xref: /kernel/linux/linux-5.10/drivers/md/raid5-ppl.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Partial Parity Log for closing the RAID5 write hole
4 * Copyright (c) 2017, Intel Corporation.
5 */
6
7#include <linux/kernel.h>
8#include <linux/blkdev.h>
9#include <linux/slab.h>
10#include <linux/crc32c.h>
11#include <linux/async_tx.h>
12#include <linux/raid/md_p.h>
13#include "md.h"
14#include "raid5.h"
15#include "raid5-log.h"
16
17/*
18 * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
19 * partial parity data. The header contains an array of entries
20 * (struct ppl_header_entry) which describe the logged write requests.
21 * Partial parity for the entries comes after the header, written in the same
22 * sequence as the entries:
23 *
24 * Header
25 *   entry0
26 *   ...
27 *   entryN
28 * PP data
29 *   PP for entry0
30 *   ...
31 *   PP for entryN
32 *
33 * An entry describes one or more consecutive stripe_heads, up to a full
34 * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
35 * number of stripe_heads in the entry and n is the number of modified data
36 * disks. Every stripe_head in the entry must write to the same data disks.
37 * An example of a valid case described by a single entry (writes to the first
38 * stripe of a 4 disk array, 16k chunk size):
39 *
40 * sh->sector   dd0   dd1   dd2    ppl
41 *            +-----+-----+-----+
42 * 0          | --- | --- | --- | +----+
43 * 8          | -W- | -W- | --- | | pp |   data_sector = 8
44 * 16         | -W- | -W- | --- | | pp |   data_size = 3 * 2 * 4k
45 * 24         | -W- | -W- | --- | | pp |   pp_size = 3 * 4k
46 *            +-----+-----+-----+ +----+
47 *
48 * data_sector is the first raid sector of the modified data, data_size is the
49 * total size of modified data and pp_size is the size of partial parity for
50 * this entry. Entries for full stripe writes contain no partial parity
51 * (pp_size = 0), they only mark the stripes for which parity should be
52 * recalculated after an unclean shutdown. Every entry holds a checksum of its
53 * partial parity, the header also has a checksum of the header itself.
54 *
55 * A write request is always logged to the PPL instance stored on the parity
56 * disk of the corresponding stripe. For each member disk there is one ppl_log
57 * used to handle logging for this disk, independently from others. They are
58 * grouped in child_logs array in struct ppl_conf, which is assigned to
59 * r5conf->log_private.
60 *
61 * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
62 * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
63 * can be appended to the last entry if it meets the conditions for a valid
64 * entry described above, otherwise a new entry is added. Checksums of entries
65 * are calculated incrementally as stripes containing partial parity are being
66 * added. ppl_submit_iounit() calculates the checksum of the header and submits
67 * a bio containing the header page and partial parity pages (sh->ppl_page) for
68 * all stripes of the io_unit. When the PPL write completes, the stripes
69 * associated with the io_unit are released and raid5d starts writing their data
70 * and parity. When all stripes are written, the io_unit is freed and the next
71 * can be submitted.
72 *
73 * An io_unit is used to gather stripes until it is submitted or becomes full
74 * (if the maximum number of entries or size of PPL is reached). Another io_unit
75 * can't be submitted until the previous has completed (PPL and stripe
76 * data+parity is written). The log->io_list tracks all io_units of a log
77 * (for a single member disk). New io_units are added to the end of the list
78 * and the first io_unit is submitted, if it is not submitted already.
79 * The current io_unit accepting new stripes is always at the end of the list.
80 *
81 * If write-back cache is enabled for any of the disks in the array, its data
82 * must be flushed before next io_unit is submitted.
83 */
84
85#define PPL_SPACE_SIZE (128 * 1024)
86
87struct ppl_conf {
88	struct mddev *mddev;
89
90	/* array of child logs, one for each raid disk */
91	struct ppl_log *child_logs;
92	int count;
93
94	int block_size;		/* the logical block size used for data_sector
95				 * in ppl_header_entry */
96	u32 signature;		/* raid array identifier */
97	atomic64_t seq;		/* current log write sequence number */
98
99	struct kmem_cache *io_kc;
100	mempool_t io_pool;
101	struct bio_set bs;
102	struct bio_set flush_bs;
103
104	/* used only for recovery */
105	int recovered_entries;
106	int mismatch_count;
107
108	/* stripes to retry if failed to allocate io_unit */
109	struct list_head no_mem_stripes;
110	spinlock_t no_mem_stripes_lock;
111
112	unsigned short write_hint;
113};
114
115struct ppl_log {
116	struct ppl_conf *ppl_conf;	/* shared between all log instances */
117
118	struct md_rdev *rdev;		/* array member disk associated with
119					 * this log instance */
120	struct mutex io_mutex;
121	struct ppl_io_unit *current_io;	/* current io_unit accepting new data
122					 * always at the end of io_list */
123	spinlock_t io_list_lock;
124	struct list_head io_list;	/* all io_units of this log */
125
126	sector_t next_io_sector;
127	unsigned int entry_space;
128	bool use_multippl;
129	bool wb_cache_on;
130	unsigned long disk_flush_bitmap;
131};
132
133#define PPL_IO_INLINE_BVECS 32
134
135struct ppl_io_unit {
136	struct ppl_log *log;
137
138	struct page *header_page;	/* for ppl_header */
139
140	unsigned int entries_count;	/* number of entries in ppl_header */
141	unsigned int pp_size;		/* total size current of partial parity */
142
143	u64 seq;			/* sequence number of this log write */
144	struct list_head log_sibling;	/* log->io_list */
145
146	struct list_head stripe_list;	/* stripes added to the io_unit */
147	atomic_t pending_stripes;	/* how many stripes not written to raid */
148	atomic_t pending_flushes;	/* how many disk flushes are in progress */
149
150	bool submitted;			/* true if write to log started */
151
152	/* inline bio and its biovec for submitting the iounit */
153	struct bio bio;
154	struct bio_vec biovec[PPL_IO_INLINE_BVECS];
155};
156
157struct dma_async_tx_descriptor *
158ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
159		       struct dma_async_tx_descriptor *tx)
160{
161	int disks = sh->disks;
162	struct page **srcs = percpu->scribble;
163	int count = 0, pd_idx = sh->pd_idx, i;
164	struct async_submit_ctl submit;
165
166	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
167
168	/*
169	 * Partial parity is the XOR of stripe data chunks that are not changed
170	 * during the write request. Depending on available data
171	 * (read-modify-write vs. reconstruct-write case) we calculate it
172	 * differently.
173	 */
174	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
175		/*
176		 * rmw: xor old data and parity from updated disks
177		 * This is calculated earlier by ops_run_prexor5() so just copy
178		 * the parity dev page.
179		 */
180		srcs[count++] = sh->dev[pd_idx].page;
181	} else if (sh->reconstruct_state == reconstruct_state_drain_run) {
182		/* rcw: xor data from all not updated disks */
183		for (i = disks; i--;) {
184			struct r5dev *dev = &sh->dev[i];
185			if (test_bit(R5_UPTODATE, &dev->flags))
186				srcs[count++] = dev->page;
187		}
188	} else {
189		return tx;
190	}
191
192	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
193			  NULL, sh, (void *) (srcs + sh->disks + 2));
194
195	if (count == 1)
196		tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
197				  &submit);
198	else
199		tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
200			       &submit);
201
202	return tx;
203}
204
205static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
206{
207	struct kmem_cache *kc = pool_data;
208	struct ppl_io_unit *io;
209
210	io = kmem_cache_alloc(kc, gfp_mask);
211	if (!io)
212		return NULL;
213
214	io->header_page = alloc_page(gfp_mask);
215	if (!io->header_page) {
216		kmem_cache_free(kc, io);
217		return NULL;
218	}
219
220	return io;
221}
222
223static void ppl_io_pool_free(void *element, void *pool_data)
224{
225	struct kmem_cache *kc = pool_data;
226	struct ppl_io_unit *io = element;
227
228	__free_page(io->header_page);
229	kmem_cache_free(kc, io);
230}
231
232static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
233					  struct stripe_head *sh)
234{
235	struct ppl_conf *ppl_conf = log->ppl_conf;
236	struct ppl_io_unit *io;
237	struct ppl_header *pplhdr;
238	struct page *header_page;
239
240	io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT);
241	if (!io)
242		return NULL;
243
244	header_page = io->header_page;
245	memset(io, 0, sizeof(*io));
246	io->header_page = header_page;
247
248	io->log = log;
249	INIT_LIST_HEAD(&io->log_sibling);
250	INIT_LIST_HEAD(&io->stripe_list);
251	atomic_set(&io->pending_stripes, 0);
252	atomic_set(&io->pending_flushes, 0);
253	bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS);
254
255	pplhdr = page_address(io->header_page);
256	clear_page(pplhdr);
257	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
258	pplhdr->signature = cpu_to_le32(ppl_conf->signature);
259
260	io->seq = atomic64_add_return(1, &ppl_conf->seq);
261	pplhdr->generation = cpu_to_le64(io->seq);
262
263	return io;
264}
265
266static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
267{
268	struct ppl_io_unit *io = log->current_io;
269	struct ppl_header_entry *e = NULL;
270	struct ppl_header *pplhdr;
271	int i;
272	sector_t data_sector = 0;
273	int data_disks = 0;
274	struct r5conf *conf = sh->raid_conf;
275
276	pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
277
278	/* check if current io_unit is full */
279	if (io && (io->pp_size == log->entry_space ||
280		   io->entries_count == PPL_HDR_MAX_ENTRIES)) {
281		pr_debug("%s: add io_unit blocked by seq: %llu\n",
282			 __func__, io->seq);
283		io = NULL;
284	}
285
286	/* add a new unit if there is none or the current is full */
287	if (!io) {
288		io = ppl_new_iounit(log, sh);
289		if (!io)
290			return -ENOMEM;
291		spin_lock_irq(&log->io_list_lock);
292		list_add_tail(&io->log_sibling, &log->io_list);
293		spin_unlock_irq(&log->io_list_lock);
294
295		log->current_io = io;
296	}
297
298	for (i = 0; i < sh->disks; i++) {
299		struct r5dev *dev = &sh->dev[i];
300
301		if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
302			if (!data_disks || dev->sector < data_sector)
303				data_sector = dev->sector;
304			data_disks++;
305		}
306	}
307	BUG_ON(!data_disks);
308
309	pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
310		 io->seq, (unsigned long long)data_sector, data_disks);
311
312	pplhdr = page_address(io->header_page);
313
314	if (io->entries_count > 0) {
315		struct ppl_header_entry *last =
316				&pplhdr->entries[io->entries_count - 1];
317		struct stripe_head *sh_last = list_last_entry(
318				&io->stripe_list, struct stripe_head, log_list);
319		u64 data_sector_last = le64_to_cpu(last->data_sector);
320		u32 data_size_last = le32_to_cpu(last->data_size);
321
322		/*
323		 * Check if we can append the stripe to the last entry. It must
324		 * be just after the last logged stripe and write to the same
325		 * disks. Use bit shift and logarithm to avoid 64-bit division.
326		 */
327		if ((sh->sector == sh_last->sector + RAID5_STRIPE_SECTORS(conf)) &&
328		    (data_sector >> ilog2(conf->chunk_sectors) ==
329		     data_sector_last >> ilog2(conf->chunk_sectors)) &&
330		    ((data_sector - data_sector_last) * data_disks ==
331		     data_size_last >> 9))
332			e = last;
333	}
334
335	if (!e) {
336		e = &pplhdr->entries[io->entries_count++];
337		e->data_sector = cpu_to_le64(data_sector);
338		e->parity_disk = cpu_to_le32(sh->pd_idx);
339		e->checksum = cpu_to_le32(~0);
340	}
341
342	le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
343
344	/* don't write any PP if full stripe write */
345	if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
346		le32_add_cpu(&e->pp_size, PAGE_SIZE);
347		io->pp_size += PAGE_SIZE;
348		e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
349						    page_address(sh->ppl_page),
350						    PAGE_SIZE));
351	}
352
353	list_add_tail(&sh->log_list, &io->stripe_list);
354	atomic_inc(&io->pending_stripes);
355	sh->ppl_io = io;
356
357	return 0;
358}
359
360int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
361{
362	struct ppl_conf *ppl_conf = conf->log_private;
363	struct ppl_io_unit *io = sh->ppl_io;
364	struct ppl_log *log;
365
366	if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
367	    !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
368	    !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
369		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
370		return -EAGAIN;
371	}
372
373	log = &ppl_conf->child_logs[sh->pd_idx];
374
375	mutex_lock(&log->io_mutex);
376
377	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
378		mutex_unlock(&log->io_mutex);
379		return -EAGAIN;
380	}
381
382	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
383	clear_bit(STRIPE_DELAYED, &sh->state);
384	atomic_inc(&sh->count);
385
386	if (ppl_log_stripe(log, sh)) {
387		spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
388		list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
389		spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
390	}
391
392	mutex_unlock(&log->io_mutex);
393
394	return 0;
395}
396
397static void ppl_log_endio(struct bio *bio)
398{
399	struct ppl_io_unit *io = bio->bi_private;
400	struct ppl_log *log = io->log;
401	struct ppl_conf *ppl_conf = log->ppl_conf;
402	struct stripe_head *sh, *next;
403
404	pr_debug("%s: seq: %llu\n", __func__, io->seq);
405
406	if (bio->bi_status)
407		md_error(ppl_conf->mddev, log->rdev);
408
409	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
410		list_del_init(&sh->log_list);
411
412		set_bit(STRIPE_HANDLE, &sh->state);
413		raid5_release_stripe(sh);
414	}
415}
416
417static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
418{
419	char b[BDEVNAME_SIZE];
420
421	pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n",
422		 __func__, io->seq, bio->bi_iter.bi_size,
423		 (unsigned long long)bio->bi_iter.bi_sector,
424		 bio_devname(bio, b));
425
426	submit_bio(bio);
427}
428
429static void ppl_submit_iounit(struct ppl_io_unit *io)
430{
431	struct ppl_log *log = io->log;
432	struct ppl_conf *ppl_conf = log->ppl_conf;
433	struct ppl_header *pplhdr = page_address(io->header_page);
434	struct bio *bio = &io->bio;
435	struct stripe_head *sh;
436	int i;
437
438	bio->bi_private = io;
439
440	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
441		ppl_log_endio(bio);
442		return;
443	}
444
445	for (i = 0; i < io->entries_count; i++) {
446		struct ppl_header_entry *e = &pplhdr->entries[i];
447
448		pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
449			 __func__, io->seq, i, le64_to_cpu(e->data_sector),
450			 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
451
452		e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
453					     ilog2(ppl_conf->block_size >> 9));
454		e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
455	}
456
457	pplhdr->entries_count = cpu_to_le32(io->entries_count);
458	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
459
460	/* Rewind the buffer if current PPL is larger then remaining space */
461	if (log->use_multippl &&
462	    log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector <
463	    (PPL_HEADER_SIZE + io->pp_size) >> 9)
464		log->next_io_sector = log->rdev->ppl.sector;
465
466
467	bio->bi_end_io = ppl_log_endio;
468	bio->bi_opf = REQ_OP_WRITE | REQ_FUA;
469	bio_set_dev(bio, log->rdev->bdev);
470	bio->bi_iter.bi_sector = log->next_io_sector;
471	bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
472	bio->bi_write_hint = ppl_conf->write_hint;
473
474	pr_debug("%s: log->current_io_sector: %llu\n", __func__,
475	    (unsigned long long)log->next_io_sector);
476
477	if (log->use_multippl)
478		log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9;
479
480	WARN_ON(log->disk_flush_bitmap != 0);
481
482	list_for_each_entry(sh, &io->stripe_list, log_list) {
483		for (i = 0; i < sh->disks; i++) {
484			struct r5dev *dev = &sh->dev[i];
485
486			if ((ppl_conf->child_logs[i].wb_cache_on) &&
487			    (test_bit(R5_Wantwrite, &dev->flags))) {
488				set_bit(i, &log->disk_flush_bitmap);
489			}
490		}
491
492		/* entries for full stripe writes have no partial parity */
493		if (test_bit(STRIPE_FULL_WRITE, &sh->state))
494			continue;
495
496		if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
497			struct bio *prev = bio;
498
499			bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES,
500					       &ppl_conf->bs);
501			bio->bi_opf = prev->bi_opf;
502			bio->bi_write_hint = prev->bi_write_hint;
503			bio_copy_dev(bio, prev);
504			bio->bi_iter.bi_sector = bio_end_sector(prev);
505			bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
506
507			bio_chain(bio, prev);
508			ppl_submit_iounit_bio(io, prev);
509		}
510	}
511
512	ppl_submit_iounit_bio(io, bio);
513}
514
515static void ppl_submit_current_io(struct ppl_log *log)
516{
517	struct ppl_io_unit *io;
518
519	spin_lock_irq(&log->io_list_lock);
520
521	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
522				      log_sibling);
523	if (io && io->submitted)
524		io = NULL;
525
526	spin_unlock_irq(&log->io_list_lock);
527
528	if (io) {
529		io->submitted = true;
530
531		if (io == log->current_io)
532			log->current_io = NULL;
533
534		ppl_submit_iounit(io);
535	}
536}
537
538void ppl_write_stripe_run(struct r5conf *conf)
539{
540	struct ppl_conf *ppl_conf = conf->log_private;
541	struct ppl_log *log;
542	int i;
543
544	for (i = 0; i < ppl_conf->count; i++) {
545		log = &ppl_conf->child_logs[i];
546
547		mutex_lock(&log->io_mutex);
548		ppl_submit_current_io(log);
549		mutex_unlock(&log->io_mutex);
550	}
551}
552
553static void ppl_io_unit_finished(struct ppl_io_unit *io)
554{
555	struct ppl_log *log = io->log;
556	struct ppl_conf *ppl_conf = log->ppl_conf;
557	struct r5conf *conf = ppl_conf->mddev->private;
558	unsigned long flags;
559
560	pr_debug("%s: seq: %llu\n", __func__, io->seq);
561
562	local_irq_save(flags);
563
564	spin_lock(&log->io_list_lock);
565	list_del(&io->log_sibling);
566	spin_unlock(&log->io_list_lock);
567
568	mempool_free(io, &ppl_conf->io_pool);
569
570	spin_lock(&ppl_conf->no_mem_stripes_lock);
571	if (!list_empty(&ppl_conf->no_mem_stripes)) {
572		struct stripe_head *sh;
573
574		sh = list_first_entry(&ppl_conf->no_mem_stripes,
575				      struct stripe_head, log_list);
576		list_del_init(&sh->log_list);
577		set_bit(STRIPE_HANDLE, &sh->state);
578		raid5_release_stripe(sh);
579	}
580	spin_unlock(&ppl_conf->no_mem_stripes_lock);
581
582	local_irq_restore(flags);
583
584	wake_up(&conf->wait_for_quiescent);
585}
586
587static void ppl_flush_endio(struct bio *bio)
588{
589	struct ppl_io_unit *io = bio->bi_private;
590	struct ppl_log *log = io->log;
591	struct ppl_conf *ppl_conf = log->ppl_conf;
592	struct r5conf *conf = ppl_conf->mddev->private;
593	char b[BDEVNAME_SIZE];
594
595	pr_debug("%s: dev: %s\n", __func__, bio_devname(bio, b));
596
597	if (bio->bi_status) {
598		struct md_rdev *rdev;
599
600		rcu_read_lock();
601		rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio));
602		if (rdev)
603			md_error(rdev->mddev, rdev);
604		rcu_read_unlock();
605	}
606
607	bio_put(bio);
608
609	if (atomic_dec_and_test(&io->pending_flushes)) {
610		ppl_io_unit_finished(io);
611		md_wakeup_thread(conf->mddev->thread);
612	}
613}
614
615static void ppl_do_flush(struct ppl_io_unit *io)
616{
617	struct ppl_log *log = io->log;
618	struct ppl_conf *ppl_conf = log->ppl_conf;
619	struct r5conf *conf = ppl_conf->mddev->private;
620	int raid_disks = conf->raid_disks;
621	int flushed_disks = 0;
622	int i;
623
624	atomic_set(&io->pending_flushes, raid_disks);
625
626	for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) {
627		struct md_rdev *rdev;
628		struct block_device *bdev = NULL;
629
630		rcu_read_lock();
631		rdev = rcu_dereference(conf->disks[i].rdev);
632		if (rdev && !test_bit(Faulty, &rdev->flags))
633			bdev = rdev->bdev;
634		rcu_read_unlock();
635
636		if (bdev) {
637			struct bio *bio;
638			char b[BDEVNAME_SIZE];
639
640			bio = bio_alloc_bioset(GFP_NOIO, 0, &ppl_conf->flush_bs);
641			bio_set_dev(bio, bdev);
642			bio->bi_private = io;
643			bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
644			bio->bi_end_io = ppl_flush_endio;
645
646			pr_debug("%s: dev: %s\n", __func__,
647				 bio_devname(bio, b));
648
649			submit_bio(bio);
650			flushed_disks++;
651		}
652	}
653
654	log->disk_flush_bitmap = 0;
655
656	for (i = flushed_disks ; i < raid_disks; i++) {
657		if (atomic_dec_and_test(&io->pending_flushes))
658			ppl_io_unit_finished(io);
659	}
660}
661
662static inline bool ppl_no_io_unit_submitted(struct r5conf *conf,
663					    struct ppl_log *log)
664{
665	struct ppl_io_unit *io;
666
667	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
668				      log_sibling);
669
670	return !io || !io->submitted;
671}
672
673void ppl_quiesce(struct r5conf *conf, int quiesce)
674{
675	struct ppl_conf *ppl_conf = conf->log_private;
676	int i;
677
678	if (quiesce) {
679		for (i = 0; i < ppl_conf->count; i++) {
680			struct ppl_log *log = &ppl_conf->child_logs[i];
681
682			spin_lock_irq(&log->io_list_lock);
683			wait_event_lock_irq(conf->wait_for_quiescent,
684					    ppl_no_io_unit_submitted(conf, log),
685					    log->io_list_lock);
686			spin_unlock_irq(&log->io_list_lock);
687		}
688	}
689}
690
691int ppl_handle_flush_request(struct r5l_log *log, struct bio *bio)
692{
693	if (bio->bi_iter.bi_size == 0) {
694		bio_endio(bio);
695		return 0;
696	}
697	bio->bi_opf &= ~REQ_PREFLUSH;
698	return -EAGAIN;
699}
700
701void ppl_stripe_write_finished(struct stripe_head *sh)
702{
703	struct ppl_io_unit *io;
704
705	io = sh->ppl_io;
706	sh->ppl_io = NULL;
707
708	if (io && atomic_dec_and_test(&io->pending_stripes)) {
709		if (io->log->disk_flush_bitmap)
710			ppl_do_flush(io);
711		else
712			ppl_io_unit_finished(io);
713	}
714}
715
716static void ppl_xor(int size, struct page *page1, struct page *page2)
717{
718	struct async_submit_ctl submit;
719	struct dma_async_tx_descriptor *tx;
720	struct page *xor_srcs[] = { page1, page2 };
721
722	init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
723			  NULL, NULL, NULL, NULL);
724	tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
725
726	async_tx_quiesce(&tx);
727}
728
729/*
730 * PPL recovery strategy: xor partial parity and data from all modified data
731 * disks within a stripe and write the result as the new stripe parity. If all
732 * stripe data disks are modified (full stripe write), no partial parity is
733 * available, so just xor the data disks.
734 *
735 * Recovery of a PPL entry shall occur only if all modified data disks are
736 * available and read from all of them succeeds.
737 *
738 * A PPL entry applies to a stripe, partial parity size for an entry is at most
739 * the size of the chunk. Examples of possible cases for a single entry:
740 *
741 * case 0: single data disk write:
742 *   data0    data1    data2     ppl        parity
743 * +--------+--------+--------+           +--------------------+
744 * | ------ | ------ | ------ | +----+    | (no change)        |
745 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
746 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
747 * | ------ | ------ | ------ | +----+    | (no change)        |
748 * +--------+--------+--------+           +--------------------+
749 * pp_size = data_size
750 *
751 * case 1: more than one data disk write:
752 *   data0    data1    data2     ppl        parity
753 * +--------+--------+--------+           +--------------------+
754 * | ------ | ------ | ------ | +----+    | (no change)        |
755 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
756 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
757 * | ------ | ------ | ------ | +----+    | (no change)        |
758 * +--------+--------+--------+           +--------------------+
759 * pp_size = data_size / modified_data_disks
760 *
761 * case 2: write to all data disks (also full stripe write):
762 *   data0    data1    data2                parity
763 * +--------+--------+--------+           +--------------------+
764 * | ------ | ------ | ------ |           | (no change)        |
765 * | -data- | -data- | -data- | --------> | xor all data       |
766 * | ------ | ------ | ------ | --------> | (no change)        |
767 * | ------ | ------ | ------ |           | (no change)        |
768 * +--------+--------+--------+           +--------------------+
769 * pp_size = 0
770 *
771 * The following cases are possible only in other implementations. The recovery
772 * code can handle them, but they are not generated at runtime because they can
773 * be reduced to cases 0, 1 and 2:
774 *
775 * case 3:
776 *   data0    data1    data2     ppl        parity
777 * +--------+--------+--------+ +----+    +--------------------+
778 * | ------ | -data- | -data- | | pp |    | data1 ^ data2 ^ pp |
779 * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
780 * | -data- | -data- | -data- | | -- | -> | xor all data       |
781 * | -data- | -data- | ------ | | pp |    | data0 ^ data1 ^ pp |
782 * +--------+--------+--------+ +----+    +--------------------+
783 * pp_size = chunk_size
784 *
785 * case 4:
786 *   data0    data1    data2     ppl        parity
787 * +--------+--------+--------+ +----+    +--------------------+
788 * | ------ | -data- | ------ | | pp |    | data1 ^ pp         |
789 * | ------ | ------ | ------ | | -- | -> | (no change)        |
790 * | ------ | ------ | ------ | | -- | -> | (no change)        |
791 * | -data- | ------ | ------ | | pp |    | data0 ^ pp         |
792 * +--------+--------+--------+ +----+    +--------------------+
793 * pp_size = chunk_size
794 */
795static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
796			     sector_t ppl_sector)
797{
798	struct ppl_conf *ppl_conf = log->ppl_conf;
799	struct mddev *mddev = ppl_conf->mddev;
800	struct r5conf *conf = mddev->private;
801	int block_size = ppl_conf->block_size;
802	struct page *page1;
803	struct page *page2;
804	sector_t r_sector_first;
805	sector_t r_sector_last;
806	int strip_sectors;
807	int data_disks;
808	int i;
809	int ret = 0;
810	char b[BDEVNAME_SIZE];
811	unsigned int pp_size = le32_to_cpu(e->pp_size);
812	unsigned int data_size = le32_to_cpu(e->data_size);
813
814	page1 = alloc_page(GFP_KERNEL);
815	page2 = alloc_page(GFP_KERNEL);
816
817	if (!page1 || !page2) {
818		ret = -ENOMEM;
819		goto out;
820	}
821
822	r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
823
824	if ((pp_size >> 9) < conf->chunk_sectors) {
825		if (pp_size > 0) {
826			data_disks = data_size / pp_size;
827			strip_sectors = pp_size >> 9;
828		} else {
829			data_disks = conf->raid_disks - conf->max_degraded;
830			strip_sectors = (data_size >> 9) / data_disks;
831		}
832		r_sector_last = r_sector_first +
833				(data_disks - 1) * conf->chunk_sectors +
834				strip_sectors;
835	} else {
836		data_disks = conf->raid_disks - conf->max_degraded;
837		strip_sectors = conf->chunk_sectors;
838		r_sector_last = r_sector_first + (data_size >> 9);
839	}
840
841	pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
842		 (unsigned long long)r_sector_first,
843		 (unsigned long long)r_sector_last);
844
845	/* if start and end is 4k aligned, use a 4k block */
846	if (block_size == 512 &&
847	    (r_sector_first & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0 &&
848	    (r_sector_last & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0)
849		block_size = RAID5_STRIPE_SIZE(conf);
850
851	/* iterate through blocks in strip */
852	for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
853		bool update_parity = false;
854		sector_t parity_sector;
855		struct md_rdev *parity_rdev;
856		struct stripe_head sh;
857		int disk;
858		int indent = 0;
859
860		pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
861		indent += 2;
862
863		memset(page_address(page1), 0, PAGE_SIZE);
864
865		/* iterate through data member disks */
866		for (disk = 0; disk < data_disks; disk++) {
867			int dd_idx;
868			struct md_rdev *rdev;
869			sector_t sector;
870			sector_t r_sector = r_sector_first + i +
871					    (disk * conf->chunk_sectors);
872
873			pr_debug("%s:%*s data member disk %d start\n",
874				 __func__, indent, "", disk);
875			indent += 2;
876
877			if (r_sector >= r_sector_last) {
878				pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
879					 __func__, indent, "",
880					 (unsigned long long)r_sector);
881				indent -= 2;
882				continue;
883			}
884
885			update_parity = true;
886
887			/* map raid sector to member disk */
888			sector = raid5_compute_sector(conf, r_sector, 0,
889						      &dd_idx, NULL);
890			pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
891				 __func__, indent, "",
892				 (unsigned long long)r_sector, dd_idx,
893				 (unsigned long long)sector);
894
895			rdev = conf->disks[dd_idx].rdev;
896			if (!rdev || (!test_bit(In_sync, &rdev->flags) &&
897				      sector >= rdev->recovery_offset)) {
898				pr_debug("%s:%*s data member disk %d missing\n",
899					 __func__, indent, "", dd_idx);
900				update_parity = false;
901				break;
902			}
903
904			pr_debug("%s:%*s reading data member disk %s sector %llu\n",
905				 __func__, indent, "", bdevname(rdev->bdev, b),
906				 (unsigned long long)sector);
907			if (!sync_page_io(rdev, sector, block_size, page2,
908					REQ_OP_READ, 0, false)) {
909				md_error(mddev, rdev);
910				pr_debug("%s:%*s read failed!\n", __func__,
911					 indent, "");
912				ret = -EIO;
913				goto out;
914			}
915
916			ppl_xor(block_size, page1, page2);
917
918			indent -= 2;
919		}
920
921		if (!update_parity)
922			continue;
923
924		if (pp_size > 0) {
925			pr_debug("%s:%*s reading pp disk sector %llu\n",
926				 __func__, indent, "",
927				 (unsigned long long)(ppl_sector + i));
928			if (!sync_page_io(log->rdev,
929					ppl_sector - log->rdev->data_offset + i,
930					block_size, page2, REQ_OP_READ, 0,
931					false)) {
932				pr_debug("%s:%*s read failed!\n", __func__,
933					 indent, "");
934				md_error(mddev, log->rdev);
935				ret = -EIO;
936				goto out;
937			}
938
939			ppl_xor(block_size, page1, page2);
940		}
941
942		/* map raid sector to parity disk */
943		parity_sector = raid5_compute_sector(conf, r_sector_first + i,
944				0, &disk, &sh);
945		BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
946		parity_rdev = conf->disks[sh.pd_idx].rdev;
947
948		BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
949		pr_debug("%s:%*s write parity at sector %llu, disk %s\n",
950			 __func__, indent, "",
951			 (unsigned long long)parity_sector,
952			 bdevname(parity_rdev->bdev, b));
953		if (!sync_page_io(parity_rdev, parity_sector, block_size,
954				page1, REQ_OP_WRITE, 0, false)) {
955			pr_debug("%s:%*s parity write error!\n", __func__,
956				 indent, "");
957			md_error(mddev, parity_rdev);
958			ret = -EIO;
959			goto out;
960		}
961	}
962out:
963	if (page1)
964		__free_page(page1);
965	if (page2)
966		__free_page(page2);
967	return ret;
968}
969
970static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr,
971		       sector_t offset)
972{
973	struct ppl_conf *ppl_conf = log->ppl_conf;
974	struct md_rdev *rdev = log->rdev;
975	struct mddev *mddev = rdev->mddev;
976	sector_t ppl_sector = rdev->ppl.sector + offset +
977			      (PPL_HEADER_SIZE >> 9);
978	struct page *page;
979	int i;
980	int ret = 0;
981
982	page = alloc_page(GFP_KERNEL);
983	if (!page)
984		return -ENOMEM;
985
986	/* iterate through all PPL entries saved */
987	for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
988		struct ppl_header_entry *e = &pplhdr->entries[i];
989		u32 pp_size = le32_to_cpu(e->pp_size);
990		sector_t sector = ppl_sector;
991		int ppl_entry_sectors = pp_size >> 9;
992		u32 crc, crc_stored;
993
994		pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
995			 __func__, rdev->raid_disk, i,
996			 (unsigned long long)ppl_sector, pp_size);
997
998		crc = ~0;
999		crc_stored = le32_to_cpu(e->checksum);
1000
1001		/* read parial parity for this entry and calculate its checksum */
1002		while (pp_size) {
1003			int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
1004
1005			if (!sync_page_io(rdev, sector - rdev->data_offset,
1006					s, page, REQ_OP_READ, 0, false)) {
1007				md_error(mddev, rdev);
1008				ret = -EIO;
1009				goto out;
1010			}
1011
1012			crc = crc32c_le(crc, page_address(page), s);
1013
1014			pp_size -= s;
1015			sector += s >> 9;
1016		}
1017
1018		crc = ~crc;
1019
1020		if (crc != crc_stored) {
1021			/*
1022			 * Don't recover this entry if the checksum does not
1023			 * match, but keep going and try to recover other
1024			 * entries.
1025			 */
1026			pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
1027				 __func__, crc_stored, crc);
1028			ppl_conf->mismatch_count++;
1029		} else {
1030			ret = ppl_recover_entry(log, e, ppl_sector);
1031			if (ret)
1032				goto out;
1033			ppl_conf->recovered_entries++;
1034		}
1035
1036		ppl_sector += ppl_entry_sectors;
1037	}
1038
1039	/* flush the disk cache after recovery if necessary */
1040	ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL);
1041out:
1042	__free_page(page);
1043	return ret;
1044}
1045
1046static int ppl_write_empty_header(struct ppl_log *log)
1047{
1048	struct page *page;
1049	struct ppl_header *pplhdr;
1050	struct md_rdev *rdev = log->rdev;
1051	int ret = 0;
1052
1053	pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
1054		 rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
1055
1056	page = alloc_page(GFP_NOIO | __GFP_ZERO);
1057	if (!page)
1058		return -ENOMEM;
1059
1060	pplhdr = page_address(page);
1061	/* zero out PPL space to avoid collision with old PPLs */
1062	blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector,
1063			    log->rdev->ppl.size, GFP_NOIO, 0);
1064	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
1065	pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
1066	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
1067
1068	if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
1069			  PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC |
1070			  REQ_FUA, 0, false)) {
1071		md_error(rdev->mddev, rdev);
1072		ret = -EIO;
1073	}
1074
1075	__free_page(page);
1076	return ret;
1077}
1078
1079static int ppl_load_distributed(struct ppl_log *log)
1080{
1081	struct ppl_conf *ppl_conf = log->ppl_conf;
1082	struct md_rdev *rdev = log->rdev;
1083	struct mddev *mddev = rdev->mddev;
1084	struct page *page, *page2, *tmp;
1085	struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL;
1086	u32 crc, crc_stored;
1087	u32 signature;
1088	int ret = 0, i;
1089	sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0;
1090
1091	pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
1092	/* read PPL headers, find the recent one */
1093	page = alloc_page(GFP_KERNEL);
1094	if (!page)
1095		return -ENOMEM;
1096
1097	page2 = alloc_page(GFP_KERNEL);
1098	if (!page2) {
1099		__free_page(page);
1100		return -ENOMEM;
1101	}
1102
1103	/* searching ppl area for latest ppl */
1104	while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) {
1105		if (!sync_page_io(rdev,
1106				  rdev->ppl.sector - rdev->data_offset +
1107				  pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ,
1108				  0, false)) {
1109			md_error(mddev, rdev);
1110			ret = -EIO;
1111			/* if not able to read - don't recover any PPL */
1112			pplhdr = NULL;
1113			break;
1114		}
1115		pplhdr = page_address(page);
1116
1117		/* check header validity */
1118		crc_stored = le32_to_cpu(pplhdr->checksum);
1119		pplhdr->checksum = 0;
1120		crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
1121
1122		if (crc_stored != crc) {
1123			pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
1124				 __func__, crc_stored, crc,
1125				 (unsigned long long)pplhdr_offset);
1126			pplhdr = prev_pplhdr;
1127			pplhdr_offset = prev_pplhdr_offset;
1128			break;
1129		}
1130
1131		signature = le32_to_cpu(pplhdr->signature);
1132
1133		if (mddev->external) {
1134			/*
1135			 * For external metadata the header signature is set and
1136			 * validated in userspace.
1137			 */
1138			ppl_conf->signature = signature;
1139		} else if (ppl_conf->signature != signature) {
1140			pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
1141				 __func__, signature, ppl_conf->signature,
1142				 (unsigned long long)pplhdr_offset);
1143			pplhdr = prev_pplhdr;
1144			pplhdr_offset = prev_pplhdr_offset;
1145			break;
1146		}
1147
1148		if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) >
1149		    le64_to_cpu(pplhdr->generation)) {
1150			/* previous was newest */
1151			pplhdr = prev_pplhdr;
1152			pplhdr_offset = prev_pplhdr_offset;
1153			break;
1154		}
1155
1156		prev_pplhdr_offset = pplhdr_offset;
1157		prev_pplhdr = pplhdr;
1158
1159		tmp = page;
1160		page = page2;
1161		page2 = tmp;
1162
1163		/* calculate next potential ppl offset */
1164		for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++)
1165			pplhdr_offset +=
1166			    le32_to_cpu(pplhdr->entries[i].pp_size) >> 9;
1167		pplhdr_offset += PPL_HEADER_SIZE >> 9;
1168	}
1169
1170	/* no valid ppl found */
1171	if (!pplhdr)
1172		ppl_conf->mismatch_count++;
1173	else
1174		pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
1175		    __func__, (unsigned long long)pplhdr_offset,
1176		    le64_to_cpu(pplhdr->generation));
1177
1178	/* attempt to recover from log if we are starting a dirty array */
1179	if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector)
1180		ret = ppl_recover(log, pplhdr, pplhdr_offset);
1181
1182	/* write empty header if we are starting the array */
1183	if (!ret && !mddev->pers)
1184		ret = ppl_write_empty_header(log);
1185
1186	__free_page(page);
1187	__free_page(page2);
1188
1189	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1190		 __func__, ret, ppl_conf->mismatch_count,
1191		 ppl_conf->recovered_entries);
1192	return ret;
1193}
1194
1195static int ppl_load(struct ppl_conf *ppl_conf)
1196{
1197	int ret = 0;
1198	u32 signature = 0;
1199	bool signature_set = false;
1200	int i;
1201
1202	for (i = 0; i < ppl_conf->count; i++) {
1203		struct ppl_log *log = &ppl_conf->child_logs[i];
1204
1205		/* skip missing drive */
1206		if (!log->rdev)
1207			continue;
1208
1209		ret = ppl_load_distributed(log);
1210		if (ret)
1211			break;
1212
1213		/*
1214		 * For external metadata we can't check if the signature is
1215		 * correct on a single drive, but we can check if it is the same
1216		 * on all drives.
1217		 */
1218		if (ppl_conf->mddev->external) {
1219			if (!signature_set) {
1220				signature = ppl_conf->signature;
1221				signature_set = true;
1222			} else if (signature != ppl_conf->signature) {
1223				pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1224					mdname(ppl_conf->mddev));
1225				ret = -EINVAL;
1226				break;
1227			}
1228		}
1229	}
1230
1231	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1232		 __func__, ret, ppl_conf->mismatch_count,
1233		 ppl_conf->recovered_entries);
1234	return ret;
1235}
1236
1237static void __ppl_exit_log(struct ppl_conf *ppl_conf)
1238{
1239	clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1240	clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags);
1241
1242	kfree(ppl_conf->child_logs);
1243
1244	bioset_exit(&ppl_conf->bs);
1245	bioset_exit(&ppl_conf->flush_bs);
1246	mempool_exit(&ppl_conf->io_pool);
1247	kmem_cache_destroy(ppl_conf->io_kc);
1248
1249	kfree(ppl_conf);
1250}
1251
1252void ppl_exit_log(struct r5conf *conf)
1253{
1254	struct ppl_conf *ppl_conf = conf->log_private;
1255
1256	if (ppl_conf) {
1257		__ppl_exit_log(ppl_conf);
1258		conf->log_private = NULL;
1259	}
1260}
1261
1262static int ppl_validate_rdev(struct md_rdev *rdev)
1263{
1264	char b[BDEVNAME_SIZE];
1265	int ppl_data_sectors;
1266	int ppl_size_new;
1267
1268	/*
1269	 * The configured PPL size must be enough to store
1270	 * the header and (at the very least) partial parity
1271	 * for one stripe. Round it down to ensure the data
1272	 * space is cleanly divisible by stripe size.
1273	 */
1274	ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1275
1276	if (ppl_data_sectors > 0)
1277		ppl_data_sectors = rounddown(ppl_data_sectors,
1278				RAID5_STRIPE_SECTORS((struct r5conf *)rdev->mddev->private));
1279
1280	if (ppl_data_sectors <= 0) {
1281		pr_warn("md/raid:%s: PPL space too small on %s\n",
1282			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1283		return -ENOSPC;
1284	}
1285
1286	ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1287
1288	if ((rdev->ppl.sector < rdev->data_offset &&
1289	     rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1290	    (rdev->ppl.sector >= rdev->data_offset &&
1291	     rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1292		pr_warn("md/raid:%s: PPL space overlaps with data on %s\n",
1293			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1294		return -EINVAL;
1295	}
1296
1297	if (!rdev->mddev->external &&
1298	    ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1299	     (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1300		pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n",
1301			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1302		return -EINVAL;
1303	}
1304
1305	rdev->ppl.size = ppl_size_new;
1306
1307	return 0;
1308}
1309
1310static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev)
1311{
1312	struct request_queue *q;
1313
1314	if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE +
1315				      PPL_HEADER_SIZE) * 2) {
1316		log->use_multippl = true;
1317		set_bit(MD_HAS_MULTIPLE_PPLS,
1318			&log->ppl_conf->mddev->flags);
1319		log->entry_space = PPL_SPACE_SIZE;
1320	} else {
1321		log->use_multippl = false;
1322		log->entry_space = (log->rdev->ppl.size << 9) -
1323				   PPL_HEADER_SIZE;
1324	}
1325	log->next_io_sector = rdev->ppl.sector;
1326
1327	q = bdev_get_queue(rdev->bdev);
1328	if (test_bit(QUEUE_FLAG_WC, &q->queue_flags))
1329		log->wb_cache_on = true;
1330}
1331
1332int ppl_init_log(struct r5conf *conf)
1333{
1334	struct ppl_conf *ppl_conf;
1335	struct mddev *mddev = conf->mddev;
1336	int ret = 0;
1337	int max_disks;
1338	int i;
1339
1340	pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1341		 mdname(conf->mddev));
1342
1343	if (PAGE_SIZE != 4096)
1344		return -EINVAL;
1345
1346	if (mddev->level != 5) {
1347		pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1348			mdname(mddev), mddev->level);
1349		return -EINVAL;
1350	}
1351
1352	if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1353		pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1354			mdname(mddev));
1355		return -EINVAL;
1356	}
1357
1358	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1359		pr_warn("md/raid:%s PPL is not compatible with journal\n",
1360			mdname(mddev));
1361		return -EINVAL;
1362	}
1363
1364	max_disks = sizeof_field(struct ppl_log, disk_flush_bitmap) *
1365		BITS_PER_BYTE;
1366	if (conf->raid_disks > max_disks) {
1367		pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n",
1368			mdname(mddev), max_disks);
1369		return -EINVAL;
1370	}
1371
1372	ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1373	if (!ppl_conf)
1374		return -ENOMEM;
1375
1376	ppl_conf->mddev = mddev;
1377
1378	ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1379	if (!ppl_conf->io_kc) {
1380		ret = -ENOMEM;
1381		goto err;
1382	}
1383
1384	ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc,
1385			   ppl_io_pool_free, ppl_conf->io_kc);
1386	if (ret)
1387		goto err;
1388
1389	ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS);
1390	if (ret)
1391		goto err;
1392
1393	ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0);
1394	if (ret)
1395		goto err;
1396
1397	ppl_conf->count = conf->raid_disks;
1398	ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1399				       GFP_KERNEL);
1400	if (!ppl_conf->child_logs) {
1401		ret = -ENOMEM;
1402		goto err;
1403	}
1404
1405	atomic64_set(&ppl_conf->seq, 0);
1406	INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
1407	spin_lock_init(&ppl_conf->no_mem_stripes_lock);
1408	ppl_conf->write_hint = RWH_WRITE_LIFE_NOT_SET;
1409
1410	if (!mddev->external) {
1411		ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1412		ppl_conf->block_size = 512;
1413	} else {
1414		ppl_conf->block_size = queue_logical_block_size(mddev->queue);
1415	}
1416
1417	for (i = 0; i < ppl_conf->count; i++) {
1418		struct ppl_log *log = &ppl_conf->child_logs[i];
1419		struct md_rdev *rdev = conf->disks[i].rdev;
1420
1421		mutex_init(&log->io_mutex);
1422		spin_lock_init(&log->io_list_lock);
1423		INIT_LIST_HEAD(&log->io_list);
1424
1425		log->ppl_conf = ppl_conf;
1426		log->rdev = rdev;
1427
1428		if (rdev) {
1429			ret = ppl_validate_rdev(rdev);
1430			if (ret)
1431				goto err;
1432
1433			ppl_init_child_log(log, rdev);
1434		}
1435	}
1436
1437	/* load and possibly recover the logs from the member disks */
1438	ret = ppl_load(ppl_conf);
1439
1440	if (ret) {
1441		goto err;
1442	} else if (!mddev->pers && mddev->recovery_cp == 0 &&
1443		   ppl_conf->recovered_entries > 0 &&
1444		   ppl_conf->mismatch_count == 0) {
1445		/*
1446		 * If we are starting a dirty array and the recovery succeeds
1447		 * without any issues, set the array as clean.
1448		 */
1449		mddev->recovery_cp = MaxSector;
1450		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1451	} else if (mddev->pers && ppl_conf->mismatch_count > 0) {
1452		/* no mismatch allowed when enabling PPL for a running array */
1453		ret = -EINVAL;
1454		goto err;
1455	}
1456
1457	conf->log_private = ppl_conf;
1458	set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1459
1460	return 0;
1461err:
1462	__ppl_exit_log(ppl_conf);
1463	return ret;
1464}
1465
1466int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
1467{
1468	struct ppl_conf *ppl_conf = conf->log_private;
1469	struct ppl_log *log;
1470	int ret = 0;
1471	char b[BDEVNAME_SIZE];
1472
1473	if (!rdev)
1474		return -EINVAL;
1475
1476	pr_debug("%s: disk: %d operation: %s dev: %s\n",
1477		 __func__, rdev->raid_disk, add ? "add" : "remove",
1478		 bdevname(rdev->bdev, b));
1479
1480	if (rdev->raid_disk < 0)
1481		return 0;
1482
1483	if (rdev->raid_disk >= ppl_conf->count)
1484		return -ENODEV;
1485
1486	log = &ppl_conf->child_logs[rdev->raid_disk];
1487
1488	mutex_lock(&log->io_mutex);
1489	if (add) {
1490		ret = ppl_validate_rdev(rdev);
1491		if (!ret) {
1492			log->rdev = rdev;
1493			ret = ppl_write_empty_header(log);
1494			ppl_init_child_log(log, rdev);
1495		}
1496	} else {
1497		log->rdev = NULL;
1498	}
1499	mutex_unlock(&log->io_mutex);
1500
1501	return ret;
1502}
1503
1504static ssize_t
1505ppl_write_hint_show(struct mddev *mddev, char *buf)
1506{
1507	size_t ret = 0;
1508	struct r5conf *conf;
1509	struct ppl_conf *ppl_conf = NULL;
1510
1511	spin_lock(&mddev->lock);
1512	conf = mddev->private;
1513	if (conf && raid5_has_ppl(conf))
1514		ppl_conf = conf->log_private;
1515	ret = sprintf(buf, "%d\n", ppl_conf ? ppl_conf->write_hint : 0);
1516	spin_unlock(&mddev->lock);
1517
1518	return ret;
1519}
1520
1521static ssize_t
1522ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len)
1523{
1524	struct r5conf *conf;
1525	struct ppl_conf *ppl_conf;
1526	int err = 0;
1527	unsigned short new;
1528
1529	if (len >= PAGE_SIZE)
1530		return -EINVAL;
1531	if (kstrtou16(page, 10, &new))
1532		return -EINVAL;
1533
1534	err = mddev_lock(mddev);
1535	if (err)
1536		return err;
1537
1538	conf = mddev->private;
1539	if (!conf) {
1540		err = -ENODEV;
1541	} else if (raid5_has_ppl(conf)) {
1542		ppl_conf = conf->log_private;
1543		if (!ppl_conf)
1544			err = -EINVAL;
1545		else
1546			ppl_conf->write_hint = new;
1547	} else {
1548		err = -EINVAL;
1549	}
1550
1551	mddev_unlock(mddev);
1552
1553	return err ?: len;
1554}
1555
1556struct md_sysfs_entry
1557ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR,
1558			ppl_write_hint_show,
1559			ppl_write_hint_store);
1560