xref: /kernel/linux/linux-5.10/drivers/md/raid1.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 *      - bitmap marked during normal i/o
20 *      - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
24 */
25
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/blkdev.h>
29#include <linux/module.h>
30#include <linux/seq_file.h>
31#include <linux/ratelimit.h>
32#include <linux/interval_tree_generic.h>
33
34#include <trace/events/block.h>
35
36#include "md.h"
37#include "raid1.h"
38#include "md-bitmap.h"
39
40#define UNSUPPORTED_MDDEV_FLAGS		\
41	((1L << MD_HAS_JOURNAL) |	\
42	 (1L << MD_JOURNAL_CLEAN) |	\
43	 (1L << MD_HAS_PPL) |		\
44	 (1L << MD_HAS_MULTIPLE_PPLS))
45
46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49#define raid1_log(md, fmt, args...)				\
50	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
52#include "raid1-10.c"
53
54#define START(node) ((node)->start)
55#define LAST(node) ((node)->last)
56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57		     START, LAST, static inline, raid1_rb);
58
59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60				struct serial_info *si, int idx)
61{
62	unsigned long flags;
63	int ret = 0;
64	sector_t lo = r1_bio->sector;
65	sector_t hi = lo + r1_bio->sectors;
66	struct serial_in_rdev *serial = &rdev->serial[idx];
67
68	spin_lock_irqsave(&serial->serial_lock, flags);
69	/* collision happened */
70	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71		ret = -EBUSY;
72	else {
73		si->start = lo;
74		si->last = hi;
75		raid1_rb_insert(si, &serial->serial_rb);
76	}
77	spin_unlock_irqrestore(&serial->serial_lock, flags);
78
79	return ret;
80}
81
82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83{
84	struct mddev *mddev = rdev->mddev;
85	struct serial_info *si;
86	int idx = sector_to_idx(r1_bio->sector);
87	struct serial_in_rdev *serial = &rdev->serial[idx];
88
89	if (WARN_ON(!mddev->serial_info_pool))
90		return;
91	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92	wait_event(serial->serial_io_wait,
93		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94}
95
96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97{
98	struct serial_info *si;
99	unsigned long flags;
100	int found = 0;
101	struct mddev *mddev = rdev->mddev;
102	int idx = sector_to_idx(lo);
103	struct serial_in_rdev *serial = &rdev->serial[idx];
104
105	spin_lock_irqsave(&serial->serial_lock, flags);
106	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108		if (si->start == lo && si->last == hi) {
109			raid1_rb_remove(si, &serial->serial_rb);
110			mempool_free(si, mddev->serial_info_pool);
111			found = 1;
112			break;
113		}
114	}
115	if (!found)
116		WARN(1, "The write IO is not recorded for serialization\n");
117	spin_unlock_irqrestore(&serial->serial_lock, flags);
118	wake_up(&serial->serial_io_wait);
119}
120
121/*
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
124 */
125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126{
127	return get_resync_pages(bio)->raid_bio;
128}
129
130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131{
132	struct pool_info *pi = data;
133	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134
135	/* allocate a r1bio with room for raid_disks entries in the bios array */
136	return kzalloc(size, gfp_flags);
137}
138
139#define RESYNC_DEPTH 32
140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145
146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147{
148	struct pool_info *pi = data;
149	struct r1bio *r1_bio;
150	struct bio *bio;
151	int need_pages;
152	int j;
153	struct resync_pages *rps;
154
155	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156	if (!r1_bio)
157		return NULL;
158
159	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160			    gfp_flags);
161	if (!rps)
162		goto out_free_r1bio;
163
164	/*
165	 * Allocate bios : 1 for reading, n-1 for writing
166	 */
167	for (j = pi->raid_disks ; j-- ; ) {
168		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169		if (!bio)
170			goto out_free_bio;
171		r1_bio->bios[j] = bio;
172	}
173	/*
174	 * Allocate RESYNC_PAGES data pages and attach them to
175	 * the first bio.
176	 * If this is a user-requested check/repair, allocate
177	 * RESYNC_PAGES for each bio.
178	 */
179	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180		need_pages = pi->raid_disks;
181	else
182		need_pages = 1;
183	for (j = 0; j < pi->raid_disks; j++) {
184		struct resync_pages *rp = &rps[j];
185
186		bio = r1_bio->bios[j];
187
188		if (j < need_pages) {
189			if (resync_alloc_pages(rp, gfp_flags))
190				goto out_free_pages;
191		} else {
192			memcpy(rp, &rps[0], sizeof(*rp));
193			resync_get_all_pages(rp);
194		}
195
196		rp->raid_bio = r1_bio;
197		bio->bi_private = rp;
198	}
199
200	r1_bio->master_bio = NULL;
201
202	return r1_bio;
203
204out_free_pages:
205	while (--j >= 0)
206		resync_free_pages(&rps[j]);
207
208out_free_bio:
209	while (++j < pi->raid_disks)
210		bio_put(r1_bio->bios[j]);
211	kfree(rps);
212
213out_free_r1bio:
214	rbio_pool_free(r1_bio, data);
215	return NULL;
216}
217
218static void r1buf_pool_free(void *__r1_bio, void *data)
219{
220	struct pool_info *pi = data;
221	int i;
222	struct r1bio *r1bio = __r1_bio;
223	struct resync_pages *rp = NULL;
224
225	for (i = pi->raid_disks; i--; ) {
226		rp = get_resync_pages(r1bio->bios[i]);
227		resync_free_pages(rp);
228		bio_put(r1bio->bios[i]);
229	}
230
231	/* resync pages array stored in the 1st bio's .bi_private */
232	kfree(rp);
233
234	rbio_pool_free(r1bio, data);
235}
236
237static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
238{
239	int i;
240
241	for (i = 0; i < conf->raid_disks * 2; i++) {
242		struct bio **bio = r1_bio->bios + i;
243		if (!BIO_SPECIAL(*bio))
244			bio_put(*bio);
245		*bio = NULL;
246	}
247}
248
249static void free_r1bio(struct r1bio *r1_bio)
250{
251	struct r1conf *conf = r1_bio->mddev->private;
252
253	put_all_bios(conf, r1_bio);
254	mempool_free(r1_bio, &conf->r1bio_pool);
255}
256
257static void put_buf(struct r1bio *r1_bio)
258{
259	struct r1conf *conf = r1_bio->mddev->private;
260	sector_t sect = r1_bio->sector;
261	int i;
262
263	for (i = 0; i < conf->raid_disks * 2; i++) {
264		struct bio *bio = r1_bio->bios[i];
265		if (bio->bi_end_io)
266			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
267	}
268
269	mempool_free(r1_bio, &conf->r1buf_pool);
270
271	lower_barrier(conf, sect);
272}
273
274static void reschedule_retry(struct r1bio *r1_bio)
275{
276	unsigned long flags;
277	struct mddev *mddev = r1_bio->mddev;
278	struct r1conf *conf = mddev->private;
279	int idx;
280
281	idx = sector_to_idx(r1_bio->sector);
282	spin_lock_irqsave(&conf->device_lock, flags);
283	list_add(&r1_bio->retry_list, &conf->retry_list);
284	atomic_inc(&conf->nr_queued[idx]);
285	spin_unlock_irqrestore(&conf->device_lock, flags);
286
287	wake_up(&conf->wait_barrier);
288	md_wakeup_thread(mddev->thread);
289}
290
291/*
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
295 */
296static void call_bio_endio(struct r1bio *r1_bio)
297{
298	struct bio *bio = r1_bio->master_bio;
299
300	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
301		bio->bi_status = BLK_STS_IOERR;
302
303	bio_endio(bio);
304}
305
306static void raid_end_bio_io(struct r1bio *r1_bio)
307{
308	struct bio *bio = r1_bio->master_bio;
309	struct r1conf *conf = r1_bio->mddev->private;
310
311	/* if nobody has done the final endio yet, do it now */
312	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
313		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
314			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
315			 (unsigned long long) bio->bi_iter.bi_sector,
316			 (unsigned long long) bio_end_sector(bio) - 1);
317
318		call_bio_endio(r1_bio);
319	}
320	/*
321	 * Wake up any possible resync thread that waits for the device
322	 * to go idle.  All I/Os, even write-behind writes, are done.
323	 */
324	allow_barrier(conf, r1_bio->sector);
325
326	free_r1bio(r1_bio);
327}
328
329/*
330 * Update disk head position estimator based on IRQ completion info.
331 */
332static inline void update_head_pos(int disk, struct r1bio *r1_bio)
333{
334	struct r1conf *conf = r1_bio->mddev->private;
335
336	conf->mirrors[disk].head_position =
337		r1_bio->sector + (r1_bio->sectors);
338}
339
340/*
341 * Find the disk number which triggered given bio
342 */
343static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
344{
345	int mirror;
346	struct r1conf *conf = r1_bio->mddev->private;
347	int raid_disks = conf->raid_disks;
348
349	for (mirror = 0; mirror < raid_disks * 2; mirror++)
350		if (r1_bio->bios[mirror] == bio)
351			break;
352
353	BUG_ON(mirror == raid_disks * 2);
354	update_head_pos(mirror, r1_bio);
355
356	return mirror;
357}
358
359static void raid1_end_read_request(struct bio *bio)
360{
361	int uptodate = !bio->bi_status;
362	struct r1bio *r1_bio = bio->bi_private;
363	struct r1conf *conf = r1_bio->mddev->private;
364	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
365
366	/*
367	 * this branch is our 'one mirror IO has finished' event handler:
368	 */
369	update_head_pos(r1_bio->read_disk, r1_bio);
370
371	if (uptodate)
372		set_bit(R1BIO_Uptodate, &r1_bio->state);
373	else if (test_bit(FailFast, &rdev->flags) &&
374		 test_bit(R1BIO_FailFast, &r1_bio->state))
375		/* This was a fail-fast read so we definitely
376		 * want to retry */
377		;
378	else {
379		/* If all other devices have failed, we want to return
380		 * the error upwards rather than fail the last device.
381		 * Here we redefine "uptodate" to mean "Don't want to retry"
382		 */
383		unsigned long flags;
384		spin_lock_irqsave(&conf->device_lock, flags);
385		if (r1_bio->mddev->degraded == conf->raid_disks ||
386		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
387		     test_bit(In_sync, &rdev->flags)))
388			uptodate = 1;
389		spin_unlock_irqrestore(&conf->device_lock, flags);
390	}
391
392	if (uptodate) {
393		raid_end_bio_io(r1_bio);
394		rdev_dec_pending(rdev, conf->mddev);
395	} else {
396		/*
397		 * oops, read error:
398		 */
399		char b[BDEVNAME_SIZE];
400		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
401				   mdname(conf->mddev),
402				   bdevname(rdev->bdev, b),
403				   (unsigned long long)r1_bio->sector);
404		set_bit(R1BIO_ReadError, &r1_bio->state);
405		reschedule_retry(r1_bio);
406		/* don't drop the reference on read_disk yet */
407	}
408}
409
410static void close_write(struct r1bio *r1_bio)
411{
412	/* it really is the end of this request */
413	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
414		bio_free_pages(r1_bio->behind_master_bio);
415		bio_put(r1_bio->behind_master_bio);
416		r1_bio->behind_master_bio = NULL;
417	}
418	/* clear the bitmap if all writes complete successfully */
419	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
420			   r1_bio->sectors,
421			   !test_bit(R1BIO_Degraded, &r1_bio->state),
422			   test_bit(R1BIO_BehindIO, &r1_bio->state));
423	md_write_end(r1_bio->mddev);
424}
425
426static void r1_bio_write_done(struct r1bio *r1_bio)
427{
428	if (!atomic_dec_and_test(&r1_bio->remaining))
429		return;
430
431	if (test_bit(R1BIO_WriteError, &r1_bio->state))
432		reschedule_retry(r1_bio);
433	else {
434		close_write(r1_bio);
435		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
436			reschedule_retry(r1_bio);
437		else
438			raid_end_bio_io(r1_bio);
439	}
440}
441
442static void raid1_end_write_request(struct bio *bio)
443{
444	struct r1bio *r1_bio = bio->bi_private;
445	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
446	struct r1conf *conf = r1_bio->mddev->private;
447	struct bio *to_put = NULL;
448	int mirror = find_bio_disk(r1_bio, bio);
449	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
450	bool discard_error;
451	sector_t lo = r1_bio->sector;
452	sector_t hi = r1_bio->sector + r1_bio->sectors;
453
454	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
455
456	/*
457	 * 'one mirror IO has finished' event handler:
458	 */
459	if (bio->bi_status && !discard_error) {
460		set_bit(WriteErrorSeen,	&rdev->flags);
461		if (!test_and_set_bit(WantReplacement, &rdev->flags))
462			set_bit(MD_RECOVERY_NEEDED, &
463				conf->mddev->recovery);
464
465		if (test_bit(FailFast, &rdev->flags) &&
466		    (bio->bi_opf & MD_FAILFAST) &&
467		    /* We never try FailFast to WriteMostly devices */
468		    !test_bit(WriteMostly, &rdev->flags)) {
469			md_error(r1_bio->mddev, rdev);
470		}
471
472		/*
473		 * When the device is faulty, it is not necessary to
474		 * handle write error.
475		 */
476		if (!test_bit(Faulty, &rdev->flags))
477			set_bit(R1BIO_WriteError, &r1_bio->state);
478		else {
479			/* Fail the request */
480			set_bit(R1BIO_Degraded, &r1_bio->state);
481			/* Finished with this branch */
482			r1_bio->bios[mirror] = NULL;
483			to_put = bio;
484		}
485	} else {
486		/*
487		 * Set R1BIO_Uptodate in our master bio, so that we
488		 * will return a good error code for to the higher
489		 * levels even if IO on some other mirrored buffer
490		 * fails.
491		 *
492		 * The 'master' represents the composite IO operation
493		 * to user-side. So if something waits for IO, then it
494		 * will wait for the 'master' bio.
495		 */
496		sector_t first_bad;
497		int bad_sectors;
498
499		r1_bio->bios[mirror] = NULL;
500		to_put = bio;
501		/*
502		 * Do not set R1BIO_Uptodate if the current device is
503		 * rebuilding or Faulty. This is because we cannot use
504		 * such device for properly reading the data back (we could
505		 * potentially use it, if the current write would have felt
506		 * before rdev->recovery_offset, but for simplicity we don't
507		 * check this here.
508		 */
509		if (test_bit(In_sync, &rdev->flags) &&
510		    !test_bit(Faulty, &rdev->flags))
511			set_bit(R1BIO_Uptodate, &r1_bio->state);
512
513		/* Maybe we can clear some bad blocks. */
514		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
515				&first_bad, &bad_sectors) && !discard_error) {
516			r1_bio->bios[mirror] = IO_MADE_GOOD;
517			set_bit(R1BIO_MadeGood, &r1_bio->state);
518		}
519	}
520
521	if (behind) {
522		if (test_bit(CollisionCheck, &rdev->flags))
523			remove_serial(rdev, lo, hi);
524		if (test_bit(WriteMostly, &rdev->flags))
525			atomic_dec(&r1_bio->behind_remaining);
526
527		/*
528		 * In behind mode, we ACK the master bio once the I/O
529		 * has safely reached all non-writemostly
530		 * disks. Setting the Returned bit ensures that this
531		 * gets done only once -- we don't ever want to return
532		 * -EIO here, instead we'll wait
533		 */
534		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
535		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
536			/* Maybe we can return now */
537			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
538				struct bio *mbio = r1_bio->master_bio;
539				pr_debug("raid1: behind end write sectors"
540					 " %llu-%llu\n",
541					 (unsigned long long) mbio->bi_iter.bi_sector,
542					 (unsigned long long) bio_end_sector(mbio) - 1);
543				call_bio_endio(r1_bio);
544			}
545		}
546	} else if (rdev->mddev->serialize_policy)
547		remove_serial(rdev, lo, hi);
548	if (r1_bio->bios[mirror] == NULL)
549		rdev_dec_pending(rdev, conf->mddev);
550
551	/*
552	 * Let's see if all mirrored write operations have finished
553	 * already.
554	 */
555	r1_bio_write_done(r1_bio);
556
557	if (to_put)
558		bio_put(to_put);
559}
560
561static sector_t align_to_barrier_unit_end(sector_t start_sector,
562					  sector_t sectors)
563{
564	sector_t len;
565
566	WARN_ON(sectors == 0);
567	/*
568	 * len is the number of sectors from start_sector to end of the
569	 * barrier unit which start_sector belongs to.
570	 */
571	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
572	      start_sector;
573
574	if (len > sectors)
575		len = sectors;
576
577	return len;
578}
579
580/*
581 * This routine returns the disk from which the requested read should
582 * be done. There is a per-array 'next expected sequential IO' sector
583 * number - if this matches on the next IO then we use the last disk.
584 * There is also a per-disk 'last know head position' sector that is
585 * maintained from IRQ contexts, both the normal and the resync IO
586 * completion handlers update this position correctly. If there is no
587 * perfect sequential match then we pick the disk whose head is closest.
588 *
589 * If there are 2 mirrors in the same 2 devices, performance degrades
590 * because position is mirror, not device based.
591 *
592 * The rdev for the device selected will have nr_pending incremented.
593 */
594static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
595{
596	const sector_t this_sector = r1_bio->sector;
597	int sectors;
598	int best_good_sectors;
599	int best_disk, best_dist_disk, best_pending_disk;
600	int has_nonrot_disk;
601	int disk;
602	sector_t best_dist;
603	unsigned int min_pending;
604	struct md_rdev *rdev;
605	int choose_first;
606	int choose_next_idle;
607
608	rcu_read_lock();
609	/*
610	 * Check if we can balance. We can balance on the whole
611	 * device if no resync is going on, or below the resync window.
612	 * We take the first readable disk when above the resync window.
613	 */
614 retry:
615	sectors = r1_bio->sectors;
616	best_disk = -1;
617	best_dist_disk = -1;
618	best_dist = MaxSector;
619	best_pending_disk = -1;
620	min_pending = UINT_MAX;
621	best_good_sectors = 0;
622	has_nonrot_disk = 0;
623	choose_next_idle = 0;
624	clear_bit(R1BIO_FailFast, &r1_bio->state);
625
626	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
627	    (mddev_is_clustered(conf->mddev) &&
628	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
629		    this_sector + sectors)))
630		choose_first = 1;
631	else
632		choose_first = 0;
633
634	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
635		sector_t dist;
636		sector_t first_bad;
637		int bad_sectors;
638		unsigned int pending;
639		bool nonrot;
640
641		rdev = rcu_dereference(conf->mirrors[disk].rdev);
642		if (r1_bio->bios[disk] == IO_BLOCKED
643		    || rdev == NULL
644		    || test_bit(Faulty, &rdev->flags))
645			continue;
646		if (!test_bit(In_sync, &rdev->flags) &&
647		    rdev->recovery_offset < this_sector + sectors)
648			continue;
649		if (test_bit(WriteMostly, &rdev->flags)) {
650			/* Don't balance among write-mostly, just
651			 * use the first as a last resort */
652			if (best_dist_disk < 0) {
653				if (is_badblock(rdev, this_sector, sectors,
654						&first_bad, &bad_sectors)) {
655					if (first_bad <= this_sector)
656						/* Cannot use this */
657						continue;
658					best_good_sectors = first_bad - this_sector;
659				} else
660					best_good_sectors = sectors;
661				best_dist_disk = disk;
662				best_pending_disk = disk;
663			}
664			continue;
665		}
666		/* This is a reasonable device to use.  It might
667		 * even be best.
668		 */
669		if (is_badblock(rdev, this_sector, sectors,
670				&first_bad, &bad_sectors)) {
671			if (best_dist < MaxSector)
672				/* already have a better device */
673				continue;
674			if (first_bad <= this_sector) {
675				/* cannot read here. If this is the 'primary'
676				 * device, then we must not read beyond
677				 * bad_sectors from another device..
678				 */
679				bad_sectors -= (this_sector - first_bad);
680				if (choose_first && sectors > bad_sectors)
681					sectors = bad_sectors;
682				if (best_good_sectors > sectors)
683					best_good_sectors = sectors;
684
685			} else {
686				sector_t good_sectors = first_bad - this_sector;
687				if (good_sectors > best_good_sectors) {
688					best_good_sectors = good_sectors;
689					best_disk = disk;
690				}
691				if (choose_first)
692					break;
693			}
694			continue;
695		} else {
696			if ((sectors > best_good_sectors) && (best_disk >= 0))
697				best_disk = -1;
698			best_good_sectors = sectors;
699		}
700
701		if (best_disk >= 0)
702			/* At least two disks to choose from so failfast is OK */
703			set_bit(R1BIO_FailFast, &r1_bio->state);
704
705		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
706		has_nonrot_disk |= nonrot;
707		pending = atomic_read(&rdev->nr_pending);
708		dist = abs(this_sector - conf->mirrors[disk].head_position);
709		if (choose_first) {
710			best_disk = disk;
711			break;
712		}
713		/* Don't change to another disk for sequential reads */
714		if (conf->mirrors[disk].next_seq_sect == this_sector
715		    || dist == 0) {
716			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
717			struct raid1_info *mirror = &conf->mirrors[disk];
718
719			best_disk = disk;
720			/*
721			 * If buffered sequential IO size exceeds optimal
722			 * iosize, check if there is idle disk. If yes, choose
723			 * the idle disk. read_balance could already choose an
724			 * idle disk before noticing it's a sequential IO in
725			 * this disk. This doesn't matter because this disk
726			 * will idle, next time it will be utilized after the
727			 * first disk has IO size exceeds optimal iosize. In
728			 * this way, iosize of the first disk will be optimal
729			 * iosize at least. iosize of the second disk might be
730			 * small, but not a big deal since when the second disk
731			 * starts IO, the first disk is likely still busy.
732			 */
733			if (nonrot && opt_iosize > 0 &&
734			    mirror->seq_start != MaxSector &&
735			    mirror->next_seq_sect > opt_iosize &&
736			    mirror->next_seq_sect - opt_iosize >=
737			    mirror->seq_start) {
738				choose_next_idle = 1;
739				continue;
740			}
741			break;
742		}
743
744		if (choose_next_idle)
745			continue;
746
747		if (min_pending > pending) {
748			min_pending = pending;
749			best_pending_disk = disk;
750		}
751
752		if (dist < best_dist) {
753			best_dist = dist;
754			best_dist_disk = disk;
755		}
756	}
757
758	/*
759	 * If all disks are rotational, choose the closest disk. If any disk is
760	 * non-rotational, choose the disk with less pending request even the
761	 * disk is rotational, which might/might not be optimal for raids with
762	 * mixed ratation/non-rotational disks depending on workload.
763	 */
764	if (best_disk == -1) {
765		if (has_nonrot_disk || min_pending == 0)
766			best_disk = best_pending_disk;
767		else
768			best_disk = best_dist_disk;
769	}
770
771	if (best_disk >= 0) {
772		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
773		if (!rdev)
774			goto retry;
775		atomic_inc(&rdev->nr_pending);
776		sectors = best_good_sectors;
777
778		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
779			conf->mirrors[best_disk].seq_start = this_sector;
780
781		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
782	}
783	rcu_read_unlock();
784	*max_sectors = sectors;
785
786	return best_disk;
787}
788
789static void flush_bio_list(struct r1conf *conf, struct bio *bio)
790{
791	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
792	md_bitmap_unplug(conf->mddev->bitmap);
793	wake_up(&conf->wait_barrier);
794
795	while (bio) { /* submit pending writes */
796		struct bio *next = bio->bi_next;
797		struct md_rdev *rdev = (void *)bio->bi_disk;
798		bio->bi_next = NULL;
799		bio_set_dev(bio, rdev->bdev);
800		if (test_bit(Faulty, &rdev->flags)) {
801			bio_io_error(bio);
802		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
803				    !blk_queue_discard(bio->bi_disk->queue)))
804			/* Just ignore it */
805			bio_endio(bio);
806		else
807			submit_bio_noacct(bio);
808		bio = next;
809		cond_resched();
810	}
811}
812
813static void flush_pending_writes(struct r1conf *conf)
814{
815	/* Any writes that have been queued but are awaiting
816	 * bitmap updates get flushed here.
817	 */
818	spin_lock_irq(&conf->device_lock);
819
820	if (conf->pending_bio_list.head) {
821		struct blk_plug plug;
822		struct bio *bio;
823
824		bio = bio_list_get(&conf->pending_bio_list);
825		conf->pending_count = 0;
826		spin_unlock_irq(&conf->device_lock);
827
828		/*
829		 * As this is called in a wait_event() loop (see freeze_array),
830		 * current->state might be TASK_UNINTERRUPTIBLE which will
831		 * cause a warning when we prepare to wait again.  As it is
832		 * rare that this path is taken, it is perfectly safe to force
833		 * us to go around the wait_event() loop again, so the warning
834		 * is a false-positive.  Silence the warning by resetting
835		 * thread state
836		 */
837		__set_current_state(TASK_RUNNING);
838		blk_start_plug(&plug);
839		flush_bio_list(conf, bio);
840		blk_finish_plug(&plug);
841	} else
842		spin_unlock_irq(&conf->device_lock);
843}
844
845/* Barriers....
846 * Sometimes we need to suspend IO while we do something else,
847 * either some resync/recovery, or reconfigure the array.
848 * To do this we raise a 'barrier'.
849 * The 'barrier' is a counter that can be raised multiple times
850 * to count how many activities are happening which preclude
851 * normal IO.
852 * We can only raise the barrier if there is no pending IO.
853 * i.e. if nr_pending == 0.
854 * We choose only to raise the barrier if no-one is waiting for the
855 * barrier to go down.  This means that as soon as an IO request
856 * is ready, no other operations which require a barrier will start
857 * until the IO request has had a chance.
858 *
859 * So: regular IO calls 'wait_barrier'.  When that returns there
860 *    is no backgroup IO happening,  It must arrange to call
861 *    allow_barrier when it has finished its IO.
862 * backgroup IO calls must call raise_barrier.  Once that returns
863 *    there is no normal IO happeing.  It must arrange to call
864 *    lower_barrier when the particular background IO completes.
865 *
866 * If resync/recovery is interrupted, returns -EINTR;
867 * Otherwise, returns 0.
868 */
869static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
870{
871	int idx = sector_to_idx(sector_nr);
872
873	spin_lock_irq(&conf->resync_lock);
874
875	/* Wait until no block IO is waiting */
876	wait_event_lock_irq(conf->wait_barrier,
877			    !atomic_read(&conf->nr_waiting[idx]),
878			    conf->resync_lock);
879
880	/* block any new IO from starting */
881	atomic_inc(&conf->barrier[idx]);
882	/*
883	 * In raise_barrier() we firstly increase conf->barrier[idx] then
884	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
885	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
886	 * A memory barrier here to make sure conf->nr_pending[idx] won't
887	 * be fetched before conf->barrier[idx] is increased. Otherwise
888	 * there will be a race between raise_barrier() and _wait_barrier().
889	 */
890	smp_mb__after_atomic();
891
892	/* For these conditions we must wait:
893	 * A: while the array is in frozen state
894	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
895	 *    existing in corresponding I/O barrier bucket.
896	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
897	 *    max resync count which allowed on current I/O barrier bucket.
898	 */
899	wait_event_lock_irq(conf->wait_barrier,
900			    (!conf->array_frozen &&
901			     !atomic_read(&conf->nr_pending[idx]) &&
902			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
903				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
904			    conf->resync_lock);
905
906	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
907		atomic_dec(&conf->barrier[idx]);
908		spin_unlock_irq(&conf->resync_lock);
909		wake_up(&conf->wait_barrier);
910		return -EINTR;
911	}
912
913	atomic_inc(&conf->nr_sync_pending);
914	spin_unlock_irq(&conf->resync_lock);
915
916	return 0;
917}
918
919static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
920{
921	int idx = sector_to_idx(sector_nr);
922
923	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
924
925	atomic_dec(&conf->barrier[idx]);
926	atomic_dec(&conf->nr_sync_pending);
927	wake_up(&conf->wait_barrier);
928}
929
930static void _wait_barrier(struct r1conf *conf, int idx)
931{
932	/*
933	 * We need to increase conf->nr_pending[idx] very early here,
934	 * then raise_barrier() can be blocked when it waits for
935	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
936	 * conf->resync_lock when there is no barrier raised in same
937	 * barrier unit bucket. Also if the array is frozen, I/O
938	 * should be blocked until array is unfrozen.
939	 */
940	atomic_inc(&conf->nr_pending[idx]);
941	/*
942	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
943	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
944	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
945	 * barrier is necessary here to make sure conf->barrier[idx] won't be
946	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
947	 * will be a race between _wait_barrier() and raise_barrier().
948	 */
949	smp_mb__after_atomic();
950
951	/*
952	 * Don't worry about checking two atomic_t variables at same time
953	 * here. If during we check conf->barrier[idx], the array is
954	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
955	 * 0, it is safe to return and make the I/O continue. Because the
956	 * array is frozen, all I/O returned here will eventually complete
957	 * or be queued, no race will happen. See code comment in
958	 * frozen_array().
959	 */
960	if (!READ_ONCE(conf->array_frozen) &&
961	    !atomic_read(&conf->barrier[idx]))
962		return;
963
964	/*
965	 * After holding conf->resync_lock, conf->nr_pending[idx]
966	 * should be decreased before waiting for barrier to drop.
967	 * Otherwise, we may encounter a race condition because
968	 * raise_barrer() might be waiting for conf->nr_pending[idx]
969	 * to be 0 at same time.
970	 */
971	spin_lock_irq(&conf->resync_lock);
972	atomic_inc(&conf->nr_waiting[idx]);
973	atomic_dec(&conf->nr_pending[idx]);
974	/*
975	 * In case freeze_array() is waiting for
976	 * get_unqueued_pending() == extra
977	 */
978	wake_up(&conf->wait_barrier);
979	/* Wait for the barrier in same barrier unit bucket to drop. */
980	wait_event_lock_irq(conf->wait_barrier,
981			    !conf->array_frozen &&
982			     !atomic_read(&conf->barrier[idx]),
983			    conf->resync_lock);
984	atomic_inc(&conf->nr_pending[idx]);
985	atomic_dec(&conf->nr_waiting[idx]);
986	spin_unlock_irq(&conf->resync_lock);
987}
988
989static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
990{
991	int idx = sector_to_idx(sector_nr);
992
993	/*
994	 * Very similar to _wait_barrier(). The difference is, for read
995	 * I/O we don't need wait for sync I/O, but if the whole array
996	 * is frozen, the read I/O still has to wait until the array is
997	 * unfrozen. Since there is no ordering requirement with
998	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
999	 */
1000	atomic_inc(&conf->nr_pending[idx]);
1001
1002	if (!READ_ONCE(conf->array_frozen))
1003		return;
1004
1005	spin_lock_irq(&conf->resync_lock);
1006	atomic_inc(&conf->nr_waiting[idx]);
1007	atomic_dec(&conf->nr_pending[idx]);
1008	/*
1009	 * In case freeze_array() is waiting for
1010	 * get_unqueued_pending() == extra
1011	 */
1012	wake_up(&conf->wait_barrier);
1013	/* Wait for array to be unfrozen */
1014	wait_event_lock_irq(conf->wait_barrier,
1015			    !conf->array_frozen,
1016			    conf->resync_lock);
1017	atomic_inc(&conf->nr_pending[idx]);
1018	atomic_dec(&conf->nr_waiting[idx]);
1019	spin_unlock_irq(&conf->resync_lock);
1020}
1021
1022static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1023{
1024	int idx = sector_to_idx(sector_nr);
1025
1026	_wait_barrier(conf, idx);
1027}
1028
1029static void _allow_barrier(struct r1conf *conf, int idx)
1030{
1031	atomic_dec(&conf->nr_pending[idx]);
1032	wake_up(&conf->wait_barrier);
1033}
1034
1035static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1036{
1037	int idx = sector_to_idx(sector_nr);
1038
1039	_allow_barrier(conf, idx);
1040}
1041
1042/* conf->resync_lock should be held */
1043static int get_unqueued_pending(struct r1conf *conf)
1044{
1045	int idx, ret;
1046
1047	ret = atomic_read(&conf->nr_sync_pending);
1048	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1049		ret += atomic_read(&conf->nr_pending[idx]) -
1050			atomic_read(&conf->nr_queued[idx]);
1051
1052	return ret;
1053}
1054
1055static void freeze_array(struct r1conf *conf, int extra)
1056{
1057	/* Stop sync I/O and normal I/O and wait for everything to
1058	 * go quiet.
1059	 * This is called in two situations:
1060	 * 1) management command handlers (reshape, remove disk, quiesce).
1061	 * 2) one normal I/O request failed.
1062
1063	 * After array_frozen is set to 1, new sync IO will be blocked at
1064	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1065	 * or wait_read_barrier(). The flying I/Os will either complete or be
1066	 * queued. When everything goes quite, there are only queued I/Os left.
1067
1068	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1069	 * barrier bucket index which this I/O request hits. When all sync and
1070	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1071	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1072	 * in handle_read_error(), we may call freeze_array() before trying to
1073	 * fix the read error. In this case, the error read I/O is not queued,
1074	 * so get_unqueued_pending() == 1.
1075	 *
1076	 * Therefore before this function returns, we need to wait until
1077	 * get_unqueued_pendings(conf) gets equal to extra. For
1078	 * normal I/O context, extra is 1, in rested situations extra is 0.
1079	 */
1080	spin_lock_irq(&conf->resync_lock);
1081	conf->array_frozen = 1;
1082	raid1_log(conf->mddev, "wait freeze");
1083	wait_event_lock_irq_cmd(
1084		conf->wait_barrier,
1085		get_unqueued_pending(conf) == extra,
1086		conf->resync_lock,
1087		flush_pending_writes(conf));
1088	spin_unlock_irq(&conf->resync_lock);
1089}
1090static void unfreeze_array(struct r1conf *conf)
1091{
1092	/* reverse the effect of the freeze */
1093	spin_lock_irq(&conf->resync_lock);
1094	conf->array_frozen = 0;
1095	spin_unlock_irq(&conf->resync_lock);
1096	wake_up(&conf->wait_barrier);
1097}
1098
1099static void alloc_behind_master_bio(struct r1bio *r1_bio,
1100					   struct bio *bio)
1101{
1102	int size = bio->bi_iter.bi_size;
1103	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1104	int i = 0;
1105	struct bio *behind_bio = NULL;
1106
1107	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1108	if (!behind_bio)
1109		return;
1110
1111	/* discard op, we don't support writezero/writesame yet */
1112	if (!bio_has_data(bio)) {
1113		behind_bio->bi_iter.bi_size = size;
1114		goto skip_copy;
1115	}
1116
1117	behind_bio->bi_write_hint = bio->bi_write_hint;
1118
1119	while (i < vcnt && size) {
1120		struct page *page;
1121		int len = min_t(int, PAGE_SIZE, size);
1122
1123		page = alloc_page(GFP_NOIO);
1124		if (unlikely(!page))
1125			goto free_pages;
1126
1127		bio_add_page(behind_bio, page, len, 0);
1128
1129		size -= len;
1130		i++;
1131	}
1132
1133	bio_copy_data(behind_bio, bio);
1134skip_copy:
1135	r1_bio->behind_master_bio = behind_bio;
1136	set_bit(R1BIO_BehindIO, &r1_bio->state);
1137
1138	return;
1139
1140free_pages:
1141	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1142		 bio->bi_iter.bi_size);
1143	bio_free_pages(behind_bio);
1144	bio_put(behind_bio);
1145}
1146
1147struct raid1_plug_cb {
1148	struct blk_plug_cb	cb;
1149	struct bio_list		pending;
1150	int			pending_cnt;
1151};
1152
1153static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1154{
1155	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1156						  cb);
1157	struct mddev *mddev = plug->cb.data;
1158	struct r1conf *conf = mddev->private;
1159	struct bio *bio;
1160
1161	if (from_schedule || current->bio_list) {
1162		spin_lock_irq(&conf->device_lock);
1163		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1164		conf->pending_count += plug->pending_cnt;
1165		spin_unlock_irq(&conf->device_lock);
1166		wake_up(&conf->wait_barrier);
1167		md_wakeup_thread(mddev->thread);
1168		kfree(plug);
1169		return;
1170	}
1171
1172	/* we aren't scheduling, so we can do the write-out directly. */
1173	bio = bio_list_get(&plug->pending);
1174	flush_bio_list(conf, bio);
1175	kfree(plug);
1176}
1177
1178static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1179{
1180	r1_bio->master_bio = bio;
1181	r1_bio->sectors = bio_sectors(bio);
1182	r1_bio->state = 0;
1183	r1_bio->mddev = mddev;
1184	r1_bio->sector = bio->bi_iter.bi_sector;
1185}
1186
1187static inline struct r1bio *
1188alloc_r1bio(struct mddev *mddev, struct bio *bio)
1189{
1190	struct r1conf *conf = mddev->private;
1191	struct r1bio *r1_bio;
1192
1193	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1194	/* Ensure no bio records IO_BLOCKED */
1195	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1196	init_r1bio(r1_bio, mddev, bio);
1197	return r1_bio;
1198}
1199
1200static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1201			       int max_read_sectors, struct r1bio *r1_bio)
1202{
1203	struct r1conf *conf = mddev->private;
1204	struct raid1_info *mirror;
1205	struct bio *read_bio;
1206	struct bitmap *bitmap = mddev->bitmap;
1207	const int op = bio_op(bio);
1208	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1209	int max_sectors;
1210	int rdisk;
1211	bool print_msg = !!r1_bio;
1212	char b[BDEVNAME_SIZE];
1213
1214	/*
1215	 * If r1_bio is set, we are blocking the raid1d thread
1216	 * so there is a tiny risk of deadlock.  So ask for
1217	 * emergency memory if needed.
1218	 */
1219	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1220
1221	if (print_msg) {
1222		/* Need to get the block device name carefully */
1223		struct md_rdev *rdev;
1224		rcu_read_lock();
1225		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1226		if (rdev)
1227			bdevname(rdev->bdev, b);
1228		else
1229			strcpy(b, "???");
1230		rcu_read_unlock();
1231	}
1232
1233	/*
1234	 * Still need barrier for READ in case that whole
1235	 * array is frozen.
1236	 */
1237	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1238
1239	if (!r1_bio)
1240		r1_bio = alloc_r1bio(mddev, bio);
1241	else
1242		init_r1bio(r1_bio, mddev, bio);
1243	r1_bio->sectors = max_read_sectors;
1244
1245	/*
1246	 * make_request() can abort the operation when read-ahead is being
1247	 * used and no empty request is available.
1248	 */
1249	rdisk = read_balance(conf, r1_bio, &max_sectors);
1250
1251	if (rdisk < 0) {
1252		/* couldn't find anywhere to read from */
1253		if (print_msg) {
1254			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1255					    mdname(mddev),
1256					    b,
1257					    (unsigned long long)r1_bio->sector);
1258		}
1259		raid_end_bio_io(r1_bio);
1260		return;
1261	}
1262	mirror = conf->mirrors + rdisk;
1263
1264	if (print_msg)
1265		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1266				    mdname(mddev),
1267				    (unsigned long long)r1_bio->sector,
1268				    bdevname(mirror->rdev->bdev, b));
1269
1270	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1271	    bitmap) {
1272		/*
1273		 * Reading from a write-mostly device must take care not to
1274		 * over-take any writes that are 'behind'
1275		 */
1276		raid1_log(mddev, "wait behind writes");
1277		wait_event(bitmap->behind_wait,
1278			   atomic_read(&bitmap->behind_writes) == 0);
1279	}
1280
1281	if (max_sectors < bio_sectors(bio)) {
1282		struct bio *split = bio_split(bio, max_sectors,
1283					      gfp, &conf->bio_split);
1284		bio_chain(split, bio);
1285		submit_bio_noacct(bio);
1286		bio = split;
1287		r1_bio->master_bio = bio;
1288		r1_bio->sectors = max_sectors;
1289	}
1290
1291	r1_bio->read_disk = rdisk;
1292
1293	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1294
1295	r1_bio->bios[rdisk] = read_bio;
1296
1297	read_bio->bi_iter.bi_sector = r1_bio->sector +
1298		mirror->rdev->data_offset;
1299	bio_set_dev(read_bio, mirror->rdev->bdev);
1300	read_bio->bi_end_io = raid1_end_read_request;
1301	bio_set_op_attrs(read_bio, op, do_sync);
1302	if (test_bit(FailFast, &mirror->rdev->flags) &&
1303	    test_bit(R1BIO_FailFast, &r1_bio->state))
1304	        read_bio->bi_opf |= MD_FAILFAST;
1305	read_bio->bi_private = r1_bio;
1306
1307	if (mddev->gendisk)
1308	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1309				disk_devt(mddev->gendisk), r1_bio->sector);
1310
1311	submit_bio_noacct(read_bio);
1312}
1313
1314static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1315				int max_write_sectors)
1316{
1317	struct r1conf *conf = mddev->private;
1318	struct r1bio *r1_bio;
1319	int i, disks;
1320	struct bitmap *bitmap = mddev->bitmap;
1321	unsigned long flags;
1322	struct md_rdev *blocked_rdev;
1323	struct blk_plug_cb *cb;
1324	struct raid1_plug_cb *plug = NULL;
1325	int first_clone;
1326	int max_sectors;
1327
1328	if (mddev_is_clustered(mddev) &&
1329	     md_cluster_ops->area_resyncing(mddev, WRITE,
1330		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1331
1332		DEFINE_WAIT(w);
1333		for (;;) {
1334			prepare_to_wait(&conf->wait_barrier,
1335					&w, TASK_IDLE);
1336			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1337							bio->bi_iter.bi_sector,
1338							bio_end_sector(bio)))
1339				break;
1340			schedule();
1341		}
1342		finish_wait(&conf->wait_barrier, &w);
1343	}
1344
1345	/*
1346	 * Register the new request and wait if the reconstruction
1347	 * thread has put up a bar for new requests.
1348	 * Continue immediately if no resync is active currently.
1349	 */
1350	wait_barrier(conf, bio->bi_iter.bi_sector);
1351
1352	r1_bio = alloc_r1bio(mddev, bio);
1353	r1_bio->sectors = max_write_sectors;
1354
1355	if (conf->pending_count >= max_queued_requests) {
1356		md_wakeup_thread(mddev->thread);
1357		raid1_log(mddev, "wait queued");
1358		wait_event(conf->wait_barrier,
1359			   conf->pending_count < max_queued_requests);
1360	}
1361	/* first select target devices under rcu_lock and
1362	 * inc refcount on their rdev.  Record them by setting
1363	 * bios[x] to bio
1364	 * If there are known/acknowledged bad blocks on any device on
1365	 * which we have seen a write error, we want to avoid writing those
1366	 * blocks.
1367	 * This potentially requires several writes to write around
1368	 * the bad blocks.  Each set of writes gets it's own r1bio
1369	 * with a set of bios attached.
1370	 */
1371
1372	disks = conf->raid_disks * 2;
1373 retry_write:
1374	blocked_rdev = NULL;
1375	rcu_read_lock();
1376	max_sectors = r1_bio->sectors;
1377	for (i = 0;  i < disks; i++) {
1378		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1379		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1380			atomic_inc(&rdev->nr_pending);
1381			blocked_rdev = rdev;
1382			break;
1383		}
1384		r1_bio->bios[i] = NULL;
1385		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1386			if (i < conf->raid_disks)
1387				set_bit(R1BIO_Degraded, &r1_bio->state);
1388			continue;
1389		}
1390
1391		atomic_inc(&rdev->nr_pending);
1392		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1393			sector_t first_bad;
1394			int bad_sectors;
1395			int is_bad;
1396
1397			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1398					     &first_bad, &bad_sectors);
1399			if (is_bad < 0) {
1400				/* mustn't write here until the bad block is
1401				 * acknowledged*/
1402				set_bit(BlockedBadBlocks, &rdev->flags);
1403				blocked_rdev = rdev;
1404				break;
1405			}
1406			if (is_bad && first_bad <= r1_bio->sector) {
1407				/* Cannot write here at all */
1408				bad_sectors -= (r1_bio->sector - first_bad);
1409				if (bad_sectors < max_sectors)
1410					/* mustn't write more than bad_sectors
1411					 * to other devices yet
1412					 */
1413					max_sectors = bad_sectors;
1414				rdev_dec_pending(rdev, mddev);
1415				/* We don't set R1BIO_Degraded as that
1416				 * only applies if the disk is
1417				 * missing, so it might be re-added,
1418				 * and we want to know to recover this
1419				 * chunk.
1420				 * In this case the device is here,
1421				 * and the fact that this chunk is not
1422				 * in-sync is recorded in the bad
1423				 * block log
1424				 */
1425				continue;
1426			}
1427			if (is_bad) {
1428				int good_sectors = first_bad - r1_bio->sector;
1429				if (good_sectors < max_sectors)
1430					max_sectors = good_sectors;
1431			}
1432		}
1433		r1_bio->bios[i] = bio;
1434	}
1435	rcu_read_unlock();
1436
1437	if (unlikely(blocked_rdev)) {
1438		/* Wait for this device to become unblocked */
1439		int j;
1440
1441		for (j = 0; j < i; j++)
1442			if (r1_bio->bios[j])
1443				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1444		r1_bio->state = 0;
1445		allow_barrier(conf, bio->bi_iter.bi_sector);
1446		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1447		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1448		wait_barrier(conf, bio->bi_iter.bi_sector);
1449		goto retry_write;
1450	}
1451
1452	if (max_sectors < bio_sectors(bio)) {
1453		struct bio *split = bio_split(bio, max_sectors,
1454					      GFP_NOIO, &conf->bio_split);
1455		bio_chain(split, bio);
1456		submit_bio_noacct(bio);
1457		bio = split;
1458		r1_bio->master_bio = bio;
1459		r1_bio->sectors = max_sectors;
1460	}
1461
1462	atomic_set(&r1_bio->remaining, 1);
1463	atomic_set(&r1_bio->behind_remaining, 0);
1464
1465	first_clone = 1;
1466
1467	for (i = 0; i < disks; i++) {
1468		struct bio *mbio = NULL;
1469		struct md_rdev *rdev = conf->mirrors[i].rdev;
1470		if (!r1_bio->bios[i])
1471			continue;
1472
1473		if (first_clone) {
1474			/* do behind I/O ?
1475			 * Not if there are too many, or cannot
1476			 * allocate memory, or a reader on WriteMostly
1477			 * is waiting for behind writes to flush */
1478			if (bitmap &&
1479			    (atomic_read(&bitmap->behind_writes)
1480			     < mddev->bitmap_info.max_write_behind) &&
1481			    !waitqueue_active(&bitmap->behind_wait)) {
1482				alloc_behind_master_bio(r1_bio, bio);
1483			}
1484
1485			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1486					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1487			first_clone = 0;
1488		}
1489
1490		if (r1_bio->behind_master_bio)
1491			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1492					      GFP_NOIO, &mddev->bio_set);
1493		else
1494			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1495
1496		if (r1_bio->behind_master_bio) {
1497			if (test_bit(CollisionCheck, &rdev->flags))
1498				wait_for_serialization(rdev, r1_bio);
1499			if (test_bit(WriteMostly, &rdev->flags))
1500				atomic_inc(&r1_bio->behind_remaining);
1501		} else if (mddev->serialize_policy)
1502			wait_for_serialization(rdev, r1_bio);
1503
1504		r1_bio->bios[i] = mbio;
1505
1506		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1507				   conf->mirrors[i].rdev->data_offset);
1508		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1509		mbio->bi_end_io	= raid1_end_write_request;
1510		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1511		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1512		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1513		    conf->raid_disks - mddev->degraded > 1)
1514			mbio->bi_opf |= MD_FAILFAST;
1515		mbio->bi_private = r1_bio;
1516
1517		atomic_inc(&r1_bio->remaining);
1518
1519		if (mddev->gendisk)
1520			trace_block_bio_remap(mbio->bi_disk->queue,
1521					      mbio, disk_devt(mddev->gendisk),
1522					      r1_bio->sector);
1523		/* flush_pending_writes() needs access to the rdev so...*/
1524		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1525
1526		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1527		if (cb)
1528			plug = container_of(cb, struct raid1_plug_cb, cb);
1529		else
1530			plug = NULL;
1531		if (plug) {
1532			bio_list_add(&plug->pending, mbio);
1533			plug->pending_cnt++;
1534		} else {
1535			spin_lock_irqsave(&conf->device_lock, flags);
1536			bio_list_add(&conf->pending_bio_list, mbio);
1537			conf->pending_count++;
1538			spin_unlock_irqrestore(&conf->device_lock, flags);
1539			md_wakeup_thread(mddev->thread);
1540		}
1541	}
1542
1543	r1_bio_write_done(r1_bio);
1544
1545	/* In case raid1d snuck in to freeze_array */
1546	wake_up(&conf->wait_barrier);
1547}
1548
1549static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1550{
1551	sector_t sectors;
1552
1553	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1554	    && md_flush_request(mddev, bio))
1555		return true;
1556
1557	/*
1558	 * There is a limit to the maximum size, but
1559	 * the read/write handler might find a lower limit
1560	 * due to bad blocks.  To avoid multiple splits,
1561	 * we pass the maximum number of sectors down
1562	 * and let the lower level perform the split.
1563	 */
1564	sectors = align_to_barrier_unit_end(
1565		bio->bi_iter.bi_sector, bio_sectors(bio));
1566
1567	if (bio_data_dir(bio) == READ)
1568		raid1_read_request(mddev, bio, sectors, NULL);
1569	else {
1570		if (!md_write_start(mddev,bio))
1571			return false;
1572		raid1_write_request(mddev, bio, sectors);
1573	}
1574	return true;
1575}
1576
1577static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1578{
1579	struct r1conf *conf = mddev->private;
1580	int i;
1581
1582	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1583		   conf->raid_disks - mddev->degraded);
1584	rcu_read_lock();
1585	for (i = 0; i < conf->raid_disks; i++) {
1586		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1587		seq_printf(seq, "%s",
1588			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1589	}
1590	rcu_read_unlock();
1591	seq_printf(seq, "]");
1592}
1593
1594static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1595{
1596	char b[BDEVNAME_SIZE];
1597	struct r1conf *conf = mddev->private;
1598	unsigned long flags;
1599
1600	/*
1601	 * If it is not operational, then we have already marked it as dead
1602	 * else if it is the last working disks with "fail_last_dev == false",
1603	 * ignore the error, let the next level up know.
1604	 * else mark the drive as failed
1605	 */
1606	spin_lock_irqsave(&conf->device_lock, flags);
1607	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1608	    && (conf->raid_disks - mddev->degraded) == 1) {
1609		/*
1610		 * Don't fail the drive, act as though we were just a
1611		 * normal single drive.
1612		 * However don't try a recovery from this drive as
1613		 * it is very likely to fail.
1614		 */
1615		conf->recovery_disabled = mddev->recovery_disabled;
1616		spin_unlock_irqrestore(&conf->device_lock, flags);
1617		return;
1618	}
1619	set_bit(Blocked, &rdev->flags);
1620	if (test_and_clear_bit(In_sync, &rdev->flags))
1621		mddev->degraded++;
1622	set_bit(Faulty, &rdev->flags);
1623	spin_unlock_irqrestore(&conf->device_lock, flags);
1624	/*
1625	 * if recovery is running, make sure it aborts.
1626	 */
1627	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1628	set_mask_bits(&mddev->sb_flags, 0,
1629		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1630	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1631		"md/raid1:%s: Operation continuing on %d devices.\n",
1632		mdname(mddev), bdevname(rdev->bdev, b),
1633		mdname(mddev), conf->raid_disks - mddev->degraded);
1634}
1635
1636static void print_conf(struct r1conf *conf)
1637{
1638	int i;
1639
1640	pr_debug("RAID1 conf printout:\n");
1641	if (!conf) {
1642		pr_debug("(!conf)\n");
1643		return;
1644	}
1645	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1646		 conf->raid_disks);
1647
1648	rcu_read_lock();
1649	for (i = 0; i < conf->raid_disks; i++) {
1650		char b[BDEVNAME_SIZE];
1651		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1652		if (rdev)
1653			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1654				 i, !test_bit(In_sync, &rdev->flags),
1655				 !test_bit(Faulty, &rdev->flags),
1656				 bdevname(rdev->bdev,b));
1657	}
1658	rcu_read_unlock();
1659}
1660
1661static void close_sync(struct r1conf *conf)
1662{
1663	int idx;
1664
1665	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1666		_wait_barrier(conf, idx);
1667		_allow_barrier(conf, idx);
1668	}
1669
1670	mempool_exit(&conf->r1buf_pool);
1671}
1672
1673static int raid1_spare_active(struct mddev *mddev)
1674{
1675	int i;
1676	struct r1conf *conf = mddev->private;
1677	int count = 0;
1678	unsigned long flags;
1679
1680	/*
1681	 * Find all failed disks within the RAID1 configuration
1682	 * and mark them readable.
1683	 * Called under mddev lock, so rcu protection not needed.
1684	 * device_lock used to avoid races with raid1_end_read_request
1685	 * which expects 'In_sync' flags and ->degraded to be consistent.
1686	 */
1687	spin_lock_irqsave(&conf->device_lock, flags);
1688	for (i = 0; i < conf->raid_disks; i++) {
1689		struct md_rdev *rdev = conf->mirrors[i].rdev;
1690		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1691		if (repl
1692		    && !test_bit(Candidate, &repl->flags)
1693		    && repl->recovery_offset == MaxSector
1694		    && !test_bit(Faulty, &repl->flags)
1695		    && !test_and_set_bit(In_sync, &repl->flags)) {
1696			/* replacement has just become active */
1697			if (!rdev ||
1698			    !test_and_clear_bit(In_sync, &rdev->flags))
1699				count++;
1700			if (rdev) {
1701				/* Replaced device not technically
1702				 * faulty, but we need to be sure
1703				 * it gets removed and never re-added
1704				 */
1705				set_bit(Faulty, &rdev->flags);
1706				sysfs_notify_dirent_safe(
1707					rdev->sysfs_state);
1708			}
1709		}
1710		if (rdev
1711		    && rdev->recovery_offset == MaxSector
1712		    && !test_bit(Faulty, &rdev->flags)
1713		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1714			count++;
1715			sysfs_notify_dirent_safe(rdev->sysfs_state);
1716		}
1717	}
1718	mddev->degraded -= count;
1719	spin_unlock_irqrestore(&conf->device_lock, flags);
1720
1721	print_conf(conf);
1722	return count;
1723}
1724
1725static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1726{
1727	struct r1conf *conf = mddev->private;
1728	int err = -EEXIST;
1729	int mirror = 0;
1730	struct raid1_info *p;
1731	int first = 0;
1732	int last = conf->raid_disks - 1;
1733
1734	if (mddev->recovery_disabled == conf->recovery_disabled)
1735		return -EBUSY;
1736
1737	if (md_integrity_add_rdev(rdev, mddev))
1738		return -ENXIO;
1739
1740	if (rdev->raid_disk >= 0)
1741		first = last = rdev->raid_disk;
1742
1743	/*
1744	 * find the disk ... but prefer rdev->saved_raid_disk
1745	 * if possible.
1746	 */
1747	if (rdev->saved_raid_disk >= 0 &&
1748	    rdev->saved_raid_disk >= first &&
1749	    rdev->saved_raid_disk < conf->raid_disks &&
1750	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1751		first = last = rdev->saved_raid_disk;
1752
1753	for (mirror = first; mirror <= last; mirror++) {
1754		p = conf->mirrors + mirror;
1755		if (!p->rdev) {
1756			if (mddev->gendisk)
1757				disk_stack_limits(mddev->gendisk, rdev->bdev,
1758						  rdev->data_offset << 9);
1759
1760			p->head_position = 0;
1761			rdev->raid_disk = mirror;
1762			err = 0;
1763			/* As all devices are equivalent, we don't need a full recovery
1764			 * if this was recently any drive of the array
1765			 */
1766			if (rdev->saved_raid_disk < 0)
1767				conf->fullsync = 1;
1768			rcu_assign_pointer(p->rdev, rdev);
1769			break;
1770		}
1771		if (test_bit(WantReplacement, &p->rdev->flags) &&
1772		    p[conf->raid_disks].rdev == NULL) {
1773			/* Add this device as a replacement */
1774			clear_bit(In_sync, &rdev->flags);
1775			set_bit(Replacement, &rdev->flags);
1776			rdev->raid_disk = mirror;
1777			err = 0;
1778			conf->fullsync = 1;
1779			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1780			break;
1781		}
1782	}
1783	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1784		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1785	print_conf(conf);
1786	return err;
1787}
1788
1789static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1790{
1791	struct r1conf *conf = mddev->private;
1792	int err = 0;
1793	int number = rdev->raid_disk;
1794	struct raid1_info *p = conf->mirrors + number;
1795
1796	if (unlikely(number >= conf->raid_disks))
1797		goto abort;
1798
1799	if (rdev != p->rdev)
1800		p = conf->mirrors + conf->raid_disks + number;
1801
1802	print_conf(conf);
1803	if (rdev == p->rdev) {
1804		if (test_bit(In_sync, &rdev->flags) ||
1805		    atomic_read(&rdev->nr_pending)) {
1806			err = -EBUSY;
1807			goto abort;
1808		}
1809		/* Only remove non-faulty devices if recovery
1810		 * is not possible.
1811		 */
1812		if (!test_bit(Faulty, &rdev->flags) &&
1813		    mddev->recovery_disabled != conf->recovery_disabled &&
1814		    mddev->degraded < conf->raid_disks) {
1815			err = -EBUSY;
1816			goto abort;
1817		}
1818		p->rdev = NULL;
1819		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1820			synchronize_rcu();
1821			if (atomic_read(&rdev->nr_pending)) {
1822				/* lost the race, try later */
1823				err = -EBUSY;
1824				p->rdev = rdev;
1825				goto abort;
1826			}
1827		}
1828		if (conf->mirrors[conf->raid_disks + number].rdev) {
1829			/* We just removed a device that is being replaced.
1830			 * Move down the replacement.  We drain all IO before
1831			 * doing this to avoid confusion.
1832			 */
1833			struct md_rdev *repl =
1834				conf->mirrors[conf->raid_disks + number].rdev;
1835			freeze_array(conf, 0);
1836			if (atomic_read(&repl->nr_pending)) {
1837				/* It means that some queued IO of retry_list
1838				 * hold repl. Thus, we cannot set replacement
1839				 * as NULL, avoiding rdev NULL pointer
1840				 * dereference in sync_request_write and
1841				 * handle_write_finished.
1842				 */
1843				err = -EBUSY;
1844				unfreeze_array(conf);
1845				goto abort;
1846			}
1847			clear_bit(Replacement, &repl->flags);
1848			p->rdev = repl;
1849			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1850			unfreeze_array(conf);
1851		}
1852
1853		clear_bit(WantReplacement, &rdev->flags);
1854		err = md_integrity_register(mddev);
1855	}
1856abort:
1857
1858	print_conf(conf);
1859	return err;
1860}
1861
1862static void end_sync_read(struct bio *bio)
1863{
1864	struct r1bio *r1_bio = get_resync_r1bio(bio);
1865
1866	update_head_pos(r1_bio->read_disk, r1_bio);
1867
1868	/*
1869	 * we have read a block, now it needs to be re-written,
1870	 * or re-read if the read failed.
1871	 * We don't do much here, just schedule handling by raid1d
1872	 */
1873	if (!bio->bi_status)
1874		set_bit(R1BIO_Uptodate, &r1_bio->state);
1875
1876	if (atomic_dec_and_test(&r1_bio->remaining))
1877		reschedule_retry(r1_bio);
1878}
1879
1880static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1881{
1882	sector_t sync_blocks = 0;
1883	sector_t s = r1_bio->sector;
1884	long sectors_to_go = r1_bio->sectors;
1885
1886	/* make sure these bits don't get cleared. */
1887	do {
1888		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1889		s += sync_blocks;
1890		sectors_to_go -= sync_blocks;
1891	} while (sectors_to_go > 0);
1892}
1893
1894static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1895{
1896	if (atomic_dec_and_test(&r1_bio->remaining)) {
1897		struct mddev *mddev = r1_bio->mddev;
1898		int s = r1_bio->sectors;
1899
1900		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1901		    test_bit(R1BIO_WriteError, &r1_bio->state))
1902			reschedule_retry(r1_bio);
1903		else {
1904			put_buf(r1_bio);
1905			md_done_sync(mddev, s, uptodate);
1906		}
1907	}
1908}
1909
1910static void end_sync_write(struct bio *bio)
1911{
1912	int uptodate = !bio->bi_status;
1913	struct r1bio *r1_bio = get_resync_r1bio(bio);
1914	struct mddev *mddev = r1_bio->mddev;
1915	struct r1conf *conf = mddev->private;
1916	sector_t first_bad;
1917	int bad_sectors;
1918	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1919
1920	if (!uptodate) {
1921		abort_sync_write(mddev, r1_bio);
1922		set_bit(WriteErrorSeen, &rdev->flags);
1923		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1924			set_bit(MD_RECOVERY_NEEDED, &
1925				mddev->recovery);
1926		set_bit(R1BIO_WriteError, &r1_bio->state);
1927	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1928			       &first_bad, &bad_sectors) &&
1929		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1930				r1_bio->sector,
1931				r1_bio->sectors,
1932				&first_bad, &bad_sectors)
1933		)
1934		set_bit(R1BIO_MadeGood, &r1_bio->state);
1935
1936	put_sync_write_buf(r1_bio, uptodate);
1937}
1938
1939static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1940			    int sectors, struct page *page, int rw)
1941{
1942	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1943		/* success */
1944		return 1;
1945	if (rw == WRITE) {
1946		set_bit(WriteErrorSeen, &rdev->flags);
1947		if (!test_and_set_bit(WantReplacement,
1948				      &rdev->flags))
1949			set_bit(MD_RECOVERY_NEEDED, &
1950				rdev->mddev->recovery);
1951	}
1952	/* need to record an error - either for the block or the device */
1953	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1954		md_error(rdev->mddev, rdev);
1955	return 0;
1956}
1957
1958static int fix_sync_read_error(struct r1bio *r1_bio)
1959{
1960	/* Try some synchronous reads of other devices to get
1961	 * good data, much like with normal read errors.  Only
1962	 * read into the pages we already have so we don't
1963	 * need to re-issue the read request.
1964	 * We don't need to freeze the array, because being in an
1965	 * active sync request, there is no normal IO, and
1966	 * no overlapping syncs.
1967	 * We don't need to check is_badblock() again as we
1968	 * made sure that anything with a bad block in range
1969	 * will have bi_end_io clear.
1970	 */
1971	struct mddev *mddev = r1_bio->mddev;
1972	struct r1conf *conf = mddev->private;
1973	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1974	struct page **pages = get_resync_pages(bio)->pages;
1975	sector_t sect = r1_bio->sector;
1976	int sectors = r1_bio->sectors;
1977	int idx = 0;
1978	struct md_rdev *rdev;
1979
1980	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1981	if (test_bit(FailFast, &rdev->flags)) {
1982		/* Don't try recovering from here - just fail it
1983		 * ... unless it is the last working device of course */
1984		md_error(mddev, rdev);
1985		if (test_bit(Faulty, &rdev->flags))
1986			/* Don't try to read from here, but make sure
1987			 * put_buf does it's thing
1988			 */
1989			bio->bi_end_io = end_sync_write;
1990	}
1991
1992	while(sectors) {
1993		int s = sectors;
1994		int d = r1_bio->read_disk;
1995		int success = 0;
1996		int start;
1997
1998		if (s > (PAGE_SIZE>>9))
1999			s = PAGE_SIZE >> 9;
2000		do {
2001			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2002				/* No rcu protection needed here devices
2003				 * can only be removed when no resync is
2004				 * active, and resync is currently active
2005				 */
2006				rdev = conf->mirrors[d].rdev;
2007				if (sync_page_io(rdev, sect, s<<9,
2008						 pages[idx],
2009						 REQ_OP_READ, 0, false)) {
2010					success = 1;
2011					break;
2012				}
2013			}
2014			d++;
2015			if (d == conf->raid_disks * 2)
2016				d = 0;
2017		} while (!success && d != r1_bio->read_disk);
2018
2019		if (!success) {
2020			char b[BDEVNAME_SIZE];
2021			int abort = 0;
2022			/* Cannot read from anywhere, this block is lost.
2023			 * Record a bad block on each device.  If that doesn't
2024			 * work just disable and interrupt the recovery.
2025			 * Don't fail devices as that won't really help.
2026			 */
2027			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2028					    mdname(mddev), bio_devname(bio, b),
2029					    (unsigned long long)r1_bio->sector);
2030			for (d = 0; d < conf->raid_disks * 2; d++) {
2031				rdev = conf->mirrors[d].rdev;
2032				if (!rdev || test_bit(Faulty, &rdev->flags))
2033					continue;
2034				if (!rdev_set_badblocks(rdev, sect, s, 0))
2035					abort = 1;
2036			}
2037			if (abort) {
2038				conf->recovery_disabled =
2039					mddev->recovery_disabled;
2040				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2041				md_done_sync(mddev, r1_bio->sectors, 0);
2042				put_buf(r1_bio);
2043				return 0;
2044			}
2045			/* Try next page */
2046			sectors -= s;
2047			sect += s;
2048			idx++;
2049			continue;
2050		}
2051
2052		start = d;
2053		/* write it back and re-read */
2054		while (d != r1_bio->read_disk) {
2055			if (d == 0)
2056				d = conf->raid_disks * 2;
2057			d--;
2058			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2059				continue;
2060			rdev = conf->mirrors[d].rdev;
2061			if (r1_sync_page_io(rdev, sect, s,
2062					    pages[idx],
2063					    WRITE) == 0) {
2064				r1_bio->bios[d]->bi_end_io = NULL;
2065				rdev_dec_pending(rdev, mddev);
2066			}
2067		}
2068		d = start;
2069		while (d != r1_bio->read_disk) {
2070			if (d == 0)
2071				d = conf->raid_disks * 2;
2072			d--;
2073			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2074				continue;
2075			rdev = conf->mirrors[d].rdev;
2076			if (r1_sync_page_io(rdev, sect, s,
2077					    pages[idx],
2078					    READ) != 0)
2079				atomic_add(s, &rdev->corrected_errors);
2080		}
2081		sectors -= s;
2082		sect += s;
2083		idx ++;
2084	}
2085	set_bit(R1BIO_Uptodate, &r1_bio->state);
2086	bio->bi_status = 0;
2087	return 1;
2088}
2089
2090static void process_checks(struct r1bio *r1_bio)
2091{
2092	/* We have read all readable devices.  If we haven't
2093	 * got the block, then there is no hope left.
2094	 * If we have, then we want to do a comparison
2095	 * and skip the write if everything is the same.
2096	 * If any blocks failed to read, then we need to
2097	 * attempt an over-write
2098	 */
2099	struct mddev *mddev = r1_bio->mddev;
2100	struct r1conf *conf = mddev->private;
2101	int primary;
2102	int i;
2103	int vcnt;
2104
2105	/* Fix variable parts of all bios */
2106	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2107	for (i = 0; i < conf->raid_disks * 2; i++) {
2108		blk_status_t status;
2109		struct bio *b = r1_bio->bios[i];
2110		struct resync_pages *rp = get_resync_pages(b);
2111		if (b->bi_end_io != end_sync_read)
2112			continue;
2113		/* fixup the bio for reuse, but preserve errno */
2114		status = b->bi_status;
2115		bio_reset(b);
2116		b->bi_status = status;
2117		b->bi_iter.bi_sector = r1_bio->sector +
2118			conf->mirrors[i].rdev->data_offset;
2119		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2120		b->bi_end_io = end_sync_read;
2121		rp->raid_bio = r1_bio;
2122		b->bi_private = rp;
2123
2124		/* initialize bvec table again */
2125		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2126	}
2127	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2128		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2129		    !r1_bio->bios[primary]->bi_status) {
2130			r1_bio->bios[primary]->bi_end_io = NULL;
2131			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2132			break;
2133		}
2134	r1_bio->read_disk = primary;
2135	for (i = 0; i < conf->raid_disks * 2; i++) {
2136		int j = 0;
2137		struct bio *pbio = r1_bio->bios[primary];
2138		struct bio *sbio = r1_bio->bios[i];
2139		blk_status_t status = sbio->bi_status;
2140		struct page **ppages = get_resync_pages(pbio)->pages;
2141		struct page **spages = get_resync_pages(sbio)->pages;
2142		struct bio_vec *bi;
2143		int page_len[RESYNC_PAGES] = { 0 };
2144		struct bvec_iter_all iter_all;
2145
2146		if (sbio->bi_end_io != end_sync_read)
2147			continue;
2148		/* Now we can 'fixup' the error value */
2149		sbio->bi_status = 0;
2150
2151		bio_for_each_segment_all(bi, sbio, iter_all)
2152			page_len[j++] = bi->bv_len;
2153
2154		if (!status) {
2155			for (j = vcnt; j-- ; ) {
2156				if (memcmp(page_address(ppages[j]),
2157					   page_address(spages[j]),
2158					   page_len[j]))
2159					break;
2160			}
2161		} else
2162			j = 0;
2163		if (j >= 0)
2164			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2165		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2166			      && !status)) {
2167			/* No need to write to this device. */
2168			sbio->bi_end_io = NULL;
2169			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2170			continue;
2171		}
2172
2173		bio_copy_data(sbio, pbio);
2174	}
2175}
2176
2177static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2178{
2179	struct r1conf *conf = mddev->private;
2180	int i;
2181	int disks = conf->raid_disks * 2;
2182	struct bio *wbio;
2183
2184	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2185		/* ouch - failed to read all of that. */
2186		if (!fix_sync_read_error(r1_bio))
2187			return;
2188
2189	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2190		process_checks(r1_bio);
2191
2192	/*
2193	 * schedule writes
2194	 */
2195	atomic_set(&r1_bio->remaining, 1);
2196	for (i = 0; i < disks ; i++) {
2197		wbio = r1_bio->bios[i];
2198		if (wbio->bi_end_io == NULL ||
2199		    (wbio->bi_end_io == end_sync_read &&
2200		     (i == r1_bio->read_disk ||
2201		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2202			continue;
2203		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2204			abort_sync_write(mddev, r1_bio);
2205			continue;
2206		}
2207
2208		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2209		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2210			wbio->bi_opf |= MD_FAILFAST;
2211
2212		wbio->bi_end_io = end_sync_write;
2213		atomic_inc(&r1_bio->remaining);
2214		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2215
2216		submit_bio_noacct(wbio);
2217	}
2218
2219	put_sync_write_buf(r1_bio, 1);
2220}
2221
2222/*
2223 * This is a kernel thread which:
2224 *
2225 *	1.	Retries failed read operations on working mirrors.
2226 *	2.	Updates the raid superblock when problems encounter.
2227 *	3.	Performs writes following reads for array synchronising.
2228 */
2229
2230static void fix_read_error(struct r1conf *conf, int read_disk,
2231			   sector_t sect, int sectors)
2232{
2233	struct mddev *mddev = conf->mddev;
2234	while(sectors) {
2235		int s = sectors;
2236		int d = read_disk;
2237		int success = 0;
2238		int start;
2239		struct md_rdev *rdev;
2240
2241		if (s > (PAGE_SIZE>>9))
2242			s = PAGE_SIZE >> 9;
2243
2244		do {
2245			sector_t first_bad;
2246			int bad_sectors;
2247
2248			rcu_read_lock();
2249			rdev = rcu_dereference(conf->mirrors[d].rdev);
2250			if (rdev &&
2251			    (test_bit(In_sync, &rdev->flags) ||
2252			     (!test_bit(Faulty, &rdev->flags) &&
2253			      rdev->recovery_offset >= sect + s)) &&
2254			    is_badblock(rdev, sect, s,
2255					&first_bad, &bad_sectors) == 0) {
2256				atomic_inc(&rdev->nr_pending);
2257				rcu_read_unlock();
2258				if (sync_page_io(rdev, sect, s<<9,
2259					 conf->tmppage, REQ_OP_READ, 0, false))
2260					success = 1;
2261				rdev_dec_pending(rdev, mddev);
2262				if (success)
2263					break;
2264			} else
2265				rcu_read_unlock();
2266			d++;
2267			if (d == conf->raid_disks * 2)
2268				d = 0;
2269		} while (!success && d != read_disk);
2270
2271		if (!success) {
2272			/* Cannot read from anywhere - mark it bad */
2273			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2274			if (!rdev_set_badblocks(rdev, sect, s, 0))
2275				md_error(mddev, rdev);
2276			break;
2277		}
2278		/* write it back and re-read */
2279		start = d;
2280		while (d != read_disk) {
2281			if (d==0)
2282				d = conf->raid_disks * 2;
2283			d--;
2284			rcu_read_lock();
2285			rdev = rcu_dereference(conf->mirrors[d].rdev);
2286			if (rdev &&
2287			    !test_bit(Faulty, &rdev->flags)) {
2288				atomic_inc(&rdev->nr_pending);
2289				rcu_read_unlock();
2290				r1_sync_page_io(rdev, sect, s,
2291						conf->tmppage, WRITE);
2292				rdev_dec_pending(rdev, mddev);
2293			} else
2294				rcu_read_unlock();
2295		}
2296		d = start;
2297		while (d != read_disk) {
2298			char b[BDEVNAME_SIZE];
2299			if (d==0)
2300				d = conf->raid_disks * 2;
2301			d--;
2302			rcu_read_lock();
2303			rdev = rcu_dereference(conf->mirrors[d].rdev);
2304			if (rdev &&
2305			    !test_bit(Faulty, &rdev->flags)) {
2306				atomic_inc(&rdev->nr_pending);
2307				rcu_read_unlock();
2308				if (r1_sync_page_io(rdev, sect, s,
2309						    conf->tmppage, READ)) {
2310					atomic_add(s, &rdev->corrected_errors);
2311					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2312						mdname(mddev), s,
2313						(unsigned long long)(sect +
2314								     rdev->data_offset),
2315						bdevname(rdev->bdev, b));
2316				}
2317				rdev_dec_pending(rdev, mddev);
2318			} else
2319				rcu_read_unlock();
2320		}
2321		sectors -= s;
2322		sect += s;
2323	}
2324}
2325
2326static int narrow_write_error(struct r1bio *r1_bio, int i)
2327{
2328	struct mddev *mddev = r1_bio->mddev;
2329	struct r1conf *conf = mddev->private;
2330	struct md_rdev *rdev = conf->mirrors[i].rdev;
2331
2332	/* bio has the data to be written to device 'i' where
2333	 * we just recently had a write error.
2334	 * We repeatedly clone the bio and trim down to one block,
2335	 * then try the write.  Where the write fails we record
2336	 * a bad block.
2337	 * It is conceivable that the bio doesn't exactly align with
2338	 * blocks.  We must handle this somehow.
2339	 *
2340	 * We currently own a reference on the rdev.
2341	 */
2342
2343	int block_sectors;
2344	sector_t sector;
2345	int sectors;
2346	int sect_to_write = r1_bio->sectors;
2347	int ok = 1;
2348
2349	if (rdev->badblocks.shift < 0)
2350		return 0;
2351
2352	block_sectors = roundup(1 << rdev->badblocks.shift,
2353				bdev_logical_block_size(rdev->bdev) >> 9);
2354	sector = r1_bio->sector;
2355	sectors = ((sector + block_sectors)
2356		   & ~(sector_t)(block_sectors - 1))
2357		- sector;
2358
2359	while (sect_to_write) {
2360		struct bio *wbio;
2361		if (sectors > sect_to_write)
2362			sectors = sect_to_write;
2363		/* Write at 'sector' for 'sectors'*/
2364
2365		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2366			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2367					      GFP_NOIO,
2368					      &mddev->bio_set);
2369		} else {
2370			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2371					      &mddev->bio_set);
2372		}
2373
2374		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2375		wbio->bi_iter.bi_sector = r1_bio->sector;
2376		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2377
2378		bio_trim(wbio, sector - r1_bio->sector, sectors);
2379		wbio->bi_iter.bi_sector += rdev->data_offset;
2380		bio_set_dev(wbio, rdev->bdev);
2381
2382		if (submit_bio_wait(wbio) < 0)
2383			/* failure! */
2384			ok = rdev_set_badblocks(rdev, sector,
2385						sectors, 0)
2386				&& ok;
2387
2388		bio_put(wbio);
2389		sect_to_write -= sectors;
2390		sector += sectors;
2391		sectors = block_sectors;
2392	}
2393	return ok;
2394}
2395
2396static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2397{
2398	int m;
2399	int s = r1_bio->sectors;
2400	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2401		struct md_rdev *rdev = conf->mirrors[m].rdev;
2402		struct bio *bio = r1_bio->bios[m];
2403		if (bio->bi_end_io == NULL)
2404			continue;
2405		if (!bio->bi_status &&
2406		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2407			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2408		}
2409		if (bio->bi_status &&
2410		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2411			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2412				md_error(conf->mddev, rdev);
2413		}
2414	}
2415	put_buf(r1_bio);
2416	md_done_sync(conf->mddev, s, 1);
2417}
2418
2419static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2420{
2421	int m, idx;
2422	bool fail = false;
2423
2424	for (m = 0; m < conf->raid_disks * 2 ; m++)
2425		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2426			struct md_rdev *rdev = conf->mirrors[m].rdev;
2427			rdev_clear_badblocks(rdev,
2428					     r1_bio->sector,
2429					     r1_bio->sectors, 0);
2430			rdev_dec_pending(rdev, conf->mddev);
2431		} else if (r1_bio->bios[m] != NULL) {
2432			/* This drive got a write error.  We need to
2433			 * narrow down and record precise write
2434			 * errors.
2435			 */
2436			fail = true;
2437			if (!narrow_write_error(r1_bio, m)) {
2438				md_error(conf->mddev,
2439					 conf->mirrors[m].rdev);
2440				/* an I/O failed, we can't clear the bitmap */
2441				set_bit(R1BIO_Degraded, &r1_bio->state);
2442			}
2443			rdev_dec_pending(conf->mirrors[m].rdev,
2444					 conf->mddev);
2445		}
2446	if (fail) {
2447		spin_lock_irq(&conf->device_lock);
2448		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2449		idx = sector_to_idx(r1_bio->sector);
2450		atomic_inc(&conf->nr_queued[idx]);
2451		spin_unlock_irq(&conf->device_lock);
2452		/*
2453		 * In case freeze_array() is waiting for condition
2454		 * get_unqueued_pending() == extra to be true.
2455		 */
2456		wake_up(&conf->wait_barrier);
2457		md_wakeup_thread(conf->mddev->thread);
2458	} else {
2459		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2460			close_write(r1_bio);
2461		raid_end_bio_io(r1_bio);
2462	}
2463}
2464
2465static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2466{
2467	struct mddev *mddev = conf->mddev;
2468	struct bio *bio;
2469	struct md_rdev *rdev;
2470
2471	clear_bit(R1BIO_ReadError, &r1_bio->state);
2472	/* we got a read error. Maybe the drive is bad.  Maybe just
2473	 * the block and we can fix it.
2474	 * We freeze all other IO, and try reading the block from
2475	 * other devices.  When we find one, we re-write
2476	 * and check it that fixes the read error.
2477	 * This is all done synchronously while the array is
2478	 * frozen
2479	 */
2480
2481	bio = r1_bio->bios[r1_bio->read_disk];
2482	bio_put(bio);
2483	r1_bio->bios[r1_bio->read_disk] = NULL;
2484
2485	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2486	if (mddev->ro == 0
2487	    && !test_bit(FailFast, &rdev->flags)) {
2488		freeze_array(conf, 1);
2489		fix_read_error(conf, r1_bio->read_disk,
2490			       r1_bio->sector, r1_bio->sectors);
2491		unfreeze_array(conf);
2492	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2493		md_error(mddev, rdev);
2494	} else {
2495		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2496	}
2497
2498	rdev_dec_pending(rdev, conf->mddev);
2499	allow_barrier(conf, r1_bio->sector);
2500	bio = r1_bio->master_bio;
2501
2502	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2503	r1_bio->state = 0;
2504	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2505}
2506
2507static void raid1d(struct md_thread *thread)
2508{
2509	struct mddev *mddev = thread->mddev;
2510	struct r1bio *r1_bio;
2511	unsigned long flags;
2512	struct r1conf *conf = mddev->private;
2513	struct list_head *head = &conf->retry_list;
2514	struct blk_plug plug;
2515	int idx;
2516
2517	md_check_recovery(mddev);
2518
2519	if (!list_empty_careful(&conf->bio_end_io_list) &&
2520	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2521		LIST_HEAD(tmp);
2522		spin_lock_irqsave(&conf->device_lock, flags);
2523		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2524			list_splice_init(&conf->bio_end_io_list, &tmp);
2525		spin_unlock_irqrestore(&conf->device_lock, flags);
2526		while (!list_empty(&tmp)) {
2527			r1_bio = list_first_entry(&tmp, struct r1bio,
2528						  retry_list);
2529			list_del(&r1_bio->retry_list);
2530			idx = sector_to_idx(r1_bio->sector);
2531			atomic_dec(&conf->nr_queued[idx]);
2532			if (mddev->degraded)
2533				set_bit(R1BIO_Degraded, &r1_bio->state);
2534			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2535				close_write(r1_bio);
2536			raid_end_bio_io(r1_bio);
2537		}
2538	}
2539
2540	blk_start_plug(&plug);
2541	for (;;) {
2542
2543		flush_pending_writes(conf);
2544
2545		spin_lock_irqsave(&conf->device_lock, flags);
2546		if (list_empty(head)) {
2547			spin_unlock_irqrestore(&conf->device_lock, flags);
2548			break;
2549		}
2550		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2551		list_del(head->prev);
2552		idx = sector_to_idx(r1_bio->sector);
2553		atomic_dec(&conf->nr_queued[idx]);
2554		spin_unlock_irqrestore(&conf->device_lock, flags);
2555
2556		mddev = r1_bio->mddev;
2557		conf = mddev->private;
2558		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2559			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2560			    test_bit(R1BIO_WriteError, &r1_bio->state))
2561				handle_sync_write_finished(conf, r1_bio);
2562			else
2563				sync_request_write(mddev, r1_bio);
2564		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2565			   test_bit(R1BIO_WriteError, &r1_bio->state))
2566			handle_write_finished(conf, r1_bio);
2567		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2568			handle_read_error(conf, r1_bio);
2569		else
2570			WARN_ON_ONCE(1);
2571
2572		cond_resched();
2573		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2574			md_check_recovery(mddev);
2575	}
2576	blk_finish_plug(&plug);
2577}
2578
2579static int init_resync(struct r1conf *conf)
2580{
2581	int buffs;
2582
2583	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2584	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2585
2586	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2587			    r1buf_pool_free, conf->poolinfo);
2588}
2589
2590static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2591{
2592	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2593	struct resync_pages *rps;
2594	struct bio *bio;
2595	int i;
2596
2597	for (i = conf->poolinfo->raid_disks; i--; ) {
2598		bio = r1bio->bios[i];
2599		rps = bio->bi_private;
2600		bio_reset(bio);
2601		bio->bi_private = rps;
2602	}
2603	r1bio->master_bio = NULL;
2604	return r1bio;
2605}
2606
2607/*
2608 * perform a "sync" on one "block"
2609 *
2610 * We need to make sure that no normal I/O request - particularly write
2611 * requests - conflict with active sync requests.
2612 *
2613 * This is achieved by tracking pending requests and a 'barrier' concept
2614 * that can be installed to exclude normal IO requests.
2615 */
2616
2617static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2618				   int *skipped)
2619{
2620	struct r1conf *conf = mddev->private;
2621	struct r1bio *r1_bio;
2622	struct bio *bio;
2623	sector_t max_sector, nr_sectors;
2624	int disk = -1;
2625	int i;
2626	int wonly = -1;
2627	int write_targets = 0, read_targets = 0;
2628	sector_t sync_blocks;
2629	int still_degraded = 0;
2630	int good_sectors = RESYNC_SECTORS;
2631	int min_bad = 0; /* number of sectors that are bad in all devices */
2632	int idx = sector_to_idx(sector_nr);
2633	int page_idx = 0;
2634
2635	if (!mempool_initialized(&conf->r1buf_pool))
2636		if (init_resync(conf))
2637			return 0;
2638
2639	max_sector = mddev->dev_sectors;
2640	if (sector_nr >= max_sector) {
2641		/* If we aborted, we need to abort the
2642		 * sync on the 'current' bitmap chunk (there will
2643		 * only be one in raid1 resync.
2644		 * We can find the current addess in mddev->curr_resync
2645		 */
2646		if (mddev->curr_resync < max_sector) /* aborted */
2647			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2648					   &sync_blocks, 1);
2649		else /* completed sync */
2650			conf->fullsync = 0;
2651
2652		md_bitmap_close_sync(mddev->bitmap);
2653		close_sync(conf);
2654
2655		if (mddev_is_clustered(mddev)) {
2656			conf->cluster_sync_low = 0;
2657			conf->cluster_sync_high = 0;
2658		}
2659		return 0;
2660	}
2661
2662	if (mddev->bitmap == NULL &&
2663	    mddev->recovery_cp == MaxSector &&
2664	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2665	    conf->fullsync == 0) {
2666		*skipped = 1;
2667		return max_sector - sector_nr;
2668	}
2669	/* before building a request, check if we can skip these blocks..
2670	 * This call the bitmap_start_sync doesn't actually record anything
2671	 */
2672	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2673	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2674		/* We can skip this block, and probably several more */
2675		*skipped = 1;
2676		return sync_blocks;
2677	}
2678
2679	/*
2680	 * If there is non-resync activity waiting for a turn, then let it
2681	 * though before starting on this new sync request.
2682	 */
2683	if (atomic_read(&conf->nr_waiting[idx]))
2684		schedule_timeout_uninterruptible(1);
2685
2686	/* we are incrementing sector_nr below. To be safe, we check against
2687	 * sector_nr + two times RESYNC_SECTORS
2688	 */
2689
2690	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2691		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2692
2693
2694	if (raise_barrier(conf, sector_nr))
2695		return 0;
2696
2697	r1_bio = raid1_alloc_init_r1buf(conf);
2698
2699	rcu_read_lock();
2700	/*
2701	 * If we get a correctably read error during resync or recovery,
2702	 * we might want to read from a different device.  So we
2703	 * flag all drives that could conceivably be read from for READ,
2704	 * and any others (which will be non-In_sync devices) for WRITE.
2705	 * If a read fails, we try reading from something else for which READ
2706	 * is OK.
2707	 */
2708
2709	r1_bio->mddev = mddev;
2710	r1_bio->sector = sector_nr;
2711	r1_bio->state = 0;
2712	set_bit(R1BIO_IsSync, &r1_bio->state);
2713	/* make sure good_sectors won't go across barrier unit boundary */
2714	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2715
2716	for (i = 0; i < conf->raid_disks * 2; i++) {
2717		struct md_rdev *rdev;
2718		bio = r1_bio->bios[i];
2719
2720		rdev = rcu_dereference(conf->mirrors[i].rdev);
2721		if (rdev == NULL ||
2722		    test_bit(Faulty, &rdev->flags)) {
2723			if (i < conf->raid_disks)
2724				still_degraded = 1;
2725		} else if (!test_bit(In_sync, &rdev->flags)) {
2726			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2727			bio->bi_end_io = end_sync_write;
2728			write_targets ++;
2729		} else {
2730			/* may need to read from here */
2731			sector_t first_bad = MaxSector;
2732			int bad_sectors;
2733
2734			if (is_badblock(rdev, sector_nr, good_sectors,
2735					&first_bad, &bad_sectors)) {
2736				if (first_bad > sector_nr)
2737					good_sectors = first_bad - sector_nr;
2738				else {
2739					bad_sectors -= (sector_nr - first_bad);
2740					if (min_bad == 0 ||
2741					    min_bad > bad_sectors)
2742						min_bad = bad_sectors;
2743				}
2744			}
2745			if (sector_nr < first_bad) {
2746				if (test_bit(WriteMostly, &rdev->flags)) {
2747					if (wonly < 0)
2748						wonly = i;
2749				} else {
2750					if (disk < 0)
2751						disk = i;
2752				}
2753				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2754				bio->bi_end_io = end_sync_read;
2755				read_targets++;
2756			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2757				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2758				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2759				/*
2760				 * The device is suitable for reading (InSync),
2761				 * but has bad block(s) here. Let's try to correct them,
2762				 * if we are doing resync or repair. Otherwise, leave
2763				 * this device alone for this sync request.
2764				 */
2765				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2766				bio->bi_end_io = end_sync_write;
2767				write_targets++;
2768			}
2769		}
2770		if (rdev && bio->bi_end_io) {
2771			atomic_inc(&rdev->nr_pending);
2772			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2773			bio_set_dev(bio, rdev->bdev);
2774			if (test_bit(FailFast, &rdev->flags))
2775				bio->bi_opf |= MD_FAILFAST;
2776		}
2777	}
2778	rcu_read_unlock();
2779	if (disk < 0)
2780		disk = wonly;
2781	r1_bio->read_disk = disk;
2782
2783	if (read_targets == 0 && min_bad > 0) {
2784		/* These sectors are bad on all InSync devices, so we
2785		 * need to mark them bad on all write targets
2786		 */
2787		int ok = 1;
2788		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2789			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2790				struct md_rdev *rdev = conf->mirrors[i].rdev;
2791				ok = rdev_set_badblocks(rdev, sector_nr,
2792							min_bad, 0
2793					) && ok;
2794			}
2795		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2796		*skipped = 1;
2797		put_buf(r1_bio);
2798
2799		if (!ok) {
2800			/* Cannot record the badblocks, so need to
2801			 * abort the resync.
2802			 * If there are multiple read targets, could just
2803			 * fail the really bad ones ???
2804			 */
2805			conf->recovery_disabled = mddev->recovery_disabled;
2806			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2807			return 0;
2808		} else
2809			return min_bad;
2810
2811	}
2812	if (min_bad > 0 && min_bad < good_sectors) {
2813		/* only resync enough to reach the next bad->good
2814		 * transition */
2815		good_sectors = min_bad;
2816	}
2817
2818	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2819		/* extra read targets are also write targets */
2820		write_targets += read_targets-1;
2821
2822	if (write_targets == 0 || read_targets == 0) {
2823		/* There is nowhere to write, so all non-sync
2824		 * drives must be failed - so we are finished
2825		 */
2826		sector_t rv;
2827		if (min_bad > 0)
2828			max_sector = sector_nr + min_bad;
2829		rv = max_sector - sector_nr;
2830		*skipped = 1;
2831		put_buf(r1_bio);
2832		return rv;
2833	}
2834
2835	if (max_sector > mddev->resync_max)
2836		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2837	if (max_sector > sector_nr + good_sectors)
2838		max_sector = sector_nr + good_sectors;
2839	nr_sectors = 0;
2840	sync_blocks = 0;
2841	do {
2842		struct page *page;
2843		int len = PAGE_SIZE;
2844		if (sector_nr + (len>>9) > max_sector)
2845			len = (max_sector - sector_nr) << 9;
2846		if (len == 0)
2847			break;
2848		if (sync_blocks == 0) {
2849			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2850						  &sync_blocks, still_degraded) &&
2851			    !conf->fullsync &&
2852			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2853				break;
2854			if ((len >> 9) > sync_blocks)
2855				len = sync_blocks<<9;
2856		}
2857
2858		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2859			struct resync_pages *rp;
2860
2861			bio = r1_bio->bios[i];
2862			rp = get_resync_pages(bio);
2863			if (bio->bi_end_io) {
2864				page = resync_fetch_page(rp, page_idx);
2865
2866				/*
2867				 * won't fail because the vec table is big
2868				 * enough to hold all these pages
2869				 */
2870				bio_add_page(bio, page, len, 0);
2871			}
2872		}
2873		nr_sectors += len>>9;
2874		sector_nr += len>>9;
2875		sync_blocks -= (len>>9);
2876	} while (++page_idx < RESYNC_PAGES);
2877
2878	r1_bio->sectors = nr_sectors;
2879
2880	if (mddev_is_clustered(mddev) &&
2881			conf->cluster_sync_high < sector_nr + nr_sectors) {
2882		conf->cluster_sync_low = mddev->curr_resync_completed;
2883		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2884		/* Send resync message */
2885		md_cluster_ops->resync_info_update(mddev,
2886				conf->cluster_sync_low,
2887				conf->cluster_sync_high);
2888	}
2889
2890	/* For a user-requested sync, we read all readable devices and do a
2891	 * compare
2892	 */
2893	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2894		atomic_set(&r1_bio->remaining, read_targets);
2895		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2896			bio = r1_bio->bios[i];
2897			if (bio->bi_end_io == end_sync_read) {
2898				read_targets--;
2899				md_sync_acct_bio(bio, nr_sectors);
2900				if (read_targets == 1)
2901					bio->bi_opf &= ~MD_FAILFAST;
2902				submit_bio_noacct(bio);
2903			}
2904		}
2905	} else {
2906		atomic_set(&r1_bio->remaining, 1);
2907		bio = r1_bio->bios[r1_bio->read_disk];
2908		md_sync_acct_bio(bio, nr_sectors);
2909		if (read_targets == 1)
2910			bio->bi_opf &= ~MD_FAILFAST;
2911		submit_bio_noacct(bio);
2912	}
2913	return nr_sectors;
2914}
2915
2916static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2917{
2918	if (sectors)
2919		return sectors;
2920
2921	return mddev->dev_sectors;
2922}
2923
2924static struct r1conf *setup_conf(struct mddev *mddev)
2925{
2926	struct r1conf *conf;
2927	int i;
2928	struct raid1_info *disk;
2929	struct md_rdev *rdev;
2930	int err = -ENOMEM;
2931
2932	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2933	if (!conf)
2934		goto abort;
2935
2936	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2937				   sizeof(atomic_t), GFP_KERNEL);
2938	if (!conf->nr_pending)
2939		goto abort;
2940
2941	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2942				   sizeof(atomic_t), GFP_KERNEL);
2943	if (!conf->nr_waiting)
2944		goto abort;
2945
2946	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2947				  sizeof(atomic_t), GFP_KERNEL);
2948	if (!conf->nr_queued)
2949		goto abort;
2950
2951	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2952				sizeof(atomic_t), GFP_KERNEL);
2953	if (!conf->barrier)
2954		goto abort;
2955
2956	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2957					    mddev->raid_disks, 2),
2958				GFP_KERNEL);
2959	if (!conf->mirrors)
2960		goto abort;
2961
2962	conf->tmppage = alloc_page(GFP_KERNEL);
2963	if (!conf->tmppage)
2964		goto abort;
2965
2966	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2967	if (!conf->poolinfo)
2968		goto abort;
2969	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2970	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2971			   rbio_pool_free, conf->poolinfo);
2972	if (err)
2973		goto abort;
2974
2975	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2976	if (err)
2977		goto abort;
2978
2979	conf->poolinfo->mddev = mddev;
2980
2981	err = -EINVAL;
2982	spin_lock_init(&conf->device_lock);
2983	rdev_for_each(rdev, mddev) {
2984		int disk_idx = rdev->raid_disk;
2985		if (disk_idx >= mddev->raid_disks
2986		    || disk_idx < 0)
2987			continue;
2988		if (test_bit(Replacement, &rdev->flags))
2989			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2990		else
2991			disk = conf->mirrors + disk_idx;
2992
2993		if (disk->rdev)
2994			goto abort;
2995		disk->rdev = rdev;
2996		disk->head_position = 0;
2997		disk->seq_start = MaxSector;
2998	}
2999	conf->raid_disks = mddev->raid_disks;
3000	conf->mddev = mddev;
3001	INIT_LIST_HEAD(&conf->retry_list);
3002	INIT_LIST_HEAD(&conf->bio_end_io_list);
3003
3004	spin_lock_init(&conf->resync_lock);
3005	init_waitqueue_head(&conf->wait_barrier);
3006
3007	bio_list_init(&conf->pending_bio_list);
3008	conf->pending_count = 0;
3009	conf->recovery_disabled = mddev->recovery_disabled - 1;
3010
3011	err = -EIO;
3012	for (i = 0; i < conf->raid_disks * 2; i++) {
3013
3014		disk = conf->mirrors + i;
3015
3016		if (i < conf->raid_disks &&
3017		    disk[conf->raid_disks].rdev) {
3018			/* This slot has a replacement. */
3019			if (!disk->rdev) {
3020				/* No original, just make the replacement
3021				 * a recovering spare
3022				 */
3023				disk->rdev =
3024					disk[conf->raid_disks].rdev;
3025				disk[conf->raid_disks].rdev = NULL;
3026			} else if (!test_bit(In_sync, &disk->rdev->flags))
3027				/* Original is not in_sync - bad */
3028				goto abort;
3029		}
3030
3031		if (!disk->rdev ||
3032		    !test_bit(In_sync, &disk->rdev->flags)) {
3033			disk->head_position = 0;
3034			if (disk->rdev &&
3035			    (disk->rdev->saved_raid_disk < 0))
3036				conf->fullsync = 1;
3037		}
3038	}
3039
3040	err = -ENOMEM;
3041	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3042	if (!conf->thread)
3043		goto abort;
3044
3045	return conf;
3046
3047 abort:
3048	if (conf) {
3049		mempool_exit(&conf->r1bio_pool);
3050		kfree(conf->mirrors);
3051		safe_put_page(conf->tmppage);
3052		kfree(conf->poolinfo);
3053		kfree(conf->nr_pending);
3054		kfree(conf->nr_waiting);
3055		kfree(conf->nr_queued);
3056		kfree(conf->barrier);
3057		bioset_exit(&conf->bio_split);
3058		kfree(conf);
3059	}
3060	return ERR_PTR(err);
3061}
3062
3063static void raid1_free(struct mddev *mddev, void *priv);
3064static int raid1_run(struct mddev *mddev)
3065{
3066	struct r1conf *conf;
3067	int i;
3068	struct md_rdev *rdev;
3069	int ret;
3070	bool discard_supported = false;
3071
3072	if (mddev->level != 1) {
3073		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3074			mdname(mddev), mddev->level);
3075		return -EIO;
3076	}
3077	if (mddev->reshape_position != MaxSector) {
3078		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3079			mdname(mddev));
3080		return -EIO;
3081	}
3082	if (mddev_init_writes_pending(mddev) < 0)
3083		return -ENOMEM;
3084	/*
3085	 * copy the already verified devices into our private RAID1
3086	 * bookkeeping area. [whatever we allocate in run(),
3087	 * should be freed in raid1_free()]
3088	 */
3089	if (mddev->private == NULL)
3090		conf = setup_conf(mddev);
3091	else
3092		conf = mddev->private;
3093
3094	if (IS_ERR(conf))
3095		return PTR_ERR(conf);
3096
3097	if (mddev->queue) {
3098		blk_queue_max_write_same_sectors(mddev->queue, 0);
3099		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3100	}
3101
3102	rdev_for_each(rdev, mddev) {
3103		if (!mddev->gendisk)
3104			continue;
3105		disk_stack_limits(mddev->gendisk, rdev->bdev,
3106				  rdev->data_offset << 9);
3107		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3108			discard_supported = true;
3109	}
3110
3111	mddev->degraded = 0;
3112	for (i = 0; i < conf->raid_disks; i++)
3113		if (conf->mirrors[i].rdev == NULL ||
3114		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3115		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3116			mddev->degraded++;
3117	/*
3118	 * RAID1 needs at least one disk in active
3119	 */
3120	if (conf->raid_disks - mddev->degraded < 1) {
3121		md_unregister_thread(&conf->thread);
3122		ret = -EINVAL;
3123		goto abort;
3124	}
3125
3126	if (conf->raid_disks - mddev->degraded == 1)
3127		mddev->recovery_cp = MaxSector;
3128
3129	if (mddev->recovery_cp != MaxSector)
3130		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3131			mdname(mddev));
3132	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3133		mdname(mddev), mddev->raid_disks - mddev->degraded,
3134		mddev->raid_disks);
3135
3136	/*
3137	 * Ok, everything is just fine now
3138	 */
3139	mddev->thread = conf->thread;
3140	conf->thread = NULL;
3141	mddev->private = conf;
3142	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3143
3144	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3145
3146	if (mddev->queue) {
3147		if (discard_supported)
3148			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3149						mddev->queue);
3150		else
3151			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3152						  mddev->queue);
3153	}
3154
3155	ret = md_integrity_register(mddev);
3156	if (ret) {
3157		md_unregister_thread(&mddev->thread);
3158		goto abort;
3159	}
3160	return 0;
3161
3162abort:
3163	raid1_free(mddev, conf);
3164	return ret;
3165}
3166
3167static void raid1_free(struct mddev *mddev, void *priv)
3168{
3169	struct r1conf *conf = priv;
3170
3171	mempool_exit(&conf->r1bio_pool);
3172	kfree(conf->mirrors);
3173	safe_put_page(conf->tmppage);
3174	kfree(conf->poolinfo);
3175	kfree(conf->nr_pending);
3176	kfree(conf->nr_waiting);
3177	kfree(conf->nr_queued);
3178	kfree(conf->barrier);
3179	bioset_exit(&conf->bio_split);
3180	kfree(conf);
3181}
3182
3183static int raid1_resize(struct mddev *mddev, sector_t sectors)
3184{
3185	/* no resync is happening, and there is enough space
3186	 * on all devices, so we can resize.
3187	 * We need to make sure resync covers any new space.
3188	 * If the array is shrinking we should possibly wait until
3189	 * any io in the removed space completes, but it hardly seems
3190	 * worth it.
3191	 */
3192	sector_t newsize = raid1_size(mddev, sectors, 0);
3193	if (mddev->external_size &&
3194	    mddev->array_sectors > newsize)
3195		return -EINVAL;
3196	if (mddev->bitmap) {
3197		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3198		if (ret)
3199			return ret;
3200	}
3201	md_set_array_sectors(mddev, newsize);
3202	if (sectors > mddev->dev_sectors &&
3203	    mddev->recovery_cp > mddev->dev_sectors) {
3204		mddev->recovery_cp = mddev->dev_sectors;
3205		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3206	}
3207	mddev->dev_sectors = sectors;
3208	mddev->resync_max_sectors = sectors;
3209	return 0;
3210}
3211
3212static int raid1_reshape(struct mddev *mddev)
3213{
3214	/* We need to:
3215	 * 1/ resize the r1bio_pool
3216	 * 2/ resize conf->mirrors
3217	 *
3218	 * We allocate a new r1bio_pool if we can.
3219	 * Then raise a device barrier and wait until all IO stops.
3220	 * Then resize conf->mirrors and swap in the new r1bio pool.
3221	 *
3222	 * At the same time, we "pack" the devices so that all the missing
3223	 * devices have the higher raid_disk numbers.
3224	 */
3225	mempool_t newpool, oldpool;
3226	struct pool_info *newpoolinfo;
3227	struct raid1_info *newmirrors;
3228	struct r1conf *conf = mddev->private;
3229	int cnt, raid_disks;
3230	unsigned long flags;
3231	int d, d2;
3232	int ret;
3233
3234	memset(&newpool, 0, sizeof(newpool));
3235	memset(&oldpool, 0, sizeof(oldpool));
3236
3237	/* Cannot change chunk_size, layout, or level */
3238	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3239	    mddev->layout != mddev->new_layout ||
3240	    mddev->level != mddev->new_level) {
3241		mddev->new_chunk_sectors = mddev->chunk_sectors;
3242		mddev->new_layout = mddev->layout;
3243		mddev->new_level = mddev->level;
3244		return -EINVAL;
3245	}
3246
3247	if (!mddev_is_clustered(mddev))
3248		md_allow_write(mddev);
3249
3250	raid_disks = mddev->raid_disks + mddev->delta_disks;
3251
3252	if (raid_disks < conf->raid_disks) {
3253		cnt=0;
3254		for (d= 0; d < conf->raid_disks; d++)
3255			if (conf->mirrors[d].rdev)
3256				cnt++;
3257		if (cnt > raid_disks)
3258			return -EBUSY;
3259	}
3260
3261	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3262	if (!newpoolinfo)
3263		return -ENOMEM;
3264	newpoolinfo->mddev = mddev;
3265	newpoolinfo->raid_disks = raid_disks * 2;
3266
3267	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3268			   rbio_pool_free, newpoolinfo);
3269	if (ret) {
3270		kfree(newpoolinfo);
3271		return ret;
3272	}
3273	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3274					 raid_disks, 2),
3275			     GFP_KERNEL);
3276	if (!newmirrors) {
3277		kfree(newpoolinfo);
3278		mempool_exit(&newpool);
3279		return -ENOMEM;
3280	}
3281
3282	freeze_array(conf, 0);
3283
3284	/* ok, everything is stopped */
3285	oldpool = conf->r1bio_pool;
3286	conf->r1bio_pool = newpool;
3287
3288	for (d = d2 = 0; d < conf->raid_disks; d++) {
3289		struct md_rdev *rdev = conf->mirrors[d].rdev;
3290		if (rdev && rdev->raid_disk != d2) {
3291			sysfs_unlink_rdev(mddev, rdev);
3292			rdev->raid_disk = d2;
3293			sysfs_unlink_rdev(mddev, rdev);
3294			if (sysfs_link_rdev(mddev, rdev))
3295				pr_warn("md/raid1:%s: cannot register rd%d\n",
3296					mdname(mddev), rdev->raid_disk);
3297		}
3298		if (rdev)
3299			newmirrors[d2++].rdev = rdev;
3300	}
3301	kfree(conf->mirrors);
3302	conf->mirrors = newmirrors;
3303	kfree(conf->poolinfo);
3304	conf->poolinfo = newpoolinfo;
3305
3306	spin_lock_irqsave(&conf->device_lock, flags);
3307	mddev->degraded += (raid_disks - conf->raid_disks);
3308	spin_unlock_irqrestore(&conf->device_lock, flags);
3309	conf->raid_disks = mddev->raid_disks = raid_disks;
3310	mddev->delta_disks = 0;
3311
3312	unfreeze_array(conf);
3313
3314	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3315	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3316	md_wakeup_thread(mddev->thread);
3317
3318	mempool_exit(&oldpool);
3319	return 0;
3320}
3321
3322static void raid1_quiesce(struct mddev *mddev, int quiesce)
3323{
3324	struct r1conf *conf = mddev->private;
3325
3326	if (quiesce)
3327		freeze_array(conf, 0);
3328	else
3329		unfreeze_array(conf);
3330}
3331
3332static void *raid1_takeover(struct mddev *mddev)
3333{
3334	/* raid1 can take over:
3335	 *  raid5 with 2 devices, any layout or chunk size
3336	 */
3337	if (mddev->level == 5 && mddev->raid_disks == 2) {
3338		struct r1conf *conf;
3339		mddev->new_level = 1;
3340		mddev->new_layout = 0;
3341		mddev->new_chunk_sectors = 0;
3342		conf = setup_conf(mddev);
3343		if (!IS_ERR(conf)) {
3344			/* Array must appear to be quiesced */
3345			conf->array_frozen = 1;
3346			mddev_clear_unsupported_flags(mddev,
3347				UNSUPPORTED_MDDEV_FLAGS);
3348		}
3349		return conf;
3350	}
3351	return ERR_PTR(-EINVAL);
3352}
3353
3354static struct md_personality raid1_personality =
3355{
3356	.name		= "raid1",
3357	.level		= 1,
3358	.owner		= THIS_MODULE,
3359	.make_request	= raid1_make_request,
3360	.run		= raid1_run,
3361	.free		= raid1_free,
3362	.status		= raid1_status,
3363	.error_handler	= raid1_error,
3364	.hot_add_disk	= raid1_add_disk,
3365	.hot_remove_disk= raid1_remove_disk,
3366	.spare_active	= raid1_spare_active,
3367	.sync_request	= raid1_sync_request,
3368	.resize		= raid1_resize,
3369	.size		= raid1_size,
3370	.check_reshape	= raid1_reshape,
3371	.quiesce	= raid1_quiesce,
3372	.takeover	= raid1_takeover,
3373};
3374
3375static int __init raid_init(void)
3376{
3377	return register_md_personality(&raid1_personality);
3378}
3379
3380static void raid_exit(void)
3381{
3382	unregister_md_personality(&raid1_personality);
3383}
3384
3385module_init(raid_init);
3386module_exit(raid_exit);
3387MODULE_LICENSE("GPL");
3388MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3389MODULE_ALIAS("md-personality-3"); /* RAID1 */
3390MODULE_ALIAS("md-raid1");
3391MODULE_ALIAS("md-level-1");
3392
3393module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3394