1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
4 *
5 * Copyright (C) 2003-2007 Micronas
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/moduleparam.h>
11#include <linux/init.h>
12#include <linux/delay.h>
13#include <linux/firmware.h>
14#include <linux/i2c.h>
15#include <asm/div64.h>
16
17#include <media/dvb_frontend.h>
18#include "drxd.h"
19#include "drxd_firm.h"
20
21#define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
22#define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
23
24#define CHUNK_SIZE 48
25
26#define DRX_I2C_RMW           0x10
27#define DRX_I2C_BROADCAST     0x20
28#define DRX_I2C_CLEARCRC      0x80
29#define DRX_I2C_SINGLE_MASTER 0xC0
30#define DRX_I2C_MODEFLAGS     0xC0
31#define DRX_I2C_FLAGS         0xF0
32
33#define DEFAULT_LOCK_TIMEOUT    1100
34
35#define DRX_CHANNEL_AUTO 0
36#define DRX_CHANNEL_HIGH 1
37#define DRX_CHANNEL_LOW  2
38
39#define DRX_LOCK_MPEG  1
40#define DRX_LOCK_FEC   2
41#define DRX_LOCK_DEMOD 4
42
43/****************************************************************************/
44
45enum CSCDState {
46	CSCD_INIT = 0,
47	CSCD_SET,
48	CSCD_SAVED
49};
50
51enum CDrxdState {
52	DRXD_UNINITIALIZED = 0,
53	DRXD_STOPPED,
54	DRXD_STARTED
55};
56
57enum AGC_CTRL_MODE {
58	AGC_CTRL_AUTO = 0,
59	AGC_CTRL_USER,
60	AGC_CTRL_OFF
61};
62
63enum OperationMode {
64	OM_Default,
65	OM_DVBT_Diversity_Front,
66	OM_DVBT_Diversity_End
67};
68
69struct SCfgAgc {
70	enum AGC_CTRL_MODE ctrlMode;
71	u16 outputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
72	u16 settleLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
73	u16 minOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
74	u16 maxOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
75	u16 speed;		/* range [0, ... , 1023], 1/n of fullscale range */
76
77	u16 R1;
78	u16 R2;
79	u16 R3;
80};
81
82struct SNoiseCal {
83	int cpOpt;
84	short cpNexpOfs;
85	short tdCal2k;
86	short tdCal8k;
87};
88
89enum app_env {
90	APPENV_STATIC = 0,
91	APPENV_PORTABLE = 1,
92	APPENV_MOBILE = 2
93};
94
95enum EIFFilter {
96	IFFILTER_SAW = 0,
97	IFFILTER_DISCRETE = 1
98};
99
100struct drxd_state {
101	struct dvb_frontend frontend;
102	struct dvb_frontend_ops ops;
103	struct dtv_frontend_properties props;
104
105	const struct firmware *fw;
106	struct device *dev;
107
108	struct i2c_adapter *i2c;
109	void *priv;
110	struct drxd_config config;
111
112	int i2c_access;
113	int init_done;
114	struct mutex mutex;
115
116	u8 chip_adr;
117	u16 hi_cfg_timing_div;
118	u16 hi_cfg_bridge_delay;
119	u16 hi_cfg_wakeup_key;
120	u16 hi_cfg_ctrl;
121
122	u16 intermediate_freq;
123	u16 osc_clock_freq;
124
125	enum CSCDState cscd_state;
126	enum CDrxdState drxd_state;
127
128	u16 sys_clock_freq;
129	s16 osc_clock_deviation;
130	u16 expected_sys_clock_freq;
131
132	u16 insert_rs_byte;
133	u16 enable_parallel;
134
135	int operation_mode;
136
137	struct SCfgAgc if_agc_cfg;
138	struct SCfgAgc rf_agc_cfg;
139
140	struct SNoiseCal noise_cal;
141
142	u32 fe_fs_add_incr;
143	u32 org_fe_fs_add_incr;
144	u16 current_fe_if_incr;
145
146	u16 m_FeAgRegAgPwd;
147	u16 m_FeAgRegAgAgcSio;
148
149	u16 m_EcOcRegOcModeLop;
150	u16 m_EcOcRegSncSncLvl;
151	u8 *m_InitAtomicRead;
152	u8 *m_HiI2cPatch;
153
154	u8 *m_ResetCEFR;
155	u8 *m_InitFE_1;
156	u8 *m_InitFE_2;
157	u8 *m_InitCP;
158	u8 *m_InitCE;
159	u8 *m_InitEQ;
160	u8 *m_InitSC;
161	u8 *m_InitEC;
162	u8 *m_ResetECRAM;
163	u8 *m_InitDiversityFront;
164	u8 *m_InitDiversityEnd;
165	u8 *m_DisableDiversity;
166	u8 *m_StartDiversityFront;
167	u8 *m_StartDiversityEnd;
168
169	u8 *m_DiversityDelay8MHZ;
170	u8 *m_DiversityDelay6MHZ;
171
172	u8 *microcode;
173	u32 microcode_length;
174
175	int type_A;
176	int PGA;
177	int diversity;
178	int tuner_mirrors;
179
180	enum app_env app_env_default;
181	enum app_env app_env_diversity;
182
183};
184
185/****************************************************************************/
186/* I2C **********************************************************************/
187/****************************************************************************/
188
189static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
190{
191	struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
192
193	if (i2c_transfer(adap, &msg, 1) != 1)
194		return -1;
195	return 0;
196}
197
198static int i2c_read(struct i2c_adapter *adap,
199		    u8 adr, u8 *msg, int len, u8 *answ, int alen)
200{
201	struct i2c_msg msgs[2] = {
202		{
203			.addr = adr, .flags = 0,
204			.buf = msg, .len = len
205		}, {
206			.addr = adr, .flags = I2C_M_RD,
207			.buf = answ, .len = alen
208		}
209	};
210	if (i2c_transfer(adap, msgs, 2) != 2)
211		return -1;
212	return 0;
213}
214
215static inline u32 MulDiv32(u32 a, u32 b, u32 c)
216{
217	u64 tmp64;
218
219	tmp64 = (u64)a * (u64)b;
220	do_div(tmp64, c);
221
222	return (u32) tmp64;
223}
224
225static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
226{
227	u8 adr = state->config.demod_address;
228	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
229		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
230	};
231	u8 mm2[2];
232	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
233		return -1;
234	if (data)
235		*data = mm2[0] | (mm2[1] << 8);
236	return mm2[0] | (mm2[1] << 8);
237}
238
239static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
240{
241	u8 adr = state->config.demod_address;
242	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
243		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
244	};
245	u8 mm2[4];
246
247	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
248		return -1;
249	if (data)
250		*data =
251		    mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
252	return 0;
253}
254
255static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
256{
257	u8 adr = state->config.demod_address;
258	u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
259		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
260		data & 0xff, (data >> 8) & 0xff
261	};
262
263	if (i2c_write(state->i2c, adr, mm, 6) < 0)
264		return -1;
265	return 0;
266}
267
268static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
269{
270	u8 adr = state->config.demod_address;
271	u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
272		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
273		data & 0xff, (data >> 8) & 0xff,
274		(data >> 16) & 0xff, (data >> 24) & 0xff
275	};
276
277	if (i2c_write(state->i2c, adr, mm, 8) < 0)
278		return -1;
279	return 0;
280}
281
282static int write_chunk(struct drxd_state *state,
283		       u32 reg, u8 *data, u32 len, u8 flags)
284{
285	u8 adr = state->config.demod_address;
286	u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
287		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
288	};
289	int i;
290
291	for (i = 0; i < len; i++)
292		mm[4 + i] = data[i];
293	if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
294		printk(KERN_ERR "error in write_chunk\n");
295		return -1;
296	}
297	return 0;
298}
299
300static int WriteBlock(struct drxd_state *state,
301		      u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
302{
303	while (BlockSize > 0) {
304		u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
305
306		if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
307			return -1;
308		pBlock += Chunk;
309		Address += (Chunk >> 1);
310		BlockSize -= Chunk;
311	}
312	return 0;
313}
314
315static int WriteTable(struct drxd_state *state, u8 * pTable)
316{
317	int status = 0;
318
319	if (!pTable)
320		return 0;
321
322	while (!status) {
323		u16 Length;
324		u32 Address = pTable[0] | (pTable[1] << 8) |
325		    (pTable[2] << 16) | (pTable[3] << 24);
326
327		if (Address == 0xFFFFFFFF)
328			break;
329		pTable += sizeof(u32);
330
331		Length = pTable[0] | (pTable[1] << 8);
332		pTable += sizeof(u16);
333		if (!Length)
334			break;
335		status = WriteBlock(state, Address, Length * 2, pTable, 0);
336		pTable += (Length * 2);
337	}
338	return status;
339}
340
341/****************************************************************************/
342/****************************************************************************/
343/****************************************************************************/
344
345static int ResetCEFR(struct drxd_state *state)
346{
347	return WriteTable(state, state->m_ResetCEFR);
348}
349
350static int InitCP(struct drxd_state *state)
351{
352	return WriteTable(state, state->m_InitCP);
353}
354
355static int InitCE(struct drxd_state *state)
356{
357	int status;
358	enum app_env AppEnv = state->app_env_default;
359
360	do {
361		status = WriteTable(state, state->m_InitCE);
362		if (status < 0)
363			break;
364
365		if (state->operation_mode == OM_DVBT_Diversity_Front ||
366		    state->operation_mode == OM_DVBT_Diversity_End) {
367			AppEnv = state->app_env_diversity;
368		}
369		if (AppEnv == APPENV_STATIC) {
370			status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
371			if (status < 0)
372				break;
373		} else if (AppEnv == APPENV_PORTABLE) {
374			status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
375			if (status < 0)
376				break;
377		} else if (AppEnv == APPENV_MOBILE && state->type_A) {
378			status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
379			if (status < 0)
380				break;
381		} else if (AppEnv == APPENV_MOBILE && !state->type_A) {
382			status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
383			if (status < 0)
384				break;
385		}
386
387		/* start ce */
388		status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
389		if (status < 0)
390			break;
391	} while (0);
392	return status;
393}
394
395static int StopOC(struct drxd_state *state)
396{
397	int status = 0;
398	u16 ocSyncLvl = 0;
399	u16 ocModeLop = state->m_EcOcRegOcModeLop;
400	u16 dtoIncLop = 0;
401	u16 dtoIncHip = 0;
402
403	do {
404		/* Store output configuration */
405		status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
406		if (status < 0)
407			break;
408		/* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
409		state->m_EcOcRegSncSncLvl = ocSyncLvl;
410		/* m_EcOcRegOcModeLop = ocModeLop; */
411
412		/* Flush FIFO (byte-boundary) at fixed rate */
413		status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
414		if (status < 0)
415			break;
416		status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
417		if (status < 0)
418			break;
419		status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
420		if (status < 0)
421			break;
422		status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
423		if (status < 0)
424			break;
425		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
426		ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
427		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
428		if (status < 0)
429			break;
430		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
431		if (status < 0)
432			break;
433
434		msleep(1);
435		/* Output pins to '0' */
436		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
437		if (status < 0)
438			break;
439
440		/* Force the OC out of sync */
441		ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
442		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
443		if (status < 0)
444			break;
445		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
446		ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
447		ocModeLop |= 0x2;	/* Magically-out-of-sync */
448		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
449		if (status < 0)
450			break;
451		status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
452		if (status < 0)
453			break;
454		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
455		if (status < 0)
456			break;
457	} while (0);
458
459	return status;
460}
461
462static int StartOC(struct drxd_state *state)
463{
464	int status = 0;
465
466	do {
467		/* Stop OC */
468		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
469		if (status < 0)
470			break;
471
472		/* Restore output configuration */
473		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
474		if (status < 0)
475			break;
476		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
477		if (status < 0)
478			break;
479
480		/* Output pins active again */
481		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
482		if (status < 0)
483			break;
484
485		/* Start OC */
486		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
487		if (status < 0)
488			break;
489	} while (0);
490	return status;
491}
492
493static int InitEQ(struct drxd_state *state)
494{
495	return WriteTable(state, state->m_InitEQ);
496}
497
498static int InitEC(struct drxd_state *state)
499{
500	return WriteTable(state, state->m_InitEC);
501}
502
503static int InitSC(struct drxd_state *state)
504{
505	return WriteTable(state, state->m_InitSC);
506}
507
508static int InitAtomicRead(struct drxd_state *state)
509{
510	return WriteTable(state, state->m_InitAtomicRead);
511}
512
513static int CorrectSysClockDeviation(struct drxd_state *state);
514
515static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
516{
517	u16 ScRaRamLock = 0;
518	const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
519				    SC_RA_RAM_LOCK_FEC__M |
520				    SC_RA_RAM_LOCK_DEMOD__M);
521	const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
522				   SC_RA_RAM_LOCK_DEMOD__M);
523	const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
524
525	int status;
526
527	*pLockStatus = 0;
528
529	status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
530	if (status < 0) {
531		printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
532		return status;
533	}
534
535	if (state->drxd_state != DRXD_STARTED)
536		return 0;
537
538	if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
539		*pLockStatus |= DRX_LOCK_MPEG;
540		CorrectSysClockDeviation(state);
541	}
542
543	if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
544		*pLockStatus |= DRX_LOCK_FEC;
545
546	if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
547		*pLockStatus |= DRX_LOCK_DEMOD;
548	return 0;
549}
550
551/****************************************************************************/
552
553static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
554{
555	int status;
556
557	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
558		return -1;
559
560	if (cfg->ctrlMode == AGC_CTRL_USER) {
561		do {
562			u16 FeAgRegPm1AgcWri;
563			u16 FeAgRegAgModeLop;
564
565			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
566			if (status < 0)
567				break;
568			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
569			FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
570			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
571			if (status < 0)
572				break;
573
574			FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
575						  FE_AG_REG_PM1_AGC_WRI__M);
576			status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
577			if (status < 0)
578				break;
579		} while (0);
580	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
581		if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
582		    ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
583		    ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
584		    ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
585		    )
586			return -1;
587		do {
588			u16 FeAgRegAgModeLop;
589			u16 FeAgRegEgcSetLvl;
590			u16 slope, offset;
591
592			/* == Mode == */
593
594			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
595			if (status < 0)
596				break;
597			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
598			FeAgRegAgModeLop |=
599			    FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
600			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
601			if (status < 0)
602				break;
603
604			/* == Settle level == */
605
606			FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
607						  FE_AG_REG_EGC_SET_LVL__M);
608			status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
609			if (status < 0)
610				break;
611
612			/* == Min/Max == */
613
614			slope = (u16) ((cfg->maxOutputLevel -
615					cfg->minOutputLevel) / 2);
616			offset = (u16) ((cfg->maxOutputLevel +
617					 cfg->minOutputLevel) / 2 - 511);
618
619			status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
620			if (status < 0)
621				break;
622			status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
623			if (status < 0)
624				break;
625
626			/* == Speed == */
627			{
628				const u16 maxRur = 8;
629				static const u16 slowIncrDecLUT[] = {
630					3, 4, 4, 5, 6 };
631				static const u16 fastIncrDecLUT[] = {
632					14, 15, 15, 16,
633					17, 18, 18, 19,
634					20, 21, 22, 23,
635					24, 26, 27, 28,
636					29, 31
637				};
638
639				u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
640				    (maxRur + 1);
641				u16 fineSpeed = (u16) (cfg->speed -
642						       ((cfg->speed /
643							 fineSteps) *
644							fineSteps));
645				u16 invRurCount = (u16) (cfg->speed /
646							 fineSteps);
647				u16 rurCount;
648				if (invRurCount > maxRur) {
649					rurCount = 0;
650					fineSpeed += fineSteps;
651				} else {
652					rurCount = maxRur - invRurCount;
653				}
654
655				/*
656				   fastInc = default *
657				   (2^(fineSpeed/fineSteps))
658				   => range[default...2*default>
659				   slowInc = default *
660				   (2^(fineSpeed/fineSteps))
661				 */
662				{
663					u16 fastIncrDec =
664					    fastIncrDecLUT[fineSpeed /
665							   ((fineSteps /
666							     (14 + 1)) + 1)];
667					u16 slowIncrDec =
668					    slowIncrDecLUT[fineSpeed /
669							   (fineSteps /
670							    (3 + 1))];
671
672					status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
673					if (status < 0)
674						break;
675					status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
676					if (status < 0)
677						break;
678					status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
679					if (status < 0)
680						break;
681					status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
682					if (status < 0)
683						break;
684					status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
685					if (status < 0)
686						break;
687				}
688			}
689		} while (0);
690
691	} else {
692		/* No OFF mode for IF control */
693		return -1;
694	}
695	return status;
696}
697
698static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
699{
700	int status = 0;
701
702	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
703		return -1;
704
705	if (cfg->ctrlMode == AGC_CTRL_USER) {
706		do {
707			u16 AgModeLop = 0;
708			u16 level = (cfg->outputLevel);
709
710			if (level == DRXD_FE_CTRL_MAX)
711				level++;
712
713			status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
714			if (status < 0)
715				break;
716
717			/*==== Mode ====*/
718
719			/* Powerdown PD2, WRI source */
720			state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
721			state->m_FeAgRegAgPwd |=
722			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
723			status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
724			if (status < 0)
725				break;
726
727			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
728			if (status < 0)
729				break;
730			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
731					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
732			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
733				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
734			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
735			if (status < 0)
736				break;
737
738			/* enable AGC2 pin */
739			{
740				u16 FeAgRegAgAgcSio = 0;
741				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
742				if (status < 0)
743					break;
744				FeAgRegAgAgcSio &=
745				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
746				FeAgRegAgAgcSio |=
747				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
748				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
749				if (status < 0)
750					break;
751			}
752
753		} while (0);
754	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
755		u16 AgModeLop = 0;
756
757		do {
758			u16 level;
759			/* Automatic control */
760			/* Powerup PD2, AGC2 as output, TGC source */
761			(state->m_FeAgRegAgPwd) &=
762			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
763			(state->m_FeAgRegAgPwd) |=
764			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
765			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
766			if (status < 0)
767				break;
768
769			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
770			if (status < 0)
771				break;
772			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
773					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
774			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
775				      FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
776			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
777			if (status < 0)
778				break;
779			/* Settle level */
780			level = (((cfg->settleLevel) >> 4) &
781				 FE_AG_REG_TGC_SET_LVL__M);
782			status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
783			if (status < 0)
784				break;
785
786			/* Min/max: don't care */
787
788			/* Speed: TODO */
789
790			/* enable AGC2 pin */
791			{
792				u16 FeAgRegAgAgcSio = 0;
793				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
794				if (status < 0)
795					break;
796				FeAgRegAgAgcSio &=
797				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
798				FeAgRegAgAgcSio |=
799				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
800				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
801				if (status < 0)
802					break;
803			}
804
805		} while (0);
806	} else {
807		u16 AgModeLop = 0;
808
809		do {
810			/* No RF AGC control */
811			/* Powerdown PD2, AGC2 as output, WRI source */
812			(state->m_FeAgRegAgPwd) &=
813			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
814			(state->m_FeAgRegAgPwd) |=
815			    FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
816			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
817			if (status < 0)
818				break;
819
820			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
821			if (status < 0)
822				break;
823			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
824					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
825			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
826				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
827			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
828			if (status < 0)
829				break;
830
831			/* set FeAgRegAgAgcSio AGC2 (RF) as input */
832			{
833				u16 FeAgRegAgAgcSio = 0;
834				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
835				if (status < 0)
836					break;
837				FeAgRegAgAgcSio &=
838				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
839				FeAgRegAgAgcSio |=
840				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
841				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
842				if (status < 0)
843					break;
844			}
845		} while (0);
846	}
847	return status;
848}
849
850static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
851{
852	int status = 0;
853
854	*pValue = 0;
855	if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
856		u16 Value;
857		status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
858		Value &= FE_AG_REG_GC1_AGC_DAT__M;
859		if (status >= 0) {
860			/*           3.3V
861			   |
862			   R1
863			   |
864			   Vin - R3 - * -- Vout
865			   |
866			   R2
867			   |
868			   GND
869			 */
870			u32 R1 = state->if_agc_cfg.R1;
871			u32 R2 = state->if_agc_cfg.R2;
872			u32 R3 = state->if_agc_cfg.R3;
873
874			u32 Vmax, Rpar, Vmin, Vout;
875
876			if (R2 == 0 && (R1 == 0 || R3 == 0))
877				return 0;
878
879			Vmax = (3300 * R2) / (R1 + R2);
880			Rpar = (R2 * R3) / (R3 + R2);
881			Vmin = (3300 * Rpar) / (R1 + Rpar);
882			Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
883
884			*pValue = Vout;
885		}
886	}
887	return status;
888}
889
890static int load_firmware(struct drxd_state *state, const char *fw_name)
891{
892	const struct firmware *fw;
893
894	if (request_firmware(&fw, fw_name, state->dev) < 0) {
895		printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
896		return -EIO;
897	}
898
899	state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
900	if (!state->microcode) {
901		release_firmware(fw);
902		return -ENOMEM;
903	}
904
905	state->microcode_length = fw->size;
906	release_firmware(fw);
907	return 0;
908}
909
910static int DownloadMicrocode(struct drxd_state *state,
911			     const u8 *pMCImage, u32 Length)
912{
913	u8 *pSrc;
914	u32 Address;
915	u16 nBlocks;
916	u16 BlockSize;
917	u32 offset = 0;
918	int i, status = 0;
919
920	pSrc = (u8 *) pMCImage;
921	/* We're not using Flags */
922	/* Flags = (pSrc[0] << 8) | pSrc[1]; */
923	pSrc += sizeof(u16);
924	offset += sizeof(u16);
925	nBlocks = (pSrc[0] << 8) | pSrc[1];
926	pSrc += sizeof(u16);
927	offset += sizeof(u16);
928
929	for (i = 0; i < nBlocks; i++) {
930		Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
931		    (pSrc[2] << 8) | pSrc[3];
932		pSrc += sizeof(u32);
933		offset += sizeof(u32);
934
935		BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
936		pSrc += sizeof(u16);
937		offset += sizeof(u16);
938
939		/* We're not using Flags */
940		/* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
941		pSrc += sizeof(u16);
942		offset += sizeof(u16);
943
944		/* We're not using BlockCRC */
945		/* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
946		pSrc += sizeof(u16);
947		offset += sizeof(u16);
948
949		status = WriteBlock(state, Address, BlockSize,
950				    pSrc, DRX_I2C_CLEARCRC);
951		if (status < 0)
952			break;
953		pSrc += BlockSize;
954		offset += BlockSize;
955	}
956
957	return status;
958}
959
960static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
961{
962	u32 nrRetries = 0;
963	int status;
964
965	status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
966	if (status < 0)
967		return status;
968
969	do {
970		nrRetries += 1;
971		if (nrRetries > DRXD_MAX_RETRIES) {
972			status = -1;
973			break;
974		}
975		status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0);
976	} while (status != 0);
977
978	if (status >= 0)
979		status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
980	return status;
981}
982
983static int HI_CfgCommand(struct drxd_state *state)
984{
985	int status = 0;
986
987	mutex_lock(&state->mutex);
988	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
989	Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
990	Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
991	Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
992	Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
993
994	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
995
996	if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
997	    HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
998		status = Write16(state, HI_RA_RAM_SRV_CMD__A,
999				 HI_RA_RAM_SRV_CMD_CONFIG, 0);
1000	else
1001		status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1002	mutex_unlock(&state->mutex);
1003	return status;
1004}
1005
1006static int InitHI(struct drxd_state *state)
1007{
1008	state->hi_cfg_wakeup_key = (state->chip_adr);
1009	/* port/bridge/power down ctrl */
1010	state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1011	return HI_CfgCommand(state);
1012}
1013
1014static int HI_ResetCommand(struct drxd_state *state)
1015{
1016	int status;
1017
1018	mutex_lock(&state->mutex);
1019	status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1020			 HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1021	if (status == 0)
1022		status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1023	mutex_unlock(&state->mutex);
1024	msleep(1);
1025	return status;
1026}
1027
1028static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1029{
1030	state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1031	if (bEnableBridge)
1032		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1033	else
1034		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1035
1036	return HI_CfgCommand(state);
1037}
1038
1039#define HI_TR_WRITE      0x9
1040#define HI_TR_READ       0xA
1041#define HI_TR_READ_WRITE 0xB
1042#define HI_TR_BROADCAST  0x4
1043
1044#if 0
1045static int AtomicReadBlock(struct drxd_state *state,
1046			   u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1047{
1048	int status;
1049	int i = 0;
1050
1051	/* Parameter check */
1052	if ((!pData) || ((DataSize & 1) != 0))
1053		return -1;
1054
1055	mutex_lock(&state->mutex);
1056
1057	do {
1058		/* Instruct HI to read n bytes */
1059		/* TODO use proper names forthese egisters */
1060		status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1061		if (status < 0)
1062			break;
1063		status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1064		if (status < 0)
1065			break;
1066		status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1067		if (status < 0)
1068			break;
1069		status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1070		if (status < 0)
1071			break;
1072		status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1073		if (status < 0)
1074			break;
1075
1076		status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1077		if (status < 0)
1078			break;
1079
1080	} while (0);
1081
1082	if (status >= 0) {
1083		for (i = 0; i < (DataSize / 2); i += 1) {
1084			u16 word;
1085
1086			status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1087					&word, 0);
1088			if (status < 0)
1089				break;
1090			pData[2 * i] = (u8) (word & 0xFF);
1091			pData[(2 * i) + 1] = (u8) (word >> 8);
1092		}
1093	}
1094	mutex_unlock(&state->mutex);
1095	return status;
1096}
1097
1098static int AtomicReadReg32(struct drxd_state *state,
1099			   u32 Addr, u32 *pData, u8 Flags)
1100{
1101	u8 buf[sizeof(u32)];
1102	int status;
1103
1104	if (!pData)
1105		return -1;
1106	status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1107	*pData = (((u32) buf[0]) << 0) +
1108	    (((u32) buf[1]) << 8) +
1109	    (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1110	return status;
1111}
1112#endif
1113
1114static int StopAllProcessors(struct drxd_state *state)
1115{
1116	return Write16(state, HI_COMM_EXEC__A,
1117		       SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1118}
1119
1120static int EnableAndResetMB(struct drxd_state *state)
1121{
1122	if (state->type_A) {
1123		/* disable? monitor bus observe @ EC_OC */
1124		Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1125	}
1126
1127	/* do inverse broadcast, followed by explicit write to HI */
1128	Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1129	Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1130	return 0;
1131}
1132
1133static int InitCC(struct drxd_state *state)
1134{
1135	int status = 0;
1136
1137	if (state->osc_clock_freq == 0 ||
1138	    state->osc_clock_freq > 20000 ||
1139	    (state->osc_clock_freq % 4000) != 0) {
1140		printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1141		return -1;
1142	}
1143
1144	status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1145	status |= Write16(state, CC_REG_PLL_MODE__A,
1146				CC_REG_PLL_MODE_BYPASS_PLL |
1147				CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1148	status |= Write16(state, CC_REG_REF_DIVIDE__A,
1149				state->osc_clock_freq / 4000, 0);
1150	status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL,
1151				0);
1152	status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1153
1154	return status;
1155}
1156
1157static int ResetECOD(struct drxd_state *state)
1158{
1159	int status = 0;
1160
1161	if (state->type_A)
1162		status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1163	else
1164		status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1165
1166	if (!(status < 0))
1167		status = WriteTable(state, state->m_ResetECRAM);
1168	if (!(status < 0))
1169		status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1170	return status;
1171}
1172
1173/* Configure PGA switch */
1174
1175static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1176{
1177	int status;
1178	u16 AgModeLop = 0;
1179	u16 AgModeHip = 0;
1180	do {
1181		if (pgaSwitch) {
1182			/* PGA on */
1183			/* fine gain */
1184			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1185			if (status < 0)
1186				break;
1187			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1188			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1189			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1190			if (status < 0)
1191				break;
1192
1193			/* coarse gain */
1194			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1195			if (status < 0)
1196				break;
1197			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1198			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1199			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1200			if (status < 0)
1201				break;
1202
1203			/* enable fine and coarse gain, enable AAF,
1204			   no ext resistor */
1205			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1206			if (status < 0)
1207				break;
1208		} else {
1209			/* PGA off, bypass */
1210
1211			/* fine gain */
1212			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1213			if (status < 0)
1214				break;
1215			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1216			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1217			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1218			if (status < 0)
1219				break;
1220
1221			/* coarse gain */
1222			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1223			if (status < 0)
1224				break;
1225			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1226			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1227			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1228			if (status < 0)
1229				break;
1230
1231			/* disable fine and coarse gain, enable AAF,
1232			   no ext resistor */
1233			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1234			if (status < 0)
1235				break;
1236		}
1237	} while (0);
1238	return status;
1239}
1240
1241static int InitFE(struct drxd_state *state)
1242{
1243	int status;
1244
1245	do {
1246		status = WriteTable(state, state->m_InitFE_1);
1247		if (status < 0)
1248			break;
1249
1250		if (state->type_A) {
1251			status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1252					 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1253					 0);
1254		} else {
1255			if (state->PGA)
1256				status = SetCfgPga(state, 0);
1257			else
1258				status =
1259				    Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1260					    B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1261					    0);
1262		}
1263
1264		if (status < 0)
1265			break;
1266		status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1267		if (status < 0)
1268			break;
1269		status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1270		if (status < 0)
1271			break;
1272
1273		status = WriteTable(state, state->m_InitFE_2);
1274		if (status < 0)
1275			break;
1276
1277	} while (0);
1278
1279	return status;
1280}
1281
1282static int InitFT(struct drxd_state *state)
1283{
1284	/*
1285	   norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1286	   SC stuff
1287	 */
1288	return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1289}
1290
1291static int SC_WaitForReady(struct drxd_state *state)
1292{
1293	int i;
1294
1295	for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1296		int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0);
1297		if (status == 0)
1298			return status;
1299	}
1300	return -1;
1301}
1302
1303static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1304{
1305	int status = 0, ret;
1306	u16 errCode;
1307
1308	status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1309	if (status < 0)
1310		return status;
1311
1312	SC_WaitForReady(state);
1313
1314	ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1315
1316	if (ret < 0 || errCode == 0xFFFF) {
1317		printk(KERN_ERR "Command Error\n");
1318		status = -1;
1319	}
1320
1321	return status;
1322}
1323
1324static int SC_ProcStartCommand(struct drxd_state *state,
1325			       u16 subCmd, u16 param0, u16 param1)
1326{
1327	int ret, status = 0;
1328	u16 scExec;
1329
1330	mutex_lock(&state->mutex);
1331	do {
1332		ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1333		if (ret < 0 || scExec != 1) {
1334			status = -1;
1335			break;
1336		}
1337		SC_WaitForReady(state);
1338		status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1339		status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1340		status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1341
1342		SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1343	} while (0);
1344	mutex_unlock(&state->mutex);
1345	return status;
1346}
1347
1348static int SC_SetPrefParamCommand(struct drxd_state *state,
1349				  u16 subCmd, u16 param0, u16 param1)
1350{
1351	int status;
1352
1353	mutex_lock(&state->mutex);
1354	do {
1355		status = SC_WaitForReady(state);
1356		if (status < 0)
1357			break;
1358		status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1359		if (status < 0)
1360			break;
1361		status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1362		if (status < 0)
1363			break;
1364		status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1365		if (status < 0)
1366			break;
1367
1368		status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1369		if (status < 0)
1370			break;
1371	} while (0);
1372	mutex_unlock(&state->mutex);
1373	return status;
1374}
1375
1376#if 0
1377static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1378{
1379	int status = 0;
1380
1381	mutex_lock(&state->mutex);
1382	do {
1383		status = SC_WaitForReady(state);
1384		if (status < 0)
1385			break;
1386		status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1387		if (status < 0)
1388			break;
1389		status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1390		if (status < 0)
1391			break;
1392	} while (0);
1393	mutex_unlock(&state->mutex);
1394	return status;
1395}
1396#endif
1397
1398static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1399{
1400	int status;
1401
1402	do {
1403		u16 EcOcRegIprInvMpg = 0;
1404		u16 EcOcRegOcModeLop = 0;
1405		u16 EcOcRegOcModeHip = 0;
1406		u16 EcOcRegOcMpgSio = 0;
1407
1408		/*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1409
1410		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1411			if (bEnableOutput) {
1412				EcOcRegOcModeHip |=
1413				    B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1414			} else
1415				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1416			EcOcRegOcModeLop |=
1417			    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1418		} else {
1419			EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1420
1421			if (bEnableOutput)
1422				EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1423			else
1424				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1425
1426			/* Don't Insert RS Byte */
1427			if (state->insert_rs_byte) {
1428				EcOcRegOcModeLop &=
1429				    (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1430				EcOcRegOcModeHip &=
1431				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1432				EcOcRegOcModeHip |=
1433				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1434			} else {
1435				EcOcRegOcModeLop |=
1436				    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1437				EcOcRegOcModeHip &=
1438				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1439				EcOcRegOcModeHip |=
1440				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1441			}
1442
1443			/* Mode = Parallel */
1444			if (state->enable_parallel)
1445				EcOcRegOcModeLop &=
1446				    (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1447			else
1448				EcOcRegOcModeLop |=
1449				    EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1450		}
1451		/* Invert Data */
1452		/* EcOcRegIprInvMpg |= 0x00FF; */
1453		EcOcRegIprInvMpg &= (~(0x00FF));
1454
1455		/* Invert Error ( we don't use the pin ) */
1456		/*  EcOcRegIprInvMpg |= 0x0100; */
1457		EcOcRegIprInvMpg &= (~(0x0100));
1458
1459		/* Invert Start ( we don't use the pin ) */
1460		/* EcOcRegIprInvMpg |= 0x0200; */
1461		EcOcRegIprInvMpg &= (~(0x0200));
1462
1463		/* Invert Valid ( we don't use the pin ) */
1464		/* EcOcRegIprInvMpg |= 0x0400; */
1465		EcOcRegIprInvMpg &= (~(0x0400));
1466
1467		/* Invert Clock */
1468		/* EcOcRegIprInvMpg |= 0x0800; */
1469		EcOcRegIprInvMpg &= (~(0x0800));
1470
1471		/* EcOcRegOcModeLop =0x05; */
1472		status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1473		if (status < 0)
1474			break;
1475		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1476		if (status < 0)
1477			break;
1478		status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1479		if (status < 0)
1480			break;
1481		status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1482		if (status < 0)
1483			break;
1484	} while (0);
1485	return status;
1486}
1487
1488static int SetDeviceTypeId(struct drxd_state *state)
1489{
1490	int status = 0;
1491	u16 deviceId = 0;
1492
1493	do {
1494		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1495		if (status < 0)
1496			break;
1497		/* TODO: why twice? */
1498		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1499		if (status < 0)
1500			break;
1501		printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1502
1503		state->type_A = 0;
1504		state->PGA = 0;
1505		state->diversity = 0;
1506		if (deviceId == 0) {	/* on A2 only 3975 available */
1507			state->type_A = 1;
1508			printk(KERN_INFO "DRX3975D-A2\n");
1509		} else {
1510			deviceId >>= 12;
1511			printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1512			switch (deviceId) {
1513			case 4:
1514				state->diversity = 1;
1515				fallthrough;
1516			case 3:
1517			case 7:
1518				state->PGA = 1;
1519				break;
1520			case 6:
1521				state->diversity = 1;
1522				fallthrough;
1523			case 5:
1524			case 8:
1525				break;
1526			default:
1527				status = -1;
1528				break;
1529			}
1530		}
1531	} while (0);
1532
1533	if (status < 0)
1534		return status;
1535
1536	/* Init Table selection */
1537	state->m_InitAtomicRead = DRXD_InitAtomicRead;
1538	state->m_InitSC = DRXD_InitSC;
1539	state->m_ResetECRAM = DRXD_ResetECRAM;
1540	if (state->type_A) {
1541		state->m_ResetCEFR = DRXD_ResetCEFR;
1542		state->m_InitFE_1 = DRXD_InitFEA2_1;
1543		state->m_InitFE_2 = DRXD_InitFEA2_2;
1544		state->m_InitCP = DRXD_InitCPA2;
1545		state->m_InitCE = DRXD_InitCEA2;
1546		state->m_InitEQ = DRXD_InitEQA2;
1547		state->m_InitEC = DRXD_InitECA2;
1548		if (load_firmware(state, DRX_FW_FILENAME_A2))
1549			return -EIO;
1550	} else {
1551		state->m_ResetCEFR = NULL;
1552		state->m_InitFE_1 = DRXD_InitFEB1_1;
1553		state->m_InitFE_2 = DRXD_InitFEB1_2;
1554		state->m_InitCP = DRXD_InitCPB1;
1555		state->m_InitCE = DRXD_InitCEB1;
1556		state->m_InitEQ = DRXD_InitEQB1;
1557		state->m_InitEC = DRXD_InitECB1;
1558		if (load_firmware(state, DRX_FW_FILENAME_B1))
1559			return -EIO;
1560	}
1561	if (state->diversity) {
1562		state->m_InitDiversityFront = DRXD_InitDiversityFront;
1563		state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1564		state->m_DisableDiversity = DRXD_DisableDiversity;
1565		state->m_StartDiversityFront = DRXD_StartDiversityFront;
1566		state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1567		state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1568		state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1569	} else {
1570		state->m_InitDiversityFront = NULL;
1571		state->m_InitDiversityEnd = NULL;
1572		state->m_DisableDiversity = NULL;
1573		state->m_StartDiversityFront = NULL;
1574		state->m_StartDiversityEnd = NULL;
1575		state->m_DiversityDelay8MHZ = NULL;
1576		state->m_DiversityDelay6MHZ = NULL;
1577	}
1578
1579	return status;
1580}
1581
1582static int CorrectSysClockDeviation(struct drxd_state *state)
1583{
1584	int status;
1585	s32 incr = 0;
1586	s32 nomincr = 0;
1587	u32 bandwidth = 0;
1588	u32 sysClockInHz = 0;
1589	u32 sysClockFreq = 0;	/* in kHz */
1590	s16 oscClockDeviation;
1591	s16 Diff;
1592
1593	do {
1594		/* Retrieve bandwidth and incr, sanity check */
1595
1596		/* These accesses should be AtomicReadReg32, but that
1597		   causes trouble (at least for diversity */
1598		status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1599		if (status < 0)
1600			break;
1601		status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1602		if (status < 0)
1603			break;
1604
1605		if (state->type_A) {
1606			if ((nomincr - incr < -500) || (nomincr - incr > 500))
1607				break;
1608		} else {
1609			if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1610				break;
1611		}
1612
1613		switch (state->props.bandwidth_hz) {
1614		case 8000000:
1615			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1616			break;
1617		case 7000000:
1618			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1619			break;
1620		case 6000000:
1621			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1622			break;
1623		default:
1624			return -1;
1625			break;
1626		}
1627
1628		/* Compute new sysclock value
1629		   sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1630		incr += (1 << 23);
1631		sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1632		sysClockFreq = (u32) (sysClockInHz / 1000);
1633		/* rounding */
1634		if ((sysClockInHz % 1000) > 500)
1635			sysClockFreq++;
1636
1637		/* Compute clock deviation in ppm */
1638		oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1639					     (s32)
1640					     (state->expected_sys_clock_freq)) *
1641					    1000000L) /
1642					   (s32)
1643					   (state->expected_sys_clock_freq));
1644
1645		Diff = oscClockDeviation - state->osc_clock_deviation;
1646		/*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1647		if (Diff >= -200 && Diff <= 200) {
1648			state->sys_clock_freq = (u16) sysClockFreq;
1649			if (oscClockDeviation != state->osc_clock_deviation) {
1650				if (state->config.osc_deviation) {
1651					state->config.osc_deviation(state->priv,
1652								    oscClockDeviation,
1653								    1);
1654					state->osc_clock_deviation =
1655					    oscClockDeviation;
1656				}
1657			}
1658			/* switch OFF SRMM scan in SC */
1659			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1660			if (status < 0)
1661				break;
1662			/* overrule FE_IF internal value for
1663			   proper re-locking */
1664			status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1665			if (status < 0)
1666				break;
1667			state->cscd_state = CSCD_SAVED;
1668		}
1669	} while (0);
1670
1671	return status;
1672}
1673
1674static int DRX_Stop(struct drxd_state *state)
1675{
1676	int status;
1677
1678	if (state->drxd_state != DRXD_STARTED)
1679		return 0;
1680
1681	do {
1682		if (state->cscd_state != CSCD_SAVED) {
1683			u32 lock;
1684			status = DRX_GetLockStatus(state, &lock);
1685			if (status < 0)
1686				break;
1687		}
1688
1689		status = StopOC(state);
1690		if (status < 0)
1691			break;
1692
1693		state->drxd_state = DRXD_STOPPED;
1694
1695		status = ConfigureMPEGOutput(state, 0);
1696		if (status < 0)
1697			break;
1698
1699		if (state->type_A) {
1700			/* Stop relevant processors off the device */
1701			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1702			if (status < 0)
1703				break;
1704
1705			status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1706			if (status < 0)
1707				break;
1708			status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1709			if (status < 0)
1710				break;
1711		} else {
1712			/* Stop all processors except HI & CC & FE */
1713			status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1714			if (status < 0)
1715				break;
1716			status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1717			if (status < 0)
1718				break;
1719			status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1720			if (status < 0)
1721				break;
1722			status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1723			if (status < 0)
1724				break;
1725			status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1726			if (status < 0)
1727				break;
1728			status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1729			if (status < 0)
1730				break;
1731			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1732			if (status < 0)
1733				break;
1734		}
1735
1736	} while (0);
1737	return status;
1738}
1739
1740#if 0	/* Currently unused */
1741static int SetOperationMode(struct drxd_state *state, int oMode)
1742{
1743	int status;
1744
1745	do {
1746		if (state->drxd_state != DRXD_STOPPED) {
1747			status = -1;
1748			break;
1749		}
1750
1751		if (oMode == state->operation_mode) {
1752			status = 0;
1753			break;
1754		}
1755
1756		if (oMode != OM_Default && !state->diversity) {
1757			status = -1;
1758			break;
1759		}
1760
1761		switch (oMode) {
1762		case OM_DVBT_Diversity_Front:
1763			status = WriteTable(state, state->m_InitDiversityFront);
1764			break;
1765		case OM_DVBT_Diversity_End:
1766			status = WriteTable(state, state->m_InitDiversityEnd);
1767			break;
1768		case OM_Default:
1769			/* We need to check how to
1770			   get DRXD out of diversity */
1771		default:
1772			status = WriteTable(state, state->m_DisableDiversity);
1773			break;
1774		}
1775	} while (0);
1776
1777	if (!status)
1778		state->operation_mode = oMode;
1779	return status;
1780}
1781#endif
1782
1783static int StartDiversity(struct drxd_state *state)
1784{
1785	int status = 0;
1786	u16 rcControl;
1787
1788	do {
1789		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1790			status = WriteTable(state, state->m_StartDiversityFront);
1791			if (status < 0)
1792				break;
1793		} else if (state->operation_mode == OM_DVBT_Diversity_End) {
1794			status = WriteTable(state, state->m_StartDiversityEnd);
1795			if (status < 0)
1796				break;
1797			if (state->props.bandwidth_hz == 8000000) {
1798				status = WriteTable(state, state->m_DiversityDelay8MHZ);
1799				if (status < 0)
1800					break;
1801			} else {
1802				status = WriteTable(state, state->m_DiversityDelay6MHZ);
1803				if (status < 0)
1804					break;
1805			}
1806
1807			status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1808			if (status < 0)
1809				break;
1810			rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1811			rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1812			    /*  combining enabled */
1813			    B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1814			    B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1815			    B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1816			status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1817			if (status < 0)
1818				break;
1819		}
1820	} while (0);
1821	return status;
1822}
1823
1824static int SetFrequencyShift(struct drxd_state *state,
1825			     u32 offsetFreq, int channelMirrored)
1826{
1827	int negativeShift = (state->tuner_mirrors == channelMirrored);
1828
1829	/* Handle all mirroring
1830	 *
1831	 * Note: ADC mirroring (aliasing) is implictly handled by limiting
1832	 * feFsRegAddInc to 28 bits below
1833	 * (if the result before masking is more than 28 bits, this means
1834	 *  that the ADC is mirroring.
1835	 * The masking is in fact the aliasing of the ADC)
1836	 *
1837	 */
1838
1839	/* Compute register value, unsigned computation */
1840	state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1841					 offsetFreq,
1842					 1 << 28, state->sys_clock_freq);
1843	/* Remove integer part */
1844	state->fe_fs_add_incr &= 0x0FFFFFFFL;
1845	if (negativeShift)
1846		state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1847
1848	/* Save the frequency shift without tunerOffset compensation
1849	   for CtrlGetChannel. */
1850	state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1851					     1 << 28, state->sys_clock_freq);
1852	/* Remove integer part */
1853	state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1854	if (negativeShift)
1855		state->org_fe_fs_add_incr = ((1L << 28) -
1856					     state->org_fe_fs_add_incr);
1857
1858	return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1859		       state->fe_fs_add_incr, 0);
1860}
1861
1862static int SetCfgNoiseCalibration(struct drxd_state *state,
1863				  struct SNoiseCal *noiseCal)
1864{
1865	u16 beOptEna;
1866	int status = 0;
1867
1868	do {
1869		status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1870		if (status < 0)
1871			break;
1872		if (noiseCal->cpOpt) {
1873			beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1874		} else {
1875			beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1876			status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1877			if (status < 0)
1878				break;
1879		}
1880		status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1881		if (status < 0)
1882			break;
1883
1884		if (!state->type_A) {
1885			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1886			if (status < 0)
1887				break;
1888			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1889			if (status < 0)
1890				break;
1891		}
1892	} while (0);
1893
1894	return status;
1895}
1896
1897static int DRX_Start(struct drxd_state *state, s32 off)
1898{
1899	struct dtv_frontend_properties *p = &state->props;
1900	int status;
1901
1902	u16 transmissionParams = 0;
1903	u16 operationMode = 0;
1904	u16 qpskTdTpsPwr = 0;
1905	u16 qam16TdTpsPwr = 0;
1906	u16 qam64TdTpsPwr = 0;
1907	u32 feIfIncr = 0;
1908	u32 bandwidth = 0;
1909	int mirrorFreqSpect;
1910
1911	u16 qpskSnCeGain = 0;
1912	u16 qam16SnCeGain = 0;
1913	u16 qam64SnCeGain = 0;
1914	u16 qpskIsGainMan = 0;
1915	u16 qam16IsGainMan = 0;
1916	u16 qam64IsGainMan = 0;
1917	u16 qpskIsGainExp = 0;
1918	u16 qam16IsGainExp = 0;
1919	u16 qam64IsGainExp = 0;
1920	u16 bandwidthParam = 0;
1921
1922	if (off < 0)
1923		off = (off - 500) / 1000;
1924	else
1925		off = (off + 500) / 1000;
1926
1927	do {
1928		if (state->drxd_state != DRXD_STOPPED)
1929			return -1;
1930		status = ResetECOD(state);
1931		if (status < 0)
1932			break;
1933		if (state->type_A) {
1934			status = InitSC(state);
1935			if (status < 0)
1936				break;
1937		} else {
1938			status = InitFT(state);
1939			if (status < 0)
1940				break;
1941			status = InitCP(state);
1942			if (status < 0)
1943				break;
1944			status = InitCE(state);
1945			if (status < 0)
1946				break;
1947			status = InitEQ(state);
1948			if (status < 0)
1949				break;
1950			status = InitSC(state);
1951			if (status < 0)
1952				break;
1953		}
1954
1955		/* Restore current IF & RF AGC settings */
1956
1957		status = SetCfgIfAgc(state, &state->if_agc_cfg);
1958		if (status < 0)
1959			break;
1960		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1961		if (status < 0)
1962			break;
1963
1964		mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1965
1966		switch (p->transmission_mode) {
1967		default:	/* Not set, detect it automatically */
1968			operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1969			fallthrough;	/* try first guess DRX_FFTMODE_8K */
1970		case TRANSMISSION_MODE_8K:
1971			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1972			if (state->type_A) {
1973				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1974				if (status < 0)
1975					break;
1976				qpskSnCeGain = 99;
1977				qam16SnCeGain = 83;
1978				qam64SnCeGain = 67;
1979			}
1980			break;
1981		case TRANSMISSION_MODE_2K:
1982			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1983			if (state->type_A) {
1984				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1985				if (status < 0)
1986					break;
1987				qpskSnCeGain = 97;
1988				qam16SnCeGain = 71;
1989				qam64SnCeGain = 65;
1990			}
1991			break;
1992		}
1993
1994		switch (p->guard_interval) {
1995		case GUARD_INTERVAL_1_4:
1996			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
1997			break;
1998		case GUARD_INTERVAL_1_8:
1999			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2000			break;
2001		case GUARD_INTERVAL_1_16:
2002			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2003			break;
2004		case GUARD_INTERVAL_1_32:
2005			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2006			break;
2007		default:	/* Not set, detect it automatically */
2008			operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2009			/* try first guess 1/4 */
2010			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2011			break;
2012		}
2013
2014		switch (p->hierarchy) {
2015		case HIERARCHY_1:
2016			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2017			if (state->type_A) {
2018				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2019				if (status < 0)
2020					break;
2021				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2022				if (status < 0)
2023					break;
2024
2025				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2026				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2027				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2028
2029				qpskIsGainMan =
2030				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2031				qam16IsGainMan =
2032				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2033				qam64IsGainMan =
2034				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2035
2036				qpskIsGainExp =
2037				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2038				qam16IsGainExp =
2039				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2040				qam64IsGainExp =
2041				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2042			}
2043			break;
2044
2045		case HIERARCHY_2:
2046			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2047			if (state->type_A) {
2048				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2049				if (status < 0)
2050					break;
2051				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2052				if (status < 0)
2053					break;
2054
2055				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2056				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2057				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2058
2059				qpskIsGainMan =
2060				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2061				qam16IsGainMan =
2062				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2063				qam64IsGainMan =
2064				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2065
2066				qpskIsGainExp =
2067				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2068				qam16IsGainExp =
2069				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2070				qam64IsGainExp =
2071				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2072			}
2073			break;
2074		case HIERARCHY_4:
2075			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2076			if (state->type_A) {
2077				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2078				if (status < 0)
2079					break;
2080				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2081				if (status < 0)
2082					break;
2083
2084				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2085				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2086				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2087
2088				qpskIsGainMan =
2089				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2090				qam16IsGainMan =
2091				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2092				qam64IsGainMan =
2093				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2094
2095				qpskIsGainExp =
2096				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2097				qam16IsGainExp =
2098				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2099				qam64IsGainExp =
2100				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2101			}
2102			break;
2103		case HIERARCHY_AUTO:
2104		default:
2105			/* Not set, detect it automatically, start with none */
2106			operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2107			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2108			if (state->type_A) {
2109				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2110				if (status < 0)
2111					break;
2112				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2113				if (status < 0)
2114					break;
2115
2116				qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2117				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2118				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2119
2120				qpskIsGainMan =
2121				    SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2122				qam16IsGainMan =
2123				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2124				qam64IsGainMan =
2125				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2126
2127				qpskIsGainExp =
2128				    SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2129				qam16IsGainExp =
2130				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2131				qam64IsGainExp =
2132				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2133			}
2134			break;
2135		}
2136		if (status < 0)
2137			break;
2138
2139		switch (p->modulation) {
2140		default:
2141			operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2142			fallthrough;	/* try first guess DRX_CONSTELLATION_QAM64 */
2143		case QAM_64:
2144			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2145			if (state->type_A) {
2146				status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2147				if (status < 0)
2148					break;
2149				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2150				if (status < 0)
2151					break;
2152				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2153				if (status < 0)
2154					break;
2155				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2156				if (status < 0)
2157					break;
2158				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2159				if (status < 0)
2160					break;
2161
2162				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2163				if (status < 0)
2164					break;
2165				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2166				if (status < 0)
2167					break;
2168				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2169				if (status < 0)
2170					break;
2171				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2172				if (status < 0)
2173					break;
2174			}
2175			break;
2176		case QPSK:
2177			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2178			if (state->type_A) {
2179				status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2180				if (status < 0)
2181					break;
2182				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2183				if (status < 0)
2184					break;
2185				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2186				if (status < 0)
2187					break;
2188				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2189				if (status < 0)
2190					break;
2191				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2192				if (status < 0)
2193					break;
2194
2195				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2196				if (status < 0)
2197					break;
2198				status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2199				if (status < 0)
2200					break;
2201				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2202				if (status < 0)
2203					break;
2204				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2205				if (status < 0)
2206					break;
2207			}
2208			break;
2209
2210		case QAM_16:
2211			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2212			if (state->type_A) {
2213				status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2214				if (status < 0)
2215					break;
2216				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2217				if (status < 0)
2218					break;
2219				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2220				if (status < 0)
2221					break;
2222				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2223				if (status < 0)
2224					break;
2225				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2226				if (status < 0)
2227					break;
2228
2229				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2230				if (status < 0)
2231					break;
2232				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2233				if (status < 0)
2234					break;
2235				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2236				if (status < 0)
2237					break;
2238				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2239				if (status < 0)
2240					break;
2241			}
2242			break;
2243
2244		}
2245		if (status < 0)
2246			break;
2247
2248		switch (DRX_CHANNEL_HIGH) {
2249		default:
2250		case DRX_CHANNEL_AUTO:
2251		case DRX_CHANNEL_LOW:
2252			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2253			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2254			break;
2255		case DRX_CHANNEL_HIGH:
2256			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2257			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2258			break;
2259		}
2260
2261		switch (p->code_rate_HP) {
2262		case FEC_1_2:
2263			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2264			if (state->type_A)
2265				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2266			break;
2267		default:
2268			operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2269			fallthrough;
2270		case FEC_2_3:
2271			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2272			if (state->type_A)
2273				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2274			break;
2275		case FEC_3_4:
2276			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2277			if (state->type_A)
2278				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2279			break;
2280		case FEC_5_6:
2281			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2282			if (state->type_A)
2283				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2284			break;
2285		case FEC_7_8:
2286			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2287			if (state->type_A)
2288				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2289			break;
2290		}
2291		if (status < 0)
2292			break;
2293
2294		/* First determine real bandwidth (Hz) */
2295		/* Also set delay for impulse noise cruncher (only A2) */
2296		/* Also set parameters for EC_OC fix, note
2297		   EC_OC_REG_TMD_HIL_MAR is changed
2298		   by SC for fix for some 8K,1/8 guard but is restored by
2299		   InitEC and ResetEC
2300		   functions */
2301		switch (p->bandwidth_hz) {
2302		case 0:
2303			p->bandwidth_hz = 8000000;
2304			fallthrough;
2305		case 8000000:
2306			/* (64/7)*(8/8)*1000000 */
2307			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2308
2309			bandwidthParam = 0;
2310			status = Write16(state,
2311					 FE_AG_REG_IND_DEL__A, 50, 0x0000);
2312			break;
2313		case 7000000:
2314			/* (64/7)*(7/8)*1000000 */
2315			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2316			bandwidthParam = 0x4807;	/*binary:0100 1000 0000 0111 */
2317			status = Write16(state,
2318					 FE_AG_REG_IND_DEL__A, 59, 0x0000);
2319			break;
2320		case 6000000:
2321			/* (64/7)*(6/8)*1000000 */
2322			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2323			bandwidthParam = 0x0F07;	/*binary: 0000 1111 0000 0111 */
2324			status = Write16(state,
2325					 FE_AG_REG_IND_DEL__A, 71, 0x0000);
2326			break;
2327		default:
2328			status = -EINVAL;
2329		}
2330		if (status < 0)
2331			break;
2332
2333		status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2334		if (status < 0)
2335			break;
2336
2337		{
2338			u16 sc_config;
2339			status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2340			if (status < 0)
2341				break;
2342
2343			/* enable SLAVE mode in 2k 1/32 to
2344			   prevent timing change glitches */
2345			if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2346			    (p->guard_interval == GUARD_INTERVAL_1_32)) {
2347				/* enable slave */
2348				sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2349			} else {
2350				/* disable slave */
2351				sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2352			}
2353			status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2354			if (status < 0)
2355				break;
2356		}
2357
2358		status = SetCfgNoiseCalibration(state, &state->noise_cal);
2359		if (status < 0)
2360			break;
2361
2362		if (state->cscd_state == CSCD_INIT) {
2363			/* switch on SRMM scan in SC */
2364			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2365			if (status < 0)
2366				break;
2367/*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2368			state->cscd_state = CSCD_SET;
2369		}
2370
2371		/* Now compute FE_IF_REG_INCR */
2372		/*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2373		   ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2374		feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2375				    (1ULL << 21), bandwidth) - (1 << 23);
2376		status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2377		if (status < 0)
2378			break;
2379		status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2380		if (status < 0)
2381			break;
2382		/* Bandwidth setting done */
2383
2384		/* Mirror & frequency offset */
2385		SetFrequencyShift(state, off, mirrorFreqSpect);
2386
2387		/* Start SC, write channel settings to SC */
2388
2389		/* Enable SC after setting all other parameters */
2390		status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2391		if (status < 0)
2392			break;
2393		status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2394		if (status < 0)
2395			break;
2396
2397		/* Write SC parameter registers, operation mode */
2398#if 1
2399		operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2400				 SC_RA_RAM_OP_AUTO_GUARD__M |
2401				 SC_RA_RAM_OP_AUTO_CONST__M |
2402				 SC_RA_RAM_OP_AUTO_HIER__M |
2403				 SC_RA_RAM_OP_AUTO_RATE__M);
2404#endif
2405		status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2406		if (status < 0)
2407			break;
2408
2409		/* Start correct processes to get in lock */
2410		status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2411		if (status < 0)
2412			break;
2413
2414		status = StartOC(state);
2415		if (status < 0)
2416			break;
2417
2418		if (state->operation_mode != OM_Default) {
2419			status = StartDiversity(state);
2420			if (status < 0)
2421				break;
2422		}
2423
2424		state->drxd_state = DRXD_STARTED;
2425	} while (0);
2426
2427	return status;
2428}
2429
2430static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2431{
2432	u32 ulRfAgcOutputLevel = 0xffffffff;
2433	u32 ulRfAgcSettleLevel = 528;	/* Optimum value for MT2060 */
2434	u32 ulRfAgcMinLevel = 0;	/* Currently unused */
2435	u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX;	/* Currently unused */
2436	u32 ulRfAgcSpeed = 0;	/* Currently unused */
2437	u32 ulRfAgcMode = 0;	/*2;   Off */
2438	u32 ulRfAgcR1 = 820;
2439	u32 ulRfAgcR2 = 2200;
2440	u32 ulRfAgcR3 = 150;
2441	u32 ulIfAgcMode = 0;	/* Auto */
2442	u32 ulIfAgcOutputLevel = 0xffffffff;
2443	u32 ulIfAgcSettleLevel = 0xffffffff;
2444	u32 ulIfAgcMinLevel = 0xffffffff;
2445	u32 ulIfAgcMaxLevel = 0xffffffff;
2446	u32 ulIfAgcSpeed = 0xffffffff;
2447	u32 ulIfAgcR1 = 820;
2448	u32 ulIfAgcR2 = 2200;
2449	u32 ulIfAgcR3 = 150;
2450	u32 ulClock = state->config.clock;
2451	u32 ulSerialMode = 0;
2452	u32 ulEcOcRegOcModeLop = 4;	/* Dynamic DTO source */
2453	u32 ulHiI2cDelay = HI_I2C_DELAY;
2454	u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2455	u32 ulHiI2cPatch = 0;
2456	u32 ulEnvironment = APPENV_PORTABLE;
2457	u32 ulEnvironmentDiversity = APPENV_MOBILE;
2458	u32 ulIFFilter = IFFILTER_SAW;
2459
2460	state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2461	state->if_agc_cfg.outputLevel = 0;
2462	state->if_agc_cfg.settleLevel = 140;
2463	state->if_agc_cfg.minOutputLevel = 0;
2464	state->if_agc_cfg.maxOutputLevel = 1023;
2465	state->if_agc_cfg.speed = 904;
2466
2467	if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2468		state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2469		state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2470	}
2471
2472	if (ulIfAgcMode == 0 &&
2473	    ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2474	    ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2475	    ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2476	    ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2477		state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2478		state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2479		state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2480		state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2481		state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2482	}
2483
2484	state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2485	state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2486	state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2487
2488	state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2489	state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2490	state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2491
2492	state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2493	/* rest of the RFAgcCfg structure currently unused */
2494	if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2495		state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2496		state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2497	}
2498
2499	if (ulRfAgcMode == 0 &&
2500	    ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2501	    ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2502	    ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2503	    ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2504		state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2505		state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2506		state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2507		state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2508		state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2509	}
2510
2511	if (ulRfAgcMode == 2)
2512		state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2513
2514	if (ulEnvironment <= 2)
2515		state->app_env_default = (enum app_env)
2516		    (ulEnvironment);
2517	if (ulEnvironmentDiversity <= 2)
2518		state->app_env_diversity = (enum app_env)
2519		    (ulEnvironmentDiversity);
2520
2521	if (ulIFFilter == IFFILTER_DISCRETE) {
2522		/* discrete filter */
2523		state->noise_cal.cpOpt = 0;
2524		state->noise_cal.cpNexpOfs = 40;
2525		state->noise_cal.tdCal2k = -40;
2526		state->noise_cal.tdCal8k = -24;
2527	} else {
2528		/* SAW filter */
2529		state->noise_cal.cpOpt = 1;
2530		state->noise_cal.cpNexpOfs = 0;
2531		state->noise_cal.tdCal2k = -21;
2532		state->noise_cal.tdCal8k = -24;
2533	}
2534	state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2535
2536	state->chip_adr = (state->config.demod_address << 1) | 1;
2537	switch (ulHiI2cPatch) {
2538	case 1:
2539		state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2540		break;
2541	case 3:
2542		state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2543		break;
2544	default:
2545		state->m_HiI2cPatch = NULL;
2546	}
2547
2548	/* modify tuner and clock attributes */
2549	state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2550	/* expected system clock frequency in kHz */
2551	state->expected_sys_clock_freq = 48000;
2552	/* real system clock frequency in kHz */
2553	state->sys_clock_freq = 48000;
2554	state->osc_clock_freq = (u16) ulClock;
2555	state->osc_clock_deviation = 0;
2556	state->cscd_state = CSCD_INIT;
2557	state->drxd_state = DRXD_UNINITIALIZED;
2558
2559	state->PGA = 0;
2560	state->type_A = 0;
2561	state->tuner_mirrors = 0;
2562
2563	/* modify MPEG output attributes */
2564	state->insert_rs_byte = state->config.insert_rs_byte;
2565	state->enable_parallel = (ulSerialMode != 1);
2566
2567	/* Timing div, 250ns/Psys */
2568	/* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2569
2570	state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2571					  ulHiI2cDelay) / 1000;
2572	/* Bridge delay, uses oscilator clock */
2573	/* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2574	state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2575					    ulHiI2cBridgeDelay) / 1000;
2576
2577	state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2578	/* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2579	state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2580	return 0;
2581}
2582
2583static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2584{
2585	int status = 0;
2586	u32 driverVersion;
2587
2588	if (state->init_done)
2589		return 0;
2590
2591	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2592
2593	do {
2594		state->operation_mode = OM_Default;
2595
2596		status = SetDeviceTypeId(state);
2597		if (status < 0)
2598			break;
2599
2600		/* Apply I2c address patch to B1 */
2601		if (!state->type_A && state->m_HiI2cPatch) {
2602			status = WriteTable(state, state->m_HiI2cPatch);
2603			if (status < 0)
2604				break;
2605		}
2606
2607		if (state->type_A) {
2608			/* HI firmware patch for UIO readout,
2609			   avoid clearing of result register */
2610			status = Write16(state, 0x43012D, 0x047f, 0);
2611			if (status < 0)
2612				break;
2613		}
2614
2615		status = HI_ResetCommand(state);
2616		if (status < 0)
2617			break;
2618
2619		status = StopAllProcessors(state);
2620		if (status < 0)
2621			break;
2622		status = InitCC(state);
2623		if (status < 0)
2624			break;
2625
2626		state->osc_clock_deviation = 0;
2627
2628		if (state->config.osc_deviation)
2629			state->osc_clock_deviation =
2630			    state->config.osc_deviation(state->priv, 0, 0);
2631		{
2632			/* Handle clock deviation */
2633			s32 devB;
2634			s32 devA = (s32) (state->osc_clock_deviation) *
2635			    (s32) (state->expected_sys_clock_freq);
2636			/* deviation in kHz */
2637			s32 deviation = (devA / (1000000L));
2638			/* rounding, signed */
2639			if (devA > 0)
2640				devB = (2);
2641			else
2642				devB = (-2);
2643			if ((devB * (devA % 1000000L) > 1000000L)) {
2644				/* add +1 or -1 */
2645				deviation += (devB / 2);
2646			}
2647
2648			state->sys_clock_freq =
2649			    (u16) ((state->expected_sys_clock_freq) +
2650				   deviation);
2651		}
2652		status = InitHI(state);
2653		if (status < 0)
2654			break;
2655		status = InitAtomicRead(state);
2656		if (status < 0)
2657			break;
2658
2659		status = EnableAndResetMB(state);
2660		if (status < 0)
2661			break;
2662		if (state->type_A) {
2663			status = ResetCEFR(state);
2664			if (status < 0)
2665				break;
2666		}
2667		if (fw) {
2668			status = DownloadMicrocode(state, fw, fw_size);
2669			if (status < 0)
2670				break;
2671		} else {
2672			status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2673			if (status < 0)
2674				break;
2675		}
2676
2677		if (state->PGA) {
2678			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2679			SetCfgPga(state, 0);	/* PGA = 0 dB */
2680		} else {
2681			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2682		}
2683
2684		state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2685
2686		status = InitFE(state);
2687		if (status < 0)
2688			break;
2689		status = InitFT(state);
2690		if (status < 0)
2691			break;
2692		status = InitCP(state);
2693		if (status < 0)
2694			break;
2695		status = InitCE(state);
2696		if (status < 0)
2697			break;
2698		status = InitEQ(state);
2699		if (status < 0)
2700			break;
2701		status = InitEC(state);
2702		if (status < 0)
2703			break;
2704		status = InitSC(state);
2705		if (status < 0)
2706			break;
2707
2708		status = SetCfgIfAgc(state, &state->if_agc_cfg);
2709		if (status < 0)
2710			break;
2711		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2712		if (status < 0)
2713			break;
2714
2715		state->cscd_state = CSCD_INIT;
2716		status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2717		if (status < 0)
2718			break;
2719		status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2720		if (status < 0)
2721			break;
2722
2723		driverVersion = (((VERSION_MAJOR / 10) << 4) +
2724				 (VERSION_MAJOR % 10)) << 24;
2725		driverVersion += (((VERSION_MINOR / 10) << 4) +
2726				  (VERSION_MINOR % 10)) << 16;
2727		driverVersion += ((VERSION_PATCH / 1000) << 12) +
2728		    ((VERSION_PATCH / 100) << 8) +
2729		    ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2730
2731		status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2732		if (status < 0)
2733			break;
2734
2735		status = StopOC(state);
2736		if (status < 0)
2737			break;
2738
2739		state->drxd_state = DRXD_STOPPED;
2740		state->init_done = 1;
2741		status = 0;
2742	} while (0);
2743	return status;
2744}
2745
2746static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2747{
2748	DRX_GetLockStatus(state, pLockStatus);
2749
2750	/*if (*pLockStatus&DRX_LOCK_MPEG) */
2751	if (*pLockStatus & DRX_LOCK_FEC) {
2752		ConfigureMPEGOutput(state, 1);
2753		/* Get status again, in case we have MPEG lock now */
2754		/*DRX_GetLockStatus(state, pLockStatus); */
2755	}
2756
2757	return 0;
2758}
2759
2760/****************************************************************************/
2761/****************************************************************************/
2762/****************************************************************************/
2763
2764static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2765{
2766	struct drxd_state *state = fe->demodulator_priv;
2767	u32 value;
2768	int res;
2769
2770	res = ReadIFAgc(state, &value);
2771	if (res < 0)
2772		*strength = 0;
2773	else
2774		*strength = 0xffff - (value << 4);
2775	return 0;
2776}
2777
2778static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2779{
2780	struct drxd_state *state = fe->demodulator_priv;
2781	u32 lock;
2782
2783	DRXD_status(state, &lock);
2784	*status = 0;
2785	/* No MPEG lock in V255 firmware, bug ? */
2786#if 1
2787	if (lock & DRX_LOCK_MPEG)
2788		*status |= FE_HAS_LOCK;
2789#else
2790	if (lock & DRX_LOCK_FEC)
2791		*status |= FE_HAS_LOCK;
2792#endif
2793	if (lock & DRX_LOCK_FEC)
2794		*status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2795	if (lock & DRX_LOCK_DEMOD)
2796		*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2797
2798	return 0;
2799}
2800
2801static int drxd_init(struct dvb_frontend *fe)
2802{
2803	struct drxd_state *state = fe->demodulator_priv;
2804
2805	return DRXD_init(state, NULL, 0);
2806}
2807
2808static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2809{
2810	struct drxd_state *state = fe->demodulator_priv;
2811
2812	if (state->config.disable_i2c_gate_ctrl == 1)
2813		return 0;
2814
2815	return DRX_ConfigureI2CBridge(state, onoff);
2816}
2817
2818static int drxd_get_tune_settings(struct dvb_frontend *fe,
2819				  struct dvb_frontend_tune_settings *sets)
2820{
2821	sets->min_delay_ms = 10000;
2822	sets->max_drift = 0;
2823	sets->step_size = 0;
2824	return 0;
2825}
2826
2827static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2828{
2829	*ber = 0;
2830	return 0;
2831}
2832
2833static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2834{
2835	*snr = 0;
2836	return 0;
2837}
2838
2839static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2840{
2841	*ucblocks = 0;
2842	return 0;
2843}
2844
2845static int drxd_sleep(struct dvb_frontend *fe)
2846{
2847	struct drxd_state *state = fe->demodulator_priv;
2848
2849	ConfigureMPEGOutput(state, 0);
2850	return 0;
2851}
2852
2853static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2854{
2855	return drxd_config_i2c(fe, enable);
2856}
2857
2858static int drxd_set_frontend(struct dvb_frontend *fe)
2859{
2860	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2861	struct drxd_state *state = fe->demodulator_priv;
2862	s32 off = 0;
2863
2864	state->props = *p;
2865	DRX_Stop(state);
2866
2867	if (fe->ops.tuner_ops.set_params) {
2868		fe->ops.tuner_ops.set_params(fe);
2869		if (fe->ops.i2c_gate_ctrl)
2870			fe->ops.i2c_gate_ctrl(fe, 0);
2871	}
2872
2873	msleep(200);
2874
2875	return DRX_Start(state, off);
2876}
2877
2878static void drxd_release(struct dvb_frontend *fe)
2879{
2880	struct drxd_state *state = fe->demodulator_priv;
2881
2882	kfree(state);
2883}
2884
2885static const struct dvb_frontend_ops drxd_ops = {
2886	.delsys = { SYS_DVBT},
2887	.info = {
2888		 .name = "Micronas DRXD DVB-T",
2889		 .frequency_min_hz =  47125 * kHz,
2890		 .frequency_max_hz = 855250 * kHz,
2891		 .frequency_stepsize_hz = 166667,
2892		 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2893		 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2894		 FE_CAN_FEC_AUTO |
2895		 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2896		 FE_CAN_QAM_AUTO |
2897		 FE_CAN_TRANSMISSION_MODE_AUTO |
2898		 FE_CAN_GUARD_INTERVAL_AUTO |
2899		 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2900
2901	.release = drxd_release,
2902	.init = drxd_init,
2903	.sleep = drxd_sleep,
2904	.i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2905
2906	.set_frontend = drxd_set_frontend,
2907	.get_tune_settings = drxd_get_tune_settings,
2908
2909	.read_status = drxd_read_status,
2910	.read_ber = drxd_read_ber,
2911	.read_signal_strength = drxd_read_signal_strength,
2912	.read_snr = drxd_read_snr,
2913	.read_ucblocks = drxd_read_ucblocks,
2914};
2915
2916struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2917				 void *priv, struct i2c_adapter *i2c,
2918				 struct device *dev)
2919{
2920	struct drxd_state *state = NULL;
2921
2922	state = kzalloc(sizeof(*state), GFP_KERNEL);
2923	if (!state)
2924		return NULL;
2925
2926	state->ops = drxd_ops;
2927	state->dev = dev;
2928	state->config = *config;
2929	state->i2c = i2c;
2930	state->priv = priv;
2931
2932	mutex_init(&state->mutex);
2933
2934	if (Read16(state, 0, NULL, 0) < 0)
2935		goto error;
2936
2937	state->frontend.ops = drxd_ops;
2938	state->frontend.demodulator_priv = state;
2939	ConfigureMPEGOutput(state, 0);
2940	/* add few initialization to allow gate control */
2941	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2942	InitHI(state);
2943
2944	return &state->frontend;
2945
2946error:
2947	printk(KERN_ERR "drxd: not found\n");
2948	kfree(state);
2949	return NULL;
2950}
2951EXPORT_SYMBOL_GPL(drxd_attach);
2952
2953MODULE_DESCRIPTION("DRXD driver");
2954MODULE_AUTHOR("Micronas");
2955MODULE_LICENSE("GPL");
2956