18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * raid1.c : Multiple Devices driver for Linux
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
68c2ecf20Sopenharmony_ci *
78c2ecf20Sopenharmony_ci * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
88c2ecf20Sopenharmony_ci *
98c2ecf20Sopenharmony_ci * RAID-1 management functions.
108c2ecf20Sopenharmony_ci *
118c2ecf20Sopenharmony_ci * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
128c2ecf20Sopenharmony_ci *
138c2ecf20Sopenharmony_ci * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
148c2ecf20Sopenharmony_ci * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
158c2ecf20Sopenharmony_ci *
168c2ecf20Sopenharmony_ci * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
178c2ecf20Sopenharmony_ci * bitmapped intelligence in resync:
188c2ecf20Sopenharmony_ci *
198c2ecf20Sopenharmony_ci *      - bitmap marked during normal i/o
208c2ecf20Sopenharmony_ci *      - bitmap used to skip nondirty blocks during sync
218c2ecf20Sopenharmony_ci *
228c2ecf20Sopenharmony_ci * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
238c2ecf20Sopenharmony_ci * - persistent bitmap code
248c2ecf20Sopenharmony_ci */
258c2ecf20Sopenharmony_ci
268c2ecf20Sopenharmony_ci#include <linux/slab.h>
278c2ecf20Sopenharmony_ci#include <linux/delay.h>
288c2ecf20Sopenharmony_ci#include <linux/blkdev.h>
298c2ecf20Sopenharmony_ci#include <linux/module.h>
308c2ecf20Sopenharmony_ci#include <linux/seq_file.h>
318c2ecf20Sopenharmony_ci#include <linux/ratelimit.h>
328c2ecf20Sopenharmony_ci#include <linux/interval_tree_generic.h>
338c2ecf20Sopenharmony_ci
348c2ecf20Sopenharmony_ci#include <trace/events/block.h>
358c2ecf20Sopenharmony_ci
368c2ecf20Sopenharmony_ci#include "md.h"
378c2ecf20Sopenharmony_ci#include "raid1.h"
388c2ecf20Sopenharmony_ci#include "md-bitmap.h"
398c2ecf20Sopenharmony_ci
408c2ecf20Sopenharmony_ci#define UNSUPPORTED_MDDEV_FLAGS		\
418c2ecf20Sopenharmony_ci	((1L << MD_HAS_JOURNAL) |	\
428c2ecf20Sopenharmony_ci	 (1L << MD_JOURNAL_CLEAN) |	\
438c2ecf20Sopenharmony_ci	 (1L << MD_HAS_PPL) |		\
448c2ecf20Sopenharmony_ci	 (1L << MD_HAS_MULTIPLE_PPLS))
458c2ecf20Sopenharmony_ci
468c2ecf20Sopenharmony_cistatic void allow_barrier(struct r1conf *conf, sector_t sector_nr);
478c2ecf20Sopenharmony_cistatic void lower_barrier(struct r1conf *conf, sector_t sector_nr);
488c2ecf20Sopenharmony_ci
498c2ecf20Sopenharmony_ci#define raid1_log(md, fmt, args...)				\
508c2ecf20Sopenharmony_ci	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
518c2ecf20Sopenharmony_ci
528c2ecf20Sopenharmony_ci#include "raid1-10.c"
538c2ecf20Sopenharmony_ci
548c2ecf20Sopenharmony_ci#define START(node) ((node)->start)
558c2ecf20Sopenharmony_ci#define LAST(node) ((node)->last)
568c2ecf20Sopenharmony_ciINTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
578c2ecf20Sopenharmony_ci		     START, LAST, static inline, raid1_rb);
588c2ecf20Sopenharmony_ci
598c2ecf20Sopenharmony_cistatic int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
608c2ecf20Sopenharmony_ci				struct serial_info *si, int idx)
618c2ecf20Sopenharmony_ci{
628c2ecf20Sopenharmony_ci	unsigned long flags;
638c2ecf20Sopenharmony_ci	int ret = 0;
648c2ecf20Sopenharmony_ci	sector_t lo = r1_bio->sector;
658c2ecf20Sopenharmony_ci	sector_t hi = lo + r1_bio->sectors;
668c2ecf20Sopenharmony_ci	struct serial_in_rdev *serial = &rdev->serial[idx];
678c2ecf20Sopenharmony_ci
688c2ecf20Sopenharmony_ci	spin_lock_irqsave(&serial->serial_lock, flags);
698c2ecf20Sopenharmony_ci	/* collision happened */
708c2ecf20Sopenharmony_ci	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
718c2ecf20Sopenharmony_ci		ret = -EBUSY;
728c2ecf20Sopenharmony_ci	else {
738c2ecf20Sopenharmony_ci		si->start = lo;
748c2ecf20Sopenharmony_ci		si->last = hi;
758c2ecf20Sopenharmony_ci		raid1_rb_insert(si, &serial->serial_rb);
768c2ecf20Sopenharmony_ci	}
778c2ecf20Sopenharmony_ci	spin_unlock_irqrestore(&serial->serial_lock, flags);
788c2ecf20Sopenharmony_ci
798c2ecf20Sopenharmony_ci	return ret;
808c2ecf20Sopenharmony_ci}
818c2ecf20Sopenharmony_ci
828c2ecf20Sopenharmony_cistatic void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
838c2ecf20Sopenharmony_ci{
848c2ecf20Sopenharmony_ci	struct mddev *mddev = rdev->mddev;
858c2ecf20Sopenharmony_ci	struct serial_info *si;
868c2ecf20Sopenharmony_ci	int idx = sector_to_idx(r1_bio->sector);
878c2ecf20Sopenharmony_ci	struct serial_in_rdev *serial = &rdev->serial[idx];
888c2ecf20Sopenharmony_ci
898c2ecf20Sopenharmony_ci	if (WARN_ON(!mddev->serial_info_pool))
908c2ecf20Sopenharmony_ci		return;
918c2ecf20Sopenharmony_ci	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
928c2ecf20Sopenharmony_ci	wait_event(serial->serial_io_wait,
938c2ecf20Sopenharmony_ci		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
948c2ecf20Sopenharmony_ci}
958c2ecf20Sopenharmony_ci
968c2ecf20Sopenharmony_cistatic void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
978c2ecf20Sopenharmony_ci{
988c2ecf20Sopenharmony_ci	struct serial_info *si;
998c2ecf20Sopenharmony_ci	unsigned long flags;
1008c2ecf20Sopenharmony_ci	int found = 0;
1018c2ecf20Sopenharmony_ci	struct mddev *mddev = rdev->mddev;
1028c2ecf20Sopenharmony_ci	int idx = sector_to_idx(lo);
1038c2ecf20Sopenharmony_ci	struct serial_in_rdev *serial = &rdev->serial[idx];
1048c2ecf20Sopenharmony_ci
1058c2ecf20Sopenharmony_ci	spin_lock_irqsave(&serial->serial_lock, flags);
1068c2ecf20Sopenharmony_ci	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
1078c2ecf20Sopenharmony_ci	     si; si = raid1_rb_iter_next(si, lo, hi)) {
1088c2ecf20Sopenharmony_ci		if (si->start == lo && si->last == hi) {
1098c2ecf20Sopenharmony_ci			raid1_rb_remove(si, &serial->serial_rb);
1108c2ecf20Sopenharmony_ci			mempool_free(si, mddev->serial_info_pool);
1118c2ecf20Sopenharmony_ci			found = 1;
1128c2ecf20Sopenharmony_ci			break;
1138c2ecf20Sopenharmony_ci		}
1148c2ecf20Sopenharmony_ci	}
1158c2ecf20Sopenharmony_ci	if (!found)
1168c2ecf20Sopenharmony_ci		WARN(1, "The write IO is not recorded for serialization\n");
1178c2ecf20Sopenharmony_ci	spin_unlock_irqrestore(&serial->serial_lock, flags);
1188c2ecf20Sopenharmony_ci	wake_up(&serial->serial_io_wait);
1198c2ecf20Sopenharmony_ci}
1208c2ecf20Sopenharmony_ci
1218c2ecf20Sopenharmony_ci/*
1228c2ecf20Sopenharmony_ci * for resync bio, r1bio pointer can be retrieved from the per-bio
1238c2ecf20Sopenharmony_ci * 'struct resync_pages'.
1248c2ecf20Sopenharmony_ci */
1258c2ecf20Sopenharmony_cistatic inline struct r1bio *get_resync_r1bio(struct bio *bio)
1268c2ecf20Sopenharmony_ci{
1278c2ecf20Sopenharmony_ci	return get_resync_pages(bio)->raid_bio;
1288c2ecf20Sopenharmony_ci}
1298c2ecf20Sopenharmony_ci
1308c2ecf20Sopenharmony_cistatic void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1318c2ecf20Sopenharmony_ci{
1328c2ecf20Sopenharmony_ci	struct pool_info *pi = data;
1338c2ecf20Sopenharmony_ci	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1348c2ecf20Sopenharmony_ci
1358c2ecf20Sopenharmony_ci	/* allocate a r1bio with room for raid_disks entries in the bios array */
1368c2ecf20Sopenharmony_ci	return kzalloc(size, gfp_flags);
1378c2ecf20Sopenharmony_ci}
1388c2ecf20Sopenharmony_ci
1398c2ecf20Sopenharmony_ci#define RESYNC_DEPTH 32
1408c2ecf20Sopenharmony_ci#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
1418c2ecf20Sopenharmony_ci#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
1428c2ecf20Sopenharmony_ci#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
1438c2ecf20Sopenharmony_ci#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
1448c2ecf20Sopenharmony_ci#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1458c2ecf20Sopenharmony_ci
1468c2ecf20Sopenharmony_cistatic void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1478c2ecf20Sopenharmony_ci{
1488c2ecf20Sopenharmony_ci	struct pool_info *pi = data;
1498c2ecf20Sopenharmony_ci	struct r1bio *r1_bio;
1508c2ecf20Sopenharmony_ci	struct bio *bio;
1518c2ecf20Sopenharmony_ci	int need_pages;
1528c2ecf20Sopenharmony_ci	int j;
1538c2ecf20Sopenharmony_ci	struct resync_pages *rps;
1548c2ecf20Sopenharmony_ci
1558c2ecf20Sopenharmony_ci	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
1568c2ecf20Sopenharmony_ci	if (!r1_bio)
1578c2ecf20Sopenharmony_ci		return NULL;
1588c2ecf20Sopenharmony_ci
1598c2ecf20Sopenharmony_ci	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
1608c2ecf20Sopenharmony_ci			    gfp_flags);
1618c2ecf20Sopenharmony_ci	if (!rps)
1628c2ecf20Sopenharmony_ci		goto out_free_r1bio;
1638c2ecf20Sopenharmony_ci
1648c2ecf20Sopenharmony_ci	/*
1658c2ecf20Sopenharmony_ci	 * Allocate bios : 1 for reading, n-1 for writing
1668c2ecf20Sopenharmony_ci	 */
1678c2ecf20Sopenharmony_ci	for (j = pi->raid_disks ; j-- ; ) {
1688c2ecf20Sopenharmony_ci		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1698c2ecf20Sopenharmony_ci		if (!bio)
1708c2ecf20Sopenharmony_ci			goto out_free_bio;
1718c2ecf20Sopenharmony_ci		r1_bio->bios[j] = bio;
1728c2ecf20Sopenharmony_ci	}
1738c2ecf20Sopenharmony_ci	/*
1748c2ecf20Sopenharmony_ci	 * Allocate RESYNC_PAGES data pages and attach them to
1758c2ecf20Sopenharmony_ci	 * the first bio.
1768c2ecf20Sopenharmony_ci	 * If this is a user-requested check/repair, allocate
1778c2ecf20Sopenharmony_ci	 * RESYNC_PAGES for each bio.
1788c2ecf20Sopenharmony_ci	 */
1798c2ecf20Sopenharmony_ci	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
1808c2ecf20Sopenharmony_ci		need_pages = pi->raid_disks;
1818c2ecf20Sopenharmony_ci	else
1828c2ecf20Sopenharmony_ci		need_pages = 1;
1838c2ecf20Sopenharmony_ci	for (j = 0; j < pi->raid_disks; j++) {
1848c2ecf20Sopenharmony_ci		struct resync_pages *rp = &rps[j];
1858c2ecf20Sopenharmony_ci
1868c2ecf20Sopenharmony_ci		bio = r1_bio->bios[j];
1878c2ecf20Sopenharmony_ci
1888c2ecf20Sopenharmony_ci		if (j < need_pages) {
1898c2ecf20Sopenharmony_ci			if (resync_alloc_pages(rp, gfp_flags))
1908c2ecf20Sopenharmony_ci				goto out_free_pages;
1918c2ecf20Sopenharmony_ci		} else {
1928c2ecf20Sopenharmony_ci			memcpy(rp, &rps[0], sizeof(*rp));
1938c2ecf20Sopenharmony_ci			resync_get_all_pages(rp);
1948c2ecf20Sopenharmony_ci		}
1958c2ecf20Sopenharmony_ci
1968c2ecf20Sopenharmony_ci		rp->raid_bio = r1_bio;
1978c2ecf20Sopenharmony_ci		bio->bi_private = rp;
1988c2ecf20Sopenharmony_ci	}
1998c2ecf20Sopenharmony_ci
2008c2ecf20Sopenharmony_ci	r1_bio->master_bio = NULL;
2018c2ecf20Sopenharmony_ci
2028c2ecf20Sopenharmony_ci	return r1_bio;
2038c2ecf20Sopenharmony_ci
2048c2ecf20Sopenharmony_ciout_free_pages:
2058c2ecf20Sopenharmony_ci	while (--j >= 0)
2068c2ecf20Sopenharmony_ci		resync_free_pages(&rps[j]);
2078c2ecf20Sopenharmony_ci
2088c2ecf20Sopenharmony_ciout_free_bio:
2098c2ecf20Sopenharmony_ci	while (++j < pi->raid_disks)
2108c2ecf20Sopenharmony_ci		bio_put(r1_bio->bios[j]);
2118c2ecf20Sopenharmony_ci	kfree(rps);
2128c2ecf20Sopenharmony_ci
2138c2ecf20Sopenharmony_ciout_free_r1bio:
2148c2ecf20Sopenharmony_ci	rbio_pool_free(r1_bio, data);
2158c2ecf20Sopenharmony_ci	return NULL;
2168c2ecf20Sopenharmony_ci}
2178c2ecf20Sopenharmony_ci
2188c2ecf20Sopenharmony_cistatic void r1buf_pool_free(void *__r1_bio, void *data)
2198c2ecf20Sopenharmony_ci{
2208c2ecf20Sopenharmony_ci	struct pool_info *pi = data;
2218c2ecf20Sopenharmony_ci	int i;
2228c2ecf20Sopenharmony_ci	struct r1bio *r1bio = __r1_bio;
2238c2ecf20Sopenharmony_ci	struct resync_pages *rp = NULL;
2248c2ecf20Sopenharmony_ci
2258c2ecf20Sopenharmony_ci	for (i = pi->raid_disks; i--; ) {
2268c2ecf20Sopenharmony_ci		rp = get_resync_pages(r1bio->bios[i]);
2278c2ecf20Sopenharmony_ci		resync_free_pages(rp);
2288c2ecf20Sopenharmony_ci		bio_put(r1bio->bios[i]);
2298c2ecf20Sopenharmony_ci	}
2308c2ecf20Sopenharmony_ci
2318c2ecf20Sopenharmony_ci	/* resync pages array stored in the 1st bio's .bi_private */
2328c2ecf20Sopenharmony_ci	kfree(rp);
2338c2ecf20Sopenharmony_ci
2348c2ecf20Sopenharmony_ci	rbio_pool_free(r1bio, data);
2358c2ecf20Sopenharmony_ci}
2368c2ecf20Sopenharmony_ci
2378c2ecf20Sopenharmony_cistatic void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
2388c2ecf20Sopenharmony_ci{
2398c2ecf20Sopenharmony_ci	int i;
2408c2ecf20Sopenharmony_ci
2418c2ecf20Sopenharmony_ci	for (i = 0; i < conf->raid_disks * 2; i++) {
2428c2ecf20Sopenharmony_ci		struct bio **bio = r1_bio->bios + i;
2438c2ecf20Sopenharmony_ci		if (!BIO_SPECIAL(*bio))
2448c2ecf20Sopenharmony_ci			bio_put(*bio);
2458c2ecf20Sopenharmony_ci		*bio = NULL;
2468c2ecf20Sopenharmony_ci	}
2478c2ecf20Sopenharmony_ci}
2488c2ecf20Sopenharmony_ci
2498c2ecf20Sopenharmony_cistatic void free_r1bio(struct r1bio *r1_bio)
2508c2ecf20Sopenharmony_ci{
2518c2ecf20Sopenharmony_ci	struct r1conf *conf = r1_bio->mddev->private;
2528c2ecf20Sopenharmony_ci
2538c2ecf20Sopenharmony_ci	put_all_bios(conf, r1_bio);
2548c2ecf20Sopenharmony_ci	mempool_free(r1_bio, &conf->r1bio_pool);
2558c2ecf20Sopenharmony_ci}
2568c2ecf20Sopenharmony_ci
2578c2ecf20Sopenharmony_cistatic void put_buf(struct r1bio *r1_bio)
2588c2ecf20Sopenharmony_ci{
2598c2ecf20Sopenharmony_ci	struct r1conf *conf = r1_bio->mddev->private;
2608c2ecf20Sopenharmony_ci	sector_t sect = r1_bio->sector;
2618c2ecf20Sopenharmony_ci	int i;
2628c2ecf20Sopenharmony_ci
2638c2ecf20Sopenharmony_ci	for (i = 0; i < conf->raid_disks * 2; i++) {
2648c2ecf20Sopenharmony_ci		struct bio *bio = r1_bio->bios[i];
2658c2ecf20Sopenharmony_ci		if (bio->bi_end_io)
2668c2ecf20Sopenharmony_ci			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
2678c2ecf20Sopenharmony_ci	}
2688c2ecf20Sopenharmony_ci
2698c2ecf20Sopenharmony_ci	mempool_free(r1_bio, &conf->r1buf_pool);
2708c2ecf20Sopenharmony_ci
2718c2ecf20Sopenharmony_ci	lower_barrier(conf, sect);
2728c2ecf20Sopenharmony_ci}
2738c2ecf20Sopenharmony_ci
2748c2ecf20Sopenharmony_cistatic void reschedule_retry(struct r1bio *r1_bio)
2758c2ecf20Sopenharmony_ci{
2768c2ecf20Sopenharmony_ci	unsigned long flags;
2778c2ecf20Sopenharmony_ci	struct mddev *mddev = r1_bio->mddev;
2788c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
2798c2ecf20Sopenharmony_ci	int idx;
2808c2ecf20Sopenharmony_ci
2818c2ecf20Sopenharmony_ci	idx = sector_to_idx(r1_bio->sector);
2828c2ecf20Sopenharmony_ci	spin_lock_irqsave(&conf->device_lock, flags);
2838c2ecf20Sopenharmony_ci	list_add(&r1_bio->retry_list, &conf->retry_list);
2848c2ecf20Sopenharmony_ci	atomic_inc(&conf->nr_queued[idx]);
2858c2ecf20Sopenharmony_ci	spin_unlock_irqrestore(&conf->device_lock, flags);
2868c2ecf20Sopenharmony_ci
2878c2ecf20Sopenharmony_ci	wake_up(&conf->wait_barrier);
2888c2ecf20Sopenharmony_ci	md_wakeup_thread(mddev->thread);
2898c2ecf20Sopenharmony_ci}
2908c2ecf20Sopenharmony_ci
2918c2ecf20Sopenharmony_ci/*
2928c2ecf20Sopenharmony_ci * raid_end_bio_io() is called when we have finished servicing a mirrored
2938c2ecf20Sopenharmony_ci * operation and are ready to return a success/failure code to the buffer
2948c2ecf20Sopenharmony_ci * cache layer.
2958c2ecf20Sopenharmony_ci */
2968c2ecf20Sopenharmony_cistatic void call_bio_endio(struct r1bio *r1_bio)
2978c2ecf20Sopenharmony_ci{
2988c2ecf20Sopenharmony_ci	struct bio *bio = r1_bio->master_bio;
2998c2ecf20Sopenharmony_ci
3008c2ecf20Sopenharmony_ci	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
3018c2ecf20Sopenharmony_ci		bio->bi_status = BLK_STS_IOERR;
3028c2ecf20Sopenharmony_ci
3038c2ecf20Sopenharmony_ci	bio_endio(bio);
3048c2ecf20Sopenharmony_ci}
3058c2ecf20Sopenharmony_ci
3068c2ecf20Sopenharmony_cistatic void raid_end_bio_io(struct r1bio *r1_bio)
3078c2ecf20Sopenharmony_ci{
3088c2ecf20Sopenharmony_ci	struct bio *bio = r1_bio->master_bio;
3098c2ecf20Sopenharmony_ci	struct r1conf *conf = r1_bio->mddev->private;
3108c2ecf20Sopenharmony_ci
3118c2ecf20Sopenharmony_ci	/* if nobody has done the final endio yet, do it now */
3128c2ecf20Sopenharmony_ci	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
3138c2ecf20Sopenharmony_ci		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
3148c2ecf20Sopenharmony_ci			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
3158c2ecf20Sopenharmony_ci			 (unsigned long long) bio->bi_iter.bi_sector,
3168c2ecf20Sopenharmony_ci			 (unsigned long long) bio_end_sector(bio) - 1);
3178c2ecf20Sopenharmony_ci
3188c2ecf20Sopenharmony_ci		call_bio_endio(r1_bio);
3198c2ecf20Sopenharmony_ci	}
3208c2ecf20Sopenharmony_ci	/*
3218c2ecf20Sopenharmony_ci	 * Wake up any possible resync thread that waits for the device
3228c2ecf20Sopenharmony_ci	 * to go idle.  All I/Os, even write-behind writes, are done.
3238c2ecf20Sopenharmony_ci	 */
3248c2ecf20Sopenharmony_ci	allow_barrier(conf, r1_bio->sector);
3258c2ecf20Sopenharmony_ci
3268c2ecf20Sopenharmony_ci	free_r1bio(r1_bio);
3278c2ecf20Sopenharmony_ci}
3288c2ecf20Sopenharmony_ci
3298c2ecf20Sopenharmony_ci/*
3308c2ecf20Sopenharmony_ci * Update disk head position estimator based on IRQ completion info.
3318c2ecf20Sopenharmony_ci */
3328c2ecf20Sopenharmony_cistatic inline void update_head_pos(int disk, struct r1bio *r1_bio)
3338c2ecf20Sopenharmony_ci{
3348c2ecf20Sopenharmony_ci	struct r1conf *conf = r1_bio->mddev->private;
3358c2ecf20Sopenharmony_ci
3368c2ecf20Sopenharmony_ci	conf->mirrors[disk].head_position =
3378c2ecf20Sopenharmony_ci		r1_bio->sector + (r1_bio->sectors);
3388c2ecf20Sopenharmony_ci}
3398c2ecf20Sopenharmony_ci
3408c2ecf20Sopenharmony_ci/*
3418c2ecf20Sopenharmony_ci * Find the disk number which triggered given bio
3428c2ecf20Sopenharmony_ci */
3438c2ecf20Sopenharmony_cistatic int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
3448c2ecf20Sopenharmony_ci{
3458c2ecf20Sopenharmony_ci	int mirror;
3468c2ecf20Sopenharmony_ci	struct r1conf *conf = r1_bio->mddev->private;
3478c2ecf20Sopenharmony_ci	int raid_disks = conf->raid_disks;
3488c2ecf20Sopenharmony_ci
3498c2ecf20Sopenharmony_ci	for (mirror = 0; mirror < raid_disks * 2; mirror++)
3508c2ecf20Sopenharmony_ci		if (r1_bio->bios[mirror] == bio)
3518c2ecf20Sopenharmony_ci			break;
3528c2ecf20Sopenharmony_ci
3538c2ecf20Sopenharmony_ci	BUG_ON(mirror == raid_disks * 2);
3548c2ecf20Sopenharmony_ci	update_head_pos(mirror, r1_bio);
3558c2ecf20Sopenharmony_ci
3568c2ecf20Sopenharmony_ci	return mirror;
3578c2ecf20Sopenharmony_ci}
3588c2ecf20Sopenharmony_ci
3598c2ecf20Sopenharmony_cistatic void raid1_end_read_request(struct bio *bio)
3608c2ecf20Sopenharmony_ci{
3618c2ecf20Sopenharmony_ci	int uptodate = !bio->bi_status;
3628c2ecf20Sopenharmony_ci	struct r1bio *r1_bio = bio->bi_private;
3638c2ecf20Sopenharmony_ci	struct r1conf *conf = r1_bio->mddev->private;
3648c2ecf20Sopenharmony_ci	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
3658c2ecf20Sopenharmony_ci
3668c2ecf20Sopenharmony_ci	/*
3678c2ecf20Sopenharmony_ci	 * this branch is our 'one mirror IO has finished' event handler:
3688c2ecf20Sopenharmony_ci	 */
3698c2ecf20Sopenharmony_ci	update_head_pos(r1_bio->read_disk, r1_bio);
3708c2ecf20Sopenharmony_ci
3718c2ecf20Sopenharmony_ci	if (uptodate)
3728c2ecf20Sopenharmony_ci		set_bit(R1BIO_Uptodate, &r1_bio->state);
3738c2ecf20Sopenharmony_ci	else if (test_bit(FailFast, &rdev->flags) &&
3748c2ecf20Sopenharmony_ci		 test_bit(R1BIO_FailFast, &r1_bio->state))
3758c2ecf20Sopenharmony_ci		/* This was a fail-fast read so we definitely
3768c2ecf20Sopenharmony_ci		 * want to retry */
3778c2ecf20Sopenharmony_ci		;
3788c2ecf20Sopenharmony_ci	else {
3798c2ecf20Sopenharmony_ci		/* If all other devices have failed, we want to return
3808c2ecf20Sopenharmony_ci		 * the error upwards rather than fail the last device.
3818c2ecf20Sopenharmony_ci		 * Here we redefine "uptodate" to mean "Don't want to retry"
3828c2ecf20Sopenharmony_ci		 */
3838c2ecf20Sopenharmony_ci		unsigned long flags;
3848c2ecf20Sopenharmony_ci		spin_lock_irqsave(&conf->device_lock, flags);
3858c2ecf20Sopenharmony_ci		if (r1_bio->mddev->degraded == conf->raid_disks ||
3868c2ecf20Sopenharmony_ci		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
3878c2ecf20Sopenharmony_ci		     test_bit(In_sync, &rdev->flags)))
3888c2ecf20Sopenharmony_ci			uptodate = 1;
3898c2ecf20Sopenharmony_ci		spin_unlock_irqrestore(&conf->device_lock, flags);
3908c2ecf20Sopenharmony_ci	}
3918c2ecf20Sopenharmony_ci
3928c2ecf20Sopenharmony_ci	if (uptodate) {
3938c2ecf20Sopenharmony_ci		raid_end_bio_io(r1_bio);
3948c2ecf20Sopenharmony_ci		rdev_dec_pending(rdev, conf->mddev);
3958c2ecf20Sopenharmony_ci	} else {
3968c2ecf20Sopenharmony_ci		/*
3978c2ecf20Sopenharmony_ci		 * oops, read error:
3988c2ecf20Sopenharmony_ci		 */
3998c2ecf20Sopenharmony_ci		char b[BDEVNAME_SIZE];
4008c2ecf20Sopenharmony_ci		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
4018c2ecf20Sopenharmony_ci				   mdname(conf->mddev),
4028c2ecf20Sopenharmony_ci				   bdevname(rdev->bdev, b),
4038c2ecf20Sopenharmony_ci				   (unsigned long long)r1_bio->sector);
4048c2ecf20Sopenharmony_ci		set_bit(R1BIO_ReadError, &r1_bio->state);
4058c2ecf20Sopenharmony_ci		reschedule_retry(r1_bio);
4068c2ecf20Sopenharmony_ci		/* don't drop the reference on read_disk yet */
4078c2ecf20Sopenharmony_ci	}
4088c2ecf20Sopenharmony_ci}
4098c2ecf20Sopenharmony_ci
4108c2ecf20Sopenharmony_cistatic void close_write(struct r1bio *r1_bio)
4118c2ecf20Sopenharmony_ci{
4128c2ecf20Sopenharmony_ci	/* it really is the end of this request */
4138c2ecf20Sopenharmony_ci	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
4148c2ecf20Sopenharmony_ci		bio_free_pages(r1_bio->behind_master_bio);
4158c2ecf20Sopenharmony_ci		bio_put(r1_bio->behind_master_bio);
4168c2ecf20Sopenharmony_ci		r1_bio->behind_master_bio = NULL;
4178c2ecf20Sopenharmony_ci	}
4188c2ecf20Sopenharmony_ci	/* clear the bitmap if all writes complete successfully */
4198c2ecf20Sopenharmony_ci	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
4208c2ecf20Sopenharmony_ci			   r1_bio->sectors,
4218c2ecf20Sopenharmony_ci			   !test_bit(R1BIO_Degraded, &r1_bio->state),
4228c2ecf20Sopenharmony_ci			   test_bit(R1BIO_BehindIO, &r1_bio->state));
4238c2ecf20Sopenharmony_ci	md_write_end(r1_bio->mddev);
4248c2ecf20Sopenharmony_ci}
4258c2ecf20Sopenharmony_ci
4268c2ecf20Sopenharmony_cistatic void r1_bio_write_done(struct r1bio *r1_bio)
4278c2ecf20Sopenharmony_ci{
4288c2ecf20Sopenharmony_ci	if (!atomic_dec_and_test(&r1_bio->remaining))
4298c2ecf20Sopenharmony_ci		return;
4308c2ecf20Sopenharmony_ci
4318c2ecf20Sopenharmony_ci	if (test_bit(R1BIO_WriteError, &r1_bio->state))
4328c2ecf20Sopenharmony_ci		reschedule_retry(r1_bio);
4338c2ecf20Sopenharmony_ci	else {
4348c2ecf20Sopenharmony_ci		close_write(r1_bio);
4358c2ecf20Sopenharmony_ci		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
4368c2ecf20Sopenharmony_ci			reschedule_retry(r1_bio);
4378c2ecf20Sopenharmony_ci		else
4388c2ecf20Sopenharmony_ci			raid_end_bio_io(r1_bio);
4398c2ecf20Sopenharmony_ci	}
4408c2ecf20Sopenharmony_ci}
4418c2ecf20Sopenharmony_ci
4428c2ecf20Sopenharmony_cistatic void raid1_end_write_request(struct bio *bio)
4438c2ecf20Sopenharmony_ci{
4448c2ecf20Sopenharmony_ci	struct r1bio *r1_bio = bio->bi_private;
4458c2ecf20Sopenharmony_ci	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
4468c2ecf20Sopenharmony_ci	struct r1conf *conf = r1_bio->mddev->private;
4478c2ecf20Sopenharmony_ci	struct bio *to_put = NULL;
4488c2ecf20Sopenharmony_ci	int mirror = find_bio_disk(r1_bio, bio);
4498c2ecf20Sopenharmony_ci	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
4508c2ecf20Sopenharmony_ci	bool discard_error;
4518c2ecf20Sopenharmony_ci	sector_t lo = r1_bio->sector;
4528c2ecf20Sopenharmony_ci	sector_t hi = r1_bio->sector + r1_bio->sectors;
4538c2ecf20Sopenharmony_ci
4548c2ecf20Sopenharmony_ci	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
4558c2ecf20Sopenharmony_ci
4568c2ecf20Sopenharmony_ci	/*
4578c2ecf20Sopenharmony_ci	 * 'one mirror IO has finished' event handler:
4588c2ecf20Sopenharmony_ci	 */
4598c2ecf20Sopenharmony_ci	if (bio->bi_status && !discard_error) {
4608c2ecf20Sopenharmony_ci		set_bit(WriteErrorSeen,	&rdev->flags);
4618c2ecf20Sopenharmony_ci		if (!test_and_set_bit(WantReplacement, &rdev->flags))
4628c2ecf20Sopenharmony_ci			set_bit(MD_RECOVERY_NEEDED, &
4638c2ecf20Sopenharmony_ci				conf->mddev->recovery);
4648c2ecf20Sopenharmony_ci
4658c2ecf20Sopenharmony_ci		if (test_bit(FailFast, &rdev->flags) &&
4668c2ecf20Sopenharmony_ci		    (bio->bi_opf & MD_FAILFAST) &&
4678c2ecf20Sopenharmony_ci		    /* We never try FailFast to WriteMostly devices */
4688c2ecf20Sopenharmony_ci		    !test_bit(WriteMostly, &rdev->flags)) {
4698c2ecf20Sopenharmony_ci			md_error(r1_bio->mddev, rdev);
4708c2ecf20Sopenharmony_ci		}
4718c2ecf20Sopenharmony_ci
4728c2ecf20Sopenharmony_ci		/*
4738c2ecf20Sopenharmony_ci		 * When the device is faulty, it is not necessary to
4748c2ecf20Sopenharmony_ci		 * handle write error.
4758c2ecf20Sopenharmony_ci		 */
4768c2ecf20Sopenharmony_ci		if (!test_bit(Faulty, &rdev->flags))
4778c2ecf20Sopenharmony_ci			set_bit(R1BIO_WriteError, &r1_bio->state);
4788c2ecf20Sopenharmony_ci		else {
4798c2ecf20Sopenharmony_ci			/* Fail the request */
4808c2ecf20Sopenharmony_ci			set_bit(R1BIO_Degraded, &r1_bio->state);
4818c2ecf20Sopenharmony_ci			/* Finished with this branch */
4828c2ecf20Sopenharmony_ci			r1_bio->bios[mirror] = NULL;
4838c2ecf20Sopenharmony_ci			to_put = bio;
4848c2ecf20Sopenharmony_ci		}
4858c2ecf20Sopenharmony_ci	} else {
4868c2ecf20Sopenharmony_ci		/*
4878c2ecf20Sopenharmony_ci		 * Set R1BIO_Uptodate in our master bio, so that we
4888c2ecf20Sopenharmony_ci		 * will return a good error code for to the higher
4898c2ecf20Sopenharmony_ci		 * levels even if IO on some other mirrored buffer
4908c2ecf20Sopenharmony_ci		 * fails.
4918c2ecf20Sopenharmony_ci		 *
4928c2ecf20Sopenharmony_ci		 * The 'master' represents the composite IO operation
4938c2ecf20Sopenharmony_ci		 * to user-side. So if something waits for IO, then it
4948c2ecf20Sopenharmony_ci		 * will wait for the 'master' bio.
4958c2ecf20Sopenharmony_ci		 */
4968c2ecf20Sopenharmony_ci		sector_t first_bad;
4978c2ecf20Sopenharmony_ci		int bad_sectors;
4988c2ecf20Sopenharmony_ci
4998c2ecf20Sopenharmony_ci		r1_bio->bios[mirror] = NULL;
5008c2ecf20Sopenharmony_ci		to_put = bio;
5018c2ecf20Sopenharmony_ci		/*
5028c2ecf20Sopenharmony_ci		 * Do not set R1BIO_Uptodate if the current device is
5038c2ecf20Sopenharmony_ci		 * rebuilding or Faulty. This is because we cannot use
5048c2ecf20Sopenharmony_ci		 * such device for properly reading the data back (we could
5058c2ecf20Sopenharmony_ci		 * potentially use it, if the current write would have felt
5068c2ecf20Sopenharmony_ci		 * before rdev->recovery_offset, but for simplicity we don't
5078c2ecf20Sopenharmony_ci		 * check this here.
5088c2ecf20Sopenharmony_ci		 */
5098c2ecf20Sopenharmony_ci		if (test_bit(In_sync, &rdev->flags) &&
5108c2ecf20Sopenharmony_ci		    !test_bit(Faulty, &rdev->flags))
5118c2ecf20Sopenharmony_ci			set_bit(R1BIO_Uptodate, &r1_bio->state);
5128c2ecf20Sopenharmony_ci
5138c2ecf20Sopenharmony_ci		/* Maybe we can clear some bad blocks. */
5148c2ecf20Sopenharmony_ci		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
5158c2ecf20Sopenharmony_ci				&first_bad, &bad_sectors) && !discard_error) {
5168c2ecf20Sopenharmony_ci			r1_bio->bios[mirror] = IO_MADE_GOOD;
5178c2ecf20Sopenharmony_ci			set_bit(R1BIO_MadeGood, &r1_bio->state);
5188c2ecf20Sopenharmony_ci		}
5198c2ecf20Sopenharmony_ci	}
5208c2ecf20Sopenharmony_ci
5218c2ecf20Sopenharmony_ci	if (behind) {
5228c2ecf20Sopenharmony_ci		if (test_bit(CollisionCheck, &rdev->flags))
5238c2ecf20Sopenharmony_ci			remove_serial(rdev, lo, hi);
5248c2ecf20Sopenharmony_ci		if (test_bit(WriteMostly, &rdev->flags))
5258c2ecf20Sopenharmony_ci			atomic_dec(&r1_bio->behind_remaining);
5268c2ecf20Sopenharmony_ci
5278c2ecf20Sopenharmony_ci		/*
5288c2ecf20Sopenharmony_ci		 * In behind mode, we ACK the master bio once the I/O
5298c2ecf20Sopenharmony_ci		 * has safely reached all non-writemostly
5308c2ecf20Sopenharmony_ci		 * disks. Setting the Returned bit ensures that this
5318c2ecf20Sopenharmony_ci		 * gets done only once -- we don't ever want to return
5328c2ecf20Sopenharmony_ci		 * -EIO here, instead we'll wait
5338c2ecf20Sopenharmony_ci		 */
5348c2ecf20Sopenharmony_ci		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
5358c2ecf20Sopenharmony_ci		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
5368c2ecf20Sopenharmony_ci			/* Maybe we can return now */
5378c2ecf20Sopenharmony_ci			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
5388c2ecf20Sopenharmony_ci				struct bio *mbio = r1_bio->master_bio;
5398c2ecf20Sopenharmony_ci				pr_debug("raid1: behind end write sectors"
5408c2ecf20Sopenharmony_ci					 " %llu-%llu\n",
5418c2ecf20Sopenharmony_ci					 (unsigned long long) mbio->bi_iter.bi_sector,
5428c2ecf20Sopenharmony_ci					 (unsigned long long) bio_end_sector(mbio) - 1);
5438c2ecf20Sopenharmony_ci				call_bio_endio(r1_bio);
5448c2ecf20Sopenharmony_ci			}
5458c2ecf20Sopenharmony_ci		}
5468c2ecf20Sopenharmony_ci	} else if (rdev->mddev->serialize_policy)
5478c2ecf20Sopenharmony_ci		remove_serial(rdev, lo, hi);
5488c2ecf20Sopenharmony_ci	if (r1_bio->bios[mirror] == NULL)
5498c2ecf20Sopenharmony_ci		rdev_dec_pending(rdev, conf->mddev);
5508c2ecf20Sopenharmony_ci
5518c2ecf20Sopenharmony_ci	/*
5528c2ecf20Sopenharmony_ci	 * Let's see if all mirrored write operations have finished
5538c2ecf20Sopenharmony_ci	 * already.
5548c2ecf20Sopenharmony_ci	 */
5558c2ecf20Sopenharmony_ci	r1_bio_write_done(r1_bio);
5568c2ecf20Sopenharmony_ci
5578c2ecf20Sopenharmony_ci	if (to_put)
5588c2ecf20Sopenharmony_ci		bio_put(to_put);
5598c2ecf20Sopenharmony_ci}
5608c2ecf20Sopenharmony_ci
5618c2ecf20Sopenharmony_cistatic sector_t align_to_barrier_unit_end(sector_t start_sector,
5628c2ecf20Sopenharmony_ci					  sector_t sectors)
5638c2ecf20Sopenharmony_ci{
5648c2ecf20Sopenharmony_ci	sector_t len;
5658c2ecf20Sopenharmony_ci
5668c2ecf20Sopenharmony_ci	WARN_ON(sectors == 0);
5678c2ecf20Sopenharmony_ci	/*
5688c2ecf20Sopenharmony_ci	 * len is the number of sectors from start_sector to end of the
5698c2ecf20Sopenharmony_ci	 * barrier unit which start_sector belongs to.
5708c2ecf20Sopenharmony_ci	 */
5718c2ecf20Sopenharmony_ci	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
5728c2ecf20Sopenharmony_ci	      start_sector;
5738c2ecf20Sopenharmony_ci
5748c2ecf20Sopenharmony_ci	if (len > sectors)
5758c2ecf20Sopenharmony_ci		len = sectors;
5768c2ecf20Sopenharmony_ci
5778c2ecf20Sopenharmony_ci	return len;
5788c2ecf20Sopenharmony_ci}
5798c2ecf20Sopenharmony_ci
5808c2ecf20Sopenharmony_ci/*
5818c2ecf20Sopenharmony_ci * This routine returns the disk from which the requested read should
5828c2ecf20Sopenharmony_ci * be done. There is a per-array 'next expected sequential IO' sector
5838c2ecf20Sopenharmony_ci * number - if this matches on the next IO then we use the last disk.
5848c2ecf20Sopenharmony_ci * There is also a per-disk 'last know head position' sector that is
5858c2ecf20Sopenharmony_ci * maintained from IRQ contexts, both the normal and the resync IO
5868c2ecf20Sopenharmony_ci * completion handlers update this position correctly. If there is no
5878c2ecf20Sopenharmony_ci * perfect sequential match then we pick the disk whose head is closest.
5888c2ecf20Sopenharmony_ci *
5898c2ecf20Sopenharmony_ci * If there are 2 mirrors in the same 2 devices, performance degrades
5908c2ecf20Sopenharmony_ci * because position is mirror, not device based.
5918c2ecf20Sopenharmony_ci *
5928c2ecf20Sopenharmony_ci * The rdev for the device selected will have nr_pending incremented.
5938c2ecf20Sopenharmony_ci */
5948c2ecf20Sopenharmony_cistatic int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
5958c2ecf20Sopenharmony_ci{
5968c2ecf20Sopenharmony_ci	const sector_t this_sector = r1_bio->sector;
5978c2ecf20Sopenharmony_ci	int sectors;
5988c2ecf20Sopenharmony_ci	int best_good_sectors;
5998c2ecf20Sopenharmony_ci	int best_disk, best_dist_disk, best_pending_disk;
6008c2ecf20Sopenharmony_ci	int has_nonrot_disk;
6018c2ecf20Sopenharmony_ci	int disk;
6028c2ecf20Sopenharmony_ci	sector_t best_dist;
6038c2ecf20Sopenharmony_ci	unsigned int min_pending;
6048c2ecf20Sopenharmony_ci	struct md_rdev *rdev;
6058c2ecf20Sopenharmony_ci	int choose_first;
6068c2ecf20Sopenharmony_ci	int choose_next_idle;
6078c2ecf20Sopenharmony_ci
6088c2ecf20Sopenharmony_ci	rcu_read_lock();
6098c2ecf20Sopenharmony_ci	/*
6108c2ecf20Sopenharmony_ci	 * Check if we can balance. We can balance on the whole
6118c2ecf20Sopenharmony_ci	 * device if no resync is going on, or below the resync window.
6128c2ecf20Sopenharmony_ci	 * We take the first readable disk when above the resync window.
6138c2ecf20Sopenharmony_ci	 */
6148c2ecf20Sopenharmony_ci retry:
6158c2ecf20Sopenharmony_ci	sectors = r1_bio->sectors;
6168c2ecf20Sopenharmony_ci	best_disk = -1;
6178c2ecf20Sopenharmony_ci	best_dist_disk = -1;
6188c2ecf20Sopenharmony_ci	best_dist = MaxSector;
6198c2ecf20Sopenharmony_ci	best_pending_disk = -1;
6208c2ecf20Sopenharmony_ci	min_pending = UINT_MAX;
6218c2ecf20Sopenharmony_ci	best_good_sectors = 0;
6228c2ecf20Sopenharmony_ci	has_nonrot_disk = 0;
6238c2ecf20Sopenharmony_ci	choose_next_idle = 0;
6248c2ecf20Sopenharmony_ci	clear_bit(R1BIO_FailFast, &r1_bio->state);
6258c2ecf20Sopenharmony_ci
6268c2ecf20Sopenharmony_ci	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
6278c2ecf20Sopenharmony_ci	    (mddev_is_clustered(conf->mddev) &&
6288c2ecf20Sopenharmony_ci	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
6298c2ecf20Sopenharmony_ci		    this_sector + sectors)))
6308c2ecf20Sopenharmony_ci		choose_first = 1;
6318c2ecf20Sopenharmony_ci	else
6328c2ecf20Sopenharmony_ci		choose_first = 0;
6338c2ecf20Sopenharmony_ci
6348c2ecf20Sopenharmony_ci	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
6358c2ecf20Sopenharmony_ci		sector_t dist;
6368c2ecf20Sopenharmony_ci		sector_t first_bad;
6378c2ecf20Sopenharmony_ci		int bad_sectors;
6388c2ecf20Sopenharmony_ci		unsigned int pending;
6398c2ecf20Sopenharmony_ci		bool nonrot;
6408c2ecf20Sopenharmony_ci
6418c2ecf20Sopenharmony_ci		rdev = rcu_dereference(conf->mirrors[disk].rdev);
6428c2ecf20Sopenharmony_ci		if (r1_bio->bios[disk] == IO_BLOCKED
6438c2ecf20Sopenharmony_ci		    || rdev == NULL
6448c2ecf20Sopenharmony_ci		    || test_bit(Faulty, &rdev->flags))
6458c2ecf20Sopenharmony_ci			continue;
6468c2ecf20Sopenharmony_ci		if (!test_bit(In_sync, &rdev->flags) &&
6478c2ecf20Sopenharmony_ci		    rdev->recovery_offset < this_sector + sectors)
6488c2ecf20Sopenharmony_ci			continue;
6498c2ecf20Sopenharmony_ci		if (test_bit(WriteMostly, &rdev->flags)) {
6508c2ecf20Sopenharmony_ci			/* Don't balance among write-mostly, just
6518c2ecf20Sopenharmony_ci			 * use the first as a last resort */
6528c2ecf20Sopenharmony_ci			if (best_dist_disk < 0) {
6538c2ecf20Sopenharmony_ci				if (is_badblock(rdev, this_sector, sectors,
6548c2ecf20Sopenharmony_ci						&first_bad, &bad_sectors)) {
6558c2ecf20Sopenharmony_ci					if (first_bad <= this_sector)
6568c2ecf20Sopenharmony_ci						/* Cannot use this */
6578c2ecf20Sopenharmony_ci						continue;
6588c2ecf20Sopenharmony_ci					best_good_sectors = first_bad - this_sector;
6598c2ecf20Sopenharmony_ci				} else
6608c2ecf20Sopenharmony_ci					best_good_sectors = sectors;
6618c2ecf20Sopenharmony_ci				best_dist_disk = disk;
6628c2ecf20Sopenharmony_ci				best_pending_disk = disk;
6638c2ecf20Sopenharmony_ci			}
6648c2ecf20Sopenharmony_ci			continue;
6658c2ecf20Sopenharmony_ci		}
6668c2ecf20Sopenharmony_ci		/* This is a reasonable device to use.  It might
6678c2ecf20Sopenharmony_ci		 * even be best.
6688c2ecf20Sopenharmony_ci		 */
6698c2ecf20Sopenharmony_ci		if (is_badblock(rdev, this_sector, sectors,
6708c2ecf20Sopenharmony_ci				&first_bad, &bad_sectors)) {
6718c2ecf20Sopenharmony_ci			if (best_dist < MaxSector)
6728c2ecf20Sopenharmony_ci				/* already have a better device */
6738c2ecf20Sopenharmony_ci				continue;
6748c2ecf20Sopenharmony_ci			if (first_bad <= this_sector) {
6758c2ecf20Sopenharmony_ci				/* cannot read here. If this is the 'primary'
6768c2ecf20Sopenharmony_ci				 * device, then we must not read beyond
6778c2ecf20Sopenharmony_ci				 * bad_sectors from another device..
6788c2ecf20Sopenharmony_ci				 */
6798c2ecf20Sopenharmony_ci				bad_sectors -= (this_sector - first_bad);
6808c2ecf20Sopenharmony_ci				if (choose_first && sectors > bad_sectors)
6818c2ecf20Sopenharmony_ci					sectors = bad_sectors;
6828c2ecf20Sopenharmony_ci				if (best_good_sectors > sectors)
6838c2ecf20Sopenharmony_ci					best_good_sectors = sectors;
6848c2ecf20Sopenharmony_ci
6858c2ecf20Sopenharmony_ci			} else {
6868c2ecf20Sopenharmony_ci				sector_t good_sectors = first_bad - this_sector;
6878c2ecf20Sopenharmony_ci				if (good_sectors > best_good_sectors) {
6888c2ecf20Sopenharmony_ci					best_good_sectors = good_sectors;
6898c2ecf20Sopenharmony_ci					best_disk = disk;
6908c2ecf20Sopenharmony_ci				}
6918c2ecf20Sopenharmony_ci				if (choose_first)
6928c2ecf20Sopenharmony_ci					break;
6938c2ecf20Sopenharmony_ci			}
6948c2ecf20Sopenharmony_ci			continue;
6958c2ecf20Sopenharmony_ci		} else {
6968c2ecf20Sopenharmony_ci			if ((sectors > best_good_sectors) && (best_disk >= 0))
6978c2ecf20Sopenharmony_ci				best_disk = -1;
6988c2ecf20Sopenharmony_ci			best_good_sectors = sectors;
6998c2ecf20Sopenharmony_ci		}
7008c2ecf20Sopenharmony_ci
7018c2ecf20Sopenharmony_ci		if (best_disk >= 0)
7028c2ecf20Sopenharmony_ci			/* At least two disks to choose from so failfast is OK */
7038c2ecf20Sopenharmony_ci			set_bit(R1BIO_FailFast, &r1_bio->state);
7048c2ecf20Sopenharmony_ci
7058c2ecf20Sopenharmony_ci		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
7068c2ecf20Sopenharmony_ci		has_nonrot_disk |= nonrot;
7078c2ecf20Sopenharmony_ci		pending = atomic_read(&rdev->nr_pending);
7088c2ecf20Sopenharmony_ci		dist = abs(this_sector - conf->mirrors[disk].head_position);
7098c2ecf20Sopenharmony_ci		if (choose_first) {
7108c2ecf20Sopenharmony_ci			best_disk = disk;
7118c2ecf20Sopenharmony_ci			break;
7128c2ecf20Sopenharmony_ci		}
7138c2ecf20Sopenharmony_ci		/* Don't change to another disk for sequential reads */
7148c2ecf20Sopenharmony_ci		if (conf->mirrors[disk].next_seq_sect == this_sector
7158c2ecf20Sopenharmony_ci		    || dist == 0) {
7168c2ecf20Sopenharmony_ci			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
7178c2ecf20Sopenharmony_ci			struct raid1_info *mirror = &conf->mirrors[disk];
7188c2ecf20Sopenharmony_ci
7198c2ecf20Sopenharmony_ci			best_disk = disk;
7208c2ecf20Sopenharmony_ci			/*
7218c2ecf20Sopenharmony_ci			 * If buffered sequential IO size exceeds optimal
7228c2ecf20Sopenharmony_ci			 * iosize, check if there is idle disk. If yes, choose
7238c2ecf20Sopenharmony_ci			 * the idle disk. read_balance could already choose an
7248c2ecf20Sopenharmony_ci			 * idle disk before noticing it's a sequential IO in
7258c2ecf20Sopenharmony_ci			 * this disk. This doesn't matter because this disk
7268c2ecf20Sopenharmony_ci			 * will idle, next time it will be utilized after the
7278c2ecf20Sopenharmony_ci			 * first disk has IO size exceeds optimal iosize. In
7288c2ecf20Sopenharmony_ci			 * this way, iosize of the first disk will be optimal
7298c2ecf20Sopenharmony_ci			 * iosize at least. iosize of the second disk might be
7308c2ecf20Sopenharmony_ci			 * small, but not a big deal since when the second disk
7318c2ecf20Sopenharmony_ci			 * starts IO, the first disk is likely still busy.
7328c2ecf20Sopenharmony_ci			 */
7338c2ecf20Sopenharmony_ci			if (nonrot && opt_iosize > 0 &&
7348c2ecf20Sopenharmony_ci			    mirror->seq_start != MaxSector &&
7358c2ecf20Sopenharmony_ci			    mirror->next_seq_sect > opt_iosize &&
7368c2ecf20Sopenharmony_ci			    mirror->next_seq_sect - opt_iosize >=
7378c2ecf20Sopenharmony_ci			    mirror->seq_start) {
7388c2ecf20Sopenharmony_ci				choose_next_idle = 1;
7398c2ecf20Sopenharmony_ci				continue;
7408c2ecf20Sopenharmony_ci			}
7418c2ecf20Sopenharmony_ci			break;
7428c2ecf20Sopenharmony_ci		}
7438c2ecf20Sopenharmony_ci
7448c2ecf20Sopenharmony_ci		if (choose_next_idle)
7458c2ecf20Sopenharmony_ci			continue;
7468c2ecf20Sopenharmony_ci
7478c2ecf20Sopenharmony_ci		if (min_pending > pending) {
7488c2ecf20Sopenharmony_ci			min_pending = pending;
7498c2ecf20Sopenharmony_ci			best_pending_disk = disk;
7508c2ecf20Sopenharmony_ci		}
7518c2ecf20Sopenharmony_ci
7528c2ecf20Sopenharmony_ci		if (dist < best_dist) {
7538c2ecf20Sopenharmony_ci			best_dist = dist;
7548c2ecf20Sopenharmony_ci			best_dist_disk = disk;
7558c2ecf20Sopenharmony_ci		}
7568c2ecf20Sopenharmony_ci	}
7578c2ecf20Sopenharmony_ci
7588c2ecf20Sopenharmony_ci	/*
7598c2ecf20Sopenharmony_ci	 * If all disks are rotational, choose the closest disk. If any disk is
7608c2ecf20Sopenharmony_ci	 * non-rotational, choose the disk with less pending request even the
7618c2ecf20Sopenharmony_ci	 * disk is rotational, which might/might not be optimal for raids with
7628c2ecf20Sopenharmony_ci	 * mixed ratation/non-rotational disks depending on workload.
7638c2ecf20Sopenharmony_ci	 */
7648c2ecf20Sopenharmony_ci	if (best_disk == -1) {
7658c2ecf20Sopenharmony_ci		if (has_nonrot_disk || min_pending == 0)
7668c2ecf20Sopenharmony_ci			best_disk = best_pending_disk;
7678c2ecf20Sopenharmony_ci		else
7688c2ecf20Sopenharmony_ci			best_disk = best_dist_disk;
7698c2ecf20Sopenharmony_ci	}
7708c2ecf20Sopenharmony_ci
7718c2ecf20Sopenharmony_ci	if (best_disk >= 0) {
7728c2ecf20Sopenharmony_ci		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
7738c2ecf20Sopenharmony_ci		if (!rdev)
7748c2ecf20Sopenharmony_ci			goto retry;
7758c2ecf20Sopenharmony_ci		atomic_inc(&rdev->nr_pending);
7768c2ecf20Sopenharmony_ci		sectors = best_good_sectors;
7778c2ecf20Sopenharmony_ci
7788c2ecf20Sopenharmony_ci		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
7798c2ecf20Sopenharmony_ci			conf->mirrors[best_disk].seq_start = this_sector;
7808c2ecf20Sopenharmony_ci
7818c2ecf20Sopenharmony_ci		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
7828c2ecf20Sopenharmony_ci	}
7838c2ecf20Sopenharmony_ci	rcu_read_unlock();
7848c2ecf20Sopenharmony_ci	*max_sectors = sectors;
7858c2ecf20Sopenharmony_ci
7868c2ecf20Sopenharmony_ci	return best_disk;
7878c2ecf20Sopenharmony_ci}
7888c2ecf20Sopenharmony_ci
7898c2ecf20Sopenharmony_cistatic void flush_bio_list(struct r1conf *conf, struct bio *bio)
7908c2ecf20Sopenharmony_ci{
7918c2ecf20Sopenharmony_ci	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
7928c2ecf20Sopenharmony_ci	md_bitmap_unplug(conf->mddev->bitmap);
7938c2ecf20Sopenharmony_ci	wake_up(&conf->wait_barrier);
7948c2ecf20Sopenharmony_ci
7958c2ecf20Sopenharmony_ci	while (bio) { /* submit pending writes */
7968c2ecf20Sopenharmony_ci		struct bio *next = bio->bi_next;
7978c2ecf20Sopenharmony_ci		struct md_rdev *rdev = (void *)bio->bi_disk;
7988c2ecf20Sopenharmony_ci		bio->bi_next = NULL;
7998c2ecf20Sopenharmony_ci		bio_set_dev(bio, rdev->bdev);
8008c2ecf20Sopenharmony_ci		if (test_bit(Faulty, &rdev->flags)) {
8018c2ecf20Sopenharmony_ci			bio_io_error(bio);
8028c2ecf20Sopenharmony_ci		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
8038c2ecf20Sopenharmony_ci				    !blk_queue_discard(bio->bi_disk->queue)))
8048c2ecf20Sopenharmony_ci			/* Just ignore it */
8058c2ecf20Sopenharmony_ci			bio_endio(bio);
8068c2ecf20Sopenharmony_ci		else
8078c2ecf20Sopenharmony_ci			submit_bio_noacct(bio);
8088c2ecf20Sopenharmony_ci		bio = next;
8098c2ecf20Sopenharmony_ci		cond_resched();
8108c2ecf20Sopenharmony_ci	}
8118c2ecf20Sopenharmony_ci}
8128c2ecf20Sopenharmony_ci
8138c2ecf20Sopenharmony_cistatic void flush_pending_writes(struct r1conf *conf)
8148c2ecf20Sopenharmony_ci{
8158c2ecf20Sopenharmony_ci	/* Any writes that have been queued but are awaiting
8168c2ecf20Sopenharmony_ci	 * bitmap updates get flushed here.
8178c2ecf20Sopenharmony_ci	 */
8188c2ecf20Sopenharmony_ci	spin_lock_irq(&conf->device_lock);
8198c2ecf20Sopenharmony_ci
8208c2ecf20Sopenharmony_ci	if (conf->pending_bio_list.head) {
8218c2ecf20Sopenharmony_ci		struct blk_plug plug;
8228c2ecf20Sopenharmony_ci		struct bio *bio;
8238c2ecf20Sopenharmony_ci
8248c2ecf20Sopenharmony_ci		bio = bio_list_get(&conf->pending_bio_list);
8258c2ecf20Sopenharmony_ci		conf->pending_count = 0;
8268c2ecf20Sopenharmony_ci		spin_unlock_irq(&conf->device_lock);
8278c2ecf20Sopenharmony_ci
8288c2ecf20Sopenharmony_ci		/*
8298c2ecf20Sopenharmony_ci		 * As this is called in a wait_event() loop (see freeze_array),
8308c2ecf20Sopenharmony_ci		 * current->state might be TASK_UNINTERRUPTIBLE which will
8318c2ecf20Sopenharmony_ci		 * cause a warning when we prepare to wait again.  As it is
8328c2ecf20Sopenharmony_ci		 * rare that this path is taken, it is perfectly safe to force
8338c2ecf20Sopenharmony_ci		 * us to go around the wait_event() loop again, so the warning
8348c2ecf20Sopenharmony_ci		 * is a false-positive.  Silence the warning by resetting
8358c2ecf20Sopenharmony_ci		 * thread state
8368c2ecf20Sopenharmony_ci		 */
8378c2ecf20Sopenharmony_ci		__set_current_state(TASK_RUNNING);
8388c2ecf20Sopenharmony_ci		blk_start_plug(&plug);
8398c2ecf20Sopenharmony_ci		flush_bio_list(conf, bio);
8408c2ecf20Sopenharmony_ci		blk_finish_plug(&plug);
8418c2ecf20Sopenharmony_ci	} else
8428c2ecf20Sopenharmony_ci		spin_unlock_irq(&conf->device_lock);
8438c2ecf20Sopenharmony_ci}
8448c2ecf20Sopenharmony_ci
8458c2ecf20Sopenharmony_ci/* Barriers....
8468c2ecf20Sopenharmony_ci * Sometimes we need to suspend IO while we do something else,
8478c2ecf20Sopenharmony_ci * either some resync/recovery, or reconfigure the array.
8488c2ecf20Sopenharmony_ci * To do this we raise a 'barrier'.
8498c2ecf20Sopenharmony_ci * The 'barrier' is a counter that can be raised multiple times
8508c2ecf20Sopenharmony_ci * to count how many activities are happening which preclude
8518c2ecf20Sopenharmony_ci * normal IO.
8528c2ecf20Sopenharmony_ci * We can only raise the barrier if there is no pending IO.
8538c2ecf20Sopenharmony_ci * i.e. if nr_pending == 0.
8548c2ecf20Sopenharmony_ci * We choose only to raise the barrier if no-one is waiting for the
8558c2ecf20Sopenharmony_ci * barrier to go down.  This means that as soon as an IO request
8568c2ecf20Sopenharmony_ci * is ready, no other operations which require a barrier will start
8578c2ecf20Sopenharmony_ci * until the IO request has had a chance.
8588c2ecf20Sopenharmony_ci *
8598c2ecf20Sopenharmony_ci * So: regular IO calls 'wait_barrier'.  When that returns there
8608c2ecf20Sopenharmony_ci *    is no backgroup IO happening,  It must arrange to call
8618c2ecf20Sopenharmony_ci *    allow_barrier when it has finished its IO.
8628c2ecf20Sopenharmony_ci * backgroup IO calls must call raise_barrier.  Once that returns
8638c2ecf20Sopenharmony_ci *    there is no normal IO happeing.  It must arrange to call
8648c2ecf20Sopenharmony_ci *    lower_barrier when the particular background IO completes.
8658c2ecf20Sopenharmony_ci *
8668c2ecf20Sopenharmony_ci * If resync/recovery is interrupted, returns -EINTR;
8678c2ecf20Sopenharmony_ci * Otherwise, returns 0.
8688c2ecf20Sopenharmony_ci */
8698c2ecf20Sopenharmony_cistatic int raise_barrier(struct r1conf *conf, sector_t sector_nr)
8708c2ecf20Sopenharmony_ci{
8718c2ecf20Sopenharmony_ci	int idx = sector_to_idx(sector_nr);
8728c2ecf20Sopenharmony_ci
8738c2ecf20Sopenharmony_ci	spin_lock_irq(&conf->resync_lock);
8748c2ecf20Sopenharmony_ci
8758c2ecf20Sopenharmony_ci	/* Wait until no block IO is waiting */
8768c2ecf20Sopenharmony_ci	wait_event_lock_irq(conf->wait_barrier,
8778c2ecf20Sopenharmony_ci			    !atomic_read(&conf->nr_waiting[idx]),
8788c2ecf20Sopenharmony_ci			    conf->resync_lock);
8798c2ecf20Sopenharmony_ci
8808c2ecf20Sopenharmony_ci	/* block any new IO from starting */
8818c2ecf20Sopenharmony_ci	atomic_inc(&conf->barrier[idx]);
8828c2ecf20Sopenharmony_ci	/*
8838c2ecf20Sopenharmony_ci	 * In raise_barrier() we firstly increase conf->barrier[idx] then
8848c2ecf20Sopenharmony_ci	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
8858c2ecf20Sopenharmony_ci	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
8868c2ecf20Sopenharmony_ci	 * A memory barrier here to make sure conf->nr_pending[idx] won't
8878c2ecf20Sopenharmony_ci	 * be fetched before conf->barrier[idx] is increased. Otherwise
8888c2ecf20Sopenharmony_ci	 * there will be a race between raise_barrier() and _wait_barrier().
8898c2ecf20Sopenharmony_ci	 */
8908c2ecf20Sopenharmony_ci	smp_mb__after_atomic();
8918c2ecf20Sopenharmony_ci
8928c2ecf20Sopenharmony_ci	/* For these conditions we must wait:
8938c2ecf20Sopenharmony_ci	 * A: while the array is in frozen state
8948c2ecf20Sopenharmony_ci	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
8958c2ecf20Sopenharmony_ci	 *    existing in corresponding I/O barrier bucket.
8968c2ecf20Sopenharmony_ci	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
8978c2ecf20Sopenharmony_ci	 *    max resync count which allowed on current I/O barrier bucket.
8988c2ecf20Sopenharmony_ci	 */
8998c2ecf20Sopenharmony_ci	wait_event_lock_irq(conf->wait_barrier,
9008c2ecf20Sopenharmony_ci			    (!conf->array_frozen &&
9018c2ecf20Sopenharmony_ci			     !atomic_read(&conf->nr_pending[idx]) &&
9028c2ecf20Sopenharmony_ci			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
9038c2ecf20Sopenharmony_ci				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
9048c2ecf20Sopenharmony_ci			    conf->resync_lock);
9058c2ecf20Sopenharmony_ci
9068c2ecf20Sopenharmony_ci	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
9078c2ecf20Sopenharmony_ci		atomic_dec(&conf->barrier[idx]);
9088c2ecf20Sopenharmony_ci		spin_unlock_irq(&conf->resync_lock);
9098c2ecf20Sopenharmony_ci		wake_up(&conf->wait_barrier);
9108c2ecf20Sopenharmony_ci		return -EINTR;
9118c2ecf20Sopenharmony_ci	}
9128c2ecf20Sopenharmony_ci
9138c2ecf20Sopenharmony_ci	atomic_inc(&conf->nr_sync_pending);
9148c2ecf20Sopenharmony_ci	spin_unlock_irq(&conf->resync_lock);
9158c2ecf20Sopenharmony_ci
9168c2ecf20Sopenharmony_ci	return 0;
9178c2ecf20Sopenharmony_ci}
9188c2ecf20Sopenharmony_ci
9198c2ecf20Sopenharmony_cistatic void lower_barrier(struct r1conf *conf, sector_t sector_nr)
9208c2ecf20Sopenharmony_ci{
9218c2ecf20Sopenharmony_ci	int idx = sector_to_idx(sector_nr);
9228c2ecf20Sopenharmony_ci
9238c2ecf20Sopenharmony_ci	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
9248c2ecf20Sopenharmony_ci
9258c2ecf20Sopenharmony_ci	atomic_dec(&conf->barrier[idx]);
9268c2ecf20Sopenharmony_ci	atomic_dec(&conf->nr_sync_pending);
9278c2ecf20Sopenharmony_ci	wake_up(&conf->wait_barrier);
9288c2ecf20Sopenharmony_ci}
9298c2ecf20Sopenharmony_ci
9308c2ecf20Sopenharmony_cistatic void _wait_barrier(struct r1conf *conf, int idx)
9318c2ecf20Sopenharmony_ci{
9328c2ecf20Sopenharmony_ci	/*
9338c2ecf20Sopenharmony_ci	 * We need to increase conf->nr_pending[idx] very early here,
9348c2ecf20Sopenharmony_ci	 * then raise_barrier() can be blocked when it waits for
9358c2ecf20Sopenharmony_ci	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
9368c2ecf20Sopenharmony_ci	 * conf->resync_lock when there is no barrier raised in same
9378c2ecf20Sopenharmony_ci	 * barrier unit bucket. Also if the array is frozen, I/O
9388c2ecf20Sopenharmony_ci	 * should be blocked until array is unfrozen.
9398c2ecf20Sopenharmony_ci	 */
9408c2ecf20Sopenharmony_ci	atomic_inc(&conf->nr_pending[idx]);
9418c2ecf20Sopenharmony_ci	/*
9428c2ecf20Sopenharmony_ci	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
9438c2ecf20Sopenharmony_ci	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
9448c2ecf20Sopenharmony_ci	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
9458c2ecf20Sopenharmony_ci	 * barrier is necessary here to make sure conf->barrier[idx] won't be
9468c2ecf20Sopenharmony_ci	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
9478c2ecf20Sopenharmony_ci	 * will be a race between _wait_barrier() and raise_barrier().
9488c2ecf20Sopenharmony_ci	 */
9498c2ecf20Sopenharmony_ci	smp_mb__after_atomic();
9508c2ecf20Sopenharmony_ci
9518c2ecf20Sopenharmony_ci	/*
9528c2ecf20Sopenharmony_ci	 * Don't worry about checking two atomic_t variables at same time
9538c2ecf20Sopenharmony_ci	 * here. If during we check conf->barrier[idx], the array is
9548c2ecf20Sopenharmony_ci	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
9558c2ecf20Sopenharmony_ci	 * 0, it is safe to return and make the I/O continue. Because the
9568c2ecf20Sopenharmony_ci	 * array is frozen, all I/O returned here will eventually complete
9578c2ecf20Sopenharmony_ci	 * or be queued, no race will happen. See code comment in
9588c2ecf20Sopenharmony_ci	 * frozen_array().
9598c2ecf20Sopenharmony_ci	 */
9608c2ecf20Sopenharmony_ci	if (!READ_ONCE(conf->array_frozen) &&
9618c2ecf20Sopenharmony_ci	    !atomic_read(&conf->barrier[idx]))
9628c2ecf20Sopenharmony_ci		return;
9638c2ecf20Sopenharmony_ci
9648c2ecf20Sopenharmony_ci	/*
9658c2ecf20Sopenharmony_ci	 * After holding conf->resync_lock, conf->nr_pending[idx]
9668c2ecf20Sopenharmony_ci	 * should be decreased before waiting for barrier to drop.
9678c2ecf20Sopenharmony_ci	 * Otherwise, we may encounter a race condition because
9688c2ecf20Sopenharmony_ci	 * raise_barrer() might be waiting for conf->nr_pending[idx]
9698c2ecf20Sopenharmony_ci	 * to be 0 at same time.
9708c2ecf20Sopenharmony_ci	 */
9718c2ecf20Sopenharmony_ci	spin_lock_irq(&conf->resync_lock);
9728c2ecf20Sopenharmony_ci	atomic_inc(&conf->nr_waiting[idx]);
9738c2ecf20Sopenharmony_ci	atomic_dec(&conf->nr_pending[idx]);
9748c2ecf20Sopenharmony_ci	/*
9758c2ecf20Sopenharmony_ci	 * In case freeze_array() is waiting for
9768c2ecf20Sopenharmony_ci	 * get_unqueued_pending() == extra
9778c2ecf20Sopenharmony_ci	 */
9788c2ecf20Sopenharmony_ci	wake_up(&conf->wait_barrier);
9798c2ecf20Sopenharmony_ci	/* Wait for the barrier in same barrier unit bucket to drop. */
9808c2ecf20Sopenharmony_ci	wait_event_lock_irq(conf->wait_barrier,
9818c2ecf20Sopenharmony_ci			    !conf->array_frozen &&
9828c2ecf20Sopenharmony_ci			     !atomic_read(&conf->barrier[idx]),
9838c2ecf20Sopenharmony_ci			    conf->resync_lock);
9848c2ecf20Sopenharmony_ci	atomic_inc(&conf->nr_pending[idx]);
9858c2ecf20Sopenharmony_ci	atomic_dec(&conf->nr_waiting[idx]);
9868c2ecf20Sopenharmony_ci	spin_unlock_irq(&conf->resync_lock);
9878c2ecf20Sopenharmony_ci}
9888c2ecf20Sopenharmony_ci
9898c2ecf20Sopenharmony_cistatic void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
9908c2ecf20Sopenharmony_ci{
9918c2ecf20Sopenharmony_ci	int idx = sector_to_idx(sector_nr);
9928c2ecf20Sopenharmony_ci
9938c2ecf20Sopenharmony_ci	/*
9948c2ecf20Sopenharmony_ci	 * Very similar to _wait_barrier(). The difference is, for read
9958c2ecf20Sopenharmony_ci	 * I/O we don't need wait for sync I/O, but if the whole array
9968c2ecf20Sopenharmony_ci	 * is frozen, the read I/O still has to wait until the array is
9978c2ecf20Sopenharmony_ci	 * unfrozen. Since there is no ordering requirement with
9988c2ecf20Sopenharmony_ci	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
9998c2ecf20Sopenharmony_ci	 */
10008c2ecf20Sopenharmony_ci	atomic_inc(&conf->nr_pending[idx]);
10018c2ecf20Sopenharmony_ci
10028c2ecf20Sopenharmony_ci	if (!READ_ONCE(conf->array_frozen))
10038c2ecf20Sopenharmony_ci		return;
10048c2ecf20Sopenharmony_ci
10058c2ecf20Sopenharmony_ci	spin_lock_irq(&conf->resync_lock);
10068c2ecf20Sopenharmony_ci	atomic_inc(&conf->nr_waiting[idx]);
10078c2ecf20Sopenharmony_ci	atomic_dec(&conf->nr_pending[idx]);
10088c2ecf20Sopenharmony_ci	/*
10098c2ecf20Sopenharmony_ci	 * In case freeze_array() is waiting for
10108c2ecf20Sopenharmony_ci	 * get_unqueued_pending() == extra
10118c2ecf20Sopenharmony_ci	 */
10128c2ecf20Sopenharmony_ci	wake_up(&conf->wait_barrier);
10138c2ecf20Sopenharmony_ci	/* Wait for array to be unfrozen */
10148c2ecf20Sopenharmony_ci	wait_event_lock_irq(conf->wait_barrier,
10158c2ecf20Sopenharmony_ci			    !conf->array_frozen,
10168c2ecf20Sopenharmony_ci			    conf->resync_lock);
10178c2ecf20Sopenharmony_ci	atomic_inc(&conf->nr_pending[idx]);
10188c2ecf20Sopenharmony_ci	atomic_dec(&conf->nr_waiting[idx]);
10198c2ecf20Sopenharmony_ci	spin_unlock_irq(&conf->resync_lock);
10208c2ecf20Sopenharmony_ci}
10218c2ecf20Sopenharmony_ci
10228c2ecf20Sopenharmony_cistatic void wait_barrier(struct r1conf *conf, sector_t sector_nr)
10238c2ecf20Sopenharmony_ci{
10248c2ecf20Sopenharmony_ci	int idx = sector_to_idx(sector_nr);
10258c2ecf20Sopenharmony_ci
10268c2ecf20Sopenharmony_ci	_wait_barrier(conf, idx);
10278c2ecf20Sopenharmony_ci}
10288c2ecf20Sopenharmony_ci
10298c2ecf20Sopenharmony_cistatic void _allow_barrier(struct r1conf *conf, int idx)
10308c2ecf20Sopenharmony_ci{
10318c2ecf20Sopenharmony_ci	atomic_dec(&conf->nr_pending[idx]);
10328c2ecf20Sopenharmony_ci	wake_up(&conf->wait_barrier);
10338c2ecf20Sopenharmony_ci}
10348c2ecf20Sopenharmony_ci
10358c2ecf20Sopenharmony_cistatic void allow_barrier(struct r1conf *conf, sector_t sector_nr)
10368c2ecf20Sopenharmony_ci{
10378c2ecf20Sopenharmony_ci	int idx = sector_to_idx(sector_nr);
10388c2ecf20Sopenharmony_ci
10398c2ecf20Sopenharmony_ci	_allow_barrier(conf, idx);
10408c2ecf20Sopenharmony_ci}
10418c2ecf20Sopenharmony_ci
10428c2ecf20Sopenharmony_ci/* conf->resync_lock should be held */
10438c2ecf20Sopenharmony_cistatic int get_unqueued_pending(struct r1conf *conf)
10448c2ecf20Sopenharmony_ci{
10458c2ecf20Sopenharmony_ci	int idx, ret;
10468c2ecf20Sopenharmony_ci
10478c2ecf20Sopenharmony_ci	ret = atomic_read(&conf->nr_sync_pending);
10488c2ecf20Sopenharmony_ci	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
10498c2ecf20Sopenharmony_ci		ret += atomic_read(&conf->nr_pending[idx]) -
10508c2ecf20Sopenharmony_ci			atomic_read(&conf->nr_queued[idx]);
10518c2ecf20Sopenharmony_ci
10528c2ecf20Sopenharmony_ci	return ret;
10538c2ecf20Sopenharmony_ci}
10548c2ecf20Sopenharmony_ci
10558c2ecf20Sopenharmony_cistatic void freeze_array(struct r1conf *conf, int extra)
10568c2ecf20Sopenharmony_ci{
10578c2ecf20Sopenharmony_ci	/* Stop sync I/O and normal I/O and wait for everything to
10588c2ecf20Sopenharmony_ci	 * go quiet.
10598c2ecf20Sopenharmony_ci	 * This is called in two situations:
10608c2ecf20Sopenharmony_ci	 * 1) management command handlers (reshape, remove disk, quiesce).
10618c2ecf20Sopenharmony_ci	 * 2) one normal I/O request failed.
10628c2ecf20Sopenharmony_ci
10638c2ecf20Sopenharmony_ci	 * After array_frozen is set to 1, new sync IO will be blocked at
10648c2ecf20Sopenharmony_ci	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
10658c2ecf20Sopenharmony_ci	 * or wait_read_barrier(). The flying I/Os will either complete or be
10668c2ecf20Sopenharmony_ci	 * queued. When everything goes quite, there are only queued I/Os left.
10678c2ecf20Sopenharmony_ci
10688c2ecf20Sopenharmony_ci	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
10698c2ecf20Sopenharmony_ci	 * barrier bucket index which this I/O request hits. When all sync and
10708c2ecf20Sopenharmony_ci	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
10718c2ecf20Sopenharmony_ci	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
10728c2ecf20Sopenharmony_ci	 * in handle_read_error(), we may call freeze_array() before trying to
10738c2ecf20Sopenharmony_ci	 * fix the read error. In this case, the error read I/O is not queued,
10748c2ecf20Sopenharmony_ci	 * so get_unqueued_pending() == 1.
10758c2ecf20Sopenharmony_ci	 *
10768c2ecf20Sopenharmony_ci	 * Therefore before this function returns, we need to wait until
10778c2ecf20Sopenharmony_ci	 * get_unqueued_pendings(conf) gets equal to extra. For
10788c2ecf20Sopenharmony_ci	 * normal I/O context, extra is 1, in rested situations extra is 0.
10798c2ecf20Sopenharmony_ci	 */
10808c2ecf20Sopenharmony_ci	spin_lock_irq(&conf->resync_lock);
10818c2ecf20Sopenharmony_ci	conf->array_frozen = 1;
10828c2ecf20Sopenharmony_ci	raid1_log(conf->mddev, "wait freeze");
10838c2ecf20Sopenharmony_ci	wait_event_lock_irq_cmd(
10848c2ecf20Sopenharmony_ci		conf->wait_barrier,
10858c2ecf20Sopenharmony_ci		get_unqueued_pending(conf) == extra,
10868c2ecf20Sopenharmony_ci		conf->resync_lock,
10878c2ecf20Sopenharmony_ci		flush_pending_writes(conf));
10888c2ecf20Sopenharmony_ci	spin_unlock_irq(&conf->resync_lock);
10898c2ecf20Sopenharmony_ci}
10908c2ecf20Sopenharmony_cistatic void unfreeze_array(struct r1conf *conf)
10918c2ecf20Sopenharmony_ci{
10928c2ecf20Sopenharmony_ci	/* reverse the effect of the freeze */
10938c2ecf20Sopenharmony_ci	spin_lock_irq(&conf->resync_lock);
10948c2ecf20Sopenharmony_ci	conf->array_frozen = 0;
10958c2ecf20Sopenharmony_ci	spin_unlock_irq(&conf->resync_lock);
10968c2ecf20Sopenharmony_ci	wake_up(&conf->wait_barrier);
10978c2ecf20Sopenharmony_ci}
10988c2ecf20Sopenharmony_ci
10998c2ecf20Sopenharmony_cistatic void alloc_behind_master_bio(struct r1bio *r1_bio,
11008c2ecf20Sopenharmony_ci					   struct bio *bio)
11018c2ecf20Sopenharmony_ci{
11028c2ecf20Sopenharmony_ci	int size = bio->bi_iter.bi_size;
11038c2ecf20Sopenharmony_ci	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
11048c2ecf20Sopenharmony_ci	int i = 0;
11058c2ecf20Sopenharmony_ci	struct bio *behind_bio = NULL;
11068c2ecf20Sopenharmony_ci
11078c2ecf20Sopenharmony_ci	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
11088c2ecf20Sopenharmony_ci	if (!behind_bio)
11098c2ecf20Sopenharmony_ci		return;
11108c2ecf20Sopenharmony_ci
11118c2ecf20Sopenharmony_ci	/* discard op, we don't support writezero/writesame yet */
11128c2ecf20Sopenharmony_ci	if (!bio_has_data(bio)) {
11138c2ecf20Sopenharmony_ci		behind_bio->bi_iter.bi_size = size;
11148c2ecf20Sopenharmony_ci		goto skip_copy;
11158c2ecf20Sopenharmony_ci	}
11168c2ecf20Sopenharmony_ci
11178c2ecf20Sopenharmony_ci	behind_bio->bi_write_hint = bio->bi_write_hint;
11188c2ecf20Sopenharmony_ci
11198c2ecf20Sopenharmony_ci	while (i < vcnt && size) {
11208c2ecf20Sopenharmony_ci		struct page *page;
11218c2ecf20Sopenharmony_ci		int len = min_t(int, PAGE_SIZE, size);
11228c2ecf20Sopenharmony_ci
11238c2ecf20Sopenharmony_ci		page = alloc_page(GFP_NOIO);
11248c2ecf20Sopenharmony_ci		if (unlikely(!page))
11258c2ecf20Sopenharmony_ci			goto free_pages;
11268c2ecf20Sopenharmony_ci
11278c2ecf20Sopenharmony_ci		bio_add_page(behind_bio, page, len, 0);
11288c2ecf20Sopenharmony_ci
11298c2ecf20Sopenharmony_ci		size -= len;
11308c2ecf20Sopenharmony_ci		i++;
11318c2ecf20Sopenharmony_ci	}
11328c2ecf20Sopenharmony_ci
11338c2ecf20Sopenharmony_ci	bio_copy_data(behind_bio, bio);
11348c2ecf20Sopenharmony_ciskip_copy:
11358c2ecf20Sopenharmony_ci	r1_bio->behind_master_bio = behind_bio;
11368c2ecf20Sopenharmony_ci	set_bit(R1BIO_BehindIO, &r1_bio->state);
11378c2ecf20Sopenharmony_ci
11388c2ecf20Sopenharmony_ci	return;
11398c2ecf20Sopenharmony_ci
11408c2ecf20Sopenharmony_cifree_pages:
11418c2ecf20Sopenharmony_ci	pr_debug("%dB behind alloc failed, doing sync I/O\n",
11428c2ecf20Sopenharmony_ci		 bio->bi_iter.bi_size);
11438c2ecf20Sopenharmony_ci	bio_free_pages(behind_bio);
11448c2ecf20Sopenharmony_ci	bio_put(behind_bio);
11458c2ecf20Sopenharmony_ci}
11468c2ecf20Sopenharmony_ci
11478c2ecf20Sopenharmony_cistruct raid1_plug_cb {
11488c2ecf20Sopenharmony_ci	struct blk_plug_cb	cb;
11498c2ecf20Sopenharmony_ci	struct bio_list		pending;
11508c2ecf20Sopenharmony_ci	int			pending_cnt;
11518c2ecf20Sopenharmony_ci};
11528c2ecf20Sopenharmony_ci
11538c2ecf20Sopenharmony_cistatic void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
11548c2ecf20Sopenharmony_ci{
11558c2ecf20Sopenharmony_ci	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
11568c2ecf20Sopenharmony_ci						  cb);
11578c2ecf20Sopenharmony_ci	struct mddev *mddev = plug->cb.data;
11588c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
11598c2ecf20Sopenharmony_ci	struct bio *bio;
11608c2ecf20Sopenharmony_ci
11618c2ecf20Sopenharmony_ci	if (from_schedule || current->bio_list) {
11628c2ecf20Sopenharmony_ci		spin_lock_irq(&conf->device_lock);
11638c2ecf20Sopenharmony_ci		bio_list_merge(&conf->pending_bio_list, &plug->pending);
11648c2ecf20Sopenharmony_ci		conf->pending_count += plug->pending_cnt;
11658c2ecf20Sopenharmony_ci		spin_unlock_irq(&conf->device_lock);
11668c2ecf20Sopenharmony_ci		wake_up(&conf->wait_barrier);
11678c2ecf20Sopenharmony_ci		md_wakeup_thread(mddev->thread);
11688c2ecf20Sopenharmony_ci		kfree(plug);
11698c2ecf20Sopenharmony_ci		return;
11708c2ecf20Sopenharmony_ci	}
11718c2ecf20Sopenharmony_ci
11728c2ecf20Sopenharmony_ci	/* we aren't scheduling, so we can do the write-out directly. */
11738c2ecf20Sopenharmony_ci	bio = bio_list_get(&plug->pending);
11748c2ecf20Sopenharmony_ci	flush_bio_list(conf, bio);
11758c2ecf20Sopenharmony_ci	kfree(plug);
11768c2ecf20Sopenharmony_ci}
11778c2ecf20Sopenharmony_ci
11788c2ecf20Sopenharmony_cistatic void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
11798c2ecf20Sopenharmony_ci{
11808c2ecf20Sopenharmony_ci	r1_bio->master_bio = bio;
11818c2ecf20Sopenharmony_ci	r1_bio->sectors = bio_sectors(bio);
11828c2ecf20Sopenharmony_ci	r1_bio->state = 0;
11838c2ecf20Sopenharmony_ci	r1_bio->mddev = mddev;
11848c2ecf20Sopenharmony_ci	r1_bio->sector = bio->bi_iter.bi_sector;
11858c2ecf20Sopenharmony_ci}
11868c2ecf20Sopenharmony_ci
11878c2ecf20Sopenharmony_cistatic inline struct r1bio *
11888c2ecf20Sopenharmony_cialloc_r1bio(struct mddev *mddev, struct bio *bio)
11898c2ecf20Sopenharmony_ci{
11908c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
11918c2ecf20Sopenharmony_ci	struct r1bio *r1_bio;
11928c2ecf20Sopenharmony_ci
11938c2ecf20Sopenharmony_ci	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
11948c2ecf20Sopenharmony_ci	/* Ensure no bio records IO_BLOCKED */
11958c2ecf20Sopenharmony_ci	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
11968c2ecf20Sopenharmony_ci	init_r1bio(r1_bio, mddev, bio);
11978c2ecf20Sopenharmony_ci	return r1_bio;
11988c2ecf20Sopenharmony_ci}
11998c2ecf20Sopenharmony_ci
12008c2ecf20Sopenharmony_cistatic void raid1_read_request(struct mddev *mddev, struct bio *bio,
12018c2ecf20Sopenharmony_ci			       int max_read_sectors, struct r1bio *r1_bio)
12028c2ecf20Sopenharmony_ci{
12038c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
12048c2ecf20Sopenharmony_ci	struct raid1_info *mirror;
12058c2ecf20Sopenharmony_ci	struct bio *read_bio;
12068c2ecf20Sopenharmony_ci	struct bitmap *bitmap = mddev->bitmap;
12078c2ecf20Sopenharmony_ci	const int op = bio_op(bio);
12088c2ecf20Sopenharmony_ci	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
12098c2ecf20Sopenharmony_ci	int max_sectors;
12108c2ecf20Sopenharmony_ci	int rdisk;
12118c2ecf20Sopenharmony_ci	bool print_msg = !!r1_bio;
12128c2ecf20Sopenharmony_ci	char b[BDEVNAME_SIZE];
12138c2ecf20Sopenharmony_ci
12148c2ecf20Sopenharmony_ci	/*
12158c2ecf20Sopenharmony_ci	 * If r1_bio is set, we are blocking the raid1d thread
12168c2ecf20Sopenharmony_ci	 * so there is a tiny risk of deadlock.  So ask for
12178c2ecf20Sopenharmony_ci	 * emergency memory if needed.
12188c2ecf20Sopenharmony_ci	 */
12198c2ecf20Sopenharmony_ci	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
12208c2ecf20Sopenharmony_ci
12218c2ecf20Sopenharmony_ci	if (print_msg) {
12228c2ecf20Sopenharmony_ci		/* Need to get the block device name carefully */
12238c2ecf20Sopenharmony_ci		struct md_rdev *rdev;
12248c2ecf20Sopenharmony_ci		rcu_read_lock();
12258c2ecf20Sopenharmony_ci		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
12268c2ecf20Sopenharmony_ci		if (rdev)
12278c2ecf20Sopenharmony_ci			bdevname(rdev->bdev, b);
12288c2ecf20Sopenharmony_ci		else
12298c2ecf20Sopenharmony_ci			strcpy(b, "???");
12308c2ecf20Sopenharmony_ci		rcu_read_unlock();
12318c2ecf20Sopenharmony_ci	}
12328c2ecf20Sopenharmony_ci
12338c2ecf20Sopenharmony_ci	/*
12348c2ecf20Sopenharmony_ci	 * Still need barrier for READ in case that whole
12358c2ecf20Sopenharmony_ci	 * array is frozen.
12368c2ecf20Sopenharmony_ci	 */
12378c2ecf20Sopenharmony_ci	wait_read_barrier(conf, bio->bi_iter.bi_sector);
12388c2ecf20Sopenharmony_ci
12398c2ecf20Sopenharmony_ci	if (!r1_bio)
12408c2ecf20Sopenharmony_ci		r1_bio = alloc_r1bio(mddev, bio);
12418c2ecf20Sopenharmony_ci	else
12428c2ecf20Sopenharmony_ci		init_r1bio(r1_bio, mddev, bio);
12438c2ecf20Sopenharmony_ci	r1_bio->sectors = max_read_sectors;
12448c2ecf20Sopenharmony_ci
12458c2ecf20Sopenharmony_ci	/*
12468c2ecf20Sopenharmony_ci	 * make_request() can abort the operation when read-ahead is being
12478c2ecf20Sopenharmony_ci	 * used and no empty request is available.
12488c2ecf20Sopenharmony_ci	 */
12498c2ecf20Sopenharmony_ci	rdisk = read_balance(conf, r1_bio, &max_sectors);
12508c2ecf20Sopenharmony_ci
12518c2ecf20Sopenharmony_ci	if (rdisk < 0) {
12528c2ecf20Sopenharmony_ci		/* couldn't find anywhere to read from */
12538c2ecf20Sopenharmony_ci		if (print_msg) {
12548c2ecf20Sopenharmony_ci			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
12558c2ecf20Sopenharmony_ci					    mdname(mddev),
12568c2ecf20Sopenharmony_ci					    b,
12578c2ecf20Sopenharmony_ci					    (unsigned long long)r1_bio->sector);
12588c2ecf20Sopenharmony_ci		}
12598c2ecf20Sopenharmony_ci		raid_end_bio_io(r1_bio);
12608c2ecf20Sopenharmony_ci		return;
12618c2ecf20Sopenharmony_ci	}
12628c2ecf20Sopenharmony_ci	mirror = conf->mirrors + rdisk;
12638c2ecf20Sopenharmony_ci
12648c2ecf20Sopenharmony_ci	if (print_msg)
12658c2ecf20Sopenharmony_ci		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
12668c2ecf20Sopenharmony_ci				    mdname(mddev),
12678c2ecf20Sopenharmony_ci				    (unsigned long long)r1_bio->sector,
12688c2ecf20Sopenharmony_ci				    bdevname(mirror->rdev->bdev, b));
12698c2ecf20Sopenharmony_ci
12708c2ecf20Sopenharmony_ci	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
12718c2ecf20Sopenharmony_ci	    bitmap) {
12728c2ecf20Sopenharmony_ci		/*
12738c2ecf20Sopenharmony_ci		 * Reading from a write-mostly device must take care not to
12748c2ecf20Sopenharmony_ci		 * over-take any writes that are 'behind'
12758c2ecf20Sopenharmony_ci		 */
12768c2ecf20Sopenharmony_ci		raid1_log(mddev, "wait behind writes");
12778c2ecf20Sopenharmony_ci		wait_event(bitmap->behind_wait,
12788c2ecf20Sopenharmony_ci			   atomic_read(&bitmap->behind_writes) == 0);
12798c2ecf20Sopenharmony_ci	}
12808c2ecf20Sopenharmony_ci
12818c2ecf20Sopenharmony_ci	if (max_sectors < bio_sectors(bio)) {
12828c2ecf20Sopenharmony_ci		struct bio *split = bio_split(bio, max_sectors,
12838c2ecf20Sopenharmony_ci					      gfp, &conf->bio_split);
12848c2ecf20Sopenharmony_ci		bio_chain(split, bio);
12858c2ecf20Sopenharmony_ci		submit_bio_noacct(bio);
12868c2ecf20Sopenharmony_ci		bio = split;
12878c2ecf20Sopenharmony_ci		r1_bio->master_bio = bio;
12888c2ecf20Sopenharmony_ci		r1_bio->sectors = max_sectors;
12898c2ecf20Sopenharmony_ci	}
12908c2ecf20Sopenharmony_ci
12918c2ecf20Sopenharmony_ci	r1_bio->read_disk = rdisk;
12928c2ecf20Sopenharmony_ci
12938c2ecf20Sopenharmony_ci	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
12948c2ecf20Sopenharmony_ci
12958c2ecf20Sopenharmony_ci	r1_bio->bios[rdisk] = read_bio;
12968c2ecf20Sopenharmony_ci
12978c2ecf20Sopenharmony_ci	read_bio->bi_iter.bi_sector = r1_bio->sector +
12988c2ecf20Sopenharmony_ci		mirror->rdev->data_offset;
12998c2ecf20Sopenharmony_ci	bio_set_dev(read_bio, mirror->rdev->bdev);
13008c2ecf20Sopenharmony_ci	read_bio->bi_end_io = raid1_end_read_request;
13018c2ecf20Sopenharmony_ci	bio_set_op_attrs(read_bio, op, do_sync);
13028c2ecf20Sopenharmony_ci	if (test_bit(FailFast, &mirror->rdev->flags) &&
13038c2ecf20Sopenharmony_ci	    test_bit(R1BIO_FailFast, &r1_bio->state))
13048c2ecf20Sopenharmony_ci	        read_bio->bi_opf |= MD_FAILFAST;
13058c2ecf20Sopenharmony_ci	read_bio->bi_private = r1_bio;
13068c2ecf20Sopenharmony_ci
13078c2ecf20Sopenharmony_ci	if (mddev->gendisk)
13088c2ecf20Sopenharmony_ci	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
13098c2ecf20Sopenharmony_ci				disk_devt(mddev->gendisk), r1_bio->sector);
13108c2ecf20Sopenharmony_ci
13118c2ecf20Sopenharmony_ci	submit_bio_noacct(read_bio);
13128c2ecf20Sopenharmony_ci}
13138c2ecf20Sopenharmony_ci
13148c2ecf20Sopenharmony_cistatic void raid1_write_request(struct mddev *mddev, struct bio *bio,
13158c2ecf20Sopenharmony_ci				int max_write_sectors)
13168c2ecf20Sopenharmony_ci{
13178c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
13188c2ecf20Sopenharmony_ci	struct r1bio *r1_bio;
13198c2ecf20Sopenharmony_ci	int i, disks;
13208c2ecf20Sopenharmony_ci	struct bitmap *bitmap = mddev->bitmap;
13218c2ecf20Sopenharmony_ci	unsigned long flags;
13228c2ecf20Sopenharmony_ci	struct md_rdev *blocked_rdev;
13238c2ecf20Sopenharmony_ci	struct blk_plug_cb *cb;
13248c2ecf20Sopenharmony_ci	struct raid1_plug_cb *plug = NULL;
13258c2ecf20Sopenharmony_ci	int first_clone;
13268c2ecf20Sopenharmony_ci	int max_sectors;
13278c2ecf20Sopenharmony_ci
13288c2ecf20Sopenharmony_ci	if (mddev_is_clustered(mddev) &&
13298c2ecf20Sopenharmony_ci	     md_cluster_ops->area_resyncing(mddev, WRITE,
13308c2ecf20Sopenharmony_ci		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
13318c2ecf20Sopenharmony_ci
13328c2ecf20Sopenharmony_ci		DEFINE_WAIT(w);
13338c2ecf20Sopenharmony_ci		for (;;) {
13348c2ecf20Sopenharmony_ci			prepare_to_wait(&conf->wait_barrier,
13358c2ecf20Sopenharmony_ci					&w, TASK_IDLE);
13368c2ecf20Sopenharmony_ci			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
13378c2ecf20Sopenharmony_ci							bio->bi_iter.bi_sector,
13388c2ecf20Sopenharmony_ci							bio_end_sector(bio)))
13398c2ecf20Sopenharmony_ci				break;
13408c2ecf20Sopenharmony_ci			schedule();
13418c2ecf20Sopenharmony_ci		}
13428c2ecf20Sopenharmony_ci		finish_wait(&conf->wait_barrier, &w);
13438c2ecf20Sopenharmony_ci	}
13448c2ecf20Sopenharmony_ci
13458c2ecf20Sopenharmony_ci	/*
13468c2ecf20Sopenharmony_ci	 * Register the new request and wait if the reconstruction
13478c2ecf20Sopenharmony_ci	 * thread has put up a bar for new requests.
13488c2ecf20Sopenharmony_ci	 * Continue immediately if no resync is active currently.
13498c2ecf20Sopenharmony_ci	 */
13508c2ecf20Sopenharmony_ci	wait_barrier(conf, bio->bi_iter.bi_sector);
13518c2ecf20Sopenharmony_ci
13528c2ecf20Sopenharmony_ci	r1_bio = alloc_r1bio(mddev, bio);
13538c2ecf20Sopenharmony_ci	r1_bio->sectors = max_write_sectors;
13548c2ecf20Sopenharmony_ci
13558c2ecf20Sopenharmony_ci	if (conf->pending_count >= max_queued_requests) {
13568c2ecf20Sopenharmony_ci		md_wakeup_thread(mddev->thread);
13578c2ecf20Sopenharmony_ci		raid1_log(mddev, "wait queued");
13588c2ecf20Sopenharmony_ci		wait_event(conf->wait_barrier,
13598c2ecf20Sopenharmony_ci			   conf->pending_count < max_queued_requests);
13608c2ecf20Sopenharmony_ci	}
13618c2ecf20Sopenharmony_ci	/* first select target devices under rcu_lock and
13628c2ecf20Sopenharmony_ci	 * inc refcount on their rdev.  Record them by setting
13638c2ecf20Sopenharmony_ci	 * bios[x] to bio
13648c2ecf20Sopenharmony_ci	 * If there are known/acknowledged bad blocks on any device on
13658c2ecf20Sopenharmony_ci	 * which we have seen a write error, we want to avoid writing those
13668c2ecf20Sopenharmony_ci	 * blocks.
13678c2ecf20Sopenharmony_ci	 * This potentially requires several writes to write around
13688c2ecf20Sopenharmony_ci	 * the bad blocks.  Each set of writes gets it's own r1bio
13698c2ecf20Sopenharmony_ci	 * with a set of bios attached.
13708c2ecf20Sopenharmony_ci	 */
13718c2ecf20Sopenharmony_ci
13728c2ecf20Sopenharmony_ci	disks = conf->raid_disks * 2;
13738c2ecf20Sopenharmony_ci retry_write:
13748c2ecf20Sopenharmony_ci	blocked_rdev = NULL;
13758c2ecf20Sopenharmony_ci	rcu_read_lock();
13768c2ecf20Sopenharmony_ci	max_sectors = r1_bio->sectors;
13778c2ecf20Sopenharmony_ci	for (i = 0;  i < disks; i++) {
13788c2ecf20Sopenharmony_ci		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
13798c2ecf20Sopenharmony_ci		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
13808c2ecf20Sopenharmony_ci			atomic_inc(&rdev->nr_pending);
13818c2ecf20Sopenharmony_ci			blocked_rdev = rdev;
13828c2ecf20Sopenharmony_ci			break;
13838c2ecf20Sopenharmony_ci		}
13848c2ecf20Sopenharmony_ci		r1_bio->bios[i] = NULL;
13858c2ecf20Sopenharmony_ci		if (!rdev || test_bit(Faulty, &rdev->flags)) {
13868c2ecf20Sopenharmony_ci			if (i < conf->raid_disks)
13878c2ecf20Sopenharmony_ci				set_bit(R1BIO_Degraded, &r1_bio->state);
13888c2ecf20Sopenharmony_ci			continue;
13898c2ecf20Sopenharmony_ci		}
13908c2ecf20Sopenharmony_ci
13918c2ecf20Sopenharmony_ci		atomic_inc(&rdev->nr_pending);
13928c2ecf20Sopenharmony_ci		if (test_bit(WriteErrorSeen, &rdev->flags)) {
13938c2ecf20Sopenharmony_ci			sector_t first_bad;
13948c2ecf20Sopenharmony_ci			int bad_sectors;
13958c2ecf20Sopenharmony_ci			int is_bad;
13968c2ecf20Sopenharmony_ci
13978c2ecf20Sopenharmony_ci			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
13988c2ecf20Sopenharmony_ci					     &first_bad, &bad_sectors);
13998c2ecf20Sopenharmony_ci			if (is_bad < 0) {
14008c2ecf20Sopenharmony_ci				/* mustn't write here until the bad block is
14018c2ecf20Sopenharmony_ci				 * acknowledged*/
14028c2ecf20Sopenharmony_ci				set_bit(BlockedBadBlocks, &rdev->flags);
14038c2ecf20Sopenharmony_ci				blocked_rdev = rdev;
14048c2ecf20Sopenharmony_ci				break;
14058c2ecf20Sopenharmony_ci			}
14068c2ecf20Sopenharmony_ci			if (is_bad && first_bad <= r1_bio->sector) {
14078c2ecf20Sopenharmony_ci				/* Cannot write here at all */
14088c2ecf20Sopenharmony_ci				bad_sectors -= (r1_bio->sector - first_bad);
14098c2ecf20Sopenharmony_ci				if (bad_sectors < max_sectors)
14108c2ecf20Sopenharmony_ci					/* mustn't write more than bad_sectors
14118c2ecf20Sopenharmony_ci					 * to other devices yet
14128c2ecf20Sopenharmony_ci					 */
14138c2ecf20Sopenharmony_ci					max_sectors = bad_sectors;
14148c2ecf20Sopenharmony_ci				rdev_dec_pending(rdev, mddev);
14158c2ecf20Sopenharmony_ci				/* We don't set R1BIO_Degraded as that
14168c2ecf20Sopenharmony_ci				 * only applies if the disk is
14178c2ecf20Sopenharmony_ci				 * missing, so it might be re-added,
14188c2ecf20Sopenharmony_ci				 * and we want to know to recover this
14198c2ecf20Sopenharmony_ci				 * chunk.
14208c2ecf20Sopenharmony_ci				 * In this case the device is here,
14218c2ecf20Sopenharmony_ci				 * and the fact that this chunk is not
14228c2ecf20Sopenharmony_ci				 * in-sync is recorded in the bad
14238c2ecf20Sopenharmony_ci				 * block log
14248c2ecf20Sopenharmony_ci				 */
14258c2ecf20Sopenharmony_ci				continue;
14268c2ecf20Sopenharmony_ci			}
14278c2ecf20Sopenharmony_ci			if (is_bad) {
14288c2ecf20Sopenharmony_ci				int good_sectors = first_bad - r1_bio->sector;
14298c2ecf20Sopenharmony_ci				if (good_sectors < max_sectors)
14308c2ecf20Sopenharmony_ci					max_sectors = good_sectors;
14318c2ecf20Sopenharmony_ci			}
14328c2ecf20Sopenharmony_ci		}
14338c2ecf20Sopenharmony_ci		r1_bio->bios[i] = bio;
14348c2ecf20Sopenharmony_ci	}
14358c2ecf20Sopenharmony_ci	rcu_read_unlock();
14368c2ecf20Sopenharmony_ci
14378c2ecf20Sopenharmony_ci	if (unlikely(blocked_rdev)) {
14388c2ecf20Sopenharmony_ci		/* Wait for this device to become unblocked */
14398c2ecf20Sopenharmony_ci		int j;
14408c2ecf20Sopenharmony_ci
14418c2ecf20Sopenharmony_ci		for (j = 0; j < i; j++)
14428c2ecf20Sopenharmony_ci			if (r1_bio->bios[j])
14438c2ecf20Sopenharmony_ci				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
14448c2ecf20Sopenharmony_ci		r1_bio->state = 0;
14458c2ecf20Sopenharmony_ci		allow_barrier(conf, bio->bi_iter.bi_sector);
14468c2ecf20Sopenharmony_ci		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
14478c2ecf20Sopenharmony_ci		md_wait_for_blocked_rdev(blocked_rdev, mddev);
14488c2ecf20Sopenharmony_ci		wait_barrier(conf, bio->bi_iter.bi_sector);
14498c2ecf20Sopenharmony_ci		goto retry_write;
14508c2ecf20Sopenharmony_ci	}
14518c2ecf20Sopenharmony_ci
14528c2ecf20Sopenharmony_ci	if (max_sectors < bio_sectors(bio)) {
14538c2ecf20Sopenharmony_ci		struct bio *split = bio_split(bio, max_sectors,
14548c2ecf20Sopenharmony_ci					      GFP_NOIO, &conf->bio_split);
14558c2ecf20Sopenharmony_ci		bio_chain(split, bio);
14568c2ecf20Sopenharmony_ci		submit_bio_noacct(bio);
14578c2ecf20Sopenharmony_ci		bio = split;
14588c2ecf20Sopenharmony_ci		r1_bio->master_bio = bio;
14598c2ecf20Sopenharmony_ci		r1_bio->sectors = max_sectors;
14608c2ecf20Sopenharmony_ci	}
14618c2ecf20Sopenharmony_ci
14628c2ecf20Sopenharmony_ci	atomic_set(&r1_bio->remaining, 1);
14638c2ecf20Sopenharmony_ci	atomic_set(&r1_bio->behind_remaining, 0);
14648c2ecf20Sopenharmony_ci
14658c2ecf20Sopenharmony_ci	first_clone = 1;
14668c2ecf20Sopenharmony_ci
14678c2ecf20Sopenharmony_ci	for (i = 0; i < disks; i++) {
14688c2ecf20Sopenharmony_ci		struct bio *mbio = NULL;
14698c2ecf20Sopenharmony_ci		struct md_rdev *rdev = conf->mirrors[i].rdev;
14708c2ecf20Sopenharmony_ci		if (!r1_bio->bios[i])
14718c2ecf20Sopenharmony_ci			continue;
14728c2ecf20Sopenharmony_ci
14738c2ecf20Sopenharmony_ci		if (first_clone) {
14748c2ecf20Sopenharmony_ci			/* do behind I/O ?
14758c2ecf20Sopenharmony_ci			 * Not if there are too many, or cannot
14768c2ecf20Sopenharmony_ci			 * allocate memory, or a reader on WriteMostly
14778c2ecf20Sopenharmony_ci			 * is waiting for behind writes to flush */
14788c2ecf20Sopenharmony_ci			if (bitmap &&
14798c2ecf20Sopenharmony_ci			    (atomic_read(&bitmap->behind_writes)
14808c2ecf20Sopenharmony_ci			     < mddev->bitmap_info.max_write_behind) &&
14818c2ecf20Sopenharmony_ci			    !waitqueue_active(&bitmap->behind_wait)) {
14828c2ecf20Sopenharmony_ci				alloc_behind_master_bio(r1_bio, bio);
14838c2ecf20Sopenharmony_ci			}
14848c2ecf20Sopenharmony_ci
14858c2ecf20Sopenharmony_ci			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
14868c2ecf20Sopenharmony_ci					     test_bit(R1BIO_BehindIO, &r1_bio->state));
14878c2ecf20Sopenharmony_ci			first_clone = 0;
14888c2ecf20Sopenharmony_ci		}
14898c2ecf20Sopenharmony_ci
14908c2ecf20Sopenharmony_ci		if (r1_bio->behind_master_bio)
14918c2ecf20Sopenharmony_ci			mbio = bio_clone_fast(r1_bio->behind_master_bio,
14928c2ecf20Sopenharmony_ci					      GFP_NOIO, &mddev->bio_set);
14938c2ecf20Sopenharmony_ci		else
14948c2ecf20Sopenharmony_ci			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
14958c2ecf20Sopenharmony_ci
14968c2ecf20Sopenharmony_ci		if (r1_bio->behind_master_bio) {
14978c2ecf20Sopenharmony_ci			if (test_bit(CollisionCheck, &rdev->flags))
14988c2ecf20Sopenharmony_ci				wait_for_serialization(rdev, r1_bio);
14998c2ecf20Sopenharmony_ci			if (test_bit(WriteMostly, &rdev->flags))
15008c2ecf20Sopenharmony_ci				atomic_inc(&r1_bio->behind_remaining);
15018c2ecf20Sopenharmony_ci		} else if (mddev->serialize_policy)
15028c2ecf20Sopenharmony_ci			wait_for_serialization(rdev, r1_bio);
15038c2ecf20Sopenharmony_ci
15048c2ecf20Sopenharmony_ci		r1_bio->bios[i] = mbio;
15058c2ecf20Sopenharmony_ci
15068c2ecf20Sopenharmony_ci		mbio->bi_iter.bi_sector	= (r1_bio->sector +
15078c2ecf20Sopenharmony_ci				   conf->mirrors[i].rdev->data_offset);
15088c2ecf20Sopenharmony_ci		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
15098c2ecf20Sopenharmony_ci		mbio->bi_end_io	= raid1_end_write_request;
15108c2ecf20Sopenharmony_ci		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
15118c2ecf20Sopenharmony_ci		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
15128c2ecf20Sopenharmony_ci		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
15138c2ecf20Sopenharmony_ci		    conf->raid_disks - mddev->degraded > 1)
15148c2ecf20Sopenharmony_ci			mbio->bi_opf |= MD_FAILFAST;
15158c2ecf20Sopenharmony_ci		mbio->bi_private = r1_bio;
15168c2ecf20Sopenharmony_ci
15178c2ecf20Sopenharmony_ci		atomic_inc(&r1_bio->remaining);
15188c2ecf20Sopenharmony_ci
15198c2ecf20Sopenharmony_ci		if (mddev->gendisk)
15208c2ecf20Sopenharmony_ci			trace_block_bio_remap(mbio->bi_disk->queue,
15218c2ecf20Sopenharmony_ci					      mbio, disk_devt(mddev->gendisk),
15228c2ecf20Sopenharmony_ci					      r1_bio->sector);
15238c2ecf20Sopenharmony_ci		/* flush_pending_writes() needs access to the rdev so...*/
15248c2ecf20Sopenharmony_ci		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
15258c2ecf20Sopenharmony_ci
15268c2ecf20Sopenharmony_ci		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
15278c2ecf20Sopenharmony_ci		if (cb)
15288c2ecf20Sopenharmony_ci			plug = container_of(cb, struct raid1_plug_cb, cb);
15298c2ecf20Sopenharmony_ci		else
15308c2ecf20Sopenharmony_ci			plug = NULL;
15318c2ecf20Sopenharmony_ci		if (plug) {
15328c2ecf20Sopenharmony_ci			bio_list_add(&plug->pending, mbio);
15338c2ecf20Sopenharmony_ci			plug->pending_cnt++;
15348c2ecf20Sopenharmony_ci		} else {
15358c2ecf20Sopenharmony_ci			spin_lock_irqsave(&conf->device_lock, flags);
15368c2ecf20Sopenharmony_ci			bio_list_add(&conf->pending_bio_list, mbio);
15378c2ecf20Sopenharmony_ci			conf->pending_count++;
15388c2ecf20Sopenharmony_ci			spin_unlock_irqrestore(&conf->device_lock, flags);
15398c2ecf20Sopenharmony_ci			md_wakeup_thread(mddev->thread);
15408c2ecf20Sopenharmony_ci		}
15418c2ecf20Sopenharmony_ci	}
15428c2ecf20Sopenharmony_ci
15438c2ecf20Sopenharmony_ci	r1_bio_write_done(r1_bio);
15448c2ecf20Sopenharmony_ci
15458c2ecf20Sopenharmony_ci	/* In case raid1d snuck in to freeze_array */
15468c2ecf20Sopenharmony_ci	wake_up(&conf->wait_barrier);
15478c2ecf20Sopenharmony_ci}
15488c2ecf20Sopenharmony_ci
15498c2ecf20Sopenharmony_cistatic bool raid1_make_request(struct mddev *mddev, struct bio *bio)
15508c2ecf20Sopenharmony_ci{
15518c2ecf20Sopenharmony_ci	sector_t sectors;
15528c2ecf20Sopenharmony_ci
15538c2ecf20Sopenharmony_ci	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
15548c2ecf20Sopenharmony_ci	    && md_flush_request(mddev, bio))
15558c2ecf20Sopenharmony_ci		return true;
15568c2ecf20Sopenharmony_ci
15578c2ecf20Sopenharmony_ci	/*
15588c2ecf20Sopenharmony_ci	 * There is a limit to the maximum size, but
15598c2ecf20Sopenharmony_ci	 * the read/write handler might find a lower limit
15608c2ecf20Sopenharmony_ci	 * due to bad blocks.  To avoid multiple splits,
15618c2ecf20Sopenharmony_ci	 * we pass the maximum number of sectors down
15628c2ecf20Sopenharmony_ci	 * and let the lower level perform the split.
15638c2ecf20Sopenharmony_ci	 */
15648c2ecf20Sopenharmony_ci	sectors = align_to_barrier_unit_end(
15658c2ecf20Sopenharmony_ci		bio->bi_iter.bi_sector, bio_sectors(bio));
15668c2ecf20Sopenharmony_ci
15678c2ecf20Sopenharmony_ci	if (bio_data_dir(bio) == READ)
15688c2ecf20Sopenharmony_ci		raid1_read_request(mddev, bio, sectors, NULL);
15698c2ecf20Sopenharmony_ci	else {
15708c2ecf20Sopenharmony_ci		if (!md_write_start(mddev,bio))
15718c2ecf20Sopenharmony_ci			return false;
15728c2ecf20Sopenharmony_ci		raid1_write_request(mddev, bio, sectors);
15738c2ecf20Sopenharmony_ci	}
15748c2ecf20Sopenharmony_ci	return true;
15758c2ecf20Sopenharmony_ci}
15768c2ecf20Sopenharmony_ci
15778c2ecf20Sopenharmony_cistatic void raid1_status(struct seq_file *seq, struct mddev *mddev)
15788c2ecf20Sopenharmony_ci{
15798c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
15808c2ecf20Sopenharmony_ci	int i;
15818c2ecf20Sopenharmony_ci
15828c2ecf20Sopenharmony_ci	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
15838c2ecf20Sopenharmony_ci		   conf->raid_disks - mddev->degraded);
15848c2ecf20Sopenharmony_ci	rcu_read_lock();
15858c2ecf20Sopenharmony_ci	for (i = 0; i < conf->raid_disks; i++) {
15868c2ecf20Sopenharmony_ci		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
15878c2ecf20Sopenharmony_ci		seq_printf(seq, "%s",
15888c2ecf20Sopenharmony_ci			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
15898c2ecf20Sopenharmony_ci	}
15908c2ecf20Sopenharmony_ci	rcu_read_unlock();
15918c2ecf20Sopenharmony_ci	seq_printf(seq, "]");
15928c2ecf20Sopenharmony_ci}
15938c2ecf20Sopenharmony_ci
15948c2ecf20Sopenharmony_cistatic void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
15958c2ecf20Sopenharmony_ci{
15968c2ecf20Sopenharmony_ci	char b[BDEVNAME_SIZE];
15978c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
15988c2ecf20Sopenharmony_ci	unsigned long flags;
15998c2ecf20Sopenharmony_ci
16008c2ecf20Sopenharmony_ci	/*
16018c2ecf20Sopenharmony_ci	 * If it is not operational, then we have already marked it as dead
16028c2ecf20Sopenharmony_ci	 * else if it is the last working disks with "fail_last_dev == false",
16038c2ecf20Sopenharmony_ci	 * ignore the error, let the next level up know.
16048c2ecf20Sopenharmony_ci	 * else mark the drive as failed
16058c2ecf20Sopenharmony_ci	 */
16068c2ecf20Sopenharmony_ci	spin_lock_irqsave(&conf->device_lock, flags);
16078c2ecf20Sopenharmony_ci	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
16088c2ecf20Sopenharmony_ci	    && (conf->raid_disks - mddev->degraded) == 1) {
16098c2ecf20Sopenharmony_ci		/*
16108c2ecf20Sopenharmony_ci		 * Don't fail the drive, act as though we were just a
16118c2ecf20Sopenharmony_ci		 * normal single drive.
16128c2ecf20Sopenharmony_ci		 * However don't try a recovery from this drive as
16138c2ecf20Sopenharmony_ci		 * it is very likely to fail.
16148c2ecf20Sopenharmony_ci		 */
16158c2ecf20Sopenharmony_ci		conf->recovery_disabled = mddev->recovery_disabled;
16168c2ecf20Sopenharmony_ci		spin_unlock_irqrestore(&conf->device_lock, flags);
16178c2ecf20Sopenharmony_ci		return;
16188c2ecf20Sopenharmony_ci	}
16198c2ecf20Sopenharmony_ci	set_bit(Blocked, &rdev->flags);
16208c2ecf20Sopenharmony_ci	if (test_and_clear_bit(In_sync, &rdev->flags))
16218c2ecf20Sopenharmony_ci		mddev->degraded++;
16228c2ecf20Sopenharmony_ci	set_bit(Faulty, &rdev->flags);
16238c2ecf20Sopenharmony_ci	spin_unlock_irqrestore(&conf->device_lock, flags);
16248c2ecf20Sopenharmony_ci	/*
16258c2ecf20Sopenharmony_ci	 * if recovery is running, make sure it aborts.
16268c2ecf20Sopenharmony_ci	 */
16278c2ecf20Sopenharmony_ci	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
16288c2ecf20Sopenharmony_ci	set_mask_bits(&mddev->sb_flags, 0,
16298c2ecf20Sopenharmony_ci		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
16308c2ecf20Sopenharmony_ci	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
16318c2ecf20Sopenharmony_ci		"md/raid1:%s: Operation continuing on %d devices.\n",
16328c2ecf20Sopenharmony_ci		mdname(mddev), bdevname(rdev->bdev, b),
16338c2ecf20Sopenharmony_ci		mdname(mddev), conf->raid_disks - mddev->degraded);
16348c2ecf20Sopenharmony_ci}
16358c2ecf20Sopenharmony_ci
16368c2ecf20Sopenharmony_cistatic void print_conf(struct r1conf *conf)
16378c2ecf20Sopenharmony_ci{
16388c2ecf20Sopenharmony_ci	int i;
16398c2ecf20Sopenharmony_ci
16408c2ecf20Sopenharmony_ci	pr_debug("RAID1 conf printout:\n");
16418c2ecf20Sopenharmony_ci	if (!conf) {
16428c2ecf20Sopenharmony_ci		pr_debug("(!conf)\n");
16438c2ecf20Sopenharmony_ci		return;
16448c2ecf20Sopenharmony_ci	}
16458c2ecf20Sopenharmony_ci	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
16468c2ecf20Sopenharmony_ci		 conf->raid_disks);
16478c2ecf20Sopenharmony_ci
16488c2ecf20Sopenharmony_ci	rcu_read_lock();
16498c2ecf20Sopenharmony_ci	for (i = 0; i < conf->raid_disks; i++) {
16508c2ecf20Sopenharmony_ci		char b[BDEVNAME_SIZE];
16518c2ecf20Sopenharmony_ci		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
16528c2ecf20Sopenharmony_ci		if (rdev)
16538c2ecf20Sopenharmony_ci			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
16548c2ecf20Sopenharmony_ci				 i, !test_bit(In_sync, &rdev->flags),
16558c2ecf20Sopenharmony_ci				 !test_bit(Faulty, &rdev->flags),
16568c2ecf20Sopenharmony_ci				 bdevname(rdev->bdev,b));
16578c2ecf20Sopenharmony_ci	}
16588c2ecf20Sopenharmony_ci	rcu_read_unlock();
16598c2ecf20Sopenharmony_ci}
16608c2ecf20Sopenharmony_ci
16618c2ecf20Sopenharmony_cistatic void close_sync(struct r1conf *conf)
16628c2ecf20Sopenharmony_ci{
16638c2ecf20Sopenharmony_ci	int idx;
16648c2ecf20Sopenharmony_ci
16658c2ecf20Sopenharmony_ci	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
16668c2ecf20Sopenharmony_ci		_wait_barrier(conf, idx);
16678c2ecf20Sopenharmony_ci		_allow_barrier(conf, idx);
16688c2ecf20Sopenharmony_ci	}
16698c2ecf20Sopenharmony_ci
16708c2ecf20Sopenharmony_ci	mempool_exit(&conf->r1buf_pool);
16718c2ecf20Sopenharmony_ci}
16728c2ecf20Sopenharmony_ci
16738c2ecf20Sopenharmony_cistatic int raid1_spare_active(struct mddev *mddev)
16748c2ecf20Sopenharmony_ci{
16758c2ecf20Sopenharmony_ci	int i;
16768c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
16778c2ecf20Sopenharmony_ci	int count = 0;
16788c2ecf20Sopenharmony_ci	unsigned long flags;
16798c2ecf20Sopenharmony_ci
16808c2ecf20Sopenharmony_ci	/*
16818c2ecf20Sopenharmony_ci	 * Find all failed disks within the RAID1 configuration
16828c2ecf20Sopenharmony_ci	 * and mark them readable.
16838c2ecf20Sopenharmony_ci	 * Called under mddev lock, so rcu protection not needed.
16848c2ecf20Sopenharmony_ci	 * device_lock used to avoid races with raid1_end_read_request
16858c2ecf20Sopenharmony_ci	 * which expects 'In_sync' flags and ->degraded to be consistent.
16868c2ecf20Sopenharmony_ci	 */
16878c2ecf20Sopenharmony_ci	spin_lock_irqsave(&conf->device_lock, flags);
16888c2ecf20Sopenharmony_ci	for (i = 0; i < conf->raid_disks; i++) {
16898c2ecf20Sopenharmony_ci		struct md_rdev *rdev = conf->mirrors[i].rdev;
16908c2ecf20Sopenharmony_ci		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
16918c2ecf20Sopenharmony_ci		if (repl
16928c2ecf20Sopenharmony_ci		    && !test_bit(Candidate, &repl->flags)
16938c2ecf20Sopenharmony_ci		    && repl->recovery_offset == MaxSector
16948c2ecf20Sopenharmony_ci		    && !test_bit(Faulty, &repl->flags)
16958c2ecf20Sopenharmony_ci		    && !test_and_set_bit(In_sync, &repl->flags)) {
16968c2ecf20Sopenharmony_ci			/* replacement has just become active */
16978c2ecf20Sopenharmony_ci			if (!rdev ||
16988c2ecf20Sopenharmony_ci			    !test_and_clear_bit(In_sync, &rdev->flags))
16998c2ecf20Sopenharmony_ci				count++;
17008c2ecf20Sopenharmony_ci			if (rdev) {
17018c2ecf20Sopenharmony_ci				/* Replaced device not technically
17028c2ecf20Sopenharmony_ci				 * faulty, but we need to be sure
17038c2ecf20Sopenharmony_ci				 * it gets removed and never re-added
17048c2ecf20Sopenharmony_ci				 */
17058c2ecf20Sopenharmony_ci				set_bit(Faulty, &rdev->flags);
17068c2ecf20Sopenharmony_ci				sysfs_notify_dirent_safe(
17078c2ecf20Sopenharmony_ci					rdev->sysfs_state);
17088c2ecf20Sopenharmony_ci			}
17098c2ecf20Sopenharmony_ci		}
17108c2ecf20Sopenharmony_ci		if (rdev
17118c2ecf20Sopenharmony_ci		    && rdev->recovery_offset == MaxSector
17128c2ecf20Sopenharmony_ci		    && !test_bit(Faulty, &rdev->flags)
17138c2ecf20Sopenharmony_ci		    && !test_and_set_bit(In_sync, &rdev->flags)) {
17148c2ecf20Sopenharmony_ci			count++;
17158c2ecf20Sopenharmony_ci			sysfs_notify_dirent_safe(rdev->sysfs_state);
17168c2ecf20Sopenharmony_ci		}
17178c2ecf20Sopenharmony_ci	}
17188c2ecf20Sopenharmony_ci	mddev->degraded -= count;
17198c2ecf20Sopenharmony_ci	spin_unlock_irqrestore(&conf->device_lock, flags);
17208c2ecf20Sopenharmony_ci
17218c2ecf20Sopenharmony_ci	print_conf(conf);
17228c2ecf20Sopenharmony_ci	return count;
17238c2ecf20Sopenharmony_ci}
17248c2ecf20Sopenharmony_ci
17258c2ecf20Sopenharmony_cistatic int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
17268c2ecf20Sopenharmony_ci{
17278c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
17288c2ecf20Sopenharmony_ci	int err = -EEXIST;
17298c2ecf20Sopenharmony_ci	int mirror = 0;
17308c2ecf20Sopenharmony_ci	struct raid1_info *p;
17318c2ecf20Sopenharmony_ci	int first = 0;
17328c2ecf20Sopenharmony_ci	int last = conf->raid_disks - 1;
17338c2ecf20Sopenharmony_ci
17348c2ecf20Sopenharmony_ci	if (mddev->recovery_disabled == conf->recovery_disabled)
17358c2ecf20Sopenharmony_ci		return -EBUSY;
17368c2ecf20Sopenharmony_ci
17378c2ecf20Sopenharmony_ci	if (md_integrity_add_rdev(rdev, mddev))
17388c2ecf20Sopenharmony_ci		return -ENXIO;
17398c2ecf20Sopenharmony_ci
17408c2ecf20Sopenharmony_ci	if (rdev->raid_disk >= 0)
17418c2ecf20Sopenharmony_ci		first = last = rdev->raid_disk;
17428c2ecf20Sopenharmony_ci
17438c2ecf20Sopenharmony_ci	/*
17448c2ecf20Sopenharmony_ci	 * find the disk ... but prefer rdev->saved_raid_disk
17458c2ecf20Sopenharmony_ci	 * if possible.
17468c2ecf20Sopenharmony_ci	 */
17478c2ecf20Sopenharmony_ci	if (rdev->saved_raid_disk >= 0 &&
17488c2ecf20Sopenharmony_ci	    rdev->saved_raid_disk >= first &&
17498c2ecf20Sopenharmony_ci	    rdev->saved_raid_disk < conf->raid_disks &&
17508c2ecf20Sopenharmony_ci	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
17518c2ecf20Sopenharmony_ci		first = last = rdev->saved_raid_disk;
17528c2ecf20Sopenharmony_ci
17538c2ecf20Sopenharmony_ci	for (mirror = first; mirror <= last; mirror++) {
17548c2ecf20Sopenharmony_ci		p = conf->mirrors + mirror;
17558c2ecf20Sopenharmony_ci		if (!p->rdev) {
17568c2ecf20Sopenharmony_ci			if (mddev->gendisk)
17578c2ecf20Sopenharmony_ci				disk_stack_limits(mddev->gendisk, rdev->bdev,
17588c2ecf20Sopenharmony_ci						  rdev->data_offset << 9);
17598c2ecf20Sopenharmony_ci
17608c2ecf20Sopenharmony_ci			p->head_position = 0;
17618c2ecf20Sopenharmony_ci			rdev->raid_disk = mirror;
17628c2ecf20Sopenharmony_ci			err = 0;
17638c2ecf20Sopenharmony_ci			/* As all devices are equivalent, we don't need a full recovery
17648c2ecf20Sopenharmony_ci			 * if this was recently any drive of the array
17658c2ecf20Sopenharmony_ci			 */
17668c2ecf20Sopenharmony_ci			if (rdev->saved_raid_disk < 0)
17678c2ecf20Sopenharmony_ci				conf->fullsync = 1;
17688c2ecf20Sopenharmony_ci			rcu_assign_pointer(p->rdev, rdev);
17698c2ecf20Sopenharmony_ci			break;
17708c2ecf20Sopenharmony_ci		}
17718c2ecf20Sopenharmony_ci		if (test_bit(WantReplacement, &p->rdev->flags) &&
17728c2ecf20Sopenharmony_ci		    p[conf->raid_disks].rdev == NULL) {
17738c2ecf20Sopenharmony_ci			/* Add this device as a replacement */
17748c2ecf20Sopenharmony_ci			clear_bit(In_sync, &rdev->flags);
17758c2ecf20Sopenharmony_ci			set_bit(Replacement, &rdev->flags);
17768c2ecf20Sopenharmony_ci			rdev->raid_disk = mirror;
17778c2ecf20Sopenharmony_ci			err = 0;
17788c2ecf20Sopenharmony_ci			conf->fullsync = 1;
17798c2ecf20Sopenharmony_ci			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
17808c2ecf20Sopenharmony_ci			break;
17818c2ecf20Sopenharmony_ci		}
17828c2ecf20Sopenharmony_ci	}
17838c2ecf20Sopenharmony_ci	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
17848c2ecf20Sopenharmony_ci		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
17858c2ecf20Sopenharmony_ci	print_conf(conf);
17868c2ecf20Sopenharmony_ci	return err;
17878c2ecf20Sopenharmony_ci}
17888c2ecf20Sopenharmony_ci
17898c2ecf20Sopenharmony_cistatic int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
17908c2ecf20Sopenharmony_ci{
17918c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
17928c2ecf20Sopenharmony_ci	int err = 0;
17938c2ecf20Sopenharmony_ci	int number = rdev->raid_disk;
17948c2ecf20Sopenharmony_ci	struct raid1_info *p = conf->mirrors + number;
17958c2ecf20Sopenharmony_ci
17968c2ecf20Sopenharmony_ci	if (unlikely(number >= conf->raid_disks))
17978c2ecf20Sopenharmony_ci		goto abort;
17988c2ecf20Sopenharmony_ci
17998c2ecf20Sopenharmony_ci	if (rdev != p->rdev)
18008c2ecf20Sopenharmony_ci		p = conf->mirrors + conf->raid_disks + number;
18018c2ecf20Sopenharmony_ci
18028c2ecf20Sopenharmony_ci	print_conf(conf);
18038c2ecf20Sopenharmony_ci	if (rdev == p->rdev) {
18048c2ecf20Sopenharmony_ci		if (test_bit(In_sync, &rdev->flags) ||
18058c2ecf20Sopenharmony_ci		    atomic_read(&rdev->nr_pending)) {
18068c2ecf20Sopenharmony_ci			err = -EBUSY;
18078c2ecf20Sopenharmony_ci			goto abort;
18088c2ecf20Sopenharmony_ci		}
18098c2ecf20Sopenharmony_ci		/* Only remove non-faulty devices if recovery
18108c2ecf20Sopenharmony_ci		 * is not possible.
18118c2ecf20Sopenharmony_ci		 */
18128c2ecf20Sopenharmony_ci		if (!test_bit(Faulty, &rdev->flags) &&
18138c2ecf20Sopenharmony_ci		    mddev->recovery_disabled != conf->recovery_disabled &&
18148c2ecf20Sopenharmony_ci		    mddev->degraded < conf->raid_disks) {
18158c2ecf20Sopenharmony_ci			err = -EBUSY;
18168c2ecf20Sopenharmony_ci			goto abort;
18178c2ecf20Sopenharmony_ci		}
18188c2ecf20Sopenharmony_ci		p->rdev = NULL;
18198c2ecf20Sopenharmony_ci		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
18208c2ecf20Sopenharmony_ci			synchronize_rcu();
18218c2ecf20Sopenharmony_ci			if (atomic_read(&rdev->nr_pending)) {
18228c2ecf20Sopenharmony_ci				/* lost the race, try later */
18238c2ecf20Sopenharmony_ci				err = -EBUSY;
18248c2ecf20Sopenharmony_ci				p->rdev = rdev;
18258c2ecf20Sopenharmony_ci				goto abort;
18268c2ecf20Sopenharmony_ci			}
18278c2ecf20Sopenharmony_ci		}
18288c2ecf20Sopenharmony_ci		if (conf->mirrors[conf->raid_disks + number].rdev) {
18298c2ecf20Sopenharmony_ci			/* We just removed a device that is being replaced.
18308c2ecf20Sopenharmony_ci			 * Move down the replacement.  We drain all IO before
18318c2ecf20Sopenharmony_ci			 * doing this to avoid confusion.
18328c2ecf20Sopenharmony_ci			 */
18338c2ecf20Sopenharmony_ci			struct md_rdev *repl =
18348c2ecf20Sopenharmony_ci				conf->mirrors[conf->raid_disks + number].rdev;
18358c2ecf20Sopenharmony_ci			freeze_array(conf, 0);
18368c2ecf20Sopenharmony_ci			if (atomic_read(&repl->nr_pending)) {
18378c2ecf20Sopenharmony_ci				/* It means that some queued IO of retry_list
18388c2ecf20Sopenharmony_ci				 * hold repl. Thus, we cannot set replacement
18398c2ecf20Sopenharmony_ci				 * as NULL, avoiding rdev NULL pointer
18408c2ecf20Sopenharmony_ci				 * dereference in sync_request_write and
18418c2ecf20Sopenharmony_ci				 * handle_write_finished.
18428c2ecf20Sopenharmony_ci				 */
18438c2ecf20Sopenharmony_ci				err = -EBUSY;
18448c2ecf20Sopenharmony_ci				unfreeze_array(conf);
18458c2ecf20Sopenharmony_ci				goto abort;
18468c2ecf20Sopenharmony_ci			}
18478c2ecf20Sopenharmony_ci			clear_bit(Replacement, &repl->flags);
18488c2ecf20Sopenharmony_ci			p->rdev = repl;
18498c2ecf20Sopenharmony_ci			conf->mirrors[conf->raid_disks + number].rdev = NULL;
18508c2ecf20Sopenharmony_ci			unfreeze_array(conf);
18518c2ecf20Sopenharmony_ci		}
18528c2ecf20Sopenharmony_ci
18538c2ecf20Sopenharmony_ci		clear_bit(WantReplacement, &rdev->flags);
18548c2ecf20Sopenharmony_ci		err = md_integrity_register(mddev);
18558c2ecf20Sopenharmony_ci	}
18568c2ecf20Sopenharmony_ciabort:
18578c2ecf20Sopenharmony_ci
18588c2ecf20Sopenharmony_ci	print_conf(conf);
18598c2ecf20Sopenharmony_ci	return err;
18608c2ecf20Sopenharmony_ci}
18618c2ecf20Sopenharmony_ci
18628c2ecf20Sopenharmony_cistatic void end_sync_read(struct bio *bio)
18638c2ecf20Sopenharmony_ci{
18648c2ecf20Sopenharmony_ci	struct r1bio *r1_bio = get_resync_r1bio(bio);
18658c2ecf20Sopenharmony_ci
18668c2ecf20Sopenharmony_ci	update_head_pos(r1_bio->read_disk, r1_bio);
18678c2ecf20Sopenharmony_ci
18688c2ecf20Sopenharmony_ci	/*
18698c2ecf20Sopenharmony_ci	 * we have read a block, now it needs to be re-written,
18708c2ecf20Sopenharmony_ci	 * or re-read if the read failed.
18718c2ecf20Sopenharmony_ci	 * We don't do much here, just schedule handling by raid1d
18728c2ecf20Sopenharmony_ci	 */
18738c2ecf20Sopenharmony_ci	if (!bio->bi_status)
18748c2ecf20Sopenharmony_ci		set_bit(R1BIO_Uptodate, &r1_bio->state);
18758c2ecf20Sopenharmony_ci
18768c2ecf20Sopenharmony_ci	if (atomic_dec_and_test(&r1_bio->remaining))
18778c2ecf20Sopenharmony_ci		reschedule_retry(r1_bio);
18788c2ecf20Sopenharmony_ci}
18798c2ecf20Sopenharmony_ci
18808c2ecf20Sopenharmony_cistatic void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
18818c2ecf20Sopenharmony_ci{
18828c2ecf20Sopenharmony_ci	sector_t sync_blocks = 0;
18838c2ecf20Sopenharmony_ci	sector_t s = r1_bio->sector;
18848c2ecf20Sopenharmony_ci	long sectors_to_go = r1_bio->sectors;
18858c2ecf20Sopenharmony_ci
18868c2ecf20Sopenharmony_ci	/* make sure these bits don't get cleared. */
18878c2ecf20Sopenharmony_ci	do {
18888c2ecf20Sopenharmony_ci		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
18898c2ecf20Sopenharmony_ci		s += sync_blocks;
18908c2ecf20Sopenharmony_ci		sectors_to_go -= sync_blocks;
18918c2ecf20Sopenharmony_ci	} while (sectors_to_go > 0);
18928c2ecf20Sopenharmony_ci}
18938c2ecf20Sopenharmony_ci
18948c2ecf20Sopenharmony_cistatic void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
18958c2ecf20Sopenharmony_ci{
18968c2ecf20Sopenharmony_ci	if (atomic_dec_and_test(&r1_bio->remaining)) {
18978c2ecf20Sopenharmony_ci		struct mddev *mddev = r1_bio->mddev;
18988c2ecf20Sopenharmony_ci		int s = r1_bio->sectors;
18998c2ecf20Sopenharmony_ci
19008c2ecf20Sopenharmony_ci		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
19018c2ecf20Sopenharmony_ci		    test_bit(R1BIO_WriteError, &r1_bio->state))
19028c2ecf20Sopenharmony_ci			reschedule_retry(r1_bio);
19038c2ecf20Sopenharmony_ci		else {
19048c2ecf20Sopenharmony_ci			put_buf(r1_bio);
19058c2ecf20Sopenharmony_ci			md_done_sync(mddev, s, uptodate);
19068c2ecf20Sopenharmony_ci		}
19078c2ecf20Sopenharmony_ci	}
19088c2ecf20Sopenharmony_ci}
19098c2ecf20Sopenharmony_ci
19108c2ecf20Sopenharmony_cistatic void end_sync_write(struct bio *bio)
19118c2ecf20Sopenharmony_ci{
19128c2ecf20Sopenharmony_ci	int uptodate = !bio->bi_status;
19138c2ecf20Sopenharmony_ci	struct r1bio *r1_bio = get_resync_r1bio(bio);
19148c2ecf20Sopenharmony_ci	struct mddev *mddev = r1_bio->mddev;
19158c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
19168c2ecf20Sopenharmony_ci	sector_t first_bad;
19178c2ecf20Sopenharmony_ci	int bad_sectors;
19188c2ecf20Sopenharmony_ci	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
19198c2ecf20Sopenharmony_ci
19208c2ecf20Sopenharmony_ci	if (!uptodate) {
19218c2ecf20Sopenharmony_ci		abort_sync_write(mddev, r1_bio);
19228c2ecf20Sopenharmony_ci		set_bit(WriteErrorSeen, &rdev->flags);
19238c2ecf20Sopenharmony_ci		if (!test_and_set_bit(WantReplacement, &rdev->flags))
19248c2ecf20Sopenharmony_ci			set_bit(MD_RECOVERY_NEEDED, &
19258c2ecf20Sopenharmony_ci				mddev->recovery);
19268c2ecf20Sopenharmony_ci		set_bit(R1BIO_WriteError, &r1_bio->state);
19278c2ecf20Sopenharmony_ci	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
19288c2ecf20Sopenharmony_ci			       &first_bad, &bad_sectors) &&
19298c2ecf20Sopenharmony_ci		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
19308c2ecf20Sopenharmony_ci				r1_bio->sector,
19318c2ecf20Sopenharmony_ci				r1_bio->sectors,
19328c2ecf20Sopenharmony_ci				&first_bad, &bad_sectors)
19338c2ecf20Sopenharmony_ci		)
19348c2ecf20Sopenharmony_ci		set_bit(R1BIO_MadeGood, &r1_bio->state);
19358c2ecf20Sopenharmony_ci
19368c2ecf20Sopenharmony_ci	put_sync_write_buf(r1_bio, uptodate);
19378c2ecf20Sopenharmony_ci}
19388c2ecf20Sopenharmony_ci
19398c2ecf20Sopenharmony_cistatic int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
19408c2ecf20Sopenharmony_ci			    int sectors, struct page *page, int rw)
19418c2ecf20Sopenharmony_ci{
19428c2ecf20Sopenharmony_ci	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
19438c2ecf20Sopenharmony_ci		/* success */
19448c2ecf20Sopenharmony_ci		return 1;
19458c2ecf20Sopenharmony_ci	if (rw == WRITE) {
19468c2ecf20Sopenharmony_ci		set_bit(WriteErrorSeen, &rdev->flags);
19478c2ecf20Sopenharmony_ci		if (!test_and_set_bit(WantReplacement,
19488c2ecf20Sopenharmony_ci				      &rdev->flags))
19498c2ecf20Sopenharmony_ci			set_bit(MD_RECOVERY_NEEDED, &
19508c2ecf20Sopenharmony_ci				rdev->mddev->recovery);
19518c2ecf20Sopenharmony_ci	}
19528c2ecf20Sopenharmony_ci	/* need to record an error - either for the block or the device */
19538c2ecf20Sopenharmony_ci	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
19548c2ecf20Sopenharmony_ci		md_error(rdev->mddev, rdev);
19558c2ecf20Sopenharmony_ci	return 0;
19568c2ecf20Sopenharmony_ci}
19578c2ecf20Sopenharmony_ci
19588c2ecf20Sopenharmony_cistatic int fix_sync_read_error(struct r1bio *r1_bio)
19598c2ecf20Sopenharmony_ci{
19608c2ecf20Sopenharmony_ci	/* Try some synchronous reads of other devices to get
19618c2ecf20Sopenharmony_ci	 * good data, much like with normal read errors.  Only
19628c2ecf20Sopenharmony_ci	 * read into the pages we already have so we don't
19638c2ecf20Sopenharmony_ci	 * need to re-issue the read request.
19648c2ecf20Sopenharmony_ci	 * We don't need to freeze the array, because being in an
19658c2ecf20Sopenharmony_ci	 * active sync request, there is no normal IO, and
19668c2ecf20Sopenharmony_ci	 * no overlapping syncs.
19678c2ecf20Sopenharmony_ci	 * We don't need to check is_badblock() again as we
19688c2ecf20Sopenharmony_ci	 * made sure that anything with a bad block in range
19698c2ecf20Sopenharmony_ci	 * will have bi_end_io clear.
19708c2ecf20Sopenharmony_ci	 */
19718c2ecf20Sopenharmony_ci	struct mddev *mddev = r1_bio->mddev;
19728c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
19738c2ecf20Sopenharmony_ci	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
19748c2ecf20Sopenharmony_ci	struct page **pages = get_resync_pages(bio)->pages;
19758c2ecf20Sopenharmony_ci	sector_t sect = r1_bio->sector;
19768c2ecf20Sopenharmony_ci	int sectors = r1_bio->sectors;
19778c2ecf20Sopenharmony_ci	int idx = 0;
19788c2ecf20Sopenharmony_ci	struct md_rdev *rdev;
19798c2ecf20Sopenharmony_ci
19808c2ecf20Sopenharmony_ci	rdev = conf->mirrors[r1_bio->read_disk].rdev;
19818c2ecf20Sopenharmony_ci	if (test_bit(FailFast, &rdev->flags)) {
19828c2ecf20Sopenharmony_ci		/* Don't try recovering from here - just fail it
19838c2ecf20Sopenharmony_ci		 * ... unless it is the last working device of course */
19848c2ecf20Sopenharmony_ci		md_error(mddev, rdev);
19858c2ecf20Sopenharmony_ci		if (test_bit(Faulty, &rdev->flags))
19868c2ecf20Sopenharmony_ci			/* Don't try to read from here, but make sure
19878c2ecf20Sopenharmony_ci			 * put_buf does it's thing
19888c2ecf20Sopenharmony_ci			 */
19898c2ecf20Sopenharmony_ci			bio->bi_end_io = end_sync_write;
19908c2ecf20Sopenharmony_ci	}
19918c2ecf20Sopenharmony_ci
19928c2ecf20Sopenharmony_ci	while(sectors) {
19938c2ecf20Sopenharmony_ci		int s = sectors;
19948c2ecf20Sopenharmony_ci		int d = r1_bio->read_disk;
19958c2ecf20Sopenharmony_ci		int success = 0;
19968c2ecf20Sopenharmony_ci		int start;
19978c2ecf20Sopenharmony_ci
19988c2ecf20Sopenharmony_ci		if (s > (PAGE_SIZE>>9))
19998c2ecf20Sopenharmony_ci			s = PAGE_SIZE >> 9;
20008c2ecf20Sopenharmony_ci		do {
20018c2ecf20Sopenharmony_ci			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
20028c2ecf20Sopenharmony_ci				/* No rcu protection needed here devices
20038c2ecf20Sopenharmony_ci				 * can only be removed when no resync is
20048c2ecf20Sopenharmony_ci				 * active, and resync is currently active
20058c2ecf20Sopenharmony_ci				 */
20068c2ecf20Sopenharmony_ci				rdev = conf->mirrors[d].rdev;
20078c2ecf20Sopenharmony_ci				if (sync_page_io(rdev, sect, s<<9,
20088c2ecf20Sopenharmony_ci						 pages[idx],
20098c2ecf20Sopenharmony_ci						 REQ_OP_READ, 0, false)) {
20108c2ecf20Sopenharmony_ci					success = 1;
20118c2ecf20Sopenharmony_ci					break;
20128c2ecf20Sopenharmony_ci				}
20138c2ecf20Sopenharmony_ci			}
20148c2ecf20Sopenharmony_ci			d++;
20158c2ecf20Sopenharmony_ci			if (d == conf->raid_disks * 2)
20168c2ecf20Sopenharmony_ci				d = 0;
20178c2ecf20Sopenharmony_ci		} while (!success && d != r1_bio->read_disk);
20188c2ecf20Sopenharmony_ci
20198c2ecf20Sopenharmony_ci		if (!success) {
20208c2ecf20Sopenharmony_ci			char b[BDEVNAME_SIZE];
20218c2ecf20Sopenharmony_ci			int abort = 0;
20228c2ecf20Sopenharmony_ci			/* Cannot read from anywhere, this block is lost.
20238c2ecf20Sopenharmony_ci			 * Record a bad block on each device.  If that doesn't
20248c2ecf20Sopenharmony_ci			 * work just disable and interrupt the recovery.
20258c2ecf20Sopenharmony_ci			 * Don't fail devices as that won't really help.
20268c2ecf20Sopenharmony_ci			 */
20278c2ecf20Sopenharmony_ci			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
20288c2ecf20Sopenharmony_ci					    mdname(mddev), bio_devname(bio, b),
20298c2ecf20Sopenharmony_ci					    (unsigned long long)r1_bio->sector);
20308c2ecf20Sopenharmony_ci			for (d = 0; d < conf->raid_disks * 2; d++) {
20318c2ecf20Sopenharmony_ci				rdev = conf->mirrors[d].rdev;
20328c2ecf20Sopenharmony_ci				if (!rdev || test_bit(Faulty, &rdev->flags))
20338c2ecf20Sopenharmony_ci					continue;
20348c2ecf20Sopenharmony_ci				if (!rdev_set_badblocks(rdev, sect, s, 0))
20358c2ecf20Sopenharmony_ci					abort = 1;
20368c2ecf20Sopenharmony_ci			}
20378c2ecf20Sopenharmony_ci			if (abort) {
20388c2ecf20Sopenharmony_ci				conf->recovery_disabled =
20398c2ecf20Sopenharmony_ci					mddev->recovery_disabled;
20408c2ecf20Sopenharmony_ci				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
20418c2ecf20Sopenharmony_ci				md_done_sync(mddev, r1_bio->sectors, 0);
20428c2ecf20Sopenharmony_ci				put_buf(r1_bio);
20438c2ecf20Sopenharmony_ci				return 0;
20448c2ecf20Sopenharmony_ci			}
20458c2ecf20Sopenharmony_ci			/* Try next page */
20468c2ecf20Sopenharmony_ci			sectors -= s;
20478c2ecf20Sopenharmony_ci			sect += s;
20488c2ecf20Sopenharmony_ci			idx++;
20498c2ecf20Sopenharmony_ci			continue;
20508c2ecf20Sopenharmony_ci		}
20518c2ecf20Sopenharmony_ci
20528c2ecf20Sopenharmony_ci		start = d;
20538c2ecf20Sopenharmony_ci		/* write it back and re-read */
20548c2ecf20Sopenharmony_ci		while (d != r1_bio->read_disk) {
20558c2ecf20Sopenharmony_ci			if (d == 0)
20568c2ecf20Sopenharmony_ci				d = conf->raid_disks * 2;
20578c2ecf20Sopenharmony_ci			d--;
20588c2ecf20Sopenharmony_ci			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
20598c2ecf20Sopenharmony_ci				continue;
20608c2ecf20Sopenharmony_ci			rdev = conf->mirrors[d].rdev;
20618c2ecf20Sopenharmony_ci			if (r1_sync_page_io(rdev, sect, s,
20628c2ecf20Sopenharmony_ci					    pages[idx],
20638c2ecf20Sopenharmony_ci					    WRITE) == 0) {
20648c2ecf20Sopenharmony_ci				r1_bio->bios[d]->bi_end_io = NULL;
20658c2ecf20Sopenharmony_ci				rdev_dec_pending(rdev, mddev);
20668c2ecf20Sopenharmony_ci			}
20678c2ecf20Sopenharmony_ci		}
20688c2ecf20Sopenharmony_ci		d = start;
20698c2ecf20Sopenharmony_ci		while (d != r1_bio->read_disk) {
20708c2ecf20Sopenharmony_ci			if (d == 0)
20718c2ecf20Sopenharmony_ci				d = conf->raid_disks * 2;
20728c2ecf20Sopenharmony_ci			d--;
20738c2ecf20Sopenharmony_ci			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
20748c2ecf20Sopenharmony_ci				continue;
20758c2ecf20Sopenharmony_ci			rdev = conf->mirrors[d].rdev;
20768c2ecf20Sopenharmony_ci			if (r1_sync_page_io(rdev, sect, s,
20778c2ecf20Sopenharmony_ci					    pages[idx],
20788c2ecf20Sopenharmony_ci					    READ) != 0)
20798c2ecf20Sopenharmony_ci				atomic_add(s, &rdev->corrected_errors);
20808c2ecf20Sopenharmony_ci		}
20818c2ecf20Sopenharmony_ci		sectors -= s;
20828c2ecf20Sopenharmony_ci		sect += s;
20838c2ecf20Sopenharmony_ci		idx ++;
20848c2ecf20Sopenharmony_ci	}
20858c2ecf20Sopenharmony_ci	set_bit(R1BIO_Uptodate, &r1_bio->state);
20868c2ecf20Sopenharmony_ci	bio->bi_status = 0;
20878c2ecf20Sopenharmony_ci	return 1;
20888c2ecf20Sopenharmony_ci}
20898c2ecf20Sopenharmony_ci
20908c2ecf20Sopenharmony_cistatic void process_checks(struct r1bio *r1_bio)
20918c2ecf20Sopenharmony_ci{
20928c2ecf20Sopenharmony_ci	/* We have read all readable devices.  If we haven't
20938c2ecf20Sopenharmony_ci	 * got the block, then there is no hope left.
20948c2ecf20Sopenharmony_ci	 * If we have, then we want to do a comparison
20958c2ecf20Sopenharmony_ci	 * and skip the write if everything is the same.
20968c2ecf20Sopenharmony_ci	 * If any blocks failed to read, then we need to
20978c2ecf20Sopenharmony_ci	 * attempt an over-write
20988c2ecf20Sopenharmony_ci	 */
20998c2ecf20Sopenharmony_ci	struct mddev *mddev = r1_bio->mddev;
21008c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
21018c2ecf20Sopenharmony_ci	int primary;
21028c2ecf20Sopenharmony_ci	int i;
21038c2ecf20Sopenharmony_ci	int vcnt;
21048c2ecf20Sopenharmony_ci
21058c2ecf20Sopenharmony_ci	/* Fix variable parts of all bios */
21068c2ecf20Sopenharmony_ci	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
21078c2ecf20Sopenharmony_ci	for (i = 0; i < conf->raid_disks * 2; i++) {
21088c2ecf20Sopenharmony_ci		blk_status_t status;
21098c2ecf20Sopenharmony_ci		struct bio *b = r1_bio->bios[i];
21108c2ecf20Sopenharmony_ci		struct resync_pages *rp = get_resync_pages(b);
21118c2ecf20Sopenharmony_ci		if (b->bi_end_io != end_sync_read)
21128c2ecf20Sopenharmony_ci			continue;
21138c2ecf20Sopenharmony_ci		/* fixup the bio for reuse, but preserve errno */
21148c2ecf20Sopenharmony_ci		status = b->bi_status;
21158c2ecf20Sopenharmony_ci		bio_reset(b);
21168c2ecf20Sopenharmony_ci		b->bi_status = status;
21178c2ecf20Sopenharmony_ci		b->bi_iter.bi_sector = r1_bio->sector +
21188c2ecf20Sopenharmony_ci			conf->mirrors[i].rdev->data_offset;
21198c2ecf20Sopenharmony_ci		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
21208c2ecf20Sopenharmony_ci		b->bi_end_io = end_sync_read;
21218c2ecf20Sopenharmony_ci		rp->raid_bio = r1_bio;
21228c2ecf20Sopenharmony_ci		b->bi_private = rp;
21238c2ecf20Sopenharmony_ci
21248c2ecf20Sopenharmony_ci		/* initialize bvec table again */
21258c2ecf20Sopenharmony_ci		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
21268c2ecf20Sopenharmony_ci	}
21278c2ecf20Sopenharmony_ci	for (primary = 0; primary < conf->raid_disks * 2; primary++)
21288c2ecf20Sopenharmony_ci		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
21298c2ecf20Sopenharmony_ci		    !r1_bio->bios[primary]->bi_status) {
21308c2ecf20Sopenharmony_ci			r1_bio->bios[primary]->bi_end_io = NULL;
21318c2ecf20Sopenharmony_ci			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
21328c2ecf20Sopenharmony_ci			break;
21338c2ecf20Sopenharmony_ci		}
21348c2ecf20Sopenharmony_ci	r1_bio->read_disk = primary;
21358c2ecf20Sopenharmony_ci	for (i = 0; i < conf->raid_disks * 2; i++) {
21368c2ecf20Sopenharmony_ci		int j = 0;
21378c2ecf20Sopenharmony_ci		struct bio *pbio = r1_bio->bios[primary];
21388c2ecf20Sopenharmony_ci		struct bio *sbio = r1_bio->bios[i];
21398c2ecf20Sopenharmony_ci		blk_status_t status = sbio->bi_status;
21408c2ecf20Sopenharmony_ci		struct page **ppages = get_resync_pages(pbio)->pages;
21418c2ecf20Sopenharmony_ci		struct page **spages = get_resync_pages(sbio)->pages;
21428c2ecf20Sopenharmony_ci		struct bio_vec *bi;
21438c2ecf20Sopenharmony_ci		int page_len[RESYNC_PAGES] = { 0 };
21448c2ecf20Sopenharmony_ci		struct bvec_iter_all iter_all;
21458c2ecf20Sopenharmony_ci
21468c2ecf20Sopenharmony_ci		if (sbio->bi_end_io != end_sync_read)
21478c2ecf20Sopenharmony_ci			continue;
21488c2ecf20Sopenharmony_ci		/* Now we can 'fixup' the error value */
21498c2ecf20Sopenharmony_ci		sbio->bi_status = 0;
21508c2ecf20Sopenharmony_ci
21518c2ecf20Sopenharmony_ci		bio_for_each_segment_all(bi, sbio, iter_all)
21528c2ecf20Sopenharmony_ci			page_len[j++] = bi->bv_len;
21538c2ecf20Sopenharmony_ci
21548c2ecf20Sopenharmony_ci		if (!status) {
21558c2ecf20Sopenharmony_ci			for (j = vcnt; j-- ; ) {
21568c2ecf20Sopenharmony_ci				if (memcmp(page_address(ppages[j]),
21578c2ecf20Sopenharmony_ci					   page_address(spages[j]),
21588c2ecf20Sopenharmony_ci					   page_len[j]))
21598c2ecf20Sopenharmony_ci					break;
21608c2ecf20Sopenharmony_ci			}
21618c2ecf20Sopenharmony_ci		} else
21628c2ecf20Sopenharmony_ci			j = 0;
21638c2ecf20Sopenharmony_ci		if (j >= 0)
21648c2ecf20Sopenharmony_ci			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
21658c2ecf20Sopenharmony_ci		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
21668c2ecf20Sopenharmony_ci			      && !status)) {
21678c2ecf20Sopenharmony_ci			/* No need to write to this device. */
21688c2ecf20Sopenharmony_ci			sbio->bi_end_io = NULL;
21698c2ecf20Sopenharmony_ci			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
21708c2ecf20Sopenharmony_ci			continue;
21718c2ecf20Sopenharmony_ci		}
21728c2ecf20Sopenharmony_ci
21738c2ecf20Sopenharmony_ci		bio_copy_data(sbio, pbio);
21748c2ecf20Sopenharmony_ci	}
21758c2ecf20Sopenharmony_ci}
21768c2ecf20Sopenharmony_ci
21778c2ecf20Sopenharmony_cistatic void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
21788c2ecf20Sopenharmony_ci{
21798c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
21808c2ecf20Sopenharmony_ci	int i;
21818c2ecf20Sopenharmony_ci	int disks = conf->raid_disks * 2;
21828c2ecf20Sopenharmony_ci	struct bio *wbio;
21838c2ecf20Sopenharmony_ci
21848c2ecf20Sopenharmony_ci	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
21858c2ecf20Sopenharmony_ci		/* ouch - failed to read all of that. */
21868c2ecf20Sopenharmony_ci		if (!fix_sync_read_error(r1_bio))
21878c2ecf20Sopenharmony_ci			return;
21888c2ecf20Sopenharmony_ci
21898c2ecf20Sopenharmony_ci	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
21908c2ecf20Sopenharmony_ci		process_checks(r1_bio);
21918c2ecf20Sopenharmony_ci
21928c2ecf20Sopenharmony_ci	/*
21938c2ecf20Sopenharmony_ci	 * schedule writes
21948c2ecf20Sopenharmony_ci	 */
21958c2ecf20Sopenharmony_ci	atomic_set(&r1_bio->remaining, 1);
21968c2ecf20Sopenharmony_ci	for (i = 0; i < disks ; i++) {
21978c2ecf20Sopenharmony_ci		wbio = r1_bio->bios[i];
21988c2ecf20Sopenharmony_ci		if (wbio->bi_end_io == NULL ||
21998c2ecf20Sopenharmony_ci		    (wbio->bi_end_io == end_sync_read &&
22008c2ecf20Sopenharmony_ci		     (i == r1_bio->read_disk ||
22018c2ecf20Sopenharmony_ci		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
22028c2ecf20Sopenharmony_ci			continue;
22038c2ecf20Sopenharmony_ci		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
22048c2ecf20Sopenharmony_ci			abort_sync_write(mddev, r1_bio);
22058c2ecf20Sopenharmony_ci			continue;
22068c2ecf20Sopenharmony_ci		}
22078c2ecf20Sopenharmony_ci
22088c2ecf20Sopenharmony_ci		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
22098c2ecf20Sopenharmony_ci		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
22108c2ecf20Sopenharmony_ci			wbio->bi_opf |= MD_FAILFAST;
22118c2ecf20Sopenharmony_ci
22128c2ecf20Sopenharmony_ci		wbio->bi_end_io = end_sync_write;
22138c2ecf20Sopenharmony_ci		atomic_inc(&r1_bio->remaining);
22148c2ecf20Sopenharmony_ci		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
22158c2ecf20Sopenharmony_ci
22168c2ecf20Sopenharmony_ci		submit_bio_noacct(wbio);
22178c2ecf20Sopenharmony_ci	}
22188c2ecf20Sopenharmony_ci
22198c2ecf20Sopenharmony_ci	put_sync_write_buf(r1_bio, 1);
22208c2ecf20Sopenharmony_ci}
22218c2ecf20Sopenharmony_ci
22228c2ecf20Sopenharmony_ci/*
22238c2ecf20Sopenharmony_ci * This is a kernel thread which:
22248c2ecf20Sopenharmony_ci *
22258c2ecf20Sopenharmony_ci *	1.	Retries failed read operations on working mirrors.
22268c2ecf20Sopenharmony_ci *	2.	Updates the raid superblock when problems encounter.
22278c2ecf20Sopenharmony_ci *	3.	Performs writes following reads for array synchronising.
22288c2ecf20Sopenharmony_ci */
22298c2ecf20Sopenharmony_ci
22308c2ecf20Sopenharmony_cistatic void fix_read_error(struct r1conf *conf, int read_disk,
22318c2ecf20Sopenharmony_ci			   sector_t sect, int sectors)
22328c2ecf20Sopenharmony_ci{
22338c2ecf20Sopenharmony_ci	struct mddev *mddev = conf->mddev;
22348c2ecf20Sopenharmony_ci	while(sectors) {
22358c2ecf20Sopenharmony_ci		int s = sectors;
22368c2ecf20Sopenharmony_ci		int d = read_disk;
22378c2ecf20Sopenharmony_ci		int success = 0;
22388c2ecf20Sopenharmony_ci		int start;
22398c2ecf20Sopenharmony_ci		struct md_rdev *rdev;
22408c2ecf20Sopenharmony_ci
22418c2ecf20Sopenharmony_ci		if (s > (PAGE_SIZE>>9))
22428c2ecf20Sopenharmony_ci			s = PAGE_SIZE >> 9;
22438c2ecf20Sopenharmony_ci
22448c2ecf20Sopenharmony_ci		do {
22458c2ecf20Sopenharmony_ci			sector_t first_bad;
22468c2ecf20Sopenharmony_ci			int bad_sectors;
22478c2ecf20Sopenharmony_ci
22488c2ecf20Sopenharmony_ci			rcu_read_lock();
22498c2ecf20Sopenharmony_ci			rdev = rcu_dereference(conf->mirrors[d].rdev);
22508c2ecf20Sopenharmony_ci			if (rdev &&
22518c2ecf20Sopenharmony_ci			    (test_bit(In_sync, &rdev->flags) ||
22528c2ecf20Sopenharmony_ci			     (!test_bit(Faulty, &rdev->flags) &&
22538c2ecf20Sopenharmony_ci			      rdev->recovery_offset >= sect + s)) &&
22548c2ecf20Sopenharmony_ci			    is_badblock(rdev, sect, s,
22558c2ecf20Sopenharmony_ci					&first_bad, &bad_sectors) == 0) {
22568c2ecf20Sopenharmony_ci				atomic_inc(&rdev->nr_pending);
22578c2ecf20Sopenharmony_ci				rcu_read_unlock();
22588c2ecf20Sopenharmony_ci				if (sync_page_io(rdev, sect, s<<9,
22598c2ecf20Sopenharmony_ci					 conf->tmppage, REQ_OP_READ, 0, false))
22608c2ecf20Sopenharmony_ci					success = 1;
22618c2ecf20Sopenharmony_ci				rdev_dec_pending(rdev, mddev);
22628c2ecf20Sopenharmony_ci				if (success)
22638c2ecf20Sopenharmony_ci					break;
22648c2ecf20Sopenharmony_ci			} else
22658c2ecf20Sopenharmony_ci				rcu_read_unlock();
22668c2ecf20Sopenharmony_ci			d++;
22678c2ecf20Sopenharmony_ci			if (d == conf->raid_disks * 2)
22688c2ecf20Sopenharmony_ci				d = 0;
22698c2ecf20Sopenharmony_ci		} while (!success && d != read_disk);
22708c2ecf20Sopenharmony_ci
22718c2ecf20Sopenharmony_ci		if (!success) {
22728c2ecf20Sopenharmony_ci			/* Cannot read from anywhere - mark it bad */
22738c2ecf20Sopenharmony_ci			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
22748c2ecf20Sopenharmony_ci			if (!rdev_set_badblocks(rdev, sect, s, 0))
22758c2ecf20Sopenharmony_ci				md_error(mddev, rdev);
22768c2ecf20Sopenharmony_ci			break;
22778c2ecf20Sopenharmony_ci		}
22788c2ecf20Sopenharmony_ci		/* write it back and re-read */
22798c2ecf20Sopenharmony_ci		start = d;
22808c2ecf20Sopenharmony_ci		while (d != read_disk) {
22818c2ecf20Sopenharmony_ci			if (d==0)
22828c2ecf20Sopenharmony_ci				d = conf->raid_disks * 2;
22838c2ecf20Sopenharmony_ci			d--;
22848c2ecf20Sopenharmony_ci			rcu_read_lock();
22858c2ecf20Sopenharmony_ci			rdev = rcu_dereference(conf->mirrors[d].rdev);
22868c2ecf20Sopenharmony_ci			if (rdev &&
22878c2ecf20Sopenharmony_ci			    !test_bit(Faulty, &rdev->flags)) {
22888c2ecf20Sopenharmony_ci				atomic_inc(&rdev->nr_pending);
22898c2ecf20Sopenharmony_ci				rcu_read_unlock();
22908c2ecf20Sopenharmony_ci				r1_sync_page_io(rdev, sect, s,
22918c2ecf20Sopenharmony_ci						conf->tmppage, WRITE);
22928c2ecf20Sopenharmony_ci				rdev_dec_pending(rdev, mddev);
22938c2ecf20Sopenharmony_ci			} else
22948c2ecf20Sopenharmony_ci				rcu_read_unlock();
22958c2ecf20Sopenharmony_ci		}
22968c2ecf20Sopenharmony_ci		d = start;
22978c2ecf20Sopenharmony_ci		while (d != read_disk) {
22988c2ecf20Sopenharmony_ci			char b[BDEVNAME_SIZE];
22998c2ecf20Sopenharmony_ci			if (d==0)
23008c2ecf20Sopenharmony_ci				d = conf->raid_disks * 2;
23018c2ecf20Sopenharmony_ci			d--;
23028c2ecf20Sopenharmony_ci			rcu_read_lock();
23038c2ecf20Sopenharmony_ci			rdev = rcu_dereference(conf->mirrors[d].rdev);
23048c2ecf20Sopenharmony_ci			if (rdev &&
23058c2ecf20Sopenharmony_ci			    !test_bit(Faulty, &rdev->flags)) {
23068c2ecf20Sopenharmony_ci				atomic_inc(&rdev->nr_pending);
23078c2ecf20Sopenharmony_ci				rcu_read_unlock();
23088c2ecf20Sopenharmony_ci				if (r1_sync_page_io(rdev, sect, s,
23098c2ecf20Sopenharmony_ci						    conf->tmppage, READ)) {
23108c2ecf20Sopenharmony_ci					atomic_add(s, &rdev->corrected_errors);
23118c2ecf20Sopenharmony_ci					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
23128c2ecf20Sopenharmony_ci						mdname(mddev), s,
23138c2ecf20Sopenharmony_ci						(unsigned long long)(sect +
23148c2ecf20Sopenharmony_ci								     rdev->data_offset),
23158c2ecf20Sopenharmony_ci						bdevname(rdev->bdev, b));
23168c2ecf20Sopenharmony_ci				}
23178c2ecf20Sopenharmony_ci				rdev_dec_pending(rdev, mddev);
23188c2ecf20Sopenharmony_ci			} else
23198c2ecf20Sopenharmony_ci				rcu_read_unlock();
23208c2ecf20Sopenharmony_ci		}
23218c2ecf20Sopenharmony_ci		sectors -= s;
23228c2ecf20Sopenharmony_ci		sect += s;
23238c2ecf20Sopenharmony_ci	}
23248c2ecf20Sopenharmony_ci}
23258c2ecf20Sopenharmony_ci
23268c2ecf20Sopenharmony_cistatic int narrow_write_error(struct r1bio *r1_bio, int i)
23278c2ecf20Sopenharmony_ci{
23288c2ecf20Sopenharmony_ci	struct mddev *mddev = r1_bio->mddev;
23298c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
23308c2ecf20Sopenharmony_ci	struct md_rdev *rdev = conf->mirrors[i].rdev;
23318c2ecf20Sopenharmony_ci
23328c2ecf20Sopenharmony_ci	/* bio has the data to be written to device 'i' where
23338c2ecf20Sopenharmony_ci	 * we just recently had a write error.
23348c2ecf20Sopenharmony_ci	 * We repeatedly clone the bio and trim down to one block,
23358c2ecf20Sopenharmony_ci	 * then try the write.  Where the write fails we record
23368c2ecf20Sopenharmony_ci	 * a bad block.
23378c2ecf20Sopenharmony_ci	 * It is conceivable that the bio doesn't exactly align with
23388c2ecf20Sopenharmony_ci	 * blocks.  We must handle this somehow.
23398c2ecf20Sopenharmony_ci	 *
23408c2ecf20Sopenharmony_ci	 * We currently own a reference on the rdev.
23418c2ecf20Sopenharmony_ci	 */
23428c2ecf20Sopenharmony_ci
23438c2ecf20Sopenharmony_ci	int block_sectors;
23448c2ecf20Sopenharmony_ci	sector_t sector;
23458c2ecf20Sopenharmony_ci	int sectors;
23468c2ecf20Sopenharmony_ci	int sect_to_write = r1_bio->sectors;
23478c2ecf20Sopenharmony_ci	int ok = 1;
23488c2ecf20Sopenharmony_ci
23498c2ecf20Sopenharmony_ci	if (rdev->badblocks.shift < 0)
23508c2ecf20Sopenharmony_ci		return 0;
23518c2ecf20Sopenharmony_ci
23528c2ecf20Sopenharmony_ci	block_sectors = roundup(1 << rdev->badblocks.shift,
23538c2ecf20Sopenharmony_ci				bdev_logical_block_size(rdev->bdev) >> 9);
23548c2ecf20Sopenharmony_ci	sector = r1_bio->sector;
23558c2ecf20Sopenharmony_ci	sectors = ((sector + block_sectors)
23568c2ecf20Sopenharmony_ci		   & ~(sector_t)(block_sectors - 1))
23578c2ecf20Sopenharmony_ci		- sector;
23588c2ecf20Sopenharmony_ci
23598c2ecf20Sopenharmony_ci	while (sect_to_write) {
23608c2ecf20Sopenharmony_ci		struct bio *wbio;
23618c2ecf20Sopenharmony_ci		if (sectors > sect_to_write)
23628c2ecf20Sopenharmony_ci			sectors = sect_to_write;
23638c2ecf20Sopenharmony_ci		/* Write at 'sector' for 'sectors'*/
23648c2ecf20Sopenharmony_ci
23658c2ecf20Sopenharmony_ci		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
23668c2ecf20Sopenharmony_ci			wbio = bio_clone_fast(r1_bio->behind_master_bio,
23678c2ecf20Sopenharmony_ci					      GFP_NOIO,
23688c2ecf20Sopenharmony_ci					      &mddev->bio_set);
23698c2ecf20Sopenharmony_ci		} else {
23708c2ecf20Sopenharmony_ci			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
23718c2ecf20Sopenharmony_ci					      &mddev->bio_set);
23728c2ecf20Sopenharmony_ci		}
23738c2ecf20Sopenharmony_ci
23748c2ecf20Sopenharmony_ci		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
23758c2ecf20Sopenharmony_ci		wbio->bi_iter.bi_sector = r1_bio->sector;
23768c2ecf20Sopenharmony_ci		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
23778c2ecf20Sopenharmony_ci
23788c2ecf20Sopenharmony_ci		bio_trim(wbio, sector - r1_bio->sector, sectors);
23798c2ecf20Sopenharmony_ci		wbio->bi_iter.bi_sector += rdev->data_offset;
23808c2ecf20Sopenharmony_ci		bio_set_dev(wbio, rdev->bdev);
23818c2ecf20Sopenharmony_ci
23828c2ecf20Sopenharmony_ci		if (submit_bio_wait(wbio) < 0)
23838c2ecf20Sopenharmony_ci			/* failure! */
23848c2ecf20Sopenharmony_ci			ok = rdev_set_badblocks(rdev, sector,
23858c2ecf20Sopenharmony_ci						sectors, 0)
23868c2ecf20Sopenharmony_ci				&& ok;
23878c2ecf20Sopenharmony_ci
23888c2ecf20Sopenharmony_ci		bio_put(wbio);
23898c2ecf20Sopenharmony_ci		sect_to_write -= sectors;
23908c2ecf20Sopenharmony_ci		sector += sectors;
23918c2ecf20Sopenharmony_ci		sectors = block_sectors;
23928c2ecf20Sopenharmony_ci	}
23938c2ecf20Sopenharmony_ci	return ok;
23948c2ecf20Sopenharmony_ci}
23958c2ecf20Sopenharmony_ci
23968c2ecf20Sopenharmony_cistatic void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
23978c2ecf20Sopenharmony_ci{
23988c2ecf20Sopenharmony_ci	int m;
23998c2ecf20Sopenharmony_ci	int s = r1_bio->sectors;
24008c2ecf20Sopenharmony_ci	for (m = 0; m < conf->raid_disks * 2 ; m++) {
24018c2ecf20Sopenharmony_ci		struct md_rdev *rdev = conf->mirrors[m].rdev;
24028c2ecf20Sopenharmony_ci		struct bio *bio = r1_bio->bios[m];
24038c2ecf20Sopenharmony_ci		if (bio->bi_end_io == NULL)
24048c2ecf20Sopenharmony_ci			continue;
24058c2ecf20Sopenharmony_ci		if (!bio->bi_status &&
24068c2ecf20Sopenharmony_ci		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
24078c2ecf20Sopenharmony_ci			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
24088c2ecf20Sopenharmony_ci		}
24098c2ecf20Sopenharmony_ci		if (bio->bi_status &&
24108c2ecf20Sopenharmony_ci		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
24118c2ecf20Sopenharmony_ci			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
24128c2ecf20Sopenharmony_ci				md_error(conf->mddev, rdev);
24138c2ecf20Sopenharmony_ci		}
24148c2ecf20Sopenharmony_ci	}
24158c2ecf20Sopenharmony_ci	put_buf(r1_bio);
24168c2ecf20Sopenharmony_ci	md_done_sync(conf->mddev, s, 1);
24178c2ecf20Sopenharmony_ci}
24188c2ecf20Sopenharmony_ci
24198c2ecf20Sopenharmony_cistatic void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
24208c2ecf20Sopenharmony_ci{
24218c2ecf20Sopenharmony_ci	int m, idx;
24228c2ecf20Sopenharmony_ci	bool fail = false;
24238c2ecf20Sopenharmony_ci
24248c2ecf20Sopenharmony_ci	for (m = 0; m < conf->raid_disks * 2 ; m++)
24258c2ecf20Sopenharmony_ci		if (r1_bio->bios[m] == IO_MADE_GOOD) {
24268c2ecf20Sopenharmony_ci			struct md_rdev *rdev = conf->mirrors[m].rdev;
24278c2ecf20Sopenharmony_ci			rdev_clear_badblocks(rdev,
24288c2ecf20Sopenharmony_ci					     r1_bio->sector,
24298c2ecf20Sopenharmony_ci					     r1_bio->sectors, 0);
24308c2ecf20Sopenharmony_ci			rdev_dec_pending(rdev, conf->mddev);
24318c2ecf20Sopenharmony_ci		} else if (r1_bio->bios[m] != NULL) {
24328c2ecf20Sopenharmony_ci			/* This drive got a write error.  We need to
24338c2ecf20Sopenharmony_ci			 * narrow down and record precise write
24348c2ecf20Sopenharmony_ci			 * errors.
24358c2ecf20Sopenharmony_ci			 */
24368c2ecf20Sopenharmony_ci			fail = true;
24378c2ecf20Sopenharmony_ci			if (!narrow_write_error(r1_bio, m)) {
24388c2ecf20Sopenharmony_ci				md_error(conf->mddev,
24398c2ecf20Sopenharmony_ci					 conf->mirrors[m].rdev);
24408c2ecf20Sopenharmony_ci				/* an I/O failed, we can't clear the bitmap */
24418c2ecf20Sopenharmony_ci				set_bit(R1BIO_Degraded, &r1_bio->state);
24428c2ecf20Sopenharmony_ci			}
24438c2ecf20Sopenharmony_ci			rdev_dec_pending(conf->mirrors[m].rdev,
24448c2ecf20Sopenharmony_ci					 conf->mddev);
24458c2ecf20Sopenharmony_ci		}
24468c2ecf20Sopenharmony_ci	if (fail) {
24478c2ecf20Sopenharmony_ci		spin_lock_irq(&conf->device_lock);
24488c2ecf20Sopenharmony_ci		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
24498c2ecf20Sopenharmony_ci		idx = sector_to_idx(r1_bio->sector);
24508c2ecf20Sopenharmony_ci		atomic_inc(&conf->nr_queued[idx]);
24518c2ecf20Sopenharmony_ci		spin_unlock_irq(&conf->device_lock);
24528c2ecf20Sopenharmony_ci		/*
24538c2ecf20Sopenharmony_ci		 * In case freeze_array() is waiting for condition
24548c2ecf20Sopenharmony_ci		 * get_unqueued_pending() == extra to be true.
24558c2ecf20Sopenharmony_ci		 */
24568c2ecf20Sopenharmony_ci		wake_up(&conf->wait_barrier);
24578c2ecf20Sopenharmony_ci		md_wakeup_thread(conf->mddev->thread);
24588c2ecf20Sopenharmony_ci	} else {
24598c2ecf20Sopenharmony_ci		if (test_bit(R1BIO_WriteError, &r1_bio->state))
24608c2ecf20Sopenharmony_ci			close_write(r1_bio);
24618c2ecf20Sopenharmony_ci		raid_end_bio_io(r1_bio);
24628c2ecf20Sopenharmony_ci	}
24638c2ecf20Sopenharmony_ci}
24648c2ecf20Sopenharmony_ci
24658c2ecf20Sopenharmony_cistatic void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
24668c2ecf20Sopenharmony_ci{
24678c2ecf20Sopenharmony_ci	struct mddev *mddev = conf->mddev;
24688c2ecf20Sopenharmony_ci	struct bio *bio;
24698c2ecf20Sopenharmony_ci	struct md_rdev *rdev;
24708c2ecf20Sopenharmony_ci
24718c2ecf20Sopenharmony_ci	clear_bit(R1BIO_ReadError, &r1_bio->state);
24728c2ecf20Sopenharmony_ci	/* we got a read error. Maybe the drive is bad.  Maybe just
24738c2ecf20Sopenharmony_ci	 * the block and we can fix it.
24748c2ecf20Sopenharmony_ci	 * We freeze all other IO, and try reading the block from
24758c2ecf20Sopenharmony_ci	 * other devices.  When we find one, we re-write
24768c2ecf20Sopenharmony_ci	 * and check it that fixes the read error.
24778c2ecf20Sopenharmony_ci	 * This is all done synchronously while the array is
24788c2ecf20Sopenharmony_ci	 * frozen
24798c2ecf20Sopenharmony_ci	 */
24808c2ecf20Sopenharmony_ci
24818c2ecf20Sopenharmony_ci	bio = r1_bio->bios[r1_bio->read_disk];
24828c2ecf20Sopenharmony_ci	bio_put(bio);
24838c2ecf20Sopenharmony_ci	r1_bio->bios[r1_bio->read_disk] = NULL;
24848c2ecf20Sopenharmony_ci
24858c2ecf20Sopenharmony_ci	rdev = conf->mirrors[r1_bio->read_disk].rdev;
24868c2ecf20Sopenharmony_ci	if (mddev->ro == 0
24878c2ecf20Sopenharmony_ci	    && !test_bit(FailFast, &rdev->flags)) {
24888c2ecf20Sopenharmony_ci		freeze_array(conf, 1);
24898c2ecf20Sopenharmony_ci		fix_read_error(conf, r1_bio->read_disk,
24908c2ecf20Sopenharmony_ci			       r1_bio->sector, r1_bio->sectors);
24918c2ecf20Sopenharmony_ci		unfreeze_array(conf);
24928c2ecf20Sopenharmony_ci	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
24938c2ecf20Sopenharmony_ci		md_error(mddev, rdev);
24948c2ecf20Sopenharmony_ci	} else {
24958c2ecf20Sopenharmony_ci		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
24968c2ecf20Sopenharmony_ci	}
24978c2ecf20Sopenharmony_ci
24988c2ecf20Sopenharmony_ci	rdev_dec_pending(rdev, conf->mddev);
24998c2ecf20Sopenharmony_ci	allow_barrier(conf, r1_bio->sector);
25008c2ecf20Sopenharmony_ci	bio = r1_bio->master_bio;
25018c2ecf20Sopenharmony_ci
25028c2ecf20Sopenharmony_ci	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
25038c2ecf20Sopenharmony_ci	r1_bio->state = 0;
25048c2ecf20Sopenharmony_ci	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
25058c2ecf20Sopenharmony_ci}
25068c2ecf20Sopenharmony_ci
25078c2ecf20Sopenharmony_cistatic void raid1d(struct md_thread *thread)
25088c2ecf20Sopenharmony_ci{
25098c2ecf20Sopenharmony_ci	struct mddev *mddev = thread->mddev;
25108c2ecf20Sopenharmony_ci	struct r1bio *r1_bio;
25118c2ecf20Sopenharmony_ci	unsigned long flags;
25128c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
25138c2ecf20Sopenharmony_ci	struct list_head *head = &conf->retry_list;
25148c2ecf20Sopenharmony_ci	struct blk_plug plug;
25158c2ecf20Sopenharmony_ci	int idx;
25168c2ecf20Sopenharmony_ci
25178c2ecf20Sopenharmony_ci	md_check_recovery(mddev);
25188c2ecf20Sopenharmony_ci
25198c2ecf20Sopenharmony_ci	if (!list_empty_careful(&conf->bio_end_io_list) &&
25208c2ecf20Sopenharmony_ci	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
25218c2ecf20Sopenharmony_ci		LIST_HEAD(tmp);
25228c2ecf20Sopenharmony_ci		spin_lock_irqsave(&conf->device_lock, flags);
25238c2ecf20Sopenharmony_ci		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
25248c2ecf20Sopenharmony_ci			list_splice_init(&conf->bio_end_io_list, &tmp);
25258c2ecf20Sopenharmony_ci		spin_unlock_irqrestore(&conf->device_lock, flags);
25268c2ecf20Sopenharmony_ci		while (!list_empty(&tmp)) {
25278c2ecf20Sopenharmony_ci			r1_bio = list_first_entry(&tmp, struct r1bio,
25288c2ecf20Sopenharmony_ci						  retry_list);
25298c2ecf20Sopenharmony_ci			list_del(&r1_bio->retry_list);
25308c2ecf20Sopenharmony_ci			idx = sector_to_idx(r1_bio->sector);
25318c2ecf20Sopenharmony_ci			atomic_dec(&conf->nr_queued[idx]);
25328c2ecf20Sopenharmony_ci			if (mddev->degraded)
25338c2ecf20Sopenharmony_ci				set_bit(R1BIO_Degraded, &r1_bio->state);
25348c2ecf20Sopenharmony_ci			if (test_bit(R1BIO_WriteError, &r1_bio->state))
25358c2ecf20Sopenharmony_ci				close_write(r1_bio);
25368c2ecf20Sopenharmony_ci			raid_end_bio_io(r1_bio);
25378c2ecf20Sopenharmony_ci		}
25388c2ecf20Sopenharmony_ci	}
25398c2ecf20Sopenharmony_ci
25408c2ecf20Sopenharmony_ci	blk_start_plug(&plug);
25418c2ecf20Sopenharmony_ci	for (;;) {
25428c2ecf20Sopenharmony_ci
25438c2ecf20Sopenharmony_ci		flush_pending_writes(conf);
25448c2ecf20Sopenharmony_ci
25458c2ecf20Sopenharmony_ci		spin_lock_irqsave(&conf->device_lock, flags);
25468c2ecf20Sopenharmony_ci		if (list_empty(head)) {
25478c2ecf20Sopenharmony_ci			spin_unlock_irqrestore(&conf->device_lock, flags);
25488c2ecf20Sopenharmony_ci			break;
25498c2ecf20Sopenharmony_ci		}
25508c2ecf20Sopenharmony_ci		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
25518c2ecf20Sopenharmony_ci		list_del(head->prev);
25528c2ecf20Sopenharmony_ci		idx = sector_to_idx(r1_bio->sector);
25538c2ecf20Sopenharmony_ci		atomic_dec(&conf->nr_queued[idx]);
25548c2ecf20Sopenharmony_ci		spin_unlock_irqrestore(&conf->device_lock, flags);
25558c2ecf20Sopenharmony_ci
25568c2ecf20Sopenharmony_ci		mddev = r1_bio->mddev;
25578c2ecf20Sopenharmony_ci		conf = mddev->private;
25588c2ecf20Sopenharmony_ci		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
25598c2ecf20Sopenharmony_ci			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
25608c2ecf20Sopenharmony_ci			    test_bit(R1BIO_WriteError, &r1_bio->state))
25618c2ecf20Sopenharmony_ci				handle_sync_write_finished(conf, r1_bio);
25628c2ecf20Sopenharmony_ci			else
25638c2ecf20Sopenharmony_ci				sync_request_write(mddev, r1_bio);
25648c2ecf20Sopenharmony_ci		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
25658c2ecf20Sopenharmony_ci			   test_bit(R1BIO_WriteError, &r1_bio->state))
25668c2ecf20Sopenharmony_ci			handle_write_finished(conf, r1_bio);
25678c2ecf20Sopenharmony_ci		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
25688c2ecf20Sopenharmony_ci			handle_read_error(conf, r1_bio);
25698c2ecf20Sopenharmony_ci		else
25708c2ecf20Sopenharmony_ci			WARN_ON_ONCE(1);
25718c2ecf20Sopenharmony_ci
25728c2ecf20Sopenharmony_ci		cond_resched();
25738c2ecf20Sopenharmony_ci		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
25748c2ecf20Sopenharmony_ci			md_check_recovery(mddev);
25758c2ecf20Sopenharmony_ci	}
25768c2ecf20Sopenharmony_ci	blk_finish_plug(&plug);
25778c2ecf20Sopenharmony_ci}
25788c2ecf20Sopenharmony_ci
25798c2ecf20Sopenharmony_cistatic int init_resync(struct r1conf *conf)
25808c2ecf20Sopenharmony_ci{
25818c2ecf20Sopenharmony_ci	int buffs;
25828c2ecf20Sopenharmony_ci
25838c2ecf20Sopenharmony_ci	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
25848c2ecf20Sopenharmony_ci	BUG_ON(mempool_initialized(&conf->r1buf_pool));
25858c2ecf20Sopenharmony_ci
25868c2ecf20Sopenharmony_ci	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
25878c2ecf20Sopenharmony_ci			    r1buf_pool_free, conf->poolinfo);
25888c2ecf20Sopenharmony_ci}
25898c2ecf20Sopenharmony_ci
25908c2ecf20Sopenharmony_cistatic struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
25918c2ecf20Sopenharmony_ci{
25928c2ecf20Sopenharmony_ci	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
25938c2ecf20Sopenharmony_ci	struct resync_pages *rps;
25948c2ecf20Sopenharmony_ci	struct bio *bio;
25958c2ecf20Sopenharmony_ci	int i;
25968c2ecf20Sopenharmony_ci
25978c2ecf20Sopenharmony_ci	for (i = conf->poolinfo->raid_disks; i--; ) {
25988c2ecf20Sopenharmony_ci		bio = r1bio->bios[i];
25998c2ecf20Sopenharmony_ci		rps = bio->bi_private;
26008c2ecf20Sopenharmony_ci		bio_reset(bio);
26018c2ecf20Sopenharmony_ci		bio->bi_private = rps;
26028c2ecf20Sopenharmony_ci	}
26038c2ecf20Sopenharmony_ci	r1bio->master_bio = NULL;
26048c2ecf20Sopenharmony_ci	return r1bio;
26058c2ecf20Sopenharmony_ci}
26068c2ecf20Sopenharmony_ci
26078c2ecf20Sopenharmony_ci/*
26088c2ecf20Sopenharmony_ci * perform a "sync" on one "block"
26098c2ecf20Sopenharmony_ci *
26108c2ecf20Sopenharmony_ci * We need to make sure that no normal I/O request - particularly write
26118c2ecf20Sopenharmony_ci * requests - conflict with active sync requests.
26128c2ecf20Sopenharmony_ci *
26138c2ecf20Sopenharmony_ci * This is achieved by tracking pending requests and a 'barrier' concept
26148c2ecf20Sopenharmony_ci * that can be installed to exclude normal IO requests.
26158c2ecf20Sopenharmony_ci */
26168c2ecf20Sopenharmony_ci
26178c2ecf20Sopenharmony_cistatic sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
26188c2ecf20Sopenharmony_ci				   int *skipped)
26198c2ecf20Sopenharmony_ci{
26208c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
26218c2ecf20Sopenharmony_ci	struct r1bio *r1_bio;
26228c2ecf20Sopenharmony_ci	struct bio *bio;
26238c2ecf20Sopenharmony_ci	sector_t max_sector, nr_sectors;
26248c2ecf20Sopenharmony_ci	int disk = -1;
26258c2ecf20Sopenharmony_ci	int i;
26268c2ecf20Sopenharmony_ci	int wonly = -1;
26278c2ecf20Sopenharmony_ci	int write_targets = 0, read_targets = 0;
26288c2ecf20Sopenharmony_ci	sector_t sync_blocks;
26298c2ecf20Sopenharmony_ci	int still_degraded = 0;
26308c2ecf20Sopenharmony_ci	int good_sectors = RESYNC_SECTORS;
26318c2ecf20Sopenharmony_ci	int min_bad = 0; /* number of sectors that are bad in all devices */
26328c2ecf20Sopenharmony_ci	int idx = sector_to_idx(sector_nr);
26338c2ecf20Sopenharmony_ci	int page_idx = 0;
26348c2ecf20Sopenharmony_ci
26358c2ecf20Sopenharmony_ci	if (!mempool_initialized(&conf->r1buf_pool))
26368c2ecf20Sopenharmony_ci		if (init_resync(conf))
26378c2ecf20Sopenharmony_ci			return 0;
26388c2ecf20Sopenharmony_ci
26398c2ecf20Sopenharmony_ci	max_sector = mddev->dev_sectors;
26408c2ecf20Sopenharmony_ci	if (sector_nr >= max_sector) {
26418c2ecf20Sopenharmony_ci		/* If we aborted, we need to abort the
26428c2ecf20Sopenharmony_ci		 * sync on the 'current' bitmap chunk (there will
26438c2ecf20Sopenharmony_ci		 * only be one in raid1 resync.
26448c2ecf20Sopenharmony_ci		 * We can find the current addess in mddev->curr_resync
26458c2ecf20Sopenharmony_ci		 */
26468c2ecf20Sopenharmony_ci		if (mddev->curr_resync < max_sector) /* aborted */
26478c2ecf20Sopenharmony_ci			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
26488c2ecf20Sopenharmony_ci					   &sync_blocks, 1);
26498c2ecf20Sopenharmony_ci		else /* completed sync */
26508c2ecf20Sopenharmony_ci			conf->fullsync = 0;
26518c2ecf20Sopenharmony_ci
26528c2ecf20Sopenharmony_ci		md_bitmap_close_sync(mddev->bitmap);
26538c2ecf20Sopenharmony_ci		close_sync(conf);
26548c2ecf20Sopenharmony_ci
26558c2ecf20Sopenharmony_ci		if (mddev_is_clustered(mddev)) {
26568c2ecf20Sopenharmony_ci			conf->cluster_sync_low = 0;
26578c2ecf20Sopenharmony_ci			conf->cluster_sync_high = 0;
26588c2ecf20Sopenharmony_ci		}
26598c2ecf20Sopenharmony_ci		return 0;
26608c2ecf20Sopenharmony_ci	}
26618c2ecf20Sopenharmony_ci
26628c2ecf20Sopenharmony_ci	if (mddev->bitmap == NULL &&
26638c2ecf20Sopenharmony_ci	    mddev->recovery_cp == MaxSector &&
26648c2ecf20Sopenharmony_ci	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
26658c2ecf20Sopenharmony_ci	    conf->fullsync == 0) {
26668c2ecf20Sopenharmony_ci		*skipped = 1;
26678c2ecf20Sopenharmony_ci		return max_sector - sector_nr;
26688c2ecf20Sopenharmony_ci	}
26698c2ecf20Sopenharmony_ci	/* before building a request, check if we can skip these blocks..
26708c2ecf20Sopenharmony_ci	 * This call the bitmap_start_sync doesn't actually record anything
26718c2ecf20Sopenharmony_ci	 */
26728c2ecf20Sopenharmony_ci	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
26738c2ecf20Sopenharmony_ci	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
26748c2ecf20Sopenharmony_ci		/* We can skip this block, and probably several more */
26758c2ecf20Sopenharmony_ci		*skipped = 1;
26768c2ecf20Sopenharmony_ci		return sync_blocks;
26778c2ecf20Sopenharmony_ci	}
26788c2ecf20Sopenharmony_ci
26798c2ecf20Sopenharmony_ci	/*
26808c2ecf20Sopenharmony_ci	 * If there is non-resync activity waiting for a turn, then let it
26818c2ecf20Sopenharmony_ci	 * though before starting on this new sync request.
26828c2ecf20Sopenharmony_ci	 */
26838c2ecf20Sopenharmony_ci	if (atomic_read(&conf->nr_waiting[idx]))
26848c2ecf20Sopenharmony_ci		schedule_timeout_uninterruptible(1);
26858c2ecf20Sopenharmony_ci
26868c2ecf20Sopenharmony_ci	/* we are incrementing sector_nr below. To be safe, we check against
26878c2ecf20Sopenharmony_ci	 * sector_nr + two times RESYNC_SECTORS
26888c2ecf20Sopenharmony_ci	 */
26898c2ecf20Sopenharmony_ci
26908c2ecf20Sopenharmony_ci	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
26918c2ecf20Sopenharmony_ci		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
26928c2ecf20Sopenharmony_ci
26938c2ecf20Sopenharmony_ci
26948c2ecf20Sopenharmony_ci	if (raise_barrier(conf, sector_nr))
26958c2ecf20Sopenharmony_ci		return 0;
26968c2ecf20Sopenharmony_ci
26978c2ecf20Sopenharmony_ci	r1_bio = raid1_alloc_init_r1buf(conf);
26988c2ecf20Sopenharmony_ci
26998c2ecf20Sopenharmony_ci	rcu_read_lock();
27008c2ecf20Sopenharmony_ci	/*
27018c2ecf20Sopenharmony_ci	 * If we get a correctably read error during resync or recovery,
27028c2ecf20Sopenharmony_ci	 * we might want to read from a different device.  So we
27038c2ecf20Sopenharmony_ci	 * flag all drives that could conceivably be read from for READ,
27048c2ecf20Sopenharmony_ci	 * and any others (which will be non-In_sync devices) for WRITE.
27058c2ecf20Sopenharmony_ci	 * If a read fails, we try reading from something else for which READ
27068c2ecf20Sopenharmony_ci	 * is OK.
27078c2ecf20Sopenharmony_ci	 */
27088c2ecf20Sopenharmony_ci
27098c2ecf20Sopenharmony_ci	r1_bio->mddev = mddev;
27108c2ecf20Sopenharmony_ci	r1_bio->sector = sector_nr;
27118c2ecf20Sopenharmony_ci	r1_bio->state = 0;
27128c2ecf20Sopenharmony_ci	set_bit(R1BIO_IsSync, &r1_bio->state);
27138c2ecf20Sopenharmony_ci	/* make sure good_sectors won't go across barrier unit boundary */
27148c2ecf20Sopenharmony_ci	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
27158c2ecf20Sopenharmony_ci
27168c2ecf20Sopenharmony_ci	for (i = 0; i < conf->raid_disks * 2; i++) {
27178c2ecf20Sopenharmony_ci		struct md_rdev *rdev;
27188c2ecf20Sopenharmony_ci		bio = r1_bio->bios[i];
27198c2ecf20Sopenharmony_ci
27208c2ecf20Sopenharmony_ci		rdev = rcu_dereference(conf->mirrors[i].rdev);
27218c2ecf20Sopenharmony_ci		if (rdev == NULL ||
27228c2ecf20Sopenharmony_ci		    test_bit(Faulty, &rdev->flags)) {
27238c2ecf20Sopenharmony_ci			if (i < conf->raid_disks)
27248c2ecf20Sopenharmony_ci				still_degraded = 1;
27258c2ecf20Sopenharmony_ci		} else if (!test_bit(In_sync, &rdev->flags)) {
27268c2ecf20Sopenharmony_ci			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
27278c2ecf20Sopenharmony_ci			bio->bi_end_io = end_sync_write;
27288c2ecf20Sopenharmony_ci			write_targets ++;
27298c2ecf20Sopenharmony_ci		} else {
27308c2ecf20Sopenharmony_ci			/* may need to read from here */
27318c2ecf20Sopenharmony_ci			sector_t first_bad = MaxSector;
27328c2ecf20Sopenharmony_ci			int bad_sectors;
27338c2ecf20Sopenharmony_ci
27348c2ecf20Sopenharmony_ci			if (is_badblock(rdev, sector_nr, good_sectors,
27358c2ecf20Sopenharmony_ci					&first_bad, &bad_sectors)) {
27368c2ecf20Sopenharmony_ci				if (first_bad > sector_nr)
27378c2ecf20Sopenharmony_ci					good_sectors = first_bad - sector_nr;
27388c2ecf20Sopenharmony_ci				else {
27398c2ecf20Sopenharmony_ci					bad_sectors -= (sector_nr - first_bad);
27408c2ecf20Sopenharmony_ci					if (min_bad == 0 ||
27418c2ecf20Sopenharmony_ci					    min_bad > bad_sectors)
27428c2ecf20Sopenharmony_ci						min_bad = bad_sectors;
27438c2ecf20Sopenharmony_ci				}
27448c2ecf20Sopenharmony_ci			}
27458c2ecf20Sopenharmony_ci			if (sector_nr < first_bad) {
27468c2ecf20Sopenharmony_ci				if (test_bit(WriteMostly, &rdev->flags)) {
27478c2ecf20Sopenharmony_ci					if (wonly < 0)
27488c2ecf20Sopenharmony_ci						wonly = i;
27498c2ecf20Sopenharmony_ci				} else {
27508c2ecf20Sopenharmony_ci					if (disk < 0)
27518c2ecf20Sopenharmony_ci						disk = i;
27528c2ecf20Sopenharmony_ci				}
27538c2ecf20Sopenharmony_ci				bio_set_op_attrs(bio, REQ_OP_READ, 0);
27548c2ecf20Sopenharmony_ci				bio->bi_end_io = end_sync_read;
27558c2ecf20Sopenharmony_ci				read_targets++;
27568c2ecf20Sopenharmony_ci			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
27578c2ecf20Sopenharmony_ci				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
27588c2ecf20Sopenharmony_ci				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
27598c2ecf20Sopenharmony_ci				/*
27608c2ecf20Sopenharmony_ci				 * The device is suitable for reading (InSync),
27618c2ecf20Sopenharmony_ci				 * but has bad block(s) here. Let's try to correct them,
27628c2ecf20Sopenharmony_ci				 * if we are doing resync or repair. Otherwise, leave
27638c2ecf20Sopenharmony_ci				 * this device alone for this sync request.
27648c2ecf20Sopenharmony_ci				 */
27658c2ecf20Sopenharmony_ci				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
27668c2ecf20Sopenharmony_ci				bio->bi_end_io = end_sync_write;
27678c2ecf20Sopenharmony_ci				write_targets++;
27688c2ecf20Sopenharmony_ci			}
27698c2ecf20Sopenharmony_ci		}
27708c2ecf20Sopenharmony_ci		if (rdev && bio->bi_end_io) {
27718c2ecf20Sopenharmony_ci			atomic_inc(&rdev->nr_pending);
27728c2ecf20Sopenharmony_ci			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
27738c2ecf20Sopenharmony_ci			bio_set_dev(bio, rdev->bdev);
27748c2ecf20Sopenharmony_ci			if (test_bit(FailFast, &rdev->flags))
27758c2ecf20Sopenharmony_ci				bio->bi_opf |= MD_FAILFAST;
27768c2ecf20Sopenharmony_ci		}
27778c2ecf20Sopenharmony_ci	}
27788c2ecf20Sopenharmony_ci	rcu_read_unlock();
27798c2ecf20Sopenharmony_ci	if (disk < 0)
27808c2ecf20Sopenharmony_ci		disk = wonly;
27818c2ecf20Sopenharmony_ci	r1_bio->read_disk = disk;
27828c2ecf20Sopenharmony_ci
27838c2ecf20Sopenharmony_ci	if (read_targets == 0 && min_bad > 0) {
27848c2ecf20Sopenharmony_ci		/* These sectors are bad on all InSync devices, so we
27858c2ecf20Sopenharmony_ci		 * need to mark them bad on all write targets
27868c2ecf20Sopenharmony_ci		 */
27878c2ecf20Sopenharmony_ci		int ok = 1;
27888c2ecf20Sopenharmony_ci		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
27898c2ecf20Sopenharmony_ci			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
27908c2ecf20Sopenharmony_ci				struct md_rdev *rdev = conf->mirrors[i].rdev;
27918c2ecf20Sopenharmony_ci				ok = rdev_set_badblocks(rdev, sector_nr,
27928c2ecf20Sopenharmony_ci							min_bad, 0
27938c2ecf20Sopenharmony_ci					) && ok;
27948c2ecf20Sopenharmony_ci			}
27958c2ecf20Sopenharmony_ci		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
27968c2ecf20Sopenharmony_ci		*skipped = 1;
27978c2ecf20Sopenharmony_ci		put_buf(r1_bio);
27988c2ecf20Sopenharmony_ci
27998c2ecf20Sopenharmony_ci		if (!ok) {
28008c2ecf20Sopenharmony_ci			/* Cannot record the badblocks, so need to
28018c2ecf20Sopenharmony_ci			 * abort the resync.
28028c2ecf20Sopenharmony_ci			 * If there are multiple read targets, could just
28038c2ecf20Sopenharmony_ci			 * fail the really bad ones ???
28048c2ecf20Sopenharmony_ci			 */
28058c2ecf20Sopenharmony_ci			conf->recovery_disabled = mddev->recovery_disabled;
28068c2ecf20Sopenharmony_ci			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
28078c2ecf20Sopenharmony_ci			return 0;
28088c2ecf20Sopenharmony_ci		} else
28098c2ecf20Sopenharmony_ci			return min_bad;
28108c2ecf20Sopenharmony_ci
28118c2ecf20Sopenharmony_ci	}
28128c2ecf20Sopenharmony_ci	if (min_bad > 0 && min_bad < good_sectors) {
28138c2ecf20Sopenharmony_ci		/* only resync enough to reach the next bad->good
28148c2ecf20Sopenharmony_ci		 * transition */
28158c2ecf20Sopenharmony_ci		good_sectors = min_bad;
28168c2ecf20Sopenharmony_ci	}
28178c2ecf20Sopenharmony_ci
28188c2ecf20Sopenharmony_ci	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
28198c2ecf20Sopenharmony_ci		/* extra read targets are also write targets */
28208c2ecf20Sopenharmony_ci		write_targets += read_targets-1;
28218c2ecf20Sopenharmony_ci
28228c2ecf20Sopenharmony_ci	if (write_targets == 0 || read_targets == 0) {
28238c2ecf20Sopenharmony_ci		/* There is nowhere to write, so all non-sync
28248c2ecf20Sopenharmony_ci		 * drives must be failed - so we are finished
28258c2ecf20Sopenharmony_ci		 */
28268c2ecf20Sopenharmony_ci		sector_t rv;
28278c2ecf20Sopenharmony_ci		if (min_bad > 0)
28288c2ecf20Sopenharmony_ci			max_sector = sector_nr + min_bad;
28298c2ecf20Sopenharmony_ci		rv = max_sector - sector_nr;
28308c2ecf20Sopenharmony_ci		*skipped = 1;
28318c2ecf20Sopenharmony_ci		put_buf(r1_bio);
28328c2ecf20Sopenharmony_ci		return rv;
28338c2ecf20Sopenharmony_ci	}
28348c2ecf20Sopenharmony_ci
28358c2ecf20Sopenharmony_ci	if (max_sector > mddev->resync_max)
28368c2ecf20Sopenharmony_ci		max_sector = mddev->resync_max; /* Don't do IO beyond here */
28378c2ecf20Sopenharmony_ci	if (max_sector > sector_nr + good_sectors)
28388c2ecf20Sopenharmony_ci		max_sector = sector_nr + good_sectors;
28398c2ecf20Sopenharmony_ci	nr_sectors = 0;
28408c2ecf20Sopenharmony_ci	sync_blocks = 0;
28418c2ecf20Sopenharmony_ci	do {
28428c2ecf20Sopenharmony_ci		struct page *page;
28438c2ecf20Sopenharmony_ci		int len = PAGE_SIZE;
28448c2ecf20Sopenharmony_ci		if (sector_nr + (len>>9) > max_sector)
28458c2ecf20Sopenharmony_ci			len = (max_sector - sector_nr) << 9;
28468c2ecf20Sopenharmony_ci		if (len == 0)
28478c2ecf20Sopenharmony_ci			break;
28488c2ecf20Sopenharmony_ci		if (sync_blocks == 0) {
28498c2ecf20Sopenharmony_ci			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
28508c2ecf20Sopenharmony_ci						  &sync_blocks, still_degraded) &&
28518c2ecf20Sopenharmony_ci			    !conf->fullsync &&
28528c2ecf20Sopenharmony_ci			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
28538c2ecf20Sopenharmony_ci				break;
28548c2ecf20Sopenharmony_ci			if ((len >> 9) > sync_blocks)
28558c2ecf20Sopenharmony_ci				len = sync_blocks<<9;
28568c2ecf20Sopenharmony_ci		}
28578c2ecf20Sopenharmony_ci
28588c2ecf20Sopenharmony_ci		for (i = 0 ; i < conf->raid_disks * 2; i++) {
28598c2ecf20Sopenharmony_ci			struct resync_pages *rp;
28608c2ecf20Sopenharmony_ci
28618c2ecf20Sopenharmony_ci			bio = r1_bio->bios[i];
28628c2ecf20Sopenharmony_ci			rp = get_resync_pages(bio);
28638c2ecf20Sopenharmony_ci			if (bio->bi_end_io) {
28648c2ecf20Sopenharmony_ci				page = resync_fetch_page(rp, page_idx);
28658c2ecf20Sopenharmony_ci
28668c2ecf20Sopenharmony_ci				/*
28678c2ecf20Sopenharmony_ci				 * won't fail because the vec table is big
28688c2ecf20Sopenharmony_ci				 * enough to hold all these pages
28698c2ecf20Sopenharmony_ci				 */
28708c2ecf20Sopenharmony_ci				bio_add_page(bio, page, len, 0);
28718c2ecf20Sopenharmony_ci			}
28728c2ecf20Sopenharmony_ci		}
28738c2ecf20Sopenharmony_ci		nr_sectors += len>>9;
28748c2ecf20Sopenharmony_ci		sector_nr += len>>9;
28758c2ecf20Sopenharmony_ci		sync_blocks -= (len>>9);
28768c2ecf20Sopenharmony_ci	} while (++page_idx < RESYNC_PAGES);
28778c2ecf20Sopenharmony_ci
28788c2ecf20Sopenharmony_ci	r1_bio->sectors = nr_sectors;
28798c2ecf20Sopenharmony_ci
28808c2ecf20Sopenharmony_ci	if (mddev_is_clustered(mddev) &&
28818c2ecf20Sopenharmony_ci			conf->cluster_sync_high < sector_nr + nr_sectors) {
28828c2ecf20Sopenharmony_ci		conf->cluster_sync_low = mddev->curr_resync_completed;
28838c2ecf20Sopenharmony_ci		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
28848c2ecf20Sopenharmony_ci		/* Send resync message */
28858c2ecf20Sopenharmony_ci		md_cluster_ops->resync_info_update(mddev,
28868c2ecf20Sopenharmony_ci				conf->cluster_sync_low,
28878c2ecf20Sopenharmony_ci				conf->cluster_sync_high);
28888c2ecf20Sopenharmony_ci	}
28898c2ecf20Sopenharmony_ci
28908c2ecf20Sopenharmony_ci	/* For a user-requested sync, we read all readable devices and do a
28918c2ecf20Sopenharmony_ci	 * compare
28928c2ecf20Sopenharmony_ci	 */
28938c2ecf20Sopenharmony_ci	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
28948c2ecf20Sopenharmony_ci		atomic_set(&r1_bio->remaining, read_targets);
28958c2ecf20Sopenharmony_ci		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
28968c2ecf20Sopenharmony_ci			bio = r1_bio->bios[i];
28978c2ecf20Sopenharmony_ci			if (bio->bi_end_io == end_sync_read) {
28988c2ecf20Sopenharmony_ci				read_targets--;
28998c2ecf20Sopenharmony_ci				md_sync_acct_bio(bio, nr_sectors);
29008c2ecf20Sopenharmony_ci				if (read_targets == 1)
29018c2ecf20Sopenharmony_ci					bio->bi_opf &= ~MD_FAILFAST;
29028c2ecf20Sopenharmony_ci				submit_bio_noacct(bio);
29038c2ecf20Sopenharmony_ci			}
29048c2ecf20Sopenharmony_ci		}
29058c2ecf20Sopenharmony_ci	} else {
29068c2ecf20Sopenharmony_ci		atomic_set(&r1_bio->remaining, 1);
29078c2ecf20Sopenharmony_ci		bio = r1_bio->bios[r1_bio->read_disk];
29088c2ecf20Sopenharmony_ci		md_sync_acct_bio(bio, nr_sectors);
29098c2ecf20Sopenharmony_ci		if (read_targets == 1)
29108c2ecf20Sopenharmony_ci			bio->bi_opf &= ~MD_FAILFAST;
29118c2ecf20Sopenharmony_ci		submit_bio_noacct(bio);
29128c2ecf20Sopenharmony_ci	}
29138c2ecf20Sopenharmony_ci	return nr_sectors;
29148c2ecf20Sopenharmony_ci}
29158c2ecf20Sopenharmony_ci
29168c2ecf20Sopenharmony_cistatic sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
29178c2ecf20Sopenharmony_ci{
29188c2ecf20Sopenharmony_ci	if (sectors)
29198c2ecf20Sopenharmony_ci		return sectors;
29208c2ecf20Sopenharmony_ci
29218c2ecf20Sopenharmony_ci	return mddev->dev_sectors;
29228c2ecf20Sopenharmony_ci}
29238c2ecf20Sopenharmony_ci
29248c2ecf20Sopenharmony_cistatic struct r1conf *setup_conf(struct mddev *mddev)
29258c2ecf20Sopenharmony_ci{
29268c2ecf20Sopenharmony_ci	struct r1conf *conf;
29278c2ecf20Sopenharmony_ci	int i;
29288c2ecf20Sopenharmony_ci	struct raid1_info *disk;
29298c2ecf20Sopenharmony_ci	struct md_rdev *rdev;
29308c2ecf20Sopenharmony_ci	int err = -ENOMEM;
29318c2ecf20Sopenharmony_ci
29328c2ecf20Sopenharmony_ci	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
29338c2ecf20Sopenharmony_ci	if (!conf)
29348c2ecf20Sopenharmony_ci		goto abort;
29358c2ecf20Sopenharmony_ci
29368c2ecf20Sopenharmony_ci	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
29378c2ecf20Sopenharmony_ci				   sizeof(atomic_t), GFP_KERNEL);
29388c2ecf20Sopenharmony_ci	if (!conf->nr_pending)
29398c2ecf20Sopenharmony_ci		goto abort;
29408c2ecf20Sopenharmony_ci
29418c2ecf20Sopenharmony_ci	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
29428c2ecf20Sopenharmony_ci				   sizeof(atomic_t), GFP_KERNEL);
29438c2ecf20Sopenharmony_ci	if (!conf->nr_waiting)
29448c2ecf20Sopenharmony_ci		goto abort;
29458c2ecf20Sopenharmony_ci
29468c2ecf20Sopenharmony_ci	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
29478c2ecf20Sopenharmony_ci				  sizeof(atomic_t), GFP_KERNEL);
29488c2ecf20Sopenharmony_ci	if (!conf->nr_queued)
29498c2ecf20Sopenharmony_ci		goto abort;
29508c2ecf20Sopenharmony_ci
29518c2ecf20Sopenharmony_ci	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
29528c2ecf20Sopenharmony_ci				sizeof(atomic_t), GFP_KERNEL);
29538c2ecf20Sopenharmony_ci	if (!conf->barrier)
29548c2ecf20Sopenharmony_ci		goto abort;
29558c2ecf20Sopenharmony_ci
29568c2ecf20Sopenharmony_ci	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
29578c2ecf20Sopenharmony_ci					    mddev->raid_disks, 2),
29588c2ecf20Sopenharmony_ci				GFP_KERNEL);
29598c2ecf20Sopenharmony_ci	if (!conf->mirrors)
29608c2ecf20Sopenharmony_ci		goto abort;
29618c2ecf20Sopenharmony_ci
29628c2ecf20Sopenharmony_ci	conf->tmppage = alloc_page(GFP_KERNEL);
29638c2ecf20Sopenharmony_ci	if (!conf->tmppage)
29648c2ecf20Sopenharmony_ci		goto abort;
29658c2ecf20Sopenharmony_ci
29668c2ecf20Sopenharmony_ci	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
29678c2ecf20Sopenharmony_ci	if (!conf->poolinfo)
29688c2ecf20Sopenharmony_ci		goto abort;
29698c2ecf20Sopenharmony_ci	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
29708c2ecf20Sopenharmony_ci	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
29718c2ecf20Sopenharmony_ci			   rbio_pool_free, conf->poolinfo);
29728c2ecf20Sopenharmony_ci	if (err)
29738c2ecf20Sopenharmony_ci		goto abort;
29748c2ecf20Sopenharmony_ci
29758c2ecf20Sopenharmony_ci	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
29768c2ecf20Sopenharmony_ci	if (err)
29778c2ecf20Sopenharmony_ci		goto abort;
29788c2ecf20Sopenharmony_ci
29798c2ecf20Sopenharmony_ci	conf->poolinfo->mddev = mddev;
29808c2ecf20Sopenharmony_ci
29818c2ecf20Sopenharmony_ci	err = -EINVAL;
29828c2ecf20Sopenharmony_ci	spin_lock_init(&conf->device_lock);
29838c2ecf20Sopenharmony_ci	rdev_for_each(rdev, mddev) {
29848c2ecf20Sopenharmony_ci		int disk_idx = rdev->raid_disk;
29858c2ecf20Sopenharmony_ci		if (disk_idx >= mddev->raid_disks
29868c2ecf20Sopenharmony_ci		    || disk_idx < 0)
29878c2ecf20Sopenharmony_ci			continue;
29888c2ecf20Sopenharmony_ci		if (test_bit(Replacement, &rdev->flags))
29898c2ecf20Sopenharmony_ci			disk = conf->mirrors + mddev->raid_disks + disk_idx;
29908c2ecf20Sopenharmony_ci		else
29918c2ecf20Sopenharmony_ci			disk = conf->mirrors + disk_idx;
29928c2ecf20Sopenharmony_ci
29938c2ecf20Sopenharmony_ci		if (disk->rdev)
29948c2ecf20Sopenharmony_ci			goto abort;
29958c2ecf20Sopenharmony_ci		disk->rdev = rdev;
29968c2ecf20Sopenharmony_ci		disk->head_position = 0;
29978c2ecf20Sopenharmony_ci		disk->seq_start = MaxSector;
29988c2ecf20Sopenharmony_ci	}
29998c2ecf20Sopenharmony_ci	conf->raid_disks = mddev->raid_disks;
30008c2ecf20Sopenharmony_ci	conf->mddev = mddev;
30018c2ecf20Sopenharmony_ci	INIT_LIST_HEAD(&conf->retry_list);
30028c2ecf20Sopenharmony_ci	INIT_LIST_HEAD(&conf->bio_end_io_list);
30038c2ecf20Sopenharmony_ci
30048c2ecf20Sopenharmony_ci	spin_lock_init(&conf->resync_lock);
30058c2ecf20Sopenharmony_ci	init_waitqueue_head(&conf->wait_barrier);
30068c2ecf20Sopenharmony_ci
30078c2ecf20Sopenharmony_ci	bio_list_init(&conf->pending_bio_list);
30088c2ecf20Sopenharmony_ci	conf->pending_count = 0;
30098c2ecf20Sopenharmony_ci	conf->recovery_disabled = mddev->recovery_disabled - 1;
30108c2ecf20Sopenharmony_ci
30118c2ecf20Sopenharmony_ci	err = -EIO;
30128c2ecf20Sopenharmony_ci	for (i = 0; i < conf->raid_disks * 2; i++) {
30138c2ecf20Sopenharmony_ci
30148c2ecf20Sopenharmony_ci		disk = conf->mirrors + i;
30158c2ecf20Sopenharmony_ci
30168c2ecf20Sopenharmony_ci		if (i < conf->raid_disks &&
30178c2ecf20Sopenharmony_ci		    disk[conf->raid_disks].rdev) {
30188c2ecf20Sopenharmony_ci			/* This slot has a replacement. */
30198c2ecf20Sopenharmony_ci			if (!disk->rdev) {
30208c2ecf20Sopenharmony_ci				/* No original, just make the replacement
30218c2ecf20Sopenharmony_ci				 * a recovering spare
30228c2ecf20Sopenharmony_ci				 */
30238c2ecf20Sopenharmony_ci				disk->rdev =
30248c2ecf20Sopenharmony_ci					disk[conf->raid_disks].rdev;
30258c2ecf20Sopenharmony_ci				disk[conf->raid_disks].rdev = NULL;
30268c2ecf20Sopenharmony_ci			} else if (!test_bit(In_sync, &disk->rdev->flags))
30278c2ecf20Sopenharmony_ci				/* Original is not in_sync - bad */
30288c2ecf20Sopenharmony_ci				goto abort;
30298c2ecf20Sopenharmony_ci		}
30308c2ecf20Sopenharmony_ci
30318c2ecf20Sopenharmony_ci		if (!disk->rdev ||
30328c2ecf20Sopenharmony_ci		    !test_bit(In_sync, &disk->rdev->flags)) {
30338c2ecf20Sopenharmony_ci			disk->head_position = 0;
30348c2ecf20Sopenharmony_ci			if (disk->rdev &&
30358c2ecf20Sopenharmony_ci			    (disk->rdev->saved_raid_disk < 0))
30368c2ecf20Sopenharmony_ci				conf->fullsync = 1;
30378c2ecf20Sopenharmony_ci		}
30388c2ecf20Sopenharmony_ci	}
30398c2ecf20Sopenharmony_ci
30408c2ecf20Sopenharmony_ci	err = -ENOMEM;
30418c2ecf20Sopenharmony_ci	conf->thread = md_register_thread(raid1d, mddev, "raid1");
30428c2ecf20Sopenharmony_ci	if (!conf->thread)
30438c2ecf20Sopenharmony_ci		goto abort;
30448c2ecf20Sopenharmony_ci
30458c2ecf20Sopenharmony_ci	return conf;
30468c2ecf20Sopenharmony_ci
30478c2ecf20Sopenharmony_ci abort:
30488c2ecf20Sopenharmony_ci	if (conf) {
30498c2ecf20Sopenharmony_ci		mempool_exit(&conf->r1bio_pool);
30508c2ecf20Sopenharmony_ci		kfree(conf->mirrors);
30518c2ecf20Sopenharmony_ci		safe_put_page(conf->tmppage);
30528c2ecf20Sopenharmony_ci		kfree(conf->poolinfo);
30538c2ecf20Sopenharmony_ci		kfree(conf->nr_pending);
30548c2ecf20Sopenharmony_ci		kfree(conf->nr_waiting);
30558c2ecf20Sopenharmony_ci		kfree(conf->nr_queued);
30568c2ecf20Sopenharmony_ci		kfree(conf->barrier);
30578c2ecf20Sopenharmony_ci		bioset_exit(&conf->bio_split);
30588c2ecf20Sopenharmony_ci		kfree(conf);
30598c2ecf20Sopenharmony_ci	}
30608c2ecf20Sopenharmony_ci	return ERR_PTR(err);
30618c2ecf20Sopenharmony_ci}
30628c2ecf20Sopenharmony_ci
30638c2ecf20Sopenharmony_cistatic void raid1_free(struct mddev *mddev, void *priv);
30648c2ecf20Sopenharmony_cistatic int raid1_run(struct mddev *mddev)
30658c2ecf20Sopenharmony_ci{
30668c2ecf20Sopenharmony_ci	struct r1conf *conf;
30678c2ecf20Sopenharmony_ci	int i;
30688c2ecf20Sopenharmony_ci	struct md_rdev *rdev;
30698c2ecf20Sopenharmony_ci	int ret;
30708c2ecf20Sopenharmony_ci	bool discard_supported = false;
30718c2ecf20Sopenharmony_ci
30728c2ecf20Sopenharmony_ci	if (mddev->level != 1) {
30738c2ecf20Sopenharmony_ci		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
30748c2ecf20Sopenharmony_ci			mdname(mddev), mddev->level);
30758c2ecf20Sopenharmony_ci		return -EIO;
30768c2ecf20Sopenharmony_ci	}
30778c2ecf20Sopenharmony_ci	if (mddev->reshape_position != MaxSector) {
30788c2ecf20Sopenharmony_ci		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
30798c2ecf20Sopenharmony_ci			mdname(mddev));
30808c2ecf20Sopenharmony_ci		return -EIO;
30818c2ecf20Sopenharmony_ci	}
30828c2ecf20Sopenharmony_ci	if (mddev_init_writes_pending(mddev) < 0)
30838c2ecf20Sopenharmony_ci		return -ENOMEM;
30848c2ecf20Sopenharmony_ci	/*
30858c2ecf20Sopenharmony_ci	 * copy the already verified devices into our private RAID1
30868c2ecf20Sopenharmony_ci	 * bookkeeping area. [whatever we allocate in run(),
30878c2ecf20Sopenharmony_ci	 * should be freed in raid1_free()]
30888c2ecf20Sopenharmony_ci	 */
30898c2ecf20Sopenharmony_ci	if (mddev->private == NULL)
30908c2ecf20Sopenharmony_ci		conf = setup_conf(mddev);
30918c2ecf20Sopenharmony_ci	else
30928c2ecf20Sopenharmony_ci		conf = mddev->private;
30938c2ecf20Sopenharmony_ci
30948c2ecf20Sopenharmony_ci	if (IS_ERR(conf))
30958c2ecf20Sopenharmony_ci		return PTR_ERR(conf);
30968c2ecf20Sopenharmony_ci
30978c2ecf20Sopenharmony_ci	if (mddev->queue) {
30988c2ecf20Sopenharmony_ci		blk_queue_max_write_same_sectors(mddev->queue, 0);
30998c2ecf20Sopenharmony_ci		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
31008c2ecf20Sopenharmony_ci	}
31018c2ecf20Sopenharmony_ci
31028c2ecf20Sopenharmony_ci	rdev_for_each(rdev, mddev) {
31038c2ecf20Sopenharmony_ci		if (!mddev->gendisk)
31048c2ecf20Sopenharmony_ci			continue;
31058c2ecf20Sopenharmony_ci		disk_stack_limits(mddev->gendisk, rdev->bdev,
31068c2ecf20Sopenharmony_ci				  rdev->data_offset << 9);
31078c2ecf20Sopenharmony_ci		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
31088c2ecf20Sopenharmony_ci			discard_supported = true;
31098c2ecf20Sopenharmony_ci	}
31108c2ecf20Sopenharmony_ci
31118c2ecf20Sopenharmony_ci	mddev->degraded = 0;
31128c2ecf20Sopenharmony_ci	for (i = 0; i < conf->raid_disks; i++)
31138c2ecf20Sopenharmony_ci		if (conf->mirrors[i].rdev == NULL ||
31148c2ecf20Sopenharmony_ci		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
31158c2ecf20Sopenharmony_ci		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
31168c2ecf20Sopenharmony_ci			mddev->degraded++;
31178c2ecf20Sopenharmony_ci	/*
31188c2ecf20Sopenharmony_ci	 * RAID1 needs at least one disk in active
31198c2ecf20Sopenharmony_ci	 */
31208c2ecf20Sopenharmony_ci	if (conf->raid_disks - mddev->degraded < 1) {
31218c2ecf20Sopenharmony_ci		md_unregister_thread(&conf->thread);
31228c2ecf20Sopenharmony_ci		ret = -EINVAL;
31238c2ecf20Sopenharmony_ci		goto abort;
31248c2ecf20Sopenharmony_ci	}
31258c2ecf20Sopenharmony_ci
31268c2ecf20Sopenharmony_ci	if (conf->raid_disks - mddev->degraded == 1)
31278c2ecf20Sopenharmony_ci		mddev->recovery_cp = MaxSector;
31288c2ecf20Sopenharmony_ci
31298c2ecf20Sopenharmony_ci	if (mddev->recovery_cp != MaxSector)
31308c2ecf20Sopenharmony_ci		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
31318c2ecf20Sopenharmony_ci			mdname(mddev));
31328c2ecf20Sopenharmony_ci	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
31338c2ecf20Sopenharmony_ci		mdname(mddev), mddev->raid_disks - mddev->degraded,
31348c2ecf20Sopenharmony_ci		mddev->raid_disks);
31358c2ecf20Sopenharmony_ci
31368c2ecf20Sopenharmony_ci	/*
31378c2ecf20Sopenharmony_ci	 * Ok, everything is just fine now
31388c2ecf20Sopenharmony_ci	 */
31398c2ecf20Sopenharmony_ci	mddev->thread = conf->thread;
31408c2ecf20Sopenharmony_ci	conf->thread = NULL;
31418c2ecf20Sopenharmony_ci	mddev->private = conf;
31428c2ecf20Sopenharmony_ci	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
31438c2ecf20Sopenharmony_ci
31448c2ecf20Sopenharmony_ci	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
31458c2ecf20Sopenharmony_ci
31468c2ecf20Sopenharmony_ci	if (mddev->queue) {
31478c2ecf20Sopenharmony_ci		if (discard_supported)
31488c2ecf20Sopenharmony_ci			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
31498c2ecf20Sopenharmony_ci						mddev->queue);
31508c2ecf20Sopenharmony_ci		else
31518c2ecf20Sopenharmony_ci			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
31528c2ecf20Sopenharmony_ci						  mddev->queue);
31538c2ecf20Sopenharmony_ci	}
31548c2ecf20Sopenharmony_ci
31558c2ecf20Sopenharmony_ci	ret = md_integrity_register(mddev);
31568c2ecf20Sopenharmony_ci	if (ret) {
31578c2ecf20Sopenharmony_ci		md_unregister_thread(&mddev->thread);
31588c2ecf20Sopenharmony_ci		goto abort;
31598c2ecf20Sopenharmony_ci	}
31608c2ecf20Sopenharmony_ci	return 0;
31618c2ecf20Sopenharmony_ci
31628c2ecf20Sopenharmony_ciabort:
31638c2ecf20Sopenharmony_ci	raid1_free(mddev, conf);
31648c2ecf20Sopenharmony_ci	return ret;
31658c2ecf20Sopenharmony_ci}
31668c2ecf20Sopenharmony_ci
31678c2ecf20Sopenharmony_cistatic void raid1_free(struct mddev *mddev, void *priv)
31688c2ecf20Sopenharmony_ci{
31698c2ecf20Sopenharmony_ci	struct r1conf *conf = priv;
31708c2ecf20Sopenharmony_ci
31718c2ecf20Sopenharmony_ci	mempool_exit(&conf->r1bio_pool);
31728c2ecf20Sopenharmony_ci	kfree(conf->mirrors);
31738c2ecf20Sopenharmony_ci	safe_put_page(conf->tmppage);
31748c2ecf20Sopenharmony_ci	kfree(conf->poolinfo);
31758c2ecf20Sopenharmony_ci	kfree(conf->nr_pending);
31768c2ecf20Sopenharmony_ci	kfree(conf->nr_waiting);
31778c2ecf20Sopenharmony_ci	kfree(conf->nr_queued);
31788c2ecf20Sopenharmony_ci	kfree(conf->barrier);
31798c2ecf20Sopenharmony_ci	bioset_exit(&conf->bio_split);
31808c2ecf20Sopenharmony_ci	kfree(conf);
31818c2ecf20Sopenharmony_ci}
31828c2ecf20Sopenharmony_ci
31838c2ecf20Sopenharmony_cistatic int raid1_resize(struct mddev *mddev, sector_t sectors)
31848c2ecf20Sopenharmony_ci{
31858c2ecf20Sopenharmony_ci	/* no resync is happening, and there is enough space
31868c2ecf20Sopenharmony_ci	 * on all devices, so we can resize.
31878c2ecf20Sopenharmony_ci	 * We need to make sure resync covers any new space.
31888c2ecf20Sopenharmony_ci	 * If the array is shrinking we should possibly wait until
31898c2ecf20Sopenharmony_ci	 * any io in the removed space completes, but it hardly seems
31908c2ecf20Sopenharmony_ci	 * worth it.
31918c2ecf20Sopenharmony_ci	 */
31928c2ecf20Sopenharmony_ci	sector_t newsize = raid1_size(mddev, sectors, 0);
31938c2ecf20Sopenharmony_ci	if (mddev->external_size &&
31948c2ecf20Sopenharmony_ci	    mddev->array_sectors > newsize)
31958c2ecf20Sopenharmony_ci		return -EINVAL;
31968c2ecf20Sopenharmony_ci	if (mddev->bitmap) {
31978c2ecf20Sopenharmony_ci		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
31988c2ecf20Sopenharmony_ci		if (ret)
31998c2ecf20Sopenharmony_ci			return ret;
32008c2ecf20Sopenharmony_ci	}
32018c2ecf20Sopenharmony_ci	md_set_array_sectors(mddev, newsize);
32028c2ecf20Sopenharmony_ci	if (sectors > mddev->dev_sectors &&
32038c2ecf20Sopenharmony_ci	    mddev->recovery_cp > mddev->dev_sectors) {
32048c2ecf20Sopenharmony_ci		mddev->recovery_cp = mddev->dev_sectors;
32058c2ecf20Sopenharmony_ci		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
32068c2ecf20Sopenharmony_ci	}
32078c2ecf20Sopenharmony_ci	mddev->dev_sectors = sectors;
32088c2ecf20Sopenharmony_ci	mddev->resync_max_sectors = sectors;
32098c2ecf20Sopenharmony_ci	return 0;
32108c2ecf20Sopenharmony_ci}
32118c2ecf20Sopenharmony_ci
32128c2ecf20Sopenharmony_cistatic int raid1_reshape(struct mddev *mddev)
32138c2ecf20Sopenharmony_ci{
32148c2ecf20Sopenharmony_ci	/* We need to:
32158c2ecf20Sopenharmony_ci	 * 1/ resize the r1bio_pool
32168c2ecf20Sopenharmony_ci	 * 2/ resize conf->mirrors
32178c2ecf20Sopenharmony_ci	 *
32188c2ecf20Sopenharmony_ci	 * We allocate a new r1bio_pool if we can.
32198c2ecf20Sopenharmony_ci	 * Then raise a device barrier and wait until all IO stops.
32208c2ecf20Sopenharmony_ci	 * Then resize conf->mirrors and swap in the new r1bio pool.
32218c2ecf20Sopenharmony_ci	 *
32228c2ecf20Sopenharmony_ci	 * At the same time, we "pack" the devices so that all the missing
32238c2ecf20Sopenharmony_ci	 * devices have the higher raid_disk numbers.
32248c2ecf20Sopenharmony_ci	 */
32258c2ecf20Sopenharmony_ci	mempool_t newpool, oldpool;
32268c2ecf20Sopenharmony_ci	struct pool_info *newpoolinfo;
32278c2ecf20Sopenharmony_ci	struct raid1_info *newmirrors;
32288c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
32298c2ecf20Sopenharmony_ci	int cnt, raid_disks;
32308c2ecf20Sopenharmony_ci	unsigned long flags;
32318c2ecf20Sopenharmony_ci	int d, d2;
32328c2ecf20Sopenharmony_ci	int ret;
32338c2ecf20Sopenharmony_ci
32348c2ecf20Sopenharmony_ci	memset(&newpool, 0, sizeof(newpool));
32358c2ecf20Sopenharmony_ci	memset(&oldpool, 0, sizeof(oldpool));
32368c2ecf20Sopenharmony_ci
32378c2ecf20Sopenharmony_ci	/* Cannot change chunk_size, layout, or level */
32388c2ecf20Sopenharmony_ci	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
32398c2ecf20Sopenharmony_ci	    mddev->layout != mddev->new_layout ||
32408c2ecf20Sopenharmony_ci	    mddev->level != mddev->new_level) {
32418c2ecf20Sopenharmony_ci		mddev->new_chunk_sectors = mddev->chunk_sectors;
32428c2ecf20Sopenharmony_ci		mddev->new_layout = mddev->layout;
32438c2ecf20Sopenharmony_ci		mddev->new_level = mddev->level;
32448c2ecf20Sopenharmony_ci		return -EINVAL;
32458c2ecf20Sopenharmony_ci	}
32468c2ecf20Sopenharmony_ci
32478c2ecf20Sopenharmony_ci	if (!mddev_is_clustered(mddev))
32488c2ecf20Sopenharmony_ci		md_allow_write(mddev);
32498c2ecf20Sopenharmony_ci
32508c2ecf20Sopenharmony_ci	raid_disks = mddev->raid_disks + mddev->delta_disks;
32518c2ecf20Sopenharmony_ci
32528c2ecf20Sopenharmony_ci	if (raid_disks < conf->raid_disks) {
32538c2ecf20Sopenharmony_ci		cnt=0;
32548c2ecf20Sopenharmony_ci		for (d= 0; d < conf->raid_disks; d++)
32558c2ecf20Sopenharmony_ci			if (conf->mirrors[d].rdev)
32568c2ecf20Sopenharmony_ci				cnt++;
32578c2ecf20Sopenharmony_ci		if (cnt > raid_disks)
32588c2ecf20Sopenharmony_ci			return -EBUSY;
32598c2ecf20Sopenharmony_ci	}
32608c2ecf20Sopenharmony_ci
32618c2ecf20Sopenharmony_ci	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
32628c2ecf20Sopenharmony_ci	if (!newpoolinfo)
32638c2ecf20Sopenharmony_ci		return -ENOMEM;
32648c2ecf20Sopenharmony_ci	newpoolinfo->mddev = mddev;
32658c2ecf20Sopenharmony_ci	newpoolinfo->raid_disks = raid_disks * 2;
32668c2ecf20Sopenharmony_ci
32678c2ecf20Sopenharmony_ci	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
32688c2ecf20Sopenharmony_ci			   rbio_pool_free, newpoolinfo);
32698c2ecf20Sopenharmony_ci	if (ret) {
32708c2ecf20Sopenharmony_ci		kfree(newpoolinfo);
32718c2ecf20Sopenharmony_ci		return ret;
32728c2ecf20Sopenharmony_ci	}
32738c2ecf20Sopenharmony_ci	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
32748c2ecf20Sopenharmony_ci					 raid_disks, 2),
32758c2ecf20Sopenharmony_ci			     GFP_KERNEL);
32768c2ecf20Sopenharmony_ci	if (!newmirrors) {
32778c2ecf20Sopenharmony_ci		kfree(newpoolinfo);
32788c2ecf20Sopenharmony_ci		mempool_exit(&newpool);
32798c2ecf20Sopenharmony_ci		return -ENOMEM;
32808c2ecf20Sopenharmony_ci	}
32818c2ecf20Sopenharmony_ci
32828c2ecf20Sopenharmony_ci	freeze_array(conf, 0);
32838c2ecf20Sopenharmony_ci
32848c2ecf20Sopenharmony_ci	/* ok, everything is stopped */
32858c2ecf20Sopenharmony_ci	oldpool = conf->r1bio_pool;
32868c2ecf20Sopenharmony_ci	conf->r1bio_pool = newpool;
32878c2ecf20Sopenharmony_ci
32888c2ecf20Sopenharmony_ci	for (d = d2 = 0; d < conf->raid_disks; d++) {
32898c2ecf20Sopenharmony_ci		struct md_rdev *rdev = conf->mirrors[d].rdev;
32908c2ecf20Sopenharmony_ci		if (rdev && rdev->raid_disk != d2) {
32918c2ecf20Sopenharmony_ci			sysfs_unlink_rdev(mddev, rdev);
32928c2ecf20Sopenharmony_ci			rdev->raid_disk = d2;
32938c2ecf20Sopenharmony_ci			sysfs_unlink_rdev(mddev, rdev);
32948c2ecf20Sopenharmony_ci			if (sysfs_link_rdev(mddev, rdev))
32958c2ecf20Sopenharmony_ci				pr_warn("md/raid1:%s: cannot register rd%d\n",
32968c2ecf20Sopenharmony_ci					mdname(mddev), rdev->raid_disk);
32978c2ecf20Sopenharmony_ci		}
32988c2ecf20Sopenharmony_ci		if (rdev)
32998c2ecf20Sopenharmony_ci			newmirrors[d2++].rdev = rdev;
33008c2ecf20Sopenharmony_ci	}
33018c2ecf20Sopenharmony_ci	kfree(conf->mirrors);
33028c2ecf20Sopenharmony_ci	conf->mirrors = newmirrors;
33038c2ecf20Sopenharmony_ci	kfree(conf->poolinfo);
33048c2ecf20Sopenharmony_ci	conf->poolinfo = newpoolinfo;
33058c2ecf20Sopenharmony_ci
33068c2ecf20Sopenharmony_ci	spin_lock_irqsave(&conf->device_lock, flags);
33078c2ecf20Sopenharmony_ci	mddev->degraded += (raid_disks - conf->raid_disks);
33088c2ecf20Sopenharmony_ci	spin_unlock_irqrestore(&conf->device_lock, flags);
33098c2ecf20Sopenharmony_ci	conf->raid_disks = mddev->raid_disks = raid_disks;
33108c2ecf20Sopenharmony_ci	mddev->delta_disks = 0;
33118c2ecf20Sopenharmony_ci
33128c2ecf20Sopenharmony_ci	unfreeze_array(conf);
33138c2ecf20Sopenharmony_ci
33148c2ecf20Sopenharmony_ci	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
33158c2ecf20Sopenharmony_ci	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
33168c2ecf20Sopenharmony_ci	md_wakeup_thread(mddev->thread);
33178c2ecf20Sopenharmony_ci
33188c2ecf20Sopenharmony_ci	mempool_exit(&oldpool);
33198c2ecf20Sopenharmony_ci	return 0;
33208c2ecf20Sopenharmony_ci}
33218c2ecf20Sopenharmony_ci
33228c2ecf20Sopenharmony_cistatic void raid1_quiesce(struct mddev *mddev, int quiesce)
33238c2ecf20Sopenharmony_ci{
33248c2ecf20Sopenharmony_ci	struct r1conf *conf = mddev->private;
33258c2ecf20Sopenharmony_ci
33268c2ecf20Sopenharmony_ci	if (quiesce)
33278c2ecf20Sopenharmony_ci		freeze_array(conf, 0);
33288c2ecf20Sopenharmony_ci	else
33298c2ecf20Sopenharmony_ci		unfreeze_array(conf);
33308c2ecf20Sopenharmony_ci}
33318c2ecf20Sopenharmony_ci
33328c2ecf20Sopenharmony_cistatic void *raid1_takeover(struct mddev *mddev)
33338c2ecf20Sopenharmony_ci{
33348c2ecf20Sopenharmony_ci	/* raid1 can take over:
33358c2ecf20Sopenharmony_ci	 *  raid5 with 2 devices, any layout or chunk size
33368c2ecf20Sopenharmony_ci	 */
33378c2ecf20Sopenharmony_ci	if (mddev->level == 5 && mddev->raid_disks == 2) {
33388c2ecf20Sopenharmony_ci		struct r1conf *conf;
33398c2ecf20Sopenharmony_ci		mddev->new_level = 1;
33408c2ecf20Sopenharmony_ci		mddev->new_layout = 0;
33418c2ecf20Sopenharmony_ci		mddev->new_chunk_sectors = 0;
33428c2ecf20Sopenharmony_ci		conf = setup_conf(mddev);
33438c2ecf20Sopenharmony_ci		if (!IS_ERR(conf)) {
33448c2ecf20Sopenharmony_ci			/* Array must appear to be quiesced */
33458c2ecf20Sopenharmony_ci			conf->array_frozen = 1;
33468c2ecf20Sopenharmony_ci			mddev_clear_unsupported_flags(mddev,
33478c2ecf20Sopenharmony_ci				UNSUPPORTED_MDDEV_FLAGS);
33488c2ecf20Sopenharmony_ci		}
33498c2ecf20Sopenharmony_ci		return conf;
33508c2ecf20Sopenharmony_ci	}
33518c2ecf20Sopenharmony_ci	return ERR_PTR(-EINVAL);
33528c2ecf20Sopenharmony_ci}
33538c2ecf20Sopenharmony_ci
33548c2ecf20Sopenharmony_cistatic struct md_personality raid1_personality =
33558c2ecf20Sopenharmony_ci{
33568c2ecf20Sopenharmony_ci	.name		= "raid1",
33578c2ecf20Sopenharmony_ci	.level		= 1,
33588c2ecf20Sopenharmony_ci	.owner		= THIS_MODULE,
33598c2ecf20Sopenharmony_ci	.make_request	= raid1_make_request,
33608c2ecf20Sopenharmony_ci	.run		= raid1_run,
33618c2ecf20Sopenharmony_ci	.free		= raid1_free,
33628c2ecf20Sopenharmony_ci	.status		= raid1_status,
33638c2ecf20Sopenharmony_ci	.error_handler	= raid1_error,
33648c2ecf20Sopenharmony_ci	.hot_add_disk	= raid1_add_disk,
33658c2ecf20Sopenharmony_ci	.hot_remove_disk= raid1_remove_disk,
33668c2ecf20Sopenharmony_ci	.spare_active	= raid1_spare_active,
33678c2ecf20Sopenharmony_ci	.sync_request	= raid1_sync_request,
33688c2ecf20Sopenharmony_ci	.resize		= raid1_resize,
33698c2ecf20Sopenharmony_ci	.size		= raid1_size,
33708c2ecf20Sopenharmony_ci	.check_reshape	= raid1_reshape,
33718c2ecf20Sopenharmony_ci	.quiesce	= raid1_quiesce,
33728c2ecf20Sopenharmony_ci	.takeover	= raid1_takeover,
33738c2ecf20Sopenharmony_ci};
33748c2ecf20Sopenharmony_ci
33758c2ecf20Sopenharmony_cistatic int __init raid_init(void)
33768c2ecf20Sopenharmony_ci{
33778c2ecf20Sopenharmony_ci	return register_md_personality(&raid1_personality);
33788c2ecf20Sopenharmony_ci}
33798c2ecf20Sopenharmony_ci
33808c2ecf20Sopenharmony_cistatic void raid_exit(void)
33818c2ecf20Sopenharmony_ci{
33828c2ecf20Sopenharmony_ci	unregister_md_personality(&raid1_personality);
33838c2ecf20Sopenharmony_ci}
33848c2ecf20Sopenharmony_ci
33858c2ecf20Sopenharmony_cimodule_init(raid_init);
33868c2ecf20Sopenharmony_cimodule_exit(raid_exit);
33878c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL");
33888c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
33898c2ecf20Sopenharmony_ciMODULE_ALIAS("md-personality-3"); /* RAID1 */
33908c2ecf20Sopenharmony_ciMODULE_ALIAS("md-raid1");
33918c2ecf20Sopenharmony_ciMODULE_ALIAS("md-level-1");
33928c2ecf20Sopenharmony_ci
33938c2ecf20Sopenharmony_cimodule_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3394