1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13/* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38#include <linux/blkdev.h> 39#include <linux/kthread.h> 40#include <linux/raid/pq.h> 41#include <linux/async_tx.h> 42#include <linux/module.h> 43#include <linux/async.h> 44#include <linux/seq_file.h> 45#include <linux/cpu.h> 46#include <linux/slab.h> 47#include <linux/ratelimit.h> 48#include <linux/nodemask.h> 49 50#include <trace/events/block.h> 51#include <linux/list_sort.h> 52 53#include "md.h" 54#include "raid5.h" 55#include "raid0.h" 56#include "md-bitmap.h" 57#include "raid5-log.h" 58 59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 60 61#define cpu_to_group(cpu) cpu_to_node(cpu) 62#define ANY_GROUP NUMA_NO_NODE 63 64static bool devices_handle_discard_safely = false; 65module_param(devices_handle_discard_safely, bool, 0644); 66MODULE_PARM_DESC(devices_handle_discard_safely, 67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 68static struct workqueue_struct *raid5_wq; 69 70static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 71{ 72 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK; 73 return &conf->stripe_hashtbl[hash]; 74} 75 76static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect) 77{ 78 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK; 79} 80 81static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 82{ 83 spin_lock_irq(conf->hash_locks + hash); 84 spin_lock(&conf->device_lock); 85} 86 87static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 88{ 89 spin_unlock(&conf->device_lock); 90 spin_unlock_irq(conf->hash_locks + hash); 91} 92 93static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 94{ 95 int i; 96 spin_lock_irq(conf->hash_locks); 97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 99 spin_lock(&conf->device_lock); 100} 101 102static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 103{ 104 int i; 105 spin_unlock(&conf->device_lock); 106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 107 spin_unlock(conf->hash_locks + i); 108 spin_unlock_irq(conf->hash_locks); 109} 110 111/* Find first data disk in a raid6 stripe */ 112static inline int raid6_d0(struct stripe_head *sh) 113{ 114 if (sh->ddf_layout) 115 /* ddf always start from first device */ 116 return 0; 117 /* md starts just after Q block */ 118 if (sh->qd_idx == sh->disks - 1) 119 return 0; 120 else 121 return sh->qd_idx + 1; 122} 123static inline int raid6_next_disk(int disk, int raid_disks) 124{ 125 disk++; 126 return (disk < raid_disks) ? disk : 0; 127} 128 129/* When walking through the disks in a raid5, starting at raid6_d0, 130 * We need to map each disk to a 'slot', where the data disks are slot 131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 132 * is raid_disks-1. This help does that mapping. 133 */ 134static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 135 int *count, int syndrome_disks) 136{ 137 int slot = *count; 138 139 if (sh->ddf_layout) 140 (*count)++; 141 if (idx == sh->pd_idx) 142 return syndrome_disks; 143 if (idx == sh->qd_idx) 144 return syndrome_disks + 1; 145 if (!sh->ddf_layout) 146 (*count)++; 147 return slot; 148} 149 150static void print_raid5_conf (struct r5conf *conf); 151 152static int stripe_operations_active(struct stripe_head *sh) 153{ 154 return sh->check_state || sh->reconstruct_state || 155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 156 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 157} 158 159static bool stripe_is_lowprio(struct stripe_head *sh) 160{ 161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 163 !test_bit(STRIPE_R5C_CACHING, &sh->state); 164} 165 166static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 167{ 168 struct r5conf *conf = sh->raid_conf; 169 struct r5worker_group *group; 170 int thread_cnt; 171 int i, cpu = sh->cpu; 172 173 if (!cpu_online(cpu)) { 174 cpu = cpumask_any(cpu_online_mask); 175 sh->cpu = cpu; 176 } 177 178 if (list_empty(&sh->lru)) { 179 struct r5worker_group *group; 180 group = conf->worker_groups + cpu_to_group(cpu); 181 if (stripe_is_lowprio(sh)) 182 list_add_tail(&sh->lru, &group->loprio_list); 183 else 184 list_add_tail(&sh->lru, &group->handle_list); 185 group->stripes_cnt++; 186 sh->group = group; 187 } 188 189 if (conf->worker_cnt_per_group == 0) { 190 md_wakeup_thread(conf->mddev->thread); 191 return; 192 } 193 194 group = conf->worker_groups + cpu_to_group(sh->cpu); 195 196 group->workers[0].working = true; 197 /* at least one worker should run to avoid race */ 198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 199 200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 201 /* wakeup more workers */ 202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 203 if (group->workers[i].working == false) { 204 group->workers[i].working = true; 205 queue_work_on(sh->cpu, raid5_wq, 206 &group->workers[i].work); 207 thread_cnt--; 208 } 209 } 210} 211 212static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 213 struct list_head *temp_inactive_list) 214{ 215 int i; 216 int injournal = 0; /* number of date pages with R5_InJournal */ 217 218 BUG_ON(!list_empty(&sh->lru)); 219 BUG_ON(atomic_read(&conf->active_stripes)==0); 220 221 if (r5c_is_writeback(conf->log)) 222 for (i = sh->disks; i--; ) 223 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 224 injournal++; 225 /* 226 * In the following cases, the stripe cannot be released to cached 227 * lists. Therefore, we make the stripe write out and set 228 * STRIPE_HANDLE: 229 * 1. when quiesce in r5c write back; 230 * 2. when resync is requested fot the stripe. 231 */ 232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 233 (conf->quiesce && r5c_is_writeback(conf->log) && 234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 235 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 236 r5c_make_stripe_write_out(sh); 237 set_bit(STRIPE_HANDLE, &sh->state); 238 } 239 240 if (test_bit(STRIPE_HANDLE, &sh->state)) { 241 if (test_bit(STRIPE_DELAYED, &sh->state) && 242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 243 list_add_tail(&sh->lru, &conf->delayed_list); 244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 245 sh->bm_seq - conf->seq_write > 0) 246 list_add_tail(&sh->lru, &conf->bitmap_list); 247 else { 248 clear_bit(STRIPE_DELAYED, &sh->state); 249 clear_bit(STRIPE_BIT_DELAY, &sh->state); 250 if (conf->worker_cnt_per_group == 0) { 251 if (stripe_is_lowprio(sh)) 252 list_add_tail(&sh->lru, 253 &conf->loprio_list); 254 else 255 list_add_tail(&sh->lru, 256 &conf->handle_list); 257 } else { 258 raid5_wakeup_stripe_thread(sh); 259 return; 260 } 261 } 262 md_wakeup_thread(conf->mddev->thread); 263 } else { 264 BUG_ON(stripe_operations_active(sh)); 265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 266 if (atomic_dec_return(&conf->preread_active_stripes) 267 < IO_THRESHOLD) 268 md_wakeup_thread(conf->mddev->thread); 269 atomic_dec(&conf->active_stripes); 270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 271 if (!r5c_is_writeback(conf->log)) 272 list_add_tail(&sh->lru, temp_inactive_list); 273 else { 274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 275 if (injournal == 0) 276 list_add_tail(&sh->lru, temp_inactive_list); 277 else if (injournal == conf->raid_disks - conf->max_degraded) { 278 /* full stripe */ 279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 280 atomic_inc(&conf->r5c_cached_full_stripes); 281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 282 atomic_dec(&conf->r5c_cached_partial_stripes); 283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 284 r5c_check_cached_full_stripe(conf); 285 } else 286 /* 287 * STRIPE_R5C_PARTIAL_STRIPE is set in 288 * r5c_try_caching_write(). No need to 289 * set it again. 290 */ 291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 292 } 293 } 294 } 295} 296 297static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 298 struct list_head *temp_inactive_list) 299{ 300 if (atomic_dec_and_test(&sh->count)) 301 do_release_stripe(conf, sh, temp_inactive_list); 302} 303 304/* 305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 306 * 307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 308 * given time. Adding stripes only takes device lock, while deleting stripes 309 * only takes hash lock. 310 */ 311static void release_inactive_stripe_list(struct r5conf *conf, 312 struct list_head *temp_inactive_list, 313 int hash) 314{ 315 int size; 316 bool do_wakeup = false; 317 unsigned long flags; 318 319 if (hash == NR_STRIPE_HASH_LOCKS) { 320 size = NR_STRIPE_HASH_LOCKS; 321 hash = NR_STRIPE_HASH_LOCKS - 1; 322 } else 323 size = 1; 324 while (size) { 325 struct list_head *list = &temp_inactive_list[size - 1]; 326 327 /* 328 * We don't hold any lock here yet, raid5_get_active_stripe() might 329 * remove stripes from the list 330 */ 331 if (!list_empty_careful(list)) { 332 spin_lock_irqsave(conf->hash_locks + hash, flags); 333 if (list_empty(conf->inactive_list + hash) && 334 !list_empty(list)) 335 atomic_dec(&conf->empty_inactive_list_nr); 336 list_splice_tail_init(list, conf->inactive_list + hash); 337 do_wakeup = true; 338 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 339 } 340 size--; 341 hash--; 342 } 343 344 if (do_wakeup) { 345 wake_up(&conf->wait_for_stripe); 346 if (atomic_read(&conf->active_stripes) == 0) 347 wake_up(&conf->wait_for_quiescent); 348 if (conf->retry_read_aligned) 349 md_wakeup_thread(conf->mddev->thread); 350 } 351} 352 353/* should hold conf->device_lock already */ 354static int release_stripe_list(struct r5conf *conf, 355 struct list_head *temp_inactive_list) 356{ 357 struct stripe_head *sh, *t; 358 int count = 0; 359 struct llist_node *head; 360 361 head = llist_del_all(&conf->released_stripes); 362 head = llist_reverse_order(head); 363 llist_for_each_entry_safe(sh, t, head, release_list) { 364 int hash; 365 366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 367 smp_mb(); 368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 369 /* 370 * Don't worry the bit is set here, because if the bit is set 371 * again, the count is always > 1. This is true for 372 * STRIPE_ON_UNPLUG_LIST bit too. 373 */ 374 hash = sh->hash_lock_index; 375 __release_stripe(conf, sh, &temp_inactive_list[hash]); 376 count++; 377 } 378 379 return count; 380} 381 382void raid5_release_stripe(struct stripe_head *sh) 383{ 384 struct r5conf *conf = sh->raid_conf; 385 unsigned long flags; 386 struct list_head list; 387 int hash; 388 bool wakeup; 389 390 /* Avoid release_list until the last reference. 391 */ 392 if (atomic_add_unless(&sh->count, -1, 1)) 393 return; 394 395 if (unlikely(!conf->mddev->thread) || 396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 397 goto slow_path; 398 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 399 if (wakeup) 400 md_wakeup_thread(conf->mddev->thread); 401 return; 402slow_path: 403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 405 INIT_LIST_HEAD(&list); 406 hash = sh->hash_lock_index; 407 do_release_stripe(conf, sh, &list); 408 spin_unlock_irqrestore(&conf->device_lock, flags); 409 release_inactive_stripe_list(conf, &list, hash); 410 } 411} 412 413static inline void remove_hash(struct stripe_head *sh) 414{ 415 pr_debug("remove_hash(), stripe %llu\n", 416 (unsigned long long)sh->sector); 417 418 hlist_del_init(&sh->hash); 419} 420 421static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 422{ 423 struct hlist_head *hp = stripe_hash(conf, sh->sector); 424 425 pr_debug("insert_hash(), stripe %llu\n", 426 (unsigned long long)sh->sector); 427 428 hlist_add_head(&sh->hash, hp); 429} 430 431/* find an idle stripe, make sure it is unhashed, and return it. */ 432static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 433{ 434 struct stripe_head *sh = NULL; 435 struct list_head *first; 436 437 if (list_empty(conf->inactive_list + hash)) 438 goto out; 439 first = (conf->inactive_list + hash)->next; 440 sh = list_entry(first, struct stripe_head, lru); 441 list_del_init(first); 442 remove_hash(sh); 443 atomic_inc(&conf->active_stripes); 444 BUG_ON(hash != sh->hash_lock_index); 445 if (list_empty(conf->inactive_list + hash)) 446 atomic_inc(&conf->empty_inactive_list_nr); 447out: 448 return sh; 449} 450 451#if PAGE_SIZE != DEFAULT_STRIPE_SIZE 452static void free_stripe_pages(struct stripe_head *sh) 453{ 454 int i; 455 struct page *p; 456 457 /* Have not allocate page pool */ 458 if (!sh->pages) 459 return; 460 461 for (i = 0; i < sh->nr_pages; i++) { 462 p = sh->pages[i]; 463 if (p) 464 put_page(p); 465 sh->pages[i] = NULL; 466 } 467} 468 469static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp) 470{ 471 int i; 472 struct page *p; 473 474 for (i = 0; i < sh->nr_pages; i++) { 475 /* The page have allocated. */ 476 if (sh->pages[i]) 477 continue; 478 479 p = alloc_page(gfp); 480 if (!p) { 481 free_stripe_pages(sh); 482 return -ENOMEM; 483 } 484 sh->pages[i] = p; 485 } 486 return 0; 487} 488 489static int 490init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks) 491{ 492 int nr_pages, cnt; 493 494 if (sh->pages) 495 return 0; 496 497 /* Each of the sh->dev[i] need one conf->stripe_size */ 498 cnt = PAGE_SIZE / conf->stripe_size; 499 nr_pages = (disks + cnt - 1) / cnt; 500 501 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 502 if (!sh->pages) 503 return -ENOMEM; 504 sh->nr_pages = nr_pages; 505 sh->stripes_per_page = cnt; 506 return 0; 507} 508#endif 509 510static void shrink_buffers(struct stripe_head *sh) 511{ 512 int i; 513 int num = sh->raid_conf->pool_size; 514 515#if PAGE_SIZE == DEFAULT_STRIPE_SIZE 516 for (i = 0; i < num ; i++) { 517 struct page *p; 518 519 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 520 p = sh->dev[i].page; 521 if (!p) 522 continue; 523 sh->dev[i].page = NULL; 524 put_page(p); 525 } 526#else 527 for (i = 0; i < num; i++) 528 sh->dev[i].page = NULL; 529 free_stripe_pages(sh); /* Free pages */ 530#endif 531} 532 533static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 534{ 535 int i; 536 int num = sh->raid_conf->pool_size; 537 538#if PAGE_SIZE == DEFAULT_STRIPE_SIZE 539 for (i = 0; i < num; i++) { 540 struct page *page; 541 542 if (!(page = alloc_page(gfp))) { 543 return 1; 544 } 545 sh->dev[i].page = page; 546 sh->dev[i].orig_page = page; 547 sh->dev[i].offset = 0; 548 } 549#else 550 if (alloc_stripe_pages(sh, gfp)) 551 return -ENOMEM; 552 553 for (i = 0; i < num; i++) { 554 sh->dev[i].page = raid5_get_dev_page(sh, i); 555 sh->dev[i].orig_page = sh->dev[i].page; 556 sh->dev[i].offset = raid5_get_page_offset(sh, i); 557 } 558#endif 559 return 0; 560} 561 562static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 563 struct stripe_head *sh); 564 565static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 566{ 567 struct r5conf *conf = sh->raid_conf; 568 int i, seq; 569 570 BUG_ON(atomic_read(&sh->count) != 0); 571 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 572 BUG_ON(stripe_operations_active(sh)); 573 BUG_ON(sh->batch_head); 574 575 pr_debug("init_stripe called, stripe %llu\n", 576 (unsigned long long)sector); 577retry: 578 seq = read_seqcount_begin(&conf->gen_lock); 579 sh->generation = conf->generation - previous; 580 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 581 sh->sector = sector; 582 stripe_set_idx(sector, conf, previous, sh); 583 sh->state = 0; 584 585 for (i = sh->disks; i--; ) { 586 struct r5dev *dev = &sh->dev[i]; 587 588 if (dev->toread || dev->read || dev->towrite || dev->written || 589 test_bit(R5_LOCKED, &dev->flags)) { 590 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 591 (unsigned long long)sh->sector, i, dev->toread, 592 dev->read, dev->towrite, dev->written, 593 test_bit(R5_LOCKED, &dev->flags)); 594 WARN_ON(1); 595 } 596 dev->flags = 0; 597 dev->sector = raid5_compute_blocknr(sh, i, previous); 598 } 599 if (read_seqcount_retry(&conf->gen_lock, seq)) 600 goto retry; 601 sh->overwrite_disks = 0; 602 insert_hash(conf, sh); 603 sh->cpu = smp_processor_id(); 604 set_bit(STRIPE_BATCH_READY, &sh->state); 605} 606 607static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 608 short generation) 609{ 610 struct stripe_head *sh; 611 612 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 613 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 614 if (sh->sector == sector && sh->generation == generation) 615 return sh; 616 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 617 return NULL; 618} 619 620/* 621 * Need to check if array has failed when deciding whether to: 622 * - start an array 623 * - remove non-faulty devices 624 * - add a spare 625 * - allow a reshape 626 * This determination is simple when no reshape is happening. 627 * However if there is a reshape, we need to carefully check 628 * both the before and after sections. 629 * This is because some failed devices may only affect one 630 * of the two sections, and some non-in_sync devices may 631 * be insync in the section most affected by failed devices. 632 */ 633int raid5_calc_degraded(struct r5conf *conf) 634{ 635 int degraded, degraded2; 636 int i; 637 638 rcu_read_lock(); 639 degraded = 0; 640 for (i = 0; i < conf->previous_raid_disks; i++) { 641 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 642 if (rdev && test_bit(Faulty, &rdev->flags)) 643 rdev = rcu_dereference(conf->disks[i].replacement); 644 if (!rdev || test_bit(Faulty, &rdev->flags)) 645 degraded++; 646 else if (test_bit(In_sync, &rdev->flags)) 647 ; 648 else 649 /* not in-sync or faulty. 650 * If the reshape increases the number of devices, 651 * this is being recovered by the reshape, so 652 * this 'previous' section is not in_sync. 653 * If the number of devices is being reduced however, 654 * the device can only be part of the array if 655 * we are reverting a reshape, so this section will 656 * be in-sync. 657 */ 658 if (conf->raid_disks >= conf->previous_raid_disks) 659 degraded++; 660 } 661 rcu_read_unlock(); 662 if (conf->raid_disks == conf->previous_raid_disks) 663 return degraded; 664 rcu_read_lock(); 665 degraded2 = 0; 666 for (i = 0; i < conf->raid_disks; i++) { 667 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 668 if (rdev && test_bit(Faulty, &rdev->flags)) 669 rdev = rcu_dereference(conf->disks[i].replacement); 670 if (!rdev || test_bit(Faulty, &rdev->flags)) 671 degraded2++; 672 else if (test_bit(In_sync, &rdev->flags)) 673 ; 674 else 675 /* not in-sync or faulty. 676 * If reshape increases the number of devices, this 677 * section has already been recovered, else it 678 * almost certainly hasn't. 679 */ 680 if (conf->raid_disks <= conf->previous_raid_disks) 681 degraded2++; 682 } 683 rcu_read_unlock(); 684 if (degraded2 > degraded) 685 return degraded2; 686 return degraded; 687} 688 689static bool has_failed(struct r5conf *conf) 690{ 691 int degraded = conf->mddev->degraded; 692 693 if (test_bit(MD_BROKEN, &conf->mddev->flags)) 694 return true; 695 696 if (conf->mddev->reshape_position != MaxSector) 697 degraded = raid5_calc_degraded(conf); 698 699 return degraded > conf->max_degraded; 700} 701 702struct stripe_head * 703raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 704 int previous, int noblock, int noquiesce) 705{ 706 struct stripe_head *sh; 707 int hash = stripe_hash_locks_hash(conf, sector); 708 int inc_empty_inactive_list_flag; 709 710 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 711 712 spin_lock_irq(conf->hash_locks + hash); 713 714 do { 715 wait_event_lock_irq(conf->wait_for_quiescent, 716 conf->quiesce == 0 || noquiesce, 717 *(conf->hash_locks + hash)); 718 sh = __find_stripe(conf, sector, conf->generation - previous); 719 if (!sh) { 720 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 721 sh = get_free_stripe(conf, hash); 722 if (!sh && !test_bit(R5_DID_ALLOC, 723 &conf->cache_state)) 724 set_bit(R5_ALLOC_MORE, 725 &conf->cache_state); 726 } 727 if (noblock && sh == NULL) 728 break; 729 730 r5c_check_stripe_cache_usage(conf); 731 if (!sh) { 732 set_bit(R5_INACTIVE_BLOCKED, 733 &conf->cache_state); 734 r5l_wake_reclaim(conf->log, 0); 735 wait_event_lock_irq( 736 conf->wait_for_stripe, 737 !list_empty(conf->inactive_list + hash) && 738 (atomic_read(&conf->active_stripes) 739 < (conf->max_nr_stripes * 3 / 4) 740 || !test_bit(R5_INACTIVE_BLOCKED, 741 &conf->cache_state)), 742 *(conf->hash_locks + hash)); 743 clear_bit(R5_INACTIVE_BLOCKED, 744 &conf->cache_state); 745 } else { 746 init_stripe(sh, sector, previous); 747 atomic_inc(&sh->count); 748 } 749 } else if (!atomic_inc_not_zero(&sh->count)) { 750 spin_lock(&conf->device_lock); 751 if (!atomic_read(&sh->count)) { 752 if (!test_bit(STRIPE_HANDLE, &sh->state)) 753 atomic_inc(&conf->active_stripes); 754 BUG_ON(list_empty(&sh->lru) && 755 !test_bit(STRIPE_EXPANDING, &sh->state)); 756 inc_empty_inactive_list_flag = 0; 757 if (!list_empty(conf->inactive_list + hash)) 758 inc_empty_inactive_list_flag = 1; 759 list_del_init(&sh->lru); 760 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 761 atomic_inc(&conf->empty_inactive_list_nr); 762 if (sh->group) { 763 sh->group->stripes_cnt--; 764 sh->group = NULL; 765 } 766 } 767 atomic_inc(&sh->count); 768 spin_unlock(&conf->device_lock); 769 } 770 } while (sh == NULL); 771 772 spin_unlock_irq(conf->hash_locks + hash); 773 return sh; 774} 775 776static bool is_full_stripe_write(struct stripe_head *sh) 777{ 778 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 779 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 780} 781 782static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 783 __acquires(&sh1->stripe_lock) 784 __acquires(&sh2->stripe_lock) 785{ 786 if (sh1 > sh2) { 787 spin_lock_irq(&sh2->stripe_lock); 788 spin_lock_nested(&sh1->stripe_lock, 1); 789 } else { 790 spin_lock_irq(&sh1->stripe_lock); 791 spin_lock_nested(&sh2->stripe_lock, 1); 792 } 793} 794 795static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 796 __releases(&sh1->stripe_lock) 797 __releases(&sh2->stripe_lock) 798{ 799 spin_unlock(&sh1->stripe_lock); 800 spin_unlock_irq(&sh2->stripe_lock); 801} 802 803/* Only freshly new full stripe normal write stripe can be added to a batch list */ 804static bool stripe_can_batch(struct stripe_head *sh) 805{ 806 struct r5conf *conf = sh->raid_conf; 807 808 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 809 return false; 810 return test_bit(STRIPE_BATCH_READY, &sh->state) && 811 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 812 is_full_stripe_write(sh); 813} 814 815/* we only do back search */ 816static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 817{ 818 struct stripe_head *head; 819 sector_t head_sector, tmp_sec; 820 int hash; 821 int dd_idx; 822 int inc_empty_inactive_list_flag; 823 824 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 825 tmp_sec = sh->sector; 826 if (!sector_div(tmp_sec, conf->chunk_sectors)) 827 return; 828 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf); 829 830 hash = stripe_hash_locks_hash(conf, head_sector); 831 spin_lock_irq(conf->hash_locks + hash); 832 head = __find_stripe(conf, head_sector, conf->generation); 833 if (head && !atomic_inc_not_zero(&head->count)) { 834 spin_lock(&conf->device_lock); 835 if (!atomic_read(&head->count)) { 836 if (!test_bit(STRIPE_HANDLE, &head->state)) 837 atomic_inc(&conf->active_stripes); 838 BUG_ON(list_empty(&head->lru) && 839 !test_bit(STRIPE_EXPANDING, &head->state)); 840 inc_empty_inactive_list_flag = 0; 841 if (!list_empty(conf->inactive_list + hash)) 842 inc_empty_inactive_list_flag = 1; 843 list_del_init(&head->lru); 844 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 845 atomic_inc(&conf->empty_inactive_list_nr); 846 if (head->group) { 847 head->group->stripes_cnt--; 848 head->group = NULL; 849 } 850 } 851 atomic_inc(&head->count); 852 spin_unlock(&conf->device_lock); 853 } 854 spin_unlock_irq(conf->hash_locks + hash); 855 856 if (!head) 857 return; 858 if (!stripe_can_batch(head)) 859 goto out; 860 861 lock_two_stripes(head, sh); 862 /* clear_batch_ready clear the flag */ 863 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 864 goto unlock_out; 865 866 if (sh->batch_head) 867 goto unlock_out; 868 869 dd_idx = 0; 870 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 871 dd_idx++; 872 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 873 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 874 goto unlock_out; 875 876 if (head->batch_head) { 877 spin_lock(&head->batch_head->batch_lock); 878 /* This batch list is already running */ 879 if (!stripe_can_batch(head)) { 880 spin_unlock(&head->batch_head->batch_lock); 881 goto unlock_out; 882 } 883 /* 884 * We must assign batch_head of this stripe within the 885 * batch_lock, otherwise clear_batch_ready of batch head 886 * stripe could clear BATCH_READY bit of this stripe and 887 * this stripe->batch_head doesn't get assigned, which 888 * could confuse clear_batch_ready for this stripe 889 */ 890 sh->batch_head = head->batch_head; 891 892 /* 893 * at this point, head's BATCH_READY could be cleared, but we 894 * can still add the stripe to batch list 895 */ 896 list_add(&sh->batch_list, &head->batch_list); 897 spin_unlock(&head->batch_head->batch_lock); 898 } else { 899 head->batch_head = head; 900 sh->batch_head = head->batch_head; 901 spin_lock(&head->batch_lock); 902 list_add_tail(&sh->batch_list, &head->batch_list); 903 spin_unlock(&head->batch_lock); 904 } 905 906 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 907 if (atomic_dec_return(&conf->preread_active_stripes) 908 < IO_THRESHOLD) 909 md_wakeup_thread(conf->mddev->thread); 910 911 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 912 int seq = sh->bm_seq; 913 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 914 sh->batch_head->bm_seq > seq) 915 seq = sh->batch_head->bm_seq; 916 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 917 sh->batch_head->bm_seq = seq; 918 } 919 920 atomic_inc(&sh->count); 921unlock_out: 922 unlock_two_stripes(head, sh); 923out: 924 raid5_release_stripe(head); 925} 926 927/* Determine if 'data_offset' or 'new_data_offset' should be used 928 * in this stripe_head. 929 */ 930static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 931{ 932 sector_t progress = conf->reshape_progress; 933 /* Need a memory barrier to make sure we see the value 934 * of conf->generation, or ->data_offset that was set before 935 * reshape_progress was updated. 936 */ 937 smp_rmb(); 938 if (progress == MaxSector) 939 return 0; 940 if (sh->generation == conf->generation - 1) 941 return 0; 942 /* We are in a reshape, and this is a new-generation stripe, 943 * so use new_data_offset. 944 */ 945 return 1; 946} 947 948static void dispatch_bio_list(struct bio_list *tmp) 949{ 950 struct bio *bio; 951 952 while ((bio = bio_list_pop(tmp))) 953 submit_bio_noacct(bio); 954} 955 956static int cmp_stripe(void *priv, const struct list_head *a, 957 const struct list_head *b) 958{ 959 const struct r5pending_data *da = list_entry(a, 960 struct r5pending_data, sibling); 961 const struct r5pending_data *db = list_entry(b, 962 struct r5pending_data, sibling); 963 if (da->sector > db->sector) 964 return 1; 965 if (da->sector < db->sector) 966 return -1; 967 return 0; 968} 969 970static void dispatch_defer_bios(struct r5conf *conf, int target, 971 struct bio_list *list) 972{ 973 struct r5pending_data *data; 974 struct list_head *first, *next = NULL; 975 int cnt = 0; 976 977 if (conf->pending_data_cnt == 0) 978 return; 979 980 list_sort(NULL, &conf->pending_list, cmp_stripe); 981 982 first = conf->pending_list.next; 983 984 /* temporarily move the head */ 985 if (conf->next_pending_data) 986 list_move_tail(&conf->pending_list, 987 &conf->next_pending_data->sibling); 988 989 while (!list_empty(&conf->pending_list)) { 990 data = list_first_entry(&conf->pending_list, 991 struct r5pending_data, sibling); 992 if (&data->sibling == first) 993 first = data->sibling.next; 994 next = data->sibling.next; 995 996 bio_list_merge(list, &data->bios); 997 list_move(&data->sibling, &conf->free_list); 998 cnt++; 999 if (cnt >= target) 1000 break; 1001 } 1002 conf->pending_data_cnt -= cnt; 1003 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 1004 1005 if (next != &conf->pending_list) 1006 conf->next_pending_data = list_entry(next, 1007 struct r5pending_data, sibling); 1008 else 1009 conf->next_pending_data = NULL; 1010 /* list isn't empty */ 1011 if (first != &conf->pending_list) 1012 list_move_tail(&conf->pending_list, first); 1013} 1014 1015static void flush_deferred_bios(struct r5conf *conf) 1016{ 1017 struct bio_list tmp = BIO_EMPTY_LIST; 1018 1019 if (conf->pending_data_cnt == 0) 1020 return; 1021 1022 spin_lock(&conf->pending_bios_lock); 1023 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 1024 BUG_ON(conf->pending_data_cnt != 0); 1025 spin_unlock(&conf->pending_bios_lock); 1026 1027 dispatch_bio_list(&tmp); 1028} 1029 1030static void defer_issue_bios(struct r5conf *conf, sector_t sector, 1031 struct bio_list *bios) 1032{ 1033 struct bio_list tmp = BIO_EMPTY_LIST; 1034 struct r5pending_data *ent; 1035 1036 spin_lock(&conf->pending_bios_lock); 1037 ent = list_first_entry(&conf->free_list, struct r5pending_data, 1038 sibling); 1039 list_move_tail(&ent->sibling, &conf->pending_list); 1040 ent->sector = sector; 1041 bio_list_init(&ent->bios); 1042 bio_list_merge(&ent->bios, bios); 1043 conf->pending_data_cnt++; 1044 if (conf->pending_data_cnt >= PENDING_IO_MAX) 1045 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 1046 1047 spin_unlock(&conf->pending_bios_lock); 1048 1049 dispatch_bio_list(&tmp); 1050} 1051 1052static void 1053raid5_end_read_request(struct bio *bi); 1054static void 1055raid5_end_write_request(struct bio *bi); 1056 1057static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 1058{ 1059 struct r5conf *conf = sh->raid_conf; 1060 int i, disks = sh->disks; 1061 struct stripe_head *head_sh = sh; 1062 struct bio_list pending_bios = BIO_EMPTY_LIST; 1063 bool should_defer; 1064 1065 might_sleep(); 1066 1067 if (log_stripe(sh, s) == 0) 1068 return; 1069 1070 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1071 1072 for (i = disks; i--; ) { 1073 int op, op_flags = 0; 1074 int replace_only = 0; 1075 struct bio *bi, *rbi; 1076 struct md_rdev *rdev, *rrdev = NULL; 1077 1078 sh = head_sh; 1079 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1080 op = REQ_OP_WRITE; 1081 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1082 op_flags = REQ_FUA; 1083 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1084 op = REQ_OP_DISCARD; 1085 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1086 op = REQ_OP_READ; 1087 else if (test_and_clear_bit(R5_WantReplace, 1088 &sh->dev[i].flags)) { 1089 op = REQ_OP_WRITE; 1090 replace_only = 1; 1091 } else 1092 continue; 1093 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1094 op_flags |= REQ_SYNC; 1095 1096again: 1097 bi = &sh->dev[i].req; 1098 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 1099 1100 rcu_read_lock(); 1101 rrdev = rcu_dereference(conf->disks[i].replacement); 1102 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1103 rdev = rcu_dereference(conf->disks[i].rdev); 1104 if (!rdev) { 1105 rdev = rrdev; 1106 rrdev = NULL; 1107 } 1108 if (op_is_write(op)) { 1109 if (replace_only) 1110 rdev = NULL; 1111 if (rdev == rrdev) 1112 /* We raced and saw duplicates */ 1113 rrdev = NULL; 1114 } else { 1115 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1116 rdev = rrdev; 1117 rrdev = NULL; 1118 } 1119 1120 if (rdev && test_bit(Faulty, &rdev->flags)) 1121 rdev = NULL; 1122 if (rdev) 1123 atomic_inc(&rdev->nr_pending); 1124 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1125 rrdev = NULL; 1126 if (rrdev) 1127 atomic_inc(&rrdev->nr_pending); 1128 rcu_read_unlock(); 1129 1130 /* We have already checked bad blocks for reads. Now 1131 * need to check for writes. We never accept write errors 1132 * on the replacement, so we don't to check rrdev. 1133 */ 1134 while (op_is_write(op) && rdev && 1135 test_bit(WriteErrorSeen, &rdev->flags)) { 1136 sector_t first_bad; 1137 int bad_sectors; 1138 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 1139 &first_bad, &bad_sectors); 1140 if (!bad) 1141 break; 1142 1143 if (bad < 0) { 1144 set_bit(BlockedBadBlocks, &rdev->flags); 1145 if (!conf->mddev->external && 1146 conf->mddev->sb_flags) { 1147 /* It is very unlikely, but we might 1148 * still need to write out the 1149 * bad block log - better give it 1150 * a chance*/ 1151 md_check_recovery(conf->mddev); 1152 } 1153 /* 1154 * Because md_wait_for_blocked_rdev 1155 * will dec nr_pending, we must 1156 * increment it first. 1157 */ 1158 atomic_inc(&rdev->nr_pending); 1159 md_wait_for_blocked_rdev(rdev, conf->mddev); 1160 } else { 1161 /* Acknowledged bad block - skip the write */ 1162 rdev_dec_pending(rdev, conf->mddev); 1163 rdev = NULL; 1164 } 1165 } 1166 1167 if (rdev) { 1168 if (s->syncing || s->expanding || s->expanded 1169 || s->replacing) 1170 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1171 1172 set_bit(STRIPE_IO_STARTED, &sh->state); 1173 1174 bio_set_dev(bi, rdev->bdev); 1175 bio_set_op_attrs(bi, op, op_flags); 1176 bi->bi_end_io = op_is_write(op) 1177 ? raid5_end_write_request 1178 : raid5_end_read_request; 1179 bi->bi_private = sh; 1180 1181 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1182 __func__, (unsigned long long)sh->sector, 1183 bi->bi_opf, i); 1184 atomic_inc(&sh->count); 1185 if (sh != head_sh) 1186 atomic_inc(&head_sh->count); 1187 if (use_new_offset(conf, sh)) 1188 bi->bi_iter.bi_sector = (sh->sector 1189 + rdev->new_data_offset); 1190 else 1191 bi->bi_iter.bi_sector = (sh->sector 1192 + rdev->data_offset); 1193 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1194 bi->bi_opf |= REQ_NOMERGE; 1195 1196 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1197 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1198 1199 if (!op_is_write(op) && 1200 test_bit(R5_InJournal, &sh->dev[i].flags)) 1201 /* 1202 * issuing read for a page in journal, this 1203 * must be preparing for prexor in rmw; read 1204 * the data into orig_page 1205 */ 1206 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1207 else 1208 sh->dev[i].vec.bv_page = sh->dev[i].page; 1209 bi->bi_vcnt = 1; 1210 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1211 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1212 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1213 bi->bi_write_hint = sh->dev[i].write_hint; 1214 if (!rrdev) 1215 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET; 1216 /* 1217 * If this is discard request, set bi_vcnt 0. We don't 1218 * want to confuse SCSI because SCSI will replace payload 1219 */ 1220 if (op == REQ_OP_DISCARD) 1221 bi->bi_vcnt = 0; 1222 if (rrdev) 1223 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1224 1225 if (conf->mddev->gendisk) 1226 trace_block_bio_remap(bi->bi_disk->queue, 1227 bi, disk_devt(conf->mddev->gendisk), 1228 sh->dev[i].sector); 1229 if (should_defer && op_is_write(op)) 1230 bio_list_add(&pending_bios, bi); 1231 else 1232 submit_bio_noacct(bi); 1233 } 1234 if (rrdev) { 1235 if (s->syncing || s->expanding || s->expanded 1236 || s->replacing) 1237 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1238 1239 set_bit(STRIPE_IO_STARTED, &sh->state); 1240 1241 bio_set_dev(rbi, rrdev->bdev); 1242 bio_set_op_attrs(rbi, op, op_flags); 1243 BUG_ON(!op_is_write(op)); 1244 rbi->bi_end_io = raid5_end_write_request; 1245 rbi->bi_private = sh; 1246 1247 pr_debug("%s: for %llu schedule op %d on " 1248 "replacement disc %d\n", 1249 __func__, (unsigned long long)sh->sector, 1250 rbi->bi_opf, i); 1251 atomic_inc(&sh->count); 1252 if (sh != head_sh) 1253 atomic_inc(&head_sh->count); 1254 if (use_new_offset(conf, sh)) 1255 rbi->bi_iter.bi_sector = (sh->sector 1256 + rrdev->new_data_offset); 1257 else 1258 rbi->bi_iter.bi_sector = (sh->sector 1259 + rrdev->data_offset); 1260 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1261 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1262 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1263 rbi->bi_vcnt = 1; 1264 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1265 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1266 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1267 rbi->bi_write_hint = sh->dev[i].write_hint; 1268 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET; 1269 /* 1270 * If this is discard request, set bi_vcnt 0. We don't 1271 * want to confuse SCSI because SCSI will replace payload 1272 */ 1273 if (op == REQ_OP_DISCARD) 1274 rbi->bi_vcnt = 0; 1275 if (conf->mddev->gendisk) 1276 trace_block_bio_remap(rbi->bi_disk->queue, 1277 rbi, disk_devt(conf->mddev->gendisk), 1278 sh->dev[i].sector); 1279 if (should_defer && op_is_write(op)) 1280 bio_list_add(&pending_bios, rbi); 1281 else 1282 submit_bio_noacct(rbi); 1283 } 1284 if (!rdev && !rrdev) { 1285 if (op_is_write(op)) 1286 set_bit(STRIPE_DEGRADED, &sh->state); 1287 pr_debug("skip op %d on disc %d for sector %llu\n", 1288 bi->bi_opf, i, (unsigned long long)sh->sector); 1289 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1290 set_bit(STRIPE_HANDLE, &sh->state); 1291 } 1292 1293 if (!head_sh->batch_head) 1294 continue; 1295 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1296 batch_list); 1297 if (sh != head_sh) 1298 goto again; 1299 } 1300 1301 if (should_defer && !bio_list_empty(&pending_bios)) 1302 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1303} 1304 1305static struct dma_async_tx_descriptor * 1306async_copy_data(int frombio, struct bio *bio, struct page **page, 1307 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx, 1308 struct stripe_head *sh, int no_skipcopy) 1309{ 1310 struct bio_vec bvl; 1311 struct bvec_iter iter; 1312 struct page *bio_page; 1313 int page_offset; 1314 struct async_submit_ctl submit; 1315 enum async_tx_flags flags = 0; 1316 struct r5conf *conf = sh->raid_conf; 1317 1318 if (bio->bi_iter.bi_sector >= sector) 1319 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1320 else 1321 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1322 1323 if (frombio) 1324 flags |= ASYNC_TX_FENCE; 1325 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1326 1327 bio_for_each_segment(bvl, bio, iter) { 1328 int len = bvl.bv_len; 1329 int clen; 1330 int b_offset = 0; 1331 1332 if (page_offset < 0) { 1333 b_offset = -page_offset; 1334 page_offset += b_offset; 1335 len -= b_offset; 1336 } 1337 1338 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf)) 1339 clen = RAID5_STRIPE_SIZE(conf) - page_offset; 1340 else 1341 clen = len; 1342 1343 if (clen > 0) { 1344 b_offset += bvl.bv_offset; 1345 bio_page = bvl.bv_page; 1346 if (frombio) { 1347 if (conf->skip_copy && 1348 b_offset == 0 && page_offset == 0 && 1349 clen == RAID5_STRIPE_SIZE(conf) && 1350 !no_skipcopy) 1351 *page = bio_page; 1352 else 1353 tx = async_memcpy(*page, bio_page, page_offset + poff, 1354 b_offset, clen, &submit); 1355 } else 1356 tx = async_memcpy(bio_page, *page, b_offset, 1357 page_offset + poff, clen, &submit); 1358 } 1359 /* chain the operations */ 1360 submit.depend_tx = tx; 1361 1362 if (clen < len) /* hit end of page */ 1363 break; 1364 page_offset += len; 1365 } 1366 1367 return tx; 1368} 1369 1370static void ops_complete_biofill(void *stripe_head_ref) 1371{ 1372 struct stripe_head *sh = stripe_head_ref; 1373 int i; 1374 struct r5conf *conf = sh->raid_conf; 1375 1376 pr_debug("%s: stripe %llu\n", __func__, 1377 (unsigned long long)sh->sector); 1378 1379 /* clear completed biofills */ 1380 for (i = sh->disks; i--; ) { 1381 struct r5dev *dev = &sh->dev[i]; 1382 1383 /* acknowledge completion of a biofill operation */ 1384 /* and check if we need to reply to a read request, 1385 * new R5_Wantfill requests are held off until 1386 * !STRIPE_BIOFILL_RUN 1387 */ 1388 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1389 struct bio *rbi, *rbi2; 1390 1391 BUG_ON(!dev->read); 1392 rbi = dev->read; 1393 dev->read = NULL; 1394 while (rbi && rbi->bi_iter.bi_sector < 1395 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1396 rbi2 = r5_next_bio(conf, rbi, dev->sector); 1397 bio_endio(rbi); 1398 rbi = rbi2; 1399 } 1400 } 1401 } 1402 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1403 1404 set_bit(STRIPE_HANDLE, &sh->state); 1405 raid5_release_stripe(sh); 1406} 1407 1408static void ops_run_biofill(struct stripe_head *sh) 1409{ 1410 struct dma_async_tx_descriptor *tx = NULL; 1411 struct async_submit_ctl submit; 1412 int i; 1413 struct r5conf *conf = sh->raid_conf; 1414 1415 BUG_ON(sh->batch_head); 1416 pr_debug("%s: stripe %llu\n", __func__, 1417 (unsigned long long)sh->sector); 1418 1419 for (i = sh->disks; i--; ) { 1420 struct r5dev *dev = &sh->dev[i]; 1421 if (test_bit(R5_Wantfill, &dev->flags)) { 1422 struct bio *rbi; 1423 spin_lock_irq(&sh->stripe_lock); 1424 dev->read = rbi = dev->toread; 1425 dev->toread = NULL; 1426 spin_unlock_irq(&sh->stripe_lock); 1427 while (rbi && rbi->bi_iter.bi_sector < 1428 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1429 tx = async_copy_data(0, rbi, &dev->page, 1430 dev->offset, 1431 dev->sector, tx, sh, 0); 1432 rbi = r5_next_bio(conf, rbi, dev->sector); 1433 } 1434 } 1435 } 1436 1437 atomic_inc(&sh->count); 1438 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1439 async_trigger_callback(&submit); 1440} 1441 1442static void mark_target_uptodate(struct stripe_head *sh, int target) 1443{ 1444 struct r5dev *tgt; 1445 1446 if (target < 0) 1447 return; 1448 1449 tgt = &sh->dev[target]; 1450 set_bit(R5_UPTODATE, &tgt->flags); 1451 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1452 clear_bit(R5_Wantcompute, &tgt->flags); 1453} 1454 1455static void ops_complete_compute(void *stripe_head_ref) 1456{ 1457 struct stripe_head *sh = stripe_head_ref; 1458 1459 pr_debug("%s: stripe %llu\n", __func__, 1460 (unsigned long long)sh->sector); 1461 1462 /* mark the computed target(s) as uptodate */ 1463 mark_target_uptodate(sh, sh->ops.target); 1464 mark_target_uptodate(sh, sh->ops.target2); 1465 1466 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1467 if (sh->check_state == check_state_compute_run) 1468 sh->check_state = check_state_compute_result; 1469 set_bit(STRIPE_HANDLE, &sh->state); 1470 raid5_release_stripe(sh); 1471} 1472 1473/* return a pointer to the address conversion region of the scribble buffer */ 1474static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1475{ 1476 return percpu->scribble + i * percpu->scribble_obj_size; 1477} 1478 1479/* return a pointer to the address conversion region of the scribble buffer */ 1480static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1481 struct raid5_percpu *percpu, int i) 1482{ 1483 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1484} 1485 1486/* 1487 * Return a pointer to record offset address. 1488 */ 1489static unsigned int * 1490to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu) 1491{ 1492 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2); 1493} 1494 1495static struct dma_async_tx_descriptor * 1496ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1497{ 1498 int disks = sh->disks; 1499 struct page **xor_srcs = to_addr_page(percpu, 0); 1500 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1501 int target = sh->ops.target; 1502 struct r5dev *tgt = &sh->dev[target]; 1503 struct page *xor_dest = tgt->page; 1504 unsigned int off_dest = tgt->offset; 1505 int count = 0; 1506 struct dma_async_tx_descriptor *tx; 1507 struct async_submit_ctl submit; 1508 int i; 1509 1510 BUG_ON(sh->batch_head); 1511 1512 pr_debug("%s: stripe %llu block: %d\n", 1513 __func__, (unsigned long long)sh->sector, target); 1514 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1515 1516 for (i = disks; i--; ) { 1517 if (i != target) { 1518 off_srcs[count] = sh->dev[i].offset; 1519 xor_srcs[count++] = sh->dev[i].page; 1520 } 1521 } 1522 1523 atomic_inc(&sh->count); 1524 1525 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1526 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1527 if (unlikely(count == 1)) 1528 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 1529 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1530 else 1531 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1532 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1533 1534 return tx; 1535} 1536 1537/* set_syndrome_sources - populate source buffers for gen_syndrome 1538 * @srcs - (struct page *) array of size sh->disks 1539 * @offs - (unsigned int) array of offset for each page 1540 * @sh - stripe_head to parse 1541 * 1542 * Populates srcs in proper layout order for the stripe and returns the 1543 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1544 * destination buffer is recorded in srcs[count] and the Q destination 1545 * is recorded in srcs[count+1]]. 1546 */ 1547static int set_syndrome_sources(struct page **srcs, 1548 unsigned int *offs, 1549 struct stripe_head *sh, 1550 int srctype) 1551{ 1552 int disks = sh->disks; 1553 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1554 int d0_idx = raid6_d0(sh); 1555 int count; 1556 int i; 1557 1558 for (i = 0; i < disks; i++) 1559 srcs[i] = NULL; 1560 1561 count = 0; 1562 i = d0_idx; 1563 do { 1564 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1565 struct r5dev *dev = &sh->dev[i]; 1566 1567 if (i == sh->qd_idx || i == sh->pd_idx || 1568 (srctype == SYNDROME_SRC_ALL) || 1569 (srctype == SYNDROME_SRC_WANT_DRAIN && 1570 (test_bit(R5_Wantdrain, &dev->flags) || 1571 test_bit(R5_InJournal, &dev->flags))) || 1572 (srctype == SYNDROME_SRC_WRITTEN && 1573 (dev->written || 1574 test_bit(R5_InJournal, &dev->flags)))) { 1575 if (test_bit(R5_InJournal, &dev->flags)) 1576 srcs[slot] = sh->dev[i].orig_page; 1577 else 1578 srcs[slot] = sh->dev[i].page; 1579 /* 1580 * For R5_InJournal, PAGE_SIZE must be 4KB and will 1581 * not shared page. In that case, dev[i].offset 1582 * is 0. 1583 */ 1584 offs[slot] = sh->dev[i].offset; 1585 } 1586 i = raid6_next_disk(i, disks); 1587 } while (i != d0_idx); 1588 1589 return syndrome_disks; 1590} 1591 1592static struct dma_async_tx_descriptor * 1593ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1594{ 1595 int disks = sh->disks; 1596 struct page **blocks = to_addr_page(percpu, 0); 1597 unsigned int *offs = to_addr_offs(sh, percpu); 1598 int target; 1599 int qd_idx = sh->qd_idx; 1600 struct dma_async_tx_descriptor *tx; 1601 struct async_submit_ctl submit; 1602 struct r5dev *tgt; 1603 struct page *dest; 1604 unsigned int dest_off; 1605 int i; 1606 int count; 1607 1608 BUG_ON(sh->batch_head); 1609 if (sh->ops.target < 0) 1610 target = sh->ops.target2; 1611 else if (sh->ops.target2 < 0) 1612 target = sh->ops.target; 1613 else 1614 /* we should only have one valid target */ 1615 BUG(); 1616 BUG_ON(target < 0); 1617 pr_debug("%s: stripe %llu block: %d\n", 1618 __func__, (unsigned long long)sh->sector, target); 1619 1620 tgt = &sh->dev[target]; 1621 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1622 dest = tgt->page; 1623 dest_off = tgt->offset; 1624 1625 atomic_inc(&sh->count); 1626 1627 if (target == qd_idx) { 1628 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1629 blocks[count] = NULL; /* regenerating p is not necessary */ 1630 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1631 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1632 ops_complete_compute, sh, 1633 to_addr_conv(sh, percpu, 0)); 1634 tx = async_gen_syndrome(blocks, offs, count+2, 1635 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1636 } else { 1637 /* Compute any data- or p-drive using XOR */ 1638 count = 0; 1639 for (i = disks; i-- ; ) { 1640 if (i == target || i == qd_idx) 1641 continue; 1642 offs[count] = sh->dev[i].offset; 1643 blocks[count++] = sh->dev[i].page; 1644 } 1645 1646 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1647 NULL, ops_complete_compute, sh, 1648 to_addr_conv(sh, percpu, 0)); 1649 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1650 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1651 } 1652 1653 return tx; 1654} 1655 1656static struct dma_async_tx_descriptor * 1657ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1658{ 1659 int i, count, disks = sh->disks; 1660 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1661 int d0_idx = raid6_d0(sh); 1662 int faila = -1, failb = -1; 1663 int target = sh->ops.target; 1664 int target2 = sh->ops.target2; 1665 struct r5dev *tgt = &sh->dev[target]; 1666 struct r5dev *tgt2 = &sh->dev[target2]; 1667 struct dma_async_tx_descriptor *tx; 1668 struct page **blocks = to_addr_page(percpu, 0); 1669 unsigned int *offs = to_addr_offs(sh, percpu); 1670 struct async_submit_ctl submit; 1671 1672 BUG_ON(sh->batch_head); 1673 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1674 __func__, (unsigned long long)sh->sector, target, target2); 1675 BUG_ON(target < 0 || target2 < 0); 1676 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1677 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1678 1679 /* we need to open-code set_syndrome_sources to handle the 1680 * slot number conversion for 'faila' and 'failb' 1681 */ 1682 for (i = 0; i < disks ; i++) { 1683 offs[i] = 0; 1684 blocks[i] = NULL; 1685 } 1686 count = 0; 1687 i = d0_idx; 1688 do { 1689 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1690 1691 offs[slot] = sh->dev[i].offset; 1692 blocks[slot] = sh->dev[i].page; 1693 1694 if (i == target) 1695 faila = slot; 1696 if (i == target2) 1697 failb = slot; 1698 i = raid6_next_disk(i, disks); 1699 } while (i != d0_idx); 1700 1701 BUG_ON(faila == failb); 1702 if (failb < faila) 1703 swap(faila, failb); 1704 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1705 __func__, (unsigned long long)sh->sector, faila, failb); 1706 1707 atomic_inc(&sh->count); 1708 1709 if (failb == syndrome_disks+1) { 1710 /* Q disk is one of the missing disks */ 1711 if (faila == syndrome_disks) { 1712 /* Missing P+Q, just recompute */ 1713 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1714 ops_complete_compute, sh, 1715 to_addr_conv(sh, percpu, 0)); 1716 return async_gen_syndrome(blocks, offs, syndrome_disks+2, 1717 RAID5_STRIPE_SIZE(sh->raid_conf), 1718 &submit); 1719 } else { 1720 struct page *dest; 1721 unsigned int dest_off; 1722 int data_target; 1723 int qd_idx = sh->qd_idx; 1724 1725 /* Missing D+Q: recompute D from P, then recompute Q */ 1726 if (target == qd_idx) 1727 data_target = target2; 1728 else 1729 data_target = target; 1730 1731 count = 0; 1732 for (i = disks; i-- ; ) { 1733 if (i == data_target || i == qd_idx) 1734 continue; 1735 offs[count] = sh->dev[i].offset; 1736 blocks[count++] = sh->dev[i].page; 1737 } 1738 dest = sh->dev[data_target].page; 1739 dest_off = sh->dev[data_target].offset; 1740 init_async_submit(&submit, 1741 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1742 NULL, NULL, NULL, 1743 to_addr_conv(sh, percpu, 0)); 1744 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1745 RAID5_STRIPE_SIZE(sh->raid_conf), 1746 &submit); 1747 1748 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1749 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1750 ops_complete_compute, sh, 1751 to_addr_conv(sh, percpu, 0)); 1752 return async_gen_syndrome(blocks, offs, count+2, 1753 RAID5_STRIPE_SIZE(sh->raid_conf), 1754 &submit); 1755 } 1756 } else { 1757 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1758 ops_complete_compute, sh, 1759 to_addr_conv(sh, percpu, 0)); 1760 if (failb == syndrome_disks) { 1761 /* We're missing D+P. */ 1762 return async_raid6_datap_recov(syndrome_disks+2, 1763 RAID5_STRIPE_SIZE(sh->raid_conf), 1764 faila, 1765 blocks, offs, &submit); 1766 } else { 1767 /* We're missing D+D. */ 1768 return async_raid6_2data_recov(syndrome_disks+2, 1769 RAID5_STRIPE_SIZE(sh->raid_conf), 1770 faila, failb, 1771 blocks, offs, &submit); 1772 } 1773 } 1774} 1775 1776static void ops_complete_prexor(void *stripe_head_ref) 1777{ 1778 struct stripe_head *sh = stripe_head_ref; 1779 1780 pr_debug("%s: stripe %llu\n", __func__, 1781 (unsigned long long)sh->sector); 1782 1783 if (r5c_is_writeback(sh->raid_conf->log)) 1784 /* 1785 * raid5-cache write back uses orig_page during prexor. 1786 * After prexor, it is time to free orig_page 1787 */ 1788 r5c_release_extra_page(sh); 1789} 1790 1791static struct dma_async_tx_descriptor * 1792ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1793 struct dma_async_tx_descriptor *tx) 1794{ 1795 int disks = sh->disks; 1796 struct page **xor_srcs = to_addr_page(percpu, 0); 1797 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1798 int count = 0, pd_idx = sh->pd_idx, i; 1799 struct async_submit_ctl submit; 1800 1801 /* existing parity data subtracted */ 1802 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 1803 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1804 1805 BUG_ON(sh->batch_head); 1806 pr_debug("%s: stripe %llu\n", __func__, 1807 (unsigned long long)sh->sector); 1808 1809 for (i = disks; i--; ) { 1810 struct r5dev *dev = &sh->dev[i]; 1811 /* Only process blocks that are known to be uptodate */ 1812 if (test_bit(R5_InJournal, &dev->flags)) { 1813 /* 1814 * For this case, PAGE_SIZE must be equal to 4KB and 1815 * page offset is zero. 1816 */ 1817 off_srcs[count] = dev->offset; 1818 xor_srcs[count++] = dev->orig_page; 1819 } else if (test_bit(R5_Wantdrain, &dev->flags)) { 1820 off_srcs[count] = dev->offset; 1821 xor_srcs[count++] = dev->page; 1822 } 1823 } 1824 1825 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1826 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1827 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1828 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1829 1830 return tx; 1831} 1832 1833static struct dma_async_tx_descriptor * 1834ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1835 struct dma_async_tx_descriptor *tx) 1836{ 1837 struct page **blocks = to_addr_page(percpu, 0); 1838 unsigned int *offs = to_addr_offs(sh, percpu); 1839 int count; 1840 struct async_submit_ctl submit; 1841 1842 pr_debug("%s: stripe %llu\n", __func__, 1843 (unsigned long long)sh->sector); 1844 1845 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN); 1846 1847 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1848 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1849 tx = async_gen_syndrome(blocks, offs, count+2, 1850 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1851 1852 return tx; 1853} 1854 1855static struct dma_async_tx_descriptor * 1856ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1857{ 1858 struct r5conf *conf = sh->raid_conf; 1859 int disks = sh->disks; 1860 int i; 1861 struct stripe_head *head_sh = sh; 1862 1863 pr_debug("%s: stripe %llu\n", __func__, 1864 (unsigned long long)sh->sector); 1865 1866 for (i = disks; i--; ) { 1867 struct r5dev *dev; 1868 struct bio *chosen; 1869 1870 sh = head_sh; 1871 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1872 struct bio *wbi; 1873 1874again: 1875 dev = &sh->dev[i]; 1876 /* 1877 * clear R5_InJournal, so when rewriting a page in 1878 * journal, it is not skipped by r5l_log_stripe() 1879 */ 1880 clear_bit(R5_InJournal, &dev->flags); 1881 spin_lock_irq(&sh->stripe_lock); 1882 chosen = dev->towrite; 1883 dev->towrite = NULL; 1884 sh->overwrite_disks = 0; 1885 BUG_ON(dev->written); 1886 wbi = dev->written = chosen; 1887 spin_unlock_irq(&sh->stripe_lock); 1888 WARN_ON(dev->page != dev->orig_page); 1889 1890 while (wbi && wbi->bi_iter.bi_sector < 1891 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1892 if (wbi->bi_opf & REQ_FUA) 1893 set_bit(R5_WantFUA, &dev->flags); 1894 if (wbi->bi_opf & REQ_SYNC) 1895 set_bit(R5_SyncIO, &dev->flags); 1896 if (bio_op(wbi) == REQ_OP_DISCARD) 1897 set_bit(R5_Discard, &dev->flags); 1898 else { 1899 tx = async_copy_data(1, wbi, &dev->page, 1900 dev->offset, 1901 dev->sector, tx, sh, 1902 r5c_is_writeback(conf->log)); 1903 if (dev->page != dev->orig_page && 1904 !r5c_is_writeback(conf->log)) { 1905 set_bit(R5_SkipCopy, &dev->flags); 1906 clear_bit(R5_UPTODATE, &dev->flags); 1907 clear_bit(R5_OVERWRITE, &dev->flags); 1908 } 1909 } 1910 wbi = r5_next_bio(conf, wbi, dev->sector); 1911 } 1912 1913 if (head_sh->batch_head) { 1914 sh = list_first_entry(&sh->batch_list, 1915 struct stripe_head, 1916 batch_list); 1917 if (sh == head_sh) 1918 continue; 1919 goto again; 1920 } 1921 } 1922 } 1923 1924 return tx; 1925} 1926 1927static void ops_complete_reconstruct(void *stripe_head_ref) 1928{ 1929 struct stripe_head *sh = stripe_head_ref; 1930 int disks = sh->disks; 1931 int pd_idx = sh->pd_idx; 1932 int qd_idx = sh->qd_idx; 1933 int i; 1934 bool fua = false, sync = false, discard = false; 1935 1936 pr_debug("%s: stripe %llu\n", __func__, 1937 (unsigned long long)sh->sector); 1938 1939 for (i = disks; i--; ) { 1940 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1941 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1942 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1943 } 1944 1945 for (i = disks; i--; ) { 1946 struct r5dev *dev = &sh->dev[i]; 1947 1948 if (dev->written || i == pd_idx || i == qd_idx) { 1949 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 1950 set_bit(R5_UPTODATE, &dev->flags); 1951 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 1952 set_bit(R5_Expanded, &dev->flags); 1953 } 1954 if (fua) 1955 set_bit(R5_WantFUA, &dev->flags); 1956 if (sync) 1957 set_bit(R5_SyncIO, &dev->flags); 1958 } 1959 } 1960 1961 if (sh->reconstruct_state == reconstruct_state_drain_run) 1962 sh->reconstruct_state = reconstruct_state_drain_result; 1963 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1964 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1965 else { 1966 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1967 sh->reconstruct_state = reconstruct_state_result; 1968 } 1969 1970 set_bit(STRIPE_HANDLE, &sh->state); 1971 raid5_release_stripe(sh); 1972} 1973 1974static void 1975ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1976 struct dma_async_tx_descriptor *tx) 1977{ 1978 int disks = sh->disks; 1979 struct page **xor_srcs; 1980 unsigned int *off_srcs; 1981 struct async_submit_ctl submit; 1982 int count, pd_idx = sh->pd_idx, i; 1983 struct page *xor_dest; 1984 unsigned int off_dest; 1985 int prexor = 0; 1986 unsigned long flags; 1987 int j = 0; 1988 struct stripe_head *head_sh = sh; 1989 int last_stripe; 1990 1991 pr_debug("%s: stripe %llu\n", __func__, 1992 (unsigned long long)sh->sector); 1993 1994 for (i = 0; i < sh->disks; i++) { 1995 if (pd_idx == i) 1996 continue; 1997 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1998 break; 1999 } 2000 if (i >= sh->disks) { 2001 atomic_inc(&sh->count); 2002 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 2003 ops_complete_reconstruct(sh); 2004 return; 2005 } 2006again: 2007 count = 0; 2008 xor_srcs = to_addr_page(percpu, j); 2009 off_srcs = to_addr_offs(sh, percpu); 2010 /* check if prexor is active which means only process blocks 2011 * that are part of a read-modify-write (written) 2012 */ 2013 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2014 prexor = 1; 2015 off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 2016 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 2017 for (i = disks; i--; ) { 2018 struct r5dev *dev = &sh->dev[i]; 2019 if (head_sh->dev[i].written || 2020 test_bit(R5_InJournal, &head_sh->dev[i].flags)) { 2021 off_srcs[count] = dev->offset; 2022 xor_srcs[count++] = dev->page; 2023 } 2024 } 2025 } else { 2026 xor_dest = sh->dev[pd_idx].page; 2027 off_dest = sh->dev[pd_idx].offset; 2028 for (i = disks; i--; ) { 2029 struct r5dev *dev = &sh->dev[i]; 2030 if (i != pd_idx) { 2031 off_srcs[count] = dev->offset; 2032 xor_srcs[count++] = dev->page; 2033 } 2034 } 2035 } 2036 2037 /* 1/ if we prexor'd then the dest is reused as a source 2038 * 2/ if we did not prexor then we are redoing the parity 2039 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 2040 * for the synchronous xor case 2041 */ 2042 last_stripe = !head_sh->batch_head || 2043 list_first_entry(&sh->batch_list, 2044 struct stripe_head, batch_list) == head_sh; 2045 if (last_stripe) { 2046 flags = ASYNC_TX_ACK | 2047 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 2048 2049 atomic_inc(&head_sh->count); 2050 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 2051 to_addr_conv(sh, percpu, j)); 2052 } else { 2053 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 2054 init_async_submit(&submit, flags, tx, NULL, NULL, 2055 to_addr_conv(sh, percpu, j)); 2056 } 2057 2058 if (unlikely(count == 1)) 2059 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 2060 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2061 else 2062 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2063 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2064 if (!last_stripe) { 2065 j++; 2066 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2067 batch_list); 2068 goto again; 2069 } 2070} 2071 2072static void 2073ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 2074 struct dma_async_tx_descriptor *tx) 2075{ 2076 struct async_submit_ctl submit; 2077 struct page **blocks; 2078 unsigned int *offs; 2079 int count, i, j = 0; 2080 struct stripe_head *head_sh = sh; 2081 int last_stripe; 2082 int synflags; 2083 unsigned long txflags; 2084 2085 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 2086 2087 for (i = 0; i < sh->disks; i++) { 2088 if (sh->pd_idx == i || sh->qd_idx == i) 2089 continue; 2090 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2091 break; 2092 } 2093 if (i >= sh->disks) { 2094 atomic_inc(&sh->count); 2095 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2096 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2097 ops_complete_reconstruct(sh); 2098 return; 2099 } 2100 2101again: 2102 blocks = to_addr_page(percpu, j); 2103 offs = to_addr_offs(sh, percpu); 2104 2105 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2106 synflags = SYNDROME_SRC_WRITTEN; 2107 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 2108 } else { 2109 synflags = SYNDROME_SRC_ALL; 2110 txflags = ASYNC_TX_ACK; 2111 } 2112 2113 count = set_syndrome_sources(blocks, offs, sh, synflags); 2114 last_stripe = !head_sh->batch_head || 2115 list_first_entry(&sh->batch_list, 2116 struct stripe_head, batch_list) == head_sh; 2117 2118 if (last_stripe) { 2119 atomic_inc(&head_sh->count); 2120 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 2121 head_sh, to_addr_conv(sh, percpu, j)); 2122 } else 2123 init_async_submit(&submit, 0, tx, NULL, NULL, 2124 to_addr_conv(sh, percpu, j)); 2125 tx = async_gen_syndrome(blocks, offs, count+2, 2126 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2127 if (!last_stripe) { 2128 j++; 2129 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2130 batch_list); 2131 goto again; 2132 } 2133} 2134 2135static void ops_complete_check(void *stripe_head_ref) 2136{ 2137 struct stripe_head *sh = stripe_head_ref; 2138 2139 pr_debug("%s: stripe %llu\n", __func__, 2140 (unsigned long long)sh->sector); 2141 2142 sh->check_state = check_state_check_result; 2143 set_bit(STRIPE_HANDLE, &sh->state); 2144 raid5_release_stripe(sh); 2145} 2146 2147static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2148{ 2149 int disks = sh->disks; 2150 int pd_idx = sh->pd_idx; 2151 int qd_idx = sh->qd_idx; 2152 struct page *xor_dest; 2153 unsigned int off_dest; 2154 struct page **xor_srcs = to_addr_page(percpu, 0); 2155 unsigned int *off_srcs = to_addr_offs(sh, percpu); 2156 struct dma_async_tx_descriptor *tx; 2157 struct async_submit_ctl submit; 2158 int count; 2159 int i; 2160 2161 pr_debug("%s: stripe %llu\n", __func__, 2162 (unsigned long long)sh->sector); 2163 2164 BUG_ON(sh->batch_head); 2165 count = 0; 2166 xor_dest = sh->dev[pd_idx].page; 2167 off_dest = sh->dev[pd_idx].offset; 2168 off_srcs[count] = off_dest; 2169 xor_srcs[count++] = xor_dest; 2170 for (i = disks; i--; ) { 2171 if (i == pd_idx || i == qd_idx) 2172 continue; 2173 off_srcs[count] = sh->dev[i].offset; 2174 xor_srcs[count++] = sh->dev[i].page; 2175 } 2176 2177 init_async_submit(&submit, 0, NULL, NULL, NULL, 2178 to_addr_conv(sh, percpu, 0)); 2179 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2180 RAID5_STRIPE_SIZE(sh->raid_conf), 2181 &sh->ops.zero_sum_result, &submit); 2182 2183 atomic_inc(&sh->count); 2184 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2185 tx = async_trigger_callback(&submit); 2186} 2187 2188static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2189{ 2190 struct page **srcs = to_addr_page(percpu, 0); 2191 unsigned int *offs = to_addr_offs(sh, percpu); 2192 struct async_submit_ctl submit; 2193 int count; 2194 2195 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2196 (unsigned long long)sh->sector, checkp); 2197 2198 BUG_ON(sh->batch_head); 2199 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL); 2200 if (!checkp) 2201 srcs[count] = NULL; 2202 2203 atomic_inc(&sh->count); 2204 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2205 sh, to_addr_conv(sh, percpu, 0)); 2206 async_syndrome_val(srcs, offs, count+2, 2207 RAID5_STRIPE_SIZE(sh->raid_conf), 2208 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit); 2209} 2210 2211static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2212{ 2213 int overlap_clear = 0, i, disks = sh->disks; 2214 struct dma_async_tx_descriptor *tx = NULL; 2215 struct r5conf *conf = sh->raid_conf; 2216 int level = conf->level; 2217 struct raid5_percpu *percpu; 2218 unsigned long cpu; 2219 2220 cpu = get_cpu(); 2221 percpu = per_cpu_ptr(conf->percpu, cpu); 2222 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2223 ops_run_biofill(sh); 2224 overlap_clear++; 2225 } 2226 2227 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2228 if (level < 6) 2229 tx = ops_run_compute5(sh, percpu); 2230 else { 2231 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2232 tx = ops_run_compute6_1(sh, percpu); 2233 else 2234 tx = ops_run_compute6_2(sh, percpu); 2235 } 2236 /* terminate the chain if reconstruct is not set to be run */ 2237 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2238 async_tx_ack(tx); 2239 } 2240 2241 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2242 if (level < 6) 2243 tx = ops_run_prexor5(sh, percpu, tx); 2244 else 2245 tx = ops_run_prexor6(sh, percpu, tx); 2246 } 2247 2248 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2249 tx = ops_run_partial_parity(sh, percpu, tx); 2250 2251 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2252 tx = ops_run_biodrain(sh, tx); 2253 overlap_clear++; 2254 } 2255 2256 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2257 if (level < 6) 2258 ops_run_reconstruct5(sh, percpu, tx); 2259 else 2260 ops_run_reconstruct6(sh, percpu, tx); 2261 } 2262 2263 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2264 if (sh->check_state == check_state_run) 2265 ops_run_check_p(sh, percpu); 2266 else if (sh->check_state == check_state_run_q) 2267 ops_run_check_pq(sh, percpu, 0); 2268 else if (sh->check_state == check_state_run_pq) 2269 ops_run_check_pq(sh, percpu, 1); 2270 else 2271 BUG(); 2272 } 2273 2274 if (overlap_clear && !sh->batch_head) 2275 for (i = disks; i--; ) { 2276 struct r5dev *dev = &sh->dev[i]; 2277 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2278 wake_up(&sh->raid_conf->wait_for_overlap); 2279 } 2280 put_cpu(); 2281} 2282 2283static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2284{ 2285#if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2286 kfree(sh->pages); 2287#endif 2288 if (sh->ppl_page) 2289 __free_page(sh->ppl_page); 2290 kmem_cache_free(sc, sh); 2291} 2292 2293static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2294 int disks, struct r5conf *conf) 2295{ 2296 struct stripe_head *sh; 2297 int i; 2298 2299 sh = kmem_cache_zalloc(sc, gfp); 2300 if (sh) { 2301 spin_lock_init(&sh->stripe_lock); 2302 spin_lock_init(&sh->batch_lock); 2303 INIT_LIST_HEAD(&sh->batch_list); 2304 INIT_LIST_HEAD(&sh->lru); 2305 INIT_LIST_HEAD(&sh->r5c); 2306 INIT_LIST_HEAD(&sh->log_list); 2307 atomic_set(&sh->count, 1); 2308 sh->raid_conf = conf; 2309 sh->log_start = MaxSector; 2310 for (i = 0; i < disks; i++) { 2311 struct r5dev *dev = &sh->dev[i]; 2312 2313 bio_init(&dev->req, &dev->vec, 1); 2314 bio_init(&dev->rreq, &dev->rvec, 1); 2315 } 2316 2317 if (raid5_has_ppl(conf)) { 2318 sh->ppl_page = alloc_page(gfp); 2319 if (!sh->ppl_page) { 2320 free_stripe(sc, sh); 2321 return NULL; 2322 } 2323 } 2324#if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2325 if (init_stripe_shared_pages(sh, conf, disks)) { 2326 free_stripe(sc, sh); 2327 return NULL; 2328 } 2329#endif 2330 } 2331 return sh; 2332} 2333static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2334{ 2335 struct stripe_head *sh; 2336 2337 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2338 if (!sh) 2339 return 0; 2340 2341 if (grow_buffers(sh, gfp)) { 2342 shrink_buffers(sh); 2343 free_stripe(conf->slab_cache, sh); 2344 return 0; 2345 } 2346 sh->hash_lock_index = 2347 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2348 /* we just created an active stripe so... */ 2349 atomic_inc(&conf->active_stripes); 2350 2351 raid5_release_stripe(sh); 2352 conf->max_nr_stripes++; 2353 return 1; 2354} 2355 2356static int grow_stripes(struct r5conf *conf, int num) 2357{ 2358 struct kmem_cache *sc; 2359 size_t namelen = sizeof(conf->cache_name[0]); 2360 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2361 2362 if (conf->mddev->gendisk) 2363 snprintf(conf->cache_name[0], namelen, 2364 "raid%d-%s", conf->level, mdname(conf->mddev)); 2365 else 2366 snprintf(conf->cache_name[0], namelen, 2367 "raid%d-%p", conf->level, conf->mddev); 2368 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2369 2370 conf->active_name = 0; 2371 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2372 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2373 0, 0, NULL); 2374 if (!sc) 2375 return 1; 2376 conf->slab_cache = sc; 2377 conf->pool_size = devs; 2378 while (num--) 2379 if (!grow_one_stripe(conf, GFP_KERNEL)) 2380 return 1; 2381 2382 return 0; 2383} 2384 2385/** 2386 * scribble_alloc - allocate percpu scribble buffer for required size 2387 * of the scribble region 2388 * @percpu: from for_each_present_cpu() of the caller 2389 * @num: total number of disks in the array 2390 * @cnt: scribble objs count for required size of the scribble region 2391 * 2392 * The scribble buffer size must be enough to contain: 2393 * 1/ a struct page pointer for each device in the array +2 2394 * 2/ room to convert each entry in (1) to its corresponding dma 2395 * (dma_map_page()) or page (page_address()) address. 2396 * 2397 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2398 * calculate over all devices (not just the data blocks), using zeros in place 2399 * of the P and Q blocks. 2400 */ 2401static int scribble_alloc(struct raid5_percpu *percpu, 2402 int num, int cnt) 2403{ 2404 size_t obj_size = 2405 sizeof(struct page *) * (num + 2) + 2406 sizeof(addr_conv_t) * (num + 2) + 2407 sizeof(unsigned int) * (num + 2); 2408 void *scribble; 2409 2410 /* 2411 * If here is in raid array suspend context, it is in memalloc noio 2412 * context as well, there is no potential recursive memory reclaim 2413 * I/Os with the GFP_KERNEL flag. 2414 */ 2415 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2416 if (!scribble) 2417 return -ENOMEM; 2418 2419 kvfree(percpu->scribble); 2420 2421 percpu->scribble = scribble; 2422 percpu->scribble_obj_size = obj_size; 2423 return 0; 2424} 2425 2426static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2427{ 2428 unsigned long cpu; 2429 int err = 0; 2430 2431 /* 2432 * Never shrink. And mddev_suspend() could deadlock if this is called 2433 * from raid5d. In that case, scribble_disks and scribble_sectors 2434 * should equal to new_disks and new_sectors 2435 */ 2436 if (conf->scribble_disks >= new_disks && 2437 conf->scribble_sectors >= new_sectors) 2438 return 0; 2439 mddev_suspend(conf->mddev); 2440 get_online_cpus(); 2441 2442 for_each_present_cpu(cpu) { 2443 struct raid5_percpu *percpu; 2444 2445 percpu = per_cpu_ptr(conf->percpu, cpu); 2446 err = scribble_alloc(percpu, new_disks, 2447 new_sectors / RAID5_STRIPE_SECTORS(conf)); 2448 if (err) 2449 break; 2450 } 2451 2452 put_online_cpus(); 2453 mddev_resume(conf->mddev); 2454 if (!err) { 2455 conf->scribble_disks = new_disks; 2456 conf->scribble_sectors = new_sectors; 2457 } 2458 return err; 2459} 2460 2461static int resize_stripes(struct r5conf *conf, int newsize) 2462{ 2463 /* Make all the stripes able to hold 'newsize' devices. 2464 * New slots in each stripe get 'page' set to a new page. 2465 * 2466 * This happens in stages: 2467 * 1/ create a new kmem_cache and allocate the required number of 2468 * stripe_heads. 2469 * 2/ gather all the old stripe_heads and transfer the pages across 2470 * to the new stripe_heads. This will have the side effect of 2471 * freezing the array as once all stripe_heads have been collected, 2472 * no IO will be possible. Old stripe heads are freed once their 2473 * pages have been transferred over, and the old kmem_cache is 2474 * freed when all stripes are done. 2475 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2476 * we simple return a failure status - no need to clean anything up. 2477 * 4/ allocate new pages for the new slots in the new stripe_heads. 2478 * If this fails, we don't bother trying the shrink the 2479 * stripe_heads down again, we just leave them as they are. 2480 * As each stripe_head is processed the new one is released into 2481 * active service. 2482 * 2483 * Once step2 is started, we cannot afford to wait for a write, 2484 * so we use GFP_NOIO allocations. 2485 */ 2486 struct stripe_head *osh, *nsh; 2487 LIST_HEAD(newstripes); 2488 struct disk_info *ndisks; 2489 int err = 0; 2490 struct kmem_cache *sc; 2491 int i; 2492 int hash, cnt; 2493 2494 md_allow_write(conf->mddev); 2495 2496 /* Step 1 */ 2497 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2498 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2499 0, 0, NULL); 2500 if (!sc) 2501 return -ENOMEM; 2502 2503 /* Need to ensure auto-resizing doesn't interfere */ 2504 mutex_lock(&conf->cache_size_mutex); 2505 2506 for (i = conf->max_nr_stripes; i; i--) { 2507 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2508 if (!nsh) 2509 break; 2510 2511 list_add(&nsh->lru, &newstripes); 2512 } 2513 if (i) { 2514 /* didn't get enough, give up */ 2515 while (!list_empty(&newstripes)) { 2516 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2517 list_del(&nsh->lru); 2518 free_stripe(sc, nsh); 2519 } 2520 kmem_cache_destroy(sc); 2521 mutex_unlock(&conf->cache_size_mutex); 2522 return -ENOMEM; 2523 } 2524 /* Step 2 - Must use GFP_NOIO now. 2525 * OK, we have enough stripes, start collecting inactive 2526 * stripes and copying them over 2527 */ 2528 hash = 0; 2529 cnt = 0; 2530 list_for_each_entry(nsh, &newstripes, lru) { 2531 lock_device_hash_lock(conf, hash); 2532 wait_event_cmd(conf->wait_for_stripe, 2533 !list_empty(conf->inactive_list + hash), 2534 unlock_device_hash_lock(conf, hash), 2535 lock_device_hash_lock(conf, hash)); 2536 osh = get_free_stripe(conf, hash); 2537 unlock_device_hash_lock(conf, hash); 2538 2539#if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2540 for (i = 0; i < osh->nr_pages; i++) { 2541 nsh->pages[i] = osh->pages[i]; 2542 osh->pages[i] = NULL; 2543 } 2544#endif 2545 for(i=0; i<conf->pool_size; i++) { 2546 nsh->dev[i].page = osh->dev[i].page; 2547 nsh->dev[i].orig_page = osh->dev[i].page; 2548 nsh->dev[i].offset = osh->dev[i].offset; 2549 } 2550 nsh->hash_lock_index = hash; 2551 free_stripe(conf->slab_cache, osh); 2552 cnt++; 2553 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2554 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2555 hash++; 2556 cnt = 0; 2557 } 2558 } 2559 kmem_cache_destroy(conf->slab_cache); 2560 2561 /* Step 3. 2562 * At this point, we are holding all the stripes so the array 2563 * is completely stalled, so now is a good time to resize 2564 * conf->disks and the scribble region 2565 */ 2566 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2567 if (ndisks) { 2568 for (i = 0; i < conf->pool_size; i++) 2569 ndisks[i] = conf->disks[i]; 2570 2571 for (i = conf->pool_size; i < newsize; i++) { 2572 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2573 if (!ndisks[i].extra_page) 2574 err = -ENOMEM; 2575 } 2576 2577 if (err) { 2578 for (i = conf->pool_size; i < newsize; i++) 2579 if (ndisks[i].extra_page) 2580 put_page(ndisks[i].extra_page); 2581 kfree(ndisks); 2582 } else { 2583 kfree(conf->disks); 2584 conf->disks = ndisks; 2585 } 2586 } else 2587 err = -ENOMEM; 2588 2589 conf->slab_cache = sc; 2590 conf->active_name = 1-conf->active_name; 2591 2592 /* Step 4, return new stripes to service */ 2593 while(!list_empty(&newstripes)) { 2594 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2595 list_del_init(&nsh->lru); 2596 2597#if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2598 for (i = 0; i < nsh->nr_pages; i++) { 2599 if (nsh->pages[i]) 2600 continue; 2601 nsh->pages[i] = alloc_page(GFP_NOIO); 2602 if (!nsh->pages[i]) 2603 err = -ENOMEM; 2604 } 2605 2606 for (i = conf->raid_disks; i < newsize; i++) { 2607 if (nsh->dev[i].page) 2608 continue; 2609 nsh->dev[i].page = raid5_get_dev_page(nsh, i); 2610 nsh->dev[i].orig_page = nsh->dev[i].page; 2611 nsh->dev[i].offset = raid5_get_page_offset(nsh, i); 2612 } 2613#else 2614 for (i=conf->raid_disks; i < newsize; i++) 2615 if (nsh->dev[i].page == NULL) { 2616 struct page *p = alloc_page(GFP_NOIO); 2617 nsh->dev[i].page = p; 2618 nsh->dev[i].orig_page = p; 2619 nsh->dev[i].offset = 0; 2620 if (!p) 2621 err = -ENOMEM; 2622 } 2623#endif 2624 raid5_release_stripe(nsh); 2625 } 2626 /* critical section pass, GFP_NOIO no longer needed */ 2627 2628 if (!err) 2629 conf->pool_size = newsize; 2630 mutex_unlock(&conf->cache_size_mutex); 2631 2632 return err; 2633} 2634 2635static int drop_one_stripe(struct r5conf *conf) 2636{ 2637 struct stripe_head *sh; 2638 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2639 2640 spin_lock_irq(conf->hash_locks + hash); 2641 sh = get_free_stripe(conf, hash); 2642 spin_unlock_irq(conf->hash_locks + hash); 2643 if (!sh) 2644 return 0; 2645 BUG_ON(atomic_read(&sh->count)); 2646 shrink_buffers(sh); 2647 free_stripe(conf->slab_cache, sh); 2648 atomic_dec(&conf->active_stripes); 2649 conf->max_nr_stripes--; 2650 return 1; 2651} 2652 2653static void shrink_stripes(struct r5conf *conf) 2654{ 2655 while (conf->max_nr_stripes && 2656 drop_one_stripe(conf)) 2657 ; 2658 2659 kmem_cache_destroy(conf->slab_cache); 2660 conf->slab_cache = NULL; 2661} 2662 2663static void raid5_end_read_request(struct bio * bi) 2664{ 2665 struct stripe_head *sh = bi->bi_private; 2666 struct r5conf *conf = sh->raid_conf; 2667 int disks = sh->disks, i; 2668 char b[BDEVNAME_SIZE]; 2669 struct md_rdev *rdev = NULL; 2670 sector_t s; 2671 2672 for (i=0 ; i<disks; i++) 2673 if (bi == &sh->dev[i].req) 2674 break; 2675 2676 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2677 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2678 bi->bi_status); 2679 if (i == disks) { 2680 bio_reset(bi); 2681 BUG(); 2682 return; 2683 } 2684 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2685 /* If replacement finished while this request was outstanding, 2686 * 'replacement' might be NULL already. 2687 * In that case it moved down to 'rdev'. 2688 * rdev is not removed until all requests are finished. 2689 */ 2690 rdev = conf->disks[i].replacement; 2691 if (!rdev) 2692 rdev = conf->disks[i].rdev; 2693 2694 if (use_new_offset(conf, sh)) 2695 s = sh->sector + rdev->new_data_offset; 2696 else 2697 s = sh->sector + rdev->data_offset; 2698 if (!bi->bi_status) { 2699 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2700 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2701 /* Note that this cannot happen on a 2702 * replacement device. We just fail those on 2703 * any error 2704 */ 2705 pr_info_ratelimited( 2706 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n", 2707 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf), 2708 (unsigned long long)s, 2709 bdevname(rdev->bdev, b)); 2710 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors); 2711 clear_bit(R5_ReadError, &sh->dev[i].flags); 2712 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2713 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2714 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2715 2716 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2717 /* 2718 * end read for a page in journal, this 2719 * must be preparing for prexor in rmw 2720 */ 2721 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2722 2723 if (atomic_read(&rdev->read_errors)) 2724 atomic_set(&rdev->read_errors, 0); 2725 } else { 2726 const char *bdn = bdevname(rdev->bdev, b); 2727 int retry = 0; 2728 int set_bad = 0; 2729 2730 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2731 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2732 atomic_inc(&rdev->read_errors); 2733 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2734 pr_warn_ratelimited( 2735 "md/raid:%s: read error on replacement device (sector %llu on %s).\n", 2736 mdname(conf->mddev), 2737 (unsigned long long)s, 2738 bdn); 2739 else if (conf->mddev->degraded >= conf->max_degraded) { 2740 set_bad = 1; 2741 pr_warn_ratelimited( 2742 "md/raid:%s: read error not correctable (sector %llu on %s).\n", 2743 mdname(conf->mddev), 2744 (unsigned long long)s, 2745 bdn); 2746 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2747 /* Oh, no!!! */ 2748 set_bad = 1; 2749 pr_warn_ratelimited( 2750 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n", 2751 mdname(conf->mddev), 2752 (unsigned long long)s, 2753 bdn); 2754 } else if (atomic_read(&rdev->read_errors) 2755 > conf->max_nr_stripes) { 2756 if (!test_bit(Faulty, &rdev->flags)) { 2757 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2758 mdname(conf->mddev), 2759 atomic_read(&rdev->read_errors), 2760 conf->max_nr_stripes); 2761 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n", 2762 mdname(conf->mddev), bdn); 2763 } 2764 } else 2765 retry = 1; 2766 if (set_bad && test_bit(In_sync, &rdev->flags) 2767 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2768 retry = 1; 2769 if (retry) 2770 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2771 set_bit(R5_ReadError, &sh->dev[i].flags); 2772 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2773 set_bit(R5_ReadError, &sh->dev[i].flags); 2774 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2775 } else 2776 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2777 else { 2778 clear_bit(R5_ReadError, &sh->dev[i].flags); 2779 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2780 if (!(set_bad 2781 && test_bit(In_sync, &rdev->flags) 2782 && rdev_set_badblocks( 2783 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0))) 2784 md_error(conf->mddev, rdev); 2785 } 2786 } 2787 rdev_dec_pending(rdev, conf->mddev); 2788 bio_reset(bi); 2789 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2790 set_bit(STRIPE_HANDLE, &sh->state); 2791 raid5_release_stripe(sh); 2792} 2793 2794static void raid5_end_write_request(struct bio *bi) 2795{ 2796 struct stripe_head *sh = bi->bi_private; 2797 struct r5conf *conf = sh->raid_conf; 2798 int disks = sh->disks, i; 2799 struct md_rdev *rdev; 2800 sector_t first_bad; 2801 int bad_sectors; 2802 int replacement = 0; 2803 2804 for (i = 0 ; i < disks; i++) { 2805 if (bi == &sh->dev[i].req) { 2806 rdev = conf->disks[i].rdev; 2807 break; 2808 } 2809 if (bi == &sh->dev[i].rreq) { 2810 rdev = conf->disks[i].replacement; 2811 if (rdev) 2812 replacement = 1; 2813 else 2814 /* rdev was removed and 'replacement' 2815 * replaced it. rdev is not removed 2816 * until all requests are finished. 2817 */ 2818 rdev = conf->disks[i].rdev; 2819 break; 2820 } 2821 } 2822 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2823 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2824 bi->bi_status); 2825 if (i == disks) { 2826 bio_reset(bi); 2827 BUG(); 2828 return; 2829 } 2830 2831 if (replacement) { 2832 if (bi->bi_status) 2833 md_error(conf->mddev, rdev); 2834 else if (is_badblock(rdev, sh->sector, 2835 RAID5_STRIPE_SECTORS(conf), 2836 &first_bad, &bad_sectors)) 2837 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2838 } else { 2839 if (bi->bi_status) { 2840 set_bit(STRIPE_DEGRADED, &sh->state); 2841 set_bit(WriteErrorSeen, &rdev->flags); 2842 set_bit(R5_WriteError, &sh->dev[i].flags); 2843 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2844 set_bit(MD_RECOVERY_NEEDED, 2845 &rdev->mddev->recovery); 2846 } else if (is_badblock(rdev, sh->sector, 2847 RAID5_STRIPE_SECTORS(conf), 2848 &first_bad, &bad_sectors)) { 2849 set_bit(R5_MadeGood, &sh->dev[i].flags); 2850 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2851 /* That was a successful write so make 2852 * sure it looks like we already did 2853 * a re-write. 2854 */ 2855 set_bit(R5_ReWrite, &sh->dev[i].flags); 2856 } 2857 } 2858 rdev_dec_pending(rdev, conf->mddev); 2859 2860 if (sh->batch_head && bi->bi_status && !replacement) 2861 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2862 2863 bio_reset(bi); 2864 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2865 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2866 set_bit(STRIPE_HANDLE, &sh->state); 2867 2868 if (sh->batch_head && sh != sh->batch_head) 2869 raid5_release_stripe(sh->batch_head); 2870 raid5_release_stripe(sh); 2871} 2872 2873static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2874{ 2875 char b[BDEVNAME_SIZE]; 2876 struct r5conf *conf = mddev->private; 2877 unsigned long flags; 2878 pr_debug("raid456: error called\n"); 2879 2880 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n", 2881 mdname(mddev), bdevname(rdev->bdev, b)); 2882 2883 spin_lock_irqsave(&conf->device_lock, flags); 2884 set_bit(Faulty, &rdev->flags); 2885 clear_bit(In_sync, &rdev->flags); 2886 mddev->degraded = raid5_calc_degraded(conf); 2887 2888 if (has_failed(conf)) { 2889 set_bit(MD_BROKEN, &conf->mddev->flags); 2890 conf->recovery_disabled = mddev->recovery_disabled; 2891 2892 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n", 2893 mdname(mddev), mddev->degraded, conf->raid_disks); 2894 } else { 2895 pr_crit("md/raid:%s: Operation continuing on %d devices.\n", 2896 mdname(mddev), conf->raid_disks - mddev->degraded); 2897 } 2898 2899 spin_unlock_irqrestore(&conf->device_lock, flags); 2900 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2901 2902 set_bit(Blocked, &rdev->flags); 2903 set_mask_bits(&mddev->sb_flags, 0, 2904 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2905 r5c_update_on_rdev_error(mddev, rdev); 2906} 2907 2908/* 2909 * Input: a 'big' sector number, 2910 * Output: index of the data and parity disk, and the sector # in them. 2911 */ 2912sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2913 int previous, int *dd_idx, 2914 struct stripe_head *sh) 2915{ 2916 sector_t stripe, stripe2; 2917 sector_t chunk_number; 2918 unsigned int chunk_offset; 2919 int pd_idx, qd_idx; 2920 int ddf_layout = 0; 2921 sector_t new_sector; 2922 int algorithm = previous ? conf->prev_algo 2923 : conf->algorithm; 2924 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2925 : conf->chunk_sectors; 2926 int raid_disks = previous ? conf->previous_raid_disks 2927 : conf->raid_disks; 2928 int data_disks = raid_disks - conf->max_degraded; 2929 2930 /* First compute the information on this sector */ 2931 2932 /* 2933 * Compute the chunk number and the sector offset inside the chunk 2934 */ 2935 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2936 chunk_number = r_sector; 2937 2938 /* 2939 * Compute the stripe number 2940 */ 2941 stripe = chunk_number; 2942 *dd_idx = sector_div(stripe, data_disks); 2943 stripe2 = stripe; 2944 /* 2945 * Select the parity disk based on the user selected algorithm. 2946 */ 2947 pd_idx = qd_idx = -1; 2948 switch(conf->level) { 2949 case 4: 2950 pd_idx = data_disks; 2951 break; 2952 case 5: 2953 switch (algorithm) { 2954 case ALGORITHM_LEFT_ASYMMETRIC: 2955 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2956 if (*dd_idx >= pd_idx) 2957 (*dd_idx)++; 2958 break; 2959 case ALGORITHM_RIGHT_ASYMMETRIC: 2960 pd_idx = sector_div(stripe2, raid_disks); 2961 if (*dd_idx >= pd_idx) 2962 (*dd_idx)++; 2963 break; 2964 case ALGORITHM_LEFT_SYMMETRIC: 2965 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2966 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2967 break; 2968 case ALGORITHM_RIGHT_SYMMETRIC: 2969 pd_idx = sector_div(stripe2, raid_disks); 2970 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2971 break; 2972 case ALGORITHM_PARITY_0: 2973 pd_idx = 0; 2974 (*dd_idx)++; 2975 break; 2976 case ALGORITHM_PARITY_N: 2977 pd_idx = data_disks; 2978 break; 2979 default: 2980 BUG(); 2981 } 2982 break; 2983 case 6: 2984 2985 switch (algorithm) { 2986 case ALGORITHM_LEFT_ASYMMETRIC: 2987 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2988 qd_idx = pd_idx + 1; 2989 if (pd_idx == raid_disks-1) { 2990 (*dd_idx)++; /* Q D D D P */ 2991 qd_idx = 0; 2992 } else if (*dd_idx >= pd_idx) 2993 (*dd_idx) += 2; /* D D P Q D */ 2994 break; 2995 case ALGORITHM_RIGHT_ASYMMETRIC: 2996 pd_idx = sector_div(stripe2, raid_disks); 2997 qd_idx = pd_idx + 1; 2998 if (pd_idx == raid_disks-1) { 2999 (*dd_idx)++; /* Q D D D P */ 3000 qd_idx = 0; 3001 } else if (*dd_idx >= pd_idx) 3002 (*dd_idx) += 2; /* D D P Q D */ 3003 break; 3004 case ALGORITHM_LEFT_SYMMETRIC: 3005 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3006 qd_idx = (pd_idx + 1) % raid_disks; 3007 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3008 break; 3009 case ALGORITHM_RIGHT_SYMMETRIC: 3010 pd_idx = sector_div(stripe2, raid_disks); 3011 qd_idx = (pd_idx + 1) % raid_disks; 3012 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3013 break; 3014 3015 case ALGORITHM_PARITY_0: 3016 pd_idx = 0; 3017 qd_idx = 1; 3018 (*dd_idx) += 2; 3019 break; 3020 case ALGORITHM_PARITY_N: 3021 pd_idx = data_disks; 3022 qd_idx = data_disks + 1; 3023 break; 3024 3025 case ALGORITHM_ROTATING_ZERO_RESTART: 3026 /* Exactly the same as RIGHT_ASYMMETRIC, but or 3027 * of blocks for computing Q is different. 3028 */ 3029 pd_idx = sector_div(stripe2, raid_disks); 3030 qd_idx = pd_idx + 1; 3031 if (pd_idx == raid_disks-1) { 3032 (*dd_idx)++; /* Q D D D P */ 3033 qd_idx = 0; 3034 } else if (*dd_idx >= pd_idx) 3035 (*dd_idx) += 2; /* D D P Q D */ 3036 ddf_layout = 1; 3037 break; 3038 3039 case ALGORITHM_ROTATING_N_RESTART: 3040 /* Same a left_asymmetric, by first stripe is 3041 * D D D P Q rather than 3042 * Q D D D P 3043 */ 3044 stripe2 += 1; 3045 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3046 qd_idx = pd_idx + 1; 3047 if (pd_idx == raid_disks-1) { 3048 (*dd_idx)++; /* Q D D D P */ 3049 qd_idx = 0; 3050 } else if (*dd_idx >= pd_idx) 3051 (*dd_idx) += 2; /* D D P Q D */ 3052 ddf_layout = 1; 3053 break; 3054 3055 case ALGORITHM_ROTATING_N_CONTINUE: 3056 /* Same as left_symmetric but Q is before P */ 3057 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3058 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 3059 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3060 ddf_layout = 1; 3061 break; 3062 3063 case ALGORITHM_LEFT_ASYMMETRIC_6: 3064 /* RAID5 left_asymmetric, with Q on last device */ 3065 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3066 if (*dd_idx >= pd_idx) 3067 (*dd_idx)++; 3068 qd_idx = raid_disks - 1; 3069 break; 3070 3071 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3072 pd_idx = sector_div(stripe2, raid_disks-1); 3073 if (*dd_idx >= pd_idx) 3074 (*dd_idx)++; 3075 qd_idx = raid_disks - 1; 3076 break; 3077 3078 case ALGORITHM_LEFT_SYMMETRIC_6: 3079 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3080 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3081 qd_idx = raid_disks - 1; 3082 break; 3083 3084 case ALGORITHM_RIGHT_SYMMETRIC_6: 3085 pd_idx = sector_div(stripe2, raid_disks-1); 3086 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3087 qd_idx = raid_disks - 1; 3088 break; 3089 3090 case ALGORITHM_PARITY_0_6: 3091 pd_idx = 0; 3092 (*dd_idx)++; 3093 qd_idx = raid_disks - 1; 3094 break; 3095 3096 default: 3097 BUG(); 3098 } 3099 break; 3100 } 3101 3102 if (sh) { 3103 sh->pd_idx = pd_idx; 3104 sh->qd_idx = qd_idx; 3105 sh->ddf_layout = ddf_layout; 3106 } 3107 /* 3108 * Finally, compute the new sector number 3109 */ 3110 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 3111 return new_sector; 3112} 3113 3114sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 3115{ 3116 struct r5conf *conf = sh->raid_conf; 3117 int raid_disks = sh->disks; 3118 int data_disks = raid_disks - conf->max_degraded; 3119 sector_t new_sector = sh->sector, check; 3120 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3121 : conf->chunk_sectors; 3122 int algorithm = previous ? conf->prev_algo 3123 : conf->algorithm; 3124 sector_t stripe; 3125 int chunk_offset; 3126 sector_t chunk_number; 3127 int dummy1, dd_idx = i; 3128 sector_t r_sector; 3129 struct stripe_head sh2; 3130 3131 chunk_offset = sector_div(new_sector, sectors_per_chunk); 3132 stripe = new_sector; 3133 3134 if (i == sh->pd_idx) 3135 return 0; 3136 switch(conf->level) { 3137 case 4: break; 3138 case 5: 3139 switch (algorithm) { 3140 case ALGORITHM_LEFT_ASYMMETRIC: 3141 case ALGORITHM_RIGHT_ASYMMETRIC: 3142 if (i > sh->pd_idx) 3143 i--; 3144 break; 3145 case ALGORITHM_LEFT_SYMMETRIC: 3146 case ALGORITHM_RIGHT_SYMMETRIC: 3147 if (i < sh->pd_idx) 3148 i += raid_disks; 3149 i -= (sh->pd_idx + 1); 3150 break; 3151 case ALGORITHM_PARITY_0: 3152 i -= 1; 3153 break; 3154 case ALGORITHM_PARITY_N: 3155 break; 3156 default: 3157 BUG(); 3158 } 3159 break; 3160 case 6: 3161 if (i == sh->qd_idx) 3162 return 0; /* It is the Q disk */ 3163 switch (algorithm) { 3164 case ALGORITHM_LEFT_ASYMMETRIC: 3165 case ALGORITHM_RIGHT_ASYMMETRIC: 3166 case ALGORITHM_ROTATING_ZERO_RESTART: 3167 case ALGORITHM_ROTATING_N_RESTART: 3168 if (sh->pd_idx == raid_disks-1) 3169 i--; /* Q D D D P */ 3170 else if (i > sh->pd_idx) 3171 i -= 2; /* D D P Q D */ 3172 break; 3173 case ALGORITHM_LEFT_SYMMETRIC: 3174 case ALGORITHM_RIGHT_SYMMETRIC: 3175 if (sh->pd_idx == raid_disks-1) 3176 i--; /* Q D D D P */ 3177 else { 3178 /* D D P Q D */ 3179 if (i < sh->pd_idx) 3180 i += raid_disks; 3181 i -= (sh->pd_idx + 2); 3182 } 3183 break; 3184 case ALGORITHM_PARITY_0: 3185 i -= 2; 3186 break; 3187 case ALGORITHM_PARITY_N: 3188 break; 3189 case ALGORITHM_ROTATING_N_CONTINUE: 3190 /* Like left_symmetric, but P is before Q */ 3191 if (sh->pd_idx == 0) 3192 i--; /* P D D D Q */ 3193 else { 3194 /* D D Q P D */ 3195 if (i < sh->pd_idx) 3196 i += raid_disks; 3197 i -= (sh->pd_idx + 1); 3198 } 3199 break; 3200 case ALGORITHM_LEFT_ASYMMETRIC_6: 3201 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3202 if (i > sh->pd_idx) 3203 i--; 3204 break; 3205 case ALGORITHM_LEFT_SYMMETRIC_6: 3206 case ALGORITHM_RIGHT_SYMMETRIC_6: 3207 if (i < sh->pd_idx) 3208 i += data_disks + 1; 3209 i -= (sh->pd_idx + 1); 3210 break; 3211 case ALGORITHM_PARITY_0_6: 3212 i -= 1; 3213 break; 3214 default: 3215 BUG(); 3216 } 3217 break; 3218 } 3219 3220 chunk_number = stripe * data_disks + i; 3221 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3222 3223 check = raid5_compute_sector(conf, r_sector, 3224 previous, &dummy1, &sh2); 3225 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3226 || sh2.qd_idx != sh->qd_idx) { 3227 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3228 mdname(conf->mddev)); 3229 return 0; 3230 } 3231 return r_sector; 3232} 3233 3234/* 3235 * There are cases where we want handle_stripe_dirtying() and 3236 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3237 * 3238 * This function checks whether we want to delay the towrite. Specifically, 3239 * we delay the towrite when: 3240 * 3241 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3242 * stripe has data in journal (for other devices). 3243 * 3244 * In this case, when reading data for the non-overwrite dev, it is 3245 * necessary to handle complex rmw of write back cache (prexor with 3246 * orig_page, and xor with page). To keep read path simple, we would 3247 * like to flush data in journal to RAID disks first, so complex rmw 3248 * is handled in the write patch (handle_stripe_dirtying). 3249 * 3250 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3251 * 3252 * It is important to be able to flush all stripes in raid5-cache. 3253 * Therefore, we need reserve some space on the journal device for 3254 * these flushes. If flush operation includes pending writes to the 3255 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3256 * for the flush out. If we exclude these pending writes from flush 3257 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3258 * Therefore, excluding pending writes in these cases enables more 3259 * efficient use of the journal device. 3260 * 3261 * Note: To make sure the stripe makes progress, we only delay 3262 * towrite for stripes with data already in journal (injournal > 0). 3263 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3264 * no_space_stripes list. 3265 * 3266 * 3. during journal failure 3267 * In journal failure, we try to flush all cached data to raid disks 3268 * based on data in stripe cache. The array is read-only to upper 3269 * layers, so we would skip all pending writes. 3270 * 3271 */ 3272static inline bool delay_towrite(struct r5conf *conf, 3273 struct r5dev *dev, 3274 struct stripe_head_state *s) 3275{ 3276 /* case 1 above */ 3277 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3278 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3279 return true; 3280 /* case 2 above */ 3281 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3282 s->injournal > 0) 3283 return true; 3284 /* case 3 above */ 3285 if (s->log_failed && s->injournal) 3286 return true; 3287 return false; 3288} 3289 3290static void 3291schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3292 int rcw, int expand) 3293{ 3294 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3295 struct r5conf *conf = sh->raid_conf; 3296 int level = conf->level; 3297 3298 if (rcw) { 3299 /* 3300 * In some cases, handle_stripe_dirtying initially decided to 3301 * run rmw and allocates extra page for prexor. However, rcw is 3302 * cheaper later on. We need to free the extra page now, 3303 * because we won't be able to do that in ops_complete_prexor(). 3304 */ 3305 r5c_release_extra_page(sh); 3306 3307 for (i = disks; i--; ) { 3308 struct r5dev *dev = &sh->dev[i]; 3309 3310 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3311 set_bit(R5_LOCKED, &dev->flags); 3312 set_bit(R5_Wantdrain, &dev->flags); 3313 if (!expand) 3314 clear_bit(R5_UPTODATE, &dev->flags); 3315 s->locked++; 3316 } else if (test_bit(R5_InJournal, &dev->flags)) { 3317 set_bit(R5_LOCKED, &dev->flags); 3318 s->locked++; 3319 } 3320 } 3321 /* if we are not expanding this is a proper write request, and 3322 * there will be bios with new data to be drained into the 3323 * stripe cache 3324 */ 3325 if (!expand) { 3326 if (!s->locked) 3327 /* False alarm, nothing to do */ 3328 return; 3329 sh->reconstruct_state = reconstruct_state_drain_run; 3330 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3331 } else 3332 sh->reconstruct_state = reconstruct_state_run; 3333 3334 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3335 3336 if (s->locked + conf->max_degraded == disks) 3337 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3338 atomic_inc(&conf->pending_full_writes); 3339 } else { 3340 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3341 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3342 BUG_ON(level == 6 && 3343 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3344 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3345 3346 for (i = disks; i--; ) { 3347 struct r5dev *dev = &sh->dev[i]; 3348 if (i == pd_idx || i == qd_idx) 3349 continue; 3350 3351 if (dev->towrite && 3352 (test_bit(R5_UPTODATE, &dev->flags) || 3353 test_bit(R5_Wantcompute, &dev->flags))) { 3354 set_bit(R5_Wantdrain, &dev->flags); 3355 set_bit(R5_LOCKED, &dev->flags); 3356 clear_bit(R5_UPTODATE, &dev->flags); 3357 s->locked++; 3358 } else if (test_bit(R5_InJournal, &dev->flags)) { 3359 set_bit(R5_LOCKED, &dev->flags); 3360 s->locked++; 3361 } 3362 } 3363 if (!s->locked) 3364 /* False alarm - nothing to do */ 3365 return; 3366 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3367 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3368 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3369 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3370 } 3371 3372 /* keep the parity disk(s) locked while asynchronous operations 3373 * are in flight 3374 */ 3375 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3376 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3377 s->locked++; 3378 3379 if (level == 6) { 3380 int qd_idx = sh->qd_idx; 3381 struct r5dev *dev = &sh->dev[qd_idx]; 3382 3383 set_bit(R5_LOCKED, &dev->flags); 3384 clear_bit(R5_UPTODATE, &dev->flags); 3385 s->locked++; 3386 } 3387 3388 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3389 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3390 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3391 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3392 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3393 3394 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3395 __func__, (unsigned long long)sh->sector, 3396 s->locked, s->ops_request); 3397} 3398 3399/* 3400 * Each stripe/dev can have one or more bion attached. 3401 * toread/towrite point to the first in a chain. 3402 * The bi_next chain must be in order. 3403 */ 3404static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 3405 int forwrite, int previous) 3406{ 3407 struct bio **bip; 3408 struct r5conf *conf = sh->raid_conf; 3409 int firstwrite=0; 3410 3411 pr_debug("adding bi b#%llu to stripe s#%llu\n", 3412 (unsigned long long)bi->bi_iter.bi_sector, 3413 (unsigned long long)sh->sector); 3414 3415 spin_lock_irq(&sh->stripe_lock); 3416 sh->dev[dd_idx].write_hint = bi->bi_write_hint; 3417 /* Don't allow new IO added to stripes in batch list */ 3418 if (sh->batch_head) 3419 goto overlap; 3420 if (forwrite) { 3421 bip = &sh->dev[dd_idx].towrite; 3422 if (*bip == NULL) 3423 firstwrite = 1; 3424 } else 3425 bip = &sh->dev[dd_idx].toread; 3426 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3427 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3428 goto overlap; 3429 bip = & (*bip)->bi_next; 3430 } 3431 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3432 goto overlap; 3433 3434 if (forwrite && raid5_has_ppl(conf)) { 3435 /* 3436 * With PPL only writes to consecutive data chunks within a 3437 * stripe are allowed because for a single stripe_head we can 3438 * only have one PPL entry at a time, which describes one data 3439 * range. Not really an overlap, but wait_for_overlap can be 3440 * used to handle this. 3441 */ 3442 sector_t sector; 3443 sector_t first = 0; 3444 sector_t last = 0; 3445 int count = 0; 3446 int i; 3447 3448 for (i = 0; i < sh->disks; i++) { 3449 if (i != sh->pd_idx && 3450 (i == dd_idx || sh->dev[i].towrite)) { 3451 sector = sh->dev[i].sector; 3452 if (count == 0 || sector < first) 3453 first = sector; 3454 if (sector > last) 3455 last = sector; 3456 count++; 3457 } 3458 } 3459 3460 if (first + conf->chunk_sectors * (count - 1) != last) 3461 goto overlap; 3462 } 3463 3464 if (!forwrite || previous) 3465 clear_bit(STRIPE_BATCH_READY, &sh->state); 3466 3467 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3468 if (*bip) 3469 bi->bi_next = *bip; 3470 *bip = bi; 3471 bio_inc_remaining(bi); 3472 md_write_inc(conf->mddev, bi); 3473 3474 if (forwrite) { 3475 /* check if page is covered */ 3476 sector_t sector = sh->dev[dd_idx].sector; 3477 for (bi=sh->dev[dd_idx].towrite; 3478 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) && 3479 bi && bi->bi_iter.bi_sector <= sector; 3480 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) { 3481 if (bio_end_sector(bi) >= sector) 3482 sector = bio_end_sector(bi); 3483 } 3484 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf)) 3485 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3486 sh->overwrite_disks++; 3487 } 3488 3489 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3490 (unsigned long long)(*bip)->bi_iter.bi_sector, 3491 (unsigned long long)sh->sector, dd_idx); 3492 3493 if (conf->mddev->bitmap && firstwrite) { 3494 /* Cannot hold spinlock over bitmap_startwrite, 3495 * but must ensure this isn't added to a batch until 3496 * we have added to the bitmap and set bm_seq. 3497 * So set STRIPE_BITMAP_PENDING to prevent 3498 * batching. 3499 * If multiple add_stripe_bio() calls race here they 3500 * much all set STRIPE_BITMAP_PENDING. So only the first one 3501 * to complete "bitmap_startwrite" gets to set 3502 * STRIPE_BIT_DELAY. This is important as once a stripe 3503 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3504 * any more. 3505 */ 3506 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3507 spin_unlock_irq(&sh->stripe_lock); 3508 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3509 RAID5_STRIPE_SECTORS(conf), 0); 3510 spin_lock_irq(&sh->stripe_lock); 3511 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3512 if (!sh->batch_head) { 3513 sh->bm_seq = conf->seq_flush+1; 3514 set_bit(STRIPE_BIT_DELAY, &sh->state); 3515 } 3516 } 3517 spin_unlock_irq(&sh->stripe_lock); 3518 3519 if (stripe_can_batch(sh)) 3520 stripe_add_to_batch_list(conf, sh); 3521 return 1; 3522 3523 overlap: 3524 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3525 spin_unlock_irq(&sh->stripe_lock); 3526 return 0; 3527} 3528 3529static void end_reshape(struct r5conf *conf); 3530 3531static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3532 struct stripe_head *sh) 3533{ 3534 int sectors_per_chunk = 3535 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3536 int dd_idx; 3537 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3538 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3539 3540 raid5_compute_sector(conf, 3541 stripe * (disks - conf->max_degraded) 3542 *sectors_per_chunk + chunk_offset, 3543 previous, 3544 &dd_idx, sh); 3545} 3546 3547static void 3548handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3549 struct stripe_head_state *s, int disks) 3550{ 3551 int i; 3552 BUG_ON(sh->batch_head); 3553 for (i = disks; i--; ) { 3554 struct bio *bi; 3555 int bitmap_end = 0; 3556 3557 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3558 struct md_rdev *rdev; 3559 rcu_read_lock(); 3560 rdev = rcu_dereference(conf->disks[i].rdev); 3561 if (rdev && test_bit(In_sync, &rdev->flags) && 3562 !test_bit(Faulty, &rdev->flags)) 3563 atomic_inc(&rdev->nr_pending); 3564 else 3565 rdev = NULL; 3566 rcu_read_unlock(); 3567 if (rdev) { 3568 if (!rdev_set_badblocks( 3569 rdev, 3570 sh->sector, 3571 RAID5_STRIPE_SECTORS(conf), 0)) 3572 md_error(conf->mddev, rdev); 3573 rdev_dec_pending(rdev, conf->mddev); 3574 } 3575 } 3576 spin_lock_irq(&sh->stripe_lock); 3577 /* fail all writes first */ 3578 bi = sh->dev[i].towrite; 3579 sh->dev[i].towrite = NULL; 3580 sh->overwrite_disks = 0; 3581 spin_unlock_irq(&sh->stripe_lock); 3582 if (bi) 3583 bitmap_end = 1; 3584 3585 log_stripe_write_finished(sh); 3586 3587 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3588 wake_up(&conf->wait_for_overlap); 3589 3590 while (bi && bi->bi_iter.bi_sector < 3591 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3592 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector); 3593 3594 md_write_end(conf->mddev); 3595 bio_io_error(bi); 3596 bi = nextbi; 3597 } 3598 if (bitmap_end) 3599 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3600 RAID5_STRIPE_SECTORS(conf), 0, 0); 3601 bitmap_end = 0; 3602 /* and fail all 'written' */ 3603 bi = sh->dev[i].written; 3604 sh->dev[i].written = NULL; 3605 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3606 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3607 sh->dev[i].page = sh->dev[i].orig_page; 3608 } 3609 3610 if (bi) bitmap_end = 1; 3611 while (bi && bi->bi_iter.bi_sector < 3612 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3613 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector); 3614 3615 md_write_end(conf->mddev); 3616 bio_io_error(bi); 3617 bi = bi2; 3618 } 3619 3620 /* fail any reads if this device is non-operational and 3621 * the data has not reached the cache yet. 3622 */ 3623 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3624 s->failed > conf->max_degraded && 3625 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3626 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3627 spin_lock_irq(&sh->stripe_lock); 3628 bi = sh->dev[i].toread; 3629 sh->dev[i].toread = NULL; 3630 spin_unlock_irq(&sh->stripe_lock); 3631 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3632 wake_up(&conf->wait_for_overlap); 3633 if (bi) 3634 s->to_read--; 3635 while (bi && bi->bi_iter.bi_sector < 3636 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3637 struct bio *nextbi = 3638 r5_next_bio(conf, bi, sh->dev[i].sector); 3639 3640 bio_io_error(bi); 3641 bi = nextbi; 3642 } 3643 } 3644 if (bitmap_end) 3645 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3646 RAID5_STRIPE_SECTORS(conf), 0, 0); 3647 /* If we were in the middle of a write the parity block might 3648 * still be locked - so just clear all R5_LOCKED flags 3649 */ 3650 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3651 } 3652 s->to_write = 0; 3653 s->written = 0; 3654 3655 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3656 if (atomic_dec_and_test(&conf->pending_full_writes)) 3657 md_wakeup_thread(conf->mddev->thread); 3658} 3659 3660static void 3661handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3662 struct stripe_head_state *s) 3663{ 3664 int abort = 0; 3665 int i; 3666 3667 BUG_ON(sh->batch_head); 3668 clear_bit(STRIPE_SYNCING, &sh->state); 3669 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3670 wake_up(&conf->wait_for_overlap); 3671 s->syncing = 0; 3672 s->replacing = 0; 3673 /* There is nothing more to do for sync/check/repair. 3674 * Don't even need to abort as that is handled elsewhere 3675 * if needed, and not always wanted e.g. if there is a known 3676 * bad block here. 3677 * For recover/replace we need to record a bad block on all 3678 * non-sync devices, or abort the recovery 3679 */ 3680 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3681 /* During recovery devices cannot be removed, so 3682 * locking and refcounting of rdevs is not needed 3683 */ 3684 rcu_read_lock(); 3685 for (i = 0; i < conf->raid_disks; i++) { 3686 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3687 if (rdev 3688 && !test_bit(Faulty, &rdev->flags) 3689 && !test_bit(In_sync, &rdev->flags) 3690 && !rdev_set_badblocks(rdev, sh->sector, 3691 RAID5_STRIPE_SECTORS(conf), 0)) 3692 abort = 1; 3693 rdev = rcu_dereference(conf->disks[i].replacement); 3694 if (rdev 3695 && !test_bit(Faulty, &rdev->flags) 3696 && !test_bit(In_sync, &rdev->flags) 3697 && !rdev_set_badblocks(rdev, sh->sector, 3698 RAID5_STRIPE_SECTORS(conf), 0)) 3699 abort = 1; 3700 } 3701 rcu_read_unlock(); 3702 if (abort) 3703 conf->recovery_disabled = 3704 conf->mddev->recovery_disabled; 3705 } 3706 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort); 3707} 3708 3709static int want_replace(struct stripe_head *sh, int disk_idx) 3710{ 3711 struct md_rdev *rdev; 3712 int rv = 0; 3713 3714 rcu_read_lock(); 3715 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3716 if (rdev 3717 && !test_bit(Faulty, &rdev->flags) 3718 && !test_bit(In_sync, &rdev->flags) 3719 && (rdev->recovery_offset <= sh->sector 3720 || rdev->mddev->recovery_cp <= sh->sector)) 3721 rv = 1; 3722 rcu_read_unlock(); 3723 return rv; 3724} 3725 3726static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3727 int disk_idx, int disks) 3728{ 3729 struct r5dev *dev = &sh->dev[disk_idx]; 3730 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3731 &sh->dev[s->failed_num[1]] }; 3732 int i; 3733 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW); 3734 3735 3736 if (test_bit(R5_LOCKED, &dev->flags) || 3737 test_bit(R5_UPTODATE, &dev->flags)) 3738 /* No point reading this as we already have it or have 3739 * decided to get it. 3740 */ 3741 return 0; 3742 3743 if (dev->toread || 3744 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3745 /* We need this block to directly satisfy a request */ 3746 return 1; 3747 3748 if (s->syncing || s->expanding || 3749 (s->replacing && want_replace(sh, disk_idx))) 3750 /* When syncing, or expanding we read everything. 3751 * When replacing, we need the replaced block. 3752 */ 3753 return 1; 3754 3755 if ((s->failed >= 1 && fdev[0]->toread) || 3756 (s->failed >= 2 && fdev[1]->toread)) 3757 /* If we want to read from a failed device, then 3758 * we need to actually read every other device. 3759 */ 3760 return 1; 3761 3762 /* Sometimes neither read-modify-write nor reconstruct-write 3763 * cycles can work. In those cases we read every block we 3764 * can. Then the parity-update is certain to have enough to 3765 * work with. 3766 * This can only be a problem when we need to write something, 3767 * and some device has failed. If either of those tests 3768 * fail we need look no further. 3769 */ 3770 if (!s->failed || !s->to_write) 3771 return 0; 3772 3773 if (test_bit(R5_Insync, &dev->flags) && 3774 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3775 /* Pre-reads at not permitted until after short delay 3776 * to gather multiple requests. However if this 3777 * device is no Insync, the block could only be computed 3778 * and there is no need to delay that. 3779 */ 3780 return 0; 3781 3782 for (i = 0; i < s->failed && i < 2; i++) { 3783 if (fdev[i]->towrite && 3784 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3785 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3786 /* If we have a partial write to a failed 3787 * device, then we will need to reconstruct 3788 * the content of that device, so all other 3789 * devices must be read. 3790 */ 3791 return 1; 3792 3793 if (s->failed >= 2 && 3794 (fdev[i]->towrite || 3795 s->failed_num[i] == sh->pd_idx || 3796 s->failed_num[i] == sh->qd_idx) && 3797 !test_bit(R5_UPTODATE, &fdev[i]->flags)) 3798 /* In max degraded raid6, If the failed disk is P, Q, 3799 * or we want to read the failed disk, we need to do 3800 * reconstruct-write. 3801 */ 3802 force_rcw = true; 3803 } 3804 3805 /* If we are forced to do a reconstruct-write, because parity 3806 * cannot be trusted and we are currently recovering it, there 3807 * is extra need to be careful. 3808 * If one of the devices that we would need to read, because 3809 * it is not being overwritten (and maybe not written at all) 3810 * is missing/faulty, then we need to read everything we can. 3811 */ 3812 if (!force_rcw && 3813 sh->sector < sh->raid_conf->mddev->recovery_cp) 3814 /* reconstruct-write isn't being forced */ 3815 return 0; 3816 for (i = 0; i < s->failed && i < 2; i++) { 3817 if (s->failed_num[i] != sh->pd_idx && 3818 s->failed_num[i] != sh->qd_idx && 3819 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3820 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3821 return 1; 3822 } 3823 3824 return 0; 3825} 3826 3827/* fetch_block - checks the given member device to see if its data needs 3828 * to be read or computed to satisfy a request. 3829 * 3830 * Returns 1 when no more member devices need to be checked, otherwise returns 3831 * 0 to tell the loop in handle_stripe_fill to continue 3832 */ 3833static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3834 int disk_idx, int disks) 3835{ 3836 struct r5dev *dev = &sh->dev[disk_idx]; 3837 3838 /* is the data in this block needed, and can we get it? */ 3839 if (need_this_block(sh, s, disk_idx, disks)) { 3840 /* we would like to get this block, possibly by computing it, 3841 * otherwise read it if the backing disk is insync 3842 */ 3843 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3844 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3845 BUG_ON(sh->batch_head); 3846 3847 /* 3848 * In the raid6 case if the only non-uptodate disk is P 3849 * then we already trusted P to compute the other failed 3850 * drives. It is safe to compute rather than re-read P. 3851 * In other cases we only compute blocks from failed 3852 * devices, otherwise check/repair might fail to detect 3853 * a real inconsistency. 3854 */ 3855 3856 if ((s->uptodate == disks - 1) && 3857 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3858 (s->failed && (disk_idx == s->failed_num[0] || 3859 disk_idx == s->failed_num[1])))) { 3860 /* have disk failed, and we're requested to fetch it; 3861 * do compute it 3862 */ 3863 pr_debug("Computing stripe %llu block %d\n", 3864 (unsigned long long)sh->sector, disk_idx); 3865 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3866 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3867 set_bit(R5_Wantcompute, &dev->flags); 3868 sh->ops.target = disk_idx; 3869 sh->ops.target2 = -1; /* no 2nd target */ 3870 s->req_compute = 1; 3871 /* Careful: from this point on 'uptodate' is in the eye 3872 * of raid_run_ops which services 'compute' operations 3873 * before writes. R5_Wantcompute flags a block that will 3874 * be R5_UPTODATE by the time it is needed for a 3875 * subsequent operation. 3876 */ 3877 s->uptodate++; 3878 return 1; 3879 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3880 /* Computing 2-failure is *very* expensive; only 3881 * do it if failed >= 2 3882 */ 3883 int other; 3884 for (other = disks; other--; ) { 3885 if (other == disk_idx) 3886 continue; 3887 if (!test_bit(R5_UPTODATE, 3888 &sh->dev[other].flags)) 3889 break; 3890 } 3891 BUG_ON(other < 0); 3892 pr_debug("Computing stripe %llu blocks %d,%d\n", 3893 (unsigned long long)sh->sector, 3894 disk_idx, other); 3895 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3896 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3897 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3898 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3899 sh->ops.target = disk_idx; 3900 sh->ops.target2 = other; 3901 s->uptodate += 2; 3902 s->req_compute = 1; 3903 return 1; 3904 } else if (test_bit(R5_Insync, &dev->flags)) { 3905 set_bit(R5_LOCKED, &dev->flags); 3906 set_bit(R5_Wantread, &dev->flags); 3907 s->locked++; 3908 pr_debug("Reading block %d (sync=%d)\n", 3909 disk_idx, s->syncing); 3910 } 3911 } 3912 3913 return 0; 3914} 3915 3916/* 3917 * handle_stripe_fill - read or compute data to satisfy pending requests. 3918 */ 3919static void handle_stripe_fill(struct stripe_head *sh, 3920 struct stripe_head_state *s, 3921 int disks) 3922{ 3923 int i; 3924 3925 /* look for blocks to read/compute, skip this if a compute 3926 * is already in flight, or if the stripe contents are in the 3927 * midst of changing due to a write 3928 */ 3929 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3930 !sh->reconstruct_state) { 3931 3932 /* 3933 * For degraded stripe with data in journal, do not handle 3934 * read requests yet, instead, flush the stripe to raid 3935 * disks first, this avoids handling complex rmw of write 3936 * back cache (prexor with orig_page, and then xor with 3937 * page) in the read path 3938 */ 3939 if (s->to_read && s->injournal && s->failed) { 3940 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 3941 r5c_make_stripe_write_out(sh); 3942 goto out; 3943 } 3944 3945 for (i = disks; i--; ) 3946 if (fetch_block(sh, s, i, disks)) 3947 break; 3948 } 3949out: 3950 set_bit(STRIPE_HANDLE, &sh->state); 3951} 3952 3953static void break_stripe_batch_list(struct stripe_head *head_sh, 3954 unsigned long handle_flags); 3955/* handle_stripe_clean_event 3956 * any written block on an uptodate or failed drive can be returned. 3957 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3958 * never LOCKED, so we don't need to test 'failed' directly. 3959 */ 3960static void handle_stripe_clean_event(struct r5conf *conf, 3961 struct stripe_head *sh, int disks) 3962{ 3963 int i; 3964 struct r5dev *dev; 3965 int discard_pending = 0; 3966 struct stripe_head *head_sh = sh; 3967 bool do_endio = false; 3968 3969 for (i = disks; i--; ) 3970 if (sh->dev[i].written) { 3971 dev = &sh->dev[i]; 3972 if (!test_bit(R5_LOCKED, &dev->flags) && 3973 (test_bit(R5_UPTODATE, &dev->flags) || 3974 test_bit(R5_Discard, &dev->flags) || 3975 test_bit(R5_SkipCopy, &dev->flags))) { 3976 /* We can return any write requests */ 3977 struct bio *wbi, *wbi2; 3978 pr_debug("Return write for disc %d\n", i); 3979 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3980 clear_bit(R5_UPTODATE, &dev->flags); 3981 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3982 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3983 } 3984 do_endio = true; 3985 3986returnbi: 3987 dev->page = dev->orig_page; 3988 wbi = dev->written; 3989 dev->written = NULL; 3990 while (wbi && wbi->bi_iter.bi_sector < 3991 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 3992 wbi2 = r5_next_bio(conf, wbi, dev->sector); 3993 md_write_end(conf->mddev); 3994 bio_endio(wbi); 3995 wbi = wbi2; 3996 } 3997 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3998 RAID5_STRIPE_SECTORS(conf), 3999 !test_bit(STRIPE_DEGRADED, &sh->state), 4000 0); 4001 if (head_sh->batch_head) { 4002 sh = list_first_entry(&sh->batch_list, 4003 struct stripe_head, 4004 batch_list); 4005 if (sh != head_sh) { 4006 dev = &sh->dev[i]; 4007 goto returnbi; 4008 } 4009 } 4010 sh = head_sh; 4011 dev = &sh->dev[i]; 4012 } else if (test_bit(R5_Discard, &dev->flags)) 4013 discard_pending = 1; 4014 } 4015 4016 log_stripe_write_finished(sh); 4017 4018 if (!discard_pending && 4019 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 4020 int hash; 4021 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 4022 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4023 if (sh->qd_idx >= 0) { 4024 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 4025 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 4026 } 4027 /* now that discard is done we can proceed with any sync */ 4028 clear_bit(STRIPE_DISCARD, &sh->state); 4029 /* 4030 * SCSI discard will change some bio fields and the stripe has 4031 * no updated data, so remove it from hash list and the stripe 4032 * will be reinitialized 4033 */ 4034unhash: 4035 hash = sh->hash_lock_index; 4036 spin_lock_irq(conf->hash_locks + hash); 4037 remove_hash(sh); 4038 spin_unlock_irq(conf->hash_locks + hash); 4039 if (head_sh->batch_head) { 4040 sh = list_first_entry(&sh->batch_list, 4041 struct stripe_head, batch_list); 4042 if (sh != head_sh) 4043 goto unhash; 4044 } 4045 sh = head_sh; 4046 4047 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 4048 set_bit(STRIPE_HANDLE, &sh->state); 4049 4050 } 4051 4052 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 4053 if (atomic_dec_and_test(&conf->pending_full_writes)) 4054 md_wakeup_thread(conf->mddev->thread); 4055 4056 if (head_sh->batch_head && do_endio) 4057 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 4058} 4059 4060/* 4061 * For RMW in write back cache, we need extra page in prexor to store the 4062 * old data. This page is stored in dev->orig_page. 4063 * 4064 * This function checks whether we have data for prexor. The exact logic 4065 * is: 4066 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 4067 */ 4068static inline bool uptodate_for_rmw(struct r5dev *dev) 4069{ 4070 return (test_bit(R5_UPTODATE, &dev->flags)) && 4071 (!test_bit(R5_InJournal, &dev->flags) || 4072 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 4073} 4074 4075static int handle_stripe_dirtying(struct r5conf *conf, 4076 struct stripe_head *sh, 4077 struct stripe_head_state *s, 4078 int disks) 4079{ 4080 int rmw = 0, rcw = 0, i; 4081 sector_t recovery_cp = conf->mddev->recovery_cp; 4082 4083 /* Check whether resync is now happening or should start. 4084 * If yes, then the array is dirty (after unclean shutdown or 4085 * initial creation), so parity in some stripes might be inconsistent. 4086 * In this case, we need to always do reconstruct-write, to ensure 4087 * that in case of drive failure or read-error correction, we 4088 * generate correct data from the parity. 4089 */ 4090 if (conf->rmw_level == PARITY_DISABLE_RMW || 4091 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 4092 s->failed == 0)) { 4093 /* Calculate the real rcw later - for now make it 4094 * look like rcw is cheaper 4095 */ 4096 rcw = 1; rmw = 2; 4097 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 4098 conf->rmw_level, (unsigned long long)recovery_cp, 4099 (unsigned long long)sh->sector); 4100 } else for (i = disks; i--; ) { 4101 /* would I have to read this buffer for read_modify_write */ 4102 struct r5dev *dev = &sh->dev[i]; 4103 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4104 i == sh->pd_idx || i == sh->qd_idx || 4105 test_bit(R5_InJournal, &dev->flags)) && 4106 !test_bit(R5_LOCKED, &dev->flags) && 4107 !(uptodate_for_rmw(dev) || 4108 test_bit(R5_Wantcompute, &dev->flags))) { 4109 if (test_bit(R5_Insync, &dev->flags)) 4110 rmw++; 4111 else 4112 rmw += 2*disks; /* cannot read it */ 4113 } 4114 /* Would I have to read this buffer for reconstruct_write */ 4115 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4116 i != sh->pd_idx && i != sh->qd_idx && 4117 !test_bit(R5_LOCKED, &dev->flags) && 4118 !(test_bit(R5_UPTODATE, &dev->flags) || 4119 test_bit(R5_Wantcompute, &dev->flags))) { 4120 if (test_bit(R5_Insync, &dev->flags)) 4121 rcw++; 4122 else 4123 rcw += 2*disks; 4124 } 4125 } 4126 4127 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 4128 (unsigned long long)sh->sector, sh->state, rmw, rcw); 4129 set_bit(STRIPE_HANDLE, &sh->state); 4130 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 4131 /* prefer read-modify-write, but need to get some data */ 4132 if (conf->mddev->queue) 4133 blk_add_trace_msg(conf->mddev->queue, 4134 "raid5 rmw %llu %d", 4135 (unsigned long long)sh->sector, rmw); 4136 for (i = disks; i--; ) { 4137 struct r5dev *dev = &sh->dev[i]; 4138 if (test_bit(R5_InJournal, &dev->flags) && 4139 dev->page == dev->orig_page && 4140 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 4141 /* alloc page for prexor */ 4142 struct page *p = alloc_page(GFP_NOIO); 4143 4144 if (p) { 4145 dev->orig_page = p; 4146 continue; 4147 } 4148 4149 /* 4150 * alloc_page() failed, try use 4151 * disk_info->extra_page 4152 */ 4153 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 4154 &conf->cache_state)) { 4155 r5c_use_extra_page(sh); 4156 break; 4157 } 4158 4159 /* extra_page in use, add to delayed_list */ 4160 set_bit(STRIPE_DELAYED, &sh->state); 4161 s->waiting_extra_page = 1; 4162 return -EAGAIN; 4163 } 4164 } 4165 4166 for (i = disks; i--; ) { 4167 struct r5dev *dev = &sh->dev[i]; 4168 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4169 i == sh->pd_idx || i == sh->qd_idx || 4170 test_bit(R5_InJournal, &dev->flags)) && 4171 !test_bit(R5_LOCKED, &dev->flags) && 4172 !(uptodate_for_rmw(dev) || 4173 test_bit(R5_Wantcompute, &dev->flags)) && 4174 test_bit(R5_Insync, &dev->flags)) { 4175 if (test_bit(STRIPE_PREREAD_ACTIVE, 4176 &sh->state)) { 4177 pr_debug("Read_old block %d for r-m-w\n", 4178 i); 4179 set_bit(R5_LOCKED, &dev->flags); 4180 set_bit(R5_Wantread, &dev->flags); 4181 s->locked++; 4182 } else 4183 set_bit(STRIPE_DELAYED, &sh->state); 4184 } 4185 } 4186 } 4187 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 4188 /* want reconstruct write, but need to get some data */ 4189 int qread =0; 4190 rcw = 0; 4191 for (i = disks; i--; ) { 4192 struct r5dev *dev = &sh->dev[i]; 4193 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4194 i != sh->pd_idx && i != sh->qd_idx && 4195 !test_bit(R5_LOCKED, &dev->flags) && 4196 !(test_bit(R5_UPTODATE, &dev->flags) || 4197 test_bit(R5_Wantcompute, &dev->flags))) { 4198 rcw++; 4199 if (test_bit(R5_Insync, &dev->flags) && 4200 test_bit(STRIPE_PREREAD_ACTIVE, 4201 &sh->state)) { 4202 pr_debug("Read_old block " 4203 "%d for Reconstruct\n", i); 4204 set_bit(R5_LOCKED, &dev->flags); 4205 set_bit(R5_Wantread, &dev->flags); 4206 s->locked++; 4207 qread++; 4208 } else 4209 set_bit(STRIPE_DELAYED, &sh->state); 4210 } 4211 } 4212 if (rcw && conf->mddev->queue) 4213 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 4214 (unsigned long long)sh->sector, 4215 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 4216 } 4217 4218 if (rcw > disks && rmw > disks && 4219 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4220 set_bit(STRIPE_DELAYED, &sh->state); 4221 4222 /* now if nothing is locked, and if we have enough data, 4223 * we can start a write request 4224 */ 4225 /* since handle_stripe can be called at any time we need to handle the 4226 * case where a compute block operation has been submitted and then a 4227 * subsequent call wants to start a write request. raid_run_ops only 4228 * handles the case where compute block and reconstruct are requested 4229 * simultaneously. If this is not the case then new writes need to be 4230 * held off until the compute completes. 4231 */ 4232 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4233 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4234 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4235 schedule_reconstruction(sh, s, rcw == 0, 0); 4236 return 0; 4237} 4238 4239static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4240 struct stripe_head_state *s, int disks) 4241{ 4242 struct r5dev *dev = NULL; 4243 4244 BUG_ON(sh->batch_head); 4245 set_bit(STRIPE_HANDLE, &sh->state); 4246 4247 switch (sh->check_state) { 4248 case check_state_idle: 4249 /* start a new check operation if there are no failures */ 4250 if (s->failed == 0) { 4251 BUG_ON(s->uptodate != disks); 4252 sh->check_state = check_state_run; 4253 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4254 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4255 s->uptodate--; 4256 break; 4257 } 4258 dev = &sh->dev[s->failed_num[0]]; 4259 fallthrough; 4260 case check_state_compute_result: 4261 sh->check_state = check_state_idle; 4262 if (!dev) 4263 dev = &sh->dev[sh->pd_idx]; 4264 4265 /* check that a write has not made the stripe insync */ 4266 if (test_bit(STRIPE_INSYNC, &sh->state)) 4267 break; 4268 4269 /* either failed parity check, or recovery is happening */ 4270 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4271 BUG_ON(s->uptodate != disks); 4272 4273 set_bit(R5_LOCKED, &dev->flags); 4274 s->locked++; 4275 set_bit(R5_Wantwrite, &dev->flags); 4276 4277 clear_bit(STRIPE_DEGRADED, &sh->state); 4278 set_bit(STRIPE_INSYNC, &sh->state); 4279 break; 4280 case check_state_run: 4281 break; /* we will be called again upon completion */ 4282 case check_state_check_result: 4283 sh->check_state = check_state_idle; 4284 4285 /* if a failure occurred during the check operation, leave 4286 * STRIPE_INSYNC not set and let the stripe be handled again 4287 */ 4288 if (s->failed) 4289 break; 4290 4291 /* handle a successful check operation, if parity is correct 4292 * we are done. Otherwise update the mismatch count and repair 4293 * parity if !MD_RECOVERY_CHECK 4294 */ 4295 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4296 /* parity is correct (on disc, 4297 * not in buffer any more) 4298 */ 4299 set_bit(STRIPE_INSYNC, &sh->state); 4300 else { 4301 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4302 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4303 /* don't try to repair!! */ 4304 set_bit(STRIPE_INSYNC, &sh->state); 4305 pr_warn_ratelimited("%s: mismatch sector in range " 4306 "%llu-%llu\n", mdname(conf->mddev), 4307 (unsigned long long) sh->sector, 4308 (unsigned long long) sh->sector + 4309 RAID5_STRIPE_SECTORS(conf)); 4310 } else { 4311 sh->check_state = check_state_compute_run; 4312 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4313 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4314 set_bit(R5_Wantcompute, 4315 &sh->dev[sh->pd_idx].flags); 4316 sh->ops.target = sh->pd_idx; 4317 sh->ops.target2 = -1; 4318 s->uptodate++; 4319 } 4320 } 4321 break; 4322 case check_state_compute_run: 4323 break; 4324 default: 4325 pr_err("%s: unknown check_state: %d sector: %llu\n", 4326 __func__, sh->check_state, 4327 (unsigned long long) sh->sector); 4328 BUG(); 4329 } 4330} 4331 4332static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4333 struct stripe_head_state *s, 4334 int disks) 4335{ 4336 int pd_idx = sh->pd_idx; 4337 int qd_idx = sh->qd_idx; 4338 struct r5dev *dev; 4339 4340 BUG_ON(sh->batch_head); 4341 set_bit(STRIPE_HANDLE, &sh->state); 4342 4343 BUG_ON(s->failed > 2); 4344 4345 /* Want to check and possibly repair P and Q. 4346 * However there could be one 'failed' device, in which 4347 * case we can only check one of them, possibly using the 4348 * other to generate missing data 4349 */ 4350 4351 switch (sh->check_state) { 4352 case check_state_idle: 4353 /* start a new check operation if there are < 2 failures */ 4354 if (s->failed == s->q_failed) { 4355 /* The only possible failed device holds Q, so it 4356 * makes sense to check P (If anything else were failed, 4357 * we would have used P to recreate it). 4358 */ 4359 sh->check_state = check_state_run; 4360 } 4361 if (!s->q_failed && s->failed < 2) { 4362 /* Q is not failed, and we didn't use it to generate 4363 * anything, so it makes sense to check it 4364 */ 4365 if (sh->check_state == check_state_run) 4366 sh->check_state = check_state_run_pq; 4367 else 4368 sh->check_state = check_state_run_q; 4369 } 4370 4371 /* discard potentially stale zero_sum_result */ 4372 sh->ops.zero_sum_result = 0; 4373 4374 if (sh->check_state == check_state_run) { 4375 /* async_xor_zero_sum destroys the contents of P */ 4376 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4377 s->uptodate--; 4378 } 4379 if (sh->check_state >= check_state_run && 4380 sh->check_state <= check_state_run_pq) { 4381 /* async_syndrome_zero_sum preserves P and Q, so 4382 * no need to mark them !uptodate here 4383 */ 4384 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4385 break; 4386 } 4387 4388 /* we have 2-disk failure */ 4389 BUG_ON(s->failed != 2); 4390 fallthrough; 4391 case check_state_compute_result: 4392 sh->check_state = check_state_idle; 4393 4394 /* check that a write has not made the stripe insync */ 4395 if (test_bit(STRIPE_INSYNC, &sh->state)) 4396 break; 4397 4398 /* now write out any block on a failed drive, 4399 * or P or Q if they were recomputed 4400 */ 4401 dev = NULL; 4402 if (s->failed == 2) { 4403 dev = &sh->dev[s->failed_num[1]]; 4404 s->locked++; 4405 set_bit(R5_LOCKED, &dev->flags); 4406 set_bit(R5_Wantwrite, &dev->flags); 4407 } 4408 if (s->failed >= 1) { 4409 dev = &sh->dev[s->failed_num[0]]; 4410 s->locked++; 4411 set_bit(R5_LOCKED, &dev->flags); 4412 set_bit(R5_Wantwrite, &dev->flags); 4413 } 4414 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4415 dev = &sh->dev[pd_idx]; 4416 s->locked++; 4417 set_bit(R5_LOCKED, &dev->flags); 4418 set_bit(R5_Wantwrite, &dev->flags); 4419 } 4420 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4421 dev = &sh->dev[qd_idx]; 4422 s->locked++; 4423 set_bit(R5_LOCKED, &dev->flags); 4424 set_bit(R5_Wantwrite, &dev->flags); 4425 } 4426 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4427 "%s: disk%td not up to date\n", 4428 mdname(conf->mddev), 4429 dev - (struct r5dev *) &sh->dev)) { 4430 clear_bit(R5_LOCKED, &dev->flags); 4431 clear_bit(R5_Wantwrite, &dev->flags); 4432 s->locked--; 4433 } 4434 clear_bit(STRIPE_DEGRADED, &sh->state); 4435 4436 set_bit(STRIPE_INSYNC, &sh->state); 4437 break; 4438 case check_state_run: 4439 case check_state_run_q: 4440 case check_state_run_pq: 4441 break; /* we will be called again upon completion */ 4442 case check_state_check_result: 4443 sh->check_state = check_state_idle; 4444 4445 /* handle a successful check operation, if parity is correct 4446 * we are done. Otherwise update the mismatch count and repair 4447 * parity if !MD_RECOVERY_CHECK 4448 */ 4449 if (sh->ops.zero_sum_result == 0) { 4450 /* both parities are correct */ 4451 if (!s->failed) 4452 set_bit(STRIPE_INSYNC, &sh->state); 4453 else { 4454 /* in contrast to the raid5 case we can validate 4455 * parity, but still have a failure to write 4456 * back 4457 */ 4458 sh->check_state = check_state_compute_result; 4459 /* Returning at this point means that we may go 4460 * off and bring p and/or q uptodate again so 4461 * we make sure to check zero_sum_result again 4462 * to verify if p or q need writeback 4463 */ 4464 } 4465 } else { 4466 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4467 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4468 /* don't try to repair!! */ 4469 set_bit(STRIPE_INSYNC, &sh->state); 4470 pr_warn_ratelimited("%s: mismatch sector in range " 4471 "%llu-%llu\n", mdname(conf->mddev), 4472 (unsigned long long) sh->sector, 4473 (unsigned long long) sh->sector + 4474 RAID5_STRIPE_SECTORS(conf)); 4475 } else { 4476 int *target = &sh->ops.target; 4477 4478 sh->ops.target = -1; 4479 sh->ops.target2 = -1; 4480 sh->check_state = check_state_compute_run; 4481 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4482 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4483 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4484 set_bit(R5_Wantcompute, 4485 &sh->dev[pd_idx].flags); 4486 *target = pd_idx; 4487 target = &sh->ops.target2; 4488 s->uptodate++; 4489 } 4490 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4491 set_bit(R5_Wantcompute, 4492 &sh->dev[qd_idx].flags); 4493 *target = qd_idx; 4494 s->uptodate++; 4495 } 4496 } 4497 } 4498 break; 4499 case check_state_compute_run: 4500 break; 4501 default: 4502 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4503 __func__, sh->check_state, 4504 (unsigned long long) sh->sector); 4505 BUG(); 4506 } 4507} 4508 4509static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4510{ 4511 int i; 4512 4513 /* We have read all the blocks in this stripe and now we need to 4514 * copy some of them into a target stripe for expand. 4515 */ 4516 struct dma_async_tx_descriptor *tx = NULL; 4517 BUG_ON(sh->batch_head); 4518 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4519 for (i = 0; i < sh->disks; i++) 4520 if (i != sh->pd_idx && i != sh->qd_idx) { 4521 int dd_idx, j; 4522 struct stripe_head *sh2; 4523 struct async_submit_ctl submit; 4524 4525 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4526 sector_t s = raid5_compute_sector(conf, bn, 0, 4527 &dd_idx, NULL); 4528 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 4529 if (sh2 == NULL) 4530 /* so far only the early blocks of this stripe 4531 * have been requested. When later blocks 4532 * get requested, we will try again 4533 */ 4534 continue; 4535 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4536 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4537 /* must have already done this block */ 4538 raid5_release_stripe(sh2); 4539 continue; 4540 } 4541 4542 /* place all the copies on one channel */ 4543 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4544 tx = async_memcpy(sh2->dev[dd_idx].page, 4545 sh->dev[i].page, sh2->dev[dd_idx].offset, 4546 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf), 4547 &submit); 4548 4549 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4550 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4551 for (j = 0; j < conf->raid_disks; j++) 4552 if (j != sh2->pd_idx && 4553 j != sh2->qd_idx && 4554 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4555 break; 4556 if (j == conf->raid_disks) { 4557 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4558 set_bit(STRIPE_HANDLE, &sh2->state); 4559 } 4560 raid5_release_stripe(sh2); 4561 4562 } 4563 /* done submitting copies, wait for them to complete */ 4564 async_tx_quiesce(&tx); 4565} 4566 4567/* 4568 * handle_stripe - do things to a stripe. 4569 * 4570 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4571 * state of various bits to see what needs to be done. 4572 * Possible results: 4573 * return some read requests which now have data 4574 * return some write requests which are safely on storage 4575 * schedule a read on some buffers 4576 * schedule a write of some buffers 4577 * return confirmation of parity correctness 4578 * 4579 */ 4580 4581static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4582{ 4583 struct r5conf *conf = sh->raid_conf; 4584 int disks = sh->disks; 4585 struct r5dev *dev; 4586 int i; 4587 int do_recovery = 0; 4588 4589 memset(s, 0, sizeof(*s)); 4590 4591 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4592 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4593 s->failed_num[0] = -1; 4594 s->failed_num[1] = -1; 4595 s->log_failed = r5l_log_disk_error(conf); 4596 4597 /* Now to look around and see what can be done */ 4598 rcu_read_lock(); 4599 for (i=disks; i--; ) { 4600 struct md_rdev *rdev; 4601 sector_t first_bad; 4602 int bad_sectors; 4603 int is_bad = 0; 4604 4605 dev = &sh->dev[i]; 4606 4607 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4608 i, dev->flags, 4609 dev->toread, dev->towrite, dev->written); 4610 /* maybe we can reply to a read 4611 * 4612 * new wantfill requests are only permitted while 4613 * ops_complete_biofill is guaranteed to be inactive 4614 */ 4615 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4616 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4617 set_bit(R5_Wantfill, &dev->flags); 4618 4619 /* now count some things */ 4620 if (test_bit(R5_LOCKED, &dev->flags)) 4621 s->locked++; 4622 if (test_bit(R5_UPTODATE, &dev->flags)) 4623 s->uptodate++; 4624 if (test_bit(R5_Wantcompute, &dev->flags)) { 4625 s->compute++; 4626 BUG_ON(s->compute > 2); 4627 } 4628 4629 if (test_bit(R5_Wantfill, &dev->flags)) 4630 s->to_fill++; 4631 else if (dev->toread) 4632 s->to_read++; 4633 if (dev->towrite) { 4634 s->to_write++; 4635 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4636 s->non_overwrite++; 4637 } 4638 if (dev->written) 4639 s->written++; 4640 /* Prefer to use the replacement for reads, but only 4641 * if it is recovered enough and has no bad blocks. 4642 */ 4643 rdev = rcu_dereference(conf->disks[i].replacement); 4644 if (rdev && !test_bit(Faulty, &rdev->flags) && 4645 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) && 4646 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4647 &first_bad, &bad_sectors)) 4648 set_bit(R5_ReadRepl, &dev->flags); 4649 else { 4650 if (rdev && !test_bit(Faulty, &rdev->flags)) 4651 set_bit(R5_NeedReplace, &dev->flags); 4652 else 4653 clear_bit(R5_NeedReplace, &dev->flags); 4654 rdev = rcu_dereference(conf->disks[i].rdev); 4655 clear_bit(R5_ReadRepl, &dev->flags); 4656 } 4657 if (rdev && test_bit(Faulty, &rdev->flags)) 4658 rdev = NULL; 4659 if (rdev) { 4660 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4661 &first_bad, &bad_sectors); 4662 if (s->blocked_rdev == NULL 4663 && (test_bit(Blocked, &rdev->flags) 4664 || is_bad < 0)) { 4665 if (is_bad < 0) 4666 set_bit(BlockedBadBlocks, 4667 &rdev->flags); 4668 s->blocked_rdev = rdev; 4669 atomic_inc(&rdev->nr_pending); 4670 } 4671 } 4672 clear_bit(R5_Insync, &dev->flags); 4673 if (!rdev) 4674 /* Not in-sync */; 4675 else if (is_bad) { 4676 /* also not in-sync */ 4677 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4678 test_bit(R5_UPTODATE, &dev->flags)) { 4679 /* treat as in-sync, but with a read error 4680 * which we can now try to correct 4681 */ 4682 set_bit(R5_Insync, &dev->flags); 4683 set_bit(R5_ReadError, &dev->flags); 4684 } 4685 } else if (test_bit(In_sync, &rdev->flags)) 4686 set_bit(R5_Insync, &dev->flags); 4687 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset) 4688 /* in sync if before recovery_offset */ 4689 set_bit(R5_Insync, &dev->flags); 4690 else if (test_bit(R5_UPTODATE, &dev->flags) && 4691 test_bit(R5_Expanded, &dev->flags)) 4692 /* If we've reshaped into here, we assume it is Insync. 4693 * We will shortly update recovery_offset to make 4694 * it official. 4695 */ 4696 set_bit(R5_Insync, &dev->flags); 4697 4698 if (test_bit(R5_WriteError, &dev->flags)) { 4699 /* This flag does not apply to '.replacement' 4700 * only to .rdev, so make sure to check that*/ 4701 struct md_rdev *rdev2 = rcu_dereference( 4702 conf->disks[i].rdev); 4703 if (rdev2 == rdev) 4704 clear_bit(R5_Insync, &dev->flags); 4705 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4706 s->handle_bad_blocks = 1; 4707 atomic_inc(&rdev2->nr_pending); 4708 } else 4709 clear_bit(R5_WriteError, &dev->flags); 4710 } 4711 if (test_bit(R5_MadeGood, &dev->flags)) { 4712 /* This flag does not apply to '.replacement' 4713 * only to .rdev, so make sure to check that*/ 4714 struct md_rdev *rdev2 = rcu_dereference( 4715 conf->disks[i].rdev); 4716 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4717 s->handle_bad_blocks = 1; 4718 atomic_inc(&rdev2->nr_pending); 4719 } else 4720 clear_bit(R5_MadeGood, &dev->flags); 4721 } 4722 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4723 struct md_rdev *rdev2 = rcu_dereference( 4724 conf->disks[i].replacement); 4725 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4726 s->handle_bad_blocks = 1; 4727 atomic_inc(&rdev2->nr_pending); 4728 } else 4729 clear_bit(R5_MadeGoodRepl, &dev->flags); 4730 } 4731 if (!test_bit(R5_Insync, &dev->flags)) { 4732 /* The ReadError flag will just be confusing now */ 4733 clear_bit(R5_ReadError, &dev->flags); 4734 clear_bit(R5_ReWrite, &dev->flags); 4735 } 4736 if (test_bit(R5_ReadError, &dev->flags)) 4737 clear_bit(R5_Insync, &dev->flags); 4738 if (!test_bit(R5_Insync, &dev->flags)) { 4739 if (s->failed < 2) 4740 s->failed_num[s->failed] = i; 4741 s->failed++; 4742 if (rdev && !test_bit(Faulty, &rdev->flags)) 4743 do_recovery = 1; 4744 else if (!rdev) { 4745 rdev = rcu_dereference( 4746 conf->disks[i].replacement); 4747 if (rdev && !test_bit(Faulty, &rdev->flags)) 4748 do_recovery = 1; 4749 } 4750 } 4751 4752 if (test_bit(R5_InJournal, &dev->flags)) 4753 s->injournal++; 4754 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4755 s->just_cached++; 4756 } 4757 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4758 /* If there is a failed device being replaced, 4759 * we must be recovering. 4760 * else if we are after recovery_cp, we must be syncing 4761 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4762 * else we can only be replacing 4763 * sync and recovery both need to read all devices, and so 4764 * use the same flag. 4765 */ 4766 if (do_recovery || 4767 sh->sector >= conf->mddev->recovery_cp || 4768 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4769 s->syncing = 1; 4770 else 4771 s->replacing = 1; 4772 } 4773 rcu_read_unlock(); 4774} 4775 4776/* 4777 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or 4778 * a head which can now be handled. 4779 */ 4780static int clear_batch_ready(struct stripe_head *sh) 4781{ 4782 struct stripe_head *tmp; 4783 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4784 return (sh->batch_head && sh->batch_head != sh); 4785 spin_lock(&sh->stripe_lock); 4786 if (!sh->batch_head) { 4787 spin_unlock(&sh->stripe_lock); 4788 return 0; 4789 } 4790 4791 /* 4792 * this stripe could be added to a batch list before we check 4793 * BATCH_READY, skips it 4794 */ 4795 if (sh->batch_head != sh) { 4796 spin_unlock(&sh->stripe_lock); 4797 return 1; 4798 } 4799 spin_lock(&sh->batch_lock); 4800 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4801 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4802 spin_unlock(&sh->batch_lock); 4803 spin_unlock(&sh->stripe_lock); 4804 4805 /* 4806 * BATCH_READY is cleared, no new stripes can be added. 4807 * batch_list can be accessed without lock 4808 */ 4809 return 0; 4810} 4811 4812static void break_stripe_batch_list(struct stripe_head *head_sh, 4813 unsigned long handle_flags) 4814{ 4815 struct stripe_head *sh, *next; 4816 int i; 4817 int do_wakeup = 0; 4818 4819 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4820 4821 list_del_init(&sh->batch_list); 4822 4823 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4824 (1 << STRIPE_SYNCING) | 4825 (1 << STRIPE_REPLACED) | 4826 (1 << STRIPE_DELAYED) | 4827 (1 << STRIPE_BIT_DELAY) | 4828 (1 << STRIPE_FULL_WRITE) | 4829 (1 << STRIPE_BIOFILL_RUN) | 4830 (1 << STRIPE_COMPUTE_RUN) | 4831 (1 << STRIPE_DISCARD) | 4832 (1 << STRIPE_BATCH_READY) | 4833 (1 << STRIPE_BATCH_ERR) | 4834 (1 << STRIPE_BITMAP_PENDING)), 4835 "stripe state: %lx\n", sh->state); 4836 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4837 (1 << STRIPE_REPLACED)), 4838 "head stripe state: %lx\n", head_sh->state); 4839 4840 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4841 (1 << STRIPE_PREREAD_ACTIVE) | 4842 (1 << STRIPE_DEGRADED) | 4843 (1 << STRIPE_ON_UNPLUG_LIST)), 4844 head_sh->state & (1 << STRIPE_INSYNC)); 4845 4846 sh->check_state = head_sh->check_state; 4847 sh->reconstruct_state = head_sh->reconstruct_state; 4848 spin_lock_irq(&sh->stripe_lock); 4849 sh->batch_head = NULL; 4850 spin_unlock_irq(&sh->stripe_lock); 4851 for (i = 0; i < sh->disks; i++) { 4852 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4853 do_wakeup = 1; 4854 sh->dev[i].flags = head_sh->dev[i].flags & 4855 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4856 } 4857 if (handle_flags == 0 || 4858 sh->state & handle_flags) 4859 set_bit(STRIPE_HANDLE, &sh->state); 4860 raid5_release_stripe(sh); 4861 } 4862 spin_lock_irq(&head_sh->stripe_lock); 4863 head_sh->batch_head = NULL; 4864 spin_unlock_irq(&head_sh->stripe_lock); 4865 for (i = 0; i < head_sh->disks; i++) 4866 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4867 do_wakeup = 1; 4868 if (head_sh->state & handle_flags) 4869 set_bit(STRIPE_HANDLE, &head_sh->state); 4870 4871 if (do_wakeup) 4872 wake_up(&head_sh->raid_conf->wait_for_overlap); 4873} 4874 4875static void handle_stripe(struct stripe_head *sh) 4876{ 4877 struct stripe_head_state s; 4878 struct r5conf *conf = sh->raid_conf; 4879 int i; 4880 int prexor; 4881 int disks = sh->disks; 4882 struct r5dev *pdev, *qdev; 4883 4884 clear_bit(STRIPE_HANDLE, &sh->state); 4885 4886 /* 4887 * handle_stripe should not continue handle the batched stripe, only 4888 * the head of batch list or lone stripe can continue. Otherwise we 4889 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE 4890 * is set for the batched stripe. 4891 */ 4892 if (clear_batch_ready(sh)) 4893 return; 4894 4895 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4896 /* already being handled, ensure it gets handled 4897 * again when current action finishes */ 4898 set_bit(STRIPE_HANDLE, &sh->state); 4899 return; 4900 } 4901 4902 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4903 break_stripe_batch_list(sh, 0); 4904 4905 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4906 spin_lock(&sh->stripe_lock); 4907 /* 4908 * Cannot process 'sync' concurrently with 'discard'. 4909 * Flush data in r5cache before 'sync'. 4910 */ 4911 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4912 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4913 !test_bit(STRIPE_DISCARD, &sh->state) && 4914 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4915 set_bit(STRIPE_SYNCING, &sh->state); 4916 clear_bit(STRIPE_INSYNC, &sh->state); 4917 clear_bit(STRIPE_REPLACED, &sh->state); 4918 } 4919 spin_unlock(&sh->stripe_lock); 4920 } 4921 clear_bit(STRIPE_DELAYED, &sh->state); 4922 4923 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4924 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4925 (unsigned long long)sh->sector, sh->state, 4926 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4927 sh->check_state, sh->reconstruct_state); 4928 4929 analyse_stripe(sh, &s); 4930 4931 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4932 goto finish; 4933 4934 if (s.handle_bad_blocks || 4935 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4936 set_bit(STRIPE_HANDLE, &sh->state); 4937 goto finish; 4938 } 4939 4940 if (unlikely(s.blocked_rdev)) { 4941 if (s.syncing || s.expanding || s.expanded || 4942 s.replacing || s.to_write || s.written) { 4943 set_bit(STRIPE_HANDLE, &sh->state); 4944 goto finish; 4945 } 4946 /* There is nothing for the blocked_rdev to block */ 4947 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4948 s.blocked_rdev = NULL; 4949 } 4950 4951 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4952 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4953 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4954 } 4955 4956 pr_debug("locked=%d uptodate=%d to_read=%d" 4957 " to_write=%d failed=%d failed_num=%d,%d\n", 4958 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4959 s.failed_num[0], s.failed_num[1]); 4960 /* 4961 * check if the array has lost more than max_degraded devices and, 4962 * if so, some requests might need to be failed. 4963 * 4964 * When journal device failed (log_failed), we will only process 4965 * the stripe if there is data need write to raid disks 4966 */ 4967 if (s.failed > conf->max_degraded || 4968 (s.log_failed && s.injournal == 0)) { 4969 sh->check_state = 0; 4970 sh->reconstruct_state = 0; 4971 break_stripe_batch_list(sh, 0); 4972 if (s.to_read+s.to_write+s.written) 4973 handle_failed_stripe(conf, sh, &s, disks); 4974 if (s.syncing + s.replacing) 4975 handle_failed_sync(conf, sh, &s); 4976 } 4977 4978 /* Now we check to see if any write operations have recently 4979 * completed 4980 */ 4981 prexor = 0; 4982 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4983 prexor = 1; 4984 if (sh->reconstruct_state == reconstruct_state_drain_result || 4985 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4986 sh->reconstruct_state = reconstruct_state_idle; 4987 4988 /* All the 'written' buffers and the parity block are ready to 4989 * be written back to disk 4990 */ 4991 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4992 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4993 BUG_ON(sh->qd_idx >= 0 && 4994 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4995 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4996 for (i = disks; i--; ) { 4997 struct r5dev *dev = &sh->dev[i]; 4998 if (test_bit(R5_LOCKED, &dev->flags) && 4999 (i == sh->pd_idx || i == sh->qd_idx || 5000 dev->written || test_bit(R5_InJournal, 5001 &dev->flags))) { 5002 pr_debug("Writing block %d\n", i); 5003 set_bit(R5_Wantwrite, &dev->flags); 5004 if (prexor) 5005 continue; 5006 if (s.failed > 1) 5007 continue; 5008 if (!test_bit(R5_Insync, &dev->flags) || 5009 ((i == sh->pd_idx || i == sh->qd_idx) && 5010 s.failed == 0)) 5011 set_bit(STRIPE_INSYNC, &sh->state); 5012 } 5013 } 5014 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5015 s.dec_preread_active = 1; 5016 } 5017 5018 /* 5019 * might be able to return some write requests if the parity blocks 5020 * are safe, or on a failed drive 5021 */ 5022 pdev = &sh->dev[sh->pd_idx]; 5023 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 5024 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 5025 qdev = &sh->dev[sh->qd_idx]; 5026 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 5027 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 5028 || conf->level < 6; 5029 5030 if (s.written && 5031 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 5032 && !test_bit(R5_LOCKED, &pdev->flags) 5033 && (test_bit(R5_UPTODATE, &pdev->flags) || 5034 test_bit(R5_Discard, &pdev->flags))))) && 5035 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 5036 && !test_bit(R5_LOCKED, &qdev->flags) 5037 && (test_bit(R5_UPTODATE, &qdev->flags) || 5038 test_bit(R5_Discard, &qdev->flags)))))) 5039 handle_stripe_clean_event(conf, sh, disks); 5040 5041 if (s.just_cached) 5042 r5c_handle_cached_data_endio(conf, sh, disks); 5043 log_stripe_write_finished(sh); 5044 5045 /* Now we might consider reading some blocks, either to check/generate 5046 * parity, or to satisfy requests 5047 * or to load a block that is being partially written. 5048 */ 5049 if (s.to_read || s.non_overwrite 5050 || (s.to_write && s.failed) 5051 || (s.syncing && (s.uptodate + s.compute < disks)) 5052 || s.replacing 5053 || s.expanding) 5054 handle_stripe_fill(sh, &s, disks); 5055 5056 /* 5057 * When the stripe finishes full journal write cycle (write to journal 5058 * and raid disk), this is the clean up procedure so it is ready for 5059 * next operation. 5060 */ 5061 r5c_finish_stripe_write_out(conf, sh, &s); 5062 5063 /* 5064 * Now to consider new write requests, cache write back and what else, 5065 * if anything should be read. We do not handle new writes when: 5066 * 1/ A 'write' operation (copy+xor) is already in flight. 5067 * 2/ A 'check' operation is in flight, as it may clobber the parity 5068 * block. 5069 * 3/ A r5c cache log write is in flight. 5070 */ 5071 5072 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 5073 if (!r5c_is_writeback(conf->log)) { 5074 if (s.to_write) 5075 handle_stripe_dirtying(conf, sh, &s, disks); 5076 } else { /* write back cache */ 5077 int ret = 0; 5078 5079 /* First, try handle writes in caching phase */ 5080 if (s.to_write) 5081 ret = r5c_try_caching_write(conf, sh, &s, 5082 disks); 5083 /* 5084 * If caching phase failed: ret == -EAGAIN 5085 * OR 5086 * stripe under reclaim: !caching && injournal 5087 * 5088 * fall back to handle_stripe_dirtying() 5089 */ 5090 if (ret == -EAGAIN || 5091 /* stripe under reclaim: !caching && injournal */ 5092 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 5093 s.injournal > 0)) { 5094 ret = handle_stripe_dirtying(conf, sh, &s, 5095 disks); 5096 if (ret == -EAGAIN) 5097 goto finish; 5098 } 5099 } 5100 } 5101 5102 /* maybe we need to check and possibly fix the parity for this stripe 5103 * Any reads will already have been scheduled, so we just see if enough 5104 * data is available. The parity check is held off while parity 5105 * dependent operations are in flight. 5106 */ 5107 if (sh->check_state || 5108 (s.syncing && s.locked == 0 && 5109 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5110 !test_bit(STRIPE_INSYNC, &sh->state))) { 5111 if (conf->level == 6) 5112 handle_parity_checks6(conf, sh, &s, disks); 5113 else 5114 handle_parity_checks5(conf, sh, &s, disks); 5115 } 5116 5117 if ((s.replacing || s.syncing) && s.locked == 0 5118 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 5119 && !test_bit(STRIPE_REPLACED, &sh->state)) { 5120 /* Write out to replacement devices where possible */ 5121 for (i = 0; i < conf->raid_disks; i++) 5122 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 5123 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 5124 set_bit(R5_WantReplace, &sh->dev[i].flags); 5125 set_bit(R5_LOCKED, &sh->dev[i].flags); 5126 s.locked++; 5127 } 5128 if (s.replacing) 5129 set_bit(STRIPE_INSYNC, &sh->state); 5130 set_bit(STRIPE_REPLACED, &sh->state); 5131 } 5132 if ((s.syncing || s.replacing) && s.locked == 0 && 5133 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5134 test_bit(STRIPE_INSYNC, &sh->state)) { 5135 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5136 clear_bit(STRIPE_SYNCING, &sh->state); 5137 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 5138 wake_up(&conf->wait_for_overlap); 5139 } 5140 5141 /* If the failed drives are just a ReadError, then we might need 5142 * to progress the repair/check process 5143 */ 5144 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 5145 for (i = 0; i < s.failed; i++) { 5146 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 5147 if (test_bit(R5_ReadError, &dev->flags) 5148 && !test_bit(R5_LOCKED, &dev->flags) 5149 && test_bit(R5_UPTODATE, &dev->flags) 5150 ) { 5151 if (!test_bit(R5_ReWrite, &dev->flags)) { 5152 set_bit(R5_Wantwrite, &dev->flags); 5153 set_bit(R5_ReWrite, &dev->flags); 5154 } else 5155 /* let's read it back */ 5156 set_bit(R5_Wantread, &dev->flags); 5157 set_bit(R5_LOCKED, &dev->flags); 5158 s.locked++; 5159 } 5160 } 5161 5162 /* Finish reconstruct operations initiated by the expansion process */ 5163 if (sh->reconstruct_state == reconstruct_state_result) { 5164 struct stripe_head *sh_src 5165 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 5166 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 5167 /* sh cannot be written until sh_src has been read. 5168 * so arrange for sh to be delayed a little 5169 */ 5170 set_bit(STRIPE_DELAYED, &sh->state); 5171 set_bit(STRIPE_HANDLE, &sh->state); 5172 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 5173 &sh_src->state)) 5174 atomic_inc(&conf->preread_active_stripes); 5175 raid5_release_stripe(sh_src); 5176 goto finish; 5177 } 5178 if (sh_src) 5179 raid5_release_stripe(sh_src); 5180 5181 sh->reconstruct_state = reconstruct_state_idle; 5182 clear_bit(STRIPE_EXPANDING, &sh->state); 5183 for (i = conf->raid_disks; i--; ) { 5184 set_bit(R5_Wantwrite, &sh->dev[i].flags); 5185 set_bit(R5_LOCKED, &sh->dev[i].flags); 5186 s.locked++; 5187 } 5188 } 5189 5190 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 5191 !sh->reconstruct_state) { 5192 /* Need to write out all blocks after computing parity */ 5193 sh->disks = conf->raid_disks; 5194 stripe_set_idx(sh->sector, conf, 0, sh); 5195 schedule_reconstruction(sh, &s, 1, 1); 5196 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 5197 clear_bit(STRIPE_EXPAND_READY, &sh->state); 5198 atomic_dec(&conf->reshape_stripes); 5199 wake_up(&conf->wait_for_overlap); 5200 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5201 } 5202 5203 if (s.expanding && s.locked == 0 && 5204 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5205 handle_stripe_expansion(conf, sh); 5206 5207finish: 5208 /* wait for this device to become unblocked */ 5209 if (unlikely(s.blocked_rdev)) { 5210 if (conf->mddev->external) 5211 md_wait_for_blocked_rdev(s.blocked_rdev, 5212 conf->mddev); 5213 else 5214 /* Internal metadata will immediately 5215 * be written by raid5d, so we don't 5216 * need to wait here. 5217 */ 5218 rdev_dec_pending(s.blocked_rdev, 5219 conf->mddev); 5220 } 5221 5222 if (s.handle_bad_blocks) 5223 for (i = disks; i--; ) { 5224 struct md_rdev *rdev; 5225 struct r5dev *dev = &sh->dev[i]; 5226 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5227 /* We own a safe reference to the rdev */ 5228 rdev = conf->disks[i].rdev; 5229 if (!rdev_set_badblocks(rdev, sh->sector, 5230 RAID5_STRIPE_SECTORS(conf), 0)) 5231 md_error(conf->mddev, rdev); 5232 rdev_dec_pending(rdev, conf->mddev); 5233 } 5234 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5235 rdev = conf->disks[i].rdev; 5236 rdev_clear_badblocks(rdev, sh->sector, 5237 RAID5_STRIPE_SECTORS(conf), 0); 5238 rdev_dec_pending(rdev, conf->mddev); 5239 } 5240 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5241 rdev = conf->disks[i].replacement; 5242 if (!rdev) 5243 /* rdev have been moved down */ 5244 rdev = conf->disks[i].rdev; 5245 rdev_clear_badblocks(rdev, sh->sector, 5246 RAID5_STRIPE_SECTORS(conf), 0); 5247 rdev_dec_pending(rdev, conf->mddev); 5248 } 5249 } 5250 5251 if (s.ops_request) 5252 raid_run_ops(sh, s.ops_request); 5253 5254 ops_run_io(sh, &s); 5255 5256 if (s.dec_preread_active) { 5257 /* We delay this until after ops_run_io so that if make_request 5258 * is waiting on a flush, it won't continue until the writes 5259 * have actually been submitted. 5260 */ 5261 atomic_dec(&conf->preread_active_stripes); 5262 if (atomic_read(&conf->preread_active_stripes) < 5263 IO_THRESHOLD) 5264 md_wakeup_thread(conf->mddev->thread); 5265 } 5266 5267 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5268} 5269 5270static void raid5_activate_delayed(struct r5conf *conf) 5271{ 5272 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5273 while (!list_empty(&conf->delayed_list)) { 5274 struct list_head *l = conf->delayed_list.next; 5275 struct stripe_head *sh; 5276 sh = list_entry(l, struct stripe_head, lru); 5277 list_del_init(l); 5278 clear_bit(STRIPE_DELAYED, &sh->state); 5279 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5280 atomic_inc(&conf->preread_active_stripes); 5281 list_add_tail(&sh->lru, &conf->hold_list); 5282 raid5_wakeup_stripe_thread(sh); 5283 } 5284 } 5285} 5286 5287static void activate_bit_delay(struct r5conf *conf, 5288 struct list_head *temp_inactive_list) 5289{ 5290 /* device_lock is held */ 5291 struct list_head head; 5292 list_add(&head, &conf->bitmap_list); 5293 list_del_init(&conf->bitmap_list); 5294 while (!list_empty(&head)) { 5295 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5296 int hash; 5297 list_del_init(&sh->lru); 5298 atomic_inc(&sh->count); 5299 hash = sh->hash_lock_index; 5300 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5301 } 5302} 5303 5304static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5305{ 5306 struct r5conf *conf = mddev->private; 5307 sector_t sector = bio->bi_iter.bi_sector; 5308 unsigned int chunk_sectors; 5309 unsigned int bio_sectors = bio_sectors(bio); 5310 5311 WARN_ON_ONCE(bio->bi_partno); 5312 5313 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5314 return chunk_sectors >= 5315 ((sector & (chunk_sectors - 1)) + bio_sectors); 5316} 5317 5318/* 5319 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5320 * later sampled by raid5d. 5321 */ 5322static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5323{ 5324 unsigned long flags; 5325 5326 spin_lock_irqsave(&conf->device_lock, flags); 5327 5328 bi->bi_next = conf->retry_read_aligned_list; 5329 conf->retry_read_aligned_list = bi; 5330 5331 spin_unlock_irqrestore(&conf->device_lock, flags); 5332 md_wakeup_thread(conf->mddev->thread); 5333} 5334 5335static struct bio *remove_bio_from_retry(struct r5conf *conf, 5336 unsigned int *offset) 5337{ 5338 struct bio *bi; 5339 5340 bi = conf->retry_read_aligned; 5341 if (bi) { 5342 *offset = conf->retry_read_offset; 5343 conf->retry_read_aligned = NULL; 5344 return bi; 5345 } 5346 bi = conf->retry_read_aligned_list; 5347 if(bi) { 5348 conf->retry_read_aligned_list = bi->bi_next; 5349 bi->bi_next = NULL; 5350 *offset = 0; 5351 } 5352 5353 return bi; 5354} 5355 5356/* 5357 * The "raid5_align_endio" should check if the read succeeded and if it 5358 * did, call bio_endio on the original bio (having bio_put the new bio 5359 * first). 5360 * If the read failed.. 5361 */ 5362static void raid5_align_endio(struct bio *bi) 5363{ 5364 struct bio* raid_bi = bi->bi_private; 5365 struct mddev *mddev; 5366 struct r5conf *conf; 5367 struct md_rdev *rdev; 5368 blk_status_t error = bi->bi_status; 5369 5370 bio_put(bi); 5371 5372 rdev = (void*)raid_bi->bi_next; 5373 raid_bi->bi_next = NULL; 5374 mddev = rdev->mddev; 5375 conf = mddev->private; 5376 5377 rdev_dec_pending(rdev, conf->mddev); 5378 5379 if (!error) { 5380 bio_endio(raid_bi); 5381 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5382 wake_up(&conf->wait_for_quiescent); 5383 return; 5384 } 5385 5386 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5387 5388 add_bio_to_retry(raid_bi, conf); 5389} 5390 5391static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5392{ 5393 struct r5conf *conf = mddev->private; 5394 int dd_idx; 5395 struct bio* align_bi; 5396 struct md_rdev *rdev; 5397 sector_t end_sector; 5398 5399 if (!in_chunk_boundary(mddev, raid_bio)) { 5400 pr_debug("%s: non aligned\n", __func__); 5401 return 0; 5402 } 5403 /* 5404 * use bio_clone_fast to make a copy of the bio 5405 */ 5406 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set); 5407 if (!align_bi) 5408 return 0; 5409 /* 5410 * set bi_end_io to a new function, and set bi_private to the 5411 * original bio. 5412 */ 5413 align_bi->bi_end_io = raid5_align_endio; 5414 align_bi->bi_private = raid_bio; 5415 /* 5416 * compute position 5417 */ 5418 align_bi->bi_iter.bi_sector = 5419 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 5420 0, &dd_idx, NULL); 5421 5422 end_sector = bio_end_sector(align_bi); 5423 rcu_read_lock(); 5424 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5425 if (!rdev || test_bit(Faulty, &rdev->flags) || 5426 rdev->recovery_offset < end_sector) { 5427 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5428 if (rdev && 5429 (test_bit(Faulty, &rdev->flags) || 5430 !(test_bit(In_sync, &rdev->flags) || 5431 rdev->recovery_offset >= end_sector))) 5432 rdev = NULL; 5433 } 5434 5435 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) { 5436 rcu_read_unlock(); 5437 bio_put(align_bi); 5438 return 0; 5439 } 5440 5441 if (rdev) { 5442 sector_t first_bad; 5443 int bad_sectors; 5444 5445 atomic_inc(&rdev->nr_pending); 5446 rcu_read_unlock(); 5447 raid_bio->bi_next = (void*)rdev; 5448 bio_set_dev(align_bi, rdev->bdev); 5449 5450 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 5451 bio_sectors(align_bi), 5452 &first_bad, &bad_sectors)) { 5453 bio_put(align_bi); 5454 rdev_dec_pending(rdev, mddev); 5455 return 0; 5456 } 5457 5458 /* No reshape active, so we can trust rdev->data_offset */ 5459 align_bi->bi_iter.bi_sector += rdev->data_offset; 5460 5461 spin_lock_irq(&conf->device_lock); 5462 wait_event_lock_irq(conf->wait_for_quiescent, 5463 conf->quiesce == 0, 5464 conf->device_lock); 5465 atomic_inc(&conf->active_aligned_reads); 5466 spin_unlock_irq(&conf->device_lock); 5467 5468 if (mddev->gendisk) 5469 trace_block_bio_remap(align_bi->bi_disk->queue, 5470 align_bi, disk_devt(mddev->gendisk), 5471 raid_bio->bi_iter.bi_sector); 5472 submit_bio_noacct(align_bi); 5473 return 1; 5474 } else { 5475 rcu_read_unlock(); 5476 bio_put(align_bi); 5477 return 0; 5478 } 5479} 5480 5481static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5482{ 5483 struct bio *split; 5484 sector_t sector = raid_bio->bi_iter.bi_sector; 5485 unsigned chunk_sects = mddev->chunk_sectors; 5486 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5487 5488 if (sectors < bio_sectors(raid_bio)) { 5489 struct r5conf *conf = mddev->private; 5490 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5491 bio_chain(split, raid_bio); 5492 submit_bio_noacct(raid_bio); 5493 raid_bio = split; 5494 } 5495 5496 if (!raid5_read_one_chunk(mddev, raid_bio)) 5497 return raid_bio; 5498 5499 return NULL; 5500} 5501 5502/* __get_priority_stripe - get the next stripe to process 5503 * 5504 * Full stripe writes are allowed to pass preread active stripes up until 5505 * the bypass_threshold is exceeded. In general the bypass_count 5506 * increments when the handle_list is handled before the hold_list; however, it 5507 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5508 * stripe with in flight i/o. The bypass_count will be reset when the 5509 * head of the hold_list has changed, i.e. the head was promoted to the 5510 * handle_list. 5511 */ 5512static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5513{ 5514 struct stripe_head *sh, *tmp; 5515 struct list_head *handle_list = NULL; 5516 struct r5worker_group *wg; 5517 bool second_try = !r5c_is_writeback(conf->log) && 5518 !r5l_log_disk_error(conf); 5519 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5520 r5l_log_disk_error(conf); 5521 5522again: 5523 wg = NULL; 5524 sh = NULL; 5525 if (conf->worker_cnt_per_group == 0) { 5526 handle_list = try_loprio ? &conf->loprio_list : 5527 &conf->handle_list; 5528 } else if (group != ANY_GROUP) { 5529 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5530 &conf->worker_groups[group].handle_list; 5531 wg = &conf->worker_groups[group]; 5532 } else { 5533 int i; 5534 for (i = 0; i < conf->group_cnt; i++) { 5535 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5536 &conf->worker_groups[i].handle_list; 5537 wg = &conf->worker_groups[i]; 5538 if (!list_empty(handle_list)) 5539 break; 5540 } 5541 } 5542 5543 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5544 __func__, 5545 list_empty(handle_list) ? "empty" : "busy", 5546 list_empty(&conf->hold_list) ? "empty" : "busy", 5547 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5548 5549 if (!list_empty(handle_list)) { 5550 sh = list_entry(handle_list->next, typeof(*sh), lru); 5551 5552 if (list_empty(&conf->hold_list)) 5553 conf->bypass_count = 0; 5554 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5555 if (conf->hold_list.next == conf->last_hold) 5556 conf->bypass_count++; 5557 else { 5558 conf->last_hold = conf->hold_list.next; 5559 conf->bypass_count -= conf->bypass_threshold; 5560 if (conf->bypass_count < 0) 5561 conf->bypass_count = 0; 5562 } 5563 } 5564 } else if (!list_empty(&conf->hold_list) && 5565 ((conf->bypass_threshold && 5566 conf->bypass_count > conf->bypass_threshold) || 5567 atomic_read(&conf->pending_full_writes) == 0)) { 5568 5569 list_for_each_entry(tmp, &conf->hold_list, lru) { 5570 if (conf->worker_cnt_per_group == 0 || 5571 group == ANY_GROUP || 5572 !cpu_online(tmp->cpu) || 5573 cpu_to_group(tmp->cpu) == group) { 5574 sh = tmp; 5575 break; 5576 } 5577 } 5578 5579 if (sh) { 5580 conf->bypass_count -= conf->bypass_threshold; 5581 if (conf->bypass_count < 0) 5582 conf->bypass_count = 0; 5583 } 5584 wg = NULL; 5585 } 5586 5587 if (!sh) { 5588 if (second_try) 5589 return NULL; 5590 second_try = true; 5591 try_loprio = !try_loprio; 5592 goto again; 5593 } 5594 5595 if (wg) { 5596 wg->stripes_cnt--; 5597 sh->group = NULL; 5598 } 5599 list_del_init(&sh->lru); 5600 BUG_ON(atomic_inc_return(&sh->count) != 1); 5601 return sh; 5602} 5603 5604struct raid5_plug_cb { 5605 struct blk_plug_cb cb; 5606 struct list_head list; 5607 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5608}; 5609 5610static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5611{ 5612 struct raid5_plug_cb *cb = container_of( 5613 blk_cb, struct raid5_plug_cb, cb); 5614 struct stripe_head *sh; 5615 struct mddev *mddev = cb->cb.data; 5616 struct r5conf *conf = mddev->private; 5617 int cnt = 0; 5618 int hash; 5619 5620 if (cb->list.next && !list_empty(&cb->list)) { 5621 spin_lock_irq(&conf->device_lock); 5622 while (!list_empty(&cb->list)) { 5623 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5624 list_del_init(&sh->lru); 5625 /* 5626 * avoid race release_stripe_plug() sees 5627 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5628 * is still in our list 5629 */ 5630 smp_mb__before_atomic(); 5631 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5632 /* 5633 * STRIPE_ON_RELEASE_LIST could be set here. In that 5634 * case, the count is always > 1 here 5635 */ 5636 hash = sh->hash_lock_index; 5637 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5638 cnt++; 5639 } 5640 spin_unlock_irq(&conf->device_lock); 5641 } 5642 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5643 NR_STRIPE_HASH_LOCKS); 5644 if (mddev->queue) 5645 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5646 kfree(cb); 5647} 5648 5649static void release_stripe_plug(struct mddev *mddev, 5650 struct stripe_head *sh) 5651{ 5652 struct blk_plug_cb *blk_cb = blk_check_plugged( 5653 raid5_unplug, mddev, 5654 sizeof(struct raid5_plug_cb)); 5655 struct raid5_plug_cb *cb; 5656 5657 if (!blk_cb) { 5658 raid5_release_stripe(sh); 5659 return; 5660 } 5661 5662 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5663 5664 if (cb->list.next == NULL) { 5665 int i; 5666 INIT_LIST_HEAD(&cb->list); 5667 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5668 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5669 } 5670 5671 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5672 list_add_tail(&sh->lru, &cb->list); 5673 else 5674 raid5_release_stripe(sh); 5675} 5676 5677static void make_discard_request(struct mddev *mddev, struct bio *bi) 5678{ 5679 struct r5conf *conf = mddev->private; 5680 sector_t logical_sector, last_sector; 5681 struct stripe_head *sh; 5682 int stripe_sectors; 5683 5684 if (mddev->reshape_position != MaxSector) 5685 /* Skip discard while reshape is happening */ 5686 return; 5687 5688 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5689 last_sector = bio_end_sector(bi); 5690 5691 bi->bi_next = NULL; 5692 5693 stripe_sectors = conf->chunk_sectors * 5694 (conf->raid_disks - conf->max_degraded); 5695 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5696 stripe_sectors); 5697 sector_div(last_sector, stripe_sectors); 5698 5699 logical_sector *= conf->chunk_sectors; 5700 last_sector *= conf->chunk_sectors; 5701 5702 for (; logical_sector < last_sector; 5703 logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5704 DEFINE_WAIT(w); 5705 int d; 5706 again: 5707 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5708 prepare_to_wait(&conf->wait_for_overlap, &w, 5709 TASK_UNINTERRUPTIBLE); 5710 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5711 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5712 raid5_release_stripe(sh); 5713 schedule(); 5714 goto again; 5715 } 5716 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5717 spin_lock_irq(&sh->stripe_lock); 5718 for (d = 0; d < conf->raid_disks; d++) { 5719 if (d == sh->pd_idx || d == sh->qd_idx) 5720 continue; 5721 if (sh->dev[d].towrite || sh->dev[d].toread) { 5722 set_bit(R5_Overlap, &sh->dev[d].flags); 5723 spin_unlock_irq(&sh->stripe_lock); 5724 raid5_release_stripe(sh); 5725 schedule(); 5726 goto again; 5727 } 5728 } 5729 set_bit(STRIPE_DISCARD, &sh->state); 5730 finish_wait(&conf->wait_for_overlap, &w); 5731 sh->overwrite_disks = 0; 5732 for (d = 0; d < conf->raid_disks; d++) { 5733 if (d == sh->pd_idx || d == sh->qd_idx) 5734 continue; 5735 sh->dev[d].towrite = bi; 5736 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5737 bio_inc_remaining(bi); 5738 md_write_inc(mddev, bi); 5739 sh->overwrite_disks++; 5740 } 5741 spin_unlock_irq(&sh->stripe_lock); 5742 if (conf->mddev->bitmap) { 5743 for (d = 0; 5744 d < conf->raid_disks - conf->max_degraded; 5745 d++) 5746 md_bitmap_startwrite(mddev->bitmap, 5747 sh->sector, 5748 RAID5_STRIPE_SECTORS(conf), 5749 0); 5750 sh->bm_seq = conf->seq_flush + 1; 5751 set_bit(STRIPE_BIT_DELAY, &sh->state); 5752 } 5753 5754 set_bit(STRIPE_HANDLE, &sh->state); 5755 clear_bit(STRIPE_DELAYED, &sh->state); 5756 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5757 atomic_inc(&conf->preread_active_stripes); 5758 release_stripe_plug(mddev, sh); 5759 } 5760 5761 bio_endio(bi); 5762} 5763 5764static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 5765{ 5766 struct r5conf *conf = mddev->private; 5767 int dd_idx; 5768 sector_t new_sector; 5769 sector_t logical_sector, last_sector; 5770 struct stripe_head *sh; 5771 const int rw = bio_data_dir(bi); 5772 DEFINE_WAIT(w); 5773 bool do_prepare; 5774 bool do_flush = false; 5775 5776 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5777 int ret = log_handle_flush_request(conf, bi); 5778 5779 if (ret == 0) 5780 return true; 5781 if (ret == -ENODEV) { 5782 if (md_flush_request(mddev, bi)) 5783 return true; 5784 } 5785 /* ret == -EAGAIN, fallback */ 5786 /* 5787 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 5788 * we need to flush journal device 5789 */ 5790 do_flush = bi->bi_opf & REQ_PREFLUSH; 5791 } 5792 5793 if (!md_write_start(mddev, bi)) 5794 return false; 5795 /* 5796 * If array is degraded, better not do chunk aligned read because 5797 * later we might have to read it again in order to reconstruct 5798 * data on failed drives. 5799 */ 5800 if (rw == READ && mddev->degraded == 0 && 5801 mddev->reshape_position == MaxSector) { 5802 bi = chunk_aligned_read(mddev, bi); 5803 if (!bi) 5804 return true; 5805 } 5806 5807 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5808 make_discard_request(mddev, bi); 5809 md_write_end(mddev); 5810 return true; 5811 } 5812 5813 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5814 last_sector = bio_end_sector(bi); 5815 bi->bi_next = NULL; 5816 5817 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5818 for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5819 int previous; 5820 int seq; 5821 5822 do_prepare = false; 5823 retry: 5824 seq = read_seqcount_begin(&conf->gen_lock); 5825 previous = 0; 5826 if (do_prepare) 5827 prepare_to_wait(&conf->wait_for_overlap, &w, 5828 TASK_UNINTERRUPTIBLE); 5829 if (unlikely(conf->reshape_progress != MaxSector)) { 5830 /* spinlock is needed as reshape_progress may be 5831 * 64bit on a 32bit platform, and so it might be 5832 * possible to see a half-updated value 5833 * Of course reshape_progress could change after 5834 * the lock is dropped, so once we get a reference 5835 * to the stripe that we think it is, we will have 5836 * to check again. 5837 */ 5838 spin_lock_irq(&conf->device_lock); 5839 if (mddev->reshape_backwards 5840 ? logical_sector < conf->reshape_progress 5841 : logical_sector >= conf->reshape_progress) { 5842 previous = 1; 5843 } else { 5844 if (mddev->reshape_backwards 5845 ? logical_sector < conf->reshape_safe 5846 : logical_sector >= conf->reshape_safe) { 5847 spin_unlock_irq(&conf->device_lock); 5848 schedule(); 5849 do_prepare = true; 5850 goto retry; 5851 } 5852 } 5853 spin_unlock_irq(&conf->device_lock); 5854 } 5855 5856 new_sector = raid5_compute_sector(conf, logical_sector, 5857 previous, 5858 &dd_idx, NULL); 5859 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5860 (unsigned long long)new_sector, 5861 (unsigned long long)logical_sector); 5862 5863 sh = raid5_get_active_stripe(conf, new_sector, previous, 5864 (bi->bi_opf & REQ_RAHEAD), 0); 5865 if (sh) { 5866 if (unlikely(previous)) { 5867 /* expansion might have moved on while waiting for a 5868 * stripe, so we must do the range check again. 5869 * Expansion could still move past after this 5870 * test, but as we are holding a reference to 5871 * 'sh', we know that if that happens, 5872 * STRIPE_EXPANDING will get set and the expansion 5873 * won't proceed until we finish with the stripe. 5874 */ 5875 int must_retry = 0; 5876 spin_lock_irq(&conf->device_lock); 5877 if (mddev->reshape_backwards 5878 ? logical_sector >= conf->reshape_progress 5879 : logical_sector < conf->reshape_progress) 5880 /* mismatch, need to try again */ 5881 must_retry = 1; 5882 spin_unlock_irq(&conf->device_lock); 5883 if (must_retry) { 5884 raid5_release_stripe(sh); 5885 schedule(); 5886 do_prepare = true; 5887 goto retry; 5888 } 5889 } 5890 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5891 /* Might have got the wrong stripe_head 5892 * by accident 5893 */ 5894 raid5_release_stripe(sh); 5895 goto retry; 5896 } 5897 5898 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5899 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5900 /* Stripe is busy expanding or 5901 * add failed due to overlap. Flush everything 5902 * and wait a while 5903 */ 5904 md_wakeup_thread(mddev->thread); 5905 raid5_release_stripe(sh); 5906 schedule(); 5907 do_prepare = true; 5908 goto retry; 5909 } 5910 if (do_flush) { 5911 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 5912 /* we only need flush for one stripe */ 5913 do_flush = false; 5914 } 5915 5916 set_bit(STRIPE_HANDLE, &sh->state); 5917 clear_bit(STRIPE_DELAYED, &sh->state); 5918 if ((!sh->batch_head || sh == sh->batch_head) && 5919 (bi->bi_opf & REQ_SYNC) && 5920 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5921 atomic_inc(&conf->preread_active_stripes); 5922 release_stripe_plug(mddev, sh); 5923 } else { 5924 /* cannot get stripe for read-ahead, just give-up */ 5925 bi->bi_status = BLK_STS_IOERR; 5926 break; 5927 } 5928 } 5929 finish_wait(&conf->wait_for_overlap, &w); 5930 5931 if (rw == WRITE) 5932 md_write_end(mddev); 5933 bio_endio(bi); 5934 return true; 5935} 5936 5937static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5938 5939static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5940{ 5941 /* reshaping is quite different to recovery/resync so it is 5942 * handled quite separately ... here. 5943 * 5944 * On each call to sync_request, we gather one chunk worth of 5945 * destination stripes and flag them as expanding. 5946 * Then we find all the source stripes and request reads. 5947 * As the reads complete, handle_stripe will copy the data 5948 * into the destination stripe and release that stripe. 5949 */ 5950 struct r5conf *conf = mddev->private; 5951 struct stripe_head *sh; 5952 struct md_rdev *rdev; 5953 sector_t first_sector, last_sector; 5954 int raid_disks = conf->previous_raid_disks; 5955 int data_disks = raid_disks - conf->max_degraded; 5956 int new_data_disks = conf->raid_disks - conf->max_degraded; 5957 int i; 5958 int dd_idx; 5959 sector_t writepos, readpos, safepos; 5960 sector_t stripe_addr; 5961 int reshape_sectors; 5962 struct list_head stripes; 5963 sector_t retn; 5964 5965 if (sector_nr == 0) { 5966 /* If restarting in the middle, skip the initial sectors */ 5967 if (mddev->reshape_backwards && 5968 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5969 sector_nr = raid5_size(mddev, 0, 0) 5970 - conf->reshape_progress; 5971 } else if (mddev->reshape_backwards && 5972 conf->reshape_progress == MaxSector) { 5973 /* shouldn't happen, but just in case, finish up.*/ 5974 sector_nr = MaxSector; 5975 } else if (!mddev->reshape_backwards && 5976 conf->reshape_progress > 0) 5977 sector_nr = conf->reshape_progress; 5978 sector_div(sector_nr, new_data_disks); 5979 if (sector_nr) { 5980 mddev->curr_resync_completed = sector_nr; 5981 sysfs_notify_dirent_safe(mddev->sysfs_completed); 5982 *skipped = 1; 5983 retn = sector_nr; 5984 goto finish; 5985 } 5986 } 5987 5988 /* We need to process a full chunk at a time. 5989 * If old and new chunk sizes differ, we need to process the 5990 * largest of these 5991 */ 5992 5993 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5994 5995 /* We update the metadata at least every 10 seconds, or when 5996 * the data about to be copied would over-write the source of 5997 * the data at the front of the range. i.e. one new_stripe 5998 * along from reshape_progress new_maps to after where 5999 * reshape_safe old_maps to 6000 */ 6001 writepos = conf->reshape_progress; 6002 sector_div(writepos, new_data_disks); 6003 readpos = conf->reshape_progress; 6004 sector_div(readpos, data_disks); 6005 safepos = conf->reshape_safe; 6006 sector_div(safepos, data_disks); 6007 if (mddev->reshape_backwards) { 6008 BUG_ON(writepos < reshape_sectors); 6009 writepos -= reshape_sectors; 6010 readpos += reshape_sectors; 6011 safepos += reshape_sectors; 6012 } else { 6013 writepos += reshape_sectors; 6014 /* readpos and safepos are worst-case calculations. 6015 * A negative number is overly pessimistic, and causes 6016 * obvious problems for unsigned storage. So clip to 0. 6017 */ 6018 readpos -= min_t(sector_t, reshape_sectors, readpos); 6019 safepos -= min_t(sector_t, reshape_sectors, safepos); 6020 } 6021 6022 /* Having calculated the 'writepos' possibly use it 6023 * to set 'stripe_addr' which is where we will write to. 6024 */ 6025 if (mddev->reshape_backwards) { 6026 BUG_ON(conf->reshape_progress == 0); 6027 stripe_addr = writepos; 6028 BUG_ON((mddev->dev_sectors & 6029 ~((sector_t)reshape_sectors - 1)) 6030 - reshape_sectors - stripe_addr 6031 != sector_nr); 6032 } else { 6033 BUG_ON(writepos != sector_nr + reshape_sectors); 6034 stripe_addr = sector_nr; 6035 } 6036 6037 /* 'writepos' is the most advanced device address we might write. 6038 * 'readpos' is the least advanced device address we might read. 6039 * 'safepos' is the least address recorded in the metadata as having 6040 * been reshaped. 6041 * If there is a min_offset_diff, these are adjusted either by 6042 * increasing the safepos/readpos if diff is negative, or 6043 * increasing writepos if diff is positive. 6044 * If 'readpos' is then behind 'writepos', there is no way that we can 6045 * ensure safety in the face of a crash - that must be done by userspace 6046 * making a backup of the data. So in that case there is no particular 6047 * rush to update metadata. 6048 * Otherwise if 'safepos' is behind 'writepos', then we really need to 6049 * update the metadata to advance 'safepos' to match 'readpos' so that 6050 * we can be safe in the event of a crash. 6051 * So we insist on updating metadata if safepos is behind writepos and 6052 * readpos is beyond writepos. 6053 * In any case, update the metadata every 10 seconds. 6054 * Maybe that number should be configurable, but I'm not sure it is 6055 * worth it.... maybe it could be a multiple of safemode_delay??? 6056 */ 6057 if (conf->min_offset_diff < 0) { 6058 safepos += -conf->min_offset_diff; 6059 readpos += -conf->min_offset_diff; 6060 } else 6061 writepos += conf->min_offset_diff; 6062 6063 if ((mddev->reshape_backwards 6064 ? (safepos > writepos && readpos < writepos) 6065 : (safepos < writepos && readpos > writepos)) || 6066 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 6067 /* Cannot proceed until we've updated the superblock... */ 6068 wait_event(conf->wait_for_overlap, 6069 atomic_read(&conf->reshape_stripes)==0 6070 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6071 if (atomic_read(&conf->reshape_stripes) != 0) 6072 return 0; 6073 mddev->reshape_position = conf->reshape_progress; 6074 mddev->curr_resync_completed = sector_nr; 6075 if (!mddev->reshape_backwards) 6076 /* Can update recovery_offset */ 6077 rdev_for_each(rdev, mddev) 6078 if (rdev->raid_disk >= 0 && 6079 !test_bit(Journal, &rdev->flags) && 6080 !test_bit(In_sync, &rdev->flags) && 6081 rdev->recovery_offset < sector_nr) 6082 rdev->recovery_offset = sector_nr; 6083 6084 conf->reshape_checkpoint = jiffies; 6085 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6086 md_wakeup_thread(mddev->thread); 6087 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 6088 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6089 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6090 return 0; 6091 spin_lock_irq(&conf->device_lock); 6092 conf->reshape_safe = mddev->reshape_position; 6093 spin_unlock_irq(&conf->device_lock); 6094 wake_up(&conf->wait_for_overlap); 6095 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6096 } 6097 6098 INIT_LIST_HEAD(&stripes); 6099 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) { 6100 int j; 6101 int skipped_disk = 0; 6102 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 6103 set_bit(STRIPE_EXPANDING, &sh->state); 6104 atomic_inc(&conf->reshape_stripes); 6105 /* If any of this stripe is beyond the end of the old 6106 * array, then we need to zero those blocks 6107 */ 6108 for (j=sh->disks; j--;) { 6109 sector_t s; 6110 if (j == sh->pd_idx) 6111 continue; 6112 if (conf->level == 6 && 6113 j == sh->qd_idx) 6114 continue; 6115 s = raid5_compute_blocknr(sh, j, 0); 6116 if (s < raid5_size(mddev, 0, 0)) { 6117 skipped_disk = 1; 6118 continue; 6119 } 6120 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf)); 6121 set_bit(R5_Expanded, &sh->dev[j].flags); 6122 set_bit(R5_UPTODATE, &sh->dev[j].flags); 6123 } 6124 if (!skipped_disk) { 6125 set_bit(STRIPE_EXPAND_READY, &sh->state); 6126 set_bit(STRIPE_HANDLE, &sh->state); 6127 } 6128 list_add(&sh->lru, &stripes); 6129 } 6130 spin_lock_irq(&conf->device_lock); 6131 if (mddev->reshape_backwards) 6132 conf->reshape_progress -= reshape_sectors * new_data_disks; 6133 else 6134 conf->reshape_progress += reshape_sectors * new_data_disks; 6135 spin_unlock_irq(&conf->device_lock); 6136 /* Ok, those stripe are ready. We can start scheduling 6137 * reads on the source stripes. 6138 * The source stripes are determined by mapping the first and last 6139 * block on the destination stripes. 6140 */ 6141 first_sector = 6142 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 6143 1, &dd_idx, NULL); 6144 last_sector = 6145 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 6146 * new_data_disks - 1), 6147 1, &dd_idx, NULL); 6148 if (last_sector >= mddev->dev_sectors) 6149 last_sector = mddev->dev_sectors - 1; 6150 while (first_sector <= last_sector) { 6151 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 6152 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 6153 set_bit(STRIPE_HANDLE, &sh->state); 6154 raid5_release_stripe(sh); 6155 first_sector += RAID5_STRIPE_SECTORS(conf); 6156 } 6157 /* Now that the sources are clearly marked, we can release 6158 * the destination stripes 6159 */ 6160 while (!list_empty(&stripes)) { 6161 sh = list_entry(stripes.next, struct stripe_head, lru); 6162 list_del_init(&sh->lru); 6163 raid5_release_stripe(sh); 6164 } 6165 /* If this takes us to the resync_max point where we have to pause, 6166 * then we need to write out the superblock. 6167 */ 6168 sector_nr += reshape_sectors; 6169 retn = reshape_sectors; 6170finish: 6171 if (mddev->curr_resync_completed > mddev->resync_max || 6172 (sector_nr - mddev->curr_resync_completed) * 2 6173 >= mddev->resync_max - mddev->curr_resync_completed) { 6174 /* Cannot proceed until we've updated the superblock... */ 6175 wait_event(conf->wait_for_overlap, 6176 atomic_read(&conf->reshape_stripes) == 0 6177 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6178 if (atomic_read(&conf->reshape_stripes) != 0) 6179 goto ret; 6180 mddev->reshape_position = conf->reshape_progress; 6181 mddev->curr_resync_completed = sector_nr; 6182 if (!mddev->reshape_backwards) 6183 /* Can update recovery_offset */ 6184 rdev_for_each(rdev, mddev) 6185 if (rdev->raid_disk >= 0 && 6186 !test_bit(Journal, &rdev->flags) && 6187 !test_bit(In_sync, &rdev->flags) && 6188 rdev->recovery_offset < sector_nr) 6189 rdev->recovery_offset = sector_nr; 6190 conf->reshape_checkpoint = jiffies; 6191 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6192 md_wakeup_thread(mddev->thread); 6193 wait_event(mddev->sb_wait, 6194 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6195 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6196 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6197 goto ret; 6198 spin_lock_irq(&conf->device_lock); 6199 conf->reshape_safe = mddev->reshape_position; 6200 spin_unlock_irq(&conf->device_lock); 6201 wake_up(&conf->wait_for_overlap); 6202 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6203 } 6204ret: 6205 return retn; 6206} 6207 6208static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6209 int *skipped) 6210{ 6211 struct r5conf *conf = mddev->private; 6212 struct stripe_head *sh; 6213 sector_t max_sector = mddev->dev_sectors; 6214 sector_t sync_blocks; 6215 int still_degraded = 0; 6216 int i; 6217 6218 if (sector_nr >= max_sector) { 6219 /* just being told to finish up .. nothing much to do */ 6220 6221 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6222 end_reshape(conf); 6223 return 0; 6224 } 6225 6226 if (mddev->curr_resync < max_sector) /* aborted */ 6227 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6228 &sync_blocks, 1); 6229 else /* completed sync */ 6230 conf->fullsync = 0; 6231 md_bitmap_close_sync(mddev->bitmap); 6232 6233 return 0; 6234 } 6235 6236 /* Allow raid5_quiesce to complete */ 6237 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6238 6239 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6240 return reshape_request(mddev, sector_nr, skipped); 6241 6242 /* No need to check resync_max as we never do more than one 6243 * stripe, and as resync_max will always be on a chunk boundary, 6244 * if the check in md_do_sync didn't fire, there is no chance 6245 * of overstepping resync_max here 6246 */ 6247 6248 /* if there is too many failed drives and we are trying 6249 * to resync, then assert that we are finished, because there is 6250 * nothing we can do. 6251 */ 6252 if (mddev->degraded >= conf->max_degraded && 6253 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6254 sector_t rv = mddev->dev_sectors - sector_nr; 6255 *skipped = 1; 6256 return rv; 6257 } 6258 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6259 !conf->fullsync && 6260 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6261 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) { 6262 /* we can skip this block, and probably more */ 6263 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf)); 6264 *skipped = 1; 6265 /* keep things rounded to whole stripes */ 6266 return sync_blocks * RAID5_STRIPE_SECTORS(conf); 6267 } 6268 6269 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6270 6271 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 6272 if (sh == NULL) { 6273 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 6274 /* make sure we don't swamp the stripe cache if someone else 6275 * is trying to get access 6276 */ 6277 schedule_timeout_uninterruptible(1); 6278 } 6279 /* Need to check if array will still be degraded after recovery/resync 6280 * Note in case of > 1 drive failures it's possible we're rebuilding 6281 * one drive while leaving another faulty drive in array. 6282 */ 6283 rcu_read_lock(); 6284 for (i = 0; i < conf->raid_disks; i++) { 6285 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 6286 6287 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6288 still_degraded = 1; 6289 } 6290 rcu_read_unlock(); 6291 6292 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6293 6294 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6295 set_bit(STRIPE_HANDLE, &sh->state); 6296 6297 raid5_release_stripe(sh); 6298 6299 return RAID5_STRIPE_SECTORS(conf); 6300} 6301 6302static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6303 unsigned int offset) 6304{ 6305 /* We may not be able to submit a whole bio at once as there 6306 * may not be enough stripe_heads available. 6307 * We cannot pre-allocate enough stripe_heads as we may need 6308 * more than exist in the cache (if we allow ever large chunks). 6309 * So we do one stripe head at a time and record in 6310 * ->bi_hw_segments how many have been done. 6311 * 6312 * We *know* that this entire raid_bio is in one chunk, so 6313 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6314 */ 6315 struct stripe_head *sh; 6316 int dd_idx; 6317 sector_t sector, logical_sector, last_sector; 6318 int scnt = 0; 6319 int handled = 0; 6320 6321 logical_sector = raid_bio->bi_iter.bi_sector & 6322 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6323 sector = raid5_compute_sector(conf, logical_sector, 6324 0, &dd_idx, NULL); 6325 last_sector = bio_end_sector(raid_bio); 6326 6327 for (; logical_sector < last_sector; 6328 logical_sector += RAID5_STRIPE_SECTORS(conf), 6329 sector += RAID5_STRIPE_SECTORS(conf), 6330 scnt++) { 6331 6332 if (scnt < offset) 6333 /* already done this stripe */ 6334 continue; 6335 6336 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 6337 6338 if (!sh) { 6339 /* failed to get a stripe - must wait */ 6340 conf->retry_read_aligned = raid_bio; 6341 conf->retry_read_offset = scnt; 6342 return handled; 6343 } 6344 6345 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6346 raid5_release_stripe(sh); 6347 conf->retry_read_aligned = raid_bio; 6348 conf->retry_read_offset = scnt; 6349 return handled; 6350 } 6351 6352 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6353 handle_stripe(sh); 6354 raid5_release_stripe(sh); 6355 handled++; 6356 } 6357 6358 bio_endio(raid_bio); 6359 6360 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6361 wake_up(&conf->wait_for_quiescent); 6362 return handled; 6363} 6364 6365static int handle_active_stripes(struct r5conf *conf, int group, 6366 struct r5worker *worker, 6367 struct list_head *temp_inactive_list) 6368 __releases(&conf->device_lock) 6369 __acquires(&conf->device_lock) 6370{ 6371 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6372 int i, batch_size = 0, hash; 6373 bool release_inactive = false; 6374 6375 while (batch_size < MAX_STRIPE_BATCH && 6376 (sh = __get_priority_stripe(conf, group)) != NULL) 6377 batch[batch_size++] = sh; 6378 6379 if (batch_size == 0) { 6380 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6381 if (!list_empty(temp_inactive_list + i)) 6382 break; 6383 if (i == NR_STRIPE_HASH_LOCKS) { 6384 spin_unlock_irq(&conf->device_lock); 6385 log_flush_stripe_to_raid(conf); 6386 spin_lock_irq(&conf->device_lock); 6387 return batch_size; 6388 } 6389 release_inactive = true; 6390 } 6391 spin_unlock_irq(&conf->device_lock); 6392 6393 release_inactive_stripe_list(conf, temp_inactive_list, 6394 NR_STRIPE_HASH_LOCKS); 6395 6396 r5l_flush_stripe_to_raid(conf->log); 6397 if (release_inactive) { 6398 spin_lock_irq(&conf->device_lock); 6399 return 0; 6400 } 6401 6402 for (i = 0; i < batch_size; i++) 6403 handle_stripe(batch[i]); 6404 log_write_stripe_run(conf); 6405 6406 cond_resched(); 6407 6408 spin_lock_irq(&conf->device_lock); 6409 for (i = 0; i < batch_size; i++) { 6410 hash = batch[i]->hash_lock_index; 6411 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6412 } 6413 return batch_size; 6414} 6415 6416static void raid5_do_work(struct work_struct *work) 6417{ 6418 struct r5worker *worker = container_of(work, struct r5worker, work); 6419 struct r5worker_group *group = worker->group; 6420 struct r5conf *conf = group->conf; 6421 struct mddev *mddev = conf->mddev; 6422 int group_id = group - conf->worker_groups; 6423 int handled; 6424 struct blk_plug plug; 6425 6426 pr_debug("+++ raid5worker active\n"); 6427 6428 blk_start_plug(&plug); 6429 handled = 0; 6430 spin_lock_irq(&conf->device_lock); 6431 while (1) { 6432 int batch_size, released; 6433 6434 released = release_stripe_list(conf, worker->temp_inactive_list); 6435 6436 batch_size = handle_active_stripes(conf, group_id, worker, 6437 worker->temp_inactive_list); 6438 worker->working = false; 6439 if (!batch_size && !released) 6440 break; 6441 handled += batch_size; 6442 wait_event_lock_irq(mddev->sb_wait, 6443 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6444 conf->device_lock); 6445 } 6446 pr_debug("%d stripes handled\n", handled); 6447 6448 spin_unlock_irq(&conf->device_lock); 6449 6450 flush_deferred_bios(conf); 6451 6452 r5l_flush_stripe_to_raid(conf->log); 6453 6454 async_tx_issue_pending_all(); 6455 blk_finish_plug(&plug); 6456 6457 pr_debug("--- raid5worker inactive\n"); 6458} 6459 6460/* 6461 * This is our raid5 kernel thread. 6462 * 6463 * We scan the hash table for stripes which can be handled now. 6464 * During the scan, completed stripes are saved for us by the interrupt 6465 * handler, so that they will not have to wait for our next wakeup. 6466 */ 6467static void raid5d(struct md_thread *thread) 6468{ 6469 struct mddev *mddev = thread->mddev; 6470 struct r5conf *conf = mddev->private; 6471 int handled; 6472 struct blk_plug plug; 6473 6474 pr_debug("+++ raid5d active\n"); 6475 6476 md_check_recovery(mddev); 6477 6478 blk_start_plug(&plug); 6479 handled = 0; 6480 spin_lock_irq(&conf->device_lock); 6481 while (1) { 6482 struct bio *bio; 6483 int batch_size, released; 6484 unsigned int offset; 6485 6486 released = release_stripe_list(conf, conf->temp_inactive_list); 6487 if (released) 6488 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6489 6490 if ( 6491 !list_empty(&conf->bitmap_list)) { 6492 /* Now is a good time to flush some bitmap updates */ 6493 conf->seq_flush++; 6494 spin_unlock_irq(&conf->device_lock); 6495 md_bitmap_unplug(mddev->bitmap); 6496 spin_lock_irq(&conf->device_lock); 6497 conf->seq_write = conf->seq_flush; 6498 activate_bit_delay(conf, conf->temp_inactive_list); 6499 } 6500 raid5_activate_delayed(conf); 6501 6502 while ((bio = remove_bio_from_retry(conf, &offset))) { 6503 int ok; 6504 spin_unlock_irq(&conf->device_lock); 6505 ok = retry_aligned_read(conf, bio, offset); 6506 spin_lock_irq(&conf->device_lock); 6507 if (!ok) 6508 break; 6509 handled++; 6510 } 6511 6512 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6513 conf->temp_inactive_list); 6514 if (!batch_size && !released) 6515 break; 6516 handled += batch_size; 6517 6518 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6519 spin_unlock_irq(&conf->device_lock); 6520 md_check_recovery(mddev); 6521 spin_lock_irq(&conf->device_lock); 6522 } 6523 } 6524 pr_debug("%d stripes handled\n", handled); 6525 6526 spin_unlock_irq(&conf->device_lock); 6527 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6528 mutex_trylock(&conf->cache_size_mutex)) { 6529 grow_one_stripe(conf, __GFP_NOWARN); 6530 /* Set flag even if allocation failed. This helps 6531 * slow down allocation requests when mem is short 6532 */ 6533 set_bit(R5_DID_ALLOC, &conf->cache_state); 6534 mutex_unlock(&conf->cache_size_mutex); 6535 } 6536 6537 flush_deferred_bios(conf); 6538 6539 r5l_flush_stripe_to_raid(conf->log); 6540 6541 async_tx_issue_pending_all(); 6542 blk_finish_plug(&plug); 6543 6544 pr_debug("--- raid5d inactive\n"); 6545} 6546 6547static ssize_t 6548raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6549{ 6550 struct r5conf *conf; 6551 int ret = 0; 6552 spin_lock(&mddev->lock); 6553 conf = mddev->private; 6554 if (conf) 6555 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6556 spin_unlock(&mddev->lock); 6557 return ret; 6558} 6559 6560int 6561raid5_set_cache_size(struct mddev *mddev, int size) 6562{ 6563 int result = 0; 6564 struct r5conf *conf = mddev->private; 6565 6566 if (size <= 16 || size > 32768) 6567 return -EINVAL; 6568 6569 conf->min_nr_stripes = size; 6570 mutex_lock(&conf->cache_size_mutex); 6571 while (size < conf->max_nr_stripes && 6572 drop_one_stripe(conf)) 6573 ; 6574 mutex_unlock(&conf->cache_size_mutex); 6575 6576 md_allow_write(mddev); 6577 6578 mutex_lock(&conf->cache_size_mutex); 6579 while (size > conf->max_nr_stripes) 6580 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6581 conf->min_nr_stripes = conf->max_nr_stripes; 6582 result = -ENOMEM; 6583 break; 6584 } 6585 mutex_unlock(&conf->cache_size_mutex); 6586 6587 return result; 6588} 6589EXPORT_SYMBOL(raid5_set_cache_size); 6590 6591static ssize_t 6592raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6593{ 6594 struct r5conf *conf; 6595 unsigned long new; 6596 int err; 6597 6598 if (len >= PAGE_SIZE) 6599 return -EINVAL; 6600 if (kstrtoul(page, 10, &new)) 6601 return -EINVAL; 6602 err = mddev_lock(mddev); 6603 if (err) 6604 return err; 6605 conf = mddev->private; 6606 if (!conf) 6607 err = -ENODEV; 6608 else 6609 err = raid5_set_cache_size(mddev, new); 6610 mddev_unlock(mddev); 6611 6612 return err ?: len; 6613} 6614 6615static struct md_sysfs_entry 6616raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6617 raid5_show_stripe_cache_size, 6618 raid5_store_stripe_cache_size); 6619 6620static ssize_t 6621raid5_show_rmw_level(struct mddev *mddev, char *page) 6622{ 6623 struct r5conf *conf = mddev->private; 6624 if (conf) 6625 return sprintf(page, "%d\n", conf->rmw_level); 6626 else 6627 return 0; 6628} 6629 6630static ssize_t 6631raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6632{ 6633 struct r5conf *conf = mddev->private; 6634 unsigned long new; 6635 6636 if (!conf) 6637 return -ENODEV; 6638 6639 if (len >= PAGE_SIZE) 6640 return -EINVAL; 6641 6642 if (kstrtoul(page, 10, &new)) 6643 return -EINVAL; 6644 6645 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6646 return -EINVAL; 6647 6648 if (new != PARITY_DISABLE_RMW && 6649 new != PARITY_ENABLE_RMW && 6650 new != PARITY_PREFER_RMW) 6651 return -EINVAL; 6652 6653 conf->rmw_level = new; 6654 return len; 6655} 6656 6657static struct md_sysfs_entry 6658raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6659 raid5_show_rmw_level, 6660 raid5_store_rmw_level); 6661 6662static ssize_t 6663raid5_show_stripe_size(struct mddev *mddev, char *page) 6664{ 6665 struct r5conf *conf; 6666 int ret = 0; 6667 6668 spin_lock(&mddev->lock); 6669 conf = mddev->private; 6670 if (conf) 6671 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf)); 6672 spin_unlock(&mddev->lock); 6673 return ret; 6674} 6675 6676#if PAGE_SIZE != DEFAULT_STRIPE_SIZE 6677static ssize_t 6678raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len) 6679{ 6680 struct r5conf *conf; 6681 unsigned long new; 6682 int err; 6683 int size; 6684 6685 if (len >= PAGE_SIZE) 6686 return -EINVAL; 6687 if (kstrtoul(page, 10, &new)) 6688 return -EINVAL; 6689 6690 /* 6691 * The value should not be bigger than PAGE_SIZE. It requires to 6692 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power 6693 * of two. 6694 */ 6695 if (new % DEFAULT_STRIPE_SIZE != 0 || 6696 new > PAGE_SIZE || new == 0 || 6697 new != roundup_pow_of_two(new)) 6698 return -EINVAL; 6699 6700 err = mddev_lock(mddev); 6701 if (err) 6702 return err; 6703 6704 conf = mddev->private; 6705 if (!conf) { 6706 err = -ENODEV; 6707 goto out_unlock; 6708 } 6709 6710 if (new == conf->stripe_size) 6711 goto out_unlock; 6712 6713 pr_debug("md/raid: change stripe_size from %lu to %lu\n", 6714 conf->stripe_size, new); 6715 6716 if (mddev->sync_thread || 6717 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6718 mddev->reshape_position != MaxSector || 6719 mddev->sysfs_active) { 6720 err = -EBUSY; 6721 goto out_unlock; 6722 } 6723 6724 mddev_suspend(mddev); 6725 mutex_lock(&conf->cache_size_mutex); 6726 size = conf->max_nr_stripes; 6727 6728 shrink_stripes(conf); 6729 6730 conf->stripe_size = new; 6731 conf->stripe_shift = ilog2(new) - 9; 6732 conf->stripe_sectors = new >> 9; 6733 if (grow_stripes(conf, size)) { 6734 pr_warn("md/raid:%s: couldn't allocate buffers\n", 6735 mdname(mddev)); 6736 err = -ENOMEM; 6737 } 6738 mutex_unlock(&conf->cache_size_mutex); 6739 mddev_resume(mddev); 6740 6741out_unlock: 6742 mddev_unlock(mddev); 6743 return err ?: len; 6744} 6745 6746static struct md_sysfs_entry 6747raid5_stripe_size = __ATTR(stripe_size, 0644, 6748 raid5_show_stripe_size, 6749 raid5_store_stripe_size); 6750#else 6751static struct md_sysfs_entry 6752raid5_stripe_size = __ATTR(stripe_size, 0444, 6753 raid5_show_stripe_size, 6754 NULL); 6755#endif 6756 6757static ssize_t 6758raid5_show_preread_threshold(struct mddev *mddev, char *page) 6759{ 6760 struct r5conf *conf; 6761 int ret = 0; 6762 spin_lock(&mddev->lock); 6763 conf = mddev->private; 6764 if (conf) 6765 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6766 spin_unlock(&mddev->lock); 6767 return ret; 6768} 6769 6770static ssize_t 6771raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6772{ 6773 struct r5conf *conf; 6774 unsigned long new; 6775 int err; 6776 6777 if (len >= PAGE_SIZE) 6778 return -EINVAL; 6779 if (kstrtoul(page, 10, &new)) 6780 return -EINVAL; 6781 6782 err = mddev_lock(mddev); 6783 if (err) 6784 return err; 6785 conf = mddev->private; 6786 if (!conf) 6787 err = -ENODEV; 6788 else if (new > conf->min_nr_stripes) 6789 err = -EINVAL; 6790 else 6791 conf->bypass_threshold = new; 6792 mddev_unlock(mddev); 6793 return err ?: len; 6794} 6795 6796static struct md_sysfs_entry 6797raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6798 S_IRUGO | S_IWUSR, 6799 raid5_show_preread_threshold, 6800 raid5_store_preread_threshold); 6801 6802static ssize_t 6803raid5_show_skip_copy(struct mddev *mddev, char *page) 6804{ 6805 struct r5conf *conf; 6806 int ret = 0; 6807 spin_lock(&mddev->lock); 6808 conf = mddev->private; 6809 if (conf) 6810 ret = sprintf(page, "%d\n", conf->skip_copy); 6811 spin_unlock(&mddev->lock); 6812 return ret; 6813} 6814 6815static ssize_t 6816raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6817{ 6818 struct r5conf *conf; 6819 unsigned long new; 6820 int err; 6821 6822 if (len >= PAGE_SIZE) 6823 return -EINVAL; 6824 if (kstrtoul(page, 10, &new)) 6825 return -EINVAL; 6826 new = !!new; 6827 6828 err = mddev_lock(mddev); 6829 if (err) 6830 return err; 6831 conf = mddev->private; 6832 if (!conf) 6833 err = -ENODEV; 6834 else if (new != conf->skip_copy) { 6835 struct request_queue *q = mddev->queue; 6836 6837 mddev_suspend(mddev); 6838 conf->skip_copy = new; 6839 if (new) 6840 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 6841 else 6842 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 6843 mddev_resume(mddev); 6844 } 6845 mddev_unlock(mddev); 6846 return err ?: len; 6847} 6848 6849static struct md_sysfs_entry 6850raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6851 raid5_show_skip_copy, 6852 raid5_store_skip_copy); 6853 6854static ssize_t 6855stripe_cache_active_show(struct mddev *mddev, char *page) 6856{ 6857 struct r5conf *conf = mddev->private; 6858 if (conf) 6859 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6860 else 6861 return 0; 6862} 6863 6864static struct md_sysfs_entry 6865raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6866 6867static ssize_t 6868raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6869{ 6870 struct r5conf *conf; 6871 int ret = 0; 6872 spin_lock(&mddev->lock); 6873 conf = mddev->private; 6874 if (conf) 6875 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6876 spin_unlock(&mddev->lock); 6877 return ret; 6878} 6879 6880static int alloc_thread_groups(struct r5conf *conf, int cnt, 6881 int *group_cnt, 6882 struct r5worker_group **worker_groups); 6883static ssize_t 6884raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6885{ 6886 struct r5conf *conf; 6887 unsigned int new; 6888 int err; 6889 struct r5worker_group *new_groups, *old_groups; 6890 int group_cnt; 6891 6892 if (len >= PAGE_SIZE) 6893 return -EINVAL; 6894 if (kstrtouint(page, 10, &new)) 6895 return -EINVAL; 6896 /* 8192 should be big enough */ 6897 if (new > 8192) 6898 return -EINVAL; 6899 6900 err = mddev_lock(mddev); 6901 if (err) 6902 return err; 6903 conf = mddev->private; 6904 if (!conf) 6905 err = -ENODEV; 6906 else if (new != conf->worker_cnt_per_group) { 6907 mddev_suspend(mddev); 6908 6909 old_groups = conf->worker_groups; 6910 if (old_groups) 6911 flush_workqueue(raid5_wq); 6912 6913 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 6914 if (!err) { 6915 spin_lock_irq(&conf->device_lock); 6916 conf->group_cnt = group_cnt; 6917 conf->worker_cnt_per_group = new; 6918 conf->worker_groups = new_groups; 6919 spin_unlock_irq(&conf->device_lock); 6920 6921 if (old_groups) 6922 kfree(old_groups[0].workers); 6923 kfree(old_groups); 6924 } 6925 mddev_resume(mddev); 6926 } 6927 mddev_unlock(mddev); 6928 6929 return err ?: len; 6930} 6931 6932static struct md_sysfs_entry 6933raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6934 raid5_show_group_thread_cnt, 6935 raid5_store_group_thread_cnt); 6936 6937static struct attribute *raid5_attrs[] = { 6938 &raid5_stripecache_size.attr, 6939 &raid5_stripecache_active.attr, 6940 &raid5_preread_bypass_threshold.attr, 6941 &raid5_group_thread_cnt.attr, 6942 &raid5_skip_copy.attr, 6943 &raid5_rmw_level.attr, 6944 &raid5_stripe_size.attr, 6945 &r5c_journal_mode.attr, 6946 &ppl_write_hint.attr, 6947 NULL, 6948}; 6949static struct attribute_group raid5_attrs_group = { 6950 .name = NULL, 6951 .attrs = raid5_attrs, 6952}; 6953 6954static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 6955 struct r5worker_group **worker_groups) 6956{ 6957 int i, j, k; 6958 ssize_t size; 6959 struct r5worker *workers; 6960 6961 if (cnt == 0) { 6962 *group_cnt = 0; 6963 *worker_groups = NULL; 6964 return 0; 6965 } 6966 *group_cnt = num_possible_nodes(); 6967 size = sizeof(struct r5worker) * cnt; 6968 workers = kcalloc(size, *group_cnt, GFP_NOIO); 6969 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 6970 GFP_NOIO); 6971 if (!*worker_groups || !workers) { 6972 kfree(workers); 6973 kfree(*worker_groups); 6974 return -ENOMEM; 6975 } 6976 6977 for (i = 0; i < *group_cnt; i++) { 6978 struct r5worker_group *group; 6979 6980 group = &(*worker_groups)[i]; 6981 INIT_LIST_HEAD(&group->handle_list); 6982 INIT_LIST_HEAD(&group->loprio_list); 6983 group->conf = conf; 6984 group->workers = workers + i * cnt; 6985 6986 for (j = 0; j < cnt; j++) { 6987 struct r5worker *worker = group->workers + j; 6988 worker->group = group; 6989 INIT_WORK(&worker->work, raid5_do_work); 6990 6991 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6992 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6993 } 6994 } 6995 6996 return 0; 6997} 6998 6999static void free_thread_groups(struct r5conf *conf) 7000{ 7001 if (conf->worker_groups) 7002 kfree(conf->worker_groups[0].workers); 7003 kfree(conf->worker_groups); 7004 conf->worker_groups = NULL; 7005} 7006 7007static sector_t 7008raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 7009{ 7010 struct r5conf *conf = mddev->private; 7011 7012 if (!sectors) 7013 sectors = mddev->dev_sectors; 7014 if (!raid_disks) 7015 /* size is defined by the smallest of previous and new size */ 7016 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 7017 7018 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7019 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 7020 return sectors * (raid_disks - conf->max_degraded); 7021} 7022 7023static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7024{ 7025 safe_put_page(percpu->spare_page); 7026 percpu->spare_page = NULL; 7027 kvfree(percpu->scribble); 7028 percpu->scribble = NULL; 7029} 7030 7031static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7032{ 7033 if (conf->level == 6 && !percpu->spare_page) { 7034 percpu->spare_page = alloc_page(GFP_KERNEL); 7035 if (!percpu->spare_page) 7036 return -ENOMEM; 7037 } 7038 7039 if (scribble_alloc(percpu, 7040 max(conf->raid_disks, 7041 conf->previous_raid_disks), 7042 max(conf->chunk_sectors, 7043 conf->prev_chunk_sectors) 7044 / RAID5_STRIPE_SECTORS(conf))) { 7045 free_scratch_buffer(conf, percpu); 7046 return -ENOMEM; 7047 } 7048 7049 return 0; 7050} 7051 7052static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 7053{ 7054 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7055 7056 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 7057 return 0; 7058} 7059 7060static void raid5_free_percpu(struct r5conf *conf) 7061{ 7062 if (!conf->percpu) 7063 return; 7064 7065 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7066 free_percpu(conf->percpu); 7067} 7068 7069static void free_conf(struct r5conf *conf) 7070{ 7071 int i; 7072 7073 log_exit(conf); 7074 7075 unregister_shrinker(&conf->shrinker); 7076 free_thread_groups(conf); 7077 shrink_stripes(conf); 7078 raid5_free_percpu(conf); 7079 for (i = 0; i < conf->pool_size; i++) 7080 if (conf->disks[i].extra_page) 7081 put_page(conf->disks[i].extra_page); 7082 kfree(conf->disks); 7083 bioset_exit(&conf->bio_split); 7084 kfree(conf->stripe_hashtbl); 7085 kfree(conf->pending_data); 7086 kfree(conf); 7087} 7088 7089static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 7090{ 7091 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7092 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 7093 7094 if (alloc_scratch_buffer(conf, percpu)) { 7095 pr_warn("%s: failed memory allocation for cpu%u\n", 7096 __func__, cpu); 7097 return -ENOMEM; 7098 } 7099 return 0; 7100} 7101 7102static int raid5_alloc_percpu(struct r5conf *conf) 7103{ 7104 int err = 0; 7105 7106 conf->percpu = alloc_percpu(struct raid5_percpu); 7107 if (!conf->percpu) 7108 return -ENOMEM; 7109 7110 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7111 if (!err) { 7112 conf->scribble_disks = max(conf->raid_disks, 7113 conf->previous_raid_disks); 7114 conf->scribble_sectors = max(conf->chunk_sectors, 7115 conf->prev_chunk_sectors); 7116 } 7117 return err; 7118} 7119 7120static unsigned long raid5_cache_scan(struct shrinker *shrink, 7121 struct shrink_control *sc) 7122{ 7123 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7124 unsigned long ret = SHRINK_STOP; 7125 7126 if (mutex_trylock(&conf->cache_size_mutex)) { 7127 ret= 0; 7128 while (ret < sc->nr_to_scan && 7129 conf->max_nr_stripes > conf->min_nr_stripes) { 7130 if (drop_one_stripe(conf) == 0) { 7131 ret = SHRINK_STOP; 7132 break; 7133 } 7134 ret++; 7135 } 7136 mutex_unlock(&conf->cache_size_mutex); 7137 } 7138 return ret; 7139} 7140 7141static unsigned long raid5_cache_count(struct shrinker *shrink, 7142 struct shrink_control *sc) 7143{ 7144 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7145 7146 if (conf->max_nr_stripes < conf->min_nr_stripes) 7147 /* unlikely, but not impossible */ 7148 return 0; 7149 return conf->max_nr_stripes - conf->min_nr_stripes; 7150} 7151 7152static struct r5conf *setup_conf(struct mddev *mddev) 7153{ 7154 struct r5conf *conf; 7155 int raid_disk, memory, max_disks; 7156 struct md_rdev *rdev; 7157 struct disk_info *disk; 7158 char pers_name[6]; 7159 int i; 7160 int group_cnt; 7161 struct r5worker_group *new_group; 7162 int ret; 7163 7164 if (mddev->new_level != 5 7165 && mddev->new_level != 4 7166 && mddev->new_level != 6) { 7167 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 7168 mdname(mddev), mddev->new_level); 7169 return ERR_PTR(-EIO); 7170 } 7171 if ((mddev->new_level == 5 7172 && !algorithm_valid_raid5(mddev->new_layout)) || 7173 (mddev->new_level == 6 7174 && !algorithm_valid_raid6(mddev->new_layout))) { 7175 pr_warn("md/raid:%s: layout %d not supported\n", 7176 mdname(mddev), mddev->new_layout); 7177 return ERR_PTR(-EIO); 7178 } 7179 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 7180 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 7181 mdname(mddev), mddev->raid_disks); 7182 return ERR_PTR(-EINVAL); 7183 } 7184 7185 if (!mddev->new_chunk_sectors || 7186 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 7187 !is_power_of_2(mddev->new_chunk_sectors)) { 7188 pr_warn("md/raid:%s: invalid chunk size %d\n", 7189 mdname(mddev), mddev->new_chunk_sectors << 9); 7190 return ERR_PTR(-EINVAL); 7191 } 7192 7193 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 7194 if (conf == NULL) 7195 goto abort; 7196 7197#if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7198 conf->stripe_size = DEFAULT_STRIPE_SIZE; 7199 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9; 7200 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9; 7201#endif 7202 INIT_LIST_HEAD(&conf->free_list); 7203 INIT_LIST_HEAD(&conf->pending_list); 7204 conf->pending_data = kcalloc(PENDING_IO_MAX, 7205 sizeof(struct r5pending_data), 7206 GFP_KERNEL); 7207 if (!conf->pending_data) 7208 goto abort; 7209 for (i = 0; i < PENDING_IO_MAX; i++) 7210 list_add(&conf->pending_data[i].sibling, &conf->free_list); 7211 /* Don't enable multi-threading by default*/ 7212 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 7213 conf->group_cnt = group_cnt; 7214 conf->worker_cnt_per_group = 0; 7215 conf->worker_groups = new_group; 7216 } else 7217 goto abort; 7218 spin_lock_init(&conf->device_lock); 7219 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock); 7220 mutex_init(&conf->cache_size_mutex); 7221 init_waitqueue_head(&conf->wait_for_quiescent); 7222 init_waitqueue_head(&conf->wait_for_stripe); 7223 init_waitqueue_head(&conf->wait_for_overlap); 7224 INIT_LIST_HEAD(&conf->handle_list); 7225 INIT_LIST_HEAD(&conf->loprio_list); 7226 INIT_LIST_HEAD(&conf->hold_list); 7227 INIT_LIST_HEAD(&conf->delayed_list); 7228 INIT_LIST_HEAD(&conf->bitmap_list); 7229 init_llist_head(&conf->released_stripes); 7230 atomic_set(&conf->active_stripes, 0); 7231 atomic_set(&conf->preread_active_stripes, 0); 7232 atomic_set(&conf->active_aligned_reads, 0); 7233 spin_lock_init(&conf->pending_bios_lock); 7234 conf->batch_bio_dispatch = true; 7235 rdev_for_each(rdev, mddev) { 7236 if (test_bit(Journal, &rdev->flags)) 7237 continue; 7238 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 7239 conf->batch_bio_dispatch = false; 7240 break; 7241 } 7242 } 7243 7244 conf->bypass_threshold = BYPASS_THRESHOLD; 7245 conf->recovery_disabled = mddev->recovery_disabled - 1; 7246 7247 conf->raid_disks = mddev->raid_disks; 7248 if (mddev->reshape_position == MaxSector) 7249 conf->previous_raid_disks = mddev->raid_disks; 7250 else 7251 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 7252 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 7253 7254 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 7255 GFP_KERNEL); 7256 7257 if (!conf->disks) 7258 goto abort; 7259 7260 for (i = 0; i < max_disks; i++) { 7261 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 7262 if (!conf->disks[i].extra_page) 7263 goto abort; 7264 } 7265 7266 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 7267 if (ret) 7268 goto abort; 7269 conf->mddev = mddev; 7270 7271 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 7272 goto abort; 7273 7274 /* We init hash_locks[0] separately to that it can be used 7275 * as the reference lock in the spin_lock_nest_lock() call 7276 * in lock_all_device_hash_locks_irq in order to convince 7277 * lockdep that we know what we are doing. 7278 */ 7279 spin_lock_init(conf->hash_locks); 7280 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 7281 spin_lock_init(conf->hash_locks + i); 7282 7283 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7284 INIT_LIST_HEAD(conf->inactive_list + i); 7285 7286 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7287 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7288 7289 atomic_set(&conf->r5c_cached_full_stripes, 0); 7290 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7291 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7292 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7293 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7294 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7295 7296 conf->level = mddev->new_level; 7297 conf->chunk_sectors = mddev->new_chunk_sectors; 7298 if (raid5_alloc_percpu(conf) != 0) 7299 goto abort; 7300 7301 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7302 7303 rdev_for_each(rdev, mddev) { 7304 raid_disk = rdev->raid_disk; 7305 if (raid_disk >= max_disks 7306 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7307 continue; 7308 disk = conf->disks + raid_disk; 7309 7310 if (test_bit(Replacement, &rdev->flags)) { 7311 if (disk->replacement) 7312 goto abort; 7313 disk->replacement = rdev; 7314 } else { 7315 if (disk->rdev) 7316 goto abort; 7317 disk->rdev = rdev; 7318 } 7319 7320 if (test_bit(In_sync, &rdev->flags)) { 7321 char b[BDEVNAME_SIZE]; 7322 pr_info("md/raid:%s: device %s operational as raid disk %d\n", 7323 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 7324 } else if (rdev->saved_raid_disk != raid_disk) 7325 /* Cannot rely on bitmap to complete recovery */ 7326 conf->fullsync = 1; 7327 } 7328 7329 conf->level = mddev->new_level; 7330 if (conf->level == 6) { 7331 conf->max_degraded = 2; 7332 if (raid6_call.xor_syndrome) 7333 conf->rmw_level = PARITY_ENABLE_RMW; 7334 else 7335 conf->rmw_level = PARITY_DISABLE_RMW; 7336 } else { 7337 conf->max_degraded = 1; 7338 conf->rmw_level = PARITY_ENABLE_RMW; 7339 } 7340 conf->algorithm = mddev->new_layout; 7341 conf->reshape_progress = mddev->reshape_position; 7342 if (conf->reshape_progress != MaxSector) { 7343 conf->prev_chunk_sectors = mddev->chunk_sectors; 7344 conf->prev_algo = mddev->layout; 7345 } else { 7346 conf->prev_chunk_sectors = conf->chunk_sectors; 7347 conf->prev_algo = conf->algorithm; 7348 } 7349 7350 conf->min_nr_stripes = NR_STRIPES; 7351 if (mddev->reshape_position != MaxSector) { 7352 int stripes = max_t(int, 7353 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4, 7354 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4); 7355 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7356 if (conf->min_nr_stripes != NR_STRIPES) 7357 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7358 mdname(mddev), conf->min_nr_stripes); 7359 } 7360 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7361 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7362 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7363 if (grow_stripes(conf, conf->min_nr_stripes)) { 7364 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7365 mdname(mddev), memory); 7366 goto abort; 7367 } else 7368 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7369 /* 7370 * Losing a stripe head costs more than the time to refill it, 7371 * it reduces the queue depth and so can hurt throughput. 7372 * So set it rather large, scaled by number of devices. 7373 */ 7374 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7375 conf->shrinker.scan_objects = raid5_cache_scan; 7376 conf->shrinker.count_objects = raid5_cache_count; 7377 conf->shrinker.batch = 128; 7378 conf->shrinker.flags = 0; 7379 if (register_shrinker(&conf->shrinker)) { 7380 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7381 mdname(mddev)); 7382 goto abort; 7383 } 7384 7385 sprintf(pers_name, "raid%d", mddev->new_level); 7386 conf->thread = md_register_thread(raid5d, mddev, pers_name); 7387 if (!conf->thread) { 7388 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7389 mdname(mddev)); 7390 goto abort; 7391 } 7392 7393 return conf; 7394 7395 abort: 7396 if (conf) { 7397 free_conf(conf); 7398 return ERR_PTR(-EIO); 7399 } else 7400 return ERR_PTR(-ENOMEM); 7401} 7402 7403static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7404{ 7405 switch (algo) { 7406 case ALGORITHM_PARITY_0: 7407 if (raid_disk < max_degraded) 7408 return 1; 7409 break; 7410 case ALGORITHM_PARITY_N: 7411 if (raid_disk >= raid_disks - max_degraded) 7412 return 1; 7413 break; 7414 case ALGORITHM_PARITY_0_6: 7415 if (raid_disk == 0 || 7416 raid_disk == raid_disks - 1) 7417 return 1; 7418 break; 7419 case ALGORITHM_LEFT_ASYMMETRIC_6: 7420 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7421 case ALGORITHM_LEFT_SYMMETRIC_6: 7422 case ALGORITHM_RIGHT_SYMMETRIC_6: 7423 if (raid_disk == raid_disks - 1) 7424 return 1; 7425 } 7426 return 0; 7427} 7428 7429static void raid5_set_io_opt(struct r5conf *conf) 7430{ 7431 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) * 7432 (conf->raid_disks - conf->max_degraded)); 7433} 7434 7435static int raid5_run(struct mddev *mddev) 7436{ 7437 struct r5conf *conf; 7438 int working_disks = 0; 7439 int dirty_parity_disks = 0; 7440 struct md_rdev *rdev; 7441 struct md_rdev *journal_dev = NULL; 7442 sector_t reshape_offset = 0; 7443 int i; 7444 long long min_offset_diff = 0; 7445 int first = 1; 7446 7447 if (mddev_init_writes_pending(mddev) < 0) 7448 return -ENOMEM; 7449 7450 if (mddev->recovery_cp != MaxSector) 7451 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7452 mdname(mddev)); 7453 7454 rdev_for_each(rdev, mddev) { 7455 long long diff; 7456 7457 if (test_bit(Journal, &rdev->flags)) { 7458 journal_dev = rdev; 7459 continue; 7460 } 7461 if (rdev->raid_disk < 0) 7462 continue; 7463 diff = (rdev->new_data_offset - rdev->data_offset); 7464 if (first) { 7465 min_offset_diff = diff; 7466 first = 0; 7467 } else if (mddev->reshape_backwards && 7468 diff < min_offset_diff) 7469 min_offset_diff = diff; 7470 else if (!mddev->reshape_backwards && 7471 diff > min_offset_diff) 7472 min_offset_diff = diff; 7473 } 7474 7475 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7476 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7477 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7478 mdname(mddev)); 7479 return -EINVAL; 7480 } 7481 7482 if (mddev->reshape_position != MaxSector) { 7483 /* Check that we can continue the reshape. 7484 * Difficulties arise if the stripe we would write to 7485 * next is at or after the stripe we would read from next. 7486 * For a reshape that changes the number of devices, this 7487 * is only possible for a very short time, and mdadm makes 7488 * sure that time appears to have past before assembling 7489 * the array. So we fail if that time hasn't passed. 7490 * For a reshape that keeps the number of devices the same 7491 * mdadm must be monitoring the reshape can keeping the 7492 * critical areas read-only and backed up. It will start 7493 * the array in read-only mode, so we check for that. 7494 */ 7495 sector_t here_new, here_old; 7496 int old_disks; 7497 int max_degraded = (mddev->level == 6 ? 2 : 1); 7498 int chunk_sectors; 7499 int new_data_disks; 7500 7501 if (journal_dev) { 7502 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7503 mdname(mddev)); 7504 return -EINVAL; 7505 } 7506 7507 if (mddev->new_level != mddev->level) { 7508 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7509 mdname(mddev)); 7510 return -EINVAL; 7511 } 7512 old_disks = mddev->raid_disks - mddev->delta_disks; 7513 /* reshape_position must be on a new-stripe boundary, and one 7514 * further up in new geometry must map after here in old 7515 * geometry. 7516 * If the chunk sizes are different, then as we perform reshape 7517 * in units of the largest of the two, reshape_position needs 7518 * be a multiple of the largest chunk size times new data disks. 7519 */ 7520 here_new = mddev->reshape_position; 7521 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7522 new_data_disks = mddev->raid_disks - max_degraded; 7523 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7524 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7525 mdname(mddev)); 7526 return -EINVAL; 7527 } 7528 reshape_offset = here_new * chunk_sectors; 7529 /* here_new is the stripe we will write to */ 7530 here_old = mddev->reshape_position; 7531 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7532 /* here_old is the first stripe that we might need to read 7533 * from */ 7534 if (mddev->delta_disks == 0) { 7535 /* We cannot be sure it is safe to start an in-place 7536 * reshape. It is only safe if user-space is monitoring 7537 * and taking constant backups. 7538 * mdadm always starts a situation like this in 7539 * readonly mode so it can take control before 7540 * allowing any writes. So just check for that. 7541 */ 7542 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7543 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7544 /* not really in-place - so OK */; 7545 else if (mddev->ro == 0) { 7546 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7547 mdname(mddev)); 7548 return -EINVAL; 7549 } 7550 } else if (mddev->reshape_backwards 7551 ? (here_new * chunk_sectors + min_offset_diff <= 7552 here_old * chunk_sectors) 7553 : (here_new * chunk_sectors >= 7554 here_old * chunk_sectors + (-min_offset_diff))) { 7555 /* Reading from the same stripe as writing to - bad */ 7556 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7557 mdname(mddev)); 7558 return -EINVAL; 7559 } 7560 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7561 /* OK, we should be able to continue; */ 7562 } else { 7563 BUG_ON(mddev->level != mddev->new_level); 7564 BUG_ON(mddev->layout != mddev->new_layout); 7565 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7566 BUG_ON(mddev->delta_disks != 0); 7567 } 7568 7569 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7570 test_bit(MD_HAS_PPL, &mddev->flags)) { 7571 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7572 mdname(mddev)); 7573 clear_bit(MD_HAS_PPL, &mddev->flags); 7574 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7575 } 7576 7577 if (mddev->private == NULL) 7578 conf = setup_conf(mddev); 7579 else 7580 conf = mddev->private; 7581 7582 if (IS_ERR(conf)) 7583 return PTR_ERR(conf); 7584 7585 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7586 if (!journal_dev) { 7587 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7588 mdname(mddev)); 7589 mddev->ro = 1; 7590 set_disk_ro(mddev->gendisk, 1); 7591 } else if (mddev->recovery_cp == MaxSector) 7592 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7593 } 7594 7595 conf->min_offset_diff = min_offset_diff; 7596 mddev->thread = conf->thread; 7597 conf->thread = NULL; 7598 mddev->private = conf; 7599 7600 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7601 i++) { 7602 rdev = conf->disks[i].rdev; 7603 if (!rdev && conf->disks[i].replacement) { 7604 /* The replacement is all we have yet */ 7605 rdev = conf->disks[i].replacement; 7606 conf->disks[i].replacement = NULL; 7607 clear_bit(Replacement, &rdev->flags); 7608 conf->disks[i].rdev = rdev; 7609 } 7610 if (!rdev) 7611 continue; 7612 if (conf->disks[i].replacement && 7613 conf->reshape_progress != MaxSector) { 7614 /* replacements and reshape simply do not mix. */ 7615 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7616 goto abort; 7617 } 7618 if (test_bit(In_sync, &rdev->flags)) { 7619 working_disks++; 7620 continue; 7621 } 7622 /* This disc is not fully in-sync. However if it 7623 * just stored parity (beyond the recovery_offset), 7624 * when we don't need to be concerned about the 7625 * array being dirty. 7626 * When reshape goes 'backwards', we never have 7627 * partially completed devices, so we only need 7628 * to worry about reshape going forwards. 7629 */ 7630 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7631 if (mddev->major_version == 0 && 7632 mddev->minor_version > 90) 7633 rdev->recovery_offset = reshape_offset; 7634 7635 if (rdev->recovery_offset < reshape_offset) { 7636 /* We need to check old and new layout */ 7637 if (!only_parity(rdev->raid_disk, 7638 conf->algorithm, 7639 conf->raid_disks, 7640 conf->max_degraded)) 7641 continue; 7642 } 7643 if (!only_parity(rdev->raid_disk, 7644 conf->prev_algo, 7645 conf->previous_raid_disks, 7646 conf->max_degraded)) 7647 continue; 7648 dirty_parity_disks++; 7649 } 7650 7651 /* 7652 * 0 for a fully functional array, 1 or 2 for a degraded array. 7653 */ 7654 mddev->degraded = raid5_calc_degraded(conf); 7655 7656 if (has_failed(conf)) { 7657 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7658 mdname(mddev), mddev->degraded, conf->raid_disks); 7659 goto abort; 7660 } 7661 7662 /* device size must be a multiple of chunk size */ 7663 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 7664 mddev->resync_max_sectors = mddev->dev_sectors; 7665 7666 if (mddev->degraded > dirty_parity_disks && 7667 mddev->recovery_cp != MaxSector) { 7668 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7669 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7670 mdname(mddev)); 7671 else if (mddev->ok_start_degraded) 7672 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7673 mdname(mddev)); 7674 else { 7675 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7676 mdname(mddev)); 7677 goto abort; 7678 } 7679 } 7680 7681 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7682 mdname(mddev), conf->level, 7683 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7684 mddev->new_layout); 7685 7686 print_raid5_conf(conf); 7687 7688 if (conf->reshape_progress != MaxSector) { 7689 conf->reshape_safe = conf->reshape_progress; 7690 atomic_set(&conf->reshape_stripes, 0); 7691 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7692 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7693 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7694 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7695 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7696 "reshape"); 7697 if (!mddev->sync_thread) 7698 goto abort; 7699 } 7700 7701 /* Ok, everything is just fine now */ 7702 if (mddev->to_remove == &raid5_attrs_group) 7703 mddev->to_remove = NULL; 7704 else if (mddev->kobj.sd && 7705 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 7706 pr_warn("raid5: failed to create sysfs attributes for %s\n", 7707 mdname(mddev)); 7708 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7709 7710 if (mddev->queue) { 7711 int chunk_size; 7712 /* read-ahead size must cover two whole stripes, which 7713 * is 2 * (datadisks) * chunksize where 'n' is the 7714 * number of raid devices 7715 */ 7716 int data_disks = conf->previous_raid_disks - conf->max_degraded; 7717 int stripe = data_disks * 7718 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 7719 7720 chunk_size = mddev->chunk_sectors << 9; 7721 blk_queue_io_min(mddev->queue, chunk_size); 7722 raid5_set_io_opt(conf); 7723 mddev->queue->limits.raid_partial_stripes_expensive = 1; 7724 /* 7725 * We can only discard a whole stripe. It doesn't make sense to 7726 * discard data disk but write parity disk 7727 */ 7728 stripe = stripe * PAGE_SIZE; 7729 /* Round up to power of 2, as discard handling 7730 * currently assumes that */ 7731 while ((stripe-1) & stripe) 7732 stripe = (stripe | (stripe-1)) + 1; 7733 mddev->queue->limits.discard_alignment = stripe; 7734 mddev->queue->limits.discard_granularity = stripe; 7735 7736 blk_queue_max_write_same_sectors(mddev->queue, 0); 7737 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 7738 7739 rdev_for_each(rdev, mddev) { 7740 disk_stack_limits(mddev->gendisk, rdev->bdev, 7741 rdev->data_offset << 9); 7742 disk_stack_limits(mddev->gendisk, rdev->bdev, 7743 rdev->new_data_offset << 9); 7744 } 7745 7746 /* 7747 * zeroing is required, otherwise data 7748 * could be lost. Consider a scenario: discard a stripe 7749 * (the stripe could be inconsistent if 7750 * discard_zeroes_data is 0); write one disk of the 7751 * stripe (the stripe could be inconsistent again 7752 * depending on which disks are used to calculate 7753 * parity); the disk is broken; The stripe data of this 7754 * disk is lost. 7755 * 7756 * We only allow DISCARD if the sysadmin has confirmed that 7757 * only safe devices are in use by setting a module parameter. 7758 * A better idea might be to turn DISCARD into WRITE_ZEROES 7759 * requests, as that is required to be safe. 7760 */ 7761 if (devices_handle_discard_safely && 7762 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7763 mddev->queue->limits.discard_granularity >= stripe) 7764 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 7765 mddev->queue); 7766 else 7767 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 7768 mddev->queue); 7769 7770 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); 7771 } 7772 7773 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 7774 goto abort; 7775 7776 return 0; 7777abort: 7778 md_unregister_thread(&mddev->thread); 7779 print_raid5_conf(conf); 7780 free_conf(conf); 7781 mddev->private = NULL; 7782 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7783 return -EIO; 7784} 7785 7786static void raid5_free(struct mddev *mddev, void *priv) 7787{ 7788 struct r5conf *conf = priv; 7789 7790 free_conf(conf); 7791 mddev->to_remove = &raid5_attrs_group; 7792} 7793 7794static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7795{ 7796 struct r5conf *conf = mddev->private; 7797 int i; 7798 7799 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7800 conf->chunk_sectors / 2, mddev->layout); 7801 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7802 rcu_read_lock(); 7803 for (i = 0; i < conf->raid_disks; i++) { 7804 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7805 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7806 } 7807 rcu_read_unlock(); 7808 seq_printf (seq, "]"); 7809} 7810 7811static void print_raid5_conf (struct r5conf *conf) 7812{ 7813 int i; 7814 struct disk_info *tmp; 7815 7816 pr_debug("RAID conf printout:\n"); 7817 if (!conf) { 7818 pr_debug("(conf==NULL)\n"); 7819 return; 7820 } 7821 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 7822 conf->raid_disks, 7823 conf->raid_disks - conf->mddev->degraded); 7824 7825 for (i = 0; i < conf->raid_disks; i++) { 7826 char b[BDEVNAME_SIZE]; 7827 tmp = conf->disks + i; 7828 if (tmp->rdev) 7829 pr_debug(" disk %d, o:%d, dev:%s\n", 7830 i, !test_bit(Faulty, &tmp->rdev->flags), 7831 bdevname(tmp->rdev->bdev, b)); 7832 } 7833} 7834 7835static int raid5_spare_active(struct mddev *mddev) 7836{ 7837 int i; 7838 struct r5conf *conf = mddev->private; 7839 struct disk_info *tmp; 7840 int count = 0; 7841 unsigned long flags; 7842 7843 for (i = 0; i < conf->raid_disks; i++) { 7844 tmp = conf->disks + i; 7845 if (tmp->replacement 7846 && tmp->replacement->recovery_offset == MaxSector 7847 && !test_bit(Faulty, &tmp->replacement->flags) 7848 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7849 /* Replacement has just become active. */ 7850 if (!tmp->rdev 7851 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7852 count++; 7853 if (tmp->rdev) { 7854 /* Replaced device not technically faulty, 7855 * but we need to be sure it gets removed 7856 * and never re-added. 7857 */ 7858 set_bit(Faulty, &tmp->rdev->flags); 7859 sysfs_notify_dirent_safe( 7860 tmp->rdev->sysfs_state); 7861 } 7862 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7863 } else if (tmp->rdev 7864 && tmp->rdev->recovery_offset == MaxSector 7865 && !test_bit(Faulty, &tmp->rdev->flags) 7866 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7867 count++; 7868 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7869 } 7870 } 7871 spin_lock_irqsave(&conf->device_lock, flags); 7872 mddev->degraded = raid5_calc_degraded(conf); 7873 spin_unlock_irqrestore(&conf->device_lock, flags); 7874 print_raid5_conf(conf); 7875 return count; 7876} 7877 7878static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7879{ 7880 struct r5conf *conf = mddev->private; 7881 int err = 0; 7882 int number = rdev->raid_disk; 7883 struct md_rdev **rdevp; 7884 struct disk_info *p = conf->disks + number; 7885 7886 print_raid5_conf(conf); 7887 if (test_bit(Journal, &rdev->flags) && conf->log) { 7888 /* 7889 * we can't wait pending write here, as this is called in 7890 * raid5d, wait will deadlock. 7891 * neilb: there is no locking about new writes here, 7892 * so this cannot be safe. 7893 */ 7894 if (atomic_read(&conf->active_stripes) || 7895 atomic_read(&conf->r5c_cached_full_stripes) || 7896 atomic_read(&conf->r5c_cached_partial_stripes)) { 7897 return -EBUSY; 7898 } 7899 log_exit(conf); 7900 return 0; 7901 } 7902 if (rdev == p->rdev) 7903 rdevp = &p->rdev; 7904 else if (rdev == p->replacement) 7905 rdevp = &p->replacement; 7906 else 7907 return 0; 7908 7909 if (number >= conf->raid_disks && 7910 conf->reshape_progress == MaxSector) 7911 clear_bit(In_sync, &rdev->flags); 7912 7913 if (test_bit(In_sync, &rdev->flags) || 7914 atomic_read(&rdev->nr_pending)) { 7915 err = -EBUSY; 7916 goto abort; 7917 } 7918 /* Only remove non-faulty devices if recovery 7919 * isn't possible. 7920 */ 7921 if (!test_bit(Faulty, &rdev->flags) && 7922 mddev->recovery_disabled != conf->recovery_disabled && 7923 !has_failed(conf) && 7924 (!p->replacement || p->replacement == rdev) && 7925 number < conf->raid_disks) { 7926 err = -EBUSY; 7927 goto abort; 7928 } 7929 *rdevp = NULL; 7930 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7931 synchronize_rcu(); 7932 if (atomic_read(&rdev->nr_pending)) { 7933 /* lost the race, try later */ 7934 err = -EBUSY; 7935 *rdevp = rdev; 7936 } 7937 } 7938 if (!err) { 7939 err = log_modify(conf, rdev, false); 7940 if (err) 7941 goto abort; 7942 } 7943 if (p->replacement) { 7944 /* We must have just cleared 'rdev' */ 7945 p->rdev = p->replacement; 7946 clear_bit(Replacement, &p->replacement->flags); 7947 smp_mb(); /* Make sure other CPUs may see both as identical 7948 * but will never see neither - if they are careful 7949 */ 7950 p->replacement = NULL; 7951 7952 if (!err) 7953 err = log_modify(conf, p->rdev, true); 7954 } 7955 7956 clear_bit(WantReplacement, &rdev->flags); 7957abort: 7958 7959 print_raid5_conf(conf); 7960 return err; 7961} 7962 7963static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7964{ 7965 struct r5conf *conf = mddev->private; 7966 int ret, err = -EEXIST; 7967 int disk; 7968 struct disk_info *p; 7969 int first = 0; 7970 int last = conf->raid_disks - 1; 7971 7972 if (test_bit(Journal, &rdev->flags)) { 7973 if (conf->log) 7974 return -EBUSY; 7975 7976 rdev->raid_disk = 0; 7977 /* 7978 * The array is in readonly mode if journal is missing, so no 7979 * write requests running. We should be safe 7980 */ 7981 ret = log_init(conf, rdev, false); 7982 if (ret) 7983 return ret; 7984 7985 ret = r5l_start(conf->log); 7986 if (ret) 7987 return ret; 7988 7989 return 0; 7990 } 7991 if (mddev->recovery_disabled == conf->recovery_disabled) 7992 return -EBUSY; 7993 7994 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7995 /* no point adding a device */ 7996 return -EINVAL; 7997 7998 if (rdev->raid_disk >= 0) 7999 first = last = rdev->raid_disk; 8000 8001 /* 8002 * find the disk ... but prefer rdev->saved_raid_disk 8003 * if possible. 8004 */ 8005 if (rdev->saved_raid_disk >= 0 && 8006 rdev->saved_raid_disk >= first && 8007 rdev->saved_raid_disk <= last && 8008 conf->disks[rdev->saved_raid_disk].rdev == NULL) 8009 first = rdev->saved_raid_disk; 8010 8011 for (disk = first; disk <= last; disk++) { 8012 p = conf->disks + disk; 8013 if (p->rdev == NULL) { 8014 clear_bit(In_sync, &rdev->flags); 8015 rdev->raid_disk = disk; 8016 if (rdev->saved_raid_disk != disk) 8017 conf->fullsync = 1; 8018 rcu_assign_pointer(p->rdev, rdev); 8019 8020 err = log_modify(conf, rdev, true); 8021 8022 goto out; 8023 } 8024 } 8025 for (disk = first; disk <= last; disk++) { 8026 p = conf->disks + disk; 8027 if (test_bit(WantReplacement, &p->rdev->flags) && 8028 p->replacement == NULL) { 8029 clear_bit(In_sync, &rdev->flags); 8030 set_bit(Replacement, &rdev->flags); 8031 rdev->raid_disk = disk; 8032 err = 0; 8033 conf->fullsync = 1; 8034 rcu_assign_pointer(p->replacement, rdev); 8035 break; 8036 } 8037 } 8038out: 8039 print_raid5_conf(conf); 8040 return err; 8041} 8042 8043static int raid5_resize(struct mddev *mddev, sector_t sectors) 8044{ 8045 /* no resync is happening, and there is enough space 8046 * on all devices, so we can resize. 8047 * We need to make sure resync covers any new space. 8048 * If the array is shrinking we should possibly wait until 8049 * any io in the removed space completes, but it hardly seems 8050 * worth it. 8051 */ 8052 sector_t newsize; 8053 struct r5conf *conf = mddev->private; 8054 8055 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8056 return -EINVAL; 8057 sectors &= ~((sector_t)conf->chunk_sectors - 1); 8058 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 8059 if (mddev->external_size && 8060 mddev->array_sectors > newsize) 8061 return -EINVAL; 8062 if (mddev->bitmap) { 8063 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 8064 if (ret) 8065 return ret; 8066 } 8067 md_set_array_sectors(mddev, newsize); 8068 if (sectors > mddev->dev_sectors && 8069 mddev->recovery_cp > mddev->dev_sectors) { 8070 mddev->recovery_cp = mddev->dev_sectors; 8071 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8072 } 8073 mddev->dev_sectors = sectors; 8074 mddev->resync_max_sectors = sectors; 8075 return 0; 8076} 8077 8078static int check_stripe_cache(struct mddev *mddev) 8079{ 8080 /* Can only proceed if there are plenty of stripe_heads. 8081 * We need a minimum of one full stripe,, and for sensible progress 8082 * it is best to have about 4 times that. 8083 * If we require 4 times, then the default 256 4K stripe_heads will 8084 * allow for chunk sizes up to 256K, which is probably OK. 8085 * If the chunk size is greater, user-space should request more 8086 * stripe_heads first. 8087 */ 8088 struct r5conf *conf = mddev->private; 8089 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8090 > conf->min_nr_stripes || 8091 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8092 > conf->min_nr_stripes) { 8093 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 8094 mdname(mddev), 8095 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 8096 / RAID5_STRIPE_SIZE(conf))*4); 8097 return 0; 8098 } 8099 return 1; 8100} 8101 8102static int check_reshape(struct mddev *mddev) 8103{ 8104 struct r5conf *conf = mddev->private; 8105 8106 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8107 return -EINVAL; 8108 if (mddev->delta_disks == 0 && 8109 mddev->new_layout == mddev->layout && 8110 mddev->new_chunk_sectors == mddev->chunk_sectors) 8111 return 0; /* nothing to do */ 8112 if (has_failed(conf)) 8113 return -EINVAL; 8114 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 8115 /* We might be able to shrink, but the devices must 8116 * be made bigger first. 8117 * For raid6, 4 is the minimum size. 8118 * Otherwise 2 is the minimum 8119 */ 8120 int min = 2; 8121 if (mddev->level == 6) 8122 min = 4; 8123 if (mddev->raid_disks + mddev->delta_disks < min) 8124 return -EINVAL; 8125 } 8126 8127 if (!check_stripe_cache(mddev)) 8128 return -ENOSPC; 8129 8130 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 8131 mddev->delta_disks > 0) 8132 if (resize_chunks(conf, 8133 conf->previous_raid_disks 8134 + max(0, mddev->delta_disks), 8135 max(mddev->new_chunk_sectors, 8136 mddev->chunk_sectors) 8137 ) < 0) 8138 return -ENOMEM; 8139 8140 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 8141 return 0; /* never bother to shrink */ 8142 return resize_stripes(conf, (conf->previous_raid_disks 8143 + mddev->delta_disks)); 8144} 8145 8146static int raid5_start_reshape(struct mddev *mddev) 8147{ 8148 struct r5conf *conf = mddev->private; 8149 struct md_rdev *rdev; 8150 int spares = 0; 8151 unsigned long flags; 8152 8153 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8154 return -EBUSY; 8155 8156 if (!check_stripe_cache(mddev)) 8157 return -ENOSPC; 8158 8159 if (has_failed(conf)) 8160 return -EINVAL; 8161 8162 rdev_for_each(rdev, mddev) { 8163 if (!test_bit(In_sync, &rdev->flags) 8164 && !test_bit(Faulty, &rdev->flags)) 8165 spares++; 8166 } 8167 8168 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 8169 /* Not enough devices even to make a degraded array 8170 * of that size 8171 */ 8172 return -EINVAL; 8173 8174 /* Refuse to reduce size of the array. Any reductions in 8175 * array size must be through explicit setting of array_size 8176 * attribute. 8177 */ 8178 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 8179 < mddev->array_sectors) { 8180 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 8181 mdname(mddev)); 8182 return -EINVAL; 8183 } 8184 8185 atomic_set(&conf->reshape_stripes, 0); 8186 spin_lock_irq(&conf->device_lock); 8187 write_seqcount_begin(&conf->gen_lock); 8188 conf->previous_raid_disks = conf->raid_disks; 8189 conf->raid_disks += mddev->delta_disks; 8190 conf->prev_chunk_sectors = conf->chunk_sectors; 8191 conf->chunk_sectors = mddev->new_chunk_sectors; 8192 conf->prev_algo = conf->algorithm; 8193 conf->algorithm = mddev->new_layout; 8194 conf->generation++; 8195 /* Code that selects data_offset needs to see the generation update 8196 * if reshape_progress has been set - so a memory barrier needed. 8197 */ 8198 smp_mb(); 8199 if (mddev->reshape_backwards) 8200 conf->reshape_progress = raid5_size(mddev, 0, 0); 8201 else 8202 conf->reshape_progress = 0; 8203 conf->reshape_safe = conf->reshape_progress; 8204 write_seqcount_end(&conf->gen_lock); 8205 spin_unlock_irq(&conf->device_lock); 8206 8207 /* Now make sure any requests that proceeded on the assumption 8208 * the reshape wasn't running - like Discard or Read - have 8209 * completed. 8210 */ 8211 mddev_suspend(mddev); 8212 mddev_resume(mddev); 8213 8214 /* Add some new drives, as many as will fit. 8215 * We know there are enough to make the newly sized array work. 8216 * Don't add devices if we are reducing the number of 8217 * devices in the array. This is because it is not possible 8218 * to correctly record the "partially reconstructed" state of 8219 * such devices during the reshape and confusion could result. 8220 */ 8221 if (mddev->delta_disks >= 0) { 8222 rdev_for_each(rdev, mddev) 8223 if (rdev->raid_disk < 0 && 8224 !test_bit(Faulty, &rdev->flags)) { 8225 if (raid5_add_disk(mddev, rdev) == 0) { 8226 if (rdev->raid_disk 8227 >= conf->previous_raid_disks) 8228 set_bit(In_sync, &rdev->flags); 8229 else 8230 rdev->recovery_offset = 0; 8231 8232 /* Failure here is OK */ 8233 sysfs_link_rdev(mddev, rdev); 8234 } 8235 } else if (rdev->raid_disk >= conf->previous_raid_disks 8236 && !test_bit(Faulty, &rdev->flags)) { 8237 /* This is a spare that was manually added */ 8238 set_bit(In_sync, &rdev->flags); 8239 } 8240 8241 /* When a reshape changes the number of devices, 8242 * ->degraded is measured against the larger of the 8243 * pre and post number of devices. 8244 */ 8245 spin_lock_irqsave(&conf->device_lock, flags); 8246 mddev->degraded = raid5_calc_degraded(conf); 8247 spin_unlock_irqrestore(&conf->device_lock, flags); 8248 } 8249 mddev->raid_disks = conf->raid_disks; 8250 mddev->reshape_position = conf->reshape_progress; 8251 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8252 8253 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8254 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8255 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8256 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8257 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8258 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 8259 "reshape"); 8260 if (!mddev->sync_thread) { 8261 mddev->recovery = 0; 8262 spin_lock_irq(&conf->device_lock); 8263 write_seqcount_begin(&conf->gen_lock); 8264 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 8265 mddev->new_chunk_sectors = 8266 conf->chunk_sectors = conf->prev_chunk_sectors; 8267 mddev->new_layout = conf->algorithm = conf->prev_algo; 8268 rdev_for_each(rdev, mddev) 8269 rdev->new_data_offset = rdev->data_offset; 8270 smp_wmb(); 8271 conf->generation --; 8272 conf->reshape_progress = MaxSector; 8273 mddev->reshape_position = MaxSector; 8274 write_seqcount_end(&conf->gen_lock); 8275 spin_unlock_irq(&conf->device_lock); 8276 return -EAGAIN; 8277 } 8278 conf->reshape_checkpoint = jiffies; 8279 md_wakeup_thread(mddev->sync_thread); 8280 md_new_event(mddev); 8281 return 0; 8282} 8283 8284/* This is called from the reshape thread and should make any 8285 * changes needed in 'conf' 8286 */ 8287static void end_reshape(struct r5conf *conf) 8288{ 8289 8290 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 8291 struct md_rdev *rdev; 8292 8293 spin_lock_irq(&conf->device_lock); 8294 conf->previous_raid_disks = conf->raid_disks; 8295 md_finish_reshape(conf->mddev); 8296 smp_wmb(); 8297 conf->reshape_progress = MaxSector; 8298 conf->mddev->reshape_position = MaxSector; 8299 rdev_for_each(rdev, conf->mddev) 8300 if (rdev->raid_disk >= 0 && 8301 !test_bit(Journal, &rdev->flags) && 8302 !test_bit(In_sync, &rdev->flags)) 8303 rdev->recovery_offset = MaxSector; 8304 spin_unlock_irq(&conf->device_lock); 8305 wake_up(&conf->wait_for_overlap); 8306 8307 if (conf->mddev->queue) 8308 raid5_set_io_opt(conf); 8309 } 8310} 8311 8312/* This is called from the raid5d thread with mddev_lock held. 8313 * It makes config changes to the device. 8314 */ 8315static void raid5_finish_reshape(struct mddev *mddev) 8316{ 8317 struct r5conf *conf = mddev->private; 8318 8319 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8320 8321 if (mddev->delta_disks <= 0) { 8322 int d; 8323 spin_lock_irq(&conf->device_lock); 8324 mddev->degraded = raid5_calc_degraded(conf); 8325 spin_unlock_irq(&conf->device_lock); 8326 for (d = conf->raid_disks ; 8327 d < conf->raid_disks - mddev->delta_disks; 8328 d++) { 8329 struct md_rdev *rdev = conf->disks[d].rdev; 8330 if (rdev) 8331 clear_bit(In_sync, &rdev->flags); 8332 rdev = conf->disks[d].replacement; 8333 if (rdev) 8334 clear_bit(In_sync, &rdev->flags); 8335 } 8336 } 8337 mddev->layout = conf->algorithm; 8338 mddev->chunk_sectors = conf->chunk_sectors; 8339 mddev->reshape_position = MaxSector; 8340 mddev->delta_disks = 0; 8341 mddev->reshape_backwards = 0; 8342 } 8343} 8344 8345static void raid5_quiesce(struct mddev *mddev, int quiesce) 8346{ 8347 struct r5conf *conf = mddev->private; 8348 8349 if (quiesce) { 8350 /* stop all writes */ 8351 lock_all_device_hash_locks_irq(conf); 8352 /* '2' tells resync/reshape to pause so that all 8353 * active stripes can drain 8354 */ 8355 r5c_flush_cache(conf, INT_MAX); 8356 conf->quiesce = 2; 8357 wait_event_cmd(conf->wait_for_quiescent, 8358 atomic_read(&conf->active_stripes) == 0 && 8359 atomic_read(&conf->active_aligned_reads) == 0, 8360 unlock_all_device_hash_locks_irq(conf), 8361 lock_all_device_hash_locks_irq(conf)); 8362 conf->quiesce = 1; 8363 unlock_all_device_hash_locks_irq(conf); 8364 /* allow reshape to continue */ 8365 wake_up(&conf->wait_for_overlap); 8366 } else { 8367 /* re-enable writes */ 8368 lock_all_device_hash_locks_irq(conf); 8369 conf->quiesce = 0; 8370 wake_up(&conf->wait_for_quiescent); 8371 wake_up(&conf->wait_for_overlap); 8372 unlock_all_device_hash_locks_irq(conf); 8373 } 8374 log_quiesce(conf, quiesce); 8375} 8376 8377static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8378{ 8379 struct r0conf *raid0_conf = mddev->private; 8380 sector_t sectors; 8381 8382 /* for raid0 takeover only one zone is supported */ 8383 if (raid0_conf->nr_strip_zones > 1) { 8384 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8385 mdname(mddev)); 8386 return ERR_PTR(-EINVAL); 8387 } 8388 8389 sectors = raid0_conf->strip_zone[0].zone_end; 8390 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8391 mddev->dev_sectors = sectors; 8392 mddev->new_level = level; 8393 mddev->new_layout = ALGORITHM_PARITY_N; 8394 mddev->new_chunk_sectors = mddev->chunk_sectors; 8395 mddev->raid_disks += 1; 8396 mddev->delta_disks = 1; 8397 /* make sure it will be not marked as dirty */ 8398 mddev->recovery_cp = MaxSector; 8399 8400 return setup_conf(mddev); 8401} 8402 8403static void *raid5_takeover_raid1(struct mddev *mddev) 8404{ 8405 int chunksect; 8406 void *ret; 8407 8408 if (mddev->raid_disks != 2 || 8409 mddev->degraded > 1) 8410 return ERR_PTR(-EINVAL); 8411 8412 /* Should check if there are write-behind devices? */ 8413 8414 chunksect = 64*2; /* 64K by default */ 8415 8416 /* The array must be an exact multiple of chunksize */ 8417 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8418 chunksect >>= 1; 8419 8420 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private)) 8421 /* array size does not allow a suitable chunk size */ 8422 return ERR_PTR(-EINVAL); 8423 8424 mddev->new_level = 5; 8425 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8426 mddev->new_chunk_sectors = chunksect; 8427 8428 ret = setup_conf(mddev); 8429 if (!IS_ERR(ret)) 8430 mddev_clear_unsupported_flags(mddev, 8431 UNSUPPORTED_MDDEV_FLAGS); 8432 return ret; 8433} 8434 8435static void *raid5_takeover_raid6(struct mddev *mddev) 8436{ 8437 int new_layout; 8438 8439 switch (mddev->layout) { 8440 case ALGORITHM_LEFT_ASYMMETRIC_6: 8441 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8442 break; 8443 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8444 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8445 break; 8446 case ALGORITHM_LEFT_SYMMETRIC_6: 8447 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8448 break; 8449 case ALGORITHM_RIGHT_SYMMETRIC_6: 8450 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8451 break; 8452 case ALGORITHM_PARITY_0_6: 8453 new_layout = ALGORITHM_PARITY_0; 8454 break; 8455 case ALGORITHM_PARITY_N: 8456 new_layout = ALGORITHM_PARITY_N; 8457 break; 8458 default: 8459 return ERR_PTR(-EINVAL); 8460 } 8461 mddev->new_level = 5; 8462 mddev->new_layout = new_layout; 8463 mddev->delta_disks = -1; 8464 mddev->raid_disks -= 1; 8465 return setup_conf(mddev); 8466} 8467 8468static int raid5_check_reshape(struct mddev *mddev) 8469{ 8470 /* For a 2-drive array, the layout and chunk size can be changed 8471 * immediately as not restriping is needed. 8472 * For larger arrays we record the new value - after validation 8473 * to be used by a reshape pass. 8474 */ 8475 struct r5conf *conf = mddev->private; 8476 int new_chunk = mddev->new_chunk_sectors; 8477 8478 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8479 return -EINVAL; 8480 if (new_chunk > 0) { 8481 if (!is_power_of_2(new_chunk)) 8482 return -EINVAL; 8483 if (new_chunk < (PAGE_SIZE>>9)) 8484 return -EINVAL; 8485 if (mddev->array_sectors & (new_chunk-1)) 8486 /* not factor of array size */ 8487 return -EINVAL; 8488 } 8489 8490 /* They look valid */ 8491 8492 if (mddev->raid_disks == 2) { 8493 /* can make the change immediately */ 8494 if (mddev->new_layout >= 0) { 8495 conf->algorithm = mddev->new_layout; 8496 mddev->layout = mddev->new_layout; 8497 } 8498 if (new_chunk > 0) { 8499 conf->chunk_sectors = new_chunk ; 8500 mddev->chunk_sectors = new_chunk; 8501 } 8502 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8503 md_wakeup_thread(mddev->thread); 8504 } 8505 return check_reshape(mddev); 8506} 8507 8508static int raid6_check_reshape(struct mddev *mddev) 8509{ 8510 int new_chunk = mddev->new_chunk_sectors; 8511 8512 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8513 return -EINVAL; 8514 if (new_chunk > 0) { 8515 if (!is_power_of_2(new_chunk)) 8516 return -EINVAL; 8517 if (new_chunk < (PAGE_SIZE >> 9)) 8518 return -EINVAL; 8519 if (mddev->array_sectors & (new_chunk-1)) 8520 /* not factor of array size */ 8521 return -EINVAL; 8522 } 8523 8524 /* They look valid */ 8525 return check_reshape(mddev); 8526} 8527 8528static void *raid5_takeover(struct mddev *mddev) 8529{ 8530 /* raid5 can take over: 8531 * raid0 - if there is only one strip zone - make it a raid4 layout 8532 * raid1 - if there are two drives. We need to know the chunk size 8533 * raid4 - trivial - just use a raid4 layout. 8534 * raid6 - Providing it is a *_6 layout 8535 */ 8536 if (mddev->level == 0) 8537 return raid45_takeover_raid0(mddev, 5); 8538 if (mddev->level == 1) 8539 return raid5_takeover_raid1(mddev); 8540 if (mddev->level == 4) { 8541 mddev->new_layout = ALGORITHM_PARITY_N; 8542 mddev->new_level = 5; 8543 return setup_conf(mddev); 8544 } 8545 if (mddev->level == 6) 8546 return raid5_takeover_raid6(mddev); 8547 8548 return ERR_PTR(-EINVAL); 8549} 8550 8551static void *raid4_takeover(struct mddev *mddev) 8552{ 8553 /* raid4 can take over: 8554 * raid0 - if there is only one strip zone 8555 * raid5 - if layout is right 8556 */ 8557 if (mddev->level == 0) 8558 return raid45_takeover_raid0(mddev, 4); 8559 if (mddev->level == 5 && 8560 mddev->layout == ALGORITHM_PARITY_N) { 8561 mddev->new_layout = 0; 8562 mddev->new_level = 4; 8563 return setup_conf(mddev); 8564 } 8565 return ERR_PTR(-EINVAL); 8566} 8567 8568static struct md_personality raid5_personality; 8569 8570static void *raid6_takeover(struct mddev *mddev) 8571{ 8572 /* Currently can only take over a raid5. We map the 8573 * personality to an equivalent raid6 personality 8574 * with the Q block at the end. 8575 */ 8576 int new_layout; 8577 8578 if (mddev->pers != &raid5_personality) 8579 return ERR_PTR(-EINVAL); 8580 if (mddev->degraded > 1) 8581 return ERR_PTR(-EINVAL); 8582 if (mddev->raid_disks > 253) 8583 return ERR_PTR(-EINVAL); 8584 if (mddev->raid_disks < 3) 8585 return ERR_PTR(-EINVAL); 8586 8587 switch (mddev->layout) { 8588 case ALGORITHM_LEFT_ASYMMETRIC: 8589 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8590 break; 8591 case ALGORITHM_RIGHT_ASYMMETRIC: 8592 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8593 break; 8594 case ALGORITHM_LEFT_SYMMETRIC: 8595 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8596 break; 8597 case ALGORITHM_RIGHT_SYMMETRIC: 8598 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8599 break; 8600 case ALGORITHM_PARITY_0: 8601 new_layout = ALGORITHM_PARITY_0_6; 8602 break; 8603 case ALGORITHM_PARITY_N: 8604 new_layout = ALGORITHM_PARITY_N; 8605 break; 8606 default: 8607 return ERR_PTR(-EINVAL); 8608 } 8609 mddev->new_level = 6; 8610 mddev->new_layout = new_layout; 8611 mddev->delta_disks = 1; 8612 mddev->raid_disks += 1; 8613 return setup_conf(mddev); 8614} 8615 8616static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8617{ 8618 struct r5conf *conf; 8619 int err; 8620 8621 err = mddev_lock(mddev); 8622 if (err) 8623 return err; 8624 conf = mddev->private; 8625 if (!conf) { 8626 mddev_unlock(mddev); 8627 return -ENODEV; 8628 } 8629 8630 if (strncmp(buf, "ppl", 3) == 0) { 8631 /* ppl only works with RAID 5 */ 8632 if (!raid5_has_ppl(conf) && conf->level == 5) { 8633 err = log_init(conf, NULL, true); 8634 if (!err) { 8635 err = resize_stripes(conf, conf->pool_size); 8636 if (err) 8637 log_exit(conf); 8638 } 8639 } else 8640 err = -EINVAL; 8641 } else if (strncmp(buf, "resync", 6) == 0) { 8642 if (raid5_has_ppl(conf)) { 8643 mddev_suspend(mddev); 8644 log_exit(conf); 8645 mddev_resume(mddev); 8646 err = resize_stripes(conf, conf->pool_size); 8647 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8648 r5l_log_disk_error(conf)) { 8649 bool journal_dev_exists = false; 8650 struct md_rdev *rdev; 8651 8652 rdev_for_each(rdev, mddev) 8653 if (test_bit(Journal, &rdev->flags)) { 8654 journal_dev_exists = true; 8655 break; 8656 } 8657 8658 if (!journal_dev_exists) { 8659 mddev_suspend(mddev); 8660 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8661 mddev_resume(mddev); 8662 } else /* need remove journal device first */ 8663 err = -EBUSY; 8664 } else 8665 err = -EINVAL; 8666 } else { 8667 err = -EINVAL; 8668 } 8669 8670 if (!err) 8671 md_update_sb(mddev, 1); 8672 8673 mddev_unlock(mddev); 8674 8675 return err; 8676} 8677 8678static int raid5_start(struct mddev *mddev) 8679{ 8680 struct r5conf *conf = mddev->private; 8681 8682 return r5l_start(conf->log); 8683} 8684 8685static struct md_personality raid6_personality = 8686{ 8687 .name = "raid6", 8688 .level = 6, 8689 .owner = THIS_MODULE, 8690 .make_request = raid5_make_request, 8691 .run = raid5_run, 8692 .start = raid5_start, 8693 .free = raid5_free, 8694 .status = raid5_status, 8695 .error_handler = raid5_error, 8696 .hot_add_disk = raid5_add_disk, 8697 .hot_remove_disk= raid5_remove_disk, 8698 .spare_active = raid5_spare_active, 8699 .sync_request = raid5_sync_request, 8700 .resize = raid5_resize, 8701 .size = raid5_size, 8702 .check_reshape = raid6_check_reshape, 8703 .start_reshape = raid5_start_reshape, 8704 .finish_reshape = raid5_finish_reshape, 8705 .quiesce = raid5_quiesce, 8706 .takeover = raid6_takeover, 8707 .change_consistency_policy = raid5_change_consistency_policy, 8708}; 8709static struct md_personality raid5_personality = 8710{ 8711 .name = "raid5", 8712 .level = 5, 8713 .owner = THIS_MODULE, 8714 .make_request = raid5_make_request, 8715 .run = raid5_run, 8716 .start = raid5_start, 8717 .free = raid5_free, 8718 .status = raid5_status, 8719 .error_handler = raid5_error, 8720 .hot_add_disk = raid5_add_disk, 8721 .hot_remove_disk= raid5_remove_disk, 8722 .spare_active = raid5_spare_active, 8723 .sync_request = raid5_sync_request, 8724 .resize = raid5_resize, 8725 .size = raid5_size, 8726 .check_reshape = raid5_check_reshape, 8727 .start_reshape = raid5_start_reshape, 8728 .finish_reshape = raid5_finish_reshape, 8729 .quiesce = raid5_quiesce, 8730 .takeover = raid5_takeover, 8731 .change_consistency_policy = raid5_change_consistency_policy, 8732}; 8733 8734static struct md_personality raid4_personality = 8735{ 8736 .name = "raid4", 8737 .level = 4, 8738 .owner = THIS_MODULE, 8739 .make_request = raid5_make_request, 8740 .run = raid5_run, 8741 .start = raid5_start, 8742 .free = raid5_free, 8743 .status = raid5_status, 8744 .error_handler = raid5_error, 8745 .hot_add_disk = raid5_add_disk, 8746 .hot_remove_disk= raid5_remove_disk, 8747 .spare_active = raid5_spare_active, 8748 .sync_request = raid5_sync_request, 8749 .resize = raid5_resize, 8750 .size = raid5_size, 8751 .check_reshape = raid5_check_reshape, 8752 .start_reshape = raid5_start_reshape, 8753 .finish_reshape = raid5_finish_reshape, 8754 .quiesce = raid5_quiesce, 8755 .takeover = raid4_takeover, 8756 .change_consistency_policy = raid5_change_consistency_policy, 8757}; 8758 8759static int __init raid5_init(void) 8760{ 8761 int ret; 8762 8763 raid5_wq = alloc_workqueue("raid5wq", 8764 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 8765 if (!raid5_wq) 8766 return -ENOMEM; 8767 8768 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 8769 "md/raid5:prepare", 8770 raid456_cpu_up_prepare, 8771 raid456_cpu_dead); 8772 if (ret) { 8773 destroy_workqueue(raid5_wq); 8774 return ret; 8775 } 8776 register_md_personality(&raid6_personality); 8777 register_md_personality(&raid5_personality); 8778 register_md_personality(&raid4_personality); 8779 return 0; 8780} 8781 8782static void raid5_exit(void) 8783{ 8784 unregister_md_personality(&raid6_personality); 8785 unregister_md_personality(&raid5_personality); 8786 unregister_md_personality(&raid4_personality); 8787 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 8788 destroy_workqueue(raid5_wq); 8789} 8790 8791module_init(raid5_init); 8792module_exit(raid5_exit); 8793MODULE_LICENSE("GPL"); 8794MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 8795MODULE_ALIAS("md-personality-4"); /* RAID5 */ 8796MODULE_ALIAS("md-raid5"); 8797MODULE_ALIAS("md-raid4"); 8798MODULE_ALIAS("md-level-5"); 8799MODULE_ALIAS("md-level-4"); 8800MODULE_ALIAS("md-personality-8"); /* RAID6 */ 8801MODULE_ALIAS("md-raid6"); 8802MODULE_ALIAS("md-level-6"); 8803 8804/* This used to be two separate modules, they were: */ 8805MODULE_ALIAS("raid5"); 8806MODULE_ALIAS("raid6"); 8807