862static int mt9v111_get_format(struct v4l2_subdev *subdev,
863			      struct v4l2_subdev_pad_config *cfg,
864			      struct v4l2_subdev_format *format)
865{
866	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(subdev);
867
868	if (format->pad)
869		return -EINVAL;
870
871	mutex_lock(&mt9v111->stream_mutex);
872	format->format = *__mt9v111_get_pad_format(mt9v111, cfg, format->pad,
873						   format->which);
874	mutex_unlock(&mt9v111->stream_mutex);
875
876	return 0;
877}
878
879static int mt9v111_set_format(struct v4l2_subdev *subdev,
880			      struct v4l2_subdev_pad_config *cfg,
881			      struct v4l2_subdev_format *format)
882{
883	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(subdev);
884	struct v4l2_mbus_framefmt new_fmt;
885	struct v4l2_mbus_framefmt *__fmt;
886	unsigned int best_fit = ~0L;
887	unsigned int idx = 0;
888	unsigned int i;
889
890	mutex_lock(&mt9v111->stream_mutex);
891	if (mt9v111->streaming) {
892		mutex_unlock(&mt9v111->stream_mutex);
893		return -EBUSY;
894	}
895
896	if (format->pad) {
897		mutex_unlock(&mt9v111->stream_mutex);
898		return -EINVAL;
899	}
900
901	/* Update mbus format code and sizes. */
902	for (i = 0; i < ARRAY_SIZE(mt9v111_formats); i++) {
903		if (format->format.code == mt9v111_formats[i].code) {
904			new_fmt.code = mt9v111_formats[i].code;
905			break;
906		}
907	}
908	if (i == ARRAY_SIZE(mt9v111_formats))
909		new_fmt.code = mt9v111_formats[0].code;
910
911	for (i = 0; i < ARRAY_SIZE(mt9v111_frame_sizes); i++) {
912		unsigned int fit = abs(mt9v111_frame_sizes[i].width -
913				       format->format.width) +
914				   abs(mt9v111_frame_sizes[i].height -
915				       format->format.height);
916		if (fit < best_fit) {
917			best_fit = fit;
918			idx = i;
919
920			if (fit == 0)
921				break;
922		}
923	}
924	new_fmt.width = mt9v111_frame_sizes[idx].width;
925	new_fmt.height = mt9v111_frame_sizes[idx].height;
926
927	/* Update the device (or pad) format if it has changed. */
928	__fmt = __mt9v111_get_pad_format(mt9v111, cfg, format->pad,
929					 format->which);
930
931	/* Format hasn't changed, stop here. */
932	if (__fmt->code == new_fmt.code &&
933	    __fmt->width == new_fmt.width &&
934	    __fmt->height == new_fmt.height)
935		goto done;
936
937	/* Update the format and sizes, then  mark changes as pending. */
938	__fmt->code = new_fmt.code;
939	__fmt->width = new_fmt.width;
940	__fmt->height = new_fmt.height;
941
942	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
943		mt9v111->pending = true;
944
945	dev_dbg(mt9v111->dev, "%s: mbus_code: %x - (%ux%u)\n",
946		__func__, __fmt->code, __fmt->width, __fmt->height);
947
948done:
949	format->format = *__fmt;
950
951	mutex_unlock(&mt9v111->stream_mutex);
952
953	return 0;
954}
955
956static int mt9v111_init_cfg(struct v4l2_subdev *subdev,
957			    struct v4l2_subdev_pad_config *cfg)
958{
959	cfg->try_fmt = mt9v111_def_fmt;
960
961	return 0;
962}
963
964static const struct v4l2_subdev_core_ops mt9v111_core_ops = {
965	.s_power		= mt9v111_s_power,
966};
967
968static const struct v4l2_subdev_video_ops mt9v111_video_ops = {
969	.s_stream		= mt9v111_s_stream,
970	.s_frame_interval	= mt9v111_s_frame_interval,
971	.g_frame_interval	= mt9v111_g_frame_interval,
972};
973
974static const struct v4l2_subdev_pad_ops mt9v111_pad_ops = {
975	.init_cfg		= mt9v111_init_cfg,
976	.enum_mbus_code		= mt9v111_enum_mbus_code,
977	.enum_frame_size	= mt9v111_enum_frame_size,
978	.enum_frame_interval	= mt9v111_enum_frame_interval,
979	.get_fmt		= mt9v111_get_format,
980	.set_fmt		= mt9v111_set_format,
981};
982
983static const struct v4l2_subdev_ops mt9v111_ops = {
984	.core	= &mt9v111_core_ops,
985	.video	= &mt9v111_video_ops,
986	.pad	= &mt9v111_pad_ops,
987};
988
989#if IS_ENABLED(CONFIG_MEDIA_CONTROLLER)
990static const struct media_entity_operations mt9v111_subdev_entity_ops = {
991	.link_validate = v4l2_subdev_link_validate,
992};
993#endif
994
995/* --- V4L2 ctrl --- */
996static int mt9v111_s_ctrl(struct v4l2_ctrl *ctrl)
997{
998	struct mt9v111_dev *mt9v111 = container_of(ctrl->handler,
999						   struct mt9v111_dev,
1000						   ctrls);
1001	int ret;
1002
1003	mutex_lock(&mt9v111->pwr_mutex);
1004	/*
1005	 * If sensor is powered down, just cache new control values,
1006	 * no actual register access.
1007	 */
1008	if (!mt9v111->pwr_count) {
1009		mt9v111->pending = true;
1010		mutex_unlock(&mt9v111->pwr_mutex);
1011		return 0;
1012	}
1013	mutex_unlock(&mt9v111->pwr_mutex);
1014
1015	/*
1016	 * Flickering control gets disabled if both auto exp and auto awb
1017	 * are disabled too. If any of the two is enabled, enable it.
1018	 *
1019	 * Disabling flickering when ae and awb are off allows a more precise
1020	 * control of the programmed frame rate.
1021	 */
1022	if (mt9v111->auto_exp->is_new || mt9v111->auto_awb->is_new) {
1023		if (mt9v111->auto_exp->val == V4L2_EXPOSURE_MANUAL &&
1024		    mt9v111->auto_awb->val == V4L2_WHITE_BALANCE_MANUAL)
1025			ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
1026					     MT9V111_IFP_R08_OUTFMT_CTRL,
1027					     MT9V111_IFP_R08_OUTFMT_CTRL_FLICKER,
1028					     0);
1029		else
1030			ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
1031					     MT9V111_IFP_R08_OUTFMT_CTRL,
1032					     MT9V111_IFP_R08_OUTFMT_CTRL_FLICKER,
1033					     1);
1034		if (ret)
1035			return ret;
1036	}
1037
1038	ret = -EINVAL;
1039	switch (ctrl->id) {
1040	case V4L2_CID_AUTO_WHITE_BALANCE:
1041		ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
1042				     MT9V111_IFP_R06_OPMODE_CTRL,
1043				     MT9V111_IFP_R06_OPMODE_CTRL_AWB_EN,
1044				     ctrl->val == V4L2_WHITE_BALANCE_AUTO ?
1045				     MT9V111_IFP_R06_OPMODE_CTRL_AWB_EN : 0);
1046		break;
1047	case V4L2_CID_EXPOSURE_AUTO:
1048		ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
1049				     MT9V111_IFP_R06_OPMODE_CTRL,
1050				     MT9V111_IFP_R06_OPMODE_CTRL_AE_EN,
1051				     ctrl->val == V4L2_EXPOSURE_AUTO ?
1052				     MT9V111_IFP_R06_OPMODE_CTRL_AE_EN : 0);
1053		break;
1054	case V4L2_CID_HBLANK:
1055		ret = mt9v111_update(mt9v111->client, MT9V111_R01_CORE,
1056				     MT9V111_CORE_R05_HBLANK,
1057				     MT9V111_CORE_R05_MAX_HBLANK,
1058				     mt9v111->hblank->val);
1059		break;
1060	case V4L2_CID_VBLANK:
1061		ret = mt9v111_update(mt9v111->client, MT9V111_R01_CORE,
1062				     MT9V111_CORE_R06_VBLANK,
1063				     MT9V111_CORE_R06_MAX_VBLANK,
1064				     mt9v111->vblank->val);
1065		break;
1066	}
1067
1068	return ret;
1069}
1070
1071static const struct v4l2_ctrl_ops mt9v111_ctrl_ops = {
1072	.s_ctrl = mt9v111_s_ctrl,
1073};
1074
1075static int mt9v111_chip_probe(struct mt9v111_dev *mt9v111)
1076{
1077	int ret;
1078	u16 val;
1079
1080	ret = __mt9v111_power_on(&mt9v111->sd);
1081	if (ret)
1082		return ret;
1083
1084	ret = mt9v111_read(mt9v111->client, MT9V111_R01_CORE,
1085			   MT9V111_CORE_RFF_CHIP_VER, &val);
1086	if (ret)
1087		goto power_off;
1088
1089	if ((val >> 8) != MT9V111_CHIP_ID_HIGH &&
1090	    (val & 0xff) != MT9V111_CHIP_ID_LOW) {
1091		dev_err(mt9v111->dev,
1092			"Unable to identify MT9V111 chip: 0x%2x%2x\n",
1093			val >> 8, val & 0xff);
1094		ret = -EIO;
1095		goto power_off;
1096	}
1097
1098	dev_dbg(mt9v111->dev, "Chip identified: 0x%2x%2x\n",
1099		val >> 8, val & 0xff);
1100
1101power_off:
1102	__mt9v111_power_off(&mt9v111->sd);
1103
1104	return ret;
1105}
1106
1107static int mt9v111_probe(struct i2c_client *client)
1108{
1109	struct mt9v111_dev *mt9v111;
1110	struct v4l2_fract tpf;
1111	int ret;
1112
1113	mt9v111 = devm_kzalloc(&client->dev, sizeof(*mt9v111), GFP_KERNEL);
1114	if (!mt9v111)
1115		return -ENOMEM;
1116
1117	mt9v111->dev = &client->dev;
1118	mt9v111->client = client;
1119
1120	mt9v111->clk = devm_clk_get(&client->dev, NULL);
1121	if (IS_ERR(mt9v111->clk))
1122		return PTR_ERR(mt9v111->clk);
1123
1124	mt9v111->sysclk = clk_get_rate(mt9v111->clk);
1125	if (mt9v111->sysclk > MT9V111_MAX_CLKIN)
1126		return -EINVAL;
1127
1128	mt9v111->oe = devm_gpiod_get_optional(&client->dev, "enable",
1129					      GPIOD_OUT_LOW);
1130	if (IS_ERR(mt9v111->oe)) {
1131		dev_err(&client->dev, "Unable to get GPIO \"enable\": %ld\n",
1132			PTR_ERR(mt9v111->oe));
1133		return PTR_ERR(mt9v111->oe);
1134	}
1135
1136	mt9v111->standby = devm_gpiod_get_optional(&client->dev, "standby",
1137						   GPIOD_OUT_HIGH);
1138	if (IS_ERR(mt9v111->standby)) {
1139		dev_err(&client->dev, "Unable to get GPIO \"standby\": %ld\n",
1140			PTR_ERR(mt9v111->standby));
1141		return PTR_ERR(mt9v111->standby);
1142	}
1143
1144	mt9v111->reset = devm_gpiod_get_optional(&client->dev, "reset",
1145						 GPIOD_OUT_LOW);
1146	if (IS_ERR(mt9v111->reset)) {
1147		dev_err(&client->dev, "Unable to get GPIO \"reset\": %ld\n",
1148			PTR_ERR(mt9v111->reset));
1149		return PTR_ERR(mt9v111->reset);
1150	}
1151
1152	mutex_init(&mt9v111->pwr_mutex);
1153	mutex_init(&mt9v111->stream_mutex);
1154
1155	v4l2_ctrl_handler_init(&mt9v111->ctrls, 5);
1156
1157	mt9v111->auto_awb = v4l2_ctrl_new_std(&mt9v111->ctrls,
1158					      &mt9v111_ctrl_ops,
1159					      V4L2_CID_AUTO_WHITE_BALANCE,
1160					      0, 1, 1,
1161					      V4L2_WHITE_BALANCE_AUTO);
1162	mt9v111->auto_exp = v4l2_ctrl_new_std_menu(&mt9v111->ctrls,
1163						   &mt9v111_ctrl_ops,
1164						   V4L2_CID_EXPOSURE_AUTO,
1165						   V4L2_EXPOSURE_MANUAL,
1166						   0, V4L2_EXPOSURE_AUTO);
1167	mt9v111->hblank = v4l2_ctrl_new_std(&mt9v111->ctrls, &mt9v111_ctrl_ops,
1168					    V4L2_CID_HBLANK,
1169					    MT9V111_CORE_R05_MIN_HBLANK,
1170					    MT9V111_CORE_R05_MAX_HBLANK, 1,
1171					    MT9V111_CORE_R05_DEF_HBLANK);
1172	mt9v111->vblank = v4l2_ctrl_new_std(&mt9v111->ctrls, &mt9v111_ctrl_ops,
1173					    V4L2_CID_VBLANK,
1174					    MT9V111_CORE_R06_MIN_VBLANK,
1175					    MT9V111_CORE_R06_MAX_VBLANK, 1,
1176					    MT9V111_CORE_R06_DEF_VBLANK);
1177
1178	/* PIXEL_RATE is fixed: just expose it to user space. */
1179	v4l2_ctrl_new_std(&mt9v111->ctrls, &mt9v111_ctrl_ops,
1180			  V4L2_CID_PIXEL_RATE, 0,
1181			  DIV_ROUND_CLOSEST(mt9v111->sysclk, 2), 1,
1182			  DIV_ROUND_CLOSEST(mt9v111->sysclk, 2));
1183
1184	if (mt9v111->ctrls.error) {
1185		ret = mt9v111->ctrls.error;
1186		goto error_free_ctrls;
1187	}
1188	mt9v111->sd.ctrl_handler = &mt9v111->ctrls;
1189
1190	/* Start with default configuration: 640x480 UYVY. */
1191	mt9v111->fmt	= mt9v111_def_fmt;
1192
1193	/* Re-calculate blankings for 640x480@15fps. */
1194	mt9v111->fps		= 15;
1195	tpf.numerator		= 1;
1196	tpf.denominator		= mt9v111->fps;
1197	mt9v111_calc_frame_rate(mt9v111, &tpf);
1198
1199	mt9v111->pwr_count	= 0;
1200	mt9v111->addr_space	= MT9V111_R01_IFP;
1201	mt9v111->pending	= true;
1202
1203	v4l2_i2c_subdev_init(&mt9v111->sd, client, &mt9v111_ops);
1204
1205#if IS_ENABLED(CONFIG_MEDIA_CONTROLLER)
1206	mt9v111->sd.flags	|= V4L2_SUBDEV_FL_HAS_DEVNODE;
1207	mt9v111->sd.entity.ops	= &mt9v111_subdev_entity_ops;
1208	mt9v111->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1209
1210	mt9v111->pad.flags	= MEDIA_PAD_FL_SOURCE;
1211	ret = media_entity_pads_init(&mt9v111->sd.entity, 1, &mt9v111->pad);
1212	if (ret)
1213		goto error_free_entity;
1214#endif
1215
1216	ret = mt9v111_chip_probe(mt9v111);
1217	if (ret)
1218		goto error_free_entity;
1219
1220	ret = v4l2_async_register_subdev(&mt9v111->sd);
1221	if (ret)
1222		goto error_free_entity;
1223
1224	return 0;
1225
1226error_free_entity:
1227#if IS_ENABLED(CONFIG_MEDIA_CONTROLLER)
1228	media_entity_cleanup(&mt9v111->sd.entity);
1229#endif
1230
1231error_free_ctrls:
1232	v4l2_ctrl_handler_free(&mt9v111->ctrls);
1233
1234	mutex_destroy(&mt9v111->pwr_mutex);
1235	mutex_destroy(&mt9v111->stream_mutex);
1236
1237	return ret;
1238}
1239
1240static int mt9v111_remove(struct i2c_client *client)
1241{
1242	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1243	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
1244
1245	v4l2_async_unregister_subdev(sd);
1246
1247#if IS_ENABLED(CONFIG_MEDIA_CONTROLLER)
1248	media_entity_cleanup(&sd->entity);
1249#endif
1250
1251	v4l2_ctrl_handler_free(&mt9v111->ctrls);
1252
1253	mutex_destroy(&mt9v111->pwr_mutex);
1254	mutex_destroy(&mt9v111->stream_mutex);
1255
1256	devm_gpiod_put(mt9v111->dev, mt9v111->oe);
1257	devm_gpiod_put(mt9v111->dev, mt9v111->standby);
1258	devm_gpiod_put(mt9v111->dev, mt9v111->reset);
1259
1260	devm_clk_put(mt9v111->dev, mt9v111->clk);
1261
1262	return 0;
1263}
1264
1265static const struct of_device_id mt9v111_of_match[] = {
1266	{ .compatible = "aptina,mt9v111", },
1267	{ /* sentinel */ },
1268};
1269
1270static struct i2c_driver mt9v111_driver = {
1271	.driver = {
1272		.name = "mt9v111",
1273		.of_match_table = mt9v111_of_match,
1274	},
1275	.probe_new	= mt9v111_probe,
1276	.remove		= mt9v111_remove,
1277};
1278
1279module_i2c_driver(mt9v111_driver);
1280
1281MODULE_DESCRIPTION("V4L2 sensor driver for Aptina MT9V111");
1282MODULE_AUTHOR("Jacopo Mondi <jacopo@jmondi.org>");
1283MODULE_LICENSE("GPL v2");
1284