18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * Aptina Sensor PLL Configuration
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
68c2ecf20Sopenharmony_ci */
78c2ecf20Sopenharmony_ci
88c2ecf20Sopenharmony_ci#include <linux/device.h>
98c2ecf20Sopenharmony_ci#include <linux/gcd.h>
108c2ecf20Sopenharmony_ci#include <linux/kernel.h>
118c2ecf20Sopenharmony_ci#include <linux/lcm.h>
128c2ecf20Sopenharmony_ci#include <linux/module.h>
138c2ecf20Sopenharmony_ci
148c2ecf20Sopenharmony_ci#include "aptina-pll.h"
158c2ecf20Sopenharmony_ci
168c2ecf20Sopenharmony_ciint aptina_pll_calculate(struct device *dev,
178c2ecf20Sopenharmony_ci			 const struct aptina_pll_limits *limits,
188c2ecf20Sopenharmony_ci			 struct aptina_pll *pll)
198c2ecf20Sopenharmony_ci{
208c2ecf20Sopenharmony_ci	unsigned int mf_min;
218c2ecf20Sopenharmony_ci	unsigned int mf_max;
228c2ecf20Sopenharmony_ci	unsigned int p1_min;
238c2ecf20Sopenharmony_ci	unsigned int p1_max;
248c2ecf20Sopenharmony_ci	unsigned int p1;
258c2ecf20Sopenharmony_ci	unsigned int div;
268c2ecf20Sopenharmony_ci
278c2ecf20Sopenharmony_ci	dev_dbg(dev, "PLL: ext clock %u pix clock %u\n",
288c2ecf20Sopenharmony_ci		pll->ext_clock, pll->pix_clock);
298c2ecf20Sopenharmony_ci
308c2ecf20Sopenharmony_ci	if (pll->ext_clock < limits->ext_clock_min ||
318c2ecf20Sopenharmony_ci	    pll->ext_clock > limits->ext_clock_max) {
328c2ecf20Sopenharmony_ci		dev_err(dev, "pll: invalid external clock frequency.\n");
338c2ecf20Sopenharmony_ci		return -EINVAL;
348c2ecf20Sopenharmony_ci	}
358c2ecf20Sopenharmony_ci
368c2ecf20Sopenharmony_ci	if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) {
378c2ecf20Sopenharmony_ci		dev_err(dev, "pll: invalid pixel clock frequency.\n");
388c2ecf20Sopenharmony_ci		return -EINVAL;
398c2ecf20Sopenharmony_ci	}
408c2ecf20Sopenharmony_ci
418c2ecf20Sopenharmony_ci	/* Compute the multiplier M and combined N*P1 divisor. */
428c2ecf20Sopenharmony_ci	div = gcd(pll->pix_clock, pll->ext_clock);
438c2ecf20Sopenharmony_ci	pll->m = pll->pix_clock / div;
448c2ecf20Sopenharmony_ci	div = pll->ext_clock / div;
458c2ecf20Sopenharmony_ci
468c2ecf20Sopenharmony_ci	/* We now have the smallest M and N*P1 values that will result in the
478c2ecf20Sopenharmony_ci	 * desired pixel clock frequency, but they might be out of the valid
488c2ecf20Sopenharmony_ci	 * range. Compute the factor by which we should multiply them given the
498c2ecf20Sopenharmony_ci	 * following constraints:
508c2ecf20Sopenharmony_ci	 *
518c2ecf20Sopenharmony_ci	 * - minimum/maximum multiplier
528c2ecf20Sopenharmony_ci	 * - minimum/maximum multiplier output clock frequency assuming the
538c2ecf20Sopenharmony_ci	 *   minimum/maximum N value
548c2ecf20Sopenharmony_ci	 * - minimum/maximum combined N*P1 divisor
558c2ecf20Sopenharmony_ci	 */
568c2ecf20Sopenharmony_ci	mf_min = DIV_ROUND_UP(limits->m_min, pll->m);
578c2ecf20Sopenharmony_ci	mf_min = max(mf_min, limits->out_clock_min /
588c2ecf20Sopenharmony_ci		     (pll->ext_clock / limits->n_min * pll->m));
598c2ecf20Sopenharmony_ci	mf_min = max(mf_min, limits->n_min * limits->p1_min / div);
608c2ecf20Sopenharmony_ci	mf_max = limits->m_max / pll->m;
618c2ecf20Sopenharmony_ci	mf_max = min(mf_max, limits->out_clock_max /
628c2ecf20Sopenharmony_ci		    (pll->ext_clock / limits->n_max * pll->m));
638c2ecf20Sopenharmony_ci	mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div));
648c2ecf20Sopenharmony_ci
658c2ecf20Sopenharmony_ci	dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max);
668c2ecf20Sopenharmony_ci	if (mf_min > mf_max) {
678c2ecf20Sopenharmony_ci		dev_err(dev, "pll: no valid combined N*P1 divisor.\n");
688c2ecf20Sopenharmony_ci		return -EINVAL;
698c2ecf20Sopenharmony_ci	}
708c2ecf20Sopenharmony_ci
718c2ecf20Sopenharmony_ci	/*
728c2ecf20Sopenharmony_ci	 * We're looking for the highest acceptable P1 value for which a
738c2ecf20Sopenharmony_ci	 * multiplier factor MF exists that fulfills the following conditions:
748c2ecf20Sopenharmony_ci	 *
758c2ecf20Sopenharmony_ci	 * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
768c2ecf20Sopenharmony_ci	 *    even
778c2ecf20Sopenharmony_ci	 * 2. mf is in the [mf_min, mf_max] range computed above
788c2ecf20Sopenharmony_ci	 * 3. div * mf is a multiple of p1, in order to compute
798c2ecf20Sopenharmony_ci	 *	n = div * mf / p1
808c2ecf20Sopenharmony_ci	 *	m = pll->m * mf
818c2ecf20Sopenharmony_ci	 * 4. the internal clock frequency, given by ext_clock / n, is in the
828c2ecf20Sopenharmony_ci	 *    [int_clock_min, int_clock_max] range given by the limits
838c2ecf20Sopenharmony_ci	 * 5. the output clock frequency, given by ext_clock / n * m, is in the
848c2ecf20Sopenharmony_ci	 *    [out_clock_min, out_clock_max] range given by the limits
858c2ecf20Sopenharmony_ci	 *
868c2ecf20Sopenharmony_ci	 * The first naive approach is to iterate over all p1 values acceptable
878c2ecf20Sopenharmony_ci	 * according to (1) and all mf values acceptable according to (2), and
888c2ecf20Sopenharmony_ci	 * stop at the first combination that fulfills (3), (4) and (5). This
898c2ecf20Sopenharmony_ci	 * has a O(n^2) complexity.
908c2ecf20Sopenharmony_ci	 *
918c2ecf20Sopenharmony_ci	 * Instead of iterating over all mf values in the [mf_min, mf_max] range
928c2ecf20Sopenharmony_ci	 * we can compute the mf increment between two acceptable values
938c2ecf20Sopenharmony_ci	 * according to (3) with
948c2ecf20Sopenharmony_ci	 *
958c2ecf20Sopenharmony_ci	 *	mf_inc = p1 / gcd(div, p1)			(6)
968c2ecf20Sopenharmony_ci	 *
978c2ecf20Sopenharmony_ci	 * and round the minimum up to the nearest multiple of mf_inc. This will
988c2ecf20Sopenharmony_ci	 * restrict the number of mf values to be checked.
998c2ecf20Sopenharmony_ci	 *
1008c2ecf20Sopenharmony_ci	 * Furthermore, conditions (4) and (5) only restrict the range of
1018c2ecf20Sopenharmony_ci	 * acceptable p1 and mf values by modifying the minimum and maximum
1028c2ecf20Sopenharmony_ci	 * limits. (5) can be expressed as
1038c2ecf20Sopenharmony_ci	 *
1048c2ecf20Sopenharmony_ci	 *	ext_clock / (div * mf / p1) * m * mf >= out_clock_min
1058c2ecf20Sopenharmony_ci	 *	ext_clock / (div * mf / p1) * m * mf <= out_clock_max
1068c2ecf20Sopenharmony_ci	 *
1078c2ecf20Sopenharmony_ci	 * or
1088c2ecf20Sopenharmony_ci	 *
1098c2ecf20Sopenharmony_ci	 *	p1 >= out_clock_min * div / (ext_clock * m)	(7)
1108c2ecf20Sopenharmony_ci	 *	p1 <= out_clock_max * div / (ext_clock * m)
1118c2ecf20Sopenharmony_ci	 *
1128c2ecf20Sopenharmony_ci	 * Similarly, (4) can be expressed as
1138c2ecf20Sopenharmony_ci	 *
1148c2ecf20Sopenharmony_ci	 *	mf >= ext_clock * p1 / (int_clock_max * div)	(8)
1158c2ecf20Sopenharmony_ci	 *	mf <= ext_clock * p1 / (int_clock_min * div)
1168c2ecf20Sopenharmony_ci	 *
1178c2ecf20Sopenharmony_ci	 * We can thus iterate over the restricted p1 range defined by the
1188c2ecf20Sopenharmony_ci	 * combination of (1) and (7), and then compute the restricted mf range
1198c2ecf20Sopenharmony_ci	 * defined by the combination of (2), (6) and (8). If the resulting mf
1208c2ecf20Sopenharmony_ci	 * range is not empty, any value in the mf range is acceptable. We thus
1218c2ecf20Sopenharmony_ci	 * select the mf lwoer bound and the corresponding p1 value.
1228c2ecf20Sopenharmony_ci	 */
1238c2ecf20Sopenharmony_ci	if (limits->p1_min == 0) {
1248c2ecf20Sopenharmony_ci		dev_err(dev, "pll: P1 minimum value must be >0.\n");
1258c2ecf20Sopenharmony_ci		return -EINVAL;
1268c2ecf20Sopenharmony_ci	}
1278c2ecf20Sopenharmony_ci
1288c2ecf20Sopenharmony_ci	p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div,
1298c2ecf20Sopenharmony_ci		     pll->ext_clock * pll->m));
1308c2ecf20Sopenharmony_ci	p1_max = min(limits->p1_max, limits->out_clock_max * div /
1318c2ecf20Sopenharmony_ci		     (pll->ext_clock * pll->m));
1328c2ecf20Sopenharmony_ci
1338c2ecf20Sopenharmony_ci	for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) {
1348c2ecf20Sopenharmony_ci		unsigned int mf_inc = p1 / gcd(div, p1);
1358c2ecf20Sopenharmony_ci		unsigned int mf_high;
1368c2ecf20Sopenharmony_ci		unsigned int mf_low;
1378c2ecf20Sopenharmony_ci
1388c2ecf20Sopenharmony_ci		mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1,
1398c2ecf20Sopenharmony_ci					limits->int_clock_max * div)), mf_inc);
1408c2ecf20Sopenharmony_ci		mf_high = min(mf_max, pll->ext_clock * p1 /
1418c2ecf20Sopenharmony_ci			      (limits->int_clock_min * div));
1428c2ecf20Sopenharmony_ci
1438c2ecf20Sopenharmony_ci		if (mf_low > mf_high)
1448c2ecf20Sopenharmony_ci			continue;
1458c2ecf20Sopenharmony_ci
1468c2ecf20Sopenharmony_ci		pll->n = div * mf_low / p1;
1478c2ecf20Sopenharmony_ci		pll->m *= mf_low;
1488c2ecf20Sopenharmony_ci		pll->p1 = p1;
1498c2ecf20Sopenharmony_ci		dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1);
1508c2ecf20Sopenharmony_ci		return 0;
1518c2ecf20Sopenharmony_ci	}
1528c2ecf20Sopenharmony_ci
1538c2ecf20Sopenharmony_ci	dev_err(dev, "pll: no valid N and P1 divisors found.\n");
1548c2ecf20Sopenharmony_ci	return -EINVAL;
1558c2ecf20Sopenharmony_ci}
1568c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(aptina_pll_calculate);
1578c2ecf20Sopenharmony_ci
1588c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("Aptina PLL Helpers");
1598c2ecf20Sopenharmony_ciMODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1608c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL v2");
161