1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
4 *
5 *  Integrated Consumer Infrared Controller
6 *
7 *  Copyright (C) 2010  Andy Walls <awalls@md.metrocast.net>
8 */
9
10#include <linux/slab.h>
11#include <linux/kfifo.h>
12#include <linux/module.h>
13#include <media/drv-intf/cx25840.h>
14#include <media/rc-core.h>
15
16#include "cx25840-core.h"
17
18static unsigned int ir_debug;
19module_param(ir_debug, int, 0644);
20MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages");
21
22#define CX25840_IR_REG_BASE	0x200
23
24#define CX25840_IR_CNTRL_REG	0x200
25#define CNTRL_WIN_3_3	0x00000000
26#define CNTRL_WIN_4_3	0x00000001
27#define CNTRL_WIN_3_4	0x00000002
28#define CNTRL_WIN_4_4	0x00000003
29#define CNTRL_WIN	0x00000003
30#define CNTRL_EDG_NONE	0x00000000
31#define CNTRL_EDG_FALL	0x00000004
32#define CNTRL_EDG_RISE	0x00000008
33#define CNTRL_EDG_BOTH	0x0000000C
34#define CNTRL_EDG	0x0000000C
35#define CNTRL_DMD	0x00000010
36#define CNTRL_MOD	0x00000020
37#define CNTRL_RFE	0x00000040
38#define CNTRL_TFE	0x00000080
39#define CNTRL_RXE	0x00000100
40#define CNTRL_TXE	0x00000200
41#define CNTRL_RIC	0x00000400
42#define CNTRL_TIC	0x00000800
43#define CNTRL_CPL	0x00001000
44#define CNTRL_LBM	0x00002000
45#define CNTRL_R		0x00004000
46
47#define CX25840_IR_TXCLK_REG	0x204
48#define TXCLK_TCD	0x0000FFFF
49
50#define CX25840_IR_RXCLK_REG	0x208
51#define RXCLK_RCD	0x0000FFFF
52
53#define CX25840_IR_CDUTY_REG	0x20C
54#define CDUTY_CDC	0x0000000F
55
56#define CX25840_IR_STATS_REG	0x210
57#define STATS_RTO	0x00000001
58#define STATS_ROR	0x00000002
59#define STATS_RBY	0x00000004
60#define STATS_TBY	0x00000008
61#define STATS_RSR	0x00000010
62#define STATS_TSR	0x00000020
63
64#define CX25840_IR_IRQEN_REG	0x214
65#define IRQEN_RTE	0x00000001
66#define IRQEN_ROE	0x00000002
67#define IRQEN_RSE	0x00000010
68#define IRQEN_TSE	0x00000020
69#define IRQEN_MSK	0x00000033
70
71#define CX25840_IR_FILTR_REG	0x218
72#define FILTR_LPF	0x0000FFFF
73
74#define CX25840_IR_FIFO_REG	0x23C
75#define FIFO_RXTX	0x0000FFFF
76#define FIFO_RXTX_LVL	0x00010000
77#define FIFO_RXTX_RTO	0x0001FFFF
78#define FIFO_RX_NDV	0x00020000
79#define FIFO_RX_DEPTH	8
80#define FIFO_TX_DEPTH	8
81
82#define CX25840_VIDCLK_FREQ	108000000 /* 108 MHz, BT.656 */
83#define CX25840_IR_REFCLK_FREQ	(CX25840_VIDCLK_FREQ / 2)
84
85/*
86 * We use this union internally for convenience, but callers to tx_write
87 * and rx_read will be expecting records of type struct ir_raw_event.
88 * Always ensure the size of this union is dictated by struct ir_raw_event.
89 */
90union cx25840_ir_fifo_rec {
91	u32 hw_fifo_data;
92	struct ir_raw_event ir_core_data;
93};
94
95#define CX25840_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))
96#define CX25840_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))
97
98struct cx25840_ir_state {
99	struct i2c_client *c;
100
101	struct v4l2_subdev_ir_parameters rx_params;
102	struct mutex rx_params_lock; /* protects Rx parameter settings cache */
103	atomic_t rxclk_divider;
104	atomic_t rx_invert;
105
106	struct kfifo rx_kfifo;
107	spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */
108
109	struct v4l2_subdev_ir_parameters tx_params;
110	struct mutex tx_params_lock; /* protects Tx parameter settings cache */
111	atomic_t txclk_divider;
112};
113
114static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd)
115{
116	struct cx25840_state *state = to_state(sd);
117	return state ? state->ir_state : NULL;
118}
119
120
121/*
122 * Rx and Tx Clock Divider register computations
123 *
124 * Note the largest clock divider value of 0xffff corresponds to:
125 *	(0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
126 * which fits in 21 bits, so we'll use unsigned int for time arguments.
127 */
128static inline u16 count_to_clock_divider(unsigned int d)
129{
130	if (d > RXCLK_RCD + 1)
131		d = RXCLK_RCD;
132	else if (d < 2)
133		d = 1;
134	else
135		d--;
136	return (u16) d;
137}
138
139static inline u16 ns_to_clock_divider(unsigned int ns)
140{
141	return count_to_clock_divider(
142		DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
143}
144
145static inline unsigned int clock_divider_to_ns(unsigned int divider)
146{
147	/* Period of the Rx or Tx clock in ns */
148	return DIV_ROUND_CLOSEST((divider + 1) * 1000,
149				 CX25840_IR_REFCLK_FREQ / 1000000);
150}
151
152static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
153{
154	return count_to_clock_divider(
155			  DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16));
156}
157
158static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
159{
160	return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16);
161}
162
163static inline u16 freq_to_clock_divider(unsigned int freq,
164					unsigned int rollovers)
165{
166	return count_to_clock_divider(
167		   DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers));
168}
169
170static inline unsigned int clock_divider_to_freq(unsigned int divider,
171						 unsigned int rollovers)
172{
173	return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ,
174				 (divider + 1) * rollovers);
175}
176
177/*
178 * Low Pass Filter register calculations
179 *
180 * Note the largest count value of 0xffff corresponds to:
181 *	0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
182 * which fits in 21 bits, so we'll use unsigned int for time arguments.
183 */
184static inline u16 count_to_lpf_count(unsigned int d)
185{
186	if (d > FILTR_LPF)
187		d = FILTR_LPF;
188	else if (d < 4)
189		d = 0;
190	return (u16) d;
191}
192
193static inline u16 ns_to_lpf_count(unsigned int ns)
194{
195	return count_to_lpf_count(
196		DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
197}
198
199static inline unsigned int lpf_count_to_ns(unsigned int count)
200{
201	/* Duration of the Low Pass Filter rejection window in ns */
202	return DIV_ROUND_CLOSEST(count * 1000,
203				 CX25840_IR_REFCLK_FREQ / 1000000);
204}
205
206static inline unsigned int lpf_count_to_us(unsigned int count)
207{
208	/* Duration of the Low Pass Filter rejection window in us */
209	return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000);
210}
211
212/*
213 * FIFO register pulse width count computations
214 */
215static u32 clock_divider_to_resolution(u16 divider)
216{
217	/*
218	 * Resolution is the duration of 1 tick of the readable portion of
219	 * of the pulse width counter as read from the FIFO.  The two lsb's are
220	 * not readable, hence the << 2.  This function returns ns.
221	 */
222	return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
223				 CX25840_IR_REFCLK_FREQ / 1000000);
224}
225
226static u64 pulse_width_count_to_ns(u16 count, u16 divider)
227{
228	u64 n;
229	u32 rem;
230
231	/*
232	 * The 2 lsb's of the pulse width timer count are not readable, hence
233	 * the (count << 2) | 0x3
234	 */
235	n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
236	rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
237	if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
238		n++;
239	return n;
240}
241
242#if 0
243/* Keep as we will need this for Transmit functionality */
244static u16 ns_to_pulse_width_count(u32 ns, u16 divider)
245{
246	u64 n;
247	u32 d;
248	u32 rem;
249
250	/*
251	 * The 2 lsb's of the pulse width timer count are not accessible, hence
252	 * the (1 << 2)
253	 */
254	n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */
255	d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */
256	rem = do_div(n, d);
257	if (rem >= d / 2)
258		n++;
259
260	if (n > FIFO_RXTX)
261		n = FIFO_RXTX;
262	else if (n == 0)
263		n = 1;
264	return (u16) n;
265}
266
267#endif
268static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
269{
270	u64 n;
271	u32 rem;
272
273	/*
274	 * The 2 lsb's of the pulse width timer count are not readable, hence
275	 * the (count << 2) | 0x3
276	 */
277	n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
278	rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
279	if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
280		n++;
281	return (unsigned int) n;
282}
283
284/*
285 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
286 *
287 * The total pulse clock count is an 18 bit pulse width timer count as the most
288 * significant part and (up to) 16 bit clock divider count as a modulus.
289 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
290 * width timer count's least significant bit.
291 */
292static u64 ns_to_pulse_clocks(u32 ns)
293{
294	u64 clocks;
295	u32 rem;
296	clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
297	rem = do_div(clocks, 1000);                         /* /1000 = cycles */
298	if (rem >= 1000 / 2)
299		clocks++;
300	return clocks;
301}
302
303static u16 pulse_clocks_to_clock_divider(u64 count)
304{
305	do_div(count, (FIFO_RXTX << 2) | 0x3);
306
307	/* net result needs to be rounded down and decremented by 1 */
308	if (count > RXCLK_RCD + 1)
309		count = RXCLK_RCD;
310	else if (count < 2)
311		count = 1;
312	else
313		count--;
314	return (u16) count;
315}
316
317/*
318 * IR Control Register helpers
319 */
320enum tx_fifo_watermark {
321	TX_FIFO_HALF_EMPTY = 0,
322	TX_FIFO_EMPTY      = CNTRL_TIC,
323};
324
325enum rx_fifo_watermark {
326	RX_FIFO_HALF_FULL = 0,
327	RX_FIFO_NOT_EMPTY = CNTRL_RIC,
328};
329
330static inline void control_tx_irq_watermark(struct i2c_client *c,
331					    enum tx_fifo_watermark level)
332{
333	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level);
334}
335
336static inline void control_rx_irq_watermark(struct i2c_client *c,
337					    enum rx_fifo_watermark level)
338{
339	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level);
340}
341
342static inline void control_tx_enable(struct i2c_client *c, bool enable)
343{
344	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
345			enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
346}
347
348static inline void control_rx_enable(struct i2c_client *c, bool enable)
349{
350	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
351			enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
352}
353
354static inline void control_tx_modulation_enable(struct i2c_client *c,
355						bool enable)
356{
357	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD,
358			enable ? CNTRL_MOD : 0);
359}
360
361static inline void control_rx_demodulation_enable(struct i2c_client *c,
362						  bool enable)
363{
364	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD,
365			enable ? CNTRL_DMD : 0);
366}
367
368static inline void control_rx_s_edge_detection(struct i2c_client *c,
369					       u32 edge_types)
370{
371	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
372			edge_types & CNTRL_EDG_BOTH);
373}
374
375static void control_rx_s_carrier_window(struct i2c_client *c,
376					unsigned int carrier,
377					unsigned int *carrier_range_low,
378					unsigned int *carrier_range_high)
379{
380	u32 v;
381	unsigned int c16 = carrier * 16;
382
383	if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
384		v = CNTRL_WIN_3_4;
385		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
386	} else {
387		v = CNTRL_WIN_3_3;
388		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
389	}
390
391	if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
392		v |= CNTRL_WIN_4_3;
393		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
394	} else {
395		v |= CNTRL_WIN_3_3;
396		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
397	}
398	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v);
399}
400
401static inline void control_tx_polarity_invert(struct i2c_client *c,
402					      bool invert)
403{
404	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL,
405			invert ? CNTRL_CPL : 0);
406}
407
408/*
409 * IR Rx & Tx Clock Register helpers
410 */
411static unsigned int txclk_tx_s_carrier(struct i2c_client *c,
412				       unsigned int freq,
413				       u16 *divider)
414{
415	*divider = carrier_freq_to_clock_divider(freq);
416	cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
417	return clock_divider_to_carrier_freq(*divider);
418}
419
420static unsigned int rxclk_rx_s_carrier(struct i2c_client *c,
421				       unsigned int freq,
422				       u16 *divider)
423{
424	*divider = carrier_freq_to_clock_divider(freq);
425	cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
426	return clock_divider_to_carrier_freq(*divider);
427}
428
429static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns,
430				      u16 *divider)
431{
432	u64 pulse_clocks;
433
434	if (ns > IR_MAX_DURATION)
435		ns = IR_MAX_DURATION;
436	pulse_clocks = ns_to_pulse_clocks(ns);
437	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
438	cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
439	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
440}
441
442static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
443				      u16 *divider)
444{
445	u64 pulse_clocks;
446
447	if (ns > IR_MAX_DURATION)
448		ns = IR_MAX_DURATION;
449	pulse_clocks = ns_to_pulse_clocks(ns);
450	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
451	cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
452	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
453}
454
455/*
456 * IR Tx Carrier Duty Cycle register helpers
457 */
458static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c,
459					  unsigned int duty_cycle)
460{
461	u32 n;
462	n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
463	if (n != 0)
464		n--;
465	if (n > 15)
466		n = 15;
467	cx25840_write4(c, CX25840_IR_CDUTY_REG, n);
468	return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
469}
470
471/*
472 * IR Filter Register helpers
473 */
474static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns)
475{
476	u32 count = ns_to_lpf_count(min_width_ns);
477	cx25840_write4(c, CX25840_IR_FILTR_REG, count);
478	return lpf_count_to_ns(count);
479}
480
481/*
482 * IR IRQ Enable Register helpers
483 */
484static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask)
485{
486	struct cx25840_state *state = to_state(sd);
487
488	if (is_cx23885(state) || is_cx23887(state))
489		mask ^= IRQEN_MSK;
490	mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
491	cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG,
492			~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
493}
494
495static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask)
496{
497	struct cx25840_state *state = to_state(sd);
498
499	if (is_cx23885(state) || is_cx23887(state))
500		mask ^= IRQEN_MSK;
501	mask &= IRQEN_TSE;
502	cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask);
503}
504
505/*
506 * V4L2 Subdevice IR Ops
507 */
508int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled)
509{
510	struct cx25840_state *state = to_state(sd);
511	struct cx25840_ir_state *ir_state = to_ir_state(sd);
512	struct i2c_client *c = NULL;
513	unsigned long flags;
514
515	union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
516	unsigned int i, j, k;
517	u32 events, v;
518	int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
519	u32 cntrl, irqen, stats;
520
521	*handled = false;
522	if (ir_state == NULL)
523		return -ENODEV;
524
525	c = ir_state->c;
526
527	/* Only support the IR controller for the CX2388[57] AV Core for now */
528	if (!(is_cx23885(state) || is_cx23887(state)))
529		return -ENODEV;
530
531	cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
532	irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
533	if (is_cx23885(state) || is_cx23887(state))
534		irqen ^= IRQEN_MSK;
535	stats = cx25840_read4(c, CX25840_IR_STATS_REG);
536
537	tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
538	rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
539	rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
540	ror = stats & STATS_ROR; /* Rx FIFO Over Run */
541
542	tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
543	rse = irqen & IRQEN_RSE; /* Rx FIFO Service Request IRQ Enable */
544	rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
545	roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
546
547	v4l2_dbg(2, ir_debug, sd, "IR IRQ Status:  %s %s %s %s %s %s\n",
548		 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
549		 rto ? "rto" : "   ", ror ? "ror" : "   ",
550		 stats & STATS_TBY ? "tby" : "   ",
551		 stats & STATS_RBY ? "rby" : "   ");
552
553	v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n",
554		 tse ? "tse" : "   ", rse ? "rse" : "   ",
555		 rte ? "rte" : "   ", roe ? "roe" : "   ");
556
557	/*
558	 * Transmitter interrupt service
559	 */
560	if (tse && tsr) {
561		/*
562		 * TODO:
563		 * Check the watermark threshold setting
564		 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
565		 * Push the data to the hardware FIFO.
566		 * If there was nothing more to send in the tx_kfifo, disable
567		 *	the TSR IRQ and notify the v4l2_device.
568		 * If there was something in the tx_kfifo, check the tx_kfifo
569		 *      level and notify the v4l2_device, if it is low.
570		 */
571		/* For now, inhibit TSR interrupt until Tx is implemented */
572		irqenable_tx(sd, 0);
573		events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
574		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
575		*handled = true;
576	}
577
578	/*
579	 * Receiver interrupt service
580	 */
581	kror = 0;
582	if ((rse && rsr) || (rte && rto)) {
583		/*
584		 * Receive data on RSR to clear the STATS_RSR.
585		 * Receive data on RTO, since we may not have yet hit the RSR
586		 * watermark when we receive the RTO.
587		 */
588		for (i = 0, v = FIFO_RX_NDV;
589		     (v & FIFO_RX_NDV) && !kror; i = 0) {
590			for (j = 0;
591			     (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
592				v = cx25840_read4(c, CX25840_IR_FIFO_REG);
593				rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
594				i++;
595			}
596			if (i == 0)
597				break;
598			j = i * sizeof(union cx25840_ir_fifo_rec);
599			k = kfifo_in_locked(&ir_state->rx_kfifo,
600					    (unsigned char *) rx_data, j,
601					    &ir_state->rx_kfifo_lock);
602			if (k != j)
603				kror++; /* rx_kfifo over run */
604		}
605		*handled = true;
606	}
607
608	events = 0;
609	v = 0;
610	if (kror) {
611		events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
612		v4l2_err(sd, "IR receiver software FIFO overrun\n");
613	}
614	if (roe && ror) {
615		/*
616		 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
617		 * the Rx FIFO Over Run status (STATS_ROR)
618		 */
619		v |= CNTRL_RFE;
620		events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
621		v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
622	}
623	if (rte && rto) {
624		/*
625		 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
626		 * the Rx Pulse Width Timer Time Out (STATS_RTO)
627		 */
628		v |= CNTRL_RXE;
629		events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
630	}
631	if (v) {
632		/* Clear STATS_ROR & STATS_RTO as needed by resetting hardware */
633		cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v);
634		cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl);
635		*handled = true;
636	}
637	spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
638	if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2)
639		events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
640	spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
641
642	if (events)
643		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
644	return 0;
645}
646
647/* Receiver */
648static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
649			      ssize_t *num)
650{
651	struct cx25840_ir_state *ir_state = to_ir_state(sd);
652	bool invert;
653	u16 divider;
654	unsigned int i, n;
655	union cx25840_ir_fifo_rec *p;
656	unsigned u, v, w;
657
658	if (ir_state == NULL)
659		return -ENODEV;
660
661	invert = (bool) atomic_read(&ir_state->rx_invert);
662	divider = (u16) atomic_read(&ir_state->rxclk_divider);
663
664	n = count / sizeof(union cx25840_ir_fifo_rec)
665		* sizeof(union cx25840_ir_fifo_rec);
666	if (n == 0) {
667		*num = 0;
668		return 0;
669	}
670
671	n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
672			     &ir_state->rx_kfifo_lock);
673
674	n /= sizeof(union cx25840_ir_fifo_rec);
675	*num = n * sizeof(union cx25840_ir_fifo_rec);
676
677	for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
678
679		if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
680			/* Assume RTO was because of no IR light input */
681			u = 0;
682			w = 1;
683		} else {
684			u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
685			if (invert)
686				u = u ? 0 : 1;
687			w = 0;
688		}
689
690		v = (unsigned) pulse_width_count_to_ns(
691				  (u16)(p->hw_fifo_data & FIFO_RXTX), divider) / 1000;
692		if (v > IR_MAX_DURATION)
693			v = IR_MAX_DURATION;
694
695		p->ir_core_data = (struct ir_raw_event)
696			{ .pulse = u, .duration = v, .timeout = w };
697
698		v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns  %s  %s\n",
699			 v, u ? "mark" : "space", w ? "(timed out)" : "");
700		if (w)
701			v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
702	}
703	return 0;
704}
705
706static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd,
707				      struct v4l2_subdev_ir_parameters *p)
708{
709	struct cx25840_ir_state *ir_state = to_ir_state(sd);
710
711	if (ir_state == NULL)
712		return -ENODEV;
713
714	mutex_lock(&ir_state->rx_params_lock);
715	memcpy(p, &ir_state->rx_params,
716				      sizeof(struct v4l2_subdev_ir_parameters));
717	mutex_unlock(&ir_state->rx_params_lock);
718	return 0;
719}
720
721static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd)
722{
723	struct cx25840_ir_state *ir_state = to_ir_state(sd);
724	struct i2c_client *c;
725
726	if (ir_state == NULL)
727		return -ENODEV;
728
729	c = ir_state->c;
730	mutex_lock(&ir_state->rx_params_lock);
731
732	/* Disable or slow down all IR Rx circuits and counters */
733	irqenable_rx(sd, 0);
734	control_rx_enable(c, false);
735	control_rx_demodulation_enable(c, false);
736	control_rx_s_edge_detection(c, CNTRL_EDG_NONE);
737	filter_rx_s_min_width(c, 0);
738	cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD);
739
740	ir_state->rx_params.shutdown = true;
741
742	mutex_unlock(&ir_state->rx_params_lock);
743	return 0;
744}
745
746static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
747				      struct v4l2_subdev_ir_parameters *p)
748{
749	struct cx25840_ir_state *ir_state = to_ir_state(sd);
750	struct i2c_client *c;
751	struct v4l2_subdev_ir_parameters *o;
752	u16 rxclk_divider;
753
754	if (ir_state == NULL)
755		return -ENODEV;
756
757	if (p->shutdown)
758		return cx25840_ir_rx_shutdown(sd);
759
760	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
761		return -ENOSYS;
762
763	c = ir_state->c;
764	o = &ir_state->rx_params;
765
766	mutex_lock(&ir_state->rx_params_lock);
767
768	o->shutdown = p->shutdown;
769
770	p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
771	o->mode = p->mode;
772
773	p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
774	o->bytes_per_data_element = p->bytes_per_data_element;
775
776	/* Before we tweak the hardware, we have to disable the receiver */
777	irqenable_rx(sd, 0);
778	control_rx_enable(c, false);
779
780	control_rx_demodulation_enable(c, p->modulation);
781	o->modulation = p->modulation;
782
783	if (p->modulation) {
784		p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
785						     &rxclk_divider);
786
787		o->carrier_freq = p->carrier_freq;
788
789		p->duty_cycle = 50;
790		o->duty_cycle = p->duty_cycle;
791
792		control_rx_s_carrier_window(c, p->carrier_freq,
793					    &p->carrier_range_lower,
794					    &p->carrier_range_upper);
795		o->carrier_range_lower = p->carrier_range_lower;
796		o->carrier_range_upper = p->carrier_range_upper;
797
798		p->max_pulse_width =
799			(u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
800	} else {
801		p->max_pulse_width =
802			    rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
803						       &rxclk_divider);
804	}
805	o->max_pulse_width = p->max_pulse_width;
806	atomic_set(&ir_state->rxclk_divider, rxclk_divider);
807
808	p->noise_filter_min_width =
809			    filter_rx_s_min_width(c, p->noise_filter_min_width);
810	o->noise_filter_min_width = p->noise_filter_min_width;
811
812	p->resolution = clock_divider_to_resolution(rxclk_divider);
813	o->resolution = p->resolution;
814
815	/* FIXME - make this dependent on resolution for better performance */
816	control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);
817
818	control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);
819
820	o->invert_level = p->invert_level;
821	atomic_set(&ir_state->rx_invert, p->invert_level);
822
823	o->interrupt_enable = p->interrupt_enable;
824	o->enable = p->enable;
825	if (p->enable) {
826		unsigned long flags;
827
828		spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
829		kfifo_reset(&ir_state->rx_kfifo);
830		spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
831		if (p->interrupt_enable)
832			irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
833		control_rx_enable(c, p->enable);
834	}
835
836	mutex_unlock(&ir_state->rx_params_lock);
837	return 0;
838}
839
840/* Transmitter */
841static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
842			       ssize_t *num)
843{
844	struct cx25840_ir_state *ir_state = to_ir_state(sd);
845
846	if (ir_state == NULL)
847		return -ENODEV;
848
849#if 0
850	/*
851	 * FIXME - the code below is an incomplete and untested sketch of what
852	 * may need to be done.  The critical part is to get 4 (or 8) pulses
853	 * from the tx_kfifo, or converted from ns to the proper units from the
854	 * input, and push them off to the hardware Tx FIFO right away, if the
855	 * HW TX fifo needs service.  The rest can be pushed to the tx_kfifo in
856	 * a less critical timeframe.  Also watch out for overruning the
857	 * tx_kfifo - don't let it happen and let the caller know not all his
858	 * pulses were written.
859	 */
860	u32 *ns_pulse = (u32 *) buf;
861	unsigned int n;
862	u32 fifo_pulse[FIFO_TX_DEPTH];
863	u32 mark;
864
865	/* Compute how much we can fit in the tx kfifo */
866	n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo);
867	n = min(n, (unsigned int) count);
868	n /= sizeof(u32);
869
870	/* FIXME - turn on Tx Fifo service interrupt
871	 * check hardware fifo level, and other stuff
872	 */
873	for (i = 0; i < n; ) {
874		for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) {
875			mark = ns_pulse[i] & LEVEL_MASK;
876			fifo_pulse[j] = ns_to_pulse_width_count(
877					 ns_pulse[i] &
878					       ~LEVEL_MASK,
879					 ir_state->txclk_divider);
880			if (mark)
881				fifo_pulse[j] &= FIFO_RXTX_LVL;
882			i++;
883		}
884		kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse,
885							       j * sizeof(u32));
886	}
887	*num = n * sizeof(u32);
888#else
889	/* For now enable the Tx FIFO Service interrupt & pretend we did work */
890	irqenable_tx(sd, IRQEN_TSE);
891	*num = count;
892#endif
893	return 0;
894}
895
896static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd,
897				      struct v4l2_subdev_ir_parameters *p)
898{
899	struct cx25840_ir_state *ir_state = to_ir_state(sd);
900
901	if (ir_state == NULL)
902		return -ENODEV;
903
904	mutex_lock(&ir_state->tx_params_lock);
905	memcpy(p, &ir_state->tx_params,
906				      sizeof(struct v4l2_subdev_ir_parameters));
907	mutex_unlock(&ir_state->tx_params_lock);
908	return 0;
909}
910
911static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd)
912{
913	struct cx25840_ir_state *ir_state = to_ir_state(sd);
914	struct i2c_client *c;
915
916	if (ir_state == NULL)
917		return -ENODEV;
918
919	c = ir_state->c;
920	mutex_lock(&ir_state->tx_params_lock);
921
922	/* Disable or slow down all IR Tx circuits and counters */
923	irqenable_tx(sd, 0);
924	control_tx_enable(c, false);
925	control_tx_modulation_enable(c, false);
926	cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD);
927
928	ir_state->tx_params.shutdown = true;
929
930	mutex_unlock(&ir_state->tx_params_lock);
931	return 0;
932}
933
934static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
935				      struct v4l2_subdev_ir_parameters *p)
936{
937	struct cx25840_ir_state *ir_state = to_ir_state(sd);
938	struct i2c_client *c;
939	struct v4l2_subdev_ir_parameters *o;
940	u16 txclk_divider;
941
942	if (ir_state == NULL)
943		return -ENODEV;
944
945	if (p->shutdown)
946		return cx25840_ir_tx_shutdown(sd);
947
948	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
949		return -ENOSYS;
950
951	c = ir_state->c;
952	o = &ir_state->tx_params;
953	mutex_lock(&ir_state->tx_params_lock);
954
955	o->shutdown = p->shutdown;
956
957	p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
958	o->mode = p->mode;
959
960	p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
961	o->bytes_per_data_element = p->bytes_per_data_element;
962
963	/* Before we tweak the hardware, we have to disable the transmitter */
964	irqenable_tx(sd, 0);
965	control_tx_enable(c, false);
966
967	control_tx_modulation_enable(c, p->modulation);
968	o->modulation = p->modulation;
969
970	if (p->modulation) {
971		p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
972						     &txclk_divider);
973		o->carrier_freq = p->carrier_freq;
974
975		p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
976		o->duty_cycle = p->duty_cycle;
977
978		p->max_pulse_width =
979			(u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
980	} else {
981		p->max_pulse_width =
982			    txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
983						       &txclk_divider);
984	}
985	o->max_pulse_width = p->max_pulse_width;
986	atomic_set(&ir_state->txclk_divider, txclk_divider);
987
988	p->resolution = clock_divider_to_resolution(txclk_divider);
989	o->resolution = p->resolution;
990
991	/* FIXME - make this dependent on resolution for better performance */
992	control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);
993
994	control_tx_polarity_invert(c, p->invert_carrier_sense);
995	o->invert_carrier_sense = p->invert_carrier_sense;
996
997	/*
998	 * FIXME: we don't have hardware help for IO pin level inversion
999	 * here like we have on the CX23888.
1000	 * Act on this with some mix of logical inversion of data levels,
1001	 * carrier polarity, and carrier duty cycle.
1002	 */
1003	o->invert_level = p->invert_level;
1004
1005	o->interrupt_enable = p->interrupt_enable;
1006	o->enable = p->enable;
1007	if (p->enable) {
1008		/* reset tx_fifo here */
1009		if (p->interrupt_enable)
1010			irqenable_tx(sd, IRQEN_TSE);
1011		control_tx_enable(c, p->enable);
1012	}
1013
1014	mutex_unlock(&ir_state->tx_params_lock);
1015	return 0;
1016}
1017
1018
1019/*
1020 * V4L2 Subdevice Core Ops support
1021 */
1022int cx25840_ir_log_status(struct v4l2_subdev *sd)
1023{
1024	struct cx25840_state *state = to_state(sd);
1025	struct i2c_client *c = state->c;
1026	char *s;
1027	int i, j;
1028	u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr;
1029
1030	/* The CX23888 chip doesn't have an IR controller on the A/V core */
1031	if (is_cx23888(state))
1032		return 0;
1033
1034	cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
1035	txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD;
1036	rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD;
1037	cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC;
1038	stats = cx25840_read4(c, CX25840_IR_STATS_REG);
1039	irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
1040	if (is_cx23885(state) || is_cx23887(state))
1041		irqen ^= IRQEN_MSK;
1042	filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF;
1043
1044	v4l2_info(sd, "IR Receiver:\n");
1045	v4l2_info(sd, "\tEnabled:                           %s\n",
1046		  cntrl & CNTRL_RXE ? "yes" : "no");
1047	v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
1048		  cntrl & CNTRL_DMD ? "enabled" : "disabled");
1049	v4l2_info(sd, "\tFIFO:                              %s\n",
1050		  cntrl & CNTRL_RFE ? "enabled" : "disabled");
1051	switch (cntrl & CNTRL_EDG) {
1052	case CNTRL_EDG_NONE:
1053		s = "disabled";
1054		break;
1055	case CNTRL_EDG_FALL:
1056		s = "falling edge";
1057		break;
1058	case CNTRL_EDG_RISE:
1059		s = "rising edge";
1060		break;
1061	case CNTRL_EDG_BOTH:
1062		s = "rising & falling edges";
1063		break;
1064	default:
1065		s = "??? edge";
1066		break;
1067	}
1068	v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
1069	v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
1070		  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
1071	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1072		  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
1073	v4l2_info(sd, "\tLoopback mode:                     %s\n",
1074		  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1075	if (cntrl & CNTRL_DMD) {
1076		v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
1077			  clock_divider_to_carrier_freq(rxclk));
1078		switch (cntrl & CNTRL_WIN) {
1079		case CNTRL_WIN_3_3:
1080			i = 3;
1081			j = 3;
1082			break;
1083		case CNTRL_WIN_4_3:
1084			i = 4;
1085			j = 3;
1086			break;
1087		case CNTRL_WIN_3_4:
1088			i = 3;
1089			j = 4;
1090			break;
1091		case CNTRL_WIN_4_4:
1092			i = 4;
1093			j = 4;
1094			break;
1095		default:
1096			i = 0;
1097			j = 0;
1098			break;
1099		}
1100		v4l2_info(sd, "\tNext carrier edge window:	    16 clocks -%1d/+%1d, %u to %u Hz\n",
1101			  i, j,
1102			  clock_divider_to_freq(rxclk, 16 + j),
1103			  clock_divider_to_freq(rxclk, 16 - i));
1104	}
1105	v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
1106		  pulse_width_count_to_us(FIFO_RXTX, rxclk),
1107		  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1108	v4l2_info(sd, "\tLow pass filter:                   %s\n",
1109		  filtr ? "enabled" : "disabled");
1110	if (filtr)
1111		v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, %u ns\n",
1112			  lpf_count_to_us(filtr),
1113			  lpf_count_to_ns(filtr));
1114	v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
1115		  stats & STATS_RTO ? "yes" : "no");
1116	v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
1117		  irqen & IRQEN_RTE ? "enabled" : "disabled");
1118	v4l2_info(sd, "\tFIFO overrun:                      %s\n",
1119		  stats & STATS_ROR ? "yes" : "no");
1120	v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
1121		  irqen & IRQEN_ROE ? "enabled" : "disabled");
1122	v4l2_info(sd, "\tBusy:                              %s\n",
1123		  stats & STATS_RBY ? "yes" : "no");
1124	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1125		  stats & STATS_RSR ? "yes" : "no");
1126	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1127		  irqen & IRQEN_RSE ? "enabled" : "disabled");
1128
1129	v4l2_info(sd, "IR Transmitter:\n");
1130	v4l2_info(sd, "\tEnabled:                           %s\n",
1131		  cntrl & CNTRL_TXE ? "yes" : "no");
1132	v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
1133		  cntrl & CNTRL_MOD ? "enabled" : "disabled");
1134	v4l2_info(sd, "\tFIFO:                              %s\n",
1135		  cntrl & CNTRL_TFE ? "enabled" : "disabled");
1136	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1137		  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1138	v4l2_info(sd, "\tCarrier polarity:                  %s\n",
1139		  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1140				    : "space:noburst mark:burst");
1141	if (cntrl & CNTRL_MOD) {
1142		v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
1143			  clock_divider_to_carrier_freq(txclk));
1144		v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
1145			  cduty + 1);
1146	}
1147	v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
1148		  pulse_width_count_to_us(FIFO_RXTX, txclk),
1149		  pulse_width_count_to_ns(FIFO_RXTX, txclk));
1150	v4l2_info(sd, "\tBusy:                              %s\n",
1151		  stats & STATS_TBY ? "yes" : "no");
1152	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1153		  stats & STATS_TSR ? "yes" : "no");
1154	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1155		  irqen & IRQEN_TSE ? "enabled" : "disabled");
1156
1157	return 0;
1158}
1159
1160
1161const struct v4l2_subdev_ir_ops cx25840_ir_ops = {
1162	.rx_read = cx25840_ir_rx_read,
1163	.rx_g_parameters = cx25840_ir_rx_g_parameters,
1164	.rx_s_parameters = cx25840_ir_rx_s_parameters,
1165
1166	.tx_write = cx25840_ir_tx_write,
1167	.tx_g_parameters = cx25840_ir_tx_g_parameters,
1168	.tx_s_parameters = cx25840_ir_tx_s_parameters,
1169};
1170
1171
1172static const struct v4l2_subdev_ir_parameters default_rx_params = {
1173	.bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1174	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1175
1176	.enable = false,
1177	.interrupt_enable = false,
1178	.shutdown = true,
1179
1180	.modulation = true,
1181	.carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */
1182
1183	/* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1184	/* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1185	.noise_filter_min_width = 333333, /* ns */
1186	.carrier_range_lower = 35000,
1187	.carrier_range_upper = 37000,
1188	.invert_level = false,
1189};
1190
1191static const struct v4l2_subdev_ir_parameters default_tx_params = {
1192	.bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1193	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1194
1195	.enable = false,
1196	.interrupt_enable = false,
1197	.shutdown = true,
1198
1199	.modulation = true,
1200	.carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1201	.duty_cycle = 25,      /* 25 %   - RC-5 carrier */
1202	.invert_level = false,
1203	.invert_carrier_sense = false,
1204};
1205
1206int cx25840_ir_probe(struct v4l2_subdev *sd)
1207{
1208	struct cx25840_state *state = to_state(sd);
1209	struct cx25840_ir_state *ir_state;
1210	struct v4l2_subdev_ir_parameters default_params;
1211
1212	/* Only init the IR controller for the CX2388[57] AV Core for now */
1213	if (!(is_cx23885(state) || is_cx23887(state)))
1214		return 0;
1215
1216	ir_state = devm_kzalloc(&state->c->dev, sizeof(*ir_state), GFP_KERNEL);
1217	if (ir_state == NULL)
1218		return -ENOMEM;
1219
1220	spin_lock_init(&ir_state->rx_kfifo_lock);
1221	if (kfifo_alloc(&ir_state->rx_kfifo,
1222			CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1223		return -ENOMEM;
1224
1225	ir_state->c = state->c;
1226	state->ir_state = ir_state;
1227
1228	/* Ensure no interrupts arrive yet */
1229	if (is_cx23885(state) || is_cx23887(state))
1230		cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK);
1231	else
1232		cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0);
1233
1234	mutex_init(&ir_state->rx_params_lock);
1235	default_params = default_rx_params;
1236	v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1237
1238	mutex_init(&ir_state->tx_params_lock);
1239	default_params = default_tx_params;
1240	v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1241
1242	return 0;
1243}
1244
1245int cx25840_ir_remove(struct v4l2_subdev *sd)
1246{
1247	struct cx25840_state *state = to_state(sd);
1248	struct cx25840_ir_state *ir_state = to_ir_state(sd);
1249
1250	if (ir_state == NULL)
1251		return -ENODEV;
1252
1253	cx25840_ir_rx_shutdown(sd);
1254	cx25840_ir_tx_shutdown(sd);
1255
1256	kfifo_free(&ir_state->rx_kfifo);
1257	state->ir_state = NULL;
1258	return 0;
1259}
1260