1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * adv7604 - Analog Devices ADV7604 video decoder driver
4 *
5 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 *
7 */
8
9/*
10 * References (c = chapter, p = page):
11 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12 *		Revision 2.5, June 2010
13 * REF_02 - Analog devices, Register map documentation, Documentation of
14 *		the register maps, Software manual, Rev. F, June 2010
15 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
16 */
17
18#include <linux/delay.h>
19#include <linux/gpio/consumer.h>
20#include <linux/hdmi.h>
21#include <linux/i2c.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/of_graph.h>
25#include <linux/slab.h>
26#include <linux/v4l2-dv-timings.h>
27#include <linux/videodev2.h>
28#include <linux/workqueue.h>
29#include <linux/regmap.h>
30#include <linux/interrupt.h>
31
32#include <media/i2c/adv7604.h>
33#include <media/cec.h>
34#include <media/v4l2-ctrls.h>
35#include <media/v4l2-device.h>
36#include <media/v4l2-event.h>
37#include <media/v4l2-dv-timings.h>
38#include <media/v4l2-fwnode.h>
39
40static int debug;
41module_param(debug, int, 0644);
42MODULE_PARM_DESC(debug, "debug level (0-2)");
43
44MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
45MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
46MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
47MODULE_LICENSE("GPL");
48
49/* ADV7604 system clock frequency */
50#define ADV76XX_FSC (28636360)
51
52#define ADV76XX_RGB_OUT					(1 << 1)
53
54#define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
55#define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
56#define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
57
58#define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
59#define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
60#define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
61#define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
62#define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
63#define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)
64
65#define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
66#define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
67#define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
68#define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
69#define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
70#define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
71
72#define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
73
74#define ADV76XX_MAX_ADDRS (3)
75
76enum adv76xx_type {
77	ADV7604,
78	ADV7611,
79	ADV7612,
80};
81
82struct adv76xx_reg_seq {
83	unsigned int reg;
84	u8 val;
85};
86
87struct adv76xx_format_info {
88	u32 code;
89	u8 op_ch_sel;
90	bool rgb_out;
91	bool swap_cb_cr;
92	u8 op_format_sel;
93};
94
95struct adv76xx_cfg_read_infoframe {
96	const char *desc;
97	u8 present_mask;
98	u8 head_addr;
99	u8 payload_addr;
100};
101
102struct adv76xx_chip_info {
103	enum adv76xx_type type;
104
105	bool has_afe;
106	unsigned int max_port;
107	unsigned int num_dv_ports;
108
109	unsigned int edid_enable_reg;
110	unsigned int edid_status_reg;
111	unsigned int lcf_reg;
112
113	unsigned int cable_det_mask;
114	unsigned int tdms_lock_mask;
115	unsigned int fmt_change_digital_mask;
116	unsigned int cp_csc;
117
118	unsigned int cec_irq_status;
119	unsigned int cec_rx_enable;
120	unsigned int cec_rx_enable_mask;
121	bool cec_irq_swap;
122
123	const struct adv76xx_format_info *formats;
124	unsigned int nformats;
125
126	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
127	void (*setup_irqs)(struct v4l2_subdev *sd);
128	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
129	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
130
131	/* 0 = AFE, 1 = HDMI */
132	const struct adv76xx_reg_seq *recommended_settings[2];
133	unsigned int num_recommended_settings[2];
134
135	unsigned long page_mask;
136
137	/* Masks for timings */
138	unsigned int linewidth_mask;
139	unsigned int field0_height_mask;
140	unsigned int field1_height_mask;
141	unsigned int hfrontporch_mask;
142	unsigned int hsync_mask;
143	unsigned int hbackporch_mask;
144	unsigned int field0_vfrontporch_mask;
145	unsigned int field1_vfrontporch_mask;
146	unsigned int field0_vsync_mask;
147	unsigned int field1_vsync_mask;
148	unsigned int field0_vbackporch_mask;
149	unsigned int field1_vbackporch_mask;
150};
151
152/*
153 **********************************************************************
154 *
155 *  Arrays with configuration parameters for the ADV7604
156 *
157 **********************************************************************
158 */
159
160struct adv76xx_state {
161	const struct adv76xx_chip_info *info;
162	struct adv76xx_platform_data pdata;
163
164	struct gpio_desc *hpd_gpio[4];
165	struct gpio_desc *reset_gpio;
166
167	struct v4l2_subdev sd;
168	struct media_pad pads[ADV76XX_PAD_MAX];
169	unsigned int source_pad;
170
171	struct v4l2_ctrl_handler hdl;
172
173	enum adv76xx_pad selected_input;
174
175	struct v4l2_dv_timings timings;
176	const struct adv76xx_format_info *format;
177
178	struct {
179		u8 edid[256];
180		u32 present;
181		unsigned blocks;
182	} edid;
183	u16 spa_port_a[2];
184	struct v4l2_fract aspect_ratio;
185	u32 rgb_quantization_range;
186	struct delayed_work delayed_work_enable_hotplug;
187	bool restart_stdi_once;
188
189	/* CEC */
190	struct cec_adapter *cec_adap;
191	u8   cec_addr[ADV76XX_MAX_ADDRS];
192	u8   cec_valid_addrs;
193	bool cec_enabled_adap;
194
195	/* i2c clients */
196	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
197
198	/* Regmaps */
199	struct regmap *regmap[ADV76XX_PAGE_MAX];
200
201	/* controls */
202	struct v4l2_ctrl *detect_tx_5v_ctrl;
203	struct v4l2_ctrl *analog_sampling_phase_ctrl;
204	struct v4l2_ctrl *free_run_color_manual_ctrl;
205	struct v4l2_ctrl *free_run_color_ctrl;
206	struct v4l2_ctrl *rgb_quantization_range_ctrl;
207};
208
209static bool adv76xx_has_afe(struct adv76xx_state *state)
210{
211	return state->info->has_afe;
212}
213
214/* Unsupported timings. This device cannot support 720p30. */
215static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
216	V4L2_DV_BT_CEA_1280X720P30,
217	{ }
218};
219
220static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
221{
222	int i;
223
224	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
225		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
226			return false;
227	return true;
228}
229
230struct adv76xx_video_standards {
231	struct v4l2_dv_timings timings;
232	u8 vid_std;
233	u8 v_freq;
234};
235
236/* sorted by number of lines */
237static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
238	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
239	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
240	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
241	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
242	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
243	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
244	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
245	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
246	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
247	/* TODO add 1920x1080P60_RB (CVT timing) */
248	{ },
249};
250
251/* sorted by number of lines */
252static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
253	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
254	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
255	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
256	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
257	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
258	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
259	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
260	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
261	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
262	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
263	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
264	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
265	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
266	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
267	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
268	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
269	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
270	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
271	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
272	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
273	/* TODO add 1600X1200P60_RB (not a DMT timing) */
274	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
275	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
276	{ },
277};
278
279/* sorted by number of lines */
280static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
281	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
282	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
283	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
284	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
285	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
286	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
287	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
288	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
289	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
290	{ },
291};
292
293/* sorted by number of lines */
294static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
295	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
296	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
297	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
298	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
299	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
300	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
301	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
302	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
303	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
304	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
305	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
306	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
307	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
308	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
309	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
310	{ },
311};
312
313static const struct v4l2_event adv76xx_ev_fmt = {
314	.type = V4L2_EVENT_SOURCE_CHANGE,
315	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
316};
317
318/* ----------------------------------------------------------------------- */
319
320static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
321{
322	return container_of(sd, struct adv76xx_state, sd);
323}
324
325static inline unsigned htotal(const struct v4l2_bt_timings *t)
326{
327	return V4L2_DV_BT_FRAME_WIDTH(t);
328}
329
330static inline unsigned vtotal(const struct v4l2_bt_timings *t)
331{
332	return V4L2_DV_BT_FRAME_HEIGHT(t);
333}
334
335/* ----------------------------------------------------------------------- */
336
337static int adv76xx_read_check(struct adv76xx_state *state,
338			     int client_page, u8 reg)
339{
340	struct i2c_client *client = state->i2c_clients[client_page];
341	int err;
342	unsigned int val;
343
344	err = regmap_read(state->regmap[client_page], reg, &val);
345
346	if (err) {
347		v4l_err(client, "error reading %02x, %02x\n",
348				client->addr, reg);
349		return err;
350	}
351	return val;
352}
353
354/* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
355 * size to one or more registers.
356 *
357 * A value of zero will be returned on success, a negative errno will
358 * be returned in error cases.
359 */
360static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
361			      unsigned int init_reg, const void *val,
362			      size_t val_len)
363{
364	struct regmap *regmap = state->regmap[client_page];
365
366	if (val_len > I2C_SMBUS_BLOCK_MAX)
367		val_len = I2C_SMBUS_BLOCK_MAX;
368
369	return regmap_raw_write(regmap, init_reg, val, val_len);
370}
371
372/* ----------------------------------------------------------------------- */
373
374static inline int io_read(struct v4l2_subdev *sd, u8 reg)
375{
376	struct adv76xx_state *state = to_state(sd);
377
378	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
379}
380
381static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
382{
383	struct adv76xx_state *state = to_state(sd);
384
385	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
386}
387
388static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
389				   u8 val)
390{
391	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
392}
393
394static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
395{
396	struct adv76xx_state *state = to_state(sd);
397
398	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
399}
400
401static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
402{
403	struct adv76xx_state *state = to_state(sd);
404
405	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
406}
407
408static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
409{
410	struct adv76xx_state *state = to_state(sd);
411
412	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
413}
414
415static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
416{
417	struct adv76xx_state *state = to_state(sd);
418
419	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
420}
421
422static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
423				   u8 val)
424{
425	return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
426}
427
428static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
429{
430	struct adv76xx_state *state = to_state(sd);
431
432	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
433}
434
435static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
436{
437	struct adv76xx_state *state = to_state(sd);
438
439	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
440}
441
442static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
443{
444	struct adv76xx_state *state = to_state(sd);
445
446	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
447}
448
449static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
450{
451	struct adv76xx_state *state = to_state(sd);
452
453	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
454}
455
456static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
457{
458	struct adv76xx_state *state = to_state(sd);
459
460	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
461}
462
463static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
464{
465	struct adv76xx_state *state = to_state(sd);
466
467	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
468}
469
470static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
471{
472	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
473}
474
475static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
476{
477	struct adv76xx_state *state = to_state(sd);
478
479	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
480}
481
482static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
483{
484	struct adv76xx_state *state = to_state(sd);
485
486	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
487}
488
489static inline int edid_write_block(struct v4l2_subdev *sd,
490					unsigned int total_len, const u8 *val)
491{
492	struct adv76xx_state *state = to_state(sd);
493	int err = 0;
494	int i = 0;
495	int len = 0;
496
497	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
498				__func__, total_len);
499
500	while (!err && i < total_len) {
501		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
502				I2C_SMBUS_BLOCK_MAX :
503				(total_len - i);
504
505		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
506				i, val + i, len);
507		i += len;
508	}
509
510	return err;
511}
512
513static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
514{
515	unsigned int i;
516
517	for (i = 0; i < state->info->num_dv_ports; ++i)
518		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
519
520	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
521}
522
523static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
524{
525	struct delayed_work *dwork = to_delayed_work(work);
526	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
527						delayed_work_enable_hotplug);
528	struct v4l2_subdev *sd = &state->sd;
529
530	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
531
532	adv76xx_set_hpd(state, state->edid.present);
533}
534
535static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
536{
537	struct adv76xx_state *state = to_state(sd);
538
539	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
540}
541
542static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
543{
544	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
545}
546
547static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
548{
549	struct adv76xx_state *state = to_state(sd);
550
551	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
552}
553
554static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
555{
556	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
557}
558
559static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
560{
561	struct adv76xx_state *state = to_state(sd);
562
563	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
564}
565
566static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
567{
568	struct adv76xx_state *state = to_state(sd);
569
570	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
571}
572
573static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
574{
575	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
576}
577
578static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
579{
580	struct adv76xx_state *state = to_state(sd);
581
582	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
583}
584
585static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
586{
587	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
588}
589
590static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
591{
592	struct adv76xx_state *state = to_state(sd);
593
594	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
595}
596
597static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
598{
599	struct adv76xx_state *state = to_state(sd);
600
601	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
602}
603
604#define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
605#define ADV76XX_REG_SEQ_TERM		0xffff
606
607#ifdef CONFIG_VIDEO_ADV_DEBUG
608static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
609{
610	struct adv76xx_state *state = to_state(sd);
611	unsigned int page = reg >> 8;
612	unsigned int val;
613	int err;
614
615	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
616		return -EINVAL;
617
618	reg &= 0xff;
619	err = regmap_read(state->regmap[page], reg, &val);
620
621	return err ? err : val;
622}
623#endif
624
625static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
626{
627	struct adv76xx_state *state = to_state(sd);
628	unsigned int page = reg >> 8;
629
630	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
631		return -EINVAL;
632
633	reg &= 0xff;
634
635	return regmap_write(state->regmap[page], reg, val);
636}
637
638static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
639				  const struct adv76xx_reg_seq *reg_seq)
640{
641	unsigned int i;
642
643	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
644		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
645}
646
647/* -----------------------------------------------------------------------------
648 * Format helpers
649 */
650
651static const struct adv76xx_format_info adv7604_formats[] = {
652	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
653	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
654	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
655	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
656	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
657	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
658	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
659	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
660	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
661	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
662	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
663	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
664	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
665	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
666	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
667	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
668	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
669	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
670	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
671	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
672	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
673	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
674	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
675	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
676	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
677	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
678	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
679	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
680	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
681	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
682	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
683	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
684	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
685	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
686	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
687	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
688	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
689	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
690};
691
692static const struct adv76xx_format_info adv7611_formats[] = {
693	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
694	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
695	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
696	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
697	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
698	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
699	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
700	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
701	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
702	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
703	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
704	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
705	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
706	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
707	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
708	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
709	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
710	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
711	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
712	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
713	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
714	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
715	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
716	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
717	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
718	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
719};
720
721static const struct adv76xx_format_info adv7612_formats[] = {
722	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
723	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
724	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
725	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
726	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
727	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
728	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
729	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
730	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
731	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
732	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
733	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
734	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
735	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
736};
737
738static const struct adv76xx_format_info *
739adv76xx_format_info(struct adv76xx_state *state, u32 code)
740{
741	unsigned int i;
742
743	for (i = 0; i < state->info->nformats; ++i) {
744		if (state->info->formats[i].code == code)
745			return &state->info->formats[i];
746	}
747
748	return NULL;
749}
750
751/* ----------------------------------------------------------------------- */
752
753static inline bool is_analog_input(struct v4l2_subdev *sd)
754{
755	struct adv76xx_state *state = to_state(sd);
756
757	return state->selected_input == ADV7604_PAD_VGA_RGB ||
758	       state->selected_input == ADV7604_PAD_VGA_COMP;
759}
760
761static inline bool is_digital_input(struct v4l2_subdev *sd)
762{
763	struct adv76xx_state *state = to_state(sd);
764
765	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
766	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
767	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
768	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
769}
770
771static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
772	.type = V4L2_DV_BT_656_1120,
773	/* keep this initialization for compatibility with GCC < 4.4.6 */
774	.reserved = { 0 },
775	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
776		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
777			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
778		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
779			V4L2_DV_BT_CAP_CUSTOM)
780};
781
782static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
783	.type = V4L2_DV_BT_656_1120,
784	/* keep this initialization for compatibility with GCC < 4.4.6 */
785	.reserved = { 0 },
786	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
787		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
788			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
789		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
790			V4L2_DV_BT_CAP_CUSTOM)
791};
792
793/*
794 * Return the DV timings capabilities for the requested sink pad. As a special
795 * case, pad value -1 returns the capabilities for the currently selected input.
796 */
797static const struct v4l2_dv_timings_cap *
798adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
799{
800	if (pad == -1) {
801		struct adv76xx_state *state = to_state(sd);
802
803		pad = state->selected_input;
804	}
805
806	switch (pad) {
807	case ADV76XX_PAD_HDMI_PORT_A:
808	case ADV7604_PAD_HDMI_PORT_B:
809	case ADV7604_PAD_HDMI_PORT_C:
810	case ADV7604_PAD_HDMI_PORT_D:
811		return &adv76xx_timings_cap_digital;
812
813	case ADV7604_PAD_VGA_RGB:
814	case ADV7604_PAD_VGA_COMP:
815	default:
816		return &adv7604_timings_cap_analog;
817	}
818}
819
820
821/* ----------------------------------------------------------------------- */
822
823#ifdef CONFIG_VIDEO_ADV_DEBUG
824static void adv76xx_inv_register(struct v4l2_subdev *sd)
825{
826	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
827	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
828	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
829	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
830	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
831	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
832	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
833	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
834	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
835	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
836	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
837	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
838	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
839}
840
841static int adv76xx_g_register(struct v4l2_subdev *sd,
842					struct v4l2_dbg_register *reg)
843{
844	int ret;
845
846	ret = adv76xx_read_reg(sd, reg->reg);
847	if (ret < 0) {
848		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
849		adv76xx_inv_register(sd);
850		return ret;
851	}
852
853	reg->size = 1;
854	reg->val = ret;
855
856	return 0;
857}
858
859static int adv76xx_s_register(struct v4l2_subdev *sd,
860					const struct v4l2_dbg_register *reg)
861{
862	int ret;
863
864	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
865	if (ret < 0) {
866		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
867		adv76xx_inv_register(sd);
868		return ret;
869	}
870
871	return 0;
872}
873#endif
874
875static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
876{
877	u8 value = io_read(sd, 0x6f);
878
879	return ((value & 0x10) >> 4)
880	     | ((value & 0x08) >> 2)
881	     | ((value & 0x04) << 0)
882	     | ((value & 0x02) << 2);
883}
884
885static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
886{
887	u8 value = io_read(sd, 0x6f);
888
889	return value & 1;
890}
891
892static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
893{
894	/*  Reads CABLE_DET_A_RAW. For input B support, need to
895	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
896	 */
897	u8 value = io_read(sd, 0x6f);
898
899	return value & 1;
900}
901
902static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
903{
904	struct adv76xx_state *state = to_state(sd);
905	const struct adv76xx_chip_info *info = state->info;
906	u16 cable_det = info->read_cable_det(sd);
907
908	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
909}
910
911static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
912		u8 prim_mode,
913		const struct adv76xx_video_standards *predef_vid_timings,
914		const struct v4l2_dv_timings *timings)
915{
916	int i;
917
918	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
919		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
920				is_digital_input(sd) ? 250000 : 1000000, false))
921			continue;
922		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
923		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
924				prim_mode); /* v_freq and prim mode */
925		return 0;
926	}
927
928	return -1;
929}
930
931static int configure_predefined_video_timings(struct v4l2_subdev *sd,
932		struct v4l2_dv_timings *timings)
933{
934	struct adv76xx_state *state = to_state(sd);
935	int err;
936
937	v4l2_dbg(1, debug, sd, "%s", __func__);
938
939	if (adv76xx_has_afe(state)) {
940		/* reset to default values */
941		io_write(sd, 0x16, 0x43);
942		io_write(sd, 0x17, 0x5a);
943	}
944	/* disable embedded syncs for auto graphics mode */
945	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
946	cp_write(sd, 0x8f, 0x00);
947	cp_write(sd, 0x90, 0x00);
948	cp_write(sd, 0xa2, 0x00);
949	cp_write(sd, 0xa3, 0x00);
950	cp_write(sd, 0xa4, 0x00);
951	cp_write(sd, 0xa5, 0x00);
952	cp_write(sd, 0xa6, 0x00);
953	cp_write(sd, 0xa7, 0x00);
954	cp_write(sd, 0xab, 0x00);
955	cp_write(sd, 0xac, 0x00);
956
957	if (is_analog_input(sd)) {
958		err = find_and_set_predefined_video_timings(sd,
959				0x01, adv7604_prim_mode_comp, timings);
960		if (err)
961			err = find_and_set_predefined_video_timings(sd,
962					0x02, adv7604_prim_mode_gr, timings);
963	} else if (is_digital_input(sd)) {
964		err = find_and_set_predefined_video_timings(sd,
965				0x05, adv76xx_prim_mode_hdmi_comp, timings);
966		if (err)
967			err = find_and_set_predefined_video_timings(sd,
968					0x06, adv76xx_prim_mode_hdmi_gr, timings);
969	} else {
970		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
971				__func__, state->selected_input);
972		err = -1;
973	}
974
975
976	return err;
977}
978
979static void configure_custom_video_timings(struct v4l2_subdev *sd,
980		const struct v4l2_bt_timings *bt)
981{
982	struct adv76xx_state *state = to_state(sd);
983	u32 width = htotal(bt);
984	u32 height = vtotal(bt);
985	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
986	u16 cp_start_eav = width - bt->hfrontporch;
987	u16 cp_start_vbi = height - bt->vfrontporch;
988	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
989	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
990		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
991	const u8 pll[2] = {
992		0xc0 | ((width >> 8) & 0x1f),
993		width & 0xff
994	};
995
996	v4l2_dbg(2, debug, sd, "%s\n", __func__);
997
998	if (is_analog_input(sd)) {
999		/* auto graphics */
1000		io_write(sd, 0x00, 0x07); /* video std */
1001		io_write(sd, 0x01, 0x02); /* prim mode */
1002		/* enable embedded syncs for auto graphics mode */
1003		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1004
1005		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1006		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1007		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
1008		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1009					0x16, pll, 2))
1010			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1011
1012		/* active video - horizontal timing */
1013		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1014		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1015				   ((cp_start_eav >> 8) & 0x0f));
1016		cp_write(sd, 0xa4, cp_start_eav & 0xff);
1017
1018		/* active video - vertical timing */
1019		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1020		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1021				   ((cp_end_vbi >> 8) & 0xf));
1022		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1023	} else if (is_digital_input(sd)) {
1024		/* set default prim_mode/vid_std for HDMI
1025		   according to [REF_03, c. 4.2] */
1026		io_write(sd, 0x00, 0x02); /* video std */
1027		io_write(sd, 0x01, 0x06); /* prim mode */
1028	} else {
1029		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1030				__func__, state->selected_input);
1031	}
1032
1033	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1034	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1035	cp_write(sd, 0xab, (height >> 4) & 0xff);
1036	cp_write(sd, 0xac, (height & 0x0f) << 4);
1037}
1038
1039static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1040{
1041	struct adv76xx_state *state = to_state(sd);
1042	u8 offset_buf[4];
1043
1044	if (auto_offset) {
1045		offset_a = 0x3ff;
1046		offset_b = 0x3ff;
1047		offset_c = 0x3ff;
1048	}
1049
1050	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1051			__func__, auto_offset ? "Auto" : "Manual",
1052			offset_a, offset_b, offset_c);
1053
1054	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1055	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1056	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1057	offset_buf[3] = offset_c & 0x0ff;
1058
1059	/* Registers must be written in this order with no i2c access in between */
1060	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1061			0x77, offset_buf, 4))
1062		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1063}
1064
1065static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1066{
1067	struct adv76xx_state *state = to_state(sd);
1068	u8 gain_buf[4];
1069	u8 gain_man = 1;
1070	u8 agc_mode_man = 1;
1071
1072	if (auto_gain) {
1073		gain_man = 0;
1074		agc_mode_man = 0;
1075		gain_a = 0x100;
1076		gain_b = 0x100;
1077		gain_c = 0x100;
1078	}
1079
1080	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1081			__func__, auto_gain ? "Auto" : "Manual",
1082			gain_a, gain_b, gain_c);
1083
1084	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1085	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1086	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1087	gain_buf[3] = ((gain_c & 0x0ff));
1088
1089	/* Registers must be written in this order with no i2c access in between */
1090	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1091			     0x73, gain_buf, 4))
1092		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1093}
1094
1095static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1096{
1097	struct adv76xx_state *state = to_state(sd);
1098	bool rgb_output = io_read(sd, 0x02) & 0x02;
1099	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1100	u8 y = HDMI_COLORSPACE_RGB;
1101
1102	if (hdmi_signal && (io_read(sd, 0x60) & 1))
1103		y = infoframe_read(sd, 0x01) >> 5;
1104
1105	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1106			__func__, state->rgb_quantization_range,
1107			rgb_output, hdmi_signal);
1108
1109	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1110	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1111	io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1112
1113	switch (state->rgb_quantization_range) {
1114	case V4L2_DV_RGB_RANGE_AUTO:
1115		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1116			/* Receiving analog RGB signal
1117			 * Set RGB full range (0-255) */
1118			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1119			break;
1120		}
1121
1122		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1123			/* Receiving analog YPbPr signal
1124			 * Set automode */
1125			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1126			break;
1127		}
1128
1129		if (hdmi_signal) {
1130			/* Receiving HDMI signal
1131			 * Set automode */
1132			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1133			break;
1134		}
1135
1136		/* Receiving DVI-D signal
1137		 * ADV7604 selects RGB limited range regardless of
1138		 * input format (CE/IT) in automatic mode */
1139		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1140			/* RGB limited range (16-235) */
1141			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1142		} else {
1143			/* RGB full range (0-255) */
1144			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1145
1146			if (is_digital_input(sd) && rgb_output) {
1147				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1148			} else {
1149				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1150				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1151			}
1152		}
1153		break;
1154	case V4L2_DV_RGB_RANGE_LIMITED:
1155		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1156			/* YCrCb limited range (16-235) */
1157			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1158			break;
1159		}
1160
1161		if (y != HDMI_COLORSPACE_RGB)
1162			break;
1163
1164		/* RGB limited range (16-235) */
1165		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1166
1167		break;
1168	case V4L2_DV_RGB_RANGE_FULL:
1169		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1170			/* YCrCb full range (0-255) */
1171			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1172			break;
1173		}
1174
1175		if (y != HDMI_COLORSPACE_RGB)
1176			break;
1177
1178		/* RGB full range (0-255) */
1179		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1180
1181		if (is_analog_input(sd) || hdmi_signal)
1182			break;
1183
1184		/* Adjust gain/offset for DVI-D signals only */
1185		if (rgb_output) {
1186			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1187		} else {
1188			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1189			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1190		}
1191		break;
1192	}
1193}
1194
1195static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1196{
1197	struct v4l2_subdev *sd =
1198		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1199
1200	struct adv76xx_state *state = to_state(sd);
1201
1202	switch (ctrl->id) {
1203	case V4L2_CID_BRIGHTNESS:
1204		cp_write(sd, 0x3c, ctrl->val);
1205		return 0;
1206	case V4L2_CID_CONTRAST:
1207		cp_write(sd, 0x3a, ctrl->val);
1208		return 0;
1209	case V4L2_CID_SATURATION:
1210		cp_write(sd, 0x3b, ctrl->val);
1211		return 0;
1212	case V4L2_CID_HUE:
1213		cp_write(sd, 0x3d, ctrl->val);
1214		return 0;
1215	case  V4L2_CID_DV_RX_RGB_RANGE:
1216		state->rgb_quantization_range = ctrl->val;
1217		set_rgb_quantization_range(sd);
1218		return 0;
1219	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1220		if (!adv76xx_has_afe(state))
1221			return -EINVAL;
1222		/* Set the analog sampling phase. This is needed to find the
1223		   best sampling phase for analog video: an application or
1224		   driver has to try a number of phases and analyze the picture
1225		   quality before settling on the best performing phase. */
1226		afe_write(sd, 0xc8, ctrl->val);
1227		return 0;
1228	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1229		/* Use the default blue color for free running mode,
1230		   or supply your own. */
1231		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1232		return 0;
1233	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1234		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1235		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1236		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1237		return 0;
1238	}
1239	return -EINVAL;
1240}
1241
1242static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1243{
1244	struct v4l2_subdev *sd =
1245		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1246
1247	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1248		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1249		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1250			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1251		return 0;
1252	}
1253	return -EINVAL;
1254}
1255
1256/* ----------------------------------------------------------------------- */
1257
1258static inline bool no_power(struct v4l2_subdev *sd)
1259{
1260	/* Entire chip or CP powered off */
1261	return io_read(sd, 0x0c) & 0x24;
1262}
1263
1264static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1265{
1266	struct adv76xx_state *state = to_state(sd);
1267
1268	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1269}
1270
1271static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1272{
1273	struct adv76xx_state *state = to_state(sd);
1274	const struct adv76xx_chip_info *info = state->info;
1275
1276	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1277}
1278
1279static inline bool is_hdmi(struct v4l2_subdev *sd)
1280{
1281	return hdmi_read(sd, 0x05) & 0x80;
1282}
1283
1284static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1285{
1286	struct adv76xx_state *state = to_state(sd);
1287
1288	/*
1289	 * Chips without a AFE don't expose registers for the SSPD, so just assume
1290	 * that we have a lock.
1291	 */
1292	if (adv76xx_has_afe(state))
1293		return false;
1294
1295	/* TODO channel 2 */
1296	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1297}
1298
1299static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1300{
1301	/* TODO channel 2 */
1302	return !(cp_read(sd, 0xb1) & 0x80);
1303}
1304
1305static inline bool no_signal(struct v4l2_subdev *sd)
1306{
1307	bool ret;
1308
1309	ret = no_power(sd);
1310
1311	ret |= no_lock_stdi(sd);
1312	ret |= no_lock_sspd(sd);
1313
1314	if (is_digital_input(sd)) {
1315		ret |= no_lock_tmds(sd);
1316		ret |= no_signal_tmds(sd);
1317	}
1318
1319	return ret;
1320}
1321
1322static inline bool no_lock_cp(struct v4l2_subdev *sd)
1323{
1324	struct adv76xx_state *state = to_state(sd);
1325
1326	if (!adv76xx_has_afe(state))
1327		return false;
1328
1329	/* CP has detected a non standard number of lines on the incoming
1330	   video compared to what it is configured to receive by s_dv_timings */
1331	return io_read(sd, 0x12) & 0x01;
1332}
1333
1334static inline bool in_free_run(struct v4l2_subdev *sd)
1335{
1336	return cp_read(sd, 0xff) & 0x10;
1337}
1338
1339static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1340{
1341	*status = 0;
1342	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1343	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1344	if (!in_free_run(sd) && no_lock_cp(sd))
1345		*status |= is_digital_input(sd) ?
1346			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1347
1348	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1349
1350	return 0;
1351}
1352
1353/* ----------------------------------------------------------------------- */
1354
1355struct stdi_readback {
1356	u16 bl, lcf, lcvs;
1357	u8 hs_pol, vs_pol;
1358	bool interlaced;
1359};
1360
1361static int stdi2dv_timings(struct v4l2_subdev *sd,
1362		struct stdi_readback *stdi,
1363		struct v4l2_dv_timings *timings)
1364{
1365	struct adv76xx_state *state = to_state(sd);
1366	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1367	u32 pix_clk;
1368	int i;
1369
1370	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1371		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1372
1373		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1374					   adv76xx_get_dv_timings_cap(sd, -1),
1375					   adv76xx_check_dv_timings, NULL))
1376			continue;
1377		if (vtotal(bt) != stdi->lcf + 1)
1378			continue;
1379		if (bt->vsync != stdi->lcvs)
1380			continue;
1381
1382		pix_clk = hfreq * htotal(bt);
1383
1384		if ((pix_clk < bt->pixelclock + 1000000) &&
1385		    (pix_clk > bt->pixelclock - 1000000)) {
1386			*timings = v4l2_dv_timings_presets[i];
1387			return 0;
1388		}
1389	}
1390
1391	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1392			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1393			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1394			false, timings))
1395		return 0;
1396	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1397			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1398			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1399			false, state->aspect_ratio, timings))
1400		return 0;
1401
1402	v4l2_dbg(2, debug, sd,
1403		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1404		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1405		stdi->hs_pol, stdi->vs_pol);
1406	return -1;
1407}
1408
1409
1410static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1411{
1412	struct adv76xx_state *state = to_state(sd);
1413	const struct adv76xx_chip_info *info = state->info;
1414	u8 polarity;
1415
1416	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1417		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1418		return -1;
1419	}
1420
1421	/* read STDI */
1422	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1423	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1424	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1425	stdi->interlaced = io_read(sd, 0x12) & 0x10;
1426
1427	if (adv76xx_has_afe(state)) {
1428		/* read SSPD */
1429		polarity = cp_read(sd, 0xb5);
1430		if ((polarity & 0x03) == 0x01) {
1431			stdi->hs_pol = polarity & 0x10
1432				     ? (polarity & 0x08 ? '+' : '-') : 'x';
1433			stdi->vs_pol = polarity & 0x40
1434				     ? (polarity & 0x20 ? '+' : '-') : 'x';
1435		} else {
1436			stdi->hs_pol = 'x';
1437			stdi->vs_pol = 'x';
1438		}
1439	} else {
1440		polarity = hdmi_read(sd, 0x05);
1441		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1442		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1443	}
1444
1445	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1446		v4l2_dbg(2, debug, sd,
1447			"%s: signal lost during readout of STDI/SSPD\n", __func__);
1448		return -1;
1449	}
1450
1451	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1452		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1453		memset(stdi, 0, sizeof(struct stdi_readback));
1454		return -1;
1455	}
1456
1457	v4l2_dbg(2, debug, sd,
1458		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1459		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
1460		stdi->hs_pol, stdi->vs_pol,
1461		stdi->interlaced ? "interlaced" : "progressive");
1462
1463	return 0;
1464}
1465
1466static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1467			struct v4l2_enum_dv_timings *timings)
1468{
1469	struct adv76xx_state *state = to_state(sd);
1470
1471	if (timings->pad >= state->source_pad)
1472		return -EINVAL;
1473
1474	return v4l2_enum_dv_timings_cap(timings,
1475		adv76xx_get_dv_timings_cap(sd, timings->pad),
1476		adv76xx_check_dv_timings, NULL);
1477}
1478
1479static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1480			struct v4l2_dv_timings_cap *cap)
1481{
1482	struct adv76xx_state *state = to_state(sd);
1483	unsigned int pad = cap->pad;
1484
1485	if (cap->pad >= state->source_pad)
1486		return -EINVAL;
1487
1488	*cap = *adv76xx_get_dv_timings_cap(sd, pad);
1489	cap->pad = pad;
1490
1491	return 0;
1492}
1493
1494/* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1495   if the format is listed in adv76xx_timings[] */
1496static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1497		struct v4l2_dv_timings *timings)
1498{
1499	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1500				 is_digital_input(sd) ? 250000 : 1000000,
1501				 adv76xx_check_dv_timings, NULL);
1502}
1503
1504static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1505{
1506	int a, b;
1507
1508	a = hdmi_read(sd, 0x06);
1509	b = hdmi_read(sd, 0x3b);
1510	if (a < 0 || b < 0)
1511		return 0;
1512
1513	return a * 1000000 + ((b & 0x30) >> 4) * 250000;
1514}
1515
1516static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1517{
1518	int a, b;
1519
1520	a = hdmi_read(sd, 0x51);
1521	b = hdmi_read(sd, 0x52);
1522	if (a < 0 || b < 0)
1523		return 0;
1524
1525	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1526}
1527
1528static unsigned int adv76xx_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1529{
1530	struct adv76xx_state *state = to_state(sd);
1531	const struct adv76xx_chip_info *info = state->info;
1532	unsigned int freq, bits_per_channel, pixelrepetition;
1533
1534	freq = info->read_hdmi_pixelclock(sd);
1535	if (is_hdmi(sd)) {
1536		/* adjust for deep color mode and pixel repetition */
1537		bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1538		pixelrepetition = (hdmi_read(sd, 0x05) & 0x0f) + 1;
1539
1540		freq = freq * 8 / bits_per_channel / pixelrepetition;
1541	}
1542
1543	return freq;
1544}
1545
1546static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1547			struct v4l2_dv_timings *timings)
1548{
1549	struct adv76xx_state *state = to_state(sd);
1550	const struct adv76xx_chip_info *info = state->info;
1551	struct v4l2_bt_timings *bt = &timings->bt;
1552	struct stdi_readback stdi;
1553
1554	if (!timings)
1555		return -EINVAL;
1556
1557	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1558
1559	if (no_signal(sd)) {
1560		state->restart_stdi_once = true;
1561		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1562		return -ENOLINK;
1563	}
1564
1565	/* read STDI */
1566	if (read_stdi(sd, &stdi)) {
1567		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1568		return -ENOLINK;
1569	}
1570	bt->interlaced = stdi.interlaced ?
1571		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1572
1573	if (is_digital_input(sd)) {
1574		bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1575		u8 vic = 0;
1576		u32 w, h;
1577
1578		w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1579		h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1580
1581		if (hdmi_signal && (io_read(sd, 0x60) & 1))
1582			vic = infoframe_read(sd, 0x04);
1583
1584		if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1585		    bt->width == w && bt->height == h)
1586			goto found;
1587
1588		timings->type = V4L2_DV_BT_656_1120;
1589
1590		bt->width = w;
1591		bt->height = h;
1592		bt->pixelclock = adv76xx_read_hdmi_pixelclock(sd);
1593		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1594		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1595		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1596		bt->vfrontporch = hdmi_read16(sd, 0x2a,
1597			info->field0_vfrontporch_mask) / 2;
1598		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1599		bt->vbackporch = hdmi_read16(sd, 0x32,
1600			info->field0_vbackporch_mask) / 2;
1601		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1602			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1603		if (bt->interlaced == V4L2_DV_INTERLACED) {
1604			bt->height += hdmi_read16(sd, 0x0b,
1605				info->field1_height_mask);
1606			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1607				info->field1_vfrontporch_mask) / 2;
1608			bt->il_vsync = hdmi_read16(sd, 0x30,
1609				info->field1_vsync_mask) / 2;
1610			bt->il_vbackporch = hdmi_read16(sd, 0x34,
1611				info->field1_vbackporch_mask) / 2;
1612		}
1613		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1614	} else {
1615		/* find format
1616		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1617		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1618		 */
1619		if (!stdi2dv_timings(sd, &stdi, timings))
1620			goto found;
1621		stdi.lcvs += 1;
1622		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1623		if (!stdi2dv_timings(sd, &stdi, timings))
1624			goto found;
1625		stdi.lcvs -= 2;
1626		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1627		if (stdi2dv_timings(sd, &stdi, timings)) {
1628			/*
1629			 * The STDI block may measure wrong values, especially
1630			 * for lcvs and lcf. If the driver can not find any
1631			 * valid timing, the STDI block is restarted to measure
1632			 * the video timings again. The function will return an
1633			 * error, but the restart of STDI will generate a new
1634			 * STDI interrupt and the format detection process will
1635			 * restart.
1636			 */
1637			if (state->restart_stdi_once) {
1638				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1639				/* TODO restart STDI for Sync Channel 2 */
1640				/* enter one-shot mode */
1641				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1642				/* trigger STDI restart */
1643				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1644				/* reset to continuous mode */
1645				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1646				state->restart_stdi_once = false;
1647				return -ENOLINK;
1648			}
1649			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1650			return -ERANGE;
1651		}
1652		state->restart_stdi_once = true;
1653	}
1654found:
1655
1656	if (no_signal(sd)) {
1657		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1658		memset(timings, 0, sizeof(struct v4l2_dv_timings));
1659		return -ENOLINK;
1660	}
1661
1662	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1663			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1664		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1665				__func__, (u32)bt->pixelclock);
1666		return -ERANGE;
1667	}
1668
1669	if (debug > 1)
1670		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1671				      timings, true);
1672
1673	return 0;
1674}
1675
1676static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1677		struct v4l2_dv_timings *timings)
1678{
1679	struct adv76xx_state *state = to_state(sd);
1680	struct v4l2_bt_timings *bt;
1681	int err;
1682
1683	if (!timings)
1684		return -EINVAL;
1685
1686	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1687		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1688		return 0;
1689	}
1690
1691	bt = &timings->bt;
1692
1693	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1694				   adv76xx_check_dv_timings, NULL))
1695		return -ERANGE;
1696
1697	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1698
1699	state->timings = *timings;
1700
1701	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1702
1703	/* Use prim_mode and vid_std when available */
1704	err = configure_predefined_video_timings(sd, timings);
1705	if (err) {
1706		/* custom settings when the video format
1707		 does not have prim_mode/vid_std */
1708		configure_custom_video_timings(sd, bt);
1709	}
1710
1711	set_rgb_quantization_range(sd);
1712
1713	if (debug > 1)
1714		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1715				      timings, true);
1716	return 0;
1717}
1718
1719static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1720		struct v4l2_dv_timings *timings)
1721{
1722	struct adv76xx_state *state = to_state(sd);
1723
1724	*timings = state->timings;
1725	return 0;
1726}
1727
1728static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1729{
1730	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1731}
1732
1733static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1734{
1735	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1736}
1737
1738static void enable_input(struct v4l2_subdev *sd)
1739{
1740	struct adv76xx_state *state = to_state(sd);
1741
1742	if (is_analog_input(sd)) {
1743		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1744	} else if (is_digital_input(sd)) {
1745		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1746		state->info->set_termination(sd, true);
1747		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1748		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1749	} else {
1750		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1751				__func__, state->selected_input);
1752	}
1753}
1754
1755static void disable_input(struct v4l2_subdev *sd)
1756{
1757	struct adv76xx_state *state = to_state(sd);
1758
1759	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1760	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1761	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1762	state->info->set_termination(sd, false);
1763}
1764
1765static void select_input(struct v4l2_subdev *sd)
1766{
1767	struct adv76xx_state *state = to_state(sd);
1768	const struct adv76xx_chip_info *info = state->info;
1769
1770	if (is_analog_input(sd)) {
1771		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1772
1773		afe_write(sd, 0x00, 0x08); /* power up ADC */
1774		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1775		afe_write(sd, 0xc8, 0x00); /* phase control */
1776	} else if (is_digital_input(sd)) {
1777		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1778
1779		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1780
1781		if (adv76xx_has_afe(state)) {
1782			afe_write(sd, 0x00, 0xff); /* power down ADC */
1783			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1784			afe_write(sd, 0xc8, 0x40); /* phase control */
1785		}
1786
1787		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1788		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1789		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1790	} else {
1791		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1792				__func__, state->selected_input);
1793	}
1794}
1795
1796static int adv76xx_s_routing(struct v4l2_subdev *sd,
1797		u32 input, u32 output, u32 config)
1798{
1799	struct adv76xx_state *state = to_state(sd);
1800
1801	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1802			__func__, input, state->selected_input);
1803
1804	if (input == state->selected_input)
1805		return 0;
1806
1807	if (input > state->info->max_port)
1808		return -EINVAL;
1809
1810	state->selected_input = input;
1811
1812	disable_input(sd);
1813	select_input(sd);
1814	enable_input(sd);
1815
1816	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1817
1818	return 0;
1819}
1820
1821static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1822				  struct v4l2_subdev_pad_config *cfg,
1823				  struct v4l2_subdev_mbus_code_enum *code)
1824{
1825	struct adv76xx_state *state = to_state(sd);
1826
1827	if (code->index >= state->info->nformats)
1828		return -EINVAL;
1829
1830	code->code = state->info->formats[code->index].code;
1831
1832	return 0;
1833}
1834
1835static void adv76xx_fill_format(struct adv76xx_state *state,
1836				struct v4l2_mbus_framefmt *format)
1837{
1838	memset(format, 0, sizeof(*format));
1839
1840	format->width = state->timings.bt.width;
1841	format->height = state->timings.bt.height;
1842	format->field = V4L2_FIELD_NONE;
1843	format->colorspace = V4L2_COLORSPACE_SRGB;
1844
1845	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1846		format->colorspace = (state->timings.bt.height <= 576) ?
1847			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1848}
1849
1850/*
1851 * Compute the op_ch_sel value required to obtain on the bus the component order
1852 * corresponding to the selected format taking into account bus reordering
1853 * applied by the board at the output of the device.
1854 *
1855 * The following table gives the op_ch_value from the format component order
1856 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1857 * adv76xx_bus_order value in row).
1858 *
1859 *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
1860 * ----------+-------------------------------------------------
1861 * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
1862 * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
1863 * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
1864 * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
1865 * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
1866 * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
1867 */
1868static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1869{
1870#define _SEL(a,b,c,d,e,f)	{ \
1871	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1872	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1873#define _BUS(x)			[ADV7604_BUS_ORDER_##x]
1874
1875	static const unsigned int op_ch_sel[6][6] = {
1876		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1877		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1878		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1879		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1880		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1881		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1882	};
1883
1884	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1885}
1886
1887static void adv76xx_setup_format(struct adv76xx_state *state)
1888{
1889	struct v4l2_subdev *sd = &state->sd;
1890
1891	io_write_clr_set(sd, 0x02, 0x02,
1892			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1893	io_write(sd, 0x03, state->format->op_format_sel |
1894		 state->pdata.op_format_mode_sel);
1895	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1896	io_write_clr_set(sd, 0x05, 0x01,
1897			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1898	set_rgb_quantization_range(sd);
1899}
1900
1901static int adv76xx_get_format(struct v4l2_subdev *sd,
1902			      struct v4l2_subdev_pad_config *cfg,
1903			      struct v4l2_subdev_format *format)
1904{
1905	struct adv76xx_state *state = to_state(sd);
1906
1907	if (format->pad != state->source_pad)
1908		return -EINVAL;
1909
1910	adv76xx_fill_format(state, &format->format);
1911
1912	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1913		struct v4l2_mbus_framefmt *fmt;
1914
1915		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1916		format->format.code = fmt->code;
1917	} else {
1918		format->format.code = state->format->code;
1919	}
1920
1921	return 0;
1922}
1923
1924static int adv76xx_get_selection(struct v4l2_subdev *sd,
1925				 struct v4l2_subdev_pad_config *cfg,
1926				 struct v4l2_subdev_selection *sel)
1927{
1928	struct adv76xx_state *state = to_state(sd);
1929
1930	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1931		return -EINVAL;
1932	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1933	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1934		return -EINVAL;
1935
1936	sel->r.left	= 0;
1937	sel->r.top	= 0;
1938	sel->r.width	= state->timings.bt.width;
1939	sel->r.height	= state->timings.bt.height;
1940
1941	return 0;
1942}
1943
1944static int adv76xx_set_format(struct v4l2_subdev *sd,
1945			      struct v4l2_subdev_pad_config *cfg,
1946			      struct v4l2_subdev_format *format)
1947{
1948	struct adv76xx_state *state = to_state(sd);
1949	const struct adv76xx_format_info *info;
1950
1951	if (format->pad != state->source_pad)
1952		return -EINVAL;
1953
1954	info = adv76xx_format_info(state, format->format.code);
1955	if (!info)
1956		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1957
1958	adv76xx_fill_format(state, &format->format);
1959	format->format.code = info->code;
1960
1961	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1962		struct v4l2_mbus_framefmt *fmt;
1963
1964		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1965		fmt->code = format->format.code;
1966	} else {
1967		state->format = info;
1968		adv76xx_setup_format(state);
1969	}
1970
1971	return 0;
1972}
1973
1974#if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1975static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1976{
1977	struct adv76xx_state *state = to_state(sd);
1978
1979	if ((cec_read(sd, 0x11) & 0x01) == 0) {
1980		v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1981		return;
1982	}
1983
1984	if (tx_raw_status & 0x02) {
1985		v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
1986			 __func__);
1987		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
1988				  1, 0, 0, 0);
1989		return;
1990	}
1991	if (tx_raw_status & 0x04) {
1992		u8 status;
1993		u8 nack_cnt;
1994		u8 low_drive_cnt;
1995
1996		v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
1997		/*
1998		 * We set this status bit since this hardware performs
1999		 * retransmissions.
2000		 */
2001		status = CEC_TX_STATUS_MAX_RETRIES;
2002		nack_cnt = cec_read(sd, 0x14) & 0xf;
2003		if (nack_cnt)
2004			status |= CEC_TX_STATUS_NACK;
2005		low_drive_cnt = cec_read(sd, 0x14) >> 4;
2006		if (low_drive_cnt)
2007			status |= CEC_TX_STATUS_LOW_DRIVE;
2008		cec_transmit_done(state->cec_adap, status,
2009				  0, nack_cnt, low_drive_cnt, 0);
2010		return;
2011	}
2012	if (tx_raw_status & 0x01) {
2013		v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
2014		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
2015		return;
2016	}
2017}
2018
2019static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2020{
2021	struct adv76xx_state *state = to_state(sd);
2022	const struct adv76xx_chip_info *info = state->info;
2023	u8 cec_irq;
2024
2025	/* cec controller */
2026	cec_irq = io_read(sd, info->cec_irq_status) & 0x0f;
2027	if (!cec_irq)
2028		return;
2029
2030	v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2031	adv76xx_cec_tx_raw_status(sd, cec_irq);
2032	if (cec_irq & 0x08) {
2033		struct cec_msg msg;
2034
2035		msg.len = cec_read(sd, 0x25) & 0x1f;
2036		if (msg.len > 16)
2037			msg.len = 16;
2038
2039		if (msg.len) {
2040			u8 i;
2041
2042			for (i = 0; i < msg.len; i++)
2043				msg.msg[i] = cec_read(sd, i + 0x15);
2044			cec_write(sd, info->cec_rx_enable,
2045				  info->cec_rx_enable_mask); /* re-enable rx */
2046			cec_received_msg(state->cec_adap, &msg);
2047		}
2048	}
2049
2050	if (info->cec_irq_swap) {
2051		/*
2052		 * Note: the bit order is swapped between 0x4d and 0x4e
2053		 * on adv7604
2054		 */
2055		cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2056			  ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2057	}
2058	io_write(sd, info->cec_irq_status + 1, cec_irq);
2059
2060	if (handled)
2061		*handled = true;
2062}
2063
2064static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2065{
2066	struct adv76xx_state *state = cec_get_drvdata(adap);
2067	const struct adv76xx_chip_info *info = state->info;
2068	struct v4l2_subdev *sd = &state->sd;
2069
2070	if (!state->cec_enabled_adap && enable) {
2071		cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2072		cec_write(sd, 0x2c, 0x01);	/* cec soft reset */
2073		cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2074		/* enabled irqs: */
2075		/* tx: ready */
2076		/* tx: arbitration lost */
2077		/* tx: retry timeout */
2078		/* rx: ready */
2079		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x0f);
2080		cec_write(sd, info->cec_rx_enable, info->cec_rx_enable_mask);
2081	} else if (state->cec_enabled_adap && !enable) {
2082		/* disable cec interrupts */
2083		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x00);
2084		/* disable address mask 1-3 */
2085		cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2086		/* power down cec section */
2087		cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2088		state->cec_valid_addrs = 0;
2089	}
2090	state->cec_enabled_adap = enable;
2091	adv76xx_s_detect_tx_5v_ctrl(sd);
2092	return 0;
2093}
2094
2095static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2096{
2097	struct adv76xx_state *state = cec_get_drvdata(adap);
2098	struct v4l2_subdev *sd = &state->sd;
2099	unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2100
2101	if (!state->cec_enabled_adap)
2102		return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2103
2104	if (addr == CEC_LOG_ADDR_INVALID) {
2105		cec_write_clr_set(sd, 0x27, 0x70, 0);
2106		state->cec_valid_addrs = 0;
2107		return 0;
2108	}
2109
2110	for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2111		bool is_valid = state->cec_valid_addrs & (1 << i);
2112
2113		if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2114			free_idx = i;
2115		if (is_valid && state->cec_addr[i] == addr)
2116			return 0;
2117	}
2118	if (i == ADV76XX_MAX_ADDRS) {
2119		i = free_idx;
2120		if (i == ADV76XX_MAX_ADDRS)
2121			return -ENXIO;
2122	}
2123	state->cec_addr[i] = addr;
2124	state->cec_valid_addrs |= 1 << i;
2125
2126	switch (i) {
2127	case 0:
2128		/* enable address mask 0 */
2129		cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2130		/* set address for mask 0 */
2131		cec_write_clr_set(sd, 0x28, 0x0f, addr);
2132		break;
2133	case 1:
2134		/* enable address mask 1 */
2135		cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2136		/* set address for mask 1 */
2137		cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2138		break;
2139	case 2:
2140		/* enable address mask 2 */
2141		cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2142		/* set address for mask 1 */
2143		cec_write_clr_set(sd, 0x29, 0x0f, addr);
2144		break;
2145	}
2146	return 0;
2147}
2148
2149static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2150				     u32 signal_free_time, struct cec_msg *msg)
2151{
2152	struct adv76xx_state *state = cec_get_drvdata(adap);
2153	struct v4l2_subdev *sd = &state->sd;
2154	u8 len = msg->len;
2155	unsigned int i;
2156
2157	/*
2158	 * The number of retries is the number of attempts - 1, but retry
2159	 * at least once. It's not clear if a value of 0 is allowed, so
2160	 * let's do at least one retry.
2161	 */
2162	cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2163
2164	if (len > 16) {
2165		v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2166		return -EINVAL;
2167	}
2168
2169	/* write data */
2170	for (i = 0; i < len; i++)
2171		cec_write(sd, i, msg->msg[i]);
2172
2173	/* set length (data + header) */
2174	cec_write(sd, 0x10, len);
2175	/* start transmit, enable tx */
2176	cec_write(sd, 0x11, 0x01);
2177	return 0;
2178}
2179
2180static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2181	.adap_enable = adv76xx_cec_adap_enable,
2182	.adap_log_addr = adv76xx_cec_adap_log_addr,
2183	.adap_transmit = adv76xx_cec_adap_transmit,
2184};
2185#endif
2186
2187static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2188{
2189	struct adv76xx_state *state = to_state(sd);
2190	const struct adv76xx_chip_info *info = state->info;
2191	const u8 irq_reg_0x43 = io_read(sd, 0x43);
2192	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2193	const u8 irq_reg_0x70 = io_read(sd, 0x70);
2194	u8 fmt_change_digital;
2195	u8 fmt_change;
2196	u8 tx_5v;
2197
2198	if (irq_reg_0x43)
2199		io_write(sd, 0x44, irq_reg_0x43);
2200	if (irq_reg_0x70)
2201		io_write(sd, 0x71, irq_reg_0x70);
2202	if (irq_reg_0x6b)
2203		io_write(sd, 0x6c, irq_reg_0x6b);
2204
2205	v4l2_dbg(2, debug, sd, "%s: ", __func__);
2206
2207	/* format change */
2208	fmt_change = irq_reg_0x43 & 0x98;
2209	fmt_change_digital = is_digital_input(sd)
2210			   ? irq_reg_0x6b & info->fmt_change_digital_mask
2211			   : 0;
2212
2213	if (fmt_change || fmt_change_digital) {
2214		v4l2_dbg(1, debug, sd,
2215			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2216			__func__, fmt_change, fmt_change_digital);
2217
2218		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2219
2220		if (handled)
2221			*handled = true;
2222	}
2223	/* HDMI/DVI mode */
2224	if (irq_reg_0x6b & 0x01) {
2225		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2226			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2227		set_rgb_quantization_range(sd);
2228		if (handled)
2229			*handled = true;
2230	}
2231
2232#if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2233	/* cec */
2234	adv76xx_cec_isr(sd, handled);
2235#endif
2236
2237	/* tx 5v detect */
2238	tx_5v = irq_reg_0x70 & info->cable_det_mask;
2239	if (tx_5v) {
2240		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2241		adv76xx_s_detect_tx_5v_ctrl(sd);
2242		if (handled)
2243			*handled = true;
2244	}
2245	return 0;
2246}
2247
2248static irqreturn_t adv76xx_irq_handler(int irq, void *dev_id)
2249{
2250	struct adv76xx_state *state = dev_id;
2251	bool handled = false;
2252
2253	adv76xx_isr(&state->sd, 0, &handled);
2254
2255	return handled ? IRQ_HANDLED : IRQ_NONE;
2256}
2257
2258static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2259{
2260	struct adv76xx_state *state = to_state(sd);
2261	u8 *data = NULL;
2262
2263	memset(edid->reserved, 0, sizeof(edid->reserved));
2264
2265	switch (edid->pad) {
2266	case ADV76XX_PAD_HDMI_PORT_A:
2267	case ADV7604_PAD_HDMI_PORT_B:
2268	case ADV7604_PAD_HDMI_PORT_C:
2269	case ADV7604_PAD_HDMI_PORT_D:
2270		if (state->edid.present & (1 << edid->pad))
2271			data = state->edid.edid;
2272		break;
2273	default:
2274		return -EINVAL;
2275	}
2276
2277	if (edid->start_block == 0 && edid->blocks == 0) {
2278		edid->blocks = data ? state->edid.blocks : 0;
2279		return 0;
2280	}
2281
2282	if (!data)
2283		return -ENODATA;
2284
2285	if (edid->start_block >= state->edid.blocks)
2286		return -EINVAL;
2287
2288	if (edid->start_block + edid->blocks > state->edid.blocks)
2289		edid->blocks = state->edid.blocks - edid->start_block;
2290
2291	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2292
2293	return 0;
2294}
2295
2296static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2297{
2298	struct adv76xx_state *state = to_state(sd);
2299	const struct adv76xx_chip_info *info = state->info;
2300	unsigned int spa_loc;
2301	u16 pa;
2302	int err;
2303	int i;
2304
2305	memset(edid->reserved, 0, sizeof(edid->reserved));
2306
2307	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2308		return -EINVAL;
2309	if (edid->start_block != 0)
2310		return -EINVAL;
2311	if (edid->blocks == 0) {
2312		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2313		state->edid.present &= ~(1 << edid->pad);
2314		adv76xx_set_hpd(state, state->edid.present);
2315		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2316
2317		/* Fall back to a 16:9 aspect ratio */
2318		state->aspect_ratio.numerator = 16;
2319		state->aspect_ratio.denominator = 9;
2320
2321		if (!state->edid.present) {
2322			state->edid.blocks = 0;
2323			cec_phys_addr_invalidate(state->cec_adap);
2324		}
2325
2326		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2327				__func__, edid->pad, state->edid.present);
2328		return 0;
2329	}
2330	if (edid->blocks > 2) {
2331		edid->blocks = 2;
2332		return -E2BIG;
2333	}
2334	pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2335	err = v4l2_phys_addr_validate(pa, &pa, NULL);
2336	if (err)
2337		return err;
2338
2339	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2340			__func__, edid->pad, state->edid.present);
2341
2342	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2343	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2344	adv76xx_set_hpd(state, 0);
2345	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2346
2347	/*
2348	 * Return an error if no location of the source physical address
2349	 * was found.
2350	 */
2351	if (spa_loc == 0)
2352		return -EINVAL;
2353
2354	switch (edid->pad) {
2355	case ADV76XX_PAD_HDMI_PORT_A:
2356		state->spa_port_a[0] = edid->edid[spa_loc];
2357		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2358		break;
2359	case ADV7604_PAD_HDMI_PORT_B:
2360		rep_write(sd, 0x70, edid->edid[spa_loc]);
2361		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2362		break;
2363	case ADV7604_PAD_HDMI_PORT_C:
2364		rep_write(sd, 0x72, edid->edid[spa_loc]);
2365		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2366		break;
2367	case ADV7604_PAD_HDMI_PORT_D:
2368		rep_write(sd, 0x74, edid->edid[spa_loc]);
2369		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2370		break;
2371	default:
2372		return -EINVAL;
2373	}
2374
2375	if (info->type == ADV7604) {
2376		rep_write(sd, 0x76, spa_loc & 0xff);
2377		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2378	} else {
2379		/* ADV7612 Software Manual Rev. A, p. 15 */
2380		rep_write(sd, 0x70, spa_loc & 0xff);
2381		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2382	}
2383
2384	edid->edid[spa_loc] = state->spa_port_a[0];
2385	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2386
2387	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2388	state->edid.blocks = edid->blocks;
2389	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2390			edid->edid[0x16]);
2391	state->edid.present |= 1 << edid->pad;
2392
2393	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2394	if (err < 0) {
2395		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2396		return err;
2397	}
2398
2399	/* adv76xx calculates the checksums and enables I2C access to internal
2400	   EDID RAM from DDC port. */
2401	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2402
2403	for (i = 0; i < 1000; i++) {
2404		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2405			break;
2406		mdelay(1);
2407	}
2408	if (i == 1000) {
2409		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2410		return -EIO;
2411	}
2412	cec_s_phys_addr(state->cec_adap, pa, false);
2413
2414	/* enable hotplug after 100 ms */
2415	schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2416	return 0;
2417}
2418
2419/*********** avi info frame CEA-861-E **************/
2420
2421static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2422	{ "AVI", 0x01, 0xe0, 0x00 },
2423	{ "Audio", 0x02, 0xe3, 0x1c },
2424	{ "SDP", 0x04, 0xe6, 0x2a },
2425	{ "Vendor", 0x10, 0xec, 0x54 }
2426};
2427
2428static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2429				  union hdmi_infoframe *frame)
2430{
2431	uint8_t buffer[32];
2432	u8 len;
2433	int i;
2434
2435	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2436		v4l2_info(sd, "%s infoframe not received\n",
2437			  adv76xx_cri[index].desc);
2438		return -ENOENT;
2439	}
2440
2441	for (i = 0; i < 3; i++)
2442		buffer[i] = infoframe_read(sd,
2443					   adv76xx_cri[index].head_addr + i);
2444
2445	len = buffer[2] + 1;
2446
2447	if (len + 3 > sizeof(buffer)) {
2448		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2449			 adv76xx_cri[index].desc, len);
2450		return -ENOENT;
2451	}
2452
2453	for (i = 0; i < len; i++)
2454		buffer[i + 3] = infoframe_read(sd,
2455				       adv76xx_cri[index].payload_addr + i);
2456
2457	if (hdmi_infoframe_unpack(frame, buffer, len + 3) < 0) {
2458		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2459			 adv76xx_cri[index].desc);
2460		return -ENOENT;
2461	}
2462	return 0;
2463}
2464
2465static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2466{
2467	int i;
2468
2469	if (!is_hdmi(sd)) {
2470		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2471		return;
2472	}
2473
2474	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2475		union hdmi_infoframe frame;
2476		struct i2c_client *client = v4l2_get_subdevdata(sd);
2477
2478		if (adv76xx_read_infoframe(sd, i, &frame))
2479			return;
2480		hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2481	}
2482}
2483
2484static int adv76xx_log_status(struct v4l2_subdev *sd)
2485{
2486	struct adv76xx_state *state = to_state(sd);
2487	const struct adv76xx_chip_info *info = state->info;
2488	struct v4l2_dv_timings timings;
2489	struct stdi_readback stdi;
2490	u8 reg_io_0x02 = io_read(sd, 0x02);
2491	u8 edid_enabled;
2492	u8 cable_det;
2493
2494	static const char * const csc_coeff_sel_rb[16] = {
2495		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2496		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2497		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2498		"reserved", "reserved", "reserved", "reserved", "manual"
2499	};
2500	static const char * const input_color_space_txt[16] = {
2501		"RGB limited range (16-235)", "RGB full range (0-255)",
2502		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2503		"xvYCC Bt.601", "xvYCC Bt.709",
2504		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2505		"invalid", "invalid", "invalid", "invalid", "invalid",
2506		"invalid", "invalid", "automatic"
2507	};
2508	static const char * const hdmi_color_space_txt[16] = {
2509		"RGB limited range (16-235)", "RGB full range (0-255)",
2510		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2511		"xvYCC Bt.601", "xvYCC Bt.709",
2512		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2513		"sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
2514		"invalid", "invalid", "invalid"
2515	};
2516	static const char * const rgb_quantization_range_txt[] = {
2517		"Automatic",
2518		"RGB limited range (16-235)",
2519		"RGB full range (0-255)",
2520	};
2521	static const char * const deep_color_mode_txt[4] = {
2522		"8-bits per channel",
2523		"10-bits per channel",
2524		"12-bits per channel",
2525		"16-bits per channel (not supported)"
2526	};
2527
2528	v4l2_info(sd, "-----Chip status-----\n");
2529	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2530	edid_enabled = rep_read(sd, info->edid_status_reg);
2531	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2532			((edid_enabled & 0x01) ? "Yes" : "No"),
2533			((edid_enabled & 0x02) ? "Yes" : "No"),
2534			((edid_enabled & 0x04) ? "Yes" : "No"),
2535			((edid_enabled & 0x08) ? "Yes" : "No"));
2536	v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2537			"enabled" : "disabled");
2538	if (state->cec_enabled_adap) {
2539		int i;
2540
2541		for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2542			bool is_valid = state->cec_valid_addrs & (1 << i);
2543
2544			if (is_valid)
2545				v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2546					  state->cec_addr[i]);
2547		}
2548	}
2549
2550	v4l2_info(sd, "-----Signal status-----\n");
2551	cable_det = info->read_cable_det(sd);
2552	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2553			((cable_det & 0x01) ? "Yes" : "No"),
2554			((cable_det & 0x02) ? "Yes" : "No"),
2555			((cable_det & 0x04) ? "Yes" : "No"),
2556			((cable_det & 0x08) ? "Yes" : "No"));
2557	v4l2_info(sd, "TMDS signal detected: %s\n",
2558			no_signal_tmds(sd) ? "false" : "true");
2559	v4l2_info(sd, "TMDS signal locked: %s\n",
2560			no_lock_tmds(sd) ? "false" : "true");
2561	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2562	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2563	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2564	v4l2_info(sd, "CP free run: %s\n",
2565			(in_free_run(sd)) ? "on" : "off");
2566	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2567			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2568			(io_read(sd, 0x01) & 0x70) >> 4);
2569
2570	v4l2_info(sd, "-----Video Timings-----\n");
2571	if (read_stdi(sd, &stdi))
2572		v4l2_info(sd, "STDI: not locked\n");
2573	else
2574		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2575				stdi.lcf, stdi.bl, stdi.lcvs,
2576				stdi.interlaced ? "interlaced" : "progressive",
2577				stdi.hs_pol, stdi.vs_pol);
2578	if (adv76xx_query_dv_timings(sd, &timings))
2579		v4l2_info(sd, "No video detected\n");
2580	else
2581		v4l2_print_dv_timings(sd->name, "Detected format: ",
2582				      &timings, true);
2583	v4l2_print_dv_timings(sd->name, "Configured format: ",
2584			      &state->timings, true);
2585
2586	if (no_signal(sd))
2587		return 0;
2588
2589	v4l2_info(sd, "-----Color space-----\n");
2590	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2591			rgb_quantization_range_txt[state->rgb_quantization_range]);
2592	v4l2_info(sd, "Input color space: %s\n",
2593			input_color_space_txt[reg_io_0x02 >> 4]);
2594	v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2595			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2596			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2597				"(16-235)" : "(0-255)",
2598			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2599	v4l2_info(sd, "Color space conversion: %s\n",
2600			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2601
2602	if (!is_digital_input(sd))
2603		return 0;
2604
2605	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2606	v4l2_info(sd, "Digital video port selected: %c\n",
2607			(hdmi_read(sd, 0x00) & 0x03) + 'A');
2608	v4l2_info(sd, "HDCP encrypted content: %s\n",
2609			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2610	v4l2_info(sd, "HDCP keys read: %s%s\n",
2611			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2612			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2613	if (is_hdmi(sd)) {
2614		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2615		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2616		bool audio_mute = io_read(sd, 0x65) & 0x40;
2617
2618		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2619				audio_pll_locked ? "locked" : "not locked",
2620				audio_sample_packet_detect ? "detected" : "not detected",
2621				audio_mute ? "muted" : "enabled");
2622		if (audio_pll_locked && audio_sample_packet_detect) {
2623			v4l2_info(sd, "Audio format: %s\n",
2624					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2625		}
2626		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2627				(hdmi_read(sd, 0x5c) << 8) +
2628				(hdmi_read(sd, 0x5d) & 0xf0));
2629		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2630				(hdmi_read(sd, 0x5e) << 8) +
2631				hdmi_read(sd, 0x5f));
2632		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2633
2634		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2635		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2636
2637		adv76xx_log_infoframes(sd);
2638	}
2639
2640	return 0;
2641}
2642
2643static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2644				   struct v4l2_fh *fh,
2645				   struct v4l2_event_subscription *sub)
2646{
2647	switch (sub->type) {
2648	case V4L2_EVENT_SOURCE_CHANGE:
2649		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2650	case V4L2_EVENT_CTRL:
2651		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2652	default:
2653		return -EINVAL;
2654	}
2655}
2656
2657static int adv76xx_registered(struct v4l2_subdev *sd)
2658{
2659	struct adv76xx_state *state = to_state(sd);
2660	struct i2c_client *client = v4l2_get_subdevdata(sd);
2661	int err;
2662
2663	err = cec_register_adapter(state->cec_adap, &client->dev);
2664	if (err)
2665		cec_delete_adapter(state->cec_adap);
2666	return err;
2667}
2668
2669static void adv76xx_unregistered(struct v4l2_subdev *sd)
2670{
2671	struct adv76xx_state *state = to_state(sd);
2672
2673	cec_unregister_adapter(state->cec_adap);
2674}
2675
2676/* ----------------------------------------------------------------------- */
2677
2678static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2679	.s_ctrl = adv76xx_s_ctrl,
2680	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2681};
2682
2683static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2684	.log_status = adv76xx_log_status,
2685	.interrupt_service_routine = adv76xx_isr,
2686	.subscribe_event = adv76xx_subscribe_event,
2687	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2688#ifdef CONFIG_VIDEO_ADV_DEBUG
2689	.g_register = adv76xx_g_register,
2690	.s_register = adv76xx_s_register,
2691#endif
2692};
2693
2694static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2695	.s_routing = adv76xx_s_routing,
2696	.g_input_status = adv76xx_g_input_status,
2697	.s_dv_timings = adv76xx_s_dv_timings,
2698	.g_dv_timings = adv76xx_g_dv_timings,
2699	.query_dv_timings = adv76xx_query_dv_timings,
2700};
2701
2702static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2703	.enum_mbus_code = adv76xx_enum_mbus_code,
2704	.get_selection = adv76xx_get_selection,
2705	.get_fmt = adv76xx_get_format,
2706	.set_fmt = adv76xx_set_format,
2707	.get_edid = adv76xx_get_edid,
2708	.set_edid = adv76xx_set_edid,
2709	.dv_timings_cap = adv76xx_dv_timings_cap,
2710	.enum_dv_timings = adv76xx_enum_dv_timings,
2711};
2712
2713static const struct v4l2_subdev_ops adv76xx_ops = {
2714	.core = &adv76xx_core_ops,
2715	.video = &adv76xx_video_ops,
2716	.pad = &adv76xx_pad_ops,
2717};
2718
2719static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2720	.registered = adv76xx_registered,
2721	.unregistered = adv76xx_unregistered,
2722};
2723
2724/* -------------------------- custom ctrls ---------------------------------- */
2725
2726static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2727	.ops = &adv76xx_ctrl_ops,
2728	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2729	.name = "Analog Sampling Phase",
2730	.type = V4L2_CTRL_TYPE_INTEGER,
2731	.min = 0,
2732	.max = 0x1f,
2733	.step = 1,
2734	.def = 0,
2735};
2736
2737static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2738	.ops = &adv76xx_ctrl_ops,
2739	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2740	.name = "Free Running Color, Manual",
2741	.type = V4L2_CTRL_TYPE_BOOLEAN,
2742	.min = false,
2743	.max = true,
2744	.step = 1,
2745	.def = false,
2746};
2747
2748static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2749	.ops = &adv76xx_ctrl_ops,
2750	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2751	.name = "Free Running Color",
2752	.type = V4L2_CTRL_TYPE_INTEGER,
2753	.min = 0x0,
2754	.max = 0xffffff,
2755	.step = 0x1,
2756	.def = 0x0,
2757};
2758
2759/* ----------------------------------------------------------------------- */
2760
2761struct adv76xx_register_map {
2762	const char *name;
2763	u8 default_addr;
2764};
2765
2766static const struct adv76xx_register_map adv76xx_default_addresses[] = {
2767	[ADV76XX_PAGE_IO] = { "main", 0x4c },
2768	[ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
2769	[ADV76XX_PAGE_CEC] = { "cec", 0x40 },
2770	[ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
2771	[ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
2772	[ADV7604_PAGE_DPP] = { "dpp", 0x3c },
2773	[ADV76XX_PAGE_AFE] = { "afe", 0x26 },
2774	[ADV76XX_PAGE_REP] = { "rep", 0x32 },
2775	[ADV76XX_PAGE_EDID] = { "edid", 0x36 },
2776	[ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
2777	[ADV76XX_PAGE_TEST] = { "test", 0x30 },
2778	[ADV76XX_PAGE_CP] = { "cp", 0x22 },
2779	[ADV7604_PAGE_VDP] = { "vdp", 0x24 },
2780};
2781
2782static int adv76xx_core_init(struct v4l2_subdev *sd)
2783{
2784	struct adv76xx_state *state = to_state(sd);
2785	const struct adv76xx_chip_info *info = state->info;
2786	struct adv76xx_platform_data *pdata = &state->pdata;
2787
2788	hdmi_write(sd, 0x48,
2789		(pdata->disable_pwrdnb ? 0x80 : 0) |
2790		(pdata->disable_cable_det_rst ? 0x40 : 0));
2791
2792	disable_input(sd);
2793
2794	if (pdata->default_input >= 0 &&
2795	    pdata->default_input < state->source_pad) {
2796		state->selected_input = pdata->default_input;
2797		select_input(sd);
2798		enable_input(sd);
2799	}
2800
2801	/* power */
2802	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2803	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2804	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2805
2806	/* video format */
2807	io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2808	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2809			pdata->insert_av_codes << 2 |
2810			pdata->replicate_av_codes << 1);
2811	adv76xx_setup_format(state);
2812
2813	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2814
2815	/* VS, HS polarities */
2816	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2817		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2818
2819	/* Adjust drive strength */
2820	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2821				pdata->dr_str_clk << 2 |
2822				pdata->dr_str_sync);
2823
2824	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2825	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2826	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2827				      ADI recommended setting [REF_01, c. 2.3.3] */
2828	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2829				      ADI recommended setting [REF_01, c. 2.3.3] */
2830	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2831				     for digital formats */
2832
2833	/* HDMI audio */
2834	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2835	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2836	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2837
2838	/* TODO from platform data */
2839	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2840
2841	if (adv76xx_has_afe(state)) {
2842		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2843		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2844	}
2845
2846	/* interrupts */
2847	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2848	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2849	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2850	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2851	info->setup_irqs(sd);
2852
2853	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2854}
2855
2856static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2857{
2858	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2859}
2860
2861static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2862{
2863	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2864}
2865
2866static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2867{
2868	io_write(sd, 0x41, 0xd0); /* disable INT2 */
2869}
2870
2871static void adv76xx_unregister_clients(struct adv76xx_state *state)
2872{
2873	unsigned int i;
2874
2875	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i)
2876		i2c_unregister_device(state->i2c_clients[i]);
2877}
2878
2879static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2880					       unsigned int page)
2881{
2882	struct i2c_client *client = v4l2_get_subdevdata(sd);
2883	struct adv76xx_state *state = to_state(sd);
2884	struct adv76xx_platform_data *pdata = &state->pdata;
2885	unsigned int io_reg = 0xf2 + page;
2886	struct i2c_client *new_client;
2887
2888	if (pdata && pdata->i2c_addresses[page])
2889		new_client = i2c_new_dummy_device(client->adapter,
2890					   pdata->i2c_addresses[page]);
2891	else
2892		new_client = i2c_new_ancillary_device(client,
2893				adv76xx_default_addresses[page].name,
2894				adv76xx_default_addresses[page].default_addr);
2895
2896	if (!IS_ERR(new_client))
2897		io_write(sd, io_reg, new_client->addr << 1);
2898
2899	return new_client;
2900}
2901
2902static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2903	/* reset ADI recommended settings for HDMI: */
2904	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2905	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2906	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2907	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2908	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2909	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2910	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2911	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2912	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2913	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2914	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2915	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2916	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2917
2918	/* set ADI recommended settings for digitizer */
2919	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2920	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2921	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2922	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2923	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2924	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2925
2926	{ ADV76XX_REG_SEQ_TERM, 0 },
2927};
2928
2929static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2930	/* set ADI recommended settings for HDMI: */
2931	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2932	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2933	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2934	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2935	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2936	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2937	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2938	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2939	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2940	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2941	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2942	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2943
2944	/* reset ADI recommended settings for digitizer */
2945	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2946	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2947	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2948
2949	{ ADV76XX_REG_SEQ_TERM, 0 },
2950};
2951
2952static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2953	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2954	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2955	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2956	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2957	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2958	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2959	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2960	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2961	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2962	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2963	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2964	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2965
2966	{ ADV76XX_REG_SEQ_TERM, 0 },
2967};
2968
2969static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2970	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2971	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2972	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2973	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2974	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2975	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2976	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2977	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2978	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2979	{ ADV76XX_REG_SEQ_TERM, 0 },
2980};
2981
2982static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2983	[ADV7604] = {
2984		.type = ADV7604,
2985		.has_afe = true,
2986		.max_port = ADV7604_PAD_VGA_COMP,
2987		.num_dv_ports = 4,
2988		.edid_enable_reg = 0x77,
2989		.edid_status_reg = 0x7d,
2990		.lcf_reg = 0xb3,
2991		.tdms_lock_mask = 0xe0,
2992		.cable_det_mask = 0x1e,
2993		.fmt_change_digital_mask = 0xc1,
2994		.cp_csc = 0xfc,
2995		.cec_irq_status = 0x4d,
2996		.cec_rx_enable = 0x26,
2997		.cec_rx_enable_mask = 0x01,
2998		.cec_irq_swap = true,
2999		.formats = adv7604_formats,
3000		.nformats = ARRAY_SIZE(adv7604_formats),
3001		.set_termination = adv7604_set_termination,
3002		.setup_irqs = adv7604_setup_irqs,
3003		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
3004		.read_cable_det = adv7604_read_cable_det,
3005		.recommended_settings = {
3006		    [0] = adv7604_recommended_settings_afe,
3007		    [1] = adv7604_recommended_settings_hdmi,
3008		},
3009		.num_recommended_settings = {
3010		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
3011		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
3012		},
3013		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
3014			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
3015			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
3016			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
3017			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
3018			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
3019			BIT(ADV7604_PAGE_VDP),
3020		.linewidth_mask = 0xfff,
3021		.field0_height_mask = 0xfff,
3022		.field1_height_mask = 0xfff,
3023		.hfrontporch_mask = 0x3ff,
3024		.hsync_mask = 0x3ff,
3025		.hbackporch_mask = 0x3ff,
3026		.field0_vfrontporch_mask = 0x1fff,
3027		.field0_vsync_mask = 0x1fff,
3028		.field0_vbackporch_mask = 0x1fff,
3029		.field1_vfrontporch_mask = 0x1fff,
3030		.field1_vsync_mask = 0x1fff,
3031		.field1_vbackporch_mask = 0x1fff,
3032	},
3033	[ADV7611] = {
3034		.type = ADV7611,
3035		.has_afe = false,
3036		.max_port = ADV76XX_PAD_HDMI_PORT_A,
3037		.num_dv_ports = 1,
3038		.edid_enable_reg = 0x74,
3039		.edid_status_reg = 0x76,
3040		.lcf_reg = 0xa3,
3041		.tdms_lock_mask = 0x43,
3042		.cable_det_mask = 0x01,
3043		.fmt_change_digital_mask = 0x03,
3044		.cp_csc = 0xf4,
3045		.cec_irq_status = 0x93,
3046		.cec_rx_enable = 0x2c,
3047		.cec_rx_enable_mask = 0x02,
3048		.formats = adv7611_formats,
3049		.nformats = ARRAY_SIZE(adv7611_formats),
3050		.set_termination = adv7611_set_termination,
3051		.setup_irqs = adv7611_setup_irqs,
3052		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3053		.read_cable_det = adv7611_read_cable_det,
3054		.recommended_settings = {
3055		    [1] = adv7611_recommended_settings_hdmi,
3056		},
3057		.num_recommended_settings = {
3058		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
3059		},
3060		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3061			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3062			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3063			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3064		.linewidth_mask = 0x1fff,
3065		.field0_height_mask = 0x1fff,
3066		.field1_height_mask = 0x1fff,
3067		.hfrontporch_mask = 0x1fff,
3068		.hsync_mask = 0x1fff,
3069		.hbackporch_mask = 0x1fff,
3070		.field0_vfrontporch_mask = 0x3fff,
3071		.field0_vsync_mask = 0x3fff,
3072		.field0_vbackporch_mask = 0x3fff,
3073		.field1_vfrontporch_mask = 0x3fff,
3074		.field1_vsync_mask = 0x3fff,
3075		.field1_vbackporch_mask = 0x3fff,
3076	},
3077	[ADV7612] = {
3078		.type = ADV7612,
3079		.has_afe = false,
3080		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
3081		.num_dv_ports = 1,			/* normally 2 */
3082		.edid_enable_reg = 0x74,
3083		.edid_status_reg = 0x76,
3084		.lcf_reg = 0xa3,
3085		.tdms_lock_mask = 0x43,
3086		.cable_det_mask = 0x01,
3087		.fmt_change_digital_mask = 0x03,
3088		.cp_csc = 0xf4,
3089		.cec_irq_status = 0x93,
3090		.cec_rx_enable = 0x2c,
3091		.cec_rx_enable_mask = 0x02,
3092		.formats = adv7612_formats,
3093		.nformats = ARRAY_SIZE(adv7612_formats),
3094		.set_termination = adv7611_set_termination,
3095		.setup_irqs = adv7612_setup_irqs,
3096		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3097		.read_cable_det = adv7612_read_cable_det,
3098		.recommended_settings = {
3099		    [1] = adv7612_recommended_settings_hdmi,
3100		},
3101		.num_recommended_settings = {
3102		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3103		},
3104		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3105			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3106			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3107			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3108		.linewidth_mask = 0x1fff,
3109		.field0_height_mask = 0x1fff,
3110		.field1_height_mask = 0x1fff,
3111		.hfrontporch_mask = 0x1fff,
3112		.hsync_mask = 0x1fff,
3113		.hbackporch_mask = 0x1fff,
3114		.field0_vfrontporch_mask = 0x3fff,
3115		.field0_vsync_mask = 0x3fff,
3116		.field0_vbackporch_mask = 0x3fff,
3117		.field1_vfrontporch_mask = 0x3fff,
3118		.field1_vsync_mask = 0x3fff,
3119		.field1_vbackporch_mask = 0x3fff,
3120	},
3121};
3122
3123static const struct i2c_device_id adv76xx_i2c_id[] = {
3124	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3125	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3126	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3127	{ }
3128};
3129MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3130
3131static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3132	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3133	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3134	{ }
3135};
3136MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3137
3138static int adv76xx_parse_dt(struct adv76xx_state *state)
3139{
3140	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
3141	struct device_node *endpoint;
3142	struct device_node *np;
3143	unsigned int flags;
3144	int ret;
3145	u32 v;
3146
3147	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3148
3149	/* Parse the endpoint. */
3150	endpoint = of_graph_get_next_endpoint(np, NULL);
3151	if (!endpoint)
3152		return -EINVAL;
3153
3154	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3155	of_node_put(endpoint);
3156	if (ret)
3157		return ret;
3158
3159	if (!of_property_read_u32(np, "default-input", &v))
3160		state->pdata.default_input = v;
3161	else
3162		state->pdata.default_input = -1;
3163
3164	flags = bus_cfg.bus.parallel.flags;
3165
3166	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3167		state->pdata.inv_hs_pol = 1;
3168
3169	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3170		state->pdata.inv_vs_pol = 1;
3171
3172	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3173		state->pdata.inv_llc_pol = 1;
3174
3175	if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3176		state->pdata.insert_av_codes = 1;
3177
3178	/* Disable the interrupt for now as no DT-based board uses it. */
3179	state->pdata.int1_config = ADV76XX_INT1_CONFIG_ACTIVE_HIGH;
3180
3181	/* Hardcode the remaining platform data fields. */
3182	state->pdata.disable_pwrdnb = 0;
3183	state->pdata.disable_cable_det_rst = 0;
3184	state->pdata.blank_data = 1;
3185	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3186	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3187	state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3188	state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3189	state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3190
3191	return 0;
3192}
3193
3194static const struct regmap_config adv76xx_regmap_cnf[] = {
3195	{
3196		.name			= "io",
3197		.reg_bits		= 8,
3198		.val_bits		= 8,
3199
3200		.max_register		= 0xff,
3201		.cache_type		= REGCACHE_NONE,
3202	},
3203	{
3204		.name			= "avlink",
3205		.reg_bits		= 8,
3206		.val_bits		= 8,
3207
3208		.max_register		= 0xff,
3209		.cache_type		= REGCACHE_NONE,
3210	},
3211	{
3212		.name			= "cec",
3213		.reg_bits		= 8,
3214		.val_bits		= 8,
3215
3216		.max_register		= 0xff,
3217		.cache_type		= REGCACHE_NONE,
3218	},
3219	{
3220		.name			= "infoframe",
3221		.reg_bits		= 8,
3222		.val_bits		= 8,
3223
3224		.max_register		= 0xff,
3225		.cache_type		= REGCACHE_NONE,
3226	},
3227	{
3228		.name			= "esdp",
3229		.reg_bits		= 8,
3230		.val_bits		= 8,
3231
3232		.max_register		= 0xff,
3233		.cache_type		= REGCACHE_NONE,
3234	},
3235	{
3236		.name			= "epp",
3237		.reg_bits		= 8,
3238		.val_bits		= 8,
3239
3240		.max_register		= 0xff,
3241		.cache_type		= REGCACHE_NONE,
3242	},
3243	{
3244		.name			= "afe",
3245		.reg_bits		= 8,
3246		.val_bits		= 8,
3247
3248		.max_register		= 0xff,
3249		.cache_type		= REGCACHE_NONE,
3250	},
3251	{
3252		.name			= "rep",
3253		.reg_bits		= 8,
3254		.val_bits		= 8,
3255
3256		.max_register		= 0xff,
3257		.cache_type		= REGCACHE_NONE,
3258	},
3259	{
3260		.name			= "edid",
3261		.reg_bits		= 8,
3262		.val_bits		= 8,
3263
3264		.max_register		= 0xff,
3265		.cache_type		= REGCACHE_NONE,
3266	},
3267
3268	{
3269		.name			= "hdmi",
3270		.reg_bits		= 8,
3271		.val_bits		= 8,
3272
3273		.max_register		= 0xff,
3274		.cache_type		= REGCACHE_NONE,
3275	},
3276	{
3277		.name			= "test",
3278		.reg_bits		= 8,
3279		.val_bits		= 8,
3280
3281		.max_register		= 0xff,
3282		.cache_type		= REGCACHE_NONE,
3283	},
3284	{
3285		.name			= "cp",
3286		.reg_bits		= 8,
3287		.val_bits		= 8,
3288
3289		.max_register		= 0xff,
3290		.cache_type		= REGCACHE_NONE,
3291	},
3292	{
3293		.name			= "vdp",
3294		.reg_bits		= 8,
3295		.val_bits		= 8,
3296
3297		.max_register		= 0xff,
3298		.cache_type		= REGCACHE_NONE,
3299	},
3300};
3301
3302static int configure_regmap(struct adv76xx_state *state, int region)
3303{
3304	int err;
3305
3306	if (!state->i2c_clients[region])
3307		return -ENODEV;
3308
3309	state->regmap[region] =
3310		devm_regmap_init_i2c(state->i2c_clients[region],
3311				     &adv76xx_regmap_cnf[region]);
3312
3313	if (IS_ERR(state->regmap[region])) {
3314		err = PTR_ERR(state->regmap[region]);
3315		v4l_err(state->i2c_clients[region],
3316			"Error initializing regmap %d with error %d\n",
3317			region, err);
3318		return -EINVAL;
3319	}
3320
3321	return 0;
3322}
3323
3324static int configure_regmaps(struct adv76xx_state *state)
3325{
3326	int i, err;
3327
3328	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3329		err = configure_regmap(state, i);
3330		if (err && (err != -ENODEV))
3331			return err;
3332	}
3333	return 0;
3334}
3335
3336static void adv76xx_reset(struct adv76xx_state *state)
3337{
3338	if (state->reset_gpio) {
3339		/* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3340		gpiod_set_value_cansleep(state->reset_gpio, 0);
3341		usleep_range(5000, 10000);
3342		gpiod_set_value_cansleep(state->reset_gpio, 1);
3343		/* It is recommended to wait 5 ms after the low pulse before */
3344		/* an I2C write is performed to the ADV76XX. */
3345		usleep_range(5000, 10000);
3346	}
3347}
3348
3349static int adv76xx_probe(struct i2c_client *client,
3350			 const struct i2c_device_id *id)
3351{
3352	static const struct v4l2_dv_timings cea640x480 =
3353		V4L2_DV_BT_CEA_640X480P59_94;
3354	struct adv76xx_state *state;
3355	struct v4l2_ctrl_handler *hdl;
3356	struct v4l2_ctrl *ctrl;
3357	struct v4l2_subdev *sd;
3358	unsigned int i;
3359	unsigned int val, val2;
3360	int err;
3361
3362	/* Check if the adapter supports the needed features */
3363	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3364		return -EIO;
3365	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3366			client->addr << 1);
3367
3368	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3369	if (!state)
3370		return -ENOMEM;
3371
3372	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3373
3374	/* initialize variables */
3375	state->restart_stdi_once = true;
3376	state->selected_input = ~0;
3377
3378	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3379		const struct of_device_id *oid;
3380
3381		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3382		state->info = oid->data;
3383
3384		err = adv76xx_parse_dt(state);
3385		if (err < 0) {
3386			v4l_err(client, "DT parsing error\n");
3387			return err;
3388		}
3389	} else if (client->dev.platform_data) {
3390		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3391
3392		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3393		state->pdata = *pdata;
3394	} else {
3395		v4l_err(client, "No platform data!\n");
3396		return -ENODEV;
3397	}
3398
3399	/* Request GPIOs. */
3400	for (i = 0; i < state->info->num_dv_ports; ++i) {
3401		state->hpd_gpio[i] =
3402			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3403						      GPIOD_OUT_LOW);
3404		if (IS_ERR(state->hpd_gpio[i]))
3405			return PTR_ERR(state->hpd_gpio[i]);
3406
3407		if (state->hpd_gpio[i])
3408			v4l_info(client, "Handling HPD %u GPIO\n", i);
3409	}
3410	state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3411								GPIOD_OUT_HIGH);
3412	if (IS_ERR(state->reset_gpio))
3413		return PTR_ERR(state->reset_gpio);
3414
3415	adv76xx_reset(state);
3416
3417	state->timings = cea640x480;
3418	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3419
3420	sd = &state->sd;
3421	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3422	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3423		id->name, i2c_adapter_id(client->adapter),
3424		client->addr);
3425	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3426	sd->internal_ops = &adv76xx_int_ops;
3427
3428	/* Configure IO Regmap region */
3429	err = configure_regmap(state, ADV76XX_PAGE_IO);
3430
3431	if (err) {
3432		v4l2_err(sd, "Error configuring IO regmap region\n");
3433		return -ENODEV;
3434	}
3435
3436	/*
3437	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3438	 * identifies the revision, while on ADV7611 it identifies the model as
3439	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3440	 */
3441	switch (state->info->type) {
3442	case ADV7604:
3443		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3444		if (err) {
3445			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3446			return -ENODEV;
3447		}
3448		if (val != 0x68) {
3449			v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3450					client->addr << 1);
3451			return -ENODEV;
3452		}
3453		break;
3454	case ADV7611:
3455	case ADV7612:
3456		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3457				0xea,
3458				&val);
3459		if (err) {
3460			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3461			return -ENODEV;
3462		}
3463		val2 = val << 8;
3464		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3465			    0xeb,
3466			    &val);
3467		if (err) {
3468			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3469			return -ENODEV;
3470		}
3471		val |= val2;
3472		if ((state->info->type == ADV7611 && val != 0x2051) ||
3473			(state->info->type == ADV7612 && val != 0x2041)) {
3474			v4l2_err(sd, "not an adv761x on address 0x%x\n",
3475					client->addr << 1);
3476			return -ENODEV;
3477		}
3478		break;
3479	}
3480
3481	/* control handlers */
3482	hdl = &state->hdl;
3483	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3484
3485	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3486			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3487	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3488			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3489	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3490			V4L2_CID_SATURATION, 0, 255, 1, 128);
3491	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3492			V4L2_CID_HUE, 0, 128, 1, 0);
3493	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3494			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3495			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3496	if (ctrl)
3497		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3498
3499	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3500			V4L2_CID_DV_RX_POWER_PRESENT, 0,
3501			(1 << state->info->num_dv_ports) - 1, 0, 0);
3502	state->rgb_quantization_range_ctrl =
3503		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3504			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3505			0, V4L2_DV_RGB_RANGE_AUTO);
3506
3507	/* custom controls */
3508	if (adv76xx_has_afe(state))
3509		state->analog_sampling_phase_ctrl =
3510			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3511	state->free_run_color_manual_ctrl =
3512		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3513	state->free_run_color_ctrl =
3514		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3515
3516	sd->ctrl_handler = hdl;
3517	if (hdl->error) {
3518		err = hdl->error;
3519		goto err_hdl;
3520	}
3521	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3522		err = -ENODEV;
3523		goto err_hdl;
3524	}
3525
3526	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3527		struct i2c_client *dummy_client;
3528
3529		if (!(BIT(i) & state->info->page_mask))
3530			continue;
3531
3532		dummy_client = adv76xx_dummy_client(sd, i);
3533		if (IS_ERR(dummy_client)) {
3534			err = PTR_ERR(dummy_client);
3535			v4l2_err(sd, "failed to create i2c client %u\n", i);
3536			goto err_i2c;
3537		}
3538
3539		state->i2c_clients[i] = dummy_client;
3540	}
3541
3542	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3543			adv76xx_delayed_work_enable_hotplug);
3544
3545	state->source_pad = state->info->num_dv_ports
3546			  + (state->info->has_afe ? 2 : 0);
3547	for (i = 0; i < state->source_pad; ++i)
3548		state->pads[i].flags = MEDIA_PAD_FL_SINK;
3549	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3550	sd->entity.function = MEDIA_ENT_F_DV_DECODER;
3551
3552	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3553				state->pads);
3554	if (err)
3555		goto err_work_queues;
3556
3557	/* Configure regmaps */
3558	err = configure_regmaps(state);
3559	if (err)
3560		goto err_entity;
3561
3562	err = adv76xx_core_init(sd);
3563	if (err)
3564		goto err_entity;
3565
3566	if (client->irq) {
3567		err = devm_request_threaded_irq(&client->dev,
3568						client->irq,
3569						NULL, adv76xx_irq_handler,
3570						IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
3571						client->name, state);
3572		if (err)
3573			goto err_entity;
3574	}
3575
3576#if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3577	state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3578		state, dev_name(&client->dev),
3579		CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3580	err = PTR_ERR_OR_ZERO(state->cec_adap);
3581	if (err)
3582		goto err_entity;
3583#endif
3584
3585	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3586			client->addr << 1, client->adapter->name);
3587
3588	err = v4l2_async_register_subdev(sd);
3589	if (err)
3590		goto err_entity;
3591
3592	return 0;
3593
3594err_entity:
3595	media_entity_cleanup(&sd->entity);
3596err_work_queues:
3597	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3598err_i2c:
3599	adv76xx_unregister_clients(state);
3600err_hdl:
3601	v4l2_ctrl_handler_free(hdl);
3602	return err;
3603}
3604
3605/* ----------------------------------------------------------------------- */
3606
3607static int adv76xx_remove(struct i2c_client *client)
3608{
3609	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3610	struct adv76xx_state *state = to_state(sd);
3611
3612	/* disable interrupts */
3613	io_write(sd, 0x40, 0);
3614	io_write(sd, 0x41, 0);
3615	io_write(sd, 0x46, 0);
3616	io_write(sd, 0x6e, 0);
3617	io_write(sd, 0x73, 0);
3618
3619	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
3620	v4l2_async_unregister_subdev(sd);
3621	media_entity_cleanup(&sd->entity);
3622	adv76xx_unregister_clients(to_state(sd));
3623	v4l2_ctrl_handler_free(sd->ctrl_handler);
3624	return 0;
3625}
3626
3627/* ----------------------------------------------------------------------- */
3628
3629static struct i2c_driver adv76xx_driver = {
3630	.driver = {
3631		.name = "adv7604",
3632		.of_match_table = of_match_ptr(adv76xx_of_id),
3633	},
3634	.probe = adv76xx_probe,
3635	.remove = adv76xx_remove,
3636	.id_table = adv76xx_i2c_id,
3637};
3638
3639module_i2c_driver(adv76xx_driver);
3640