1/*
2 * Copyright (C) 2011 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-btree-internal.h"
8#include "dm-space-map.h"
9#include "dm-transaction-manager.h"
10
11#include <linux/export.h>
12#include <linux/device-mapper.h>
13
14#define DM_MSG_PREFIX "btree"
15
16/*----------------------------------------------------------------
17 * Array manipulation
18 *--------------------------------------------------------------*/
19static void memcpy_disk(void *dest, const void *src, size_t len)
20	__dm_written_to_disk(src)
21{
22	memcpy(dest, src, len);
23	__dm_unbless_for_disk(src);
24}
25
26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27			 unsigned index, void *elt)
28	__dm_written_to_disk(elt)
29{
30	if (index < nr_elts)
31		memmove(base + (elt_size * (index + 1)),
32			base + (elt_size * index),
33			(nr_elts - index) * elt_size);
34
35	memcpy_disk(base + (elt_size * index), elt, elt_size);
36}
37
38/*----------------------------------------------------------------*/
39
40/* makes the assumption that no two keys are the same. */
41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
42{
43	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45	while (hi - lo > 1) {
46		int mid = lo + ((hi - lo) / 2);
47		uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49		if (mid_key == key)
50			return mid;
51
52		if (mid_key < key)
53			lo = mid;
54		else
55			hi = mid;
56	}
57
58	return want_hi ? hi : lo;
59}
60
61int lower_bound(struct btree_node *n, uint64_t key)
62{
63	return bsearch(n, key, 0);
64}
65
66static int upper_bound(struct btree_node *n, uint64_t key)
67{
68	return bsearch(n, key, 1);
69}
70
71void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
72		  struct dm_btree_value_type *vt)
73{
74	unsigned i;
75	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
76
77	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
78		for (i = 0; i < nr_entries; i++)
79			dm_tm_inc(tm, value64(n, i));
80	else if (vt->inc)
81		for (i = 0; i < nr_entries; i++)
82			vt->inc(vt->context, value_ptr(n, i));
83}
84
85static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
86		     uint64_t key, void *value)
87	__dm_written_to_disk(value)
88{
89	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
90	uint32_t max_entries = le32_to_cpu(node->header.max_entries);
91	__le64 key_le = cpu_to_le64(key);
92
93	if (index > nr_entries ||
94	    index >= max_entries ||
95	    nr_entries >= max_entries) {
96		DMERR("too many entries in btree node for insert");
97		__dm_unbless_for_disk(value);
98		return -ENOMEM;
99	}
100
101	__dm_bless_for_disk(&key_le);
102
103	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
104	array_insert(value_base(node), value_size, nr_entries, index, value);
105	node->header.nr_entries = cpu_to_le32(nr_entries + 1);
106
107	return 0;
108}
109
110/*----------------------------------------------------------------*/
111
112/*
113 * We want 3n entries (for some n).  This works more nicely for repeated
114 * insert remove loops than (2n + 1).
115 */
116static uint32_t calc_max_entries(size_t value_size, size_t block_size)
117{
118	uint32_t total, n;
119	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
120
121	block_size -= sizeof(struct node_header);
122	total = block_size / elt_size;
123	n = total / 3;		/* rounds down */
124
125	return 3 * n;
126}
127
128int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
129{
130	int r;
131	struct dm_block *b;
132	struct btree_node *n;
133	size_t block_size;
134	uint32_t max_entries;
135
136	r = new_block(info, &b);
137	if (r < 0)
138		return r;
139
140	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
141	max_entries = calc_max_entries(info->value_type.size, block_size);
142
143	n = dm_block_data(b);
144	memset(n, 0, block_size);
145	n->header.flags = cpu_to_le32(LEAF_NODE);
146	n->header.nr_entries = cpu_to_le32(0);
147	n->header.max_entries = cpu_to_le32(max_entries);
148	n->header.value_size = cpu_to_le32(info->value_type.size);
149
150	*root = dm_block_location(b);
151	unlock_block(info, b);
152
153	return 0;
154}
155EXPORT_SYMBOL_GPL(dm_btree_empty);
156
157/*----------------------------------------------------------------*/
158
159/*
160 * Deletion uses a recursive algorithm, since we have limited stack space
161 * we explicitly manage our own stack on the heap.
162 */
163#define MAX_SPINE_DEPTH 64
164struct frame {
165	struct dm_block *b;
166	struct btree_node *n;
167	unsigned level;
168	unsigned nr_children;
169	unsigned current_child;
170};
171
172struct del_stack {
173	struct dm_btree_info *info;
174	struct dm_transaction_manager *tm;
175	int top;
176	struct frame spine[MAX_SPINE_DEPTH];
177};
178
179static int top_frame(struct del_stack *s, struct frame **f)
180{
181	if (s->top < 0) {
182		DMERR("btree deletion stack empty");
183		return -EINVAL;
184	}
185
186	*f = s->spine + s->top;
187
188	return 0;
189}
190
191static int unprocessed_frames(struct del_stack *s)
192{
193	return s->top >= 0;
194}
195
196static void prefetch_children(struct del_stack *s, struct frame *f)
197{
198	unsigned i;
199	struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
200
201	for (i = 0; i < f->nr_children; i++)
202		dm_bm_prefetch(bm, value64(f->n, i));
203}
204
205static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
206{
207	return f->level < (info->levels - 1);
208}
209
210static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
211{
212	int r;
213	uint32_t ref_count;
214
215	if (s->top >= MAX_SPINE_DEPTH - 1) {
216		DMERR("btree deletion stack out of memory");
217		return -ENOMEM;
218	}
219
220	r = dm_tm_ref(s->tm, b, &ref_count);
221	if (r)
222		return r;
223
224	if (ref_count > 1)
225		/*
226		 * This is a shared node, so we can just decrement it's
227		 * reference counter and leave the children.
228		 */
229		dm_tm_dec(s->tm, b);
230
231	else {
232		uint32_t flags;
233		struct frame *f = s->spine + ++s->top;
234
235		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
236		if (r) {
237			s->top--;
238			return r;
239		}
240
241		f->n = dm_block_data(f->b);
242		f->level = level;
243		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
244		f->current_child = 0;
245
246		flags = le32_to_cpu(f->n->header.flags);
247		if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
248			prefetch_children(s, f);
249	}
250
251	return 0;
252}
253
254static void pop_frame(struct del_stack *s)
255{
256	struct frame *f = s->spine + s->top--;
257
258	dm_tm_dec(s->tm, dm_block_location(f->b));
259	dm_tm_unlock(s->tm, f->b);
260}
261
262static void unlock_all_frames(struct del_stack *s)
263{
264	struct frame *f;
265
266	while (unprocessed_frames(s)) {
267		f = s->spine + s->top--;
268		dm_tm_unlock(s->tm, f->b);
269	}
270}
271
272int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
273{
274	int r;
275	struct del_stack *s;
276
277	/*
278	 * dm_btree_del() is called via an ioctl, as such should be
279	 * considered an FS op.  We can't recurse back into the FS, so we
280	 * allocate GFP_NOFS.
281	 */
282	s = kmalloc(sizeof(*s), GFP_NOFS);
283	if (!s)
284		return -ENOMEM;
285	s->info = info;
286	s->tm = info->tm;
287	s->top = -1;
288
289	r = push_frame(s, root, 0);
290	if (r)
291		goto out;
292
293	while (unprocessed_frames(s)) {
294		uint32_t flags;
295		struct frame *f;
296		dm_block_t b;
297
298		r = top_frame(s, &f);
299		if (r)
300			goto out;
301
302		if (f->current_child >= f->nr_children) {
303			pop_frame(s);
304			continue;
305		}
306
307		flags = le32_to_cpu(f->n->header.flags);
308		if (flags & INTERNAL_NODE) {
309			b = value64(f->n, f->current_child);
310			f->current_child++;
311			r = push_frame(s, b, f->level);
312			if (r)
313				goto out;
314
315		} else if (is_internal_level(info, f)) {
316			b = value64(f->n, f->current_child);
317			f->current_child++;
318			r = push_frame(s, b, f->level + 1);
319			if (r)
320				goto out;
321
322		} else {
323			if (info->value_type.dec) {
324				unsigned i;
325
326				for (i = 0; i < f->nr_children; i++)
327					info->value_type.dec(info->value_type.context,
328							     value_ptr(f->n, i));
329			}
330			pop_frame(s);
331		}
332	}
333out:
334	if (r) {
335		/* cleanup all frames of del_stack */
336		unlock_all_frames(s);
337	}
338	kfree(s);
339
340	return r;
341}
342EXPORT_SYMBOL_GPL(dm_btree_del);
343
344/*----------------------------------------------------------------*/
345
346static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
347			    int (*search_fn)(struct btree_node *, uint64_t),
348			    uint64_t *result_key, void *v, size_t value_size)
349{
350	int i, r;
351	uint32_t flags, nr_entries;
352
353	do {
354		r = ro_step(s, block);
355		if (r < 0)
356			return r;
357
358		i = search_fn(ro_node(s), key);
359
360		flags = le32_to_cpu(ro_node(s)->header.flags);
361		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
362		if (i < 0 || i >= nr_entries)
363			return -ENODATA;
364
365		if (flags & INTERNAL_NODE)
366			block = value64(ro_node(s), i);
367
368	} while (!(flags & LEAF_NODE));
369
370	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
371	if (v)
372		memcpy(v, value_ptr(ro_node(s), i), value_size);
373
374	return 0;
375}
376
377int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
378		    uint64_t *keys, void *value_le)
379{
380	unsigned level, last_level = info->levels - 1;
381	int r = -ENODATA;
382	uint64_t rkey;
383	__le64 internal_value_le;
384	struct ro_spine spine;
385
386	init_ro_spine(&spine, info);
387	for (level = 0; level < info->levels; level++) {
388		size_t size;
389		void *value_p;
390
391		if (level == last_level) {
392			value_p = value_le;
393			size = info->value_type.size;
394
395		} else {
396			value_p = &internal_value_le;
397			size = sizeof(uint64_t);
398		}
399
400		r = btree_lookup_raw(&spine, root, keys[level],
401				     lower_bound, &rkey,
402				     value_p, size);
403
404		if (!r) {
405			if (rkey != keys[level]) {
406				exit_ro_spine(&spine);
407				return -ENODATA;
408			}
409		} else {
410			exit_ro_spine(&spine);
411			return r;
412		}
413
414		root = le64_to_cpu(internal_value_le);
415	}
416	exit_ro_spine(&spine);
417
418	return r;
419}
420EXPORT_SYMBOL_GPL(dm_btree_lookup);
421
422static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
423				       uint64_t key, uint64_t *rkey, void *value_le)
424{
425	int r, i;
426	uint32_t flags, nr_entries;
427	struct dm_block *node;
428	struct btree_node *n;
429
430	r = bn_read_lock(info, root, &node);
431	if (r)
432		return r;
433
434	n = dm_block_data(node);
435	flags = le32_to_cpu(n->header.flags);
436	nr_entries = le32_to_cpu(n->header.nr_entries);
437
438	if (flags & INTERNAL_NODE) {
439		i = lower_bound(n, key);
440		if (i < 0) {
441			/*
442			 * avoid early -ENODATA return when all entries are
443			 * higher than the search @key.
444			 */
445			i = 0;
446		}
447		if (i >= nr_entries) {
448			r = -ENODATA;
449			goto out;
450		}
451
452		r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
453		if (r == -ENODATA && i < (nr_entries - 1)) {
454			i++;
455			r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
456		}
457
458	} else {
459		i = upper_bound(n, key);
460		if (i < 0 || i >= nr_entries) {
461			r = -ENODATA;
462			goto out;
463		}
464
465		*rkey = le64_to_cpu(n->keys[i]);
466		memcpy(value_le, value_ptr(n, i), info->value_type.size);
467	}
468out:
469	dm_tm_unlock(info->tm, node);
470	return r;
471}
472
473int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
474			 uint64_t *keys, uint64_t *rkey, void *value_le)
475{
476	unsigned level;
477	int r = -ENODATA;
478	__le64 internal_value_le;
479	struct ro_spine spine;
480
481	init_ro_spine(&spine, info);
482	for (level = 0; level < info->levels - 1u; level++) {
483		r = btree_lookup_raw(&spine, root, keys[level],
484				     lower_bound, rkey,
485				     &internal_value_le, sizeof(uint64_t));
486		if (r)
487			goto out;
488
489		if (*rkey != keys[level]) {
490			r = -ENODATA;
491			goto out;
492		}
493
494		root = le64_to_cpu(internal_value_le);
495	}
496
497	r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
498out:
499	exit_ro_spine(&spine);
500	return r;
501}
502
503EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
504
505/*
506 * Splits a node by creating a sibling node and shifting half the nodes
507 * contents across.  Assumes there is a parent node, and it has room for
508 * another child.
509 *
510 * Before:
511 *	  +--------+
512 *	  | Parent |
513 *	  +--------+
514 *	     |
515 *	     v
516 *	+----------+
517 *	| A ++++++ |
518 *	+----------+
519 *
520 *
521 * After:
522 *		+--------+
523 *		| Parent |
524 *		+--------+
525 *		  |	|
526 *		  v	+------+
527 *	    +---------+	       |
528 *	    | A* +++  |	       v
529 *	    +---------+	  +-------+
530 *			  | B +++ |
531 *			  +-------+
532 *
533 * Where A* is a shadow of A.
534 */
535static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
536			       uint64_t key)
537{
538	int r;
539	size_t size;
540	unsigned nr_left, nr_right;
541	struct dm_block *left, *right, *parent;
542	struct btree_node *ln, *rn, *pn;
543	__le64 location;
544
545	left = shadow_current(s);
546
547	r = new_block(s->info, &right);
548	if (r < 0)
549		return r;
550
551	ln = dm_block_data(left);
552	rn = dm_block_data(right);
553
554	nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
555	nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
556
557	ln->header.nr_entries = cpu_to_le32(nr_left);
558
559	rn->header.flags = ln->header.flags;
560	rn->header.nr_entries = cpu_to_le32(nr_right);
561	rn->header.max_entries = ln->header.max_entries;
562	rn->header.value_size = ln->header.value_size;
563	memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
564
565	size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
566		sizeof(uint64_t) : s->info->value_type.size;
567	memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
568	       size * nr_right);
569
570	/*
571	 * Patch up the parent
572	 */
573	parent = shadow_parent(s);
574
575	pn = dm_block_data(parent);
576	location = cpu_to_le64(dm_block_location(left));
577	__dm_bless_for_disk(&location);
578	memcpy_disk(value_ptr(pn, parent_index),
579		    &location, sizeof(__le64));
580
581	location = cpu_to_le64(dm_block_location(right));
582	__dm_bless_for_disk(&location);
583
584	r = insert_at(sizeof(__le64), pn, parent_index + 1,
585		      le64_to_cpu(rn->keys[0]), &location);
586	if (r) {
587		unlock_block(s->info, right);
588		return r;
589	}
590
591	if (key < le64_to_cpu(rn->keys[0])) {
592		unlock_block(s->info, right);
593		s->nodes[1] = left;
594	} else {
595		unlock_block(s->info, left);
596		s->nodes[1] = right;
597	}
598
599	return 0;
600}
601
602/*
603 * Splits a node by creating two new children beneath the given node.
604 *
605 * Before:
606 *	  +----------+
607 *	  | A ++++++ |
608 *	  +----------+
609 *
610 *
611 * After:
612 *	+------------+
613 *	| A (shadow) |
614 *	+------------+
615 *	    |	|
616 *   +------+	+----+
617 *   |		     |
618 *   v		     v
619 * +-------+	 +-------+
620 * | B +++ |	 | C +++ |
621 * +-------+	 +-------+
622 */
623static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
624{
625	int r;
626	size_t size;
627	unsigned nr_left, nr_right;
628	struct dm_block *left, *right, *new_parent;
629	struct btree_node *pn, *ln, *rn;
630	__le64 val;
631
632	new_parent = shadow_current(s);
633
634	pn = dm_block_data(new_parent);
635	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
636		sizeof(__le64) : s->info->value_type.size;
637
638	/* create & init the left block */
639	r = new_block(s->info, &left);
640	if (r < 0)
641		return r;
642
643	ln = dm_block_data(left);
644	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
645
646	ln->header.flags = pn->header.flags;
647	ln->header.nr_entries = cpu_to_le32(nr_left);
648	ln->header.max_entries = pn->header.max_entries;
649	ln->header.value_size = pn->header.value_size;
650	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
651	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
652
653	/* create & init the right block */
654	r = new_block(s->info, &right);
655	if (r < 0) {
656		unlock_block(s->info, left);
657		return r;
658	}
659
660	rn = dm_block_data(right);
661	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
662
663	rn->header.flags = pn->header.flags;
664	rn->header.nr_entries = cpu_to_le32(nr_right);
665	rn->header.max_entries = pn->header.max_entries;
666	rn->header.value_size = pn->header.value_size;
667	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
668	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
669	       nr_right * size);
670
671	/* new_parent should just point to l and r now */
672	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
673	pn->header.nr_entries = cpu_to_le32(2);
674	pn->header.max_entries = cpu_to_le32(
675		calc_max_entries(sizeof(__le64),
676				 dm_bm_block_size(
677					 dm_tm_get_bm(s->info->tm))));
678	pn->header.value_size = cpu_to_le32(sizeof(__le64));
679
680	val = cpu_to_le64(dm_block_location(left));
681	__dm_bless_for_disk(&val);
682	pn->keys[0] = ln->keys[0];
683	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
684
685	val = cpu_to_le64(dm_block_location(right));
686	__dm_bless_for_disk(&val);
687	pn->keys[1] = rn->keys[0];
688	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
689
690	unlock_block(s->info, left);
691	unlock_block(s->info, right);
692	return 0;
693}
694
695static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
696			    struct dm_btree_value_type *vt,
697			    uint64_t key, unsigned *index)
698{
699	int r, i = *index, top = 1;
700	struct btree_node *node;
701
702	for (;;) {
703		r = shadow_step(s, root, vt);
704		if (r < 0)
705			return r;
706
707		node = dm_block_data(shadow_current(s));
708
709		/*
710		 * We have to patch up the parent node, ugly, but I don't
711		 * see a way to do this automatically as part of the spine
712		 * op.
713		 */
714		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
715			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
716
717			__dm_bless_for_disk(&location);
718			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
719				    &location, sizeof(__le64));
720		}
721
722		node = dm_block_data(shadow_current(s));
723
724		if (node->header.nr_entries == node->header.max_entries) {
725			if (top)
726				r = btree_split_beneath(s, key);
727			else
728				r = btree_split_sibling(s, i, key);
729
730			if (r < 0)
731				return r;
732		}
733
734		node = dm_block_data(shadow_current(s));
735
736		i = lower_bound(node, key);
737
738		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
739			break;
740
741		if (i < 0) {
742			/* change the bounds on the lowest key */
743			node->keys[0] = cpu_to_le64(key);
744			i = 0;
745		}
746
747		root = value64(node, i);
748		top = 0;
749	}
750
751	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
752		i++;
753
754	*index = i;
755	return 0;
756}
757
758static bool need_insert(struct btree_node *node, uint64_t *keys,
759			unsigned level, unsigned index)
760{
761        return ((index >= le32_to_cpu(node->header.nr_entries)) ||
762		(le64_to_cpu(node->keys[index]) != keys[level]));
763}
764
765static int insert(struct dm_btree_info *info, dm_block_t root,
766		  uint64_t *keys, void *value, dm_block_t *new_root,
767		  int *inserted)
768		  __dm_written_to_disk(value)
769{
770	int r;
771	unsigned level, index = -1, last_level = info->levels - 1;
772	dm_block_t block = root;
773	struct shadow_spine spine;
774	struct btree_node *n;
775	struct dm_btree_value_type le64_type;
776
777	init_le64_type(info->tm, &le64_type);
778	init_shadow_spine(&spine, info);
779
780	for (level = 0; level < (info->levels - 1); level++) {
781		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
782		if (r < 0)
783			goto bad;
784
785		n = dm_block_data(shadow_current(&spine));
786
787		if (need_insert(n, keys, level, index)) {
788			dm_block_t new_tree;
789			__le64 new_le;
790
791			r = dm_btree_empty(info, &new_tree);
792			if (r < 0)
793				goto bad;
794
795			new_le = cpu_to_le64(new_tree);
796			__dm_bless_for_disk(&new_le);
797
798			r = insert_at(sizeof(uint64_t), n, index,
799				      keys[level], &new_le);
800			if (r)
801				goto bad;
802		}
803
804		if (level < last_level)
805			block = value64(n, index);
806	}
807
808	r = btree_insert_raw(&spine, block, &info->value_type,
809			     keys[level], &index);
810	if (r < 0)
811		goto bad;
812
813	n = dm_block_data(shadow_current(&spine));
814
815	if (need_insert(n, keys, level, index)) {
816		if (inserted)
817			*inserted = 1;
818
819		r = insert_at(info->value_type.size, n, index,
820			      keys[level], value);
821		if (r)
822			goto bad_unblessed;
823	} else {
824		if (inserted)
825			*inserted = 0;
826
827		if (info->value_type.dec &&
828		    (!info->value_type.equal ||
829		     !info->value_type.equal(
830			     info->value_type.context,
831			     value_ptr(n, index),
832			     value))) {
833			info->value_type.dec(info->value_type.context,
834					     value_ptr(n, index));
835		}
836		memcpy_disk(value_ptr(n, index),
837			    value, info->value_type.size);
838	}
839
840	*new_root = shadow_root(&spine);
841	exit_shadow_spine(&spine);
842
843	return 0;
844
845bad:
846	__dm_unbless_for_disk(value);
847bad_unblessed:
848	exit_shadow_spine(&spine);
849	return r;
850}
851
852int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
853		    uint64_t *keys, void *value, dm_block_t *new_root)
854		    __dm_written_to_disk(value)
855{
856	return insert(info, root, keys, value, new_root, NULL);
857}
858EXPORT_SYMBOL_GPL(dm_btree_insert);
859
860int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
861			   uint64_t *keys, void *value, dm_block_t *new_root,
862			   int *inserted)
863			   __dm_written_to_disk(value)
864{
865	return insert(info, root, keys, value, new_root, inserted);
866}
867EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
868
869/*----------------------------------------------------------------*/
870
871static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
872		    uint64_t *result_key, dm_block_t *next_block)
873{
874	int i, r;
875	uint32_t flags;
876
877	do {
878		r = ro_step(s, block);
879		if (r < 0)
880			return r;
881
882		flags = le32_to_cpu(ro_node(s)->header.flags);
883		i = le32_to_cpu(ro_node(s)->header.nr_entries);
884		if (!i)
885			return -ENODATA;
886		else
887			i--;
888
889		if (find_highest)
890			*result_key = le64_to_cpu(ro_node(s)->keys[i]);
891		else
892			*result_key = le64_to_cpu(ro_node(s)->keys[0]);
893
894		if (next_block || flags & INTERNAL_NODE) {
895			if (find_highest)
896				block = value64(ro_node(s), i);
897			else
898				block = value64(ro_node(s), 0);
899		}
900
901	} while (flags & INTERNAL_NODE);
902
903	if (next_block)
904		*next_block = block;
905	return 0;
906}
907
908static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
909			     bool find_highest, uint64_t *result_keys)
910{
911	int r = 0, count = 0, level;
912	struct ro_spine spine;
913
914	init_ro_spine(&spine, info);
915	for (level = 0; level < info->levels; level++) {
916		r = find_key(&spine, root, find_highest, result_keys + level,
917			     level == info->levels - 1 ? NULL : &root);
918		if (r == -ENODATA) {
919			r = 0;
920			break;
921
922		} else if (r)
923			break;
924
925		count++;
926	}
927	exit_ro_spine(&spine);
928
929	return r ? r : count;
930}
931
932int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
933			      uint64_t *result_keys)
934{
935	return dm_btree_find_key(info, root, true, result_keys);
936}
937EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
938
939int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
940			     uint64_t *result_keys)
941{
942	return dm_btree_find_key(info, root, false, result_keys);
943}
944EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
945
946/*----------------------------------------------------------------*/
947
948/*
949 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
950 * space.  Also this only works for single level trees.
951 */
952static int walk_node(struct dm_btree_info *info, dm_block_t block,
953		     int (*fn)(void *context, uint64_t *keys, void *leaf),
954		     void *context)
955{
956	int r;
957	unsigned i, nr;
958	struct dm_block *node;
959	struct btree_node *n;
960	uint64_t keys;
961
962	r = bn_read_lock(info, block, &node);
963	if (r)
964		return r;
965
966	n = dm_block_data(node);
967
968	nr = le32_to_cpu(n->header.nr_entries);
969	for (i = 0; i < nr; i++) {
970		if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
971			r = walk_node(info, value64(n, i), fn, context);
972			if (r)
973				goto out;
974		} else {
975			keys = le64_to_cpu(*key_ptr(n, i));
976			r = fn(context, &keys, value_ptr(n, i));
977			if (r)
978				goto out;
979		}
980	}
981
982out:
983	dm_tm_unlock(info->tm, node);
984	return r;
985}
986
987int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
988		  int (*fn)(void *context, uint64_t *keys, void *leaf),
989		  void *context)
990{
991	BUG_ON(info->levels > 1);
992	return walk_node(info, root, fn, context);
993}
994EXPORT_SYMBOL_GPL(dm_btree_walk);
995
996/*----------------------------------------------------------------*/
997
998static void prefetch_values(struct dm_btree_cursor *c)
999{
1000	unsigned i, nr;
1001	__le64 value_le;
1002	struct cursor_node *n = c->nodes + c->depth - 1;
1003	struct btree_node *bn = dm_block_data(n->b);
1004	struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1005
1006	BUG_ON(c->info->value_type.size != sizeof(value_le));
1007
1008	nr = le32_to_cpu(bn->header.nr_entries);
1009	for (i = 0; i < nr; i++) {
1010		memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1011		dm_bm_prefetch(bm, le64_to_cpu(value_le));
1012	}
1013}
1014
1015static bool leaf_node(struct dm_btree_cursor *c)
1016{
1017	struct cursor_node *n = c->nodes + c->depth - 1;
1018	struct btree_node *bn = dm_block_data(n->b);
1019
1020	return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1021}
1022
1023static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1024{
1025	int r;
1026	struct cursor_node *n = c->nodes + c->depth;
1027
1028	if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1029		DMERR("couldn't push cursor node, stack depth too high");
1030		return -EINVAL;
1031	}
1032
1033	r = bn_read_lock(c->info, b, &n->b);
1034	if (r)
1035		return r;
1036
1037	n->index = 0;
1038	c->depth++;
1039
1040	if (c->prefetch_leaves || !leaf_node(c))
1041		prefetch_values(c);
1042
1043	return 0;
1044}
1045
1046static void pop_node(struct dm_btree_cursor *c)
1047{
1048	c->depth--;
1049	unlock_block(c->info, c->nodes[c->depth].b);
1050}
1051
1052static int inc_or_backtrack(struct dm_btree_cursor *c)
1053{
1054	struct cursor_node *n;
1055	struct btree_node *bn;
1056
1057	for (;;) {
1058		if (!c->depth)
1059			return -ENODATA;
1060
1061		n = c->nodes + c->depth - 1;
1062		bn = dm_block_data(n->b);
1063
1064		n->index++;
1065		if (n->index < le32_to_cpu(bn->header.nr_entries))
1066			break;
1067
1068		pop_node(c);
1069	}
1070
1071	return 0;
1072}
1073
1074static int find_leaf(struct dm_btree_cursor *c)
1075{
1076	int r = 0;
1077	struct cursor_node *n;
1078	struct btree_node *bn;
1079	__le64 value_le;
1080
1081	for (;;) {
1082		n = c->nodes + c->depth - 1;
1083		bn = dm_block_data(n->b);
1084
1085		if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1086			break;
1087
1088		memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1089		r = push_node(c, le64_to_cpu(value_le));
1090		if (r) {
1091			DMERR("push_node failed");
1092			break;
1093		}
1094	}
1095
1096	if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1097		return -ENODATA;
1098
1099	return r;
1100}
1101
1102int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1103			  bool prefetch_leaves, struct dm_btree_cursor *c)
1104{
1105	int r;
1106
1107	c->info = info;
1108	c->root = root;
1109	c->depth = 0;
1110	c->prefetch_leaves = prefetch_leaves;
1111
1112	r = push_node(c, root);
1113	if (r)
1114		return r;
1115
1116	return find_leaf(c);
1117}
1118EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1119
1120void dm_btree_cursor_end(struct dm_btree_cursor *c)
1121{
1122	while (c->depth)
1123		pop_node(c);
1124}
1125EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1126
1127int dm_btree_cursor_next(struct dm_btree_cursor *c)
1128{
1129	int r = inc_or_backtrack(c);
1130	if (!r) {
1131		r = find_leaf(c);
1132		if (r)
1133			DMERR("find_leaf failed");
1134	}
1135
1136	return r;
1137}
1138EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1139
1140int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1141{
1142	int r = 0;
1143
1144	while (count-- && !r)
1145		r = dm_btree_cursor_next(c);
1146
1147	return r;
1148}
1149EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1150
1151int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1152{
1153	if (c->depth) {
1154		struct cursor_node *n = c->nodes + c->depth - 1;
1155		struct btree_node *bn = dm_block_data(n->b);
1156
1157		if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1158			return -EINVAL;
1159
1160		*key = le64_to_cpu(*key_ptr(bn, n->index));
1161		memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1162		return 0;
1163
1164	} else
1165		return -ENODATA;
1166}
1167EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);
1168