xref: /kernel/linux/linux-5.10/drivers/md/raid10.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
9 * Base on code in raid1.c.  See raid1.c for further copyright information.
10 */
11
12#include <linux/slab.h>
13#include <linux/delay.h>
14#include <linux/blkdev.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include <linux/ratelimit.h>
18#include <linux/kthread.h>
19#include <linux/raid/md_p.h>
20#include <trace/events/block.h>
21#include "md.h"
22#include "raid10.h"
23#include "raid0.h"
24#include "md-bitmap.h"
25
26/*
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
29 *    chunk_size
30 *    raid_disks
31 *    near_copies (stored in low byte of layout)
32 *    far_copies (stored in second byte of layout)
33 *    far_offset (stored in bit 16 of layout )
34 *    use_far_sets (stored in bit 17 of layout )
35 *    use_far_sets_bugfixed (stored in bit 18 of layout )
36 *
37 * The data to be stored is divided into chunks using chunksize.  Each device
38 * is divided into far_copies sections.   In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive).  The starting device for each section is offset
41 * near_copies from the starting device of the previous section.  Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive.  near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
45 *
46 * If far_offset is true, then the far_copies are handled a bit differently.
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
49 *
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size.  The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array.  This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57 * on a device):
58 *    A B C D    A B C D E
59 *      ...         ...
60 *    D A B C    E A B C D
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 *    [A B] [C D]    [A B] [C D E]
63 *    |...| |...|    |...| | ... |
64 *    [B A] [D C]    [B A] [E C D]
65 */
66
67static void allow_barrier(struct r10conf *conf);
68static void lower_barrier(struct r10conf *conf);
69static int _enough(struct r10conf *conf, int previous, int ignore);
70static int enough(struct r10conf *conf, int ignore);
71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72				int *skipped);
73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74static void end_reshape_write(struct bio *bio);
75static void end_reshape(struct r10conf *conf);
76
77#define raid10_log(md, fmt, args...)				\
78	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80#include "raid1-10.c"
81
82/*
83 * for resync bio, r10bio pointer can be retrieved from the per-bio
84 * 'struct resync_pages'.
85 */
86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87{
88	return get_resync_pages(bio)->raid_bio;
89}
90
91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92{
93	struct r10conf *conf = data;
94	int size = offsetof(struct r10bio, devs[conf->copies]);
95
96	/* allocate a r10bio with room for raid_disks entries in the
97	 * bios array */
98	return kzalloc(size, gfp_flags);
99}
100
101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102/* amount of memory to reserve for resync requests */
103#define RESYNC_WINDOW (1024*1024)
104/* maximum number of concurrent requests, memory permitting */
105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109/*
110 * When performing a resync, we need to read and compare, so
111 * we need as many pages are there are copies.
112 * When performing a recovery, we need 2 bios, one for read,
113 * one for write (we recover only one drive per r10buf)
114 *
115 */
116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117{
118	struct r10conf *conf = data;
119	struct r10bio *r10_bio;
120	struct bio *bio;
121	int j;
122	int nalloc, nalloc_rp;
123	struct resync_pages *rps;
124
125	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126	if (!r10_bio)
127		return NULL;
128
129	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131		nalloc = conf->copies; /* resync */
132	else
133		nalloc = 2; /* recovery */
134
135	/* allocate once for all bios */
136	if (!conf->have_replacement)
137		nalloc_rp = nalloc;
138	else
139		nalloc_rp = nalloc * 2;
140	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141	if (!rps)
142		goto out_free_r10bio;
143
144	/*
145	 * Allocate bios.
146	 */
147	for (j = nalloc ; j-- ; ) {
148		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149		if (!bio)
150			goto out_free_bio;
151		r10_bio->devs[j].bio = bio;
152		if (!conf->have_replacement)
153			continue;
154		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155		if (!bio)
156			goto out_free_bio;
157		r10_bio->devs[j].repl_bio = bio;
158	}
159	/*
160	 * Allocate RESYNC_PAGES data pages and attach them
161	 * where needed.
162	 */
163	for (j = 0; j < nalloc; j++) {
164		struct bio *rbio = r10_bio->devs[j].repl_bio;
165		struct resync_pages *rp, *rp_repl;
166
167		rp = &rps[j];
168		if (rbio)
169			rp_repl = &rps[nalloc + j];
170
171		bio = r10_bio->devs[j].bio;
172
173		if (!j || test_bit(MD_RECOVERY_SYNC,
174				   &conf->mddev->recovery)) {
175			if (resync_alloc_pages(rp, gfp_flags))
176				goto out_free_pages;
177		} else {
178			memcpy(rp, &rps[0], sizeof(*rp));
179			resync_get_all_pages(rp);
180		}
181
182		rp->raid_bio = r10_bio;
183		bio->bi_private = rp;
184		if (rbio) {
185			memcpy(rp_repl, rp, sizeof(*rp));
186			rbio->bi_private = rp_repl;
187		}
188	}
189
190	return r10_bio;
191
192out_free_pages:
193	while (--j >= 0)
194		resync_free_pages(&rps[j]);
195
196	j = 0;
197out_free_bio:
198	for ( ; j < nalloc; j++) {
199		if (r10_bio->devs[j].bio)
200			bio_put(r10_bio->devs[j].bio);
201		if (r10_bio->devs[j].repl_bio)
202			bio_put(r10_bio->devs[j].repl_bio);
203	}
204	kfree(rps);
205out_free_r10bio:
206	rbio_pool_free(r10_bio, conf);
207	return NULL;
208}
209
210static void r10buf_pool_free(void *__r10_bio, void *data)
211{
212	struct r10conf *conf = data;
213	struct r10bio *r10bio = __r10_bio;
214	int j;
215	struct resync_pages *rp = NULL;
216
217	for (j = conf->copies; j--; ) {
218		struct bio *bio = r10bio->devs[j].bio;
219
220		if (bio) {
221			rp = get_resync_pages(bio);
222			resync_free_pages(rp);
223			bio_put(bio);
224		}
225
226		bio = r10bio->devs[j].repl_bio;
227		if (bio)
228			bio_put(bio);
229	}
230
231	/* resync pages array stored in the 1st bio's .bi_private */
232	kfree(rp);
233
234	rbio_pool_free(r10bio, conf);
235}
236
237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238{
239	int i;
240
241	for (i = 0; i < conf->copies; i++) {
242		struct bio **bio = & r10_bio->devs[i].bio;
243		if (!BIO_SPECIAL(*bio))
244			bio_put(*bio);
245		*bio = NULL;
246		bio = &r10_bio->devs[i].repl_bio;
247		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248			bio_put(*bio);
249		*bio = NULL;
250	}
251}
252
253static void free_r10bio(struct r10bio *r10_bio)
254{
255	struct r10conf *conf = r10_bio->mddev->private;
256
257	put_all_bios(conf, r10_bio);
258	mempool_free(r10_bio, &conf->r10bio_pool);
259}
260
261static void put_buf(struct r10bio *r10_bio)
262{
263	struct r10conf *conf = r10_bio->mddev->private;
264
265	mempool_free(r10_bio, &conf->r10buf_pool);
266
267	lower_barrier(conf);
268}
269
270static void reschedule_retry(struct r10bio *r10_bio)
271{
272	unsigned long flags;
273	struct mddev *mddev = r10_bio->mddev;
274	struct r10conf *conf = mddev->private;
275
276	spin_lock_irqsave(&conf->device_lock, flags);
277	list_add(&r10_bio->retry_list, &conf->retry_list);
278	conf->nr_queued ++;
279	spin_unlock_irqrestore(&conf->device_lock, flags);
280
281	/* wake up frozen array... */
282	wake_up(&conf->wait_barrier);
283
284	md_wakeup_thread(mddev->thread);
285}
286
287/*
288 * raid_end_bio_io() is called when we have finished servicing a mirrored
289 * operation and are ready to return a success/failure code to the buffer
290 * cache layer.
291 */
292static void raid_end_bio_io(struct r10bio *r10_bio)
293{
294	struct bio *bio = r10_bio->master_bio;
295	struct r10conf *conf = r10_bio->mddev->private;
296
297	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298		bio->bi_status = BLK_STS_IOERR;
299
300	bio_endio(bio);
301	/*
302	 * Wake up any possible resync thread that waits for the device
303	 * to go idle.
304	 */
305	allow_barrier(conf);
306
307	free_r10bio(r10_bio);
308}
309
310/*
311 * Update disk head position estimator based on IRQ completion info.
312 */
313static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314{
315	struct r10conf *conf = r10_bio->mddev->private;
316
317	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318		r10_bio->devs[slot].addr + (r10_bio->sectors);
319}
320
321/*
322 * Find the disk number which triggered given bio
323 */
324static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325			 struct bio *bio, int *slotp, int *replp)
326{
327	int slot;
328	int repl = 0;
329
330	for (slot = 0; slot < conf->copies; slot++) {
331		if (r10_bio->devs[slot].bio == bio)
332			break;
333		if (r10_bio->devs[slot].repl_bio == bio) {
334			repl = 1;
335			break;
336		}
337	}
338
339	BUG_ON(slot == conf->copies);
340	update_head_pos(slot, r10_bio);
341
342	if (slotp)
343		*slotp = slot;
344	if (replp)
345		*replp = repl;
346	return r10_bio->devs[slot].devnum;
347}
348
349static void raid10_end_read_request(struct bio *bio)
350{
351	int uptodate = !bio->bi_status;
352	struct r10bio *r10_bio = bio->bi_private;
353	int slot;
354	struct md_rdev *rdev;
355	struct r10conf *conf = r10_bio->mddev->private;
356
357	slot = r10_bio->read_slot;
358	rdev = r10_bio->devs[slot].rdev;
359	/*
360	 * this branch is our 'one mirror IO has finished' event handler:
361	 */
362	update_head_pos(slot, r10_bio);
363
364	if (uptodate) {
365		/*
366		 * Set R10BIO_Uptodate in our master bio, so that
367		 * we will return a good error code to the higher
368		 * levels even if IO on some other mirrored buffer fails.
369		 *
370		 * The 'master' represents the composite IO operation to
371		 * user-side. So if something waits for IO, then it will
372		 * wait for the 'master' bio.
373		 */
374		set_bit(R10BIO_Uptodate, &r10_bio->state);
375	} else {
376		/* If all other devices that store this block have
377		 * failed, we want to return the error upwards rather
378		 * than fail the last device.  Here we redefine
379		 * "uptodate" to mean "Don't want to retry"
380		 */
381		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382			     rdev->raid_disk))
383			uptodate = 1;
384	}
385	if (uptodate) {
386		raid_end_bio_io(r10_bio);
387		rdev_dec_pending(rdev, conf->mddev);
388	} else {
389		/*
390		 * oops, read error - keep the refcount on the rdev
391		 */
392		char b[BDEVNAME_SIZE];
393		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394				   mdname(conf->mddev),
395				   bdevname(rdev->bdev, b),
396				   (unsigned long long)r10_bio->sector);
397		set_bit(R10BIO_ReadError, &r10_bio->state);
398		reschedule_retry(r10_bio);
399	}
400}
401
402static void close_write(struct r10bio *r10_bio)
403{
404	/* clear the bitmap if all writes complete successfully */
405	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406			   r10_bio->sectors,
407			   !test_bit(R10BIO_Degraded, &r10_bio->state),
408			   0);
409	md_write_end(r10_bio->mddev);
410}
411
412static void one_write_done(struct r10bio *r10_bio)
413{
414	if (atomic_dec_and_test(&r10_bio->remaining)) {
415		if (test_bit(R10BIO_WriteError, &r10_bio->state))
416			reschedule_retry(r10_bio);
417		else {
418			close_write(r10_bio);
419			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420				reschedule_retry(r10_bio);
421			else
422				raid_end_bio_io(r10_bio);
423		}
424	}
425}
426
427static void raid10_end_write_request(struct bio *bio)
428{
429	struct r10bio *r10_bio = bio->bi_private;
430	int dev;
431	int dec_rdev = 1;
432	struct r10conf *conf = r10_bio->mddev->private;
433	int slot, repl;
434	struct md_rdev *rdev = NULL;
435	struct bio *to_put = NULL;
436	bool discard_error;
437
438	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439
440	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441
442	if (repl)
443		rdev = conf->mirrors[dev].replacement;
444	if (!rdev) {
445		smp_rmb();
446		repl = 0;
447		rdev = conf->mirrors[dev].rdev;
448	}
449	/*
450	 * this branch is our 'one mirror IO has finished' event handler:
451	 */
452	if (bio->bi_status && !discard_error) {
453		if (repl)
454			/* Never record new bad blocks to replacement,
455			 * just fail it.
456			 */
457			md_error(rdev->mddev, rdev);
458		else {
459			set_bit(WriteErrorSeen,	&rdev->flags);
460			if (!test_and_set_bit(WantReplacement, &rdev->flags))
461				set_bit(MD_RECOVERY_NEEDED,
462					&rdev->mddev->recovery);
463
464			dec_rdev = 0;
465			if (test_bit(FailFast, &rdev->flags) &&
466			    (bio->bi_opf & MD_FAILFAST)) {
467				md_error(rdev->mddev, rdev);
468			}
469
470			/*
471			 * When the device is faulty, it is not necessary to
472			 * handle write error.
473			 */
474			if (!test_bit(Faulty, &rdev->flags))
475				set_bit(R10BIO_WriteError, &r10_bio->state);
476			else {
477				/* Fail the request */
478				set_bit(R10BIO_Degraded, &r10_bio->state);
479				r10_bio->devs[slot].bio = NULL;
480				to_put = bio;
481				dec_rdev = 1;
482			}
483		}
484	} else {
485		/*
486		 * Set R10BIO_Uptodate in our master bio, so that
487		 * we will return a good error code for to the higher
488		 * levels even if IO on some other mirrored buffer fails.
489		 *
490		 * The 'master' represents the composite IO operation to
491		 * user-side. So if something waits for IO, then it will
492		 * wait for the 'master' bio.
493		 */
494		sector_t first_bad;
495		int bad_sectors;
496
497		/*
498		 * Do not set R10BIO_Uptodate if the current device is
499		 * rebuilding or Faulty. This is because we cannot use
500		 * such device for properly reading the data back (we could
501		 * potentially use it, if the current write would have felt
502		 * before rdev->recovery_offset, but for simplicity we don't
503		 * check this here.
504		 */
505		if (test_bit(In_sync, &rdev->flags) &&
506		    !test_bit(Faulty, &rdev->flags))
507			set_bit(R10BIO_Uptodate, &r10_bio->state);
508
509		/* Maybe we can clear some bad blocks. */
510		if (is_badblock(rdev,
511				r10_bio->devs[slot].addr,
512				r10_bio->sectors,
513				&first_bad, &bad_sectors) && !discard_error) {
514			bio_put(bio);
515			if (repl)
516				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
517			else
518				r10_bio->devs[slot].bio = IO_MADE_GOOD;
519			dec_rdev = 0;
520			set_bit(R10BIO_MadeGood, &r10_bio->state);
521		}
522	}
523
524	/*
525	 *
526	 * Let's see if all mirrored write operations have finished
527	 * already.
528	 */
529	one_write_done(r10_bio);
530	if (dec_rdev)
531		rdev_dec_pending(rdev, conf->mddev);
532	if (to_put)
533		bio_put(to_put);
534}
535
536/*
537 * RAID10 layout manager
538 * As well as the chunksize and raid_disks count, there are two
539 * parameters: near_copies and far_copies.
540 * near_copies * far_copies must be <= raid_disks.
541 * Normally one of these will be 1.
542 * If both are 1, we get raid0.
543 * If near_copies == raid_disks, we get raid1.
544 *
545 * Chunks are laid out in raid0 style with near_copies copies of the
546 * first chunk, followed by near_copies copies of the next chunk and
547 * so on.
548 * If far_copies > 1, then after 1/far_copies of the array has been assigned
549 * as described above, we start again with a device offset of near_copies.
550 * So we effectively have another copy of the whole array further down all
551 * the drives, but with blocks on different drives.
552 * With this layout, and block is never stored twice on the one device.
553 *
554 * raid10_find_phys finds the sector offset of a given virtual sector
555 * on each device that it is on.
556 *
557 * raid10_find_virt does the reverse mapping, from a device and a
558 * sector offset to a virtual address
559 */
560
561static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
562{
563	int n,f;
564	sector_t sector;
565	sector_t chunk;
566	sector_t stripe;
567	int dev;
568	int slot = 0;
569	int last_far_set_start, last_far_set_size;
570
571	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
572	last_far_set_start *= geo->far_set_size;
573
574	last_far_set_size = geo->far_set_size;
575	last_far_set_size += (geo->raid_disks % geo->far_set_size);
576
577	/* now calculate first sector/dev */
578	chunk = r10bio->sector >> geo->chunk_shift;
579	sector = r10bio->sector & geo->chunk_mask;
580
581	chunk *= geo->near_copies;
582	stripe = chunk;
583	dev = sector_div(stripe, geo->raid_disks);
584	if (geo->far_offset)
585		stripe *= geo->far_copies;
586
587	sector += stripe << geo->chunk_shift;
588
589	/* and calculate all the others */
590	for (n = 0; n < geo->near_copies; n++) {
591		int d = dev;
592		int set;
593		sector_t s = sector;
594		r10bio->devs[slot].devnum = d;
595		r10bio->devs[slot].addr = s;
596		slot++;
597
598		for (f = 1; f < geo->far_copies; f++) {
599			set = d / geo->far_set_size;
600			d += geo->near_copies;
601
602			if ((geo->raid_disks % geo->far_set_size) &&
603			    (d > last_far_set_start)) {
604				d -= last_far_set_start;
605				d %= last_far_set_size;
606				d += last_far_set_start;
607			} else {
608				d %= geo->far_set_size;
609				d += geo->far_set_size * set;
610			}
611			s += geo->stride;
612			r10bio->devs[slot].devnum = d;
613			r10bio->devs[slot].addr = s;
614			slot++;
615		}
616		dev++;
617		if (dev >= geo->raid_disks) {
618			dev = 0;
619			sector += (geo->chunk_mask + 1);
620		}
621	}
622}
623
624static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
625{
626	struct geom *geo = &conf->geo;
627
628	if (conf->reshape_progress != MaxSector &&
629	    ((r10bio->sector >= conf->reshape_progress) !=
630	     conf->mddev->reshape_backwards)) {
631		set_bit(R10BIO_Previous, &r10bio->state);
632		geo = &conf->prev;
633	} else
634		clear_bit(R10BIO_Previous, &r10bio->state);
635
636	__raid10_find_phys(geo, r10bio);
637}
638
639static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
640{
641	sector_t offset, chunk, vchunk;
642	/* Never use conf->prev as this is only called during resync
643	 * or recovery, so reshape isn't happening
644	 */
645	struct geom *geo = &conf->geo;
646	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
647	int far_set_size = geo->far_set_size;
648	int last_far_set_start;
649
650	if (geo->raid_disks % geo->far_set_size) {
651		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
652		last_far_set_start *= geo->far_set_size;
653
654		if (dev >= last_far_set_start) {
655			far_set_size = geo->far_set_size;
656			far_set_size += (geo->raid_disks % geo->far_set_size);
657			far_set_start = last_far_set_start;
658		}
659	}
660
661	offset = sector & geo->chunk_mask;
662	if (geo->far_offset) {
663		int fc;
664		chunk = sector >> geo->chunk_shift;
665		fc = sector_div(chunk, geo->far_copies);
666		dev -= fc * geo->near_copies;
667		if (dev < far_set_start)
668			dev += far_set_size;
669	} else {
670		while (sector >= geo->stride) {
671			sector -= geo->stride;
672			if (dev < (geo->near_copies + far_set_start))
673				dev += far_set_size - geo->near_copies;
674			else
675				dev -= geo->near_copies;
676		}
677		chunk = sector >> geo->chunk_shift;
678	}
679	vchunk = chunk * geo->raid_disks + dev;
680	sector_div(vchunk, geo->near_copies);
681	return (vchunk << geo->chunk_shift) + offset;
682}
683
684/*
685 * This routine returns the disk from which the requested read should
686 * be done. There is a per-array 'next expected sequential IO' sector
687 * number - if this matches on the next IO then we use the last disk.
688 * There is also a per-disk 'last know head position' sector that is
689 * maintained from IRQ contexts, both the normal and the resync IO
690 * completion handlers update this position correctly. If there is no
691 * perfect sequential match then we pick the disk whose head is closest.
692 *
693 * If there are 2 mirrors in the same 2 devices, performance degrades
694 * because position is mirror, not device based.
695 *
696 * The rdev for the device selected will have nr_pending incremented.
697 */
698
699/*
700 * FIXME: possibly should rethink readbalancing and do it differently
701 * depending on near_copies / far_copies geometry.
702 */
703static struct md_rdev *read_balance(struct r10conf *conf,
704				    struct r10bio *r10_bio,
705				    int *max_sectors)
706{
707	const sector_t this_sector = r10_bio->sector;
708	int disk, slot;
709	int sectors = r10_bio->sectors;
710	int best_good_sectors;
711	sector_t new_distance, best_dist;
712	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
713	int do_balance;
714	int best_dist_slot, best_pending_slot;
715	bool has_nonrot_disk = false;
716	unsigned int min_pending;
717	struct geom *geo = &conf->geo;
718
719	raid10_find_phys(conf, r10_bio);
720	rcu_read_lock();
721	best_dist_slot = -1;
722	min_pending = UINT_MAX;
723	best_dist_rdev = NULL;
724	best_pending_rdev = NULL;
725	best_dist = MaxSector;
726	best_good_sectors = 0;
727	do_balance = 1;
728	clear_bit(R10BIO_FailFast, &r10_bio->state);
729	/*
730	 * Check if we can balance. We can balance on the whole
731	 * device if no resync is going on (recovery is ok), or below
732	 * the resync window. We take the first readable disk when
733	 * above the resync window.
734	 */
735	if ((conf->mddev->recovery_cp < MaxSector
736	     && (this_sector + sectors >= conf->next_resync)) ||
737	    (mddev_is_clustered(conf->mddev) &&
738	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
739					    this_sector + sectors)))
740		do_balance = 0;
741
742	for (slot = 0; slot < conf->copies ; slot++) {
743		sector_t first_bad;
744		int bad_sectors;
745		sector_t dev_sector;
746		unsigned int pending;
747		bool nonrot;
748
749		if (r10_bio->devs[slot].bio == IO_BLOCKED)
750			continue;
751		disk = r10_bio->devs[slot].devnum;
752		rdev = rcu_dereference(conf->mirrors[disk].replacement);
753		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754		    r10_bio->devs[slot].addr + sectors >
755		    rdev->recovery_offset) {
756			/*
757			 * Read replacement first to prevent reading both rdev
758			 * and replacement as NULL during replacement replace
759			 * rdev.
760			 */
761			smp_mb();
762			rdev = rcu_dereference(conf->mirrors[disk].rdev);
763		}
764		if (rdev == NULL ||
765		    test_bit(Faulty, &rdev->flags))
766			continue;
767		if (!test_bit(In_sync, &rdev->flags) &&
768		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
769			continue;
770
771		dev_sector = r10_bio->devs[slot].addr;
772		if (is_badblock(rdev, dev_sector, sectors,
773				&first_bad, &bad_sectors)) {
774			if (best_dist < MaxSector)
775				/* Already have a better slot */
776				continue;
777			if (first_bad <= dev_sector) {
778				/* Cannot read here.  If this is the
779				 * 'primary' device, then we must not read
780				 * beyond 'bad_sectors' from another device.
781				 */
782				bad_sectors -= (dev_sector - first_bad);
783				if (!do_balance && sectors > bad_sectors)
784					sectors = bad_sectors;
785				if (best_good_sectors > sectors)
786					best_good_sectors = sectors;
787			} else {
788				sector_t good_sectors =
789					first_bad - dev_sector;
790				if (good_sectors > best_good_sectors) {
791					best_good_sectors = good_sectors;
792					best_dist_slot = slot;
793					best_dist_rdev = rdev;
794				}
795				if (!do_balance)
796					/* Must read from here */
797					break;
798			}
799			continue;
800		} else
801			best_good_sectors = sectors;
802
803		if (!do_balance)
804			break;
805
806		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
807		has_nonrot_disk |= nonrot;
808		pending = atomic_read(&rdev->nr_pending);
809		if (min_pending > pending && nonrot) {
810			min_pending = pending;
811			best_pending_slot = slot;
812			best_pending_rdev = rdev;
813		}
814
815		if (best_dist_slot >= 0)
816			/* At least 2 disks to choose from so failfast is OK */
817			set_bit(R10BIO_FailFast, &r10_bio->state);
818		/* This optimisation is debatable, and completely destroys
819		 * sequential read speed for 'far copies' arrays.  So only
820		 * keep it for 'near' arrays, and review those later.
821		 */
822		if (geo->near_copies > 1 && !pending)
823			new_distance = 0;
824
825		/* for far > 1 always use the lowest address */
826		else if (geo->far_copies > 1)
827			new_distance = r10_bio->devs[slot].addr;
828		else
829			new_distance = abs(r10_bio->devs[slot].addr -
830					   conf->mirrors[disk].head_position);
831
832		if (new_distance < best_dist) {
833			best_dist = new_distance;
834			best_dist_slot = slot;
835			best_dist_rdev = rdev;
836		}
837	}
838	if (slot >= conf->copies) {
839		if (has_nonrot_disk) {
840			slot = best_pending_slot;
841			rdev = best_pending_rdev;
842		} else {
843			slot = best_dist_slot;
844			rdev = best_dist_rdev;
845		}
846	}
847
848	if (slot >= 0) {
849		atomic_inc(&rdev->nr_pending);
850		r10_bio->read_slot = slot;
851	} else
852		rdev = NULL;
853	rcu_read_unlock();
854	*max_sectors = best_good_sectors;
855
856	return rdev;
857}
858
859static void flush_pending_writes(struct r10conf *conf)
860{
861	/* Any writes that have been queued but are awaiting
862	 * bitmap updates get flushed here.
863	 */
864	spin_lock_irq(&conf->device_lock);
865
866	if (conf->pending_bio_list.head) {
867		struct blk_plug plug;
868		struct bio *bio;
869
870		bio = bio_list_get(&conf->pending_bio_list);
871		conf->pending_count = 0;
872		spin_unlock_irq(&conf->device_lock);
873
874		/*
875		 * As this is called in a wait_event() loop (see freeze_array),
876		 * current->state might be TASK_UNINTERRUPTIBLE which will
877		 * cause a warning when we prepare to wait again.  As it is
878		 * rare that this path is taken, it is perfectly safe to force
879		 * us to go around the wait_event() loop again, so the warning
880		 * is a false-positive. Silence the warning by resetting
881		 * thread state
882		 */
883		__set_current_state(TASK_RUNNING);
884
885		blk_start_plug(&plug);
886		/* flush any pending bitmap writes to disk
887		 * before proceeding w/ I/O */
888		md_bitmap_unplug(conf->mddev->bitmap);
889		wake_up(&conf->wait_barrier);
890
891		while (bio) { /* submit pending writes */
892			struct bio *next = bio->bi_next;
893			struct md_rdev *rdev = (void*)bio->bi_disk;
894			bio->bi_next = NULL;
895			bio_set_dev(bio, rdev->bdev);
896			if (test_bit(Faulty, &rdev->flags)) {
897				bio_io_error(bio);
898			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
899					    !blk_queue_discard(bio->bi_disk->queue)))
900				/* Just ignore it */
901				bio_endio(bio);
902			else
903				submit_bio_noacct(bio);
904			bio = next;
905			cond_resched();
906		}
907		blk_finish_plug(&plug);
908	} else
909		spin_unlock_irq(&conf->device_lock);
910}
911
912/* Barriers....
913 * Sometimes we need to suspend IO while we do something else,
914 * either some resync/recovery, or reconfigure the array.
915 * To do this we raise a 'barrier'.
916 * The 'barrier' is a counter that can be raised multiple times
917 * to count how many activities are happening which preclude
918 * normal IO.
919 * We can only raise the barrier if there is no pending IO.
920 * i.e. if nr_pending == 0.
921 * We choose only to raise the barrier if no-one is waiting for the
922 * barrier to go down.  This means that as soon as an IO request
923 * is ready, no other operations which require a barrier will start
924 * until the IO request has had a chance.
925 *
926 * So: regular IO calls 'wait_barrier'.  When that returns there
927 *    is no backgroup IO happening,  It must arrange to call
928 *    allow_barrier when it has finished its IO.
929 * backgroup IO calls must call raise_barrier.  Once that returns
930 *    there is no normal IO happeing.  It must arrange to call
931 *    lower_barrier when the particular background IO completes.
932 */
933
934static void raise_barrier(struct r10conf *conf, int force)
935{
936	BUG_ON(force && !conf->barrier);
937	spin_lock_irq(&conf->resync_lock);
938
939	/* Wait until no block IO is waiting (unless 'force') */
940	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
941			    conf->resync_lock);
942
943	/* block any new IO from starting */
944	conf->barrier++;
945
946	/* Now wait for all pending IO to complete */
947	wait_event_lock_irq(conf->wait_barrier,
948			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
949			    conf->resync_lock);
950
951	spin_unlock_irq(&conf->resync_lock);
952}
953
954static void lower_barrier(struct r10conf *conf)
955{
956	unsigned long flags;
957	spin_lock_irqsave(&conf->resync_lock, flags);
958	conf->barrier--;
959	spin_unlock_irqrestore(&conf->resync_lock, flags);
960	wake_up(&conf->wait_barrier);
961}
962
963static void wait_barrier(struct r10conf *conf)
964{
965	spin_lock_irq(&conf->resync_lock);
966	if (conf->barrier) {
967		struct bio_list *bio_list = current->bio_list;
968		conf->nr_waiting++;
969		/* Wait for the barrier to drop.
970		 * However if there are already pending
971		 * requests (preventing the barrier from
972		 * rising completely), and the
973		 * pre-process bio queue isn't empty,
974		 * then don't wait, as we need to empty
975		 * that queue to get the nr_pending
976		 * count down.
977		 */
978		raid10_log(conf->mddev, "wait barrier");
979		wait_event_lock_irq(conf->wait_barrier,
980				    !conf->barrier ||
981				    (atomic_read(&conf->nr_pending) &&
982				     bio_list &&
983				     (!bio_list_empty(&bio_list[0]) ||
984				      !bio_list_empty(&bio_list[1]))) ||
985				     /* move on if recovery thread is
986				      * blocked by us
987				      */
988				     (conf->mddev->thread->tsk == current &&
989				      test_bit(MD_RECOVERY_RUNNING,
990					       &conf->mddev->recovery) &&
991				      conf->nr_queued > 0),
992				    conf->resync_lock);
993		conf->nr_waiting--;
994		if (!conf->nr_waiting)
995			wake_up(&conf->wait_barrier);
996	}
997	atomic_inc(&conf->nr_pending);
998	spin_unlock_irq(&conf->resync_lock);
999}
1000
1001static void allow_barrier(struct r10conf *conf)
1002{
1003	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1004			(conf->array_freeze_pending))
1005		wake_up(&conf->wait_barrier);
1006}
1007
1008static void freeze_array(struct r10conf *conf, int extra)
1009{
1010	/* stop syncio and normal IO and wait for everything to
1011	 * go quiet.
1012	 * We increment barrier and nr_waiting, and then
1013	 * wait until nr_pending match nr_queued+extra
1014	 * This is called in the context of one normal IO request
1015	 * that has failed. Thus any sync request that might be pending
1016	 * will be blocked by nr_pending, and we need to wait for
1017	 * pending IO requests to complete or be queued for re-try.
1018	 * Thus the number queued (nr_queued) plus this request (extra)
1019	 * must match the number of pending IOs (nr_pending) before
1020	 * we continue.
1021	 */
1022	spin_lock_irq(&conf->resync_lock);
1023	conf->array_freeze_pending++;
1024	conf->barrier++;
1025	conf->nr_waiting++;
1026	wait_event_lock_irq_cmd(conf->wait_barrier,
1027				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1028				conf->resync_lock,
1029				flush_pending_writes(conf));
1030
1031	conf->array_freeze_pending--;
1032	spin_unlock_irq(&conf->resync_lock);
1033}
1034
1035static void unfreeze_array(struct r10conf *conf)
1036{
1037	/* reverse the effect of the freeze */
1038	spin_lock_irq(&conf->resync_lock);
1039	conf->barrier--;
1040	conf->nr_waiting--;
1041	wake_up(&conf->wait_barrier);
1042	spin_unlock_irq(&conf->resync_lock);
1043}
1044
1045static sector_t choose_data_offset(struct r10bio *r10_bio,
1046				   struct md_rdev *rdev)
1047{
1048	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1049	    test_bit(R10BIO_Previous, &r10_bio->state))
1050		return rdev->data_offset;
1051	else
1052		return rdev->new_data_offset;
1053}
1054
1055struct raid10_plug_cb {
1056	struct blk_plug_cb	cb;
1057	struct bio_list		pending;
1058	int			pending_cnt;
1059};
1060
1061static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1062{
1063	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1064						   cb);
1065	struct mddev *mddev = plug->cb.data;
1066	struct r10conf *conf = mddev->private;
1067	struct bio *bio;
1068
1069	if (from_schedule || current->bio_list) {
1070		spin_lock_irq(&conf->device_lock);
1071		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1072		conf->pending_count += plug->pending_cnt;
1073		spin_unlock_irq(&conf->device_lock);
1074		wake_up(&conf->wait_barrier);
1075		md_wakeup_thread(mddev->thread);
1076		kfree(plug);
1077		return;
1078	}
1079
1080	/* we aren't scheduling, so we can do the write-out directly. */
1081	bio = bio_list_get(&plug->pending);
1082	md_bitmap_unplug(mddev->bitmap);
1083	wake_up(&conf->wait_barrier);
1084
1085	while (bio) { /* submit pending writes */
1086		struct bio *next = bio->bi_next;
1087		struct md_rdev *rdev = (void*)bio->bi_disk;
1088		bio->bi_next = NULL;
1089		bio_set_dev(bio, rdev->bdev);
1090		if (test_bit(Faulty, &rdev->flags)) {
1091			bio_io_error(bio);
1092		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1093				    !blk_queue_discard(bio->bi_disk->queue)))
1094			/* Just ignore it */
1095			bio_endio(bio);
1096		else
1097			submit_bio_noacct(bio);
1098		bio = next;
1099		cond_resched();
1100	}
1101	kfree(plug);
1102}
1103
1104/*
1105 * 1. Register the new request and wait if the reconstruction thread has put
1106 * up a bar for new requests. Continue immediately if no resync is active
1107 * currently.
1108 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1109 */
1110static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1111				 struct bio *bio, sector_t sectors)
1112{
1113	wait_barrier(conf);
1114	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1115	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1116	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1117		raid10_log(conf->mddev, "wait reshape");
1118		allow_barrier(conf);
1119		wait_event(conf->wait_barrier,
1120			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1121			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1122			   sectors);
1123		wait_barrier(conf);
1124	}
1125}
1126
1127static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1128				struct r10bio *r10_bio)
1129{
1130	struct r10conf *conf = mddev->private;
1131	struct bio *read_bio;
1132	const int op = bio_op(bio);
1133	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1134	int max_sectors;
1135	struct md_rdev *rdev;
1136	char b[BDEVNAME_SIZE];
1137	int slot = r10_bio->read_slot;
1138	struct md_rdev *err_rdev = NULL;
1139	gfp_t gfp = GFP_NOIO;
1140
1141	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1142		/*
1143		 * This is an error retry, but we cannot
1144		 * safely dereference the rdev in the r10_bio,
1145		 * we must use the one in conf.
1146		 * If it has already been disconnected (unlikely)
1147		 * we lose the device name in error messages.
1148		 */
1149		int disk;
1150		/*
1151		 * As we are blocking raid10, it is a little safer to
1152		 * use __GFP_HIGH.
1153		 */
1154		gfp = GFP_NOIO | __GFP_HIGH;
1155
1156		rcu_read_lock();
1157		disk = r10_bio->devs[slot].devnum;
1158		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1159		if (err_rdev)
1160			bdevname(err_rdev->bdev, b);
1161		else {
1162			strcpy(b, "???");
1163			/* This never gets dereferenced */
1164			err_rdev = r10_bio->devs[slot].rdev;
1165		}
1166		rcu_read_unlock();
1167	}
1168
1169	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1170	rdev = read_balance(conf, r10_bio, &max_sectors);
1171	if (!rdev) {
1172		if (err_rdev) {
1173			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1174					    mdname(mddev), b,
1175					    (unsigned long long)r10_bio->sector);
1176		}
1177		raid_end_bio_io(r10_bio);
1178		return;
1179	}
1180	if (err_rdev)
1181		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1182				   mdname(mddev),
1183				   bdevname(rdev->bdev, b),
1184				   (unsigned long long)r10_bio->sector);
1185	if (max_sectors < bio_sectors(bio)) {
1186		struct bio *split = bio_split(bio, max_sectors,
1187					      gfp, &conf->bio_split);
1188		bio_chain(split, bio);
1189		allow_barrier(conf);
1190		submit_bio_noacct(bio);
1191		wait_barrier(conf);
1192		bio = split;
1193		r10_bio->master_bio = bio;
1194		r10_bio->sectors = max_sectors;
1195	}
1196	slot = r10_bio->read_slot;
1197
1198	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1199
1200	r10_bio->devs[slot].bio = read_bio;
1201	r10_bio->devs[slot].rdev = rdev;
1202
1203	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1204		choose_data_offset(r10_bio, rdev);
1205	bio_set_dev(read_bio, rdev->bdev);
1206	read_bio->bi_end_io = raid10_end_read_request;
1207	bio_set_op_attrs(read_bio, op, do_sync);
1208	if (test_bit(FailFast, &rdev->flags) &&
1209	    test_bit(R10BIO_FailFast, &r10_bio->state))
1210	        read_bio->bi_opf |= MD_FAILFAST;
1211	read_bio->bi_private = r10_bio;
1212
1213	if (mddev->gendisk)
1214	        trace_block_bio_remap(read_bio->bi_disk->queue,
1215	                              read_bio, disk_devt(mddev->gendisk),
1216	                              r10_bio->sector);
1217	submit_bio_noacct(read_bio);
1218	return;
1219}
1220
1221static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1222				  struct bio *bio, bool replacement,
1223				  int n_copy)
1224{
1225	const int op = bio_op(bio);
1226	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1227	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1228	unsigned long flags;
1229	struct blk_plug_cb *cb;
1230	struct raid10_plug_cb *plug = NULL;
1231	struct r10conf *conf = mddev->private;
1232	struct md_rdev *rdev;
1233	int devnum = r10_bio->devs[n_copy].devnum;
1234	struct bio *mbio;
1235
1236	if (replacement) {
1237		rdev = conf->mirrors[devnum].replacement;
1238		if (rdev == NULL) {
1239			/* Replacement just got moved to main 'rdev' */
1240			smp_mb();
1241			rdev = conf->mirrors[devnum].rdev;
1242		}
1243	} else
1244		rdev = conf->mirrors[devnum].rdev;
1245
1246	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1247	if (replacement)
1248		r10_bio->devs[n_copy].repl_bio = mbio;
1249	else
1250		r10_bio->devs[n_copy].bio = mbio;
1251
1252	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1253				   choose_data_offset(r10_bio, rdev));
1254	bio_set_dev(mbio, rdev->bdev);
1255	mbio->bi_end_io	= raid10_end_write_request;
1256	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1257	if (!replacement && test_bit(FailFast,
1258				     &conf->mirrors[devnum].rdev->flags)
1259			 && enough(conf, devnum))
1260		mbio->bi_opf |= MD_FAILFAST;
1261	mbio->bi_private = r10_bio;
1262
1263	if (conf->mddev->gendisk)
1264		trace_block_bio_remap(mbio->bi_disk->queue,
1265				      mbio, disk_devt(conf->mddev->gendisk),
1266				      r10_bio->sector);
1267	/* flush_pending_writes() needs access to the rdev so...*/
1268	mbio->bi_disk = (void *)rdev;
1269
1270	atomic_inc(&r10_bio->remaining);
1271
1272	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1273	if (cb)
1274		plug = container_of(cb, struct raid10_plug_cb, cb);
1275	else
1276		plug = NULL;
1277	if (plug) {
1278		bio_list_add(&plug->pending, mbio);
1279		plug->pending_cnt++;
1280	} else {
1281		spin_lock_irqsave(&conf->device_lock, flags);
1282		bio_list_add(&conf->pending_bio_list, mbio);
1283		conf->pending_count++;
1284		spin_unlock_irqrestore(&conf->device_lock, flags);
1285		md_wakeup_thread(mddev->thread);
1286	}
1287}
1288
1289static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1290				 struct r10bio *r10_bio)
1291{
1292	struct r10conf *conf = mddev->private;
1293	int i;
1294	struct md_rdev *blocked_rdev;
1295	sector_t sectors;
1296	int max_sectors;
1297
1298	if ((mddev_is_clustered(mddev) &&
1299	     md_cluster_ops->area_resyncing(mddev, WRITE,
1300					    bio->bi_iter.bi_sector,
1301					    bio_end_sector(bio)))) {
1302		DEFINE_WAIT(w);
1303		for (;;) {
1304			prepare_to_wait(&conf->wait_barrier,
1305					&w, TASK_IDLE);
1306			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1307				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1308				break;
1309			schedule();
1310		}
1311		finish_wait(&conf->wait_barrier, &w);
1312	}
1313
1314	sectors = r10_bio->sectors;
1315	regular_request_wait(mddev, conf, bio, sectors);
1316	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1317	    (mddev->reshape_backwards
1318	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1319		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1320	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1321		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1322		/* Need to update reshape_position in metadata */
1323		mddev->reshape_position = conf->reshape_progress;
1324		set_mask_bits(&mddev->sb_flags, 0,
1325			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1326		md_wakeup_thread(mddev->thread);
1327		raid10_log(conf->mddev, "wait reshape metadata");
1328		wait_event(mddev->sb_wait,
1329			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1330
1331		conf->reshape_safe = mddev->reshape_position;
1332	}
1333
1334	if (conf->pending_count >= max_queued_requests) {
1335		md_wakeup_thread(mddev->thread);
1336		raid10_log(mddev, "wait queued");
1337		wait_event(conf->wait_barrier,
1338			   conf->pending_count < max_queued_requests);
1339	}
1340	/* first select target devices under rcu_lock and
1341	 * inc refcount on their rdev.  Record them by setting
1342	 * bios[x] to bio
1343	 * If there are known/acknowledged bad blocks on any device
1344	 * on which we have seen a write error, we want to avoid
1345	 * writing to those blocks.  This potentially requires several
1346	 * writes to write around the bad blocks.  Each set of writes
1347	 * gets its own r10_bio with a set of bios attached.
1348	 */
1349
1350	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1351	raid10_find_phys(conf, r10_bio);
1352retry_write:
1353	blocked_rdev = NULL;
1354	rcu_read_lock();
1355	max_sectors = r10_bio->sectors;
1356
1357	for (i = 0;  i < conf->copies; i++) {
1358		int d = r10_bio->devs[i].devnum;
1359		struct md_rdev *rdev, *rrdev;
1360
1361		rrdev = rcu_dereference(conf->mirrors[d].replacement);
1362		/*
1363		 * Read replacement first to prevent reading both rdev and
1364		 * replacement as NULL during replacement replace rdev.
1365		 */
1366		smp_mb();
1367		rdev = rcu_dereference(conf->mirrors[d].rdev);
1368		if (rdev == rrdev)
1369			rrdev = NULL;
1370		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1371			atomic_inc(&rdev->nr_pending);
1372			blocked_rdev = rdev;
1373			break;
1374		}
1375		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1376			atomic_inc(&rrdev->nr_pending);
1377			blocked_rdev = rrdev;
1378			break;
1379		}
1380		if (rdev && (test_bit(Faulty, &rdev->flags)))
1381			rdev = NULL;
1382		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1383			rrdev = NULL;
1384
1385		r10_bio->devs[i].bio = NULL;
1386		r10_bio->devs[i].repl_bio = NULL;
1387
1388		if (!rdev && !rrdev) {
1389			set_bit(R10BIO_Degraded, &r10_bio->state);
1390			continue;
1391		}
1392		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1393			sector_t first_bad;
1394			sector_t dev_sector = r10_bio->devs[i].addr;
1395			int bad_sectors;
1396			int is_bad;
1397
1398			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1399					     &first_bad, &bad_sectors);
1400			if (is_bad < 0) {
1401				/* Mustn't write here until the bad block
1402				 * is acknowledged
1403				 */
1404				atomic_inc(&rdev->nr_pending);
1405				set_bit(BlockedBadBlocks, &rdev->flags);
1406				blocked_rdev = rdev;
1407				break;
1408			}
1409			if (is_bad && first_bad <= dev_sector) {
1410				/* Cannot write here at all */
1411				bad_sectors -= (dev_sector - first_bad);
1412				if (bad_sectors < max_sectors)
1413					/* Mustn't write more than bad_sectors
1414					 * to other devices yet
1415					 */
1416					max_sectors = bad_sectors;
1417				/* We don't set R10BIO_Degraded as that
1418				 * only applies if the disk is missing,
1419				 * so it might be re-added, and we want to
1420				 * know to recover this chunk.
1421				 * In this case the device is here, and the
1422				 * fact that this chunk is not in-sync is
1423				 * recorded in the bad block log.
1424				 */
1425				continue;
1426			}
1427			if (is_bad) {
1428				int good_sectors = first_bad - dev_sector;
1429				if (good_sectors < max_sectors)
1430					max_sectors = good_sectors;
1431			}
1432		}
1433		if (rdev) {
1434			r10_bio->devs[i].bio = bio;
1435			atomic_inc(&rdev->nr_pending);
1436		}
1437		if (rrdev) {
1438			r10_bio->devs[i].repl_bio = bio;
1439			atomic_inc(&rrdev->nr_pending);
1440		}
1441	}
1442	rcu_read_unlock();
1443
1444	if (unlikely(blocked_rdev)) {
1445		/* Have to wait for this device to get unblocked, then retry */
1446		int j;
1447		int d;
1448
1449		for (j = 0; j < i; j++) {
1450			if (r10_bio->devs[j].bio) {
1451				d = r10_bio->devs[j].devnum;
1452				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1453			}
1454			if (r10_bio->devs[j].repl_bio) {
1455				struct md_rdev *rdev;
1456				d = r10_bio->devs[j].devnum;
1457				rdev = conf->mirrors[d].replacement;
1458				if (!rdev) {
1459					/* Race with remove_disk */
1460					smp_mb();
1461					rdev = conf->mirrors[d].rdev;
1462				}
1463				rdev_dec_pending(rdev, mddev);
1464			}
1465		}
1466		allow_barrier(conf);
1467		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1468		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1469		wait_barrier(conf);
1470		goto retry_write;
1471	}
1472
1473	if (max_sectors < r10_bio->sectors)
1474		r10_bio->sectors = max_sectors;
1475
1476	if (r10_bio->sectors < bio_sectors(bio)) {
1477		struct bio *split = bio_split(bio, r10_bio->sectors,
1478					      GFP_NOIO, &conf->bio_split);
1479		bio_chain(split, bio);
1480		allow_barrier(conf);
1481		submit_bio_noacct(bio);
1482		wait_barrier(conf);
1483		bio = split;
1484		r10_bio->master_bio = bio;
1485	}
1486
1487	atomic_set(&r10_bio->remaining, 1);
1488	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1489
1490	for (i = 0; i < conf->copies; i++) {
1491		if (r10_bio->devs[i].bio)
1492			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1493		if (r10_bio->devs[i].repl_bio)
1494			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1495	}
1496	one_write_done(r10_bio);
1497}
1498
1499static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1500{
1501	struct r10conf *conf = mddev->private;
1502	struct r10bio *r10_bio;
1503
1504	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1505
1506	r10_bio->master_bio = bio;
1507	r10_bio->sectors = sectors;
1508
1509	r10_bio->mddev = mddev;
1510	r10_bio->sector = bio->bi_iter.bi_sector;
1511	r10_bio->state = 0;
1512	r10_bio->read_slot = -1;
1513	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1514
1515	if (bio_data_dir(bio) == READ)
1516		raid10_read_request(mddev, bio, r10_bio);
1517	else
1518		raid10_write_request(mddev, bio, r10_bio);
1519}
1520
1521static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1522{
1523	struct r10conf *conf = mddev->private;
1524	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1525	int chunk_sects = chunk_mask + 1;
1526	int sectors = bio_sectors(bio);
1527
1528	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1529	    && md_flush_request(mddev, bio))
1530		return true;
1531
1532	if (!md_write_start(mddev, bio))
1533		return false;
1534
1535	/*
1536	 * If this request crosses a chunk boundary, we need to split
1537	 * it.
1538	 */
1539	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1540		     sectors > chunk_sects
1541		     && (conf->geo.near_copies < conf->geo.raid_disks
1542			 || conf->prev.near_copies <
1543			 conf->prev.raid_disks)))
1544		sectors = chunk_sects -
1545			(bio->bi_iter.bi_sector &
1546			 (chunk_sects - 1));
1547	__make_request(mddev, bio, sectors);
1548
1549	/* In case raid10d snuck in to freeze_array */
1550	wake_up(&conf->wait_barrier);
1551	return true;
1552}
1553
1554static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1555{
1556	struct r10conf *conf = mddev->private;
1557	int i;
1558
1559	if (conf->geo.near_copies < conf->geo.raid_disks)
1560		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1561	if (conf->geo.near_copies > 1)
1562		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1563	if (conf->geo.far_copies > 1) {
1564		if (conf->geo.far_offset)
1565			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1566		else
1567			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1568		if (conf->geo.far_set_size != conf->geo.raid_disks)
1569			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1570	}
1571	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1572					conf->geo.raid_disks - mddev->degraded);
1573	rcu_read_lock();
1574	for (i = 0; i < conf->geo.raid_disks; i++) {
1575		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1576		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1577	}
1578	rcu_read_unlock();
1579	seq_printf(seq, "]");
1580}
1581
1582/* check if there are enough drives for
1583 * every block to appear on atleast one.
1584 * Don't consider the device numbered 'ignore'
1585 * as we might be about to remove it.
1586 */
1587static int _enough(struct r10conf *conf, int previous, int ignore)
1588{
1589	int first = 0;
1590	int has_enough = 0;
1591	int disks, ncopies;
1592	if (previous) {
1593		disks = conf->prev.raid_disks;
1594		ncopies = conf->prev.near_copies;
1595	} else {
1596		disks = conf->geo.raid_disks;
1597		ncopies = conf->geo.near_copies;
1598	}
1599
1600	rcu_read_lock();
1601	do {
1602		int n = conf->copies;
1603		int cnt = 0;
1604		int this = first;
1605		while (n--) {
1606			struct md_rdev *rdev;
1607			if (this != ignore &&
1608			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1609			    test_bit(In_sync, &rdev->flags))
1610				cnt++;
1611			this = (this+1) % disks;
1612		}
1613		if (cnt == 0)
1614			goto out;
1615		first = (first + ncopies) % disks;
1616	} while (first != 0);
1617	has_enough = 1;
1618out:
1619	rcu_read_unlock();
1620	return has_enough;
1621}
1622
1623static int enough(struct r10conf *conf, int ignore)
1624{
1625	/* when calling 'enough', both 'prev' and 'geo' must
1626	 * be stable.
1627	 * This is ensured if ->reconfig_mutex or ->device_lock
1628	 * is held.
1629	 */
1630	return _enough(conf, 0, ignore) &&
1631		_enough(conf, 1, ignore);
1632}
1633
1634static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1635{
1636	char b[BDEVNAME_SIZE];
1637	struct r10conf *conf = mddev->private;
1638	unsigned long flags;
1639
1640	/*
1641	 * If it is not operational, then we have already marked it as dead
1642	 * else if it is the last working disks with "fail_last_dev == false",
1643	 * ignore the error, let the next level up know.
1644	 * else mark the drive as failed
1645	 */
1646	spin_lock_irqsave(&conf->device_lock, flags);
1647	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1648	    && !enough(conf, rdev->raid_disk)) {
1649		/*
1650		 * Don't fail the drive, just return an IO error.
1651		 */
1652		spin_unlock_irqrestore(&conf->device_lock, flags);
1653		return;
1654	}
1655	if (test_and_clear_bit(In_sync, &rdev->flags))
1656		mddev->degraded++;
1657	/*
1658	 * If recovery is running, make sure it aborts.
1659	 */
1660	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1661	set_bit(Blocked, &rdev->flags);
1662	set_bit(Faulty, &rdev->flags);
1663	set_mask_bits(&mddev->sb_flags, 0,
1664		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1665	spin_unlock_irqrestore(&conf->device_lock, flags);
1666	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1667		"md/raid10:%s: Operation continuing on %d devices.\n",
1668		mdname(mddev), bdevname(rdev->bdev, b),
1669		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1670}
1671
1672static void print_conf(struct r10conf *conf)
1673{
1674	int i;
1675	struct md_rdev *rdev;
1676
1677	pr_debug("RAID10 conf printout:\n");
1678	if (!conf) {
1679		pr_debug("(!conf)\n");
1680		return;
1681	}
1682	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1683		 conf->geo.raid_disks);
1684
1685	/* This is only called with ->reconfix_mutex held, so
1686	 * rcu protection of rdev is not needed */
1687	for (i = 0; i < conf->geo.raid_disks; i++) {
1688		char b[BDEVNAME_SIZE];
1689		rdev = conf->mirrors[i].rdev;
1690		if (rdev)
1691			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1692				 i, !test_bit(In_sync, &rdev->flags),
1693				 !test_bit(Faulty, &rdev->flags),
1694				 bdevname(rdev->bdev,b));
1695	}
1696}
1697
1698static void close_sync(struct r10conf *conf)
1699{
1700	wait_barrier(conf);
1701	allow_barrier(conf);
1702
1703	mempool_exit(&conf->r10buf_pool);
1704}
1705
1706static int raid10_spare_active(struct mddev *mddev)
1707{
1708	int i;
1709	struct r10conf *conf = mddev->private;
1710	struct raid10_info *tmp;
1711	int count = 0;
1712	unsigned long flags;
1713
1714	/*
1715	 * Find all non-in_sync disks within the RAID10 configuration
1716	 * and mark them in_sync
1717	 */
1718	for (i = 0; i < conf->geo.raid_disks; i++) {
1719		tmp = conf->mirrors + i;
1720		if (tmp->replacement
1721		    && tmp->replacement->recovery_offset == MaxSector
1722		    && !test_bit(Faulty, &tmp->replacement->flags)
1723		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1724			/* Replacement has just become active */
1725			if (!tmp->rdev
1726			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1727				count++;
1728			if (tmp->rdev) {
1729				/* Replaced device not technically faulty,
1730				 * but we need to be sure it gets removed
1731				 * and never re-added.
1732				 */
1733				set_bit(Faulty, &tmp->rdev->flags);
1734				sysfs_notify_dirent_safe(
1735					tmp->rdev->sysfs_state);
1736			}
1737			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1738		} else if (tmp->rdev
1739			   && tmp->rdev->recovery_offset == MaxSector
1740			   && !test_bit(Faulty, &tmp->rdev->flags)
1741			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1742			count++;
1743			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1744		}
1745	}
1746	spin_lock_irqsave(&conf->device_lock, flags);
1747	mddev->degraded -= count;
1748	spin_unlock_irqrestore(&conf->device_lock, flags);
1749
1750	print_conf(conf);
1751	return count;
1752}
1753
1754static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1755{
1756	struct r10conf *conf = mddev->private;
1757	int err = -EEXIST;
1758	int mirror;
1759	int first = 0;
1760	int last = conf->geo.raid_disks - 1;
1761
1762	if (mddev->recovery_cp < MaxSector)
1763		/* only hot-add to in-sync arrays, as recovery is
1764		 * very different from resync
1765		 */
1766		return -EBUSY;
1767	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1768		return -EINVAL;
1769
1770	if (md_integrity_add_rdev(rdev, mddev))
1771		return -ENXIO;
1772
1773	if (rdev->raid_disk >= 0)
1774		first = last = rdev->raid_disk;
1775
1776	if (rdev->saved_raid_disk >= first &&
1777	    rdev->saved_raid_disk < conf->geo.raid_disks &&
1778	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1779		mirror = rdev->saved_raid_disk;
1780	else
1781		mirror = first;
1782	for ( ; mirror <= last ; mirror++) {
1783		struct raid10_info *p = &conf->mirrors[mirror];
1784		if (p->recovery_disabled == mddev->recovery_disabled)
1785			continue;
1786		if (p->rdev) {
1787			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1788			    p->replacement != NULL)
1789				continue;
1790			clear_bit(In_sync, &rdev->flags);
1791			set_bit(Replacement, &rdev->flags);
1792			rdev->raid_disk = mirror;
1793			err = 0;
1794			if (mddev->gendisk)
1795				disk_stack_limits(mddev->gendisk, rdev->bdev,
1796						  rdev->data_offset << 9);
1797			conf->fullsync = 1;
1798			rcu_assign_pointer(p->replacement, rdev);
1799			break;
1800		}
1801
1802		if (mddev->gendisk)
1803			disk_stack_limits(mddev->gendisk, rdev->bdev,
1804					  rdev->data_offset << 9);
1805
1806		p->head_position = 0;
1807		p->recovery_disabled = mddev->recovery_disabled - 1;
1808		rdev->raid_disk = mirror;
1809		err = 0;
1810		if (rdev->saved_raid_disk != mirror)
1811			conf->fullsync = 1;
1812		rcu_assign_pointer(p->rdev, rdev);
1813		break;
1814	}
1815	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1816		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1817
1818	print_conf(conf);
1819	return err;
1820}
1821
1822static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1823{
1824	struct r10conf *conf = mddev->private;
1825	int err = 0;
1826	int number = rdev->raid_disk;
1827	struct md_rdev **rdevp;
1828	struct raid10_info *p;
1829
1830	print_conf(conf);
1831	if (unlikely(number >= mddev->raid_disks))
1832		return 0;
1833	p = conf->mirrors + number;
1834	if (rdev == p->rdev)
1835		rdevp = &p->rdev;
1836	else if (rdev == p->replacement)
1837		rdevp = &p->replacement;
1838	else
1839		return 0;
1840
1841	if (test_bit(In_sync, &rdev->flags) ||
1842	    atomic_read(&rdev->nr_pending)) {
1843		err = -EBUSY;
1844		goto abort;
1845	}
1846	/* Only remove non-faulty devices if recovery
1847	 * is not possible.
1848	 */
1849	if (!test_bit(Faulty, &rdev->flags) &&
1850	    mddev->recovery_disabled != p->recovery_disabled &&
1851	    (!p->replacement || p->replacement == rdev) &&
1852	    number < conf->geo.raid_disks &&
1853	    enough(conf, -1)) {
1854		err = -EBUSY;
1855		goto abort;
1856	}
1857	*rdevp = NULL;
1858	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1859		synchronize_rcu();
1860		if (atomic_read(&rdev->nr_pending)) {
1861			/* lost the race, try later */
1862			err = -EBUSY;
1863			*rdevp = rdev;
1864			goto abort;
1865		}
1866	}
1867	if (p->replacement) {
1868		/* We must have just cleared 'rdev' */
1869		p->rdev = p->replacement;
1870		clear_bit(Replacement, &p->replacement->flags);
1871		smp_mb(); /* Make sure other CPUs may see both as identical
1872			   * but will never see neither -- if they are careful.
1873			   */
1874		p->replacement = NULL;
1875	}
1876
1877	clear_bit(WantReplacement, &rdev->flags);
1878	err = md_integrity_register(mddev);
1879
1880abort:
1881
1882	print_conf(conf);
1883	return err;
1884}
1885
1886static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1887{
1888	struct r10conf *conf = r10_bio->mddev->private;
1889
1890	if (!bio->bi_status)
1891		set_bit(R10BIO_Uptodate, &r10_bio->state);
1892	else
1893		/* The write handler will notice the lack of
1894		 * R10BIO_Uptodate and record any errors etc
1895		 */
1896		atomic_add(r10_bio->sectors,
1897			   &conf->mirrors[d].rdev->corrected_errors);
1898
1899	/* for reconstruct, we always reschedule after a read.
1900	 * for resync, only after all reads
1901	 */
1902	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1903	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1904	    atomic_dec_and_test(&r10_bio->remaining)) {
1905		/* we have read all the blocks,
1906		 * do the comparison in process context in raid10d
1907		 */
1908		reschedule_retry(r10_bio);
1909	}
1910}
1911
1912static void end_sync_read(struct bio *bio)
1913{
1914	struct r10bio *r10_bio = get_resync_r10bio(bio);
1915	struct r10conf *conf = r10_bio->mddev->private;
1916	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1917
1918	__end_sync_read(r10_bio, bio, d);
1919}
1920
1921static void end_reshape_read(struct bio *bio)
1922{
1923	/* reshape read bio isn't allocated from r10buf_pool */
1924	struct r10bio *r10_bio = bio->bi_private;
1925
1926	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1927}
1928
1929static void end_sync_request(struct r10bio *r10_bio)
1930{
1931	struct mddev *mddev = r10_bio->mddev;
1932
1933	while (atomic_dec_and_test(&r10_bio->remaining)) {
1934		if (r10_bio->master_bio == NULL) {
1935			/* the primary of several recovery bios */
1936			sector_t s = r10_bio->sectors;
1937			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1938			    test_bit(R10BIO_WriteError, &r10_bio->state))
1939				reschedule_retry(r10_bio);
1940			else
1941				put_buf(r10_bio);
1942			md_done_sync(mddev, s, 1);
1943			break;
1944		} else {
1945			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1946			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1947			    test_bit(R10BIO_WriteError, &r10_bio->state))
1948				reschedule_retry(r10_bio);
1949			else
1950				put_buf(r10_bio);
1951			r10_bio = r10_bio2;
1952		}
1953	}
1954}
1955
1956static void end_sync_write(struct bio *bio)
1957{
1958	struct r10bio *r10_bio = get_resync_r10bio(bio);
1959	struct mddev *mddev = r10_bio->mddev;
1960	struct r10conf *conf = mddev->private;
1961	int d;
1962	sector_t first_bad;
1963	int bad_sectors;
1964	int slot;
1965	int repl;
1966	struct md_rdev *rdev = NULL;
1967
1968	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1969	if (repl)
1970		rdev = conf->mirrors[d].replacement;
1971	else
1972		rdev = conf->mirrors[d].rdev;
1973
1974	if (bio->bi_status) {
1975		if (repl)
1976			md_error(mddev, rdev);
1977		else {
1978			set_bit(WriteErrorSeen, &rdev->flags);
1979			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1980				set_bit(MD_RECOVERY_NEEDED,
1981					&rdev->mddev->recovery);
1982			set_bit(R10BIO_WriteError, &r10_bio->state);
1983		}
1984	} else if (is_badblock(rdev,
1985			     r10_bio->devs[slot].addr,
1986			     r10_bio->sectors,
1987			     &first_bad, &bad_sectors))
1988		set_bit(R10BIO_MadeGood, &r10_bio->state);
1989
1990	rdev_dec_pending(rdev, mddev);
1991
1992	end_sync_request(r10_bio);
1993}
1994
1995/*
1996 * Note: sync and recover and handled very differently for raid10
1997 * This code is for resync.
1998 * For resync, we read through virtual addresses and read all blocks.
1999 * If there is any error, we schedule a write.  The lowest numbered
2000 * drive is authoritative.
2001 * However requests come for physical address, so we need to map.
2002 * For every physical address there are raid_disks/copies virtual addresses,
2003 * which is always are least one, but is not necessarly an integer.
2004 * This means that a physical address can span multiple chunks, so we may
2005 * have to submit multiple io requests for a single sync request.
2006 */
2007/*
2008 * We check if all blocks are in-sync and only write to blocks that
2009 * aren't in sync
2010 */
2011static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2012{
2013	struct r10conf *conf = mddev->private;
2014	int i, first;
2015	struct bio *tbio, *fbio;
2016	int vcnt;
2017	struct page **tpages, **fpages;
2018
2019	atomic_set(&r10_bio->remaining, 1);
2020
2021	/* find the first device with a block */
2022	for (i=0; i<conf->copies; i++)
2023		if (!r10_bio->devs[i].bio->bi_status)
2024			break;
2025
2026	if (i == conf->copies)
2027		goto done;
2028
2029	first = i;
2030	fbio = r10_bio->devs[i].bio;
2031	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2032	fbio->bi_iter.bi_idx = 0;
2033	fpages = get_resync_pages(fbio)->pages;
2034
2035	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2036	/* now find blocks with errors */
2037	for (i=0 ; i < conf->copies ; i++) {
2038		int  j, d;
2039		struct md_rdev *rdev;
2040		struct resync_pages *rp;
2041
2042		tbio = r10_bio->devs[i].bio;
2043
2044		if (tbio->bi_end_io != end_sync_read)
2045			continue;
2046		if (i == first)
2047			continue;
2048
2049		tpages = get_resync_pages(tbio)->pages;
2050		d = r10_bio->devs[i].devnum;
2051		rdev = conf->mirrors[d].rdev;
2052		if (!r10_bio->devs[i].bio->bi_status) {
2053			/* We know that the bi_io_vec layout is the same for
2054			 * both 'first' and 'i', so we just compare them.
2055			 * All vec entries are PAGE_SIZE;
2056			 */
2057			int sectors = r10_bio->sectors;
2058			for (j = 0; j < vcnt; j++) {
2059				int len = PAGE_SIZE;
2060				if (sectors < (len / 512))
2061					len = sectors * 512;
2062				if (memcmp(page_address(fpages[j]),
2063					   page_address(tpages[j]),
2064					   len))
2065					break;
2066				sectors -= len/512;
2067			}
2068			if (j == vcnt)
2069				continue;
2070			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2071			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2072				/* Don't fix anything. */
2073				continue;
2074		} else if (test_bit(FailFast, &rdev->flags)) {
2075			/* Just give up on this device */
2076			md_error(rdev->mddev, rdev);
2077			continue;
2078		}
2079		/* Ok, we need to write this bio, either to correct an
2080		 * inconsistency or to correct an unreadable block.
2081		 * First we need to fixup bv_offset, bv_len and
2082		 * bi_vecs, as the read request might have corrupted these
2083		 */
2084		rp = get_resync_pages(tbio);
2085		bio_reset(tbio);
2086
2087		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2088
2089		rp->raid_bio = r10_bio;
2090		tbio->bi_private = rp;
2091		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2092		tbio->bi_end_io = end_sync_write;
2093		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2094
2095		bio_copy_data(tbio, fbio);
2096
2097		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2098		atomic_inc(&r10_bio->remaining);
2099		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2100
2101		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2102			tbio->bi_opf |= MD_FAILFAST;
2103		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2104		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2105		submit_bio_noacct(tbio);
2106	}
2107
2108	/* Now write out to any replacement devices
2109	 * that are active
2110	 */
2111	for (i = 0; i < conf->copies; i++) {
2112		int d;
2113
2114		tbio = r10_bio->devs[i].repl_bio;
2115		if (!tbio || !tbio->bi_end_io)
2116			continue;
2117		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2118		    && r10_bio->devs[i].bio != fbio)
2119			bio_copy_data(tbio, fbio);
2120		d = r10_bio->devs[i].devnum;
2121		atomic_inc(&r10_bio->remaining);
2122		md_sync_acct(conf->mirrors[d].replacement->bdev,
2123			     bio_sectors(tbio));
2124		submit_bio_noacct(tbio);
2125	}
2126
2127done:
2128	if (atomic_dec_and_test(&r10_bio->remaining)) {
2129		md_done_sync(mddev, r10_bio->sectors, 1);
2130		put_buf(r10_bio);
2131	}
2132}
2133
2134/*
2135 * Now for the recovery code.
2136 * Recovery happens across physical sectors.
2137 * We recover all non-is_sync drives by finding the virtual address of
2138 * each, and then choose a working drive that also has that virt address.
2139 * There is a separate r10_bio for each non-in_sync drive.
2140 * Only the first two slots are in use. The first for reading,
2141 * The second for writing.
2142 *
2143 */
2144static void fix_recovery_read_error(struct r10bio *r10_bio)
2145{
2146	/* We got a read error during recovery.
2147	 * We repeat the read in smaller page-sized sections.
2148	 * If a read succeeds, write it to the new device or record
2149	 * a bad block if we cannot.
2150	 * If a read fails, record a bad block on both old and
2151	 * new devices.
2152	 */
2153	struct mddev *mddev = r10_bio->mddev;
2154	struct r10conf *conf = mddev->private;
2155	struct bio *bio = r10_bio->devs[0].bio;
2156	sector_t sect = 0;
2157	int sectors = r10_bio->sectors;
2158	int idx = 0;
2159	int dr = r10_bio->devs[0].devnum;
2160	int dw = r10_bio->devs[1].devnum;
2161	struct page **pages = get_resync_pages(bio)->pages;
2162
2163	while (sectors) {
2164		int s = sectors;
2165		struct md_rdev *rdev;
2166		sector_t addr;
2167		int ok;
2168
2169		if (s > (PAGE_SIZE>>9))
2170			s = PAGE_SIZE >> 9;
2171
2172		rdev = conf->mirrors[dr].rdev;
2173		addr = r10_bio->devs[0].addr + sect,
2174		ok = sync_page_io(rdev,
2175				  addr,
2176				  s << 9,
2177				  pages[idx],
2178				  REQ_OP_READ, 0, false);
2179		if (ok) {
2180			rdev = conf->mirrors[dw].rdev;
2181			addr = r10_bio->devs[1].addr + sect;
2182			ok = sync_page_io(rdev,
2183					  addr,
2184					  s << 9,
2185					  pages[idx],
2186					  REQ_OP_WRITE, 0, false);
2187			if (!ok) {
2188				set_bit(WriteErrorSeen, &rdev->flags);
2189				if (!test_and_set_bit(WantReplacement,
2190						      &rdev->flags))
2191					set_bit(MD_RECOVERY_NEEDED,
2192						&rdev->mddev->recovery);
2193			}
2194		}
2195		if (!ok) {
2196			/* We don't worry if we cannot set a bad block -
2197			 * it really is bad so there is no loss in not
2198			 * recording it yet
2199			 */
2200			rdev_set_badblocks(rdev, addr, s, 0);
2201
2202			if (rdev != conf->mirrors[dw].rdev) {
2203				/* need bad block on destination too */
2204				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2205				addr = r10_bio->devs[1].addr + sect;
2206				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2207				if (!ok) {
2208					/* just abort the recovery */
2209					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2210						  mdname(mddev));
2211
2212					conf->mirrors[dw].recovery_disabled
2213						= mddev->recovery_disabled;
2214					set_bit(MD_RECOVERY_INTR,
2215						&mddev->recovery);
2216					break;
2217				}
2218			}
2219		}
2220
2221		sectors -= s;
2222		sect += s;
2223		idx++;
2224	}
2225}
2226
2227static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2228{
2229	struct r10conf *conf = mddev->private;
2230	int d;
2231	struct bio *wbio = r10_bio->devs[1].bio;
2232	struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2233
2234	/* Need to test wbio2->bi_end_io before we call
2235	 * submit_bio_noacct as if the former is NULL,
2236	 * the latter is free to free wbio2.
2237	 */
2238	if (wbio2 && !wbio2->bi_end_io)
2239		wbio2 = NULL;
2240
2241	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2242		fix_recovery_read_error(r10_bio);
2243		if (wbio->bi_end_io)
2244			end_sync_request(r10_bio);
2245		if (wbio2)
2246			end_sync_request(r10_bio);
2247		return;
2248	}
2249
2250	/*
2251	 * share the pages with the first bio
2252	 * and submit the write request
2253	 */
2254	d = r10_bio->devs[1].devnum;
2255	if (wbio->bi_end_io) {
2256		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2257		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2258		submit_bio_noacct(wbio);
2259	}
2260	if (wbio2) {
2261		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2262		md_sync_acct(conf->mirrors[d].replacement->bdev,
2263			     bio_sectors(wbio2));
2264		submit_bio_noacct(wbio2);
2265	}
2266}
2267
2268/*
2269 * Used by fix_read_error() to decay the per rdev read_errors.
2270 * We halve the read error count for every hour that has elapsed
2271 * since the last recorded read error.
2272 *
2273 */
2274static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2275{
2276	long cur_time_mon;
2277	unsigned long hours_since_last;
2278	unsigned int read_errors = atomic_read(&rdev->read_errors);
2279
2280	cur_time_mon = ktime_get_seconds();
2281
2282	if (rdev->last_read_error == 0) {
2283		/* first time we've seen a read error */
2284		rdev->last_read_error = cur_time_mon;
2285		return;
2286	}
2287
2288	hours_since_last = (long)(cur_time_mon -
2289			    rdev->last_read_error) / 3600;
2290
2291	rdev->last_read_error = cur_time_mon;
2292
2293	/*
2294	 * if hours_since_last is > the number of bits in read_errors
2295	 * just set read errors to 0. We do this to avoid
2296	 * overflowing the shift of read_errors by hours_since_last.
2297	 */
2298	if (hours_since_last >= 8 * sizeof(read_errors))
2299		atomic_set(&rdev->read_errors, 0);
2300	else
2301		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2302}
2303
2304static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2305			    int sectors, struct page *page, int rw)
2306{
2307	sector_t first_bad;
2308	int bad_sectors;
2309
2310	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2311	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2312		return -1;
2313	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2314		/* success */
2315		return 1;
2316	if (rw == WRITE) {
2317		set_bit(WriteErrorSeen, &rdev->flags);
2318		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2319			set_bit(MD_RECOVERY_NEEDED,
2320				&rdev->mddev->recovery);
2321	}
2322	/* need to record an error - either for the block or the device */
2323	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2324		md_error(rdev->mddev, rdev);
2325	return 0;
2326}
2327
2328/*
2329 * This is a kernel thread which:
2330 *
2331 *	1.	Retries failed read operations on working mirrors.
2332 *	2.	Updates the raid superblock when problems encounter.
2333 *	3.	Performs writes following reads for array synchronising.
2334 */
2335
2336static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2337{
2338	int sect = 0; /* Offset from r10_bio->sector */
2339	int sectors = r10_bio->sectors;
2340	struct md_rdev *rdev;
2341	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2342	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2343
2344	/* still own a reference to this rdev, so it cannot
2345	 * have been cleared recently.
2346	 */
2347	rdev = conf->mirrors[d].rdev;
2348
2349	if (test_bit(Faulty, &rdev->flags))
2350		/* drive has already been failed, just ignore any
2351		   more fix_read_error() attempts */
2352		return;
2353
2354	check_decay_read_errors(mddev, rdev);
2355	atomic_inc(&rdev->read_errors);
2356	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2357		char b[BDEVNAME_SIZE];
2358		bdevname(rdev->bdev, b);
2359
2360		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2361			  mdname(mddev), b,
2362			  atomic_read(&rdev->read_errors), max_read_errors);
2363		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2364			  mdname(mddev), b);
2365		md_error(mddev, rdev);
2366		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2367		return;
2368	}
2369
2370	while(sectors) {
2371		int s = sectors;
2372		int sl = r10_bio->read_slot;
2373		int success = 0;
2374		int start;
2375
2376		if (s > (PAGE_SIZE>>9))
2377			s = PAGE_SIZE >> 9;
2378
2379		rcu_read_lock();
2380		do {
2381			sector_t first_bad;
2382			int bad_sectors;
2383
2384			d = r10_bio->devs[sl].devnum;
2385			rdev = rcu_dereference(conf->mirrors[d].rdev);
2386			if (rdev &&
2387			    test_bit(In_sync, &rdev->flags) &&
2388			    !test_bit(Faulty, &rdev->flags) &&
2389			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2390					&first_bad, &bad_sectors) == 0) {
2391				atomic_inc(&rdev->nr_pending);
2392				rcu_read_unlock();
2393				success = sync_page_io(rdev,
2394						       r10_bio->devs[sl].addr +
2395						       sect,
2396						       s<<9,
2397						       conf->tmppage,
2398						       REQ_OP_READ, 0, false);
2399				rdev_dec_pending(rdev, mddev);
2400				rcu_read_lock();
2401				if (success)
2402					break;
2403			}
2404			sl++;
2405			if (sl == conf->copies)
2406				sl = 0;
2407		} while (!success && sl != r10_bio->read_slot);
2408		rcu_read_unlock();
2409
2410		if (!success) {
2411			/* Cannot read from anywhere, just mark the block
2412			 * as bad on the first device to discourage future
2413			 * reads.
2414			 */
2415			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2416			rdev = conf->mirrors[dn].rdev;
2417
2418			if (!rdev_set_badblocks(
2419				    rdev,
2420				    r10_bio->devs[r10_bio->read_slot].addr
2421				    + sect,
2422				    s, 0)) {
2423				md_error(mddev, rdev);
2424				r10_bio->devs[r10_bio->read_slot].bio
2425					= IO_BLOCKED;
2426			}
2427			break;
2428		}
2429
2430		start = sl;
2431		/* write it back and re-read */
2432		rcu_read_lock();
2433		while (sl != r10_bio->read_slot) {
2434			char b[BDEVNAME_SIZE];
2435
2436			if (sl==0)
2437				sl = conf->copies;
2438			sl--;
2439			d = r10_bio->devs[sl].devnum;
2440			rdev = rcu_dereference(conf->mirrors[d].rdev);
2441			if (!rdev ||
2442			    test_bit(Faulty, &rdev->flags) ||
2443			    !test_bit(In_sync, &rdev->flags))
2444				continue;
2445
2446			atomic_inc(&rdev->nr_pending);
2447			rcu_read_unlock();
2448			if (r10_sync_page_io(rdev,
2449					     r10_bio->devs[sl].addr +
2450					     sect,
2451					     s, conf->tmppage, WRITE)
2452			    == 0) {
2453				/* Well, this device is dead */
2454				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2455					  mdname(mddev), s,
2456					  (unsigned long long)(
2457						  sect +
2458						  choose_data_offset(r10_bio,
2459								     rdev)),
2460					  bdevname(rdev->bdev, b));
2461				pr_notice("md/raid10:%s: %s: failing drive\n",
2462					  mdname(mddev),
2463					  bdevname(rdev->bdev, b));
2464			}
2465			rdev_dec_pending(rdev, mddev);
2466			rcu_read_lock();
2467		}
2468		sl = start;
2469		while (sl != r10_bio->read_slot) {
2470			char b[BDEVNAME_SIZE];
2471
2472			if (sl==0)
2473				sl = conf->copies;
2474			sl--;
2475			d = r10_bio->devs[sl].devnum;
2476			rdev = rcu_dereference(conf->mirrors[d].rdev);
2477			if (!rdev ||
2478			    test_bit(Faulty, &rdev->flags) ||
2479			    !test_bit(In_sync, &rdev->flags))
2480				continue;
2481
2482			atomic_inc(&rdev->nr_pending);
2483			rcu_read_unlock();
2484			switch (r10_sync_page_io(rdev,
2485					     r10_bio->devs[sl].addr +
2486					     sect,
2487					     s, conf->tmppage,
2488						 READ)) {
2489			case 0:
2490				/* Well, this device is dead */
2491				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2492				       mdname(mddev), s,
2493				       (unsigned long long)(
2494					       sect +
2495					       choose_data_offset(r10_bio, rdev)),
2496				       bdevname(rdev->bdev, b));
2497				pr_notice("md/raid10:%s: %s: failing drive\n",
2498				       mdname(mddev),
2499				       bdevname(rdev->bdev, b));
2500				break;
2501			case 1:
2502				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2503				       mdname(mddev), s,
2504				       (unsigned long long)(
2505					       sect +
2506					       choose_data_offset(r10_bio, rdev)),
2507				       bdevname(rdev->bdev, b));
2508				atomic_add(s, &rdev->corrected_errors);
2509			}
2510
2511			rdev_dec_pending(rdev, mddev);
2512			rcu_read_lock();
2513		}
2514		rcu_read_unlock();
2515
2516		sectors -= s;
2517		sect += s;
2518	}
2519}
2520
2521static int narrow_write_error(struct r10bio *r10_bio, int i)
2522{
2523	struct bio *bio = r10_bio->master_bio;
2524	struct mddev *mddev = r10_bio->mddev;
2525	struct r10conf *conf = mddev->private;
2526	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2527	/* bio has the data to be written to slot 'i' where
2528	 * we just recently had a write error.
2529	 * We repeatedly clone the bio and trim down to one block,
2530	 * then try the write.  Where the write fails we record
2531	 * a bad block.
2532	 * It is conceivable that the bio doesn't exactly align with
2533	 * blocks.  We must handle this.
2534	 *
2535	 * We currently own a reference to the rdev.
2536	 */
2537
2538	int block_sectors;
2539	sector_t sector;
2540	int sectors;
2541	int sect_to_write = r10_bio->sectors;
2542	int ok = 1;
2543
2544	if (rdev->badblocks.shift < 0)
2545		return 0;
2546
2547	block_sectors = roundup(1 << rdev->badblocks.shift,
2548				bdev_logical_block_size(rdev->bdev) >> 9);
2549	sector = r10_bio->sector;
2550	sectors = ((r10_bio->sector + block_sectors)
2551		   & ~(sector_t)(block_sectors - 1))
2552		- sector;
2553
2554	while (sect_to_write) {
2555		struct bio *wbio;
2556		sector_t wsector;
2557		if (sectors > sect_to_write)
2558			sectors = sect_to_write;
2559		/* Write at 'sector' for 'sectors' */
2560		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2561		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2562		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2563		wbio->bi_iter.bi_sector = wsector +
2564				   choose_data_offset(r10_bio, rdev);
2565		bio_set_dev(wbio, rdev->bdev);
2566		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2567
2568		if (submit_bio_wait(wbio) < 0)
2569			/* Failure! */
2570			ok = rdev_set_badblocks(rdev, wsector,
2571						sectors, 0)
2572				&& ok;
2573
2574		bio_put(wbio);
2575		sect_to_write -= sectors;
2576		sector += sectors;
2577		sectors = block_sectors;
2578	}
2579	return ok;
2580}
2581
2582static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2583{
2584	int slot = r10_bio->read_slot;
2585	struct bio *bio;
2586	struct r10conf *conf = mddev->private;
2587	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2588
2589	/* we got a read error. Maybe the drive is bad.  Maybe just
2590	 * the block and we can fix it.
2591	 * We freeze all other IO, and try reading the block from
2592	 * other devices.  When we find one, we re-write
2593	 * and check it that fixes the read error.
2594	 * This is all done synchronously while the array is
2595	 * frozen.
2596	 */
2597	bio = r10_bio->devs[slot].bio;
2598	bio_put(bio);
2599	r10_bio->devs[slot].bio = NULL;
2600
2601	if (mddev->ro)
2602		r10_bio->devs[slot].bio = IO_BLOCKED;
2603	else if (!test_bit(FailFast, &rdev->flags)) {
2604		freeze_array(conf, 1);
2605		fix_read_error(conf, mddev, r10_bio);
2606		unfreeze_array(conf);
2607	} else
2608		md_error(mddev, rdev);
2609
2610	rdev_dec_pending(rdev, mddev);
2611	allow_barrier(conf);
2612	r10_bio->state = 0;
2613	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2614}
2615
2616static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2617{
2618	/* Some sort of write request has finished and it
2619	 * succeeded in writing where we thought there was a
2620	 * bad block.  So forget the bad block.
2621	 * Or possibly if failed and we need to record
2622	 * a bad block.
2623	 */
2624	int m;
2625	struct md_rdev *rdev;
2626
2627	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2628	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2629		for (m = 0; m < conf->copies; m++) {
2630			int dev = r10_bio->devs[m].devnum;
2631			rdev = conf->mirrors[dev].rdev;
2632			if (r10_bio->devs[m].bio == NULL ||
2633				r10_bio->devs[m].bio->bi_end_io == NULL)
2634				continue;
2635			if (!r10_bio->devs[m].bio->bi_status) {
2636				rdev_clear_badblocks(
2637					rdev,
2638					r10_bio->devs[m].addr,
2639					r10_bio->sectors, 0);
2640			} else {
2641				if (!rdev_set_badblocks(
2642					    rdev,
2643					    r10_bio->devs[m].addr,
2644					    r10_bio->sectors, 0))
2645					md_error(conf->mddev, rdev);
2646			}
2647			rdev = conf->mirrors[dev].replacement;
2648			if (r10_bio->devs[m].repl_bio == NULL ||
2649				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2650				continue;
2651
2652			if (!r10_bio->devs[m].repl_bio->bi_status) {
2653				rdev_clear_badblocks(
2654					rdev,
2655					r10_bio->devs[m].addr,
2656					r10_bio->sectors, 0);
2657			} else {
2658				if (!rdev_set_badblocks(
2659					    rdev,
2660					    r10_bio->devs[m].addr,
2661					    r10_bio->sectors, 0))
2662					md_error(conf->mddev, rdev);
2663			}
2664		}
2665		put_buf(r10_bio);
2666	} else {
2667		bool fail = false;
2668		for (m = 0; m < conf->copies; m++) {
2669			int dev = r10_bio->devs[m].devnum;
2670			struct bio *bio = r10_bio->devs[m].bio;
2671			rdev = conf->mirrors[dev].rdev;
2672			if (bio == IO_MADE_GOOD) {
2673				rdev_clear_badblocks(
2674					rdev,
2675					r10_bio->devs[m].addr,
2676					r10_bio->sectors, 0);
2677				rdev_dec_pending(rdev, conf->mddev);
2678			} else if (bio != NULL && bio->bi_status) {
2679				fail = true;
2680				if (!narrow_write_error(r10_bio, m)) {
2681					md_error(conf->mddev, rdev);
2682					set_bit(R10BIO_Degraded,
2683						&r10_bio->state);
2684				}
2685				rdev_dec_pending(rdev, conf->mddev);
2686			}
2687			bio = r10_bio->devs[m].repl_bio;
2688			rdev = conf->mirrors[dev].replacement;
2689			if (rdev && bio == IO_MADE_GOOD) {
2690				rdev_clear_badblocks(
2691					rdev,
2692					r10_bio->devs[m].addr,
2693					r10_bio->sectors, 0);
2694				rdev_dec_pending(rdev, conf->mddev);
2695			}
2696		}
2697		if (fail) {
2698			spin_lock_irq(&conf->device_lock);
2699			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2700			conf->nr_queued++;
2701			spin_unlock_irq(&conf->device_lock);
2702			/*
2703			 * In case freeze_array() is waiting for condition
2704			 * nr_pending == nr_queued + extra to be true.
2705			 */
2706			wake_up(&conf->wait_barrier);
2707			md_wakeup_thread(conf->mddev->thread);
2708		} else {
2709			if (test_bit(R10BIO_WriteError,
2710				     &r10_bio->state))
2711				close_write(r10_bio);
2712			raid_end_bio_io(r10_bio);
2713		}
2714	}
2715}
2716
2717static void raid10d(struct md_thread *thread)
2718{
2719	struct mddev *mddev = thread->mddev;
2720	struct r10bio *r10_bio;
2721	unsigned long flags;
2722	struct r10conf *conf = mddev->private;
2723	struct list_head *head = &conf->retry_list;
2724	struct blk_plug plug;
2725
2726	md_check_recovery(mddev);
2727
2728	if (!list_empty_careful(&conf->bio_end_io_list) &&
2729	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2730		LIST_HEAD(tmp);
2731		spin_lock_irqsave(&conf->device_lock, flags);
2732		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2733			while (!list_empty(&conf->bio_end_io_list)) {
2734				list_move(conf->bio_end_io_list.prev, &tmp);
2735				conf->nr_queued--;
2736			}
2737		}
2738		spin_unlock_irqrestore(&conf->device_lock, flags);
2739		while (!list_empty(&tmp)) {
2740			r10_bio = list_first_entry(&tmp, struct r10bio,
2741						   retry_list);
2742			list_del(&r10_bio->retry_list);
2743			if (mddev->degraded)
2744				set_bit(R10BIO_Degraded, &r10_bio->state);
2745
2746			if (test_bit(R10BIO_WriteError,
2747				     &r10_bio->state))
2748				close_write(r10_bio);
2749			raid_end_bio_io(r10_bio);
2750		}
2751	}
2752
2753	blk_start_plug(&plug);
2754	for (;;) {
2755
2756		flush_pending_writes(conf);
2757
2758		spin_lock_irqsave(&conf->device_lock, flags);
2759		if (list_empty(head)) {
2760			spin_unlock_irqrestore(&conf->device_lock, flags);
2761			break;
2762		}
2763		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2764		list_del(head->prev);
2765		conf->nr_queued--;
2766		spin_unlock_irqrestore(&conf->device_lock, flags);
2767
2768		mddev = r10_bio->mddev;
2769		conf = mddev->private;
2770		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2771		    test_bit(R10BIO_WriteError, &r10_bio->state))
2772			handle_write_completed(conf, r10_bio);
2773		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2774			reshape_request_write(mddev, r10_bio);
2775		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2776			sync_request_write(mddev, r10_bio);
2777		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2778			recovery_request_write(mddev, r10_bio);
2779		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2780			handle_read_error(mddev, r10_bio);
2781		else
2782			WARN_ON_ONCE(1);
2783
2784		cond_resched();
2785		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2786			md_check_recovery(mddev);
2787	}
2788	blk_finish_plug(&plug);
2789}
2790
2791static int init_resync(struct r10conf *conf)
2792{
2793	int ret, buffs, i;
2794
2795	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2796	BUG_ON(mempool_initialized(&conf->r10buf_pool));
2797	conf->have_replacement = 0;
2798	for (i = 0; i < conf->geo.raid_disks; i++)
2799		if (conf->mirrors[i].replacement)
2800			conf->have_replacement = 1;
2801	ret = mempool_init(&conf->r10buf_pool, buffs,
2802			   r10buf_pool_alloc, r10buf_pool_free, conf);
2803	if (ret)
2804		return ret;
2805	conf->next_resync = 0;
2806	return 0;
2807}
2808
2809static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2810{
2811	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2812	struct rsync_pages *rp;
2813	struct bio *bio;
2814	int nalloc;
2815	int i;
2816
2817	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2818	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2819		nalloc = conf->copies; /* resync */
2820	else
2821		nalloc = 2; /* recovery */
2822
2823	for (i = 0; i < nalloc; i++) {
2824		bio = r10bio->devs[i].bio;
2825		rp = bio->bi_private;
2826		bio_reset(bio);
2827		bio->bi_private = rp;
2828		bio = r10bio->devs[i].repl_bio;
2829		if (bio) {
2830			rp = bio->bi_private;
2831			bio_reset(bio);
2832			bio->bi_private = rp;
2833		}
2834	}
2835	return r10bio;
2836}
2837
2838/*
2839 * Set cluster_sync_high since we need other nodes to add the
2840 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2841 */
2842static void raid10_set_cluster_sync_high(struct r10conf *conf)
2843{
2844	sector_t window_size;
2845	int extra_chunk, chunks;
2846
2847	/*
2848	 * First, here we define "stripe" as a unit which across
2849	 * all member devices one time, so we get chunks by use
2850	 * raid_disks / near_copies. Otherwise, if near_copies is
2851	 * close to raid_disks, then resync window could increases
2852	 * linearly with the increase of raid_disks, which means
2853	 * we will suspend a really large IO window while it is not
2854	 * necessary. If raid_disks is not divisible by near_copies,
2855	 * an extra chunk is needed to ensure the whole "stripe" is
2856	 * covered.
2857	 */
2858
2859	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2860	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2861		extra_chunk = 0;
2862	else
2863		extra_chunk = 1;
2864	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2865
2866	/*
2867	 * At least use a 32M window to align with raid1's resync window
2868	 */
2869	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2870			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2871
2872	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2873}
2874
2875/*
2876 * perform a "sync" on one "block"
2877 *
2878 * We need to make sure that no normal I/O request - particularly write
2879 * requests - conflict with active sync requests.
2880 *
2881 * This is achieved by tracking pending requests and a 'barrier' concept
2882 * that can be installed to exclude normal IO requests.
2883 *
2884 * Resync and recovery are handled very differently.
2885 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2886 *
2887 * For resync, we iterate over virtual addresses, read all copies,
2888 * and update if there are differences.  If only one copy is live,
2889 * skip it.
2890 * For recovery, we iterate over physical addresses, read a good
2891 * value for each non-in_sync drive, and over-write.
2892 *
2893 * So, for recovery we may have several outstanding complex requests for a
2894 * given address, one for each out-of-sync device.  We model this by allocating
2895 * a number of r10_bio structures, one for each out-of-sync device.
2896 * As we setup these structures, we collect all bio's together into a list
2897 * which we then process collectively to add pages, and then process again
2898 * to pass to submit_bio_noacct.
2899 *
2900 * The r10_bio structures are linked using a borrowed master_bio pointer.
2901 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2902 * has its remaining count decremented to 0, the whole complex operation
2903 * is complete.
2904 *
2905 */
2906
2907static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2908			     int *skipped)
2909{
2910	struct r10conf *conf = mddev->private;
2911	struct r10bio *r10_bio;
2912	struct bio *biolist = NULL, *bio;
2913	sector_t max_sector, nr_sectors;
2914	int i;
2915	int max_sync;
2916	sector_t sync_blocks;
2917	sector_t sectors_skipped = 0;
2918	int chunks_skipped = 0;
2919	sector_t chunk_mask = conf->geo.chunk_mask;
2920	int page_idx = 0;
2921
2922	/*
2923	 * Allow skipping a full rebuild for incremental assembly
2924	 * of a clean array, like RAID1 does.
2925	 */
2926	if (mddev->bitmap == NULL &&
2927	    mddev->recovery_cp == MaxSector &&
2928	    mddev->reshape_position == MaxSector &&
2929	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2930	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2931	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2932	    conf->fullsync == 0) {
2933		*skipped = 1;
2934		return mddev->dev_sectors - sector_nr;
2935	}
2936
2937	if (!mempool_initialized(&conf->r10buf_pool))
2938		if (init_resync(conf))
2939			return 0;
2940
2941 skipped:
2942	max_sector = mddev->dev_sectors;
2943	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2944	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2945		max_sector = mddev->resync_max_sectors;
2946	if (sector_nr >= max_sector) {
2947		conf->cluster_sync_low = 0;
2948		conf->cluster_sync_high = 0;
2949
2950		/* If we aborted, we need to abort the
2951		 * sync on the 'current' bitmap chucks (there can
2952		 * be several when recovering multiple devices).
2953		 * as we may have started syncing it but not finished.
2954		 * We can find the current address in
2955		 * mddev->curr_resync, but for recovery,
2956		 * we need to convert that to several
2957		 * virtual addresses.
2958		 */
2959		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2960			end_reshape(conf);
2961			close_sync(conf);
2962			return 0;
2963		}
2964
2965		if (mddev->curr_resync < max_sector) { /* aborted */
2966			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2967				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2968						   &sync_blocks, 1);
2969			else for (i = 0; i < conf->geo.raid_disks; i++) {
2970				sector_t sect =
2971					raid10_find_virt(conf, mddev->curr_resync, i);
2972				md_bitmap_end_sync(mddev->bitmap, sect,
2973						   &sync_blocks, 1);
2974			}
2975		} else {
2976			/* completed sync */
2977			if ((!mddev->bitmap || conf->fullsync)
2978			    && conf->have_replacement
2979			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2980				/* Completed a full sync so the replacements
2981				 * are now fully recovered.
2982				 */
2983				rcu_read_lock();
2984				for (i = 0; i < conf->geo.raid_disks; i++) {
2985					struct md_rdev *rdev =
2986						rcu_dereference(conf->mirrors[i].replacement);
2987					if (rdev)
2988						rdev->recovery_offset = MaxSector;
2989				}
2990				rcu_read_unlock();
2991			}
2992			conf->fullsync = 0;
2993		}
2994		md_bitmap_close_sync(mddev->bitmap);
2995		close_sync(conf);
2996		*skipped = 1;
2997		return sectors_skipped;
2998	}
2999
3000	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3001		return reshape_request(mddev, sector_nr, skipped);
3002
3003	if (chunks_skipped >= conf->geo.raid_disks) {
3004		/* if there has been nothing to do on any drive,
3005		 * then there is nothing to do at all..
3006		 */
3007		*skipped = 1;
3008		return (max_sector - sector_nr) + sectors_skipped;
3009	}
3010
3011	if (max_sector > mddev->resync_max)
3012		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3013
3014	/* make sure whole request will fit in a chunk - if chunks
3015	 * are meaningful
3016	 */
3017	if (conf->geo.near_copies < conf->geo.raid_disks &&
3018	    max_sector > (sector_nr | chunk_mask))
3019		max_sector = (sector_nr | chunk_mask) + 1;
3020
3021	/*
3022	 * If there is non-resync activity waiting for a turn, then let it
3023	 * though before starting on this new sync request.
3024	 */
3025	if (conf->nr_waiting)
3026		schedule_timeout_uninterruptible(1);
3027
3028	/* Again, very different code for resync and recovery.
3029	 * Both must result in an r10bio with a list of bios that
3030	 * have bi_end_io, bi_sector, bi_disk set,
3031	 * and bi_private set to the r10bio.
3032	 * For recovery, we may actually create several r10bios
3033	 * with 2 bios in each, that correspond to the bios in the main one.
3034	 * In this case, the subordinate r10bios link back through a
3035	 * borrowed master_bio pointer, and the counter in the master
3036	 * includes a ref from each subordinate.
3037	 */
3038	/* First, we decide what to do and set ->bi_end_io
3039	 * To end_sync_read if we want to read, and
3040	 * end_sync_write if we will want to write.
3041	 */
3042
3043	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3044	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3045		/* recovery... the complicated one */
3046		int j;
3047		r10_bio = NULL;
3048
3049		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3050			int still_degraded;
3051			struct r10bio *rb2;
3052			sector_t sect;
3053			int must_sync;
3054			int any_working;
3055			int need_recover = 0;
3056			struct raid10_info *mirror = &conf->mirrors[i];
3057			struct md_rdev *mrdev, *mreplace;
3058
3059			rcu_read_lock();
3060			mrdev = rcu_dereference(mirror->rdev);
3061			mreplace = rcu_dereference(mirror->replacement);
3062
3063			if (mrdev != NULL &&
3064			    !test_bit(Faulty, &mrdev->flags) &&
3065			    !test_bit(In_sync, &mrdev->flags))
3066				need_recover = 1;
3067			if (mreplace && test_bit(Faulty, &mreplace->flags))
3068				mreplace = NULL;
3069
3070			if (!need_recover && !mreplace) {
3071				rcu_read_unlock();
3072				continue;
3073			}
3074
3075			still_degraded = 0;
3076			/* want to reconstruct this device */
3077			rb2 = r10_bio;
3078			sect = raid10_find_virt(conf, sector_nr, i);
3079			if (sect >= mddev->resync_max_sectors) {
3080				/* last stripe is not complete - don't
3081				 * try to recover this sector.
3082				 */
3083				rcu_read_unlock();
3084				continue;
3085			}
3086			/* Unless we are doing a full sync, or a replacement
3087			 * we only need to recover the block if it is set in
3088			 * the bitmap
3089			 */
3090			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3091							 &sync_blocks, 1);
3092			if (sync_blocks < max_sync)
3093				max_sync = sync_blocks;
3094			if (!must_sync &&
3095			    mreplace == NULL &&
3096			    !conf->fullsync) {
3097				/* yep, skip the sync_blocks here, but don't assume
3098				 * that there will never be anything to do here
3099				 */
3100				chunks_skipped = -1;
3101				rcu_read_unlock();
3102				continue;
3103			}
3104			atomic_inc(&mrdev->nr_pending);
3105			if (mreplace)
3106				atomic_inc(&mreplace->nr_pending);
3107			rcu_read_unlock();
3108
3109			r10_bio = raid10_alloc_init_r10buf(conf);
3110			r10_bio->state = 0;
3111			raise_barrier(conf, rb2 != NULL);
3112			atomic_set(&r10_bio->remaining, 0);
3113
3114			r10_bio->master_bio = (struct bio*)rb2;
3115			if (rb2)
3116				atomic_inc(&rb2->remaining);
3117			r10_bio->mddev = mddev;
3118			set_bit(R10BIO_IsRecover, &r10_bio->state);
3119			r10_bio->sector = sect;
3120
3121			raid10_find_phys(conf, r10_bio);
3122
3123			/* Need to check if the array will still be
3124			 * degraded
3125			 */
3126			rcu_read_lock();
3127			for (j = 0; j < conf->geo.raid_disks; j++) {
3128				struct md_rdev *rdev = rcu_dereference(
3129					conf->mirrors[j].rdev);
3130				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3131					still_degraded = 1;
3132					break;
3133				}
3134			}
3135
3136			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3137							 &sync_blocks, still_degraded);
3138
3139			any_working = 0;
3140			for (j=0; j<conf->copies;j++) {
3141				int k;
3142				int d = r10_bio->devs[j].devnum;
3143				sector_t from_addr, to_addr;
3144				struct md_rdev *rdev =
3145					rcu_dereference(conf->mirrors[d].rdev);
3146				sector_t sector, first_bad;
3147				int bad_sectors;
3148				if (!rdev ||
3149				    !test_bit(In_sync, &rdev->flags))
3150					continue;
3151				/* This is where we read from */
3152				any_working = 1;
3153				sector = r10_bio->devs[j].addr;
3154
3155				if (is_badblock(rdev, sector, max_sync,
3156						&first_bad, &bad_sectors)) {
3157					if (first_bad > sector)
3158						max_sync = first_bad - sector;
3159					else {
3160						bad_sectors -= (sector
3161								- first_bad);
3162						if (max_sync > bad_sectors)
3163							max_sync = bad_sectors;
3164						continue;
3165					}
3166				}
3167				bio = r10_bio->devs[0].bio;
3168				bio->bi_next = biolist;
3169				biolist = bio;
3170				bio->bi_end_io = end_sync_read;
3171				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3172				if (test_bit(FailFast, &rdev->flags))
3173					bio->bi_opf |= MD_FAILFAST;
3174				from_addr = r10_bio->devs[j].addr;
3175				bio->bi_iter.bi_sector = from_addr +
3176					rdev->data_offset;
3177				bio_set_dev(bio, rdev->bdev);
3178				atomic_inc(&rdev->nr_pending);
3179				/* and we write to 'i' (if not in_sync) */
3180
3181				for (k=0; k<conf->copies; k++)
3182					if (r10_bio->devs[k].devnum == i)
3183						break;
3184				BUG_ON(k == conf->copies);
3185				to_addr = r10_bio->devs[k].addr;
3186				r10_bio->devs[0].devnum = d;
3187				r10_bio->devs[0].addr = from_addr;
3188				r10_bio->devs[1].devnum = i;
3189				r10_bio->devs[1].addr = to_addr;
3190
3191				if (need_recover) {
3192					bio = r10_bio->devs[1].bio;
3193					bio->bi_next = biolist;
3194					biolist = bio;
3195					bio->bi_end_io = end_sync_write;
3196					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3197					bio->bi_iter.bi_sector = to_addr
3198						+ mrdev->data_offset;
3199					bio_set_dev(bio, mrdev->bdev);
3200					atomic_inc(&r10_bio->remaining);
3201				} else
3202					r10_bio->devs[1].bio->bi_end_io = NULL;
3203
3204				/* and maybe write to replacement */
3205				bio = r10_bio->devs[1].repl_bio;
3206				if (bio)
3207					bio->bi_end_io = NULL;
3208				/* Note: if replace is not NULL, then bio
3209				 * cannot be NULL as r10buf_pool_alloc will
3210				 * have allocated it.
3211				 */
3212				if (!mreplace)
3213					break;
3214				bio->bi_next = biolist;
3215				biolist = bio;
3216				bio->bi_end_io = end_sync_write;
3217				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3218				bio->bi_iter.bi_sector = to_addr +
3219					mreplace->data_offset;
3220				bio_set_dev(bio, mreplace->bdev);
3221				atomic_inc(&r10_bio->remaining);
3222				break;
3223			}
3224			rcu_read_unlock();
3225			if (j == conf->copies) {
3226				/* Cannot recover, so abort the recovery or
3227				 * record a bad block */
3228				if (any_working) {
3229					/* problem is that there are bad blocks
3230					 * on other device(s)
3231					 */
3232					int k;
3233					for (k = 0; k < conf->copies; k++)
3234						if (r10_bio->devs[k].devnum == i)
3235							break;
3236					if (!test_bit(In_sync,
3237						      &mrdev->flags)
3238					    && !rdev_set_badblocks(
3239						    mrdev,
3240						    r10_bio->devs[k].addr,
3241						    max_sync, 0))
3242						any_working = 0;
3243					if (mreplace &&
3244					    !rdev_set_badblocks(
3245						    mreplace,
3246						    r10_bio->devs[k].addr,
3247						    max_sync, 0))
3248						any_working = 0;
3249				}
3250				if (!any_working)  {
3251					if (!test_and_set_bit(MD_RECOVERY_INTR,
3252							      &mddev->recovery))
3253						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3254						       mdname(mddev));
3255					mirror->recovery_disabled
3256						= mddev->recovery_disabled;
3257				}
3258				put_buf(r10_bio);
3259				if (rb2)
3260					atomic_dec(&rb2->remaining);
3261				r10_bio = rb2;
3262				rdev_dec_pending(mrdev, mddev);
3263				if (mreplace)
3264					rdev_dec_pending(mreplace, mddev);
3265				break;
3266			}
3267			rdev_dec_pending(mrdev, mddev);
3268			if (mreplace)
3269				rdev_dec_pending(mreplace, mddev);
3270			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3271				/* Only want this if there is elsewhere to
3272				 * read from. 'j' is currently the first
3273				 * readable copy.
3274				 */
3275				int targets = 1;
3276				for (; j < conf->copies; j++) {
3277					int d = r10_bio->devs[j].devnum;
3278					if (conf->mirrors[d].rdev &&
3279					    test_bit(In_sync,
3280						      &conf->mirrors[d].rdev->flags))
3281						targets++;
3282				}
3283				if (targets == 1)
3284					r10_bio->devs[0].bio->bi_opf
3285						&= ~MD_FAILFAST;
3286			}
3287		}
3288		if (biolist == NULL) {
3289			while (r10_bio) {
3290				struct r10bio *rb2 = r10_bio;
3291				r10_bio = (struct r10bio*) rb2->master_bio;
3292				rb2->master_bio = NULL;
3293				put_buf(rb2);
3294			}
3295			goto giveup;
3296		}
3297	} else {
3298		/* resync. Schedule a read for every block at this virt offset */
3299		int count = 0;
3300
3301		/*
3302		 * Since curr_resync_completed could probably not update in
3303		 * time, and we will set cluster_sync_low based on it.
3304		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3305		 * safety reason, which ensures curr_resync_completed is
3306		 * updated in bitmap_cond_end_sync.
3307		 */
3308		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3309					mddev_is_clustered(mddev) &&
3310					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3311
3312		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3313					  &sync_blocks, mddev->degraded) &&
3314		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3315						 &mddev->recovery)) {
3316			/* We can skip this block */
3317			*skipped = 1;
3318			return sync_blocks + sectors_skipped;
3319		}
3320		if (sync_blocks < max_sync)
3321			max_sync = sync_blocks;
3322		r10_bio = raid10_alloc_init_r10buf(conf);
3323		r10_bio->state = 0;
3324
3325		r10_bio->mddev = mddev;
3326		atomic_set(&r10_bio->remaining, 0);
3327		raise_barrier(conf, 0);
3328		conf->next_resync = sector_nr;
3329
3330		r10_bio->master_bio = NULL;
3331		r10_bio->sector = sector_nr;
3332		set_bit(R10BIO_IsSync, &r10_bio->state);
3333		raid10_find_phys(conf, r10_bio);
3334		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3335
3336		for (i = 0; i < conf->copies; i++) {
3337			int d = r10_bio->devs[i].devnum;
3338			sector_t first_bad, sector;
3339			int bad_sectors;
3340			struct md_rdev *rdev;
3341
3342			if (r10_bio->devs[i].repl_bio)
3343				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3344
3345			bio = r10_bio->devs[i].bio;
3346			bio->bi_status = BLK_STS_IOERR;
3347			rcu_read_lock();
3348			rdev = rcu_dereference(conf->mirrors[d].rdev);
3349			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3350				rcu_read_unlock();
3351				continue;
3352			}
3353			sector = r10_bio->devs[i].addr;
3354			if (is_badblock(rdev, sector, max_sync,
3355					&first_bad, &bad_sectors)) {
3356				if (first_bad > sector)
3357					max_sync = first_bad - sector;
3358				else {
3359					bad_sectors -= (sector - first_bad);
3360					if (max_sync > bad_sectors)
3361						max_sync = bad_sectors;
3362					rcu_read_unlock();
3363					continue;
3364				}
3365			}
3366			atomic_inc(&rdev->nr_pending);
3367			atomic_inc(&r10_bio->remaining);
3368			bio->bi_next = biolist;
3369			biolist = bio;
3370			bio->bi_end_io = end_sync_read;
3371			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3372			if (test_bit(FailFast, &rdev->flags))
3373				bio->bi_opf |= MD_FAILFAST;
3374			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3375			bio_set_dev(bio, rdev->bdev);
3376			count++;
3377
3378			rdev = rcu_dereference(conf->mirrors[d].replacement);
3379			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3380				rcu_read_unlock();
3381				continue;
3382			}
3383			atomic_inc(&rdev->nr_pending);
3384
3385			/* Need to set up for writing to the replacement */
3386			bio = r10_bio->devs[i].repl_bio;
3387			bio->bi_status = BLK_STS_IOERR;
3388
3389			sector = r10_bio->devs[i].addr;
3390			bio->bi_next = biolist;
3391			biolist = bio;
3392			bio->bi_end_io = end_sync_write;
3393			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3394			if (test_bit(FailFast, &rdev->flags))
3395				bio->bi_opf |= MD_FAILFAST;
3396			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3397			bio_set_dev(bio, rdev->bdev);
3398			count++;
3399			rcu_read_unlock();
3400		}
3401
3402		if (count < 2) {
3403			for (i=0; i<conf->copies; i++) {
3404				int d = r10_bio->devs[i].devnum;
3405				if (r10_bio->devs[i].bio->bi_end_io)
3406					rdev_dec_pending(conf->mirrors[d].rdev,
3407							 mddev);
3408				if (r10_bio->devs[i].repl_bio &&
3409				    r10_bio->devs[i].repl_bio->bi_end_io)
3410					rdev_dec_pending(
3411						conf->mirrors[d].replacement,
3412						mddev);
3413			}
3414			put_buf(r10_bio);
3415			biolist = NULL;
3416			goto giveup;
3417		}
3418	}
3419
3420	nr_sectors = 0;
3421	if (sector_nr + max_sync < max_sector)
3422		max_sector = sector_nr + max_sync;
3423	do {
3424		struct page *page;
3425		int len = PAGE_SIZE;
3426		if (sector_nr + (len>>9) > max_sector)
3427			len = (max_sector - sector_nr) << 9;
3428		if (len == 0)
3429			break;
3430		for (bio= biolist ; bio ; bio=bio->bi_next) {
3431			struct resync_pages *rp = get_resync_pages(bio);
3432			page = resync_fetch_page(rp, page_idx);
3433			/*
3434			 * won't fail because the vec table is big enough
3435			 * to hold all these pages
3436			 */
3437			bio_add_page(bio, page, len, 0);
3438		}
3439		nr_sectors += len>>9;
3440		sector_nr += len>>9;
3441	} while (++page_idx < RESYNC_PAGES);
3442	r10_bio->sectors = nr_sectors;
3443
3444	if (mddev_is_clustered(mddev) &&
3445	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3446		/* It is resync not recovery */
3447		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3448			conf->cluster_sync_low = mddev->curr_resync_completed;
3449			raid10_set_cluster_sync_high(conf);
3450			/* Send resync message */
3451			md_cluster_ops->resync_info_update(mddev,
3452						conf->cluster_sync_low,
3453						conf->cluster_sync_high);
3454		}
3455	} else if (mddev_is_clustered(mddev)) {
3456		/* This is recovery not resync */
3457		sector_t sect_va1, sect_va2;
3458		bool broadcast_msg = false;
3459
3460		for (i = 0; i < conf->geo.raid_disks; i++) {
3461			/*
3462			 * sector_nr is a device address for recovery, so we
3463			 * need translate it to array address before compare
3464			 * with cluster_sync_high.
3465			 */
3466			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3467
3468			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3469				broadcast_msg = true;
3470				/*
3471				 * curr_resync_completed is similar as
3472				 * sector_nr, so make the translation too.
3473				 */
3474				sect_va2 = raid10_find_virt(conf,
3475					mddev->curr_resync_completed, i);
3476
3477				if (conf->cluster_sync_low == 0 ||
3478				    conf->cluster_sync_low > sect_va2)
3479					conf->cluster_sync_low = sect_va2;
3480			}
3481		}
3482		if (broadcast_msg) {
3483			raid10_set_cluster_sync_high(conf);
3484			md_cluster_ops->resync_info_update(mddev,
3485						conf->cluster_sync_low,
3486						conf->cluster_sync_high);
3487		}
3488	}
3489
3490	while (biolist) {
3491		bio = biolist;
3492		biolist = biolist->bi_next;
3493
3494		bio->bi_next = NULL;
3495		r10_bio = get_resync_r10bio(bio);
3496		r10_bio->sectors = nr_sectors;
3497
3498		if (bio->bi_end_io == end_sync_read) {
3499			md_sync_acct_bio(bio, nr_sectors);
3500			bio->bi_status = 0;
3501			submit_bio_noacct(bio);
3502		}
3503	}
3504
3505	if (sectors_skipped)
3506		/* pretend they weren't skipped, it makes
3507		 * no important difference in this case
3508		 */
3509		md_done_sync(mddev, sectors_skipped, 1);
3510
3511	return sectors_skipped + nr_sectors;
3512 giveup:
3513	/* There is nowhere to write, so all non-sync
3514	 * drives must be failed or in resync, all drives
3515	 * have a bad block, so try the next chunk...
3516	 */
3517	if (sector_nr + max_sync < max_sector)
3518		max_sector = sector_nr + max_sync;
3519
3520	sectors_skipped += (max_sector - sector_nr);
3521	chunks_skipped ++;
3522	sector_nr = max_sector;
3523	goto skipped;
3524}
3525
3526static sector_t
3527raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3528{
3529	sector_t size;
3530	struct r10conf *conf = mddev->private;
3531
3532	if (!raid_disks)
3533		raid_disks = min(conf->geo.raid_disks,
3534				 conf->prev.raid_disks);
3535	if (!sectors)
3536		sectors = conf->dev_sectors;
3537
3538	size = sectors >> conf->geo.chunk_shift;
3539	sector_div(size, conf->geo.far_copies);
3540	size = size * raid_disks;
3541	sector_div(size, conf->geo.near_copies);
3542
3543	return size << conf->geo.chunk_shift;
3544}
3545
3546static void calc_sectors(struct r10conf *conf, sector_t size)
3547{
3548	/* Calculate the number of sectors-per-device that will
3549	 * actually be used, and set conf->dev_sectors and
3550	 * conf->stride
3551	 */
3552
3553	size = size >> conf->geo.chunk_shift;
3554	sector_div(size, conf->geo.far_copies);
3555	size = size * conf->geo.raid_disks;
3556	sector_div(size, conf->geo.near_copies);
3557	/* 'size' is now the number of chunks in the array */
3558	/* calculate "used chunks per device" */
3559	size = size * conf->copies;
3560
3561	/* We need to round up when dividing by raid_disks to
3562	 * get the stride size.
3563	 */
3564	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3565
3566	conf->dev_sectors = size << conf->geo.chunk_shift;
3567
3568	if (conf->geo.far_offset)
3569		conf->geo.stride = 1 << conf->geo.chunk_shift;
3570	else {
3571		sector_div(size, conf->geo.far_copies);
3572		conf->geo.stride = size << conf->geo.chunk_shift;
3573	}
3574}
3575
3576enum geo_type {geo_new, geo_old, geo_start};
3577static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3578{
3579	int nc, fc, fo;
3580	int layout, chunk, disks;
3581	switch (new) {
3582	case geo_old:
3583		layout = mddev->layout;
3584		chunk = mddev->chunk_sectors;
3585		disks = mddev->raid_disks - mddev->delta_disks;
3586		break;
3587	case geo_new:
3588		layout = mddev->new_layout;
3589		chunk = mddev->new_chunk_sectors;
3590		disks = mddev->raid_disks;
3591		break;
3592	default: /* avoid 'may be unused' warnings */
3593	case geo_start: /* new when starting reshape - raid_disks not
3594			 * updated yet. */
3595		layout = mddev->new_layout;
3596		chunk = mddev->new_chunk_sectors;
3597		disks = mddev->raid_disks + mddev->delta_disks;
3598		break;
3599	}
3600	if (layout >> 19)
3601		return -1;
3602	if (chunk < (PAGE_SIZE >> 9) ||
3603	    !is_power_of_2(chunk))
3604		return -2;
3605	nc = layout & 255;
3606	fc = (layout >> 8) & 255;
3607	fo = layout & (1<<16);
3608	geo->raid_disks = disks;
3609	geo->near_copies = nc;
3610	geo->far_copies = fc;
3611	geo->far_offset = fo;
3612	switch (layout >> 17) {
3613	case 0:	/* original layout.  simple but not always optimal */
3614		geo->far_set_size = disks;
3615		break;
3616	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3617		 * actually using this, but leave code here just in case.*/
3618		geo->far_set_size = disks/fc;
3619		WARN(geo->far_set_size < fc,
3620		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3621		break;
3622	case 2: /* "improved" layout fixed to match documentation */
3623		geo->far_set_size = fc * nc;
3624		break;
3625	default: /* Not a valid layout */
3626		return -1;
3627	}
3628	geo->chunk_mask = chunk - 1;
3629	geo->chunk_shift = ffz(~chunk);
3630	return nc*fc;
3631}
3632
3633static void raid10_free_conf(struct r10conf *conf)
3634{
3635	if (!conf)
3636		return;
3637
3638	mempool_exit(&conf->r10bio_pool);
3639	kfree(conf->mirrors);
3640	kfree(conf->mirrors_old);
3641	kfree(conf->mirrors_new);
3642	safe_put_page(conf->tmppage);
3643	bioset_exit(&conf->bio_split);
3644	kfree(conf);
3645}
3646
3647static struct r10conf *setup_conf(struct mddev *mddev)
3648{
3649	struct r10conf *conf = NULL;
3650	int err = -EINVAL;
3651	struct geom geo;
3652	int copies;
3653
3654	copies = setup_geo(&geo, mddev, geo_new);
3655
3656	if (copies == -2) {
3657		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3658			mdname(mddev), PAGE_SIZE);
3659		goto out;
3660	}
3661
3662	if (copies < 2 || copies > mddev->raid_disks) {
3663		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3664			mdname(mddev), mddev->new_layout);
3665		goto out;
3666	}
3667
3668	err = -ENOMEM;
3669	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3670	if (!conf)
3671		goto out;
3672
3673	/* FIXME calc properly */
3674	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3675				sizeof(struct raid10_info),
3676				GFP_KERNEL);
3677	if (!conf->mirrors)
3678		goto out;
3679
3680	conf->tmppage = alloc_page(GFP_KERNEL);
3681	if (!conf->tmppage)
3682		goto out;
3683
3684	conf->geo = geo;
3685	conf->copies = copies;
3686	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3687			   rbio_pool_free, conf);
3688	if (err)
3689		goto out;
3690
3691	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3692	if (err)
3693		goto out;
3694
3695	calc_sectors(conf, mddev->dev_sectors);
3696	if (mddev->reshape_position == MaxSector) {
3697		conf->prev = conf->geo;
3698		conf->reshape_progress = MaxSector;
3699	} else {
3700		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3701			err = -EINVAL;
3702			goto out;
3703		}
3704		conf->reshape_progress = mddev->reshape_position;
3705		if (conf->prev.far_offset)
3706			conf->prev.stride = 1 << conf->prev.chunk_shift;
3707		else
3708			/* far_copies must be 1 */
3709			conf->prev.stride = conf->dev_sectors;
3710	}
3711	conf->reshape_safe = conf->reshape_progress;
3712	spin_lock_init(&conf->device_lock);
3713	INIT_LIST_HEAD(&conf->retry_list);
3714	INIT_LIST_HEAD(&conf->bio_end_io_list);
3715
3716	spin_lock_init(&conf->resync_lock);
3717	init_waitqueue_head(&conf->wait_barrier);
3718	atomic_set(&conf->nr_pending, 0);
3719
3720	err = -ENOMEM;
3721	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3722	if (!conf->thread)
3723		goto out;
3724
3725	conf->mddev = mddev;
3726	return conf;
3727
3728 out:
3729	raid10_free_conf(conf);
3730	return ERR_PTR(err);
3731}
3732
3733static void raid10_set_io_opt(struct r10conf *conf)
3734{
3735	int raid_disks = conf->geo.raid_disks;
3736
3737	if (!(conf->geo.raid_disks % conf->geo.near_copies))
3738		raid_disks /= conf->geo.near_copies;
3739	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
3740			 raid_disks);
3741}
3742
3743static int raid10_run(struct mddev *mddev)
3744{
3745	struct r10conf *conf;
3746	int i, disk_idx;
3747	struct raid10_info *disk;
3748	struct md_rdev *rdev;
3749	sector_t size;
3750	sector_t min_offset_diff = 0;
3751	int first = 1;
3752	bool discard_supported = false;
3753
3754	if (mddev_init_writes_pending(mddev) < 0)
3755		return -ENOMEM;
3756
3757	if (mddev->private == NULL) {
3758		conf = setup_conf(mddev);
3759		if (IS_ERR(conf))
3760			return PTR_ERR(conf);
3761		mddev->private = conf;
3762	}
3763	conf = mddev->private;
3764	if (!conf)
3765		goto out;
3766
3767	mddev->thread = conf->thread;
3768	conf->thread = NULL;
3769
3770	if (mddev_is_clustered(conf->mddev)) {
3771		int fc, fo;
3772
3773		fc = (mddev->layout >> 8) & 255;
3774		fo = mddev->layout & (1<<16);
3775		if (fc > 1 || fo > 0) {
3776			pr_err("only near layout is supported by clustered"
3777				" raid10\n");
3778			goto out_free_conf;
3779		}
3780	}
3781
3782	if (mddev->queue) {
3783		blk_queue_max_discard_sectors(mddev->queue,
3784					      mddev->chunk_sectors);
3785		blk_queue_max_write_same_sectors(mddev->queue, 0);
3786		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3787		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
3788		raid10_set_io_opt(conf);
3789	}
3790
3791	rdev_for_each(rdev, mddev) {
3792		long long diff;
3793
3794		disk_idx = rdev->raid_disk;
3795		if (disk_idx < 0)
3796			continue;
3797		if (disk_idx >= conf->geo.raid_disks &&
3798		    disk_idx >= conf->prev.raid_disks)
3799			continue;
3800		disk = conf->mirrors + disk_idx;
3801
3802		if (test_bit(Replacement, &rdev->flags)) {
3803			if (disk->replacement)
3804				goto out_free_conf;
3805			disk->replacement = rdev;
3806		} else {
3807			if (disk->rdev)
3808				goto out_free_conf;
3809			disk->rdev = rdev;
3810		}
3811		diff = (rdev->new_data_offset - rdev->data_offset);
3812		if (!mddev->reshape_backwards)
3813			diff = -diff;
3814		if (diff < 0)
3815			diff = 0;
3816		if (first || diff < min_offset_diff)
3817			min_offset_diff = diff;
3818
3819		if (mddev->gendisk)
3820			disk_stack_limits(mddev->gendisk, rdev->bdev,
3821					  rdev->data_offset << 9);
3822
3823		disk->head_position = 0;
3824
3825		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3826			discard_supported = true;
3827		first = 0;
3828	}
3829
3830	if (mddev->queue) {
3831		if (discard_supported)
3832			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3833						mddev->queue);
3834		else
3835			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3836						  mddev->queue);
3837	}
3838	/* need to check that every block has at least one working mirror */
3839	if (!enough(conf, -1)) {
3840		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3841		       mdname(mddev));
3842		goto out_free_conf;
3843	}
3844
3845	if (conf->reshape_progress != MaxSector) {
3846		/* must ensure that shape change is supported */
3847		if (conf->geo.far_copies != 1 &&
3848		    conf->geo.far_offset == 0)
3849			goto out_free_conf;
3850		if (conf->prev.far_copies != 1 &&
3851		    conf->prev.far_offset == 0)
3852			goto out_free_conf;
3853	}
3854
3855	mddev->degraded = 0;
3856	for (i = 0;
3857	     i < conf->geo.raid_disks
3858		     || i < conf->prev.raid_disks;
3859	     i++) {
3860
3861		disk = conf->mirrors + i;
3862
3863		if (!disk->rdev && disk->replacement) {
3864			/* The replacement is all we have - use it */
3865			disk->rdev = disk->replacement;
3866			disk->replacement = NULL;
3867			clear_bit(Replacement, &disk->rdev->flags);
3868		}
3869
3870		if (!disk->rdev ||
3871		    !test_bit(In_sync, &disk->rdev->flags)) {
3872			disk->head_position = 0;
3873			mddev->degraded++;
3874			if (disk->rdev &&
3875			    disk->rdev->saved_raid_disk < 0)
3876				conf->fullsync = 1;
3877		}
3878
3879		if (disk->replacement &&
3880		    !test_bit(In_sync, &disk->replacement->flags) &&
3881		    disk->replacement->saved_raid_disk < 0) {
3882			conf->fullsync = 1;
3883		}
3884
3885		disk->recovery_disabled = mddev->recovery_disabled - 1;
3886	}
3887
3888	if (mddev->recovery_cp != MaxSector)
3889		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3890			  mdname(mddev));
3891	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3892		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3893		conf->geo.raid_disks);
3894	/*
3895	 * Ok, everything is just fine now
3896	 */
3897	mddev->dev_sectors = conf->dev_sectors;
3898	size = raid10_size(mddev, 0, 0);
3899	md_set_array_sectors(mddev, size);
3900	mddev->resync_max_sectors = size;
3901	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3902
3903	if (md_integrity_register(mddev))
3904		goto out_free_conf;
3905
3906	if (conf->reshape_progress != MaxSector) {
3907		unsigned long before_length, after_length;
3908
3909		before_length = ((1 << conf->prev.chunk_shift) *
3910				 conf->prev.far_copies);
3911		after_length = ((1 << conf->geo.chunk_shift) *
3912				conf->geo.far_copies);
3913
3914		if (max(before_length, after_length) > min_offset_diff) {
3915			/* This cannot work */
3916			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3917			goto out_free_conf;
3918		}
3919		conf->offset_diff = min_offset_diff;
3920
3921		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3922		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3923		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3924		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3925		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3926							"reshape");
3927		if (!mddev->sync_thread)
3928			goto out_free_conf;
3929	}
3930
3931	return 0;
3932
3933out_free_conf:
3934	md_unregister_thread(&mddev->thread);
3935	raid10_free_conf(conf);
3936	mddev->private = NULL;
3937out:
3938	return -EIO;
3939}
3940
3941static void raid10_free(struct mddev *mddev, void *priv)
3942{
3943	raid10_free_conf(priv);
3944}
3945
3946static void raid10_quiesce(struct mddev *mddev, int quiesce)
3947{
3948	struct r10conf *conf = mddev->private;
3949
3950	if (quiesce)
3951		raise_barrier(conf, 0);
3952	else
3953		lower_barrier(conf);
3954}
3955
3956static int raid10_resize(struct mddev *mddev, sector_t sectors)
3957{
3958	/* Resize of 'far' arrays is not supported.
3959	 * For 'near' and 'offset' arrays we can set the
3960	 * number of sectors used to be an appropriate multiple
3961	 * of the chunk size.
3962	 * For 'offset', this is far_copies*chunksize.
3963	 * For 'near' the multiplier is the LCM of
3964	 * near_copies and raid_disks.
3965	 * So if far_copies > 1 && !far_offset, fail.
3966	 * Else find LCM(raid_disks, near_copy)*far_copies and
3967	 * multiply by chunk_size.  Then round to this number.
3968	 * This is mostly done by raid10_size()
3969	 */
3970	struct r10conf *conf = mddev->private;
3971	sector_t oldsize, size;
3972
3973	if (mddev->reshape_position != MaxSector)
3974		return -EBUSY;
3975
3976	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3977		return -EINVAL;
3978
3979	oldsize = raid10_size(mddev, 0, 0);
3980	size = raid10_size(mddev, sectors, 0);
3981	if (mddev->external_size &&
3982	    mddev->array_sectors > size)
3983		return -EINVAL;
3984	if (mddev->bitmap) {
3985		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3986		if (ret)
3987			return ret;
3988	}
3989	md_set_array_sectors(mddev, size);
3990	if (sectors > mddev->dev_sectors &&
3991	    mddev->recovery_cp > oldsize) {
3992		mddev->recovery_cp = oldsize;
3993		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3994	}
3995	calc_sectors(conf, sectors);
3996	mddev->dev_sectors = conf->dev_sectors;
3997	mddev->resync_max_sectors = size;
3998	return 0;
3999}
4000
4001static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4002{
4003	struct md_rdev *rdev;
4004	struct r10conf *conf;
4005
4006	if (mddev->degraded > 0) {
4007		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4008			mdname(mddev));
4009		return ERR_PTR(-EINVAL);
4010	}
4011	sector_div(size, devs);
4012
4013	/* Set new parameters */
4014	mddev->new_level = 10;
4015	/* new layout: far_copies = 1, near_copies = 2 */
4016	mddev->new_layout = (1<<8) + 2;
4017	mddev->new_chunk_sectors = mddev->chunk_sectors;
4018	mddev->delta_disks = mddev->raid_disks;
4019	mddev->raid_disks *= 2;
4020	/* make sure it will be not marked as dirty */
4021	mddev->recovery_cp = MaxSector;
4022	mddev->dev_sectors = size;
4023
4024	conf = setup_conf(mddev);
4025	if (!IS_ERR(conf)) {
4026		rdev_for_each(rdev, mddev)
4027			if (rdev->raid_disk >= 0) {
4028				rdev->new_raid_disk = rdev->raid_disk * 2;
4029				rdev->sectors = size;
4030			}
4031		conf->barrier = 1;
4032	}
4033
4034	return conf;
4035}
4036
4037static void *raid10_takeover(struct mddev *mddev)
4038{
4039	struct r0conf *raid0_conf;
4040
4041	/* raid10 can take over:
4042	 *  raid0 - providing it has only two drives
4043	 */
4044	if (mddev->level == 0) {
4045		/* for raid0 takeover only one zone is supported */
4046		raid0_conf = mddev->private;
4047		if (raid0_conf->nr_strip_zones > 1) {
4048			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4049				mdname(mddev));
4050			return ERR_PTR(-EINVAL);
4051		}
4052		return raid10_takeover_raid0(mddev,
4053			raid0_conf->strip_zone->zone_end,
4054			raid0_conf->strip_zone->nb_dev);
4055	}
4056	return ERR_PTR(-EINVAL);
4057}
4058
4059static int raid10_check_reshape(struct mddev *mddev)
4060{
4061	/* Called when there is a request to change
4062	 * - layout (to ->new_layout)
4063	 * - chunk size (to ->new_chunk_sectors)
4064	 * - raid_disks (by delta_disks)
4065	 * or when trying to restart a reshape that was ongoing.
4066	 *
4067	 * We need to validate the request and possibly allocate
4068	 * space if that might be an issue later.
4069	 *
4070	 * Currently we reject any reshape of a 'far' mode array,
4071	 * allow chunk size to change if new is generally acceptable,
4072	 * allow raid_disks to increase, and allow
4073	 * a switch between 'near' mode and 'offset' mode.
4074	 */
4075	struct r10conf *conf = mddev->private;
4076	struct geom geo;
4077
4078	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4079		return -EINVAL;
4080
4081	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4082		/* mustn't change number of copies */
4083		return -EINVAL;
4084	if (geo.far_copies > 1 && !geo.far_offset)
4085		/* Cannot switch to 'far' mode */
4086		return -EINVAL;
4087
4088	if (mddev->array_sectors & geo.chunk_mask)
4089			/* not factor of array size */
4090			return -EINVAL;
4091
4092	if (!enough(conf, -1))
4093		return -EINVAL;
4094
4095	kfree(conf->mirrors_new);
4096	conf->mirrors_new = NULL;
4097	if (mddev->delta_disks > 0) {
4098		/* allocate new 'mirrors' list */
4099		conf->mirrors_new =
4100			kcalloc(mddev->raid_disks + mddev->delta_disks,
4101				sizeof(struct raid10_info),
4102				GFP_KERNEL);
4103		if (!conf->mirrors_new)
4104			return -ENOMEM;
4105	}
4106	return 0;
4107}
4108
4109/*
4110 * Need to check if array has failed when deciding whether to:
4111 *  - start an array
4112 *  - remove non-faulty devices
4113 *  - add a spare
4114 *  - allow a reshape
4115 * This determination is simple when no reshape is happening.
4116 * However if there is a reshape, we need to carefully check
4117 * both the before and after sections.
4118 * This is because some failed devices may only affect one
4119 * of the two sections, and some non-in_sync devices may
4120 * be insync in the section most affected by failed devices.
4121 */
4122static int calc_degraded(struct r10conf *conf)
4123{
4124	int degraded, degraded2;
4125	int i;
4126
4127	rcu_read_lock();
4128	degraded = 0;
4129	/* 'prev' section first */
4130	for (i = 0; i < conf->prev.raid_disks; i++) {
4131		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4132		if (!rdev || test_bit(Faulty, &rdev->flags))
4133			degraded++;
4134		else if (!test_bit(In_sync, &rdev->flags))
4135			/* When we can reduce the number of devices in
4136			 * an array, this might not contribute to
4137			 * 'degraded'.  It does now.
4138			 */
4139			degraded++;
4140	}
4141	rcu_read_unlock();
4142	if (conf->geo.raid_disks == conf->prev.raid_disks)
4143		return degraded;
4144	rcu_read_lock();
4145	degraded2 = 0;
4146	for (i = 0; i < conf->geo.raid_disks; i++) {
4147		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4148		if (!rdev || test_bit(Faulty, &rdev->flags))
4149			degraded2++;
4150		else if (!test_bit(In_sync, &rdev->flags)) {
4151			/* If reshape is increasing the number of devices,
4152			 * this section has already been recovered, so
4153			 * it doesn't contribute to degraded.
4154			 * else it does.
4155			 */
4156			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4157				degraded2++;
4158		}
4159	}
4160	rcu_read_unlock();
4161	if (degraded2 > degraded)
4162		return degraded2;
4163	return degraded;
4164}
4165
4166static int raid10_start_reshape(struct mddev *mddev)
4167{
4168	/* A 'reshape' has been requested. This commits
4169	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4170	 * This also checks if there are enough spares and adds them
4171	 * to the array.
4172	 * We currently require enough spares to make the final
4173	 * array non-degraded.  We also require that the difference
4174	 * between old and new data_offset - on each device - is
4175	 * enough that we never risk over-writing.
4176	 */
4177
4178	unsigned long before_length, after_length;
4179	sector_t min_offset_diff = 0;
4180	int first = 1;
4181	struct geom new;
4182	struct r10conf *conf = mddev->private;
4183	struct md_rdev *rdev;
4184	int spares = 0;
4185	int ret;
4186
4187	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4188		return -EBUSY;
4189
4190	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4191		return -EINVAL;
4192
4193	before_length = ((1 << conf->prev.chunk_shift) *
4194			 conf->prev.far_copies);
4195	after_length = ((1 << conf->geo.chunk_shift) *
4196			conf->geo.far_copies);
4197
4198	rdev_for_each(rdev, mddev) {
4199		if (!test_bit(In_sync, &rdev->flags)
4200		    && !test_bit(Faulty, &rdev->flags))
4201			spares++;
4202		if (rdev->raid_disk >= 0) {
4203			long long diff = (rdev->new_data_offset
4204					  - rdev->data_offset);
4205			if (!mddev->reshape_backwards)
4206				diff = -diff;
4207			if (diff < 0)
4208				diff = 0;
4209			if (first || diff < min_offset_diff)
4210				min_offset_diff = diff;
4211			first = 0;
4212		}
4213	}
4214
4215	if (max(before_length, after_length) > min_offset_diff)
4216		return -EINVAL;
4217
4218	if (spares < mddev->delta_disks)
4219		return -EINVAL;
4220
4221	conf->offset_diff = min_offset_diff;
4222	spin_lock_irq(&conf->device_lock);
4223	if (conf->mirrors_new) {
4224		memcpy(conf->mirrors_new, conf->mirrors,
4225		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4226		smp_mb();
4227		kfree(conf->mirrors_old);
4228		conf->mirrors_old = conf->mirrors;
4229		conf->mirrors = conf->mirrors_new;
4230		conf->mirrors_new = NULL;
4231	}
4232	setup_geo(&conf->geo, mddev, geo_start);
4233	smp_mb();
4234	if (mddev->reshape_backwards) {
4235		sector_t size = raid10_size(mddev, 0, 0);
4236		if (size < mddev->array_sectors) {
4237			spin_unlock_irq(&conf->device_lock);
4238			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4239				mdname(mddev));
4240			return -EINVAL;
4241		}
4242		mddev->resync_max_sectors = size;
4243		conf->reshape_progress = size;
4244	} else
4245		conf->reshape_progress = 0;
4246	conf->reshape_safe = conf->reshape_progress;
4247	spin_unlock_irq(&conf->device_lock);
4248
4249	if (mddev->delta_disks && mddev->bitmap) {
4250		struct mdp_superblock_1 *sb = NULL;
4251		sector_t oldsize, newsize;
4252
4253		oldsize = raid10_size(mddev, 0, 0);
4254		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4255
4256		if (!mddev_is_clustered(mddev)) {
4257			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4258			if (ret)
4259				goto abort;
4260			else
4261				goto out;
4262		}
4263
4264		rdev_for_each(rdev, mddev) {
4265			if (rdev->raid_disk > -1 &&
4266			    !test_bit(Faulty, &rdev->flags))
4267				sb = page_address(rdev->sb_page);
4268		}
4269
4270		/*
4271		 * some node is already performing reshape, and no need to
4272		 * call md_bitmap_resize again since it should be called when
4273		 * receiving BITMAP_RESIZE msg
4274		 */
4275		if ((sb && (le32_to_cpu(sb->feature_map) &
4276			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4277			goto out;
4278
4279		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4280		if (ret)
4281			goto abort;
4282
4283		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4284		if (ret) {
4285			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4286			goto abort;
4287		}
4288	}
4289out:
4290	if (mddev->delta_disks > 0) {
4291		rdev_for_each(rdev, mddev)
4292			if (rdev->raid_disk < 0 &&
4293			    !test_bit(Faulty, &rdev->flags)) {
4294				if (raid10_add_disk(mddev, rdev) == 0) {
4295					if (rdev->raid_disk >=
4296					    conf->prev.raid_disks)
4297						set_bit(In_sync, &rdev->flags);
4298					else
4299						rdev->recovery_offset = 0;
4300
4301					/* Failure here is OK */
4302					sysfs_link_rdev(mddev, rdev);
4303				}
4304			} else if (rdev->raid_disk >= conf->prev.raid_disks
4305				   && !test_bit(Faulty, &rdev->flags)) {
4306				/* This is a spare that was manually added */
4307				set_bit(In_sync, &rdev->flags);
4308			}
4309	}
4310	/* When a reshape changes the number of devices,
4311	 * ->degraded is measured against the larger of the
4312	 * pre and  post numbers.
4313	 */
4314	spin_lock_irq(&conf->device_lock);
4315	mddev->degraded = calc_degraded(conf);
4316	spin_unlock_irq(&conf->device_lock);
4317	mddev->raid_disks = conf->geo.raid_disks;
4318	mddev->reshape_position = conf->reshape_progress;
4319	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4320
4321	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4322	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4323	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4324	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4325	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4326
4327	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4328						"reshape");
4329	if (!mddev->sync_thread) {
4330		ret = -EAGAIN;
4331		goto abort;
4332	}
4333	conf->reshape_checkpoint = jiffies;
4334	md_wakeup_thread(mddev->sync_thread);
4335	md_new_event(mddev);
4336	return 0;
4337
4338abort:
4339	mddev->recovery = 0;
4340	spin_lock_irq(&conf->device_lock);
4341	conf->geo = conf->prev;
4342	mddev->raid_disks = conf->geo.raid_disks;
4343	rdev_for_each(rdev, mddev)
4344		rdev->new_data_offset = rdev->data_offset;
4345	smp_wmb();
4346	conf->reshape_progress = MaxSector;
4347	conf->reshape_safe = MaxSector;
4348	mddev->reshape_position = MaxSector;
4349	spin_unlock_irq(&conf->device_lock);
4350	return ret;
4351}
4352
4353/* Calculate the last device-address that could contain
4354 * any block from the chunk that includes the array-address 's'
4355 * and report the next address.
4356 * i.e. the address returned will be chunk-aligned and after
4357 * any data that is in the chunk containing 's'.
4358 */
4359static sector_t last_dev_address(sector_t s, struct geom *geo)
4360{
4361	s = (s | geo->chunk_mask) + 1;
4362	s >>= geo->chunk_shift;
4363	s *= geo->near_copies;
4364	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4365	s *= geo->far_copies;
4366	s <<= geo->chunk_shift;
4367	return s;
4368}
4369
4370/* Calculate the first device-address that could contain
4371 * any block from the chunk that includes the array-address 's'.
4372 * This too will be the start of a chunk
4373 */
4374static sector_t first_dev_address(sector_t s, struct geom *geo)
4375{
4376	s >>= geo->chunk_shift;
4377	s *= geo->near_copies;
4378	sector_div(s, geo->raid_disks);
4379	s *= geo->far_copies;
4380	s <<= geo->chunk_shift;
4381	return s;
4382}
4383
4384static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4385				int *skipped)
4386{
4387	/* We simply copy at most one chunk (smallest of old and new)
4388	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4389	 * or we hit a bad block or something.
4390	 * This might mean we pause for normal IO in the middle of
4391	 * a chunk, but that is not a problem as mddev->reshape_position
4392	 * can record any location.
4393	 *
4394	 * If we will want to write to a location that isn't
4395	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4396	 * we need to flush all reshape requests and update the metadata.
4397	 *
4398	 * When reshaping forwards (e.g. to more devices), we interpret
4399	 * 'safe' as the earliest block which might not have been copied
4400	 * down yet.  We divide this by previous stripe size and multiply
4401	 * by previous stripe length to get lowest device offset that we
4402	 * cannot write to yet.
4403	 * We interpret 'sector_nr' as an address that we want to write to.
4404	 * From this we use last_device_address() to find where we might
4405	 * write to, and first_device_address on the  'safe' position.
4406	 * If this 'next' write position is after the 'safe' position,
4407	 * we must update the metadata to increase the 'safe' position.
4408	 *
4409	 * When reshaping backwards, we round in the opposite direction
4410	 * and perform the reverse test:  next write position must not be
4411	 * less than current safe position.
4412	 *
4413	 * In all this the minimum difference in data offsets
4414	 * (conf->offset_diff - always positive) allows a bit of slack,
4415	 * so next can be after 'safe', but not by more than offset_diff
4416	 *
4417	 * We need to prepare all the bios here before we start any IO
4418	 * to ensure the size we choose is acceptable to all devices.
4419	 * The means one for each copy for write-out and an extra one for
4420	 * read-in.
4421	 * We store the read-in bio in ->master_bio and the others in
4422	 * ->devs[x].bio and ->devs[x].repl_bio.
4423	 */
4424	struct r10conf *conf = mddev->private;
4425	struct r10bio *r10_bio;
4426	sector_t next, safe, last;
4427	int max_sectors;
4428	int nr_sectors;
4429	int s;
4430	struct md_rdev *rdev;
4431	int need_flush = 0;
4432	struct bio *blist;
4433	struct bio *bio, *read_bio;
4434	int sectors_done = 0;
4435	struct page **pages;
4436
4437	if (sector_nr == 0) {
4438		/* If restarting in the middle, skip the initial sectors */
4439		if (mddev->reshape_backwards &&
4440		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4441			sector_nr = (raid10_size(mddev, 0, 0)
4442				     - conf->reshape_progress);
4443		} else if (!mddev->reshape_backwards &&
4444			   conf->reshape_progress > 0)
4445			sector_nr = conf->reshape_progress;
4446		if (sector_nr) {
4447			mddev->curr_resync_completed = sector_nr;
4448			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4449			*skipped = 1;
4450			return sector_nr;
4451		}
4452	}
4453
4454	/* We don't use sector_nr to track where we are up to
4455	 * as that doesn't work well for ->reshape_backwards.
4456	 * So just use ->reshape_progress.
4457	 */
4458	if (mddev->reshape_backwards) {
4459		/* 'next' is the earliest device address that we might
4460		 * write to for this chunk in the new layout
4461		 */
4462		next = first_dev_address(conf->reshape_progress - 1,
4463					 &conf->geo);
4464
4465		/* 'safe' is the last device address that we might read from
4466		 * in the old layout after a restart
4467		 */
4468		safe = last_dev_address(conf->reshape_safe - 1,
4469					&conf->prev);
4470
4471		if (next + conf->offset_diff < safe)
4472			need_flush = 1;
4473
4474		last = conf->reshape_progress - 1;
4475		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4476					       & conf->prev.chunk_mask);
4477		if (sector_nr + RESYNC_SECTORS < last)
4478			sector_nr = last + 1 - RESYNC_SECTORS;
4479	} else {
4480		/* 'next' is after the last device address that we
4481		 * might write to for this chunk in the new layout
4482		 */
4483		next = last_dev_address(conf->reshape_progress, &conf->geo);
4484
4485		/* 'safe' is the earliest device address that we might
4486		 * read from in the old layout after a restart
4487		 */
4488		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4489
4490		/* Need to update metadata if 'next' might be beyond 'safe'
4491		 * as that would possibly corrupt data
4492		 */
4493		if (next > safe + conf->offset_diff)
4494			need_flush = 1;
4495
4496		sector_nr = conf->reshape_progress;
4497		last  = sector_nr | (conf->geo.chunk_mask
4498				     & conf->prev.chunk_mask);
4499
4500		if (sector_nr + RESYNC_SECTORS <= last)
4501			last = sector_nr + RESYNC_SECTORS - 1;
4502	}
4503
4504	if (need_flush ||
4505	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4506		/* Need to update reshape_position in metadata */
4507		wait_barrier(conf);
4508		mddev->reshape_position = conf->reshape_progress;
4509		if (mddev->reshape_backwards)
4510			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4511				- conf->reshape_progress;
4512		else
4513			mddev->curr_resync_completed = conf->reshape_progress;
4514		conf->reshape_checkpoint = jiffies;
4515		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4516		md_wakeup_thread(mddev->thread);
4517		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4518			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4519		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4520			allow_barrier(conf);
4521			return sectors_done;
4522		}
4523		conf->reshape_safe = mddev->reshape_position;
4524		allow_barrier(conf);
4525	}
4526
4527	raise_barrier(conf, 0);
4528read_more:
4529	/* Now schedule reads for blocks from sector_nr to last */
4530	r10_bio = raid10_alloc_init_r10buf(conf);
4531	r10_bio->state = 0;
4532	raise_barrier(conf, 1);
4533	atomic_set(&r10_bio->remaining, 0);
4534	r10_bio->mddev = mddev;
4535	r10_bio->sector = sector_nr;
4536	set_bit(R10BIO_IsReshape, &r10_bio->state);
4537	r10_bio->sectors = last - sector_nr + 1;
4538	rdev = read_balance(conf, r10_bio, &max_sectors);
4539	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4540
4541	if (!rdev) {
4542		/* Cannot read from here, so need to record bad blocks
4543		 * on all the target devices.
4544		 */
4545		// FIXME
4546		mempool_free(r10_bio, &conf->r10buf_pool);
4547		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4548		return sectors_done;
4549	}
4550
4551	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4552
4553	bio_set_dev(read_bio, rdev->bdev);
4554	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4555			       + rdev->data_offset);
4556	read_bio->bi_private = r10_bio;
4557	read_bio->bi_end_io = end_reshape_read;
4558	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4559	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4560	read_bio->bi_status = 0;
4561	read_bio->bi_vcnt = 0;
4562	read_bio->bi_iter.bi_size = 0;
4563	r10_bio->master_bio = read_bio;
4564	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4565
4566	/*
4567	 * Broadcast RESYNC message to other nodes, so all nodes would not
4568	 * write to the region to avoid conflict.
4569	*/
4570	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4571		struct mdp_superblock_1 *sb = NULL;
4572		int sb_reshape_pos = 0;
4573
4574		conf->cluster_sync_low = sector_nr;
4575		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4576		sb = page_address(rdev->sb_page);
4577		if (sb) {
4578			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4579			/*
4580			 * Set cluster_sync_low again if next address for array
4581			 * reshape is less than cluster_sync_low. Since we can't
4582			 * update cluster_sync_low until it has finished reshape.
4583			 */
4584			if (sb_reshape_pos < conf->cluster_sync_low)
4585				conf->cluster_sync_low = sb_reshape_pos;
4586		}
4587
4588		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4589							  conf->cluster_sync_high);
4590	}
4591
4592	/* Now find the locations in the new layout */
4593	__raid10_find_phys(&conf->geo, r10_bio);
4594
4595	blist = read_bio;
4596	read_bio->bi_next = NULL;
4597
4598	rcu_read_lock();
4599	for (s = 0; s < conf->copies*2; s++) {
4600		struct bio *b;
4601		int d = r10_bio->devs[s/2].devnum;
4602		struct md_rdev *rdev2;
4603		if (s&1) {
4604			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4605			b = r10_bio->devs[s/2].repl_bio;
4606		} else {
4607			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4608			b = r10_bio->devs[s/2].bio;
4609		}
4610		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4611			continue;
4612
4613		bio_set_dev(b, rdev2->bdev);
4614		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4615			rdev2->new_data_offset;
4616		b->bi_end_io = end_reshape_write;
4617		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4618		b->bi_next = blist;
4619		blist = b;
4620	}
4621
4622	/* Now add as many pages as possible to all of these bios. */
4623
4624	nr_sectors = 0;
4625	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4626	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4627		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4628		int len = (max_sectors - s) << 9;
4629		if (len > PAGE_SIZE)
4630			len = PAGE_SIZE;
4631		for (bio = blist; bio ; bio = bio->bi_next) {
4632			/*
4633			 * won't fail because the vec table is big enough
4634			 * to hold all these pages
4635			 */
4636			bio_add_page(bio, page, len, 0);
4637		}
4638		sector_nr += len >> 9;
4639		nr_sectors += len >> 9;
4640	}
4641	rcu_read_unlock();
4642	r10_bio->sectors = nr_sectors;
4643
4644	/* Now submit the read */
4645	md_sync_acct_bio(read_bio, r10_bio->sectors);
4646	atomic_inc(&r10_bio->remaining);
4647	read_bio->bi_next = NULL;
4648	submit_bio_noacct(read_bio);
4649	sectors_done += nr_sectors;
4650	if (sector_nr <= last)
4651		goto read_more;
4652
4653	lower_barrier(conf);
4654
4655	/* Now that we have done the whole section we can
4656	 * update reshape_progress
4657	 */
4658	if (mddev->reshape_backwards)
4659		conf->reshape_progress -= sectors_done;
4660	else
4661		conf->reshape_progress += sectors_done;
4662
4663	return sectors_done;
4664}
4665
4666static void end_reshape_request(struct r10bio *r10_bio);
4667static int handle_reshape_read_error(struct mddev *mddev,
4668				     struct r10bio *r10_bio);
4669static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4670{
4671	/* Reshape read completed.  Hopefully we have a block
4672	 * to write out.
4673	 * If we got a read error then we do sync 1-page reads from
4674	 * elsewhere until we find the data - or give up.
4675	 */
4676	struct r10conf *conf = mddev->private;
4677	int s;
4678
4679	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4680		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4681			/* Reshape has been aborted */
4682			md_done_sync(mddev, r10_bio->sectors, 0);
4683			return;
4684		}
4685
4686	/* We definitely have the data in the pages, schedule the
4687	 * writes.
4688	 */
4689	atomic_set(&r10_bio->remaining, 1);
4690	for (s = 0; s < conf->copies*2; s++) {
4691		struct bio *b;
4692		int d = r10_bio->devs[s/2].devnum;
4693		struct md_rdev *rdev;
4694		rcu_read_lock();
4695		if (s&1) {
4696			rdev = rcu_dereference(conf->mirrors[d].replacement);
4697			b = r10_bio->devs[s/2].repl_bio;
4698		} else {
4699			rdev = rcu_dereference(conf->mirrors[d].rdev);
4700			b = r10_bio->devs[s/2].bio;
4701		}
4702		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4703			rcu_read_unlock();
4704			continue;
4705		}
4706		atomic_inc(&rdev->nr_pending);
4707		rcu_read_unlock();
4708		md_sync_acct_bio(b, r10_bio->sectors);
4709		atomic_inc(&r10_bio->remaining);
4710		b->bi_next = NULL;
4711		submit_bio_noacct(b);
4712	}
4713	end_reshape_request(r10_bio);
4714}
4715
4716static void end_reshape(struct r10conf *conf)
4717{
4718	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4719		return;
4720
4721	spin_lock_irq(&conf->device_lock);
4722	conf->prev = conf->geo;
4723	md_finish_reshape(conf->mddev);
4724	smp_wmb();
4725	conf->reshape_progress = MaxSector;
4726	conf->reshape_safe = MaxSector;
4727	spin_unlock_irq(&conf->device_lock);
4728
4729	if (conf->mddev->queue)
4730		raid10_set_io_opt(conf);
4731	conf->fullsync = 0;
4732}
4733
4734static void raid10_update_reshape_pos(struct mddev *mddev)
4735{
4736	struct r10conf *conf = mddev->private;
4737	sector_t lo, hi;
4738
4739	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4740	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4741	    || mddev->reshape_position == MaxSector)
4742		conf->reshape_progress = mddev->reshape_position;
4743	else
4744		WARN_ON_ONCE(1);
4745}
4746
4747static int handle_reshape_read_error(struct mddev *mddev,
4748				     struct r10bio *r10_bio)
4749{
4750	/* Use sync reads to get the blocks from somewhere else */
4751	int sectors = r10_bio->sectors;
4752	struct r10conf *conf = mddev->private;
4753	struct r10bio *r10b;
4754	int slot = 0;
4755	int idx = 0;
4756	struct page **pages;
4757
4758	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4759	if (!r10b) {
4760		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4761		return -ENOMEM;
4762	}
4763
4764	/* reshape IOs share pages from .devs[0].bio */
4765	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4766
4767	r10b->sector = r10_bio->sector;
4768	__raid10_find_phys(&conf->prev, r10b);
4769
4770	while (sectors) {
4771		int s = sectors;
4772		int success = 0;
4773		int first_slot = slot;
4774
4775		if (s > (PAGE_SIZE >> 9))
4776			s = PAGE_SIZE >> 9;
4777
4778		rcu_read_lock();
4779		while (!success) {
4780			int d = r10b->devs[slot].devnum;
4781			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4782			sector_t addr;
4783			if (rdev == NULL ||
4784			    test_bit(Faulty, &rdev->flags) ||
4785			    !test_bit(In_sync, &rdev->flags))
4786				goto failed;
4787
4788			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4789			atomic_inc(&rdev->nr_pending);
4790			rcu_read_unlock();
4791			success = sync_page_io(rdev,
4792					       addr,
4793					       s << 9,
4794					       pages[idx],
4795					       REQ_OP_READ, 0, false);
4796			rdev_dec_pending(rdev, mddev);
4797			rcu_read_lock();
4798			if (success)
4799				break;
4800		failed:
4801			slot++;
4802			if (slot >= conf->copies)
4803				slot = 0;
4804			if (slot == first_slot)
4805				break;
4806		}
4807		rcu_read_unlock();
4808		if (!success) {
4809			/* couldn't read this block, must give up */
4810			set_bit(MD_RECOVERY_INTR,
4811				&mddev->recovery);
4812			kfree(r10b);
4813			return -EIO;
4814		}
4815		sectors -= s;
4816		idx++;
4817	}
4818	kfree(r10b);
4819	return 0;
4820}
4821
4822static void end_reshape_write(struct bio *bio)
4823{
4824	struct r10bio *r10_bio = get_resync_r10bio(bio);
4825	struct mddev *mddev = r10_bio->mddev;
4826	struct r10conf *conf = mddev->private;
4827	int d;
4828	int slot;
4829	int repl;
4830	struct md_rdev *rdev = NULL;
4831
4832	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4833	if (repl)
4834		rdev = conf->mirrors[d].replacement;
4835	if (!rdev) {
4836		smp_mb();
4837		rdev = conf->mirrors[d].rdev;
4838	}
4839
4840	if (bio->bi_status) {
4841		/* FIXME should record badblock */
4842		md_error(mddev, rdev);
4843	}
4844
4845	rdev_dec_pending(rdev, mddev);
4846	end_reshape_request(r10_bio);
4847}
4848
4849static void end_reshape_request(struct r10bio *r10_bio)
4850{
4851	if (!atomic_dec_and_test(&r10_bio->remaining))
4852		return;
4853	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4854	bio_put(r10_bio->master_bio);
4855	put_buf(r10_bio);
4856}
4857
4858static void raid10_finish_reshape(struct mddev *mddev)
4859{
4860	struct r10conf *conf = mddev->private;
4861
4862	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4863		return;
4864
4865	if (mddev->delta_disks > 0) {
4866		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4867			mddev->recovery_cp = mddev->resync_max_sectors;
4868			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4869		}
4870		mddev->resync_max_sectors = mddev->array_sectors;
4871	} else {
4872		int d;
4873		rcu_read_lock();
4874		for (d = conf->geo.raid_disks ;
4875		     d < conf->geo.raid_disks - mddev->delta_disks;
4876		     d++) {
4877			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4878			if (rdev)
4879				clear_bit(In_sync, &rdev->flags);
4880			rdev = rcu_dereference(conf->mirrors[d].replacement);
4881			if (rdev)
4882				clear_bit(In_sync, &rdev->flags);
4883		}
4884		rcu_read_unlock();
4885	}
4886	mddev->layout = mddev->new_layout;
4887	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4888	mddev->reshape_position = MaxSector;
4889	mddev->delta_disks = 0;
4890	mddev->reshape_backwards = 0;
4891}
4892
4893static struct md_personality raid10_personality =
4894{
4895	.name		= "raid10",
4896	.level		= 10,
4897	.owner		= THIS_MODULE,
4898	.make_request	= raid10_make_request,
4899	.run		= raid10_run,
4900	.free		= raid10_free,
4901	.status		= raid10_status,
4902	.error_handler	= raid10_error,
4903	.hot_add_disk	= raid10_add_disk,
4904	.hot_remove_disk= raid10_remove_disk,
4905	.spare_active	= raid10_spare_active,
4906	.sync_request	= raid10_sync_request,
4907	.quiesce	= raid10_quiesce,
4908	.size		= raid10_size,
4909	.resize		= raid10_resize,
4910	.takeover	= raid10_takeover,
4911	.check_reshape	= raid10_check_reshape,
4912	.start_reshape	= raid10_start_reshape,
4913	.finish_reshape	= raid10_finish_reshape,
4914	.update_reshape_pos = raid10_update_reshape_pos,
4915};
4916
4917static int __init raid_init(void)
4918{
4919	return register_md_personality(&raid10_personality);
4920}
4921
4922static void raid_exit(void)
4923{
4924	unregister_md_personality(&raid10_personality);
4925}
4926
4927module_init(raid_init);
4928module_exit(raid_exit);
4929MODULE_LICENSE("GPL");
4930MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4931MODULE_ALIAS("md-personality-9"); /* RAID10 */
4932MODULE_ALIAS("md-raid10");
4933MODULE_ALIAS("md-level-10");
4934
4935module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4936