xref: /kernel/linux/linux-5.10/drivers/md/dm-thin.c (revision 8c2ecf20)
1/*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8#include "dm-bio-prison-v1.h"
9#include "dm.h"
10
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
14#include <linux/jiffies.h>
15#include <linux/log2.h>
16#include <linux/list.h>
17#include <linux/rculist.h>
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/sort.h>
23#include <linux/rbtree.h>
24
25#define	DM_MSG_PREFIX	"thin"
26
27/*
28 * Tunable constants
29 */
30#define ENDIO_HOOK_POOL_SIZE 1024
31#define MAPPING_POOL_SIZE 1024
32#define COMMIT_PERIOD HZ
33#define NO_SPACE_TIMEOUT_SECS 60
34
35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38		"A percentage of time allocated for copy on write");
39
40/*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47/*
48 * Device id is restricted to 24 bits.
49 */
50#define MAX_DEV_ID ((1 << 24) - 1)
51
52/*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data).  When you take an internal snapshot you clone the root node
59 * of the origin btree.  After this there is no concept of an origin or a
60 * snapshot.  They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic.  If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin.  The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block.  Obviously
72 * including all devices that share this block.  (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block.  This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping).  This act of inserting breaks some
79 * sharing of btree nodes between the two devices.  Breaking sharing only
80 * effects the btree of that specific device.  Btrees for the other
81 * devices that share the block never change.  The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues.  We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one).  This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block.  As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing.  I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block.  At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110/*----------------------------------------------------------------*/
111
112/*
113 * Key building.
114 */
115enum lock_space {
116	VIRTUAL,
117	PHYSICAL
118};
119
120static void build_key(struct dm_thin_device *td, enum lock_space ls,
121		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122{
123	key->virtual = (ls == VIRTUAL);
124	key->dev = dm_thin_dev_id(td);
125	key->block_begin = b;
126	key->block_end = e;
127}
128
129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130			   struct dm_cell_key *key)
131{
132	build_key(td, PHYSICAL, b, b + 1llu, key);
133}
134
135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136			      struct dm_cell_key *key)
137{
138	build_key(td, VIRTUAL, b, b + 1llu, key);
139}
140
141/*----------------------------------------------------------------*/
142
143#define THROTTLE_THRESHOLD (1 * HZ)
144
145struct throttle {
146	struct rw_semaphore lock;
147	unsigned long threshold;
148	bool throttle_applied;
149};
150
151static void throttle_init(struct throttle *t)
152{
153	init_rwsem(&t->lock);
154	t->throttle_applied = false;
155}
156
157static void throttle_work_start(struct throttle *t)
158{
159	t->threshold = jiffies + THROTTLE_THRESHOLD;
160}
161
162static void throttle_work_update(struct throttle *t)
163{
164	if (!t->throttle_applied && jiffies > t->threshold) {
165		down_write(&t->lock);
166		t->throttle_applied = true;
167	}
168}
169
170static void throttle_work_complete(struct throttle *t)
171{
172	if (t->throttle_applied) {
173		t->throttle_applied = false;
174		up_write(&t->lock);
175	}
176}
177
178static void throttle_lock(struct throttle *t)
179{
180	down_read(&t->lock);
181}
182
183static void throttle_unlock(struct throttle *t)
184{
185	up_read(&t->lock);
186}
187
188/*----------------------------------------------------------------*/
189
190/*
191 * A pool device ties together a metadata device and a data device.  It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
195struct dm_thin_new_mapping;
196
197/*
198 * The pool runs in various modes.  Ordered in degraded order for comparisons.
199 */
200enum pool_mode {
201	PM_WRITE,		/* metadata may be changed */
202	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203
204	/*
205	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206	 */
207	PM_OUT_OF_METADATA_SPACE,
208	PM_READ_ONLY,		/* metadata may not be changed */
209
210	PM_FAIL,		/* all I/O fails */
211};
212
213struct pool_features {
214	enum pool_mode mode;
215
216	bool zero_new_blocks:1;
217	bool discard_enabled:1;
218	bool discard_passdown:1;
219	bool error_if_no_space:1;
220};
221
222struct thin_c;
223typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227#define CELL_SORT_ARRAY_SIZE 8192
228
229struct pool {
230	struct list_head list;
231	struct dm_target *ti;	/* Only set if a pool target is bound */
232
233	struct mapped_device *pool_md;
234	struct block_device *data_dev;
235	struct block_device *md_dev;
236	struct dm_pool_metadata *pmd;
237
238	dm_block_t low_water_blocks;
239	uint32_t sectors_per_block;
240	int sectors_per_block_shift;
241
242	struct pool_features pf;
243	bool low_water_triggered:1;	/* A dm event has been sent */
244	bool suspended:1;
245	bool out_of_data_space:1;
246
247	struct dm_bio_prison *prison;
248	struct dm_kcopyd_client *copier;
249
250	struct work_struct worker;
251	struct workqueue_struct *wq;
252	struct throttle throttle;
253	struct delayed_work waker;
254	struct delayed_work no_space_timeout;
255
256	unsigned long last_commit_jiffies;
257	unsigned ref_count;
258
259	spinlock_t lock;
260	struct bio_list deferred_flush_bios;
261	struct bio_list deferred_flush_completions;
262	struct list_head prepared_mappings;
263	struct list_head prepared_discards;
264	struct list_head prepared_discards_pt2;
265	struct list_head active_thins;
266
267	struct dm_deferred_set *shared_read_ds;
268	struct dm_deferred_set *all_io_ds;
269
270	struct dm_thin_new_mapping *next_mapping;
271
272	process_bio_fn process_bio;
273	process_bio_fn process_discard;
274
275	process_cell_fn process_cell;
276	process_cell_fn process_discard_cell;
277
278	process_mapping_fn process_prepared_mapping;
279	process_mapping_fn process_prepared_discard;
280	process_mapping_fn process_prepared_discard_pt2;
281
282	struct dm_bio_prison_cell **cell_sort_array;
283
284	mempool_t mapping_pool;
285
286	struct bio flush_bio;
287};
288
289static void metadata_operation_failed(struct pool *pool, const char *op, int r);
290
291static enum pool_mode get_pool_mode(struct pool *pool)
292{
293	return pool->pf.mode;
294}
295
296static void notify_of_pool_mode_change(struct pool *pool)
297{
298	const char *descs[] = {
299		"write",
300		"out-of-data-space",
301		"read-only",
302		"read-only",
303		"fail"
304	};
305	const char *extra_desc = NULL;
306	enum pool_mode mode = get_pool_mode(pool);
307
308	if (mode == PM_OUT_OF_DATA_SPACE) {
309		if (!pool->pf.error_if_no_space)
310			extra_desc = " (queue IO)";
311		else
312			extra_desc = " (error IO)";
313	}
314
315	dm_table_event(pool->ti->table);
316	DMINFO("%s: switching pool to %s%s mode",
317	       dm_device_name(pool->pool_md),
318	       descs[(int)mode], extra_desc ? : "");
319}
320
321/*
322 * Target context for a pool.
323 */
324struct pool_c {
325	struct dm_target *ti;
326	struct pool *pool;
327	struct dm_dev *data_dev;
328	struct dm_dev *metadata_dev;
329
330	dm_block_t low_water_blocks;
331	struct pool_features requested_pf; /* Features requested during table load */
332	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
333};
334
335/*
336 * Target context for a thin.
337 */
338struct thin_c {
339	struct list_head list;
340	struct dm_dev *pool_dev;
341	struct dm_dev *origin_dev;
342	sector_t origin_size;
343	dm_thin_id dev_id;
344
345	struct pool *pool;
346	struct dm_thin_device *td;
347	struct mapped_device *thin_md;
348
349	bool requeue_mode:1;
350	spinlock_t lock;
351	struct list_head deferred_cells;
352	struct bio_list deferred_bio_list;
353	struct bio_list retry_on_resume_list;
354	struct rb_root sort_bio_list; /* sorted list of deferred bios */
355
356	/*
357	 * Ensures the thin is not destroyed until the worker has finished
358	 * iterating the active_thins list.
359	 */
360	refcount_t refcount;
361	struct completion can_destroy;
362};
363
364/*----------------------------------------------------------------*/
365
366static bool block_size_is_power_of_two(struct pool *pool)
367{
368	return pool->sectors_per_block_shift >= 0;
369}
370
371static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
372{
373	return block_size_is_power_of_two(pool) ?
374		(b << pool->sectors_per_block_shift) :
375		(b * pool->sectors_per_block);
376}
377
378/*----------------------------------------------------------------*/
379
380struct discard_op {
381	struct thin_c *tc;
382	struct blk_plug plug;
383	struct bio *parent_bio;
384	struct bio *bio;
385};
386
387static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
388{
389	BUG_ON(!parent);
390
391	op->tc = tc;
392	blk_start_plug(&op->plug);
393	op->parent_bio = parent;
394	op->bio = NULL;
395}
396
397static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
398{
399	struct thin_c *tc = op->tc;
400	sector_t s = block_to_sectors(tc->pool, data_b);
401	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
402
403	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
404				      GFP_NOWAIT, 0, &op->bio);
405}
406
407static void end_discard(struct discard_op *op, int r)
408{
409	if (op->bio) {
410		/*
411		 * Even if one of the calls to issue_discard failed, we
412		 * need to wait for the chain to complete.
413		 */
414		bio_chain(op->bio, op->parent_bio);
415		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
416		submit_bio(op->bio);
417	}
418
419	blk_finish_plug(&op->plug);
420
421	/*
422	 * Even if r is set, there could be sub discards in flight that we
423	 * need to wait for.
424	 */
425	if (r && !op->parent_bio->bi_status)
426		op->parent_bio->bi_status = errno_to_blk_status(r);
427	bio_endio(op->parent_bio);
428}
429
430/*----------------------------------------------------------------*/
431
432/*
433 * wake_worker() is used when new work is queued and when pool_resume is
434 * ready to continue deferred IO processing.
435 */
436static void wake_worker(struct pool *pool)
437{
438	queue_work(pool->wq, &pool->worker);
439}
440
441/*----------------------------------------------------------------*/
442
443static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444		      struct dm_bio_prison_cell **cell_result)
445{
446	int r;
447	struct dm_bio_prison_cell *cell_prealloc;
448
449	/*
450	 * Allocate a cell from the prison's mempool.
451	 * This might block but it can't fail.
452	 */
453	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454
455	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456	if (r)
457		/*
458		 * We reused an old cell; we can get rid of
459		 * the new one.
460		 */
461		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462
463	return r;
464}
465
466static void cell_release(struct pool *pool,
467			 struct dm_bio_prison_cell *cell,
468			 struct bio_list *bios)
469{
470	dm_cell_release(pool->prison, cell, bios);
471	dm_bio_prison_free_cell(pool->prison, cell);
472}
473
474static void cell_visit_release(struct pool *pool,
475			       void (*fn)(void *, struct dm_bio_prison_cell *),
476			       void *context,
477			       struct dm_bio_prison_cell *cell)
478{
479	dm_cell_visit_release(pool->prison, fn, context, cell);
480	dm_bio_prison_free_cell(pool->prison, cell);
481}
482
483static void cell_release_no_holder(struct pool *pool,
484				   struct dm_bio_prison_cell *cell,
485				   struct bio_list *bios)
486{
487	dm_cell_release_no_holder(pool->prison, cell, bios);
488	dm_bio_prison_free_cell(pool->prison, cell);
489}
490
491static void cell_error_with_code(struct pool *pool,
492		struct dm_bio_prison_cell *cell, blk_status_t error_code)
493{
494	dm_cell_error(pool->prison, cell, error_code);
495	dm_bio_prison_free_cell(pool->prison, cell);
496}
497
498static blk_status_t get_pool_io_error_code(struct pool *pool)
499{
500	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
501}
502
503static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
504{
505	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
506}
507
508static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
509{
510	cell_error_with_code(pool, cell, 0);
511}
512
513static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
514{
515	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
516}
517
518/*----------------------------------------------------------------*/
519
520/*
521 * A global list of pools that uses a struct mapped_device as a key.
522 */
523static struct dm_thin_pool_table {
524	struct mutex mutex;
525	struct list_head pools;
526} dm_thin_pool_table;
527
528static void pool_table_init(void)
529{
530	mutex_init(&dm_thin_pool_table.mutex);
531	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
532}
533
534static void pool_table_exit(void)
535{
536	mutex_destroy(&dm_thin_pool_table.mutex);
537}
538
539static void __pool_table_insert(struct pool *pool)
540{
541	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
542	list_add(&pool->list, &dm_thin_pool_table.pools);
543}
544
545static void __pool_table_remove(struct pool *pool)
546{
547	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
548	list_del(&pool->list);
549}
550
551static struct pool *__pool_table_lookup(struct mapped_device *md)
552{
553	struct pool *pool = NULL, *tmp;
554
555	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556
557	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
558		if (tmp->pool_md == md) {
559			pool = tmp;
560			break;
561		}
562	}
563
564	return pool;
565}
566
567static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
568{
569	struct pool *pool = NULL, *tmp;
570
571	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
572
573	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
574		if (tmp->md_dev == md_dev) {
575			pool = tmp;
576			break;
577		}
578	}
579
580	return pool;
581}
582
583/*----------------------------------------------------------------*/
584
585struct dm_thin_endio_hook {
586	struct thin_c *tc;
587	struct dm_deferred_entry *shared_read_entry;
588	struct dm_deferred_entry *all_io_entry;
589	struct dm_thin_new_mapping *overwrite_mapping;
590	struct rb_node rb_node;
591	struct dm_bio_prison_cell *cell;
592};
593
594static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
595{
596	bio_list_merge(bios, master);
597	bio_list_init(master);
598}
599
600static void error_bio_list(struct bio_list *bios, blk_status_t error)
601{
602	struct bio *bio;
603
604	while ((bio = bio_list_pop(bios))) {
605		bio->bi_status = error;
606		bio_endio(bio);
607	}
608}
609
610static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
611		blk_status_t error)
612{
613	struct bio_list bios;
614
615	bio_list_init(&bios);
616
617	spin_lock_irq(&tc->lock);
618	__merge_bio_list(&bios, master);
619	spin_unlock_irq(&tc->lock);
620
621	error_bio_list(&bios, error);
622}
623
624static void requeue_deferred_cells(struct thin_c *tc)
625{
626	struct pool *pool = tc->pool;
627	struct list_head cells;
628	struct dm_bio_prison_cell *cell, *tmp;
629
630	INIT_LIST_HEAD(&cells);
631
632	spin_lock_irq(&tc->lock);
633	list_splice_init(&tc->deferred_cells, &cells);
634	spin_unlock_irq(&tc->lock);
635
636	list_for_each_entry_safe(cell, tmp, &cells, user_list)
637		cell_requeue(pool, cell);
638}
639
640static void requeue_io(struct thin_c *tc)
641{
642	struct bio_list bios;
643
644	bio_list_init(&bios);
645
646	spin_lock_irq(&tc->lock);
647	__merge_bio_list(&bios, &tc->deferred_bio_list);
648	__merge_bio_list(&bios, &tc->retry_on_resume_list);
649	spin_unlock_irq(&tc->lock);
650
651	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
652	requeue_deferred_cells(tc);
653}
654
655static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
656{
657	struct thin_c *tc;
658
659	rcu_read_lock();
660	list_for_each_entry_rcu(tc, &pool->active_thins, list)
661		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
662	rcu_read_unlock();
663}
664
665static void error_retry_list(struct pool *pool)
666{
667	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
668}
669
670/*
671 * This section of code contains the logic for processing a thin device's IO.
672 * Much of the code depends on pool object resources (lists, workqueues, etc)
673 * but most is exclusively called from the thin target rather than the thin-pool
674 * target.
675 */
676
677static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
678{
679	struct pool *pool = tc->pool;
680	sector_t block_nr = bio->bi_iter.bi_sector;
681
682	if (block_size_is_power_of_two(pool))
683		block_nr >>= pool->sectors_per_block_shift;
684	else
685		(void) sector_div(block_nr, pool->sectors_per_block);
686
687	return block_nr;
688}
689
690/*
691 * Returns the _complete_ blocks that this bio covers.
692 */
693static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
694				dm_block_t *begin, dm_block_t *end)
695{
696	struct pool *pool = tc->pool;
697	sector_t b = bio->bi_iter.bi_sector;
698	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
699
700	b += pool->sectors_per_block - 1ull; /* so we round up */
701
702	if (block_size_is_power_of_two(pool)) {
703		b >>= pool->sectors_per_block_shift;
704		e >>= pool->sectors_per_block_shift;
705	} else {
706		(void) sector_div(b, pool->sectors_per_block);
707		(void) sector_div(e, pool->sectors_per_block);
708	}
709
710	if (e < b)
711		/* Can happen if the bio is within a single block. */
712		e = b;
713
714	*begin = b;
715	*end = e;
716}
717
718static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
719{
720	struct pool *pool = tc->pool;
721	sector_t bi_sector = bio->bi_iter.bi_sector;
722
723	bio_set_dev(bio, tc->pool_dev->bdev);
724	if (block_size_is_power_of_two(pool))
725		bio->bi_iter.bi_sector =
726			(block << pool->sectors_per_block_shift) |
727			(bi_sector & (pool->sectors_per_block - 1));
728	else
729		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
730				 sector_div(bi_sector, pool->sectors_per_block);
731}
732
733static void remap_to_origin(struct thin_c *tc, struct bio *bio)
734{
735	bio_set_dev(bio, tc->origin_dev->bdev);
736}
737
738static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
739{
740	return op_is_flush(bio->bi_opf) &&
741		dm_thin_changed_this_transaction(tc->td);
742}
743
744static void inc_all_io_entry(struct pool *pool, struct bio *bio)
745{
746	struct dm_thin_endio_hook *h;
747
748	if (bio_op(bio) == REQ_OP_DISCARD)
749		return;
750
751	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
752	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
753}
754
755static void issue(struct thin_c *tc, struct bio *bio)
756{
757	struct pool *pool = tc->pool;
758
759	if (!bio_triggers_commit(tc, bio)) {
760		submit_bio_noacct(bio);
761		return;
762	}
763
764	/*
765	 * Complete bio with an error if earlier I/O caused changes to
766	 * the metadata that can't be committed e.g, due to I/O errors
767	 * on the metadata device.
768	 */
769	if (dm_thin_aborted_changes(tc->td)) {
770		bio_io_error(bio);
771		return;
772	}
773
774	/*
775	 * Batch together any bios that trigger commits and then issue a
776	 * single commit for them in process_deferred_bios().
777	 */
778	spin_lock_irq(&pool->lock);
779	bio_list_add(&pool->deferred_flush_bios, bio);
780	spin_unlock_irq(&pool->lock);
781}
782
783static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
784{
785	remap_to_origin(tc, bio);
786	issue(tc, bio);
787}
788
789static void remap_and_issue(struct thin_c *tc, struct bio *bio,
790			    dm_block_t block)
791{
792	remap(tc, bio, block);
793	issue(tc, bio);
794}
795
796/*----------------------------------------------------------------*/
797
798/*
799 * Bio endio functions.
800 */
801struct dm_thin_new_mapping {
802	struct list_head list;
803
804	bool pass_discard:1;
805	bool maybe_shared:1;
806
807	/*
808	 * Track quiescing, copying and zeroing preparation actions.  When this
809	 * counter hits zero the block is prepared and can be inserted into the
810	 * btree.
811	 */
812	atomic_t prepare_actions;
813
814	blk_status_t status;
815	struct thin_c *tc;
816	dm_block_t virt_begin, virt_end;
817	dm_block_t data_block;
818	struct dm_bio_prison_cell *cell;
819
820	/*
821	 * If the bio covers the whole area of a block then we can avoid
822	 * zeroing or copying.  Instead this bio is hooked.  The bio will
823	 * still be in the cell, so care has to be taken to avoid issuing
824	 * the bio twice.
825	 */
826	struct bio *bio;
827	bio_end_io_t *saved_bi_end_io;
828};
829
830static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
831{
832	struct pool *pool = m->tc->pool;
833
834	if (atomic_dec_and_test(&m->prepare_actions)) {
835		list_add_tail(&m->list, &pool->prepared_mappings);
836		wake_worker(pool);
837	}
838}
839
840static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
841{
842	unsigned long flags;
843	struct pool *pool = m->tc->pool;
844
845	spin_lock_irqsave(&pool->lock, flags);
846	__complete_mapping_preparation(m);
847	spin_unlock_irqrestore(&pool->lock, flags);
848}
849
850static void copy_complete(int read_err, unsigned long write_err, void *context)
851{
852	struct dm_thin_new_mapping *m = context;
853
854	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
855	complete_mapping_preparation(m);
856}
857
858static void overwrite_endio(struct bio *bio)
859{
860	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861	struct dm_thin_new_mapping *m = h->overwrite_mapping;
862
863	bio->bi_end_io = m->saved_bi_end_io;
864
865	m->status = bio->bi_status;
866	complete_mapping_preparation(m);
867}
868
869/*----------------------------------------------------------------*/
870
871/*
872 * Workqueue.
873 */
874
875/*
876 * Prepared mapping jobs.
877 */
878
879/*
880 * This sends the bios in the cell, except the original holder, back
881 * to the deferred_bios list.
882 */
883static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
884{
885	struct pool *pool = tc->pool;
886	unsigned long flags;
887	int has_work;
888
889	spin_lock_irqsave(&tc->lock, flags);
890	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
891	has_work = !bio_list_empty(&tc->deferred_bio_list);
892	spin_unlock_irqrestore(&tc->lock, flags);
893
894	if (has_work)
895		wake_worker(pool);
896}
897
898static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
899
900struct remap_info {
901	struct thin_c *tc;
902	struct bio_list defer_bios;
903	struct bio_list issue_bios;
904};
905
906static void __inc_remap_and_issue_cell(void *context,
907				       struct dm_bio_prison_cell *cell)
908{
909	struct remap_info *info = context;
910	struct bio *bio;
911
912	while ((bio = bio_list_pop(&cell->bios))) {
913		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
914			bio_list_add(&info->defer_bios, bio);
915		else {
916			inc_all_io_entry(info->tc->pool, bio);
917
918			/*
919			 * We can't issue the bios with the bio prison lock
920			 * held, so we add them to a list to issue on
921			 * return from this function.
922			 */
923			bio_list_add(&info->issue_bios, bio);
924		}
925	}
926}
927
928static void inc_remap_and_issue_cell(struct thin_c *tc,
929				     struct dm_bio_prison_cell *cell,
930				     dm_block_t block)
931{
932	struct bio *bio;
933	struct remap_info info;
934
935	info.tc = tc;
936	bio_list_init(&info.defer_bios);
937	bio_list_init(&info.issue_bios);
938
939	/*
940	 * We have to be careful to inc any bios we're about to issue
941	 * before the cell is released, and avoid a race with new bios
942	 * being added to the cell.
943	 */
944	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
945			   &info, cell);
946
947	while ((bio = bio_list_pop(&info.defer_bios)))
948		thin_defer_bio(tc, bio);
949
950	while ((bio = bio_list_pop(&info.issue_bios)))
951		remap_and_issue(info.tc, bio, block);
952}
953
954static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
955{
956	cell_error(m->tc->pool, m->cell);
957	list_del(&m->list);
958	mempool_free(m, &m->tc->pool->mapping_pool);
959}
960
961static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
962{
963	struct pool *pool = tc->pool;
964
965	/*
966	 * If the bio has the REQ_FUA flag set we must commit the metadata
967	 * before signaling its completion.
968	 */
969	if (!bio_triggers_commit(tc, bio)) {
970		bio_endio(bio);
971		return;
972	}
973
974	/*
975	 * Complete bio with an error if earlier I/O caused changes to the
976	 * metadata that can't be committed, e.g, due to I/O errors on the
977	 * metadata device.
978	 */
979	if (dm_thin_aborted_changes(tc->td)) {
980		bio_io_error(bio);
981		return;
982	}
983
984	/*
985	 * Batch together any bios that trigger commits and then issue a
986	 * single commit for them in process_deferred_bios().
987	 */
988	spin_lock_irq(&pool->lock);
989	bio_list_add(&pool->deferred_flush_completions, bio);
990	spin_unlock_irq(&pool->lock);
991}
992
993static void process_prepared_mapping(struct dm_thin_new_mapping *m)
994{
995	struct thin_c *tc = m->tc;
996	struct pool *pool = tc->pool;
997	struct bio *bio = m->bio;
998	int r;
999
1000	if (m->status) {
1001		cell_error(pool, m->cell);
1002		goto out;
1003	}
1004
1005	/*
1006	 * Commit the prepared block into the mapping btree.
1007	 * Any I/O for this block arriving after this point will get
1008	 * remapped to it directly.
1009	 */
1010	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1011	if (r) {
1012		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1013		cell_error(pool, m->cell);
1014		goto out;
1015	}
1016
1017	/*
1018	 * Release any bios held while the block was being provisioned.
1019	 * If we are processing a write bio that completely covers the block,
1020	 * we already processed it so can ignore it now when processing
1021	 * the bios in the cell.
1022	 */
1023	if (bio) {
1024		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1025		complete_overwrite_bio(tc, bio);
1026	} else {
1027		inc_all_io_entry(tc->pool, m->cell->holder);
1028		remap_and_issue(tc, m->cell->holder, m->data_block);
1029		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1030	}
1031
1032out:
1033	list_del(&m->list);
1034	mempool_free(m, &pool->mapping_pool);
1035}
1036
1037/*----------------------------------------------------------------*/
1038
1039static void free_discard_mapping(struct dm_thin_new_mapping *m)
1040{
1041	struct thin_c *tc = m->tc;
1042	if (m->cell)
1043		cell_defer_no_holder(tc, m->cell);
1044	mempool_free(m, &tc->pool->mapping_pool);
1045}
1046
1047static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048{
1049	bio_io_error(m->bio);
1050	free_discard_mapping(m);
1051}
1052
1053static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054{
1055	bio_endio(m->bio);
1056	free_discard_mapping(m);
1057}
1058
1059static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060{
1061	int r;
1062	struct thin_c *tc = m->tc;
1063
1064	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065	if (r) {
1066		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067		bio_io_error(m->bio);
1068	} else
1069		bio_endio(m->bio);
1070
1071	cell_defer_no_holder(tc, m->cell);
1072	mempool_free(m, &tc->pool->mapping_pool);
1073}
1074
1075/*----------------------------------------------------------------*/
1076
1077static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078						   struct bio *discard_parent)
1079{
1080	/*
1081	 * We've already unmapped this range of blocks, but before we
1082	 * passdown we have to check that these blocks are now unused.
1083	 */
1084	int r = 0;
1085	bool shared = true;
1086	struct thin_c *tc = m->tc;
1087	struct pool *pool = tc->pool;
1088	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089	struct discard_op op;
1090
1091	begin_discard(&op, tc, discard_parent);
1092	while (b != end) {
1093		/* find start of unmapped run */
1094		for (; b < end; b++) {
1095			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096			if (r)
1097				goto out;
1098
1099			if (!shared)
1100				break;
1101		}
1102
1103		if (b == end)
1104			break;
1105
1106		/* find end of run */
1107		for (e = b + 1; e != end; e++) {
1108			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109			if (r)
1110				goto out;
1111
1112			if (shared)
1113				break;
1114		}
1115
1116		r = issue_discard(&op, b, e);
1117		if (r)
1118			goto out;
1119
1120		b = e;
1121	}
1122out:
1123	end_discard(&op, r);
1124}
1125
1126static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127{
1128	unsigned long flags;
1129	struct pool *pool = m->tc->pool;
1130
1131	spin_lock_irqsave(&pool->lock, flags);
1132	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133	spin_unlock_irqrestore(&pool->lock, flags);
1134	wake_worker(pool);
1135}
1136
1137static void passdown_endio(struct bio *bio)
1138{
1139	/*
1140	 * It doesn't matter if the passdown discard failed, we still want
1141	 * to unmap (we ignore err).
1142	 */
1143	queue_passdown_pt2(bio->bi_private);
1144	bio_put(bio);
1145}
1146
1147static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148{
1149	int r;
1150	struct thin_c *tc = m->tc;
1151	struct pool *pool = tc->pool;
1152	struct bio *discard_parent;
1153	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154
1155	/*
1156	 * Only this thread allocates blocks, so we can be sure that the
1157	 * newly unmapped blocks will not be allocated before the end of
1158	 * the function.
1159	 */
1160	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161	if (r) {
1162		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163		bio_io_error(m->bio);
1164		cell_defer_no_holder(tc, m->cell);
1165		mempool_free(m, &pool->mapping_pool);
1166		return;
1167	}
1168
1169	/*
1170	 * Increment the unmapped blocks.  This prevents a race between the
1171	 * passdown io and reallocation of freed blocks.
1172	 */
1173	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174	if (r) {
1175		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176		bio_io_error(m->bio);
1177		cell_defer_no_holder(tc, m->cell);
1178		mempool_free(m, &pool->mapping_pool);
1179		return;
1180	}
1181
1182	discard_parent = bio_alloc(GFP_NOIO, 1);
1183	if (!discard_parent) {
1184		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1185		       dm_device_name(tc->pool->pool_md));
1186		queue_passdown_pt2(m);
1187
1188	} else {
1189		discard_parent->bi_end_io = passdown_endio;
1190		discard_parent->bi_private = m;
1191
1192		if (m->maybe_shared)
1193			passdown_double_checking_shared_status(m, discard_parent);
1194		else {
1195			struct discard_op op;
1196
1197			begin_discard(&op, tc, discard_parent);
1198			r = issue_discard(&op, m->data_block, data_end);
1199			end_discard(&op, r);
1200		}
1201	}
1202}
1203
1204static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1205{
1206	int r;
1207	struct thin_c *tc = m->tc;
1208	struct pool *pool = tc->pool;
1209
1210	/*
1211	 * The passdown has completed, so now we can decrement all those
1212	 * unmapped blocks.
1213	 */
1214	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1215				   m->data_block + (m->virt_end - m->virt_begin));
1216	if (r) {
1217		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1218		bio_io_error(m->bio);
1219	} else
1220		bio_endio(m->bio);
1221
1222	cell_defer_no_holder(tc, m->cell);
1223	mempool_free(m, &pool->mapping_pool);
1224}
1225
1226static void process_prepared(struct pool *pool, struct list_head *head,
1227			     process_mapping_fn *fn)
1228{
1229	struct list_head maps;
1230	struct dm_thin_new_mapping *m, *tmp;
1231
1232	INIT_LIST_HEAD(&maps);
1233	spin_lock_irq(&pool->lock);
1234	list_splice_init(head, &maps);
1235	spin_unlock_irq(&pool->lock);
1236
1237	list_for_each_entry_safe(m, tmp, &maps, list)
1238		(*fn)(m);
1239}
1240
1241/*
1242 * Deferred bio jobs.
1243 */
1244static int io_overlaps_block(struct pool *pool, struct bio *bio)
1245{
1246	return bio->bi_iter.bi_size ==
1247		(pool->sectors_per_block << SECTOR_SHIFT);
1248}
1249
1250static int io_overwrites_block(struct pool *pool, struct bio *bio)
1251{
1252	return (bio_data_dir(bio) == WRITE) &&
1253		io_overlaps_block(pool, bio);
1254}
1255
1256static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1257			       bio_end_io_t *fn)
1258{
1259	*save = bio->bi_end_io;
1260	bio->bi_end_io = fn;
1261}
1262
1263static int ensure_next_mapping(struct pool *pool)
1264{
1265	if (pool->next_mapping)
1266		return 0;
1267
1268	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1269
1270	return pool->next_mapping ? 0 : -ENOMEM;
1271}
1272
1273static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1274{
1275	struct dm_thin_new_mapping *m = pool->next_mapping;
1276
1277	BUG_ON(!pool->next_mapping);
1278
1279	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1280	INIT_LIST_HEAD(&m->list);
1281	m->bio = NULL;
1282
1283	pool->next_mapping = NULL;
1284
1285	return m;
1286}
1287
1288static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1289		    sector_t begin, sector_t end)
1290{
1291	struct dm_io_region to;
1292
1293	to.bdev = tc->pool_dev->bdev;
1294	to.sector = begin;
1295	to.count = end - begin;
1296
1297	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1298}
1299
1300static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1301				      dm_block_t data_begin,
1302				      struct dm_thin_new_mapping *m)
1303{
1304	struct pool *pool = tc->pool;
1305	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1306
1307	h->overwrite_mapping = m;
1308	m->bio = bio;
1309	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1310	inc_all_io_entry(pool, bio);
1311	remap_and_issue(tc, bio, data_begin);
1312}
1313
1314/*
1315 * A partial copy also needs to zero the uncopied region.
1316 */
1317static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1318			  struct dm_dev *origin, dm_block_t data_origin,
1319			  dm_block_t data_dest,
1320			  struct dm_bio_prison_cell *cell, struct bio *bio,
1321			  sector_t len)
1322{
1323	struct pool *pool = tc->pool;
1324	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1325
1326	m->tc = tc;
1327	m->virt_begin = virt_block;
1328	m->virt_end = virt_block + 1u;
1329	m->data_block = data_dest;
1330	m->cell = cell;
1331
1332	/*
1333	 * quiesce action + copy action + an extra reference held for the
1334	 * duration of this function (we may need to inc later for a
1335	 * partial zero).
1336	 */
1337	atomic_set(&m->prepare_actions, 3);
1338
1339	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1340		complete_mapping_preparation(m); /* already quiesced */
1341
1342	/*
1343	 * IO to pool_dev remaps to the pool target's data_dev.
1344	 *
1345	 * If the whole block of data is being overwritten, we can issue the
1346	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1347	 */
1348	if (io_overwrites_block(pool, bio))
1349		remap_and_issue_overwrite(tc, bio, data_dest, m);
1350	else {
1351		struct dm_io_region from, to;
1352
1353		from.bdev = origin->bdev;
1354		from.sector = data_origin * pool->sectors_per_block;
1355		from.count = len;
1356
1357		to.bdev = tc->pool_dev->bdev;
1358		to.sector = data_dest * pool->sectors_per_block;
1359		to.count = len;
1360
1361		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1362			       0, copy_complete, m);
1363
1364		/*
1365		 * Do we need to zero a tail region?
1366		 */
1367		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1368			atomic_inc(&m->prepare_actions);
1369			ll_zero(tc, m,
1370				data_dest * pool->sectors_per_block + len,
1371				(data_dest + 1) * pool->sectors_per_block);
1372		}
1373	}
1374
1375	complete_mapping_preparation(m); /* drop our ref */
1376}
1377
1378static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1379				   dm_block_t data_origin, dm_block_t data_dest,
1380				   struct dm_bio_prison_cell *cell, struct bio *bio)
1381{
1382	schedule_copy(tc, virt_block, tc->pool_dev,
1383		      data_origin, data_dest, cell, bio,
1384		      tc->pool->sectors_per_block);
1385}
1386
1387static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1388			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1389			  struct bio *bio)
1390{
1391	struct pool *pool = tc->pool;
1392	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1393
1394	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1395	m->tc = tc;
1396	m->virt_begin = virt_block;
1397	m->virt_end = virt_block + 1u;
1398	m->data_block = data_block;
1399	m->cell = cell;
1400
1401	/*
1402	 * If the whole block of data is being overwritten or we are not
1403	 * zeroing pre-existing data, we can issue the bio immediately.
1404	 * Otherwise we use kcopyd to zero the data first.
1405	 */
1406	if (pool->pf.zero_new_blocks) {
1407		if (io_overwrites_block(pool, bio))
1408			remap_and_issue_overwrite(tc, bio, data_block, m);
1409		else
1410			ll_zero(tc, m, data_block * pool->sectors_per_block,
1411				(data_block + 1) * pool->sectors_per_block);
1412	} else
1413		process_prepared_mapping(m);
1414}
1415
1416static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1417				   dm_block_t data_dest,
1418				   struct dm_bio_prison_cell *cell, struct bio *bio)
1419{
1420	struct pool *pool = tc->pool;
1421	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1422	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1423
1424	if (virt_block_end <= tc->origin_size)
1425		schedule_copy(tc, virt_block, tc->origin_dev,
1426			      virt_block, data_dest, cell, bio,
1427			      pool->sectors_per_block);
1428
1429	else if (virt_block_begin < tc->origin_size)
1430		schedule_copy(tc, virt_block, tc->origin_dev,
1431			      virt_block, data_dest, cell, bio,
1432			      tc->origin_size - virt_block_begin);
1433
1434	else
1435		schedule_zero(tc, virt_block, data_dest, cell, bio);
1436}
1437
1438static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1439
1440static void requeue_bios(struct pool *pool);
1441
1442static bool is_read_only_pool_mode(enum pool_mode mode)
1443{
1444	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1445}
1446
1447static bool is_read_only(struct pool *pool)
1448{
1449	return is_read_only_pool_mode(get_pool_mode(pool));
1450}
1451
1452static void check_for_metadata_space(struct pool *pool)
1453{
1454	int r;
1455	const char *ooms_reason = NULL;
1456	dm_block_t nr_free;
1457
1458	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1459	if (r)
1460		ooms_reason = "Could not get free metadata blocks";
1461	else if (!nr_free)
1462		ooms_reason = "No free metadata blocks";
1463
1464	if (ooms_reason && !is_read_only(pool)) {
1465		DMERR("%s", ooms_reason);
1466		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1467	}
1468}
1469
1470static void check_for_data_space(struct pool *pool)
1471{
1472	int r;
1473	dm_block_t nr_free;
1474
1475	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1476		return;
1477
1478	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1479	if (r)
1480		return;
1481
1482	if (nr_free) {
1483		set_pool_mode(pool, PM_WRITE);
1484		requeue_bios(pool);
1485	}
1486}
1487
1488/*
1489 * A non-zero return indicates read_only or fail_io mode.
1490 * Many callers don't care about the return value.
1491 */
1492static int commit(struct pool *pool)
1493{
1494	int r;
1495
1496	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1497		return -EINVAL;
1498
1499	r = dm_pool_commit_metadata(pool->pmd);
1500	if (r)
1501		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1502	else {
1503		check_for_metadata_space(pool);
1504		check_for_data_space(pool);
1505	}
1506
1507	return r;
1508}
1509
1510static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1511{
1512	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1513		DMWARN("%s: reached low water mark for data device: sending event.",
1514		       dm_device_name(pool->pool_md));
1515		spin_lock_irq(&pool->lock);
1516		pool->low_water_triggered = true;
1517		spin_unlock_irq(&pool->lock);
1518		dm_table_event(pool->ti->table);
1519	}
1520}
1521
1522static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1523{
1524	int r;
1525	dm_block_t free_blocks;
1526	struct pool *pool = tc->pool;
1527
1528	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1529		return -EINVAL;
1530
1531	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1532	if (r) {
1533		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1534		return r;
1535	}
1536
1537	check_low_water_mark(pool, free_blocks);
1538
1539	if (!free_blocks) {
1540		/*
1541		 * Try to commit to see if that will free up some
1542		 * more space.
1543		 */
1544		r = commit(pool);
1545		if (r)
1546			return r;
1547
1548		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1549		if (r) {
1550			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1551			return r;
1552		}
1553
1554		if (!free_blocks) {
1555			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1556			return -ENOSPC;
1557		}
1558	}
1559
1560	r = dm_pool_alloc_data_block(pool->pmd, result);
1561	if (r) {
1562		if (r == -ENOSPC)
1563			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1564		else
1565			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1566		return r;
1567	}
1568
1569	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1570	if (r) {
1571		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1572		return r;
1573	}
1574
1575	if (!free_blocks) {
1576		/* Let's commit before we use up the metadata reserve. */
1577		r = commit(pool);
1578		if (r)
1579			return r;
1580	}
1581
1582	return 0;
1583}
1584
1585/*
1586 * If we have run out of space, queue bios until the device is
1587 * resumed, presumably after having been reloaded with more space.
1588 */
1589static void retry_on_resume(struct bio *bio)
1590{
1591	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1592	struct thin_c *tc = h->tc;
1593
1594	spin_lock_irq(&tc->lock);
1595	bio_list_add(&tc->retry_on_resume_list, bio);
1596	spin_unlock_irq(&tc->lock);
1597}
1598
1599static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1600{
1601	enum pool_mode m = get_pool_mode(pool);
1602
1603	switch (m) {
1604	case PM_WRITE:
1605		/* Shouldn't get here */
1606		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1607		return BLK_STS_IOERR;
1608
1609	case PM_OUT_OF_DATA_SPACE:
1610		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1611
1612	case PM_OUT_OF_METADATA_SPACE:
1613	case PM_READ_ONLY:
1614	case PM_FAIL:
1615		return BLK_STS_IOERR;
1616	default:
1617		/* Shouldn't get here */
1618		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1619		return BLK_STS_IOERR;
1620	}
1621}
1622
1623static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1624{
1625	blk_status_t error = should_error_unserviceable_bio(pool);
1626
1627	if (error) {
1628		bio->bi_status = error;
1629		bio_endio(bio);
1630	} else
1631		retry_on_resume(bio);
1632}
1633
1634static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1635{
1636	struct bio *bio;
1637	struct bio_list bios;
1638	blk_status_t error;
1639
1640	error = should_error_unserviceable_bio(pool);
1641	if (error) {
1642		cell_error_with_code(pool, cell, error);
1643		return;
1644	}
1645
1646	bio_list_init(&bios);
1647	cell_release(pool, cell, &bios);
1648
1649	while ((bio = bio_list_pop(&bios)))
1650		retry_on_resume(bio);
1651}
1652
1653static void process_discard_cell_no_passdown(struct thin_c *tc,
1654					     struct dm_bio_prison_cell *virt_cell)
1655{
1656	struct pool *pool = tc->pool;
1657	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1658
1659	/*
1660	 * We don't need to lock the data blocks, since there's no
1661	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1662	 */
1663	m->tc = tc;
1664	m->virt_begin = virt_cell->key.block_begin;
1665	m->virt_end = virt_cell->key.block_end;
1666	m->cell = virt_cell;
1667	m->bio = virt_cell->holder;
1668
1669	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1670		pool->process_prepared_discard(m);
1671}
1672
1673static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1674				 struct bio *bio)
1675{
1676	struct pool *pool = tc->pool;
1677
1678	int r;
1679	bool maybe_shared;
1680	struct dm_cell_key data_key;
1681	struct dm_bio_prison_cell *data_cell;
1682	struct dm_thin_new_mapping *m;
1683	dm_block_t virt_begin, virt_end, data_begin;
1684
1685	while (begin != end) {
1686		r = ensure_next_mapping(pool);
1687		if (r)
1688			/* we did our best */
1689			return;
1690
1691		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1692					      &data_begin, &maybe_shared);
1693		if (r)
1694			/*
1695			 * Silently fail, letting any mappings we've
1696			 * created complete.
1697			 */
1698			break;
1699
1700		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1701		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1702			/* contention, we'll give up with this range */
1703			begin = virt_end;
1704			continue;
1705		}
1706
1707		/*
1708		 * IO may still be going to the destination block.  We must
1709		 * quiesce before we can do the removal.
1710		 */
1711		m = get_next_mapping(pool);
1712		m->tc = tc;
1713		m->maybe_shared = maybe_shared;
1714		m->virt_begin = virt_begin;
1715		m->virt_end = virt_end;
1716		m->data_block = data_begin;
1717		m->cell = data_cell;
1718		m->bio = bio;
1719
1720		/*
1721		 * The parent bio must not complete before sub discard bios are
1722		 * chained to it (see end_discard's bio_chain)!
1723		 *
1724		 * This per-mapping bi_remaining increment is paired with
1725		 * the implicit decrement that occurs via bio_endio() in
1726		 * end_discard().
1727		 */
1728		bio_inc_remaining(bio);
1729		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1730			pool->process_prepared_discard(m);
1731
1732		begin = virt_end;
1733	}
1734}
1735
1736static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1737{
1738	struct bio *bio = virt_cell->holder;
1739	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1740
1741	/*
1742	 * The virt_cell will only get freed once the origin bio completes.
1743	 * This means it will remain locked while all the individual
1744	 * passdown bios are in flight.
1745	 */
1746	h->cell = virt_cell;
1747	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1748
1749	/*
1750	 * We complete the bio now, knowing that the bi_remaining field
1751	 * will prevent completion until the sub range discards have
1752	 * completed.
1753	 */
1754	bio_endio(bio);
1755}
1756
1757static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1758{
1759	dm_block_t begin, end;
1760	struct dm_cell_key virt_key;
1761	struct dm_bio_prison_cell *virt_cell;
1762
1763	get_bio_block_range(tc, bio, &begin, &end);
1764	if (begin == end) {
1765		/*
1766		 * The discard covers less than a block.
1767		 */
1768		bio_endio(bio);
1769		return;
1770	}
1771
1772	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1773	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1774		/*
1775		 * Potential starvation issue: We're relying on the
1776		 * fs/application being well behaved, and not trying to
1777		 * send IO to a region at the same time as discarding it.
1778		 * If they do this persistently then it's possible this
1779		 * cell will never be granted.
1780		 */
1781		return;
1782
1783	tc->pool->process_discard_cell(tc, virt_cell);
1784}
1785
1786static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1787			  struct dm_cell_key *key,
1788			  struct dm_thin_lookup_result *lookup_result,
1789			  struct dm_bio_prison_cell *cell)
1790{
1791	int r;
1792	dm_block_t data_block;
1793	struct pool *pool = tc->pool;
1794
1795	r = alloc_data_block(tc, &data_block);
1796	switch (r) {
1797	case 0:
1798		schedule_internal_copy(tc, block, lookup_result->block,
1799				       data_block, cell, bio);
1800		break;
1801
1802	case -ENOSPC:
1803		retry_bios_on_resume(pool, cell);
1804		break;
1805
1806	default:
1807		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1808			    __func__, r);
1809		cell_error(pool, cell);
1810		break;
1811	}
1812}
1813
1814static void __remap_and_issue_shared_cell(void *context,
1815					  struct dm_bio_prison_cell *cell)
1816{
1817	struct remap_info *info = context;
1818	struct bio *bio;
1819
1820	while ((bio = bio_list_pop(&cell->bios))) {
1821		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1822		    bio_op(bio) == REQ_OP_DISCARD)
1823			bio_list_add(&info->defer_bios, bio);
1824		else {
1825			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1826
1827			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1828			inc_all_io_entry(info->tc->pool, bio);
1829			bio_list_add(&info->issue_bios, bio);
1830		}
1831	}
1832}
1833
1834static void remap_and_issue_shared_cell(struct thin_c *tc,
1835					struct dm_bio_prison_cell *cell,
1836					dm_block_t block)
1837{
1838	struct bio *bio;
1839	struct remap_info info;
1840
1841	info.tc = tc;
1842	bio_list_init(&info.defer_bios);
1843	bio_list_init(&info.issue_bios);
1844
1845	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1846			   &info, cell);
1847
1848	while ((bio = bio_list_pop(&info.defer_bios)))
1849		thin_defer_bio(tc, bio);
1850
1851	while ((bio = bio_list_pop(&info.issue_bios)))
1852		remap_and_issue(tc, bio, block);
1853}
1854
1855static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1856			       dm_block_t block,
1857			       struct dm_thin_lookup_result *lookup_result,
1858			       struct dm_bio_prison_cell *virt_cell)
1859{
1860	struct dm_bio_prison_cell *data_cell;
1861	struct pool *pool = tc->pool;
1862	struct dm_cell_key key;
1863
1864	/*
1865	 * If cell is already occupied, then sharing is already in the process
1866	 * of being broken so we have nothing further to do here.
1867	 */
1868	build_data_key(tc->td, lookup_result->block, &key);
1869	if (bio_detain(pool, &key, bio, &data_cell)) {
1870		cell_defer_no_holder(tc, virt_cell);
1871		return;
1872	}
1873
1874	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1875		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1876		cell_defer_no_holder(tc, virt_cell);
1877	} else {
1878		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1879
1880		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1881		inc_all_io_entry(pool, bio);
1882		remap_and_issue(tc, bio, lookup_result->block);
1883
1884		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1885		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1886	}
1887}
1888
1889static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1890			    struct dm_bio_prison_cell *cell)
1891{
1892	int r;
1893	dm_block_t data_block;
1894	struct pool *pool = tc->pool;
1895
1896	/*
1897	 * Remap empty bios (flushes) immediately, without provisioning.
1898	 */
1899	if (!bio->bi_iter.bi_size) {
1900		inc_all_io_entry(pool, bio);
1901		cell_defer_no_holder(tc, cell);
1902
1903		remap_and_issue(tc, bio, 0);
1904		return;
1905	}
1906
1907	/*
1908	 * Fill read bios with zeroes and complete them immediately.
1909	 */
1910	if (bio_data_dir(bio) == READ) {
1911		zero_fill_bio(bio);
1912		cell_defer_no_holder(tc, cell);
1913		bio_endio(bio);
1914		return;
1915	}
1916
1917	r = alloc_data_block(tc, &data_block);
1918	switch (r) {
1919	case 0:
1920		if (tc->origin_dev)
1921			schedule_external_copy(tc, block, data_block, cell, bio);
1922		else
1923			schedule_zero(tc, block, data_block, cell, bio);
1924		break;
1925
1926	case -ENOSPC:
1927		retry_bios_on_resume(pool, cell);
1928		break;
1929
1930	default:
1931		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1932			    __func__, r);
1933		cell_error(pool, cell);
1934		break;
1935	}
1936}
1937
1938static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1939{
1940	int r;
1941	struct pool *pool = tc->pool;
1942	struct bio *bio = cell->holder;
1943	dm_block_t block = get_bio_block(tc, bio);
1944	struct dm_thin_lookup_result lookup_result;
1945
1946	if (tc->requeue_mode) {
1947		cell_requeue(pool, cell);
1948		return;
1949	}
1950
1951	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1952	switch (r) {
1953	case 0:
1954		if (lookup_result.shared)
1955			process_shared_bio(tc, bio, block, &lookup_result, cell);
1956		else {
1957			inc_all_io_entry(pool, bio);
1958			remap_and_issue(tc, bio, lookup_result.block);
1959			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1960		}
1961		break;
1962
1963	case -ENODATA:
1964		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1965			inc_all_io_entry(pool, bio);
1966			cell_defer_no_holder(tc, cell);
1967
1968			if (bio_end_sector(bio) <= tc->origin_size)
1969				remap_to_origin_and_issue(tc, bio);
1970
1971			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1972				zero_fill_bio(bio);
1973				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1974				remap_to_origin_and_issue(tc, bio);
1975
1976			} else {
1977				zero_fill_bio(bio);
1978				bio_endio(bio);
1979			}
1980		} else
1981			provision_block(tc, bio, block, cell);
1982		break;
1983
1984	default:
1985		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1986			    __func__, r);
1987		cell_defer_no_holder(tc, cell);
1988		bio_io_error(bio);
1989		break;
1990	}
1991}
1992
1993static void process_bio(struct thin_c *tc, struct bio *bio)
1994{
1995	struct pool *pool = tc->pool;
1996	dm_block_t block = get_bio_block(tc, bio);
1997	struct dm_bio_prison_cell *cell;
1998	struct dm_cell_key key;
1999
2000	/*
2001	 * If cell is already occupied, then the block is already
2002	 * being provisioned so we have nothing further to do here.
2003	 */
2004	build_virtual_key(tc->td, block, &key);
2005	if (bio_detain(pool, &key, bio, &cell))
2006		return;
2007
2008	process_cell(tc, cell);
2009}
2010
2011static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2012				    struct dm_bio_prison_cell *cell)
2013{
2014	int r;
2015	int rw = bio_data_dir(bio);
2016	dm_block_t block = get_bio_block(tc, bio);
2017	struct dm_thin_lookup_result lookup_result;
2018
2019	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2020	switch (r) {
2021	case 0:
2022		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2023			handle_unserviceable_bio(tc->pool, bio);
2024			if (cell)
2025				cell_defer_no_holder(tc, cell);
2026		} else {
2027			inc_all_io_entry(tc->pool, bio);
2028			remap_and_issue(tc, bio, lookup_result.block);
2029			if (cell)
2030				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2031		}
2032		break;
2033
2034	case -ENODATA:
2035		if (cell)
2036			cell_defer_no_holder(tc, cell);
2037		if (rw != READ) {
2038			handle_unserviceable_bio(tc->pool, bio);
2039			break;
2040		}
2041
2042		if (tc->origin_dev) {
2043			inc_all_io_entry(tc->pool, bio);
2044			remap_to_origin_and_issue(tc, bio);
2045			break;
2046		}
2047
2048		zero_fill_bio(bio);
2049		bio_endio(bio);
2050		break;
2051
2052	default:
2053		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2054			    __func__, r);
2055		if (cell)
2056			cell_defer_no_holder(tc, cell);
2057		bio_io_error(bio);
2058		break;
2059	}
2060}
2061
2062static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2063{
2064	__process_bio_read_only(tc, bio, NULL);
2065}
2066
2067static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2068{
2069	__process_bio_read_only(tc, cell->holder, cell);
2070}
2071
2072static void process_bio_success(struct thin_c *tc, struct bio *bio)
2073{
2074	bio_endio(bio);
2075}
2076
2077static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2078{
2079	bio_io_error(bio);
2080}
2081
2082static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2083{
2084	cell_success(tc->pool, cell);
2085}
2086
2087static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2088{
2089	cell_error(tc->pool, cell);
2090}
2091
2092/*
2093 * FIXME: should we also commit due to size of transaction, measured in
2094 * metadata blocks?
2095 */
2096static int need_commit_due_to_time(struct pool *pool)
2097{
2098	return !time_in_range(jiffies, pool->last_commit_jiffies,
2099			      pool->last_commit_jiffies + COMMIT_PERIOD);
2100}
2101
2102#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2103#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2104
2105static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2106{
2107	struct rb_node **rbp, *parent;
2108	struct dm_thin_endio_hook *pbd;
2109	sector_t bi_sector = bio->bi_iter.bi_sector;
2110
2111	rbp = &tc->sort_bio_list.rb_node;
2112	parent = NULL;
2113	while (*rbp) {
2114		parent = *rbp;
2115		pbd = thin_pbd(parent);
2116
2117		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2118			rbp = &(*rbp)->rb_left;
2119		else
2120			rbp = &(*rbp)->rb_right;
2121	}
2122
2123	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2124	rb_link_node(&pbd->rb_node, parent, rbp);
2125	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2126}
2127
2128static void __extract_sorted_bios(struct thin_c *tc)
2129{
2130	struct rb_node *node;
2131	struct dm_thin_endio_hook *pbd;
2132	struct bio *bio;
2133
2134	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2135		pbd = thin_pbd(node);
2136		bio = thin_bio(pbd);
2137
2138		bio_list_add(&tc->deferred_bio_list, bio);
2139		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2140	}
2141
2142	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2143}
2144
2145static void __sort_thin_deferred_bios(struct thin_c *tc)
2146{
2147	struct bio *bio;
2148	struct bio_list bios;
2149
2150	bio_list_init(&bios);
2151	bio_list_merge(&bios, &tc->deferred_bio_list);
2152	bio_list_init(&tc->deferred_bio_list);
2153
2154	/* Sort deferred_bio_list using rb-tree */
2155	while ((bio = bio_list_pop(&bios)))
2156		__thin_bio_rb_add(tc, bio);
2157
2158	/*
2159	 * Transfer the sorted bios in sort_bio_list back to
2160	 * deferred_bio_list to allow lockless submission of
2161	 * all bios.
2162	 */
2163	__extract_sorted_bios(tc);
2164}
2165
2166static void process_thin_deferred_bios(struct thin_c *tc)
2167{
2168	struct pool *pool = tc->pool;
2169	struct bio *bio;
2170	struct bio_list bios;
2171	struct blk_plug plug;
2172	unsigned count = 0;
2173
2174	if (tc->requeue_mode) {
2175		error_thin_bio_list(tc, &tc->deferred_bio_list,
2176				BLK_STS_DM_REQUEUE);
2177		return;
2178	}
2179
2180	bio_list_init(&bios);
2181
2182	spin_lock_irq(&tc->lock);
2183
2184	if (bio_list_empty(&tc->deferred_bio_list)) {
2185		spin_unlock_irq(&tc->lock);
2186		return;
2187	}
2188
2189	__sort_thin_deferred_bios(tc);
2190
2191	bio_list_merge(&bios, &tc->deferred_bio_list);
2192	bio_list_init(&tc->deferred_bio_list);
2193
2194	spin_unlock_irq(&tc->lock);
2195
2196	blk_start_plug(&plug);
2197	while ((bio = bio_list_pop(&bios))) {
2198		/*
2199		 * If we've got no free new_mapping structs, and processing
2200		 * this bio might require one, we pause until there are some
2201		 * prepared mappings to process.
2202		 */
2203		if (ensure_next_mapping(pool)) {
2204			spin_lock_irq(&tc->lock);
2205			bio_list_add(&tc->deferred_bio_list, bio);
2206			bio_list_merge(&tc->deferred_bio_list, &bios);
2207			spin_unlock_irq(&tc->lock);
2208			break;
2209		}
2210
2211		if (bio_op(bio) == REQ_OP_DISCARD)
2212			pool->process_discard(tc, bio);
2213		else
2214			pool->process_bio(tc, bio);
2215
2216		if ((count++ & 127) == 0) {
2217			throttle_work_update(&pool->throttle);
2218			dm_pool_issue_prefetches(pool->pmd);
2219		}
2220		cond_resched();
2221	}
2222	blk_finish_plug(&plug);
2223}
2224
2225static int cmp_cells(const void *lhs, const void *rhs)
2226{
2227	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2228	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2229
2230	BUG_ON(!lhs_cell->holder);
2231	BUG_ON(!rhs_cell->holder);
2232
2233	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2234		return -1;
2235
2236	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2237		return 1;
2238
2239	return 0;
2240}
2241
2242static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2243{
2244	unsigned count = 0;
2245	struct dm_bio_prison_cell *cell, *tmp;
2246
2247	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2248		if (count >= CELL_SORT_ARRAY_SIZE)
2249			break;
2250
2251		pool->cell_sort_array[count++] = cell;
2252		list_del(&cell->user_list);
2253	}
2254
2255	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2256
2257	return count;
2258}
2259
2260static void process_thin_deferred_cells(struct thin_c *tc)
2261{
2262	struct pool *pool = tc->pool;
2263	struct list_head cells;
2264	struct dm_bio_prison_cell *cell;
2265	unsigned i, j, count;
2266
2267	INIT_LIST_HEAD(&cells);
2268
2269	spin_lock_irq(&tc->lock);
2270	list_splice_init(&tc->deferred_cells, &cells);
2271	spin_unlock_irq(&tc->lock);
2272
2273	if (list_empty(&cells))
2274		return;
2275
2276	do {
2277		count = sort_cells(tc->pool, &cells);
2278
2279		for (i = 0; i < count; i++) {
2280			cell = pool->cell_sort_array[i];
2281			BUG_ON(!cell->holder);
2282
2283			/*
2284			 * If we've got no free new_mapping structs, and processing
2285			 * this bio might require one, we pause until there are some
2286			 * prepared mappings to process.
2287			 */
2288			if (ensure_next_mapping(pool)) {
2289				for (j = i; j < count; j++)
2290					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2291
2292				spin_lock_irq(&tc->lock);
2293				list_splice(&cells, &tc->deferred_cells);
2294				spin_unlock_irq(&tc->lock);
2295				return;
2296			}
2297
2298			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2299				pool->process_discard_cell(tc, cell);
2300			else
2301				pool->process_cell(tc, cell);
2302		}
2303		cond_resched();
2304	} while (!list_empty(&cells));
2305}
2306
2307static void thin_get(struct thin_c *tc);
2308static void thin_put(struct thin_c *tc);
2309
2310/*
2311 * We can't hold rcu_read_lock() around code that can block.  So we
2312 * find a thin with the rcu lock held; bump a refcount; then drop
2313 * the lock.
2314 */
2315static struct thin_c *get_first_thin(struct pool *pool)
2316{
2317	struct thin_c *tc = NULL;
2318
2319	rcu_read_lock();
2320	if (!list_empty(&pool->active_thins)) {
2321		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2322		thin_get(tc);
2323	}
2324	rcu_read_unlock();
2325
2326	return tc;
2327}
2328
2329static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2330{
2331	struct thin_c *old_tc = tc;
2332
2333	rcu_read_lock();
2334	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2335		thin_get(tc);
2336		thin_put(old_tc);
2337		rcu_read_unlock();
2338		return tc;
2339	}
2340	thin_put(old_tc);
2341	rcu_read_unlock();
2342
2343	return NULL;
2344}
2345
2346static void process_deferred_bios(struct pool *pool)
2347{
2348	struct bio *bio;
2349	struct bio_list bios, bio_completions;
2350	struct thin_c *tc;
2351
2352	tc = get_first_thin(pool);
2353	while (tc) {
2354		process_thin_deferred_cells(tc);
2355		process_thin_deferred_bios(tc);
2356		tc = get_next_thin(pool, tc);
2357	}
2358
2359	/*
2360	 * If there are any deferred flush bios, we must commit the metadata
2361	 * before issuing them or signaling their completion.
2362	 */
2363	bio_list_init(&bios);
2364	bio_list_init(&bio_completions);
2365
2366	spin_lock_irq(&pool->lock);
2367	bio_list_merge(&bios, &pool->deferred_flush_bios);
2368	bio_list_init(&pool->deferred_flush_bios);
2369
2370	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2371	bio_list_init(&pool->deferred_flush_completions);
2372	spin_unlock_irq(&pool->lock);
2373
2374	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2375	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2376		return;
2377
2378	if (commit(pool)) {
2379		bio_list_merge(&bios, &bio_completions);
2380
2381		while ((bio = bio_list_pop(&bios)))
2382			bio_io_error(bio);
2383		return;
2384	}
2385	pool->last_commit_jiffies = jiffies;
2386
2387	while ((bio = bio_list_pop(&bio_completions)))
2388		bio_endio(bio);
2389
2390	while ((bio = bio_list_pop(&bios))) {
2391		/*
2392		 * The data device was flushed as part of metadata commit,
2393		 * so complete redundant flushes immediately.
2394		 */
2395		if (bio->bi_opf & REQ_PREFLUSH)
2396			bio_endio(bio);
2397		else
2398			submit_bio_noacct(bio);
2399	}
2400}
2401
2402static void do_worker(struct work_struct *ws)
2403{
2404	struct pool *pool = container_of(ws, struct pool, worker);
2405
2406	throttle_work_start(&pool->throttle);
2407	dm_pool_issue_prefetches(pool->pmd);
2408	throttle_work_update(&pool->throttle);
2409	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2410	throttle_work_update(&pool->throttle);
2411	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2412	throttle_work_update(&pool->throttle);
2413	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2414	throttle_work_update(&pool->throttle);
2415	process_deferred_bios(pool);
2416	throttle_work_complete(&pool->throttle);
2417}
2418
2419/*
2420 * We want to commit periodically so that not too much
2421 * unwritten data builds up.
2422 */
2423static void do_waker(struct work_struct *ws)
2424{
2425	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2426	wake_worker(pool);
2427	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2428}
2429
2430/*
2431 * We're holding onto IO to allow userland time to react.  After the
2432 * timeout either the pool will have been resized (and thus back in
2433 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2434 */
2435static void do_no_space_timeout(struct work_struct *ws)
2436{
2437	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2438					 no_space_timeout);
2439
2440	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2441		pool->pf.error_if_no_space = true;
2442		notify_of_pool_mode_change(pool);
2443		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2444	}
2445}
2446
2447/*----------------------------------------------------------------*/
2448
2449struct pool_work {
2450	struct work_struct worker;
2451	struct completion complete;
2452};
2453
2454static struct pool_work *to_pool_work(struct work_struct *ws)
2455{
2456	return container_of(ws, struct pool_work, worker);
2457}
2458
2459static void pool_work_complete(struct pool_work *pw)
2460{
2461	complete(&pw->complete);
2462}
2463
2464static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2465			   void (*fn)(struct work_struct *))
2466{
2467	INIT_WORK_ONSTACK(&pw->worker, fn);
2468	init_completion(&pw->complete);
2469	queue_work(pool->wq, &pw->worker);
2470	wait_for_completion(&pw->complete);
2471}
2472
2473/*----------------------------------------------------------------*/
2474
2475struct noflush_work {
2476	struct pool_work pw;
2477	struct thin_c *tc;
2478};
2479
2480static struct noflush_work *to_noflush(struct work_struct *ws)
2481{
2482	return container_of(to_pool_work(ws), struct noflush_work, pw);
2483}
2484
2485static void do_noflush_start(struct work_struct *ws)
2486{
2487	struct noflush_work *w = to_noflush(ws);
2488	w->tc->requeue_mode = true;
2489	requeue_io(w->tc);
2490	pool_work_complete(&w->pw);
2491}
2492
2493static void do_noflush_stop(struct work_struct *ws)
2494{
2495	struct noflush_work *w = to_noflush(ws);
2496	w->tc->requeue_mode = false;
2497	pool_work_complete(&w->pw);
2498}
2499
2500static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2501{
2502	struct noflush_work w;
2503
2504	w.tc = tc;
2505	pool_work_wait(&w.pw, tc->pool, fn);
2506}
2507
2508/*----------------------------------------------------------------*/
2509
2510static bool passdown_enabled(struct pool_c *pt)
2511{
2512	return pt->adjusted_pf.discard_passdown;
2513}
2514
2515static void set_discard_callbacks(struct pool *pool)
2516{
2517	struct pool_c *pt = pool->ti->private;
2518
2519	if (passdown_enabled(pt)) {
2520		pool->process_discard_cell = process_discard_cell_passdown;
2521		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2522		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2523	} else {
2524		pool->process_discard_cell = process_discard_cell_no_passdown;
2525		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2526	}
2527}
2528
2529static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2530{
2531	struct pool_c *pt = pool->ti->private;
2532	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2533	enum pool_mode old_mode = get_pool_mode(pool);
2534	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2535
2536	/*
2537	 * Never allow the pool to transition to PM_WRITE mode if user
2538	 * intervention is required to verify metadata and data consistency.
2539	 */
2540	if (new_mode == PM_WRITE && needs_check) {
2541		DMERR("%s: unable to switch pool to write mode until repaired.",
2542		      dm_device_name(pool->pool_md));
2543		if (old_mode != new_mode)
2544			new_mode = old_mode;
2545		else
2546			new_mode = PM_READ_ONLY;
2547	}
2548	/*
2549	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2550	 * not going to recover without a thin_repair.	So we never let the
2551	 * pool move out of the old mode.
2552	 */
2553	if (old_mode == PM_FAIL)
2554		new_mode = old_mode;
2555
2556	switch (new_mode) {
2557	case PM_FAIL:
2558		dm_pool_metadata_read_only(pool->pmd);
2559		pool->process_bio = process_bio_fail;
2560		pool->process_discard = process_bio_fail;
2561		pool->process_cell = process_cell_fail;
2562		pool->process_discard_cell = process_cell_fail;
2563		pool->process_prepared_mapping = process_prepared_mapping_fail;
2564		pool->process_prepared_discard = process_prepared_discard_fail;
2565
2566		error_retry_list(pool);
2567		break;
2568
2569	case PM_OUT_OF_METADATA_SPACE:
2570	case PM_READ_ONLY:
2571		dm_pool_metadata_read_only(pool->pmd);
2572		pool->process_bio = process_bio_read_only;
2573		pool->process_discard = process_bio_success;
2574		pool->process_cell = process_cell_read_only;
2575		pool->process_discard_cell = process_cell_success;
2576		pool->process_prepared_mapping = process_prepared_mapping_fail;
2577		pool->process_prepared_discard = process_prepared_discard_success;
2578
2579		error_retry_list(pool);
2580		break;
2581
2582	case PM_OUT_OF_DATA_SPACE:
2583		/*
2584		 * Ideally we'd never hit this state; the low water mark
2585		 * would trigger userland to extend the pool before we
2586		 * completely run out of data space.  However, many small
2587		 * IOs to unprovisioned space can consume data space at an
2588		 * alarming rate.  Adjust your low water mark if you're
2589		 * frequently seeing this mode.
2590		 */
2591		pool->out_of_data_space = true;
2592		pool->process_bio = process_bio_read_only;
2593		pool->process_discard = process_discard_bio;
2594		pool->process_cell = process_cell_read_only;
2595		pool->process_prepared_mapping = process_prepared_mapping;
2596		set_discard_callbacks(pool);
2597
2598		if (!pool->pf.error_if_no_space && no_space_timeout)
2599			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2600		break;
2601
2602	case PM_WRITE:
2603		if (old_mode == PM_OUT_OF_DATA_SPACE)
2604			cancel_delayed_work_sync(&pool->no_space_timeout);
2605		pool->out_of_data_space = false;
2606		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2607		dm_pool_metadata_read_write(pool->pmd);
2608		pool->process_bio = process_bio;
2609		pool->process_discard = process_discard_bio;
2610		pool->process_cell = process_cell;
2611		pool->process_prepared_mapping = process_prepared_mapping;
2612		set_discard_callbacks(pool);
2613		break;
2614	}
2615
2616	pool->pf.mode = new_mode;
2617	/*
2618	 * The pool mode may have changed, sync it so bind_control_target()
2619	 * doesn't cause an unexpected mode transition on resume.
2620	 */
2621	pt->adjusted_pf.mode = new_mode;
2622
2623	if (old_mode != new_mode)
2624		notify_of_pool_mode_change(pool);
2625}
2626
2627static void abort_transaction(struct pool *pool)
2628{
2629	const char *dev_name = dm_device_name(pool->pool_md);
2630
2631	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2632	if (dm_pool_abort_metadata(pool->pmd)) {
2633		DMERR("%s: failed to abort metadata transaction", dev_name);
2634		set_pool_mode(pool, PM_FAIL);
2635	}
2636
2637	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2638		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2639		set_pool_mode(pool, PM_FAIL);
2640	}
2641}
2642
2643static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2644{
2645	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2646		    dm_device_name(pool->pool_md), op, r);
2647
2648	abort_transaction(pool);
2649	set_pool_mode(pool, PM_READ_ONLY);
2650}
2651
2652/*----------------------------------------------------------------*/
2653
2654/*
2655 * Mapping functions.
2656 */
2657
2658/*
2659 * Called only while mapping a thin bio to hand it over to the workqueue.
2660 */
2661static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2662{
2663	struct pool *pool = tc->pool;
2664
2665	spin_lock_irq(&tc->lock);
2666	bio_list_add(&tc->deferred_bio_list, bio);
2667	spin_unlock_irq(&tc->lock);
2668
2669	wake_worker(pool);
2670}
2671
2672static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2673{
2674	struct pool *pool = tc->pool;
2675
2676	throttle_lock(&pool->throttle);
2677	thin_defer_bio(tc, bio);
2678	throttle_unlock(&pool->throttle);
2679}
2680
2681static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2682{
2683	struct pool *pool = tc->pool;
2684
2685	throttle_lock(&pool->throttle);
2686	spin_lock_irq(&tc->lock);
2687	list_add_tail(&cell->user_list, &tc->deferred_cells);
2688	spin_unlock_irq(&tc->lock);
2689	throttle_unlock(&pool->throttle);
2690
2691	wake_worker(pool);
2692}
2693
2694static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2695{
2696	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2697
2698	h->tc = tc;
2699	h->shared_read_entry = NULL;
2700	h->all_io_entry = NULL;
2701	h->overwrite_mapping = NULL;
2702	h->cell = NULL;
2703}
2704
2705/*
2706 * Non-blocking function called from the thin target's map function.
2707 */
2708static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2709{
2710	int r;
2711	struct thin_c *tc = ti->private;
2712	dm_block_t block = get_bio_block(tc, bio);
2713	struct dm_thin_device *td = tc->td;
2714	struct dm_thin_lookup_result result;
2715	struct dm_bio_prison_cell *virt_cell, *data_cell;
2716	struct dm_cell_key key;
2717
2718	thin_hook_bio(tc, bio);
2719
2720	if (tc->requeue_mode) {
2721		bio->bi_status = BLK_STS_DM_REQUEUE;
2722		bio_endio(bio);
2723		return DM_MAPIO_SUBMITTED;
2724	}
2725
2726	if (get_pool_mode(tc->pool) == PM_FAIL) {
2727		bio_io_error(bio);
2728		return DM_MAPIO_SUBMITTED;
2729	}
2730
2731	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2732		thin_defer_bio_with_throttle(tc, bio);
2733		return DM_MAPIO_SUBMITTED;
2734	}
2735
2736	/*
2737	 * We must hold the virtual cell before doing the lookup, otherwise
2738	 * there's a race with discard.
2739	 */
2740	build_virtual_key(tc->td, block, &key);
2741	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2742		return DM_MAPIO_SUBMITTED;
2743
2744	r = dm_thin_find_block(td, block, 0, &result);
2745
2746	/*
2747	 * Note that we defer readahead too.
2748	 */
2749	switch (r) {
2750	case 0:
2751		if (unlikely(result.shared)) {
2752			/*
2753			 * We have a race condition here between the
2754			 * result.shared value returned by the lookup and
2755			 * snapshot creation, which may cause new
2756			 * sharing.
2757			 *
2758			 * To avoid this always quiesce the origin before
2759			 * taking the snap.  You want to do this anyway to
2760			 * ensure a consistent application view
2761			 * (i.e. lockfs).
2762			 *
2763			 * More distant ancestors are irrelevant. The
2764			 * shared flag will be set in their case.
2765			 */
2766			thin_defer_cell(tc, virt_cell);
2767			return DM_MAPIO_SUBMITTED;
2768		}
2769
2770		build_data_key(tc->td, result.block, &key);
2771		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2772			cell_defer_no_holder(tc, virt_cell);
2773			return DM_MAPIO_SUBMITTED;
2774		}
2775
2776		inc_all_io_entry(tc->pool, bio);
2777		cell_defer_no_holder(tc, data_cell);
2778		cell_defer_no_holder(tc, virt_cell);
2779
2780		remap(tc, bio, result.block);
2781		return DM_MAPIO_REMAPPED;
2782
2783	case -ENODATA:
2784	case -EWOULDBLOCK:
2785		thin_defer_cell(tc, virt_cell);
2786		return DM_MAPIO_SUBMITTED;
2787
2788	default:
2789		/*
2790		 * Must always call bio_io_error on failure.
2791		 * dm_thin_find_block can fail with -EINVAL if the
2792		 * pool is switched to fail-io mode.
2793		 */
2794		bio_io_error(bio);
2795		cell_defer_no_holder(tc, virt_cell);
2796		return DM_MAPIO_SUBMITTED;
2797	}
2798}
2799
2800static void requeue_bios(struct pool *pool)
2801{
2802	struct thin_c *tc;
2803
2804	rcu_read_lock();
2805	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2806		spin_lock_irq(&tc->lock);
2807		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2808		bio_list_init(&tc->retry_on_resume_list);
2809		spin_unlock_irq(&tc->lock);
2810	}
2811	rcu_read_unlock();
2812}
2813
2814/*----------------------------------------------------------------
2815 * Binding of control targets to a pool object
2816 *--------------------------------------------------------------*/
2817static bool data_dev_supports_discard(struct pool_c *pt)
2818{
2819	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2820
2821	return q && blk_queue_discard(q);
2822}
2823
2824static bool is_factor(sector_t block_size, uint32_t n)
2825{
2826	return !sector_div(block_size, n);
2827}
2828
2829/*
2830 * If discard_passdown was enabled verify that the data device
2831 * supports discards.  Disable discard_passdown if not.
2832 */
2833static void disable_passdown_if_not_supported(struct pool_c *pt)
2834{
2835	struct pool *pool = pt->pool;
2836	struct block_device *data_bdev = pt->data_dev->bdev;
2837	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2838	const char *reason = NULL;
2839	char buf[BDEVNAME_SIZE];
2840
2841	if (!pt->adjusted_pf.discard_passdown)
2842		return;
2843
2844	if (!data_dev_supports_discard(pt))
2845		reason = "discard unsupported";
2846
2847	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2848		reason = "max discard sectors smaller than a block";
2849
2850	if (reason) {
2851		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2852		pt->adjusted_pf.discard_passdown = false;
2853	}
2854}
2855
2856static int bind_control_target(struct pool *pool, struct dm_target *ti)
2857{
2858	struct pool_c *pt = ti->private;
2859
2860	/*
2861	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2862	 */
2863	enum pool_mode old_mode = get_pool_mode(pool);
2864	enum pool_mode new_mode = pt->adjusted_pf.mode;
2865
2866	/*
2867	 * Don't change the pool's mode until set_pool_mode() below.
2868	 * Otherwise the pool's process_* function pointers may
2869	 * not match the desired pool mode.
2870	 */
2871	pt->adjusted_pf.mode = old_mode;
2872
2873	pool->ti = ti;
2874	pool->pf = pt->adjusted_pf;
2875	pool->low_water_blocks = pt->low_water_blocks;
2876
2877	set_pool_mode(pool, new_mode);
2878
2879	return 0;
2880}
2881
2882static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2883{
2884	if (pool->ti == ti)
2885		pool->ti = NULL;
2886}
2887
2888/*----------------------------------------------------------------
2889 * Pool creation
2890 *--------------------------------------------------------------*/
2891/* Initialize pool features. */
2892static void pool_features_init(struct pool_features *pf)
2893{
2894	pf->mode = PM_WRITE;
2895	pf->zero_new_blocks = true;
2896	pf->discard_enabled = true;
2897	pf->discard_passdown = true;
2898	pf->error_if_no_space = false;
2899}
2900
2901static void __pool_destroy(struct pool *pool)
2902{
2903	__pool_table_remove(pool);
2904
2905	vfree(pool->cell_sort_array);
2906	if (dm_pool_metadata_close(pool->pmd) < 0)
2907		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2908
2909	dm_bio_prison_destroy(pool->prison);
2910	dm_kcopyd_client_destroy(pool->copier);
2911
2912	cancel_delayed_work_sync(&pool->waker);
2913	cancel_delayed_work_sync(&pool->no_space_timeout);
2914	if (pool->wq)
2915		destroy_workqueue(pool->wq);
2916
2917	if (pool->next_mapping)
2918		mempool_free(pool->next_mapping, &pool->mapping_pool);
2919	mempool_exit(&pool->mapping_pool);
2920	bio_uninit(&pool->flush_bio);
2921	dm_deferred_set_destroy(pool->shared_read_ds);
2922	dm_deferred_set_destroy(pool->all_io_ds);
2923	kfree(pool);
2924}
2925
2926static struct kmem_cache *_new_mapping_cache;
2927
2928static struct pool *pool_create(struct mapped_device *pool_md,
2929				struct block_device *metadata_dev,
2930				struct block_device *data_dev,
2931				unsigned long block_size,
2932				int read_only, char **error)
2933{
2934	int r;
2935	void *err_p;
2936	struct pool *pool;
2937	struct dm_pool_metadata *pmd;
2938	bool format_device = read_only ? false : true;
2939
2940	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2941	if (IS_ERR(pmd)) {
2942		*error = "Error creating metadata object";
2943		return (struct pool *)pmd;
2944	}
2945
2946	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2947	if (!pool) {
2948		*error = "Error allocating memory for pool";
2949		err_p = ERR_PTR(-ENOMEM);
2950		goto bad_pool;
2951	}
2952
2953	pool->pmd = pmd;
2954	pool->sectors_per_block = block_size;
2955	if (block_size & (block_size - 1))
2956		pool->sectors_per_block_shift = -1;
2957	else
2958		pool->sectors_per_block_shift = __ffs(block_size);
2959	pool->low_water_blocks = 0;
2960	pool_features_init(&pool->pf);
2961	pool->prison = dm_bio_prison_create();
2962	if (!pool->prison) {
2963		*error = "Error creating pool's bio prison";
2964		err_p = ERR_PTR(-ENOMEM);
2965		goto bad_prison;
2966	}
2967
2968	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2969	if (IS_ERR(pool->copier)) {
2970		r = PTR_ERR(pool->copier);
2971		*error = "Error creating pool's kcopyd client";
2972		err_p = ERR_PTR(r);
2973		goto bad_kcopyd_client;
2974	}
2975
2976	/*
2977	 * Create singlethreaded workqueue that will service all devices
2978	 * that use this metadata.
2979	 */
2980	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2981	if (!pool->wq) {
2982		*error = "Error creating pool's workqueue";
2983		err_p = ERR_PTR(-ENOMEM);
2984		goto bad_wq;
2985	}
2986
2987	throttle_init(&pool->throttle);
2988	INIT_WORK(&pool->worker, do_worker);
2989	INIT_DELAYED_WORK(&pool->waker, do_waker);
2990	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2991	spin_lock_init(&pool->lock);
2992	bio_list_init(&pool->deferred_flush_bios);
2993	bio_list_init(&pool->deferred_flush_completions);
2994	INIT_LIST_HEAD(&pool->prepared_mappings);
2995	INIT_LIST_HEAD(&pool->prepared_discards);
2996	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2997	INIT_LIST_HEAD(&pool->active_thins);
2998	pool->low_water_triggered = false;
2999	pool->suspended = true;
3000	pool->out_of_data_space = false;
3001	bio_init(&pool->flush_bio, NULL, 0);
3002
3003	pool->shared_read_ds = dm_deferred_set_create();
3004	if (!pool->shared_read_ds) {
3005		*error = "Error creating pool's shared read deferred set";
3006		err_p = ERR_PTR(-ENOMEM);
3007		goto bad_shared_read_ds;
3008	}
3009
3010	pool->all_io_ds = dm_deferred_set_create();
3011	if (!pool->all_io_ds) {
3012		*error = "Error creating pool's all io deferred set";
3013		err_p = ERR_PTR(-ENOMEM);
3014		goto bad_all_io_ds;
3015	}
3016
3017	pool->next_mapping = NULL;
3018	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3019				   _new_mapping_cache);
3020	if (r) {
3021		*error = "Error creating pool's mapping mempool";
3022		err_p = ERR_PTR(r);
3023		goto bad_mapping_pool;
3024	}
3025
3026	pool->cell_sort_array =
3027		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3028				   sizeof(*pool->cell_sort_array)));
3029	if (!pool->cell_sort_array) {
3030		*error = "Error allocating cell sort array";
3031		err_p = ERR_PTR(-ENOMEM);
3032		goto bad_sort_array;
3033	}
3034
3035	pool->ref_count = 1;
3036	pool->last_commit_jiffies = jiffies;
3037	pool->pool_md = pool_md;
3038	pool->md_dev = metadata_dev;
3039	pool->data_dev = data_dev;
3040	__pool_table_insert(pool);
3041
3042	return pool;
3043
3044bad_sort_array:
3045	mempool_exit(&pool->mapping_pool);
3046bad_mapping_pool:
3047	dm_deferred_set_destroy(pool->all_io_ds);
3048bad_all_io_ds:
3049	dm_deferred_set_destroy(pool->shared_read_ds);
3050bad_shared_read_ds:
3051	destroy_workqueue(pool->wq);
3052bad_wq:
3053	dm_kcopyd_client_destroy(pool->copier);
3054bad_kcopyd_client:
3055	dm_bio_prison_destroy(pool->prison);
3056bad_prison:
3057	kfree(pool);
3058bad_pool:
3059	if (dm_pool_metadata_close(pmd))
3060		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3061
3062	return err_p;
3063}
3064
3065static void __pool_inc(struct pool *pool)
3066{
3067	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3068	pool->ref_count++;
3069}
3070
3071static void __pool_dec(struct pool *pool)
3072{
3073	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3074	BUG_ON(!pool->ref_count);
3075	if (!--pool->ref_count)
3076		__pool_destroy(pool);
3077}
3078
3079static struct pool *__pool_find(struct mapped_device *pool_md,
3080				struct block_device *metadata_dev,
3081				struct block_device *data_dev,
3082				unsigned long block_size, int read_only,
3083				char **error, int *created)
3084{
3085	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3086
3087	if (pool) {
3088		if (pool->pool_md != pool_md) {
3089			*error = "metadata device already in use by a pool";
3090			return ERR_PTR(-EBUSY);
3091		}
3092		if (pool->data_dev != data_dev) {
3093			*error = "data device already in use by a pool";
3094			return ERR_PTR(-EBUSY);
3095		}
3096		__pool_inc(pool);
3097
3098	} else {
3099		pool = __pool_table_lookup(pool_md);
3100		if (pool) {
3101			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3102				*error = "different pool cannot replace a pool";
3103				return ERR_PTR(-EINVAL);
3104			}
3105			__pool_inc(pool);
3106
3107		} else {
3108			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3109			*created = 1;
3110		}
3111	}
3112
3113	return pool;
3114}
3115
3116/*----------------------------------------------------------------
3117 * Pool target methods
3118 *--------------------------------------------------------------*/
3119static void pool_dtr(struct dm_target *ti)
3120{
3121	struct pool_c *pt = ti->private;
3122
3123	mutex_lock(&dm_thin_pool_table.mutex);
3124
3125	unbind_control_target(pt->pool, ti);
3126	__pool_dec(pt->pool);
3127	dm_put_device(ti, pt->metadata_dev);
3128	dm_put_device(ti, pt->data_dev);
3129	kfree(pt);
3130
3131	mutex_unlock(&dm_thin_pool_table.mutex);
3132}
3133
3134static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3135			       struct dm_target *ti)
3136{
3137	int r;
3138	unsigned argc;
3139	const char *arg_name;
3140
3141	static const struct dm_arg _args[] = {
3142		{0, 4, "Invalid number of pool feature arguments"},
3143	};
3144
3145	/*
3146	 * No feature arguments supplied.
3147	 */
3148	if (!as->argc)
3149		return 0;
3150
3151	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3152	if (r)
3153		return -EINVAL;
3154
3155	while (argc && !r) {
3156		arg_name = dm_shift_arg(as);
3157		argc--;
3158
3159		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3160			pf->zero_new_blocks = false;
3161
3162		else if (!strcasecmp(arg_name, "ignore_discard"))
3163			pf->discard_enabled = false;
3164
3165		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3166			pf->discard_passdown = false;
3167
3168		else if (!strcasecmp(arg_name, "read_only"))
3169			pf->mode = PM_READ_ONLY;
3170
3171		else if (!strcasecmp(arg_name, "error_if_no_space"))
3172			pf->error_if_no_space = true;
3173
3174		else {
3175			ti->error = "Unrecognised pool feature requested";
3176			r = -EINVAL;
3177			break;
3178		}
3179	}
3180
3181	return r;
3182}
3183
3184static void metadata_low_callback(void *context)
3185{
3186	struct pool *pool = context;
3187
3188	DMWARN("%s: reached low water mark for metadata device: sending event.",
3189	       dm_device_name(pool->pool_md));
3190
3191	dm_table_event(pool->ti->table);
3192}
3193
3194/*
3195 * We need to flush the data device **before** committing the metadata.
3196 *
3197 * This ensures that the data blocks of any newly inserted mappings are
3198 * properly written to non-volatile storage and won't be lost in case of a
3199 * crash.
3200 *
3201 * Failure to do so can result in data corruption in the case of internal or
3202 * external snapshots and in the case of newly provisioned blocks, when block
3203 * zeroing is enabled.
3204 */
3205static int metadata_pre_commit_callback(void *context)
3206{
3207	struct pool *pool = context;
3208	struct bio *flush_bio = &pool->flush_bio;
3209
3210	bio_reset(flush_bio);
3211	bio_set_dev(flush_bio, pool->data_dev);
3212	flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3213
3214	return submit_bio_wait(flush_bio);
3215}
3216
3217static sector_t get_dev_size(struct block_device *bdev)
3218{
3219	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3220}
3221
3222static void warn_if_metadata_device_too_big(struct block_device *bdev)
3223{
3224	sector_t metadata_dev_size = get_dev_size(bdev);
3225	char buffer[BDEVNAME_SIZE];
3226
3227	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3228		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3229		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3230}
3231
3232static sector_t get_metadata_dev_size(struct block_device *bdev)
3233{
3234	sector_t metadata_dev_size = get_dev_size(bdev);
3235
3236	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3237		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3238
3239	return metadata_dev_size;
3240}
3241
3242static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3243{
3244	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3245
3246	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3247
3248	return metadata_dev_size;
3249}
3250
3251/*
3252 * When a metadata threshold is crossed a dm event is triggered, and
3253 * userland should respond by growing the metadata device.  We could let
3254 * userland set the threshold, like we do with the data threshold, but I'm
3255 * not sure they know enough to do this well.
3256 */
3257static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3258{
3259	/*
3260	 * 4M is ample for all ops with the possible exception of thin
3261	 * device deletion which is harmless if it fails (just retry the
3262	 * delete after you've grown the device).
3263	 */
3264	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3265	return min((dm_block_t)1024ULL /* 4M */, quarter);
3266}
3267
3268/*
3269 * thin-pool <metadata dev> <data dev>
3270 *	     <data block size (sectors)>
3271 *	     <low water mark (blocks)>
3272 *	     [<#feature args> [<arg>]*]
3273 *
3274 * Optional feature arguments are:
3275 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3276 *	     ignore_discard: disable discard
3277 *	     no_discard_passdown: don't pass discards down to the data device
3278 *	     read_only: Don't allow any changes to be made to the pool metadata.
3279 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3280 */
3281static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3282{
3283	int r, pool_created = 0;
3284	struct pool_c *pt;
3285	struct pool *pool;
3286	struct pool_features pf;
3287	struct dm_arg_set as;
3288	struct dm_dev *data_dev;
3289	unsigned long block_size;
3290	dm_block_t low_water_blocks;
3291	struct dm_dev *metadata_dev;
3292	fmode_t metadata_mode;
3293
3294	/*
3295	 * FIXME Remove validation from scope of lock.
3296	 */
3297	mutex_lock(&dm_thin_pool_table.mutex);
3298
3299	if (argc < 4) {
3300		ti->error = "Invalid argument count";
3301		r = -EINVAL;
3302		goto out_unlock;
3303	}
3304
3305	as.argc = argc;
3306	as.argv = argv;
3307
3308	/* make sure metadata and data are different devices */
3309	if (!strcmp(argv[0], argv[1])) {
3310		ti->error = "Error setting metadata or data device";
3311		r = -EINVAL;
3312		goto out_unlock;
3313	}
3314
3315	/*
3316	 * Set default pool features.
3317	 */
3318	pool_features_init(&pf);
3319
3320	dm_consume_args(&as, 4);
3321	r = parse_pool_features(&as, &pf, ti);
3322	if (r)
3323		goto out_unlock;
3324
3325	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3326	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3327	if (r) {
3328		ti->error = "Error opening metadata block device";
3329		goto out_unlock;
3330	}
3331	warn_if_metadata_device_too_big(metadata_dev->bdev);
3332
3333	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3334	if (r) {
3335		ti->error = "Error getting data device";
3336		goto out_metadata;
3337	}
3338
3339	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3340	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3341	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3342	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3343		ti->error = "Invalid block size";
3344		r = -EINVAL;
3345		goto out;
3346	}
3347
3348	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3349		ti->error = "Invalid low water mark";
3350		r = -EINVAL;
3351		goto out;
3352	}
3353
3354	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3355	if (!pt) {
3356		r = -ENOMEM;
3357		goto out;
3358	}
3359
3360	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3361			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3362	if (IS_ERR(pool)) {
3363		r = PTR_ERR(pool);
3364		goto out_free_pt;
3365	}
3366
3367	/*
3368	 * 'pool_created' reflects whether this is the first table load.
3369	 * Top level discard support is not allowed to be changed after
3370	 * initial load.  This would require a pool reload to trigger thin
3371	 * device changes.
3372	 */
3373	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3374		ti->error = "Discard support cannot be disabled once enabled";
3375		r = -EINVAL;
3376		goto out_flags_changed;
3377	}
3378
3379	pt->pool = pool;
3380	pt->ti = ti;
3381	pt->metadata_dev = metadata_dev;
3382	pt->data_dev = data_dev;
3383	pt->low_water_blocks = low_water_blocks;
3384	pt->adjusted_pf = pt->requested_pf = pf;
3385	ti->num_flush_bios = 1;
3386	ti->limit_swap_bios = true;
3387
3388	/*
3389	 * Only need to enable discards if the pool should pass
3390	 * them down to the data device.  The thin device's discard
3391	 * processing will cause mappings to be removed from the btree.
3392	 */
3393	if (pf.discard_enabled && pf.discard_passdown) {
3394		ti->num_discard_bios = 1;
3395
3396		/*
3397		 * Setting 'discards_supported' circumvents the normal
3398		 * stacking of discard limits (this keeps the pool and
3399		 * thin devices' discard limits consistent).
3400		 */
3401		ti->discards_supported = true;
3402	}
3403	ti->private = pt;
3404
3405	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3406						calc_metadata_threshold(pt),
3407						metadata_low_callback,
3408						pool);
3409	if (r) {
3410		ti->error = "Error registering metadata threshold";
3411		goto out_flags_changed;
3412	}
3413
3414	dm_pool_register_pre_commit_callback(pool->pmd,
3415					     metadata_pre_commit_callback, pool);
3416
3417	mutex_unlock(&dm_thin_pool_table.mutex);
3418
3419	return 0;
3420
3421out_flags_changed:
3422	__pool_dec(pool);
3423out_free_pt:
3424	kfree(pt);
3425out:
3426	dm_put_device(ti, data_dev);
3427out_metadata:
3428	dm_put_device(ti, metadata_dev);
3429out_unlock:
3430	mutex_unlock(&dm_thin_pool_table.mutex);
3431
3432	return r;
3433}
3434
3435static int pool_map(struct dm_target *ti, struct bio *bio)
3436{
3437	int r;
3438	struct pool_c *pt = ti->private;
3439	struct pool *pool = pt->pool;
3440
3441	/*
3442	 * As this is a singleton target, ti->begin is always zero.
3443	 */
3444	spin_lock_irq(&pool->lock);
3445	bio_set_dev(bio, pt->data_dev->bdev);
3446	r = DM_MAPIO_REMAPPED;
3447	spin_unlock_irq(&pool->lock);
3448
3449	return r;
3450}
3451
3452static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3453{
3454	int r;
3455	struct pool_c *pt = ti->private;
3456	struct pool *pool = pt->pool;
3457	sector_t data_size = ti->len;
3458	dm_block_t sb_data_size;
3459
3460	*need_commit = false;
3461
3462	(void) sector_div(data_size, pool->sectors_per_block);
3463
3464	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3465	if (r) {
3466		DMERR("%s: failed to retrieve data device size",
3467		      dm_device_name(pool->pool_md));
3468		return r;
3469	}
3470
3471	if (data_size < sb_data_size) {
3472		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3473		      dm_device_name(pool->pool_md),
3474		      (unsigned long long)data_size, sb_data_size);
3475		return -EINVAL;
3476
3477	} else if (data_size > sb_data_size) {
3478		if (dm_pool_metadata_needs_check(pool->pmd)) {
3479			DMERR("%s: unable to grow the data device until repaired.",
3480			      dm_device_name(pool->pool_md));
3481			return 0;
3482		}
3483
3484		if (sb_data_size)
3485			DMINFO("%s: growing the data device from %llu to %llu blocks",
3486			       dm_device_name(pool->pool_md),
3487			       sb_data_size, (unsigned long long)data_size);
3488		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3489		if (r) {
3490			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3491			return r;
3492		}
3493
3494		*need_commit = true;
3495	}
3496
3497	return 0;
3498}
3499
3500static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3501{
3502	int r;
3503	struct pool_c *pt = ti->private;
3504	struct pool *pool = pt->pool;
3505	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3506
3507	*need_commit = false;
3508
3509	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3510
3511	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3512	if (r) {
3513		DMERR("%s: failed to retrieve metadata device size",
3514		      dm_device_name(pool->pool_md));
3515		return r;
3516	}
3517
3518	if (metadata_dev_size < sb_metadata_dev_size) {
3519		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3520		      dm_device_name(pool->pool_md),
3521		      metadata_dev_size, sb_metadata_dev_size);
3522		return -EINVAL;
3523
3524	} else if (metadata_dev_size > sb_metadata_dev_size) {
3525		if (dm_pool_metadata_needs_check(pool->pmd)) {
3526			DMERR("%s: unable to grow the metadata device until repaired.",
3527			      dm_device_name(pool->pool_md));
3528			return 0;
3529		}
3530
3531		warn_if_metadata_device_too_big(pool->md_dev);
3532		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3533		       dm_device_name(pool->pool_md),
3534		       sb_metadata_dev_size, metadata_dev_size);
3535
3536		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3537			set_pool_mode(pool, PM_WRITE);
3538
3539		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3540		if (r) {
3541			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3542			return r;
3543		}
3544
3545		*need_commit = true;
3546	}
3547
3548	return 0;
3549}
3550
3551/*
3552 * Retrieves the number of blocks of the data device from
3553 * the superblock and compares it to the actual device size,
3554 * thus resizing the data device in case it has grown.
3555 *
3556 * This both copes with opening preallocated data devices in the ctr
3557 * being followed by a resume
3558 * -and-
3559 * calling the resume method individually after userspace has
3560 * grown the data device in reaction to a table event.
3561 */
3562static int pool_preresume(struct dm_target *ti)
3563{
3564	int r;
3565	bool need_commit1, need_commit2;
3566	struct pool_c *pt = ti->private;
3567	struct pool *pool = pt->pool;
3568
3569	/*
3570	 * Take control of the pool object.
3571	 */
3572	r = bind_control_target(pool, ti);
3573	if (r)
3574		goto out;
3575
3576	r = maybe_resize_data_dev(ti, &need_commit1);
3577	if (r)
3578		goto out;
3579
3580	r = maybe_resize_metadata_dev(ti, &need_commit2);
3581	if (r)
3582		goto out;
3583
3584	if (need_commit1 || need_commit2)
3585		(void) commit(pool);
3586out:
3587	/*
3588	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3589	 * bio is in deferred list. Therefore need to return 0
3590	 * to allow pool_resume() to flush IO.
3591	 */
3592	if (r && get_pool_mode(pool) == PM_FAIL)
3593		r = 0;
3594
3595	return r;
3596}
3597
3598static void pool_suspend_active_thins(struct pool *pool)
3599{
3600	struct thin_c *tc;
3601
3602	/* Suspend all active thin devices */
3603	tc = get_first_thin(pool);
3604	while (tc) {
3605		dm_internal_suspend_noflush(tc->thin_md);
3606		tc = get_next_thin(pool, tc);
3607	}
3608}
3609
3610static void pool_resume_active_thins(struct pool *pool)
3611{
3612	struct thin_c *tc;
3613
3614	/* Resume all active thin devices */
3615	tc = get_first_thin(pool);
3616	while (tc) {
3617		dm_internal_resume(tc->thin_md);
3618		tc = get_next_thin(pool, tc);
3619	}
3620}
3621
3622static void pool_resume(struct dm_target *ti)
3623{
3624	struct pool_c *pt = ti->private;
3625	struct pool *pool = pt->pool;
3626
3627	/*
3628	 * Must requeue active_thins' bios and then resume
3629	 * active_thins _before_ clearing 'suspend' flag.
3630	 */
3631	requeue_bios(pool);
3632	pool_resume_active_thins(pool);
3633
3634	spin_lock_irq(&pool->lock);
3635	pool->low_water_triggered = false;
3636	pool->suspended = false;
3637	spin_unlock_irq(&pool->lock);
3638
3639	do_waker(&pool->waker.work);
3640}
3641
3642static void pool_presuspend(struct dm_target *ti)
3643{
3644	struct pool_c *pt = ti->private;
3645	struct pool *pool = pt->pool;
3646
3647	spin_lock_irq(&pool->lock);
3648	pool->suspended = true;
3649	spin_unlock_irq(&pool->lock);
3650
3651	pool_suspend_active_thins(pool);
3652}
3653
3654static void pool_presuspend_undo(struct dm_target *ti)
3655{
3656	struct pool_c *pt = ti->private;
3657	struct pool *pool = pt->pool;
3658
3659	pool_resume_active_thins(pool);
3660
3661	spin_lock_irq(&pool->lock);
3662	pool->suspended = false;
3663	spin_unlock_irq(&pool->lock);
3664}
3665
3666static void pool_postsuspend(struct dm_target *ti)
3667{
3668	struct pool_c *pt = ti->private;
3669	struct pool *pool = pt->pool;
3670
3671	cancel_delayed_work_sync(&pool->waker);
3672	cancel_delayed_work_sync(&pool->no_space_timeout);
3673	flush_workqueue(pool->wq);
3674	(void) commit(pool);
3675}
3676
3677static int check_arg_count(unsigned argc, unsigned args_required)
3678{
3679	if (argc != args_required) {
3680		DMWARN("Message received with %u arguments instead of %u.",
3681		       argc, args_required);
3682		return -EINVAL;
3683	}
3684
3685	return 0;
3686}
3687
3688static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3689{
3690	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3691	    *dev_id <= MAX_DEV_ID)
3692		return 0;
3693
3694	if (warning)
3695		DMWARN("Message received with invalid device id: %s", arg);
3696
3697	return -EINVAL;
3698}
3699
3700static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3701{
3702	dm_thin_id dev_id;
3703	int r;
3704
3705	r = check_arg_count(argc, 2);
3706	if (r)
3707		return r;
3708
3709	r = read_dev_id(argv[1], &dev_id, 1);
3710	if (r)
3711		return r;
3712
3713	r = dm_pool_create_thin(pool->pmd, dev_id);
3714	if (r) {
3715		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3716		       argv[1]);
3717		return r;
3718	}
3719
3720	return 0;
3721}
3722
3723static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3724{
3725	dm_thin_id dev_id;
3726	dm_thin_id origin_dev_id;
3727	int r;
3728
3729	r = check_arg_count(argc, 3);
3730	if (r)
3731		return r;
3732
3733	r = read_dev_id(argv[1], &dev_id, 1);
3734	if (r)
3735		return r;
3736
3737	r = read_dev_id(argv[2], &origin_dev_id, 1);
3738	if (r)
3739		return r;
3740
3741	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3742	if (r) {
3743		DMWARN("Creation of new snapshot %s of device %s failed.",
3744		       argv[1], argv[2]);
3745		return r;
3746	}
3747
3748	return 0;
3749}
3750
3751static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3752{
3753	dm_thin_id dev_id;
3754	int r;
3755
3756	r = check_arg_count(argc, 2);
3757	if (r)
3758		return r;
3759
3760	r = read_dev_id(argv[1], &dev_id, 1);
3761	if (r)
3762		return r;
3763
3764	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3765	if (r)
3766		DMWARN("Deletion of thin device %s failed.", argv[1]);
3767
3768	return r;
3769}
3770
3771static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3772{
3773	dm_thin_id old_id, new_id;
3774	int r;
3775
3776	r = check_arg_count(argc, 3);
3777	if (r)
3778		return r;
3779
3780	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3781		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3782		return -EINVAL;
3783	}
3784
3785	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3786		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3787		return -EINVAL;
3788	}
3789
3790	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3791	if (r) {
3792		DMWARN("Failed to change transaction id from %s to %s.",
3793		       argv[1], argv[2]);
3794		return r;
3795	}
3796
3797	return 0;
3798}
3799
3800static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3801{
3802	int r;
3803
3804	r = check_arg_count(argc, 1);
3805	if (r)
3806		return r;
3807
3808	(void) commit(pool);
3809
3810	r = dm_pool_reserve_metadata_snap(pool->pmd);
3811	if (r)
3812		DMWARN("reserve_metadata_snap message failed.");
3813
3814	return r;
3815}
3816
3817static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3818{
3819	int r;
3820
3821	r = check_arg_count(argc, 1);
3822	if (r)
3823		return r;
3824
3825	r = dm_pool_release_metadata_snap(pool->pmd);
3826	if (r)
3827		DMWARN("release_metadata_snap message failed.");
3828
3829	return r;
3830}
3831
3832/*
3833 * Messages supported:
3834 *   create_thin	<dev_id>
3835 *   create_snap	<dev_id> <origin_id>
3836 *   delete		<dev_id>
3837 *   set_transaction_id <current_trans_id> <new_trans_id>
3838 *   reserve_metadata_snap
3839 *   release_metadata_snap
3840 */
3841static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3842			char *result, unsigned maxlen)
3843{
3844	int r = -EINVAL;
3845	struct pool_c *pt = ti->private;
3846	struct pool *pool = pt->pool;
3847
3848	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3849		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3850		      dm_device_name(pool->pool_md));
3851		return -EOPNOTSUPP;
3852	}
3853
3854	if (!strcasecmp(argv[0], "create_thin"))
3855		r = process_create_thin_mesg(argc, argv, pool);
3856
3857	else if (!strcasecmp(argv[0], "create_snap"))
3858		r = process_create_snap_mesg(argc, argv, pool);
3859
3860	else if (!strcasecmp(argv[0], "delete"))
3861		r = process_delete_mesg(argc, argv, pool);
3862
3863	else if (!strcasecmp(argv[0], "set_transaction_id"))
3864		r = process_set_transaction_id_mesg(argc, argv, pool);
3865
3866	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3867		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3868
3869	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3870		r = process_release_metadata_snap_mesg(argc, argv, pool);
3871
3872	else
3873		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3874
3875	if (!r)
3876		(void) commit(pool);
3877
3878	return r;
3879}
3880
3881static void emit_flags(struct pool_features *pf, char *result,
3882		       unsigned sz, unsigned maxlen)
3883{
3884	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3885		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3886		pf->error_if_no_space;
3887	DMEMIT("%u ", count);
3888
3889	if (!pf->zero_new_blocks)
3890		DMEMIT("skip_block_zeroing ");
3891
3892	if (!pf->discard_enabled)
3893		DMEMIT("ignore_discard ");
3894
3895	if (!pf->discard_passdown)
3896		DMEMIT("no_discard_passdown ");
3897
3898	if (pf->mode == PM_READ_ONLY)
3899		DMEMIT("read_only ");
3900
3901	if (pf->error_if_no_space)
3902		DMEMIT("error_if_no_space ");
3903}
3904
3905/*
3906 * Status line is:
3907 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3908 *    <used data sectors>/<total data sectors> <held metadata root>
3909 *    <pool mode> <discard config> <no space config> <needs_check>
3910 */
3911static void pool_status(struct dm_target *ti, status_type_t type,
3912			unsigned status_flags, char *result, unsigned maxlen)
3913{
3914	int r;
3915	unsigned sz = 0;
3916	uint64_t transaction_id;
3917	dm_block_t nr_free_blocks_data;
3918	dm_block_t nr_free_blocks_metadata;
3919	dm_block_t nr_blocks_data;
3920	dm_block_t nr_blocks_metadata;
3921	dm_block_t held_root;
3922	enum pool_mode mode;
3923	char buf[BDEVNAME_SIZE];
3924	char buf2[BDEVNAME_SIZE];
3925	struct pool_c *pt = ti->private;
3926	struct pool *pool = pt->pool;
3927
3928	switch (type) {
3929	case STATUSTYPE_INFO:
3930		if (get_pool_mode(pool) == PM_FAIL) {
3931			DMEMIT("Fail");
3932			break;
3933		}
3934
3935		/* Commit to ensure statistics aren't out-of-date */
3936		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3937			(void) commit(pool);
3938
3939		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3940		if (r) {
3941			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3942			      dm_device_name(pool->pool_md), r);
3943			goto err;
3944		}
3945
3946		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3947		if (r) {
3948			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3949			      dm_device_name(pool->pool_md), r);
3950			goto err;
3951		}
3952
3953		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3954		if (r) {
3955			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3956			      dm_device_name(pool->pool_md), r);
3957			goto err;
3958		}
3959
3960		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3961		if (r) {
3962			DMERR("%s: dm_pool_get_free_block_count returned %d",
3963			      dm_device_name(pool->pool_md), r);
3964			goto err;
3965		}
3966
3967		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3968		if (r) {
3969			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3970			      dm_device_name(pool->pool_md), r);
3971			goto err;
3972		}
3973
3974		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3975		if (r) {
3976			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3977			      dm_device_name(pool->pool_md), r);
3978			goto err;
3979		}
3980
3981		DMEMIT("%llu %llu/%llu %llu/%llu ",
3982		       (unsigned long long)transaction_id,
3983		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3984		       (unsigned long long)nr_blocks_metadata,
3985		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3986		       (unsigned long long)nr_blocks_data);
3987
3988		if (held_root)
3989			DMEMIT("%llu ", held_root);
3990		else
3991			DMEMIT("- ");
3992
3993		mode = get_pool_mode(pool);
3994		if (mode == PM_OUT_OF_DATA_SPACE)
3995			DMEMIT("out_of_data_space ");
3996		else if (is_read_only_pool_mode(mode))
3997			DMEMIT("ro ");
3998		else
3999			DMEMIT("rw ");
4000
4001		if (!pool->pf.discard_enabled)
4002			DMEMIT("ignore_discard ");
4003		else if (pool->pf.discard_passdown)
4004			DMEMIT("discard_passdown ");
4005		else
4006			DMEMIT("no_discard_passdown ");
4007
4008		if (pool->pf.error_if_no_space)
4009			DMEMIT("error_if_no_space ");
4010		else
4011			DMEMIT("queue_if_no_space ");
4012
4013		if (dm_pool_metadata_needs_check(pool->pmd))
4014			DMEMIT("needs_check ");
4015		else
4016			DMEMIT("- ");
4017
4018		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4019
4020		break;
4021
4022	case STATUSTYPE_TABLE:
4023		DMEMIT("%s %s %lu %llu ",
4024		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4025		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4026		       (unsigned long)pool->sectors_per_block,
4027		       (unsigned long long)pt->low_water_blocks);
4028		emit_flags(&pt->requested_pf, result, sz, maxlen);
4029		break;
4030	}
4031	return;
4032
4033err:
4034	DMEMIT("Error");
4035}
4036
4037static int pool_iterate_devices(struct dm_target *ti,
4038				iterate_devices_callout_fn fn, void *data)
4039{
4040	struct pool_c *pt = ti->private;
4041
4042	return fn(ti, pt->data_dev, 0, ti->len, data);
4043}
4044
4045static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4046{
4047	struct pool_c *pt = ti->private;
4048	struct pool *pool = pt->pool;
4049	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4050
4051	/*
4052	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4053	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4054	 * This is especially beneficial when the pool's data device is a RAID
4055	 * device that has a full stripe width that matches pool->sectors_per_block
4056	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4057	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4058	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4059	 */
4060	if (limits->max_sectors < pool->sectors_per_block) {
4061		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4062			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4063				limits->max_sectors--;
4064			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4065		}
4066	}
4067
4068	/*
4069	 * If the system-determined stacked limits are compatible with the
4070	 * pool's blocksize (io_opt is a factor) do not override them.
4071	 */
4072	if (io_opt_sectors < pool->sectors_per_block ||
4073	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4074		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4075			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4076		else
4077			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4078		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4079	}
4080
4081	/*
4082	 * pt->adjusted_pf is a staging area for the actual features to use.
4083	 * They get transferred to the live pool in bind_control_target()
4084	 * called from pool_preresume().
4085	 */
4086	if (!pt->adjusted_pf.discard_enabled) {
4087		/*
4088		 * Must explicitly disallow stacking discard limits otherwise the
4089		 * block layer will stack them if pool's data device has support.
4090		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4091		 * user to see that, so make sure to set all discard limits to 0.
4092		 */
4093		limits->discard_granularity = 0;
4094		return;
4095	}
4096
4097	disable_passdown_if_not_supported(pt);
4098
4099	/*
4100	 * The pool uses the same discard limits as the underlying data
4101	 * device.  DM core has already set this up.
4102	 */
4103}
4104
4105static struct target_type pool_target = {
4106	.name = "thin-pool",
4107	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4108		    DM_TARGET_IMMUTABLE,
4109	.version = {1, 22, 0},
4110	.module = THIS_MODULE,
4111	.ctr = pool_ctr,
4112	.dtr = pool_dtr,
4113	.map = pool_map,
4114	.presuspend = pool_presuspend,
4115	.presuspend_undo = pool_presuspend_undo,
4116	.postsuspend = pool_postsuspend,
4117	.preresume = pool_preresume,
4118	.resume = pool_resume,
4119	.message = pool_message,
4120	.status = pool_status,
4121	.iterate_devices = pool_iterate_devices,
4122	.io_hints = pool_io_hints,
4123};
4124
4125/*----------------------------------------------------------------
4126 * Thin target methods
4127 *--------------------------------------------------------------*/
4128static void thin_get(struct thin_c *tc)
4129{
4130	refcount_inc(&tc->refcount);
4131}
4132
4133static void thin_put(struct thin_c *tc)
4134{
4135	if (refcount_dec_and_test(&tc->refcount))
4136		complete(&tc->can_destroy);
4137}
4138
4139static void thin_dtr(struct dm_target *ti)
4140{
4141	struct thin_c *tc = ti->private;
4142
4143	spin_lock_irq(&tc->pool->lock);
4144	list_del_rcu(&tc->list);
4145	spin_unlock_irq(&tc->pool->lock);
4146	synchronize_rcu();
4147
4148	thin_put(tc);
4149	wait_for_completion(&tc->can_destroy);
4150
4151	mutex_lock(&dm_thin_pool_table.mutex);
4152
4153	__pool_dec(tc->pool);
4154	dm_pool_close_thin_device(tc->td);
4155	dm_put_device(ti, tc->pool_dev);
4156	if (tc->origin_dev)
4157		dm_put_device(ti, tc->origin_dev);
4158	kfree(tc);
4159
4160	mutex_unlock(&dm_thin_pool_table.mutex);
4161}
4162
4163/*
4164 * Thin target parameters:
4165 *
4166 * <pool_dev> <dev_id> [origin_dev]
4167 *
4168 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4169 * dev_id: the internal device identifier
4170 * origin_dev: a device external to the pool that should act as the origin
4171 *
4172 * If the pool device has discards disabled, they get disabled for the thin
4173 * device as well.
4174 */
4175static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4176{
4177	int r;
4178	struct thin_c *tc;
4179	struct dm_dev *pool_dev, *origin_dev;
4180	struct mapped_device *pool_md;
4181
4182	mutex_lock(&dm_thin_pool_table.mutex);
4183
4184	if (argc != 2 && argc != 3) {
4185		ti->error = "Invalid argument count";
4186		r = -EINVAL;
4187		goto out_unlock;
4188	}
4189
4190	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4191	if (!tc) {
4192		ti->error = "Out of memory";
4193		r = -ENOMEM;
4194		goto out_unlock;
4195	}
4196	tc->thin_md = dm_table_get_md(ti->table);
4197	spin_lock_init(&tc->lock);
4198	INIT_LIST_HEAD(&tc->deferred_cells);
4199	bio_list_init(&tc->deferred_bio_list);
4200	bio_list_init(&tc->retry_on_resume_list);
4201	tc->sort_bio_list = RB_ROOT;
4202
4203	if (argc == 3) {
4204		if (!strcmp(argv[0], argv[2])) {
4205			ti->error = "Error setting origin device";
4206			r = -EINVAL;
4207			goto bad_origin_dev;
4208		}
4209
4210		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4211		if (r) {
4212			ti->error = "Error opening origin device";
4213			goto bad_origin_dev;
4214		}
4215		tc->origin_dev = origin_dev;
4216	}
4217
4218	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4219	if (r) {
4220		ti->error = "Error opening pool device";
4221		goto bad_pool_dev;
4222	}
4223	tc->pool_dev = pool_dev;
4224
4225	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4226		ti->error = "Invalid device id";
4227		r = -EINVAL;
4228		goto bad_common;
4229	}
4230
4231	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4232	if (!pool_md) {
4233		ti->error = "Couldn't get pool mapped device";
4234		r = -EINVAL;
4235		goto bad_common;
4236	}
4237
4238	tc->pool = __pool_table_lookup(pool_md);
4239	if (!tc->pool) {
4240		ti->error = "Couldn't find pool object";
4241		r = -EINVAL;
4242		goto bad_pool_lookup;
4243	}
4244	__pool_inc(tc->pool);
4245
4246	if (get_pool_mode(tc->pool) == PM_FAIL) {
4247		ti->error = "Couldn't open thin device, Pool is in fail mode";
4248		r = -EINVAL;
4249		goto bad_pool;
4250	}
4251
4252	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4253	if (r) {
4254		ti->error = "Couldn't open thin internal device";
4255		goto bad_pool;
4256	}
4257
4258	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4259	if (r)
4260		goto bad;
4261
4262	ti->num_flush_bios = 1;
4263	ti->limit_swap_bios = true;
4264	ti->flush_supported = true;
4265	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4266
4267	/* In case the pool supports discards, pass them on. */
4268	if (tc->pool->pf.discard_enabled) {
4269		ti->discards_supported = true;
4270		ti->num_discard_bios = 1;
4271	}
4272
4273	mutex_unlock(&dm_thin_pool_table.mutex);
4274
4275	spin_lock_irq(&tc->pool->lock);
4276	if (tc->pool->suspended) {
4277		spin_unlock_irq(&tc->pool->lock);
4278		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4279		ti->error = "Unable to activate thin device while pool is suspended";
4280		r = -EINVAL;
4281		goto bad;
4282	}
4283	refcount_set(&tc->refcount, 1);
4284	init_completion(&tc->can_destroy);
4285	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4286	spin_unlock_irq(&tc->pool->lock);
4287	/*
4288	 * This synchronize_rcu() call is needed here otherwise we risk a
4289	 * wake_worker() call finding no bios to process (because the newly
4290	 * added tc isn't yet visible).  So this reduces latency since we
4291	 * aren't then dependent on the periodic commit to wake_worker().
4292	 */
4293	synchronize_rcu();
4294
4295	dm_put(pool_md);
4296
4297	return 0;
4298
4299bad:
4300	dm_pool_close_thin_device(tc->td);
4301bad_pool:
4302	__pool_dec(tc->pool);
4303bad_pool_lookup:
4304	dm_put(pool_md);
4305bad_common:
4306	dm_put_device(ti, tc->pool_dev);
4307bad_pool_dev:
4308	if (tc->origin_dev)
4309		dm_put_device(ti, tc->origin_dev);
4310bad_origin_dev:
4311	kfree(tc);
4312out_unlock:
4313	mutex_unlock(&dm_thin_pool_table.mutex);
4314
4315	return r;
4316}
4317
4318static int thin_map(struct dm_target *ti, struct bio *bio)
4319{
4320	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4321
4322	return thin_bio_map(ti, bio);
4323}
4324
4325static int thin_endio(struct dm_target *ti, struct bio *bio,
4326		blk_status_t *err)
4327{
4328	unsigned long flags;
4329	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4330	struct list_head work;
4331	struct dm_thin_new_mapping *m, *tmp;
4332	struct pool *pool = h->tc->pool;
4333
4334	if (h->shared_read_entry) {
4335		INIT_LIST_HEAD(&work);
4336		dm_deferred_entry_dec(h->shared_read_entry, &work);
4337
4338		spin_lock_irqsave(&pool->lock, flags);
4339		list_for_each_entry_safe(m, tmp, &work, list) {
4340			list_del(&m->list);
4341			__complete_mapping_preparation(m);
4342		}
4343		spin_unlock_irqrestore(&pool->lock, flags);
4344	}
4345
4346	if (h->all_io_entry) {
4347		INIT_LIST_HEAD(&work);
4348		dm_deferred_entry_dec(h->all_io_entry, &work);
4349		if (!list_empty(&work)) {
4350			spin_lock_irqsave(&pool->lock, flags);
4351			list_for_each_entry_safe(m, tmp, &work, list)
4352				list_add_tail(&m->list, &pool->prepared_discards);
4353			spin_unlock_irqrestore(&pool->lock, flags);
4354			wake_worker(pool);
4355		}
4356	}
4357
4358	if (h->cell)
4359		cell_defer_no_holder(h->tc, h->cell);
4360
4361	return DM_ENDIO_DONE;
4362}
4363
4364static void thin_presuspend(struct dm_target *ti)
4365{
4366	struct thin_c *tc = ti->private;
4367
4368	if (dm_noflush_suspending(ti))
4369		noflush_work(tc, do_noflush_start);
4370}
4371
4372static void thin_postsuspend(struct dm_target *ti)
4373{
4374	struct thin_c *tc = ti->private;
4375
4376	/*
4377	 * The dm_noflush_suspending flag has been cleared by now, so
4378	 * unfortunately we must always run this.
4379	 */
4380	noflush_work(tc, do_noflush_stop);
4381}
4382
4383static int thin_preresume(struct dm_target *ti)
4384{
4385	struct thin_c *tc = ti->private;
4386
4387	if (tc->origin_dev)
4388		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4389
4390	return 0;
4391}
4392
4393/*
4394 * <nr mapped sectors> <highest mapped sector>
4395 */
4396static void thin_status(struct dm_target *ti, status_type_t type,
4397			unsigned status_flags, char *result, unsigned maxlen)
4398{
4399	int r;
4400	ssize_t sz = 0;
4401	dm_block_t mapped, highest;
4402	char buf[BDEVNAME_SIZE];
4403	struct thin_c *tc = ti->private;
4404
4405	if (get_pool_mode(tc->pool) == PM_FAIL) {
4406		DMEMIT("Fail");
4407		return;
4408	}
4409
4410	if (!tc->td)
4411		DMEMIT("-");
4412	else {
4413		switch (type) {
4414		case STATUSTYPE_INFO:
4415			r = dm_thin_get_mapped_count(tc->td, &mapped);
4416			if (r) {
4417				DMERR("dm_thin_get_mapped_count returned %d", r);
4418				goto err;
4419			}
4420
4421			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4422			if (r < 0) {
4423				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4424				goto err;
4425			}
4426
4427			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4428			if (r)
4429				DMEMIT("%llu", ((highest + 1) *
4430						tc->pool->sectors_per_block) - 1);
4431			else
4432				DMEMIT("-");
4433			break;
4434
4435		case STATUSTYPE_TABLE:
4436			DMEMIT("%s %lu",
4437			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4438			       (unsigned long) tc->dev_id);
4439			if (tc->origin_dev)
4440				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4441			break;
4442		}
4443	}
4444
4445	return;
4446
4447err:
4448	DMEMIT("Error");
4449}
4450
4451static int thin_iterate_devices(struct dm_target *ti,
4452				iterate_devices_callout_fn fn, void *data)
4453{
4454	sector_t blocks;
4455	struct thin_c *tc = ti->private;
4456	struct pool *pool = tc->pool;
4457
4458	/*
4459	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4460	 * we follow a more convoluted path through to the pool's target.
4461	 */
4462	if (!pool->ti)
4463		return 0;	/* nothing is bound */
4464
4465	blocks = pool->ti->len;
4466	(void) sector_div(blocks, pool->sectors_per_block);
4467	if (blocks)
4468		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4469
4470	return 0;
4471}
4472
4473static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4474{
4475	struct thin_c *tc = ti->private;
4476	struct pool *pool = tc->pool;
4477
4478	if (!pool->pf.discard_enabled)
4479		return;
4480
4481	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4482	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4483}
4484
4485static struct target_type thin_target = {
4486	.name = "thin",
4487	.version = {1, 22, 0},
4488	.module	= THIS_MODULE,
4489	.ctr = thin_ctr,
4490	.dtr = thin_dtr,
4491	.map = thin_map,
4492	.end_io = thin_endio,
4493	.preresume = thin_preresume,
4494	.presuspend = thin_presuspend,
4495	.postsuspend = thin_postsuspend,
4496	.status = thin_status,
4497	.iterate_devices = thin_iterate_devices,
4498	.io_hints = thin_io_hints,
4499};
4500
4501/*----------------------------------------------------------------*/
4502
4503static int __init dm_thin_init(void)
4504{
4505	int r = -ENOMEM;
4506
4507	pool_table_init();
4508
4509	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4510	if (!_new_mapping_cache)
4511		return r;
4512
4513	r = dm_register_target(&thin_target);
4514	if (r)
4515		goto bad_new_mapping_cache;
4516
4517	r = dm_register_target(&pool_target);
4518	if (r)
4519		goto bad_thin_target;
4520
4521	return 0;
4522
4523bad_thin_target:
4524	dm_unregister_target(&thin_target);
4525bad_new_mapping_cache:
4526	kmem_cache_destroy(_new_mapping_cache);
4527
4528	return r;
4529}
4530
4531static void dm_thin_exit(void)
4532{
4533	dm_unregister_target(&thin_target);
4534	dm_unregister_target(&pool_target);
4535
4536	kmem_cache_destroy(_new_mapping_cache);
4537
4538	pool_table_exit();
4539}
4540
4541module_init(dm_thin_init);
4542module_exit(dm_thin_exit);
4543
4544module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4545MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4546
4547MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4548MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4549MODULE_LICENSE("GPL");
4550