1/* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7#include "dm-thin-metadata.h" 8#include "dm-bio-prison-v1.h" 9#include "dm.h" 10 11#include <linux/device-mapper.h> 12#include <linux/dm-io.h> 13#include <linux/dm-kcopyd.h> 14#include <linux/jiffies.h> 15#include <linux/log2.h> 16#include <linux/list.h> 17#include <linux/rculist.h> 18#include <linux/init.h> 19#include <linux/module.h> 20#include <linux/slab.h> 21#include <linux/vmalloc.h> 22#include <linux/sort.h> 23#include <linux/rbtree.h> 24 25#define DM_MSG_PREFIX "thin" 26 27/* 28 * Tunable constants 29 */ 30#define ENDIO_HOOK_POOL_SIZE 1024 31#define MAPPING_POOL_SIZE 1024 32#define COMMIT_PERIOD HZ 33#define NO_SPACE_TIMEOUT_SECS 60 34 35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40/* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47/* 48 * Device id is restricted to 24 bits. 49 */ 50#define MAX_DEV_ID ((1 << 24) - 1) 51 52/* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110/*----------------------------------------------------------------*/ 111 112/* 113 * Key building. 114 */ 115enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118}; 119 120static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122{ 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127} 128 129static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131{ 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133} 134 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137{ 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139} 140 141/*----------------------------------------------------------------*/ 142 143#define THROTTLE_THRESHOLD (1 * HZ) 144 145struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149}; 150 151static void throttle_init(struct throttle *t) 152{ 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155} 156 157static void throttle_work_start(struct throttle *t) 158{ 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160} 161 162static void throttle_work_update(struct throttle *t) 163{ 164 if (!t->throttle_applied && jiffies > t->threshold) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168} 169 170static void throttle_work_complete(struct throttle *t) 171{ 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176} 177 178static void throttle_lock(struct throttle *t) 179{ 180 down_read(&t->lock); 181} 182 183static void throttle_unlock(struct throttle *t) 184{ 185 up_read(&t->lock); 186} 187 188/*----------------------------------------------------------------*/ 189 190/* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195struct dm_thin_new_mapping; 196 197/* 198 * The pool runs in various modes. Ordered in degraded order for comparisons. 199 */ 200enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 204 /* 205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. 206 */ 207 PM_OUT_OF_METADATA_SPACE, 208 PM_READ_ONLY, /* metadata may not be changed */ 209 210 PM_FAIL, /* all I/O fails */ 211}; 212 213struct pool_features { 214 enum pool_mode mode; 215 216 bool zero_new_blocks:1; 217 bool discard_enabled:1; 218 bool discard_passdown:1; 219 bool error_if_no_space:1; 220}; 221 222struct thin_c; 223typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 224typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 225typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 226 227#define CELL_SORT_ARRAY_SIZE 8192 228 229struct pool { 230 struct list_head list; 231 struct dm_target *ti; /* Only set if a pool target is bound */ 232 233 struct mapped_device *pool_md; 234 struct block_device *data_dev; 235 struct block_device *md_dev; 236 struct dm_pool_metadata *pmd; 237 238 dm_block_t low_water_blocks; 239 uint32_t sectors_per_block; 240 int sectors_per_block_shift; 241 242 struct pool_features pf; 243 bool low_water_triggered:1; /* A dm event has been sent */ 244 bool suspended:1; 245 bool out_of_data_space:1; 246 247 struct dm_bio_prison *prison; 248 struct dm_kcopyd_client *copier; 249 250 struct work_struct worker; 251 struct workqueue_struct *wq; 252 struct throttle throttle; 253 struct delayed_work waker; 254 struct delayed_work no_space_timeout; 255 256 unsigned long last_commit_jiffies; 257 unsigned ref_count; 258 259 spinlock_t lock; 260 struct bio_list deferred_flush_bios; 261 struct bio_list deferred_flush_completions; 262 struct list_head prepared_mappings; 263 struct list_head prepared_discards; 264 struct list_head prepared_discards_pt2; 265 struct list_head active_thins; 266 267 struct dm_deferred_set *shared_read_ds; 268 struct dm_deferred_set *all_io_ds; 269 270 struct dm_thin_new_mapping *next_mapping; 271 272 process_bio_fn process_bio; 273 process_bio_fn process_discard; 274 275 process_cell_fn process_cell; 276 process_cell_fn process_discard_cell; 277 278 process_mapping_fn process_prepared_mapping; 279 process_mapping_fn process_prepared_discard; 280 process_mapping_fn process_prepared_discard_pt2; 281 282 struct dm_bio_prison_cell **cell_sort_array; 283 284 mempool_t mapping_pool; 285 286 struct bio flush_bio; 287}; 288 289static void metadata_operation_failed(struct pool *pool, const char *op, int r); 290 291static enum pool_mode get_pool_mode(struct pool *pool) 292{ 293 return pool->pf.mode; 294} 295 296static void notify_of_pool_mode_change(struct pool *pool) 297{ 298 const char *descs[] = { 299 "write", 300 "out-of-data-space", 301 "read-only", 302 "read-only", 303 "fail" 304 }; 305 const char *extra_desc = NULL; 306 enum pool_mode mode = get_pool_mode(pool); 307 308 if (mode == PM_OUT_OF_DATA_SPACE) { 309 if (!pool->pf.error_if_no_space) 310 extra_desc = " (queue IO)"; 311 else 312 extra_desc = " (error IO)"; 313 } 314 315 dm_table_event(pool->ti->table); 316 DMINFO("%s: switching pool to %s%s mode", 317 dm_device_name(pool->pool_md), 318 descs[(int)mode], extra_desc ? : ""); 319} 320 321/* 322 * Target context for a pool. 323 */ 324struct pool_c { 325 struct dm_target *ti; 326 struct pool *pool; 327 struct dm_dev *data_dev; 328 struct dm_dev *metadata_dev; 329 330 dm_block_t low_water_blocks; 331 struct pool_features requested_pf; /* Features requested during table load */ 332 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 333}; 334 335/* 336 * Target context for a thin. 337 */ 338struct thin_c { 339 struct list_head list; 340 struct dm_dev *pool_dev; 341 struct dm_dev *origin_dev; 342 sector_t origin_size; 343 dm_thin_id dev_id; 344 345 struct pool *pool; 346 struct dm_thin_device *td; 347 struct mapped_device *thin_md; 348 349 bool requeue_mode:1; 350 spinlock_t lock; 351 struct list_head deferred_cells; 352 struct bio_list deferred_bio_list; 353 struct bio_list retry_on_resume_list; 354 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 355 356 /* 357 * Ensures the thin is not destroyed until the worker has finished 358 * iterating the active_thins list. 359 */ 360 refcount_t refcount; 361 struct completion can_destroy; 362}; 363 364/*----------------------------------------------------------------*/ 365 366static bool block_size_is_power_of_two(struct pool *pool) 367{ 368 return pool->sectors_per_block_shift >= 0; 369} 370 371static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 372{ 373 return block_size_is_power_of_two(pool) ? 374 (b << pool->sectors_per_block_shift) : 375 (b * pool->sectors_per_block); 376} 377 378/*----------------------------------------------------------------*/ 379 380struct discard_op { 381 struct thin_c *tc; 382 struct blk_plug plug; 383 struct bio *parent_bio; 384 struct bio *bio; 385}; 386 387static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 388{ 389 BUG_ON(!parent); 390 391 op->tc = tc; 392 blk_start_plug(&op->plug); 393 op->parent_bio = parent; 394 op->bio = NULL; 395} 396 397static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 398{ 399 struct thin_c *tc = op->tc; 400 sector_t s = block_to_sectors(tc->pool, data_b); 401 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 402 403 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, 404 GFP_NOWAIT, 0, &op->bio); 405} 406 407static void end_discard(struct discard_op *op, int r) 408{ 409 if (op->bio) { 410 /* 411 * Even if one of the calls to issue_discard failed, we 412 * need to wait for the chain to complete. 413 */ 414 bio_chain(op->bio, op->parent_bio); 415 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0); 416 submit_bio(op->bio); 417 } 418 419 blk_finish_plug(&op->plug); 420 421 /* 422 * Even if r is set, there could be sub discards in flight that we 423 * need to wait for. 424 */ 425 if (r && !op->parent_bio->bi_status) 426 op->parent_bio->bi_status = errno_to_blk_status(r); 427 bio_endio(op->parent_bio); 428} 429 430/*----------------------------------------------------------------*/ 431 432/* 433 * wake_worker() is used when new work is queued and when pool_resume is 434 * ready to continue deferred IO processing. 435 */ 436static void wake_worker(struct pool *pool) 437{ 438 queue_work(pool->wq, &pool->worker); 439} 440 441/*----------------------------------------------------------------*/ 442 443static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 444 struct dm_bio_prison_cell **cell_result) 445{ 446 int r; 447 struct dm_bio_prison_cell *cell_prealloc; 448 449 /* 450 * Allocate a cell from the prison's mempool. 451 * This might block but it can't fail. 452 */ 453 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 454 455 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 456 if (r) 457 /* 458 * We reused an old cell; we can get rid of 459 * the new one. 460 */ 461 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 462 463 return r; 464} 465 466static void cell_release(struct pool *pool, 467 struct dm_bio_prison_cell *cell, 468 struct bio_list *bios) 469{ 470 dm_cell_release(pool->prison, cell, bios); 471 dm_bio_prison_free_cell(pool->prison, cell); 472} 473 474static void cell_visit_release(struct pool *pool, 475 void (*fn)(void *, struct dm_bio_prison_cell *), 476 void *context, 477 struct dm_bio_prison_cell *cell) 478{ 479 dm_cell_visit_release(pool->prison, fn, context, cell); 480 dm_bio_prison_free_cell(pool->prison, cell); 481} 482 483static void cell_release_no_holder(struct pool *pool, 484 struct dm_bio_prison_cell *cell, 485 struct bio_list *bios) 486{ 487 dm_cell_release_no_holder(pool->prison, cell, bios); 488 dm_bio_prison_free_cell(pool->prison, cell); 489} 490 491static void cell_error_with_code(struct pool *pool, 492 struct dm_bio_prison_cell *cell, blk_status_t error_code) 493{ 494 dm_cell_error(pool->prison, cell, error_code); 495 dm_bio_prison_free_cell(pool->prison, cell); 496} 497 498static blk_status_t get_pool_io_error_code(struct pool *pool) 499{ 500 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 501} 502 503static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 504{ 505 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 506} 507 508static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 509{ 510 cell_error_with_code(pool, cell, 0); 511} 512 513static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 514{ 515 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 516} 517 518/*----------------------------------------------------------------*/ 519 520/* 521 * A global list of pools that uses a struct mapped_device as a key. 522 */ 523static struct dm_thin_pool_table { 524 struct mutex mutex; 525 struct list_head pools; 526} dm_thin_pool_table; 527 528static void pool_table_init(void) 529{ 530 mutex_init(&dm_thin_pool_table.mutex); 531 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 532} 533 534static void pool_table_exit(void) 535{ 536 mutex_destroy(&dm_thin_pool_table.mutex); 537} 538 539static void __pool_table_insert(struct pool *pool) 540{ 541 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 542 list_add(&pool->list, &dm_thin_pool_table.pools); 543} 544 545static void __pool_table_remove(struct pool *pool) 546{ 547 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 548 list_del(&pool->list); 549} 550 551static struct pool *__pool_table_lookup(struct mapped_device *md) 552{ 553 struct pool *pool = NULL, *tmp; 554 555 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 556 557 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 558 if (tmp->pool_md == md) { 559 pool = tmp; 560 break; 561 } 562 } 563 564 return pool; 565} 566 567static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 568{ 569 struct pool *pool = NULL, *tmp; 570 571 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 572 573 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 574 if (tmp->md_dev == md_dev) { 575 pool = tmp; 576 break; 577 } 578 } 579 580 return pool; 581} 582 583/*----------------------------------------------------------------*/ 584 585struct dm_thin_endio_hook { 586 struct thin_c *tc; 587 struct dm_deferred_entry *shared_read_entry; 588 struct dm_deferred_entry *all_io_entry; 589 struct dm_thin_new_mapping *overwrite_mapping; 590 struct rb_node rb_node; 591 struct dm_bio_prison_cell *cell; 592}; 593 594static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 595{ 596 bio_list_merge(bios, master); 597 bio_list_init(master); 598} 599 600static void error_bio_list(struct bio_list *bios, blk_status_t error) 601{ 602 struct bio *bio; 603 604 while ((bio = bio_list_pop(bios))) { 605 bio->bi_status = error; 606 bio_endio(bio); 607 } 608} 609 610static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 611 blk_status_t error) 612{ 613 struct bio_list bios; 614 615 bio_list_init(&bios); 616 617 spin_lock_irq(&tc->lock); 618 __merge_bio_list(&bios, master); 619 spin_unlock_irq(&tc->lock); 620 621 error_bio_list(&bios, error); 622} 623 624static void requeue_deferred_cells(struct thin_c *tc) 625{ 626 struct pool *pool = tc->pool; 627 struct list_head cells; 628 struct dm_bio_prison_cell *cell, *tmp; 629 630 INIT_LIST_HEAD(&cells); 631 632 spin_lock_irq(&tc->lock); 633 list_splice_init(&tc->deferred_cells, &cells); 634 spin_unlock_irq(&tc->lock); 635 636 list_for_each_entry_safe(cell, tmp, &cells, user_list) 637 cell_requeue(pool, cell); 638} 639 640static void requeue_io(struct thin_c *tc) 641{ 642 struct bio_list bios; 643 644 bio_list_init(&bios); 645 646 spin_lock_irq(&tc->lock); 647 __merge_bio_list(&bios, &tc->deferred_bio_list); 648 __merge_bio_list(&bios, &tc->retry_on_resume_list); 649 spin_unlock_irq(&tc->lock); 650 651 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 652 requeue_deferred_cells(tc); 653} 654 655static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 656{ 657 struct thin_c *tc; 658 659 rcu_read_lock(); 660 list_for_each_entry_rcu(tc, &pool->active_thins, list) 661 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 662 rcu_read_unlock(); 663} 664 665static void error_retry_list(struct pool *pool) 666{ 667 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 668} 669 670/* 671 * This section of code contains the logic for processing a thin device's IO. 672 * Much of the code depends on pool object resources (lists, workqueues, etc) 673 * but most is exclusively called from the thin target rather than the thin-pool 674 * target. 675 */ 676 677static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 678{ 679 struct pool *pool = tc->pool; 680 sector_t block_nr = bio->bi_iter.bi_sector; 681 682 if (block_size_is_power_of_two(pool)) 683 block_nr >>= pool->sectors_per_block_shift; 684 else 685 (void) sector_div(block_nr, pool->sectors_per_block); 686 687 return block_nr; 688} 689 690/* 691 * Returns the _complete_ blocks that this bio covers. 692 */ 693static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 694 dm_block_t *begin, dm_block_t *end) 695{ 696 struct pool *pool = tc->pool; 697 sector_t b = bio->bi_iter.bi_sector; 698 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 699 700 b += pool->sectors_per_block - 1ull; /* so we round up */ 701 702 if (block_size_is_power_of_two(pool)) { 703 b >>= pool->sectors_per_block_shift; 704 e >>= pool->sectors_per_block_shift; 705 } else { 706 (void) sector_div(b, pool->sectors_per_block); 707 (void) sector_div(e, pool->sectors_per_block); 708 } 709 710 if (e < b) 711 /* Can happen if the bio is within a single block. */ 712 e = b; 713 714 *begin = b; 715 *end = e; 716} 717 718static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 719{ 720 struct pool *pool = tc->pool; 721 sector_t bi_sector = bio->bi_iter.bi_sector; 722 723 bio_set_dev(bio, tc->pool_dev->bdev); 724 if (block_size_is_power_of_two(pool)) 725 bio->bi_iter.bi_sector = 726 (block << pool->sectors_per_block_shift) | 727 (bi_sector & (pool->sectors_per_block - 1)); 728 else 729 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 730 sector_div(bi_sector, pool->sectors_per_block); 731} 732 733static void remap_to_origin(struct thin_c *tc, struct bio *bio) 734{ 735 bio_set_dev(bio, tc->origin_dev->bdev); 736} 737 738static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 739{ 740 return op_is_flush(bio->bi_opf) && 741 dm_thin_changed_this_transaction(tc->td); 742} 743 744static void inc_all_io_entry(struct pool *pool, struct bio *bio) 745{ 746 struct dm_thin_endio_hook *h; 747 748 if (bio_op(bio) == REQ_OP_DISCARD) 749 return; 750 751 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 752 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 753} 754 755static void issue(struct thin_c *tc, struct bio *bio) 756{ 757 struct pool *pool = tc->pool; 758 759 if (!bio_triggers_commit(tc, bio)) { 760 submit_bio_noacct(bio); 761 return; 762 } 763 764 /* 765 * Complete bio with an error if earlier I/O caused changes to 766 * the metadata that can't be committed e.g, due to I/O errors 767 * on the metadata device. 768 */ 769 if (dm_thin_aborted_changes(tc->td)) { 770 bio_io_error(bio); 771 return; 772 } 773 774 /* 775 * Batch together any bios that trigger commits and then issue a 776 * single commit for them in process_deferred_bios(). 777 */ 778 spin_lock_irq(&pool->lock); 779 bio_list_add(&pool->deferred_flush_bios, bio); 780 spin_unlock_irq(&pool->lock); 781} 782 783static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 784{ 785 remap_to_origin(tc, bio); 786 issue(tc, bio); 787} 788 789static void remap_and_issue(struct thin_c *tc, struct bio *bio, 790 dm_block_t block) 791{ 792 remap(tc, bio, block); 793 issue(tc, bio); 794} 795 796/*----------------------------------------------------------------*/ 797 798/* 799 * Bio endio functions. 800 */ 801struct dm_thin_new_mapping { 802 struct list_head list; 803 804 bool pass_discard:1; 805 bool maybe_shared:1; 806 807 /* 808 * Track quiescing, copying and zeroing preparation actions. When this 809 * counter hits zero the block is prepared and can be inserted into the 810 * btree. 811 */ 812 atomic_t prepare_actions; 813 814 blk_status_t status; 815 struct thin_c *tc; 816 dm_block_t virt_begin, virt_end; 817 dm_block_t data_block; 818 struct dm_bio_prison_cell *cell; 819 820 /* 821 * If the bio covers the whole area of a block then we can avoid 822 * zeroing or copying. Instead this bio is hooked. The bio will 823 * still be in the cell, so care has to be taken to avoid issuing 824 * the bio twice. 825 */ 826 struct bio *bio; 827 bio_end_io_t *saved_bi_end_io; 828}; 829 830static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 831{ 832 struct pool *pool = m->tc->pool; 833 834 if (atomic_dec_and_test(&m->prepare_actions)) { 835 list_add_tail(&m->list, &pool->prepared_mappings); 836 wake_worker(pool); 837 } 838} 839 840static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 841{ 842 unsigned long flags; 843 struct pool *pool = m->tc->pool; 844 845 spin_lock_irqsave(&pool->lock, flags); 846 __complete_mapping_preparation(m); 847 spin_unlock_irqrestore(&pool->lock, flags); 848} 849 850static void copy_complete(int read_err, unsigned long write_err, void *context) 851{ 852 struct dm_thin_new_mapping *m = context; 853 854 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 855 complete_mapping_preparation(m); 856} 857 858static void overwrite_endio(struct bio *bio) 859{ 860 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 861 struct dm_thin_new_mapping *m = h->overwrite_mapping; 862 863 bio->bi_end_io = m->saved_bi_end_io; 864 865 m->status = bio->bi_status; 866 complete_mapping_preparation(m); 867} 868 869/*----------------------------------------------------------------*/ 870 871/* 872 * Workqueue. 873 */ 874 875/* 876 * Prepared mapping jobs. 877 */ 878 879/* 880 * This sends the bios in the cell, except the original holder, back 881 * to the deferred_bios list. 882 */ 883static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 884{ 885 struct pool *pool = tc->pool; 886 unsigned long flags; 887 int has_work; 888 889 spin_lock_irqsave(&tc->lock, flags); 890 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 891 has_work = !bio_list_empty(&tc->deferred_bio_list); 892 spin_unlock_irqrestore(&tc->lock, flags); 893 894 if (has_work) 895 wake_worker(pool); 896} 897 898static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 899 900struct remap_info { 901 struct thin_c *tc; 902 struct bio_list defer_bios; 903 struct bio_list issue_bios; 904}; 905 906static void __inc_remap_and_issue_cell(void *context, 907 struct dm_bio_prison_cell *cell) 908{ 909 struct remap_info *info = context; 910 struct bio *bio; 911 912 while ((bio = bio_list_pop(&cell->bios))) { 913 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 914 bio_list_add(&info->defer_bios, bio); 915 else { 916 inc_all_io_entry(info->tc->pool, bio); 917 918 /* 919 * We can't issue the bios with the bio prison lock 920 * held, so we add them to a list to issue on 921 * return from this function. 922 */ 923 bio_list_add(&info->issue_bios, bio); 924 } 925 } 926} 927 928static void inc_remap_and_issue_cell(struct thin_c *tc, 929 struct dm_bio_prison_cell *cell, 930 dm_block_t block) 931{ 932 struct bio *bio; 933 struct remap_info info; 934 935 info.tc = tc; 936 bio_list_init(&info.defer_bios); 937 bio_list_init(&info.issue_bios); 938 939 /* 940 * We have to be careful to inc any bios we're about to issue 941 * before the cell is released, and avoid a race with new bios 942 * being added to the cell. 943 */ 944 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 945 &info, cell); 946 947 while ((bio = bio_list_pop(&info.defer_bios))) 948 thin_defer_bio(tc, bio); 949 950 while ((bio = bio_list_pop(&info.issue_bios))) 951 remap_and_issue(info.tc, bio, block); 952} 953 954static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 955{ 956 cell_error(m->tc->pool, m->cell); 957 list_del(&m->list); 958 mempool_free(m, &m->tc->pool->mapping_pool); 959} 960 961static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio) 962{ 963 struct pool *pool = tc->pool; 964 965 /* 966 * If the bio has the REQ_FUA flag set we must commit the metadata 967 * before signaling its completion. 968 */ 969 if (!bio_triggers_commit(tc, bio)) { 970 bio_endio(bio); 971 return; 972 } 973 974 /* 975 * Complete bio with an error if earlier I/O caused changes to the 976 * metadata that can't be committed, e.g, due to I/O errors on the 977 * metadata device. 978 */ 979 if (dm_thin_aborted_changes(tc->td)) { 980 bio_io_error(bio); 981 return; 982 } 983 984 /* 985 * Batch together any bios that trigger commits and then issue a 986 * single commit for them in process_deferred_bios(). 987 */ 988 spin_lock_irq(&pool->lock); 989 bio_list_add(&pool->deferred_flush_completions, bio); 990 spin_unlock_irq(&pool->lock); 991} 992 993static void process_prepared_mapping(struct dm_thin_new_mapping *m) 994{ 995 struct thin_c *tc = m->tc; 996 struct pool *pool = tc->pool; 997 struct bio *bio = m->bio; 998 int r; 999 1000 if (m->status) { 1001 cell_error(pool, m->cell); 1002 goto out; 1003 } 1004 1005 /* 1006 * Commit the prepared block into the mapping btree. 1007 * Any I/O for this block arriving after this point will get 1008 * remapped to it directly. 1009 */ 1010 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 1011 if (r) { 1012 metadata_operation_failed(pool, "dm_thin_insert_block", r); 1013 cell_error(pool, m->cell); 1014 goto out; 1015 } 1016 1017 /* 1018 * Release any bios held while the block was being provisioned. 1019 * If we are processing a write bio that completely covers the block, 1020 * we already processed it so can ignore it now when processing 1021 * the bios in the cell. 1022 */ 1023 if (bio) { 1024 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1025 complete_overwrite_bio(tc, bio); 1026 } else { 1027 inc_all_io_entry(tc->pool, m->cell->holder); 1028 remap_and_issue(tc, m->cell->holder, m->data_block); 1029 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1030 } 1031 1032out: 1033 list_del(&m->list); 1034 mempool_free(m, &pool->mapping_pool); 1035} 1036 1037/*----------------------------------------------------------------*/ 1038 1039static void free_discard_mapping(struct dm_thin_new_mapping *m) 1040{ 1041 struct thin_c *tc = m->tc; 1042 if (m->cell) 1043 cell_defer_no_holder(tc, m->cell); 1044 mempool_free(m, &tc->pool->mapping_pool); 1045} 1046 1047static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 1048{ 1049 bio_io_error(m->bio); 1050 free_discard_mapping(m); 1051} 1052 1053static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 1054{ 1055 bio_endio(m->bio); 1056 free_discard_mapping(m); 1057} 1058 1059static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 1060{ 1061 int r; 1062 struct thin_c *tc = m->tc; 1063 1064 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 1065 if (r) { 1066 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 1067 bio_io_error(m->bio); 1068 } else 1069 bio_endio(m->bio); 1070 1071 cell_defer_no_holder(tc, m->cell); 1072 mempool_free(m, &tc->pool->mapping_pool); 1073} 1074 1075/*----------------------------------------------------------------*/ 1076 1077static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1078 struct bio *discard_parent) 1079{ 1080 /* 1081 * We've already unmapped this range of blocks, but before we 1082 * passdown we have to check that these blocks are now unused. 1083 */ 1084 int r = 0; 1085 bool shared = true; 1086 struct thin_c *tc = m->tc; 1087 struct pool *pool = tc->pool; 1088 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1089 struct discard_op op; 1090 1091 begin_discard(&op, tc, discard_parent); 1092 while (b != end) { 1093 /* find start of unmapped run */ 1094 for (; b < end; b++) { 1095 r = dm_pool_block_is_shared(pool->pmd, b, &shared); 1096 if (r) 1097 goto out; 1098 1099 if (!shared) 1100 break; 1101 } 1102 1103 if (b == end) 1104 break; 1105 1106 /* find end of run */ 1107 for (e = b + 1; e != end; e++) { 1108 r = dm_pool_block_is_shared(pool->pmd, e, &shared); 1109 if (r) 1110 goto out; 1111 1112 if (shared) 1113 break; 1114 } 1115 1116 r = issue_discard(&op, b, e); 1117 if (r) 1118 goto out; 1119 1120 b = e; 1121 } 1122out: 1123 end_discard(&op, r); 1124} 1125 1126static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1127{ 1128 unsigned long flags; 1129 struct pool *pool = m->tc->pool; 1130 1131 spin_lock_irqsave(&pool->lock, flags); 1132 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1133 spin_unlock_irqrestore(&pool->lock, flags); 1134 wake_worker(pool); 1135} 1136 1137static void passdown_endio(struct bio *bio) 1138{ 1139 /* 1140 * It doesn't matter if the passdown discard failed, we still want 1141 * to unmap (we ignore err). 1142 */ 1143 queue_passdown_pt2(bio->bi_private); 1144 bio_put(bio); 1145} 1146 1147static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1148{ 1149 int r; 1150 struct thin_c *tc = m->tc; 1151 struct pool *pool = tc->pool; 1152 struct bio *discard_parent; 1153 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1154 1155 /* 1156 * Only this thread allocates blocks, so we can be sure that the 1157 * newly unmapped blocks will not be allocated before the end of 1158 * the function. 1159 */ 1160 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1161 if (r) { 1162 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1163 bio_io_error(m->bio); 1164 cell_defer_no_holder(tc, m->cell); 1165 mempool_free(m, &pool->mapping_pool); 1166 return; 1167 } 1168 1169 /* 1170 * Increment the unmapped blocks. This prevents a race between the 1171 * passdown io and reallocation of freed blocks. 1172 */ 1173 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1174 if (r) { 1175 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1176 bio_io_error(m->bio); 1177 cell_defer_no_holder(tc, m->cell); 1178 mempool_free(m, &pool->mapping_pool); 1179 return; 1180 } 1181 1182 discard_parent = bio_alloc(GFP_NOIO, 1); 1183 if (!discard_parent) { 1184 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.", 1185 dm_device_name(tc->pool->pool_md)); 1186 queue_passdown_pt2(m); 1187 1188 } else { 1189 discard_parent->bi_end_io = passdown_endio; 1190 discard_parent->bi_private = m; 1191 1192 if (m->maybe_shared) 1193 passdown_double_checking_shared_status(m, discard_parent); 1194 else { 1195 struct discard_op op; 1196 1197 begin_discard(&op, tc, discard_parent); 1198 r = issue_discard(&op, m->data_block, data_end); 1199 end_discard(&op, r); 1200 } 1201 } 1202} 1203 1204static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1205{ 1206 int r; 1207 struct thin_c *tc = m->tc; 1208 struct pool *pool = tc->pool; 1209 1210 /* 1211 * The passdown has completed, so now we can decrement all those 1212 * unmapped blocks. 1213 */ 1214 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1215 m->data_block + (m->virt_end - m->virt_begin)); 1216 if (r) { 1217 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1218 bio_io_error(m->bio); 1219 } else 1220 bio_endio(m->bio); 1221 1222 cell_defer_no_holder(tc, m->cell); 1223 mempool_free(m, &pool->mapping_pool); 1224} 1225 1226static void process_prepared(struct pool *pool, struct list_head *head, 1227 process_mapping_fn *fn) 1228{ 1229 struct list_head maps; 1230 struct dm_thin_new_mapping *m, *tmp; 1231 1232 INIT_LIST_HEAD(&maps); 1233 spin_lock_irq(&pool->lock); 1234 list_splice_init(head, &maps); 1235 spin_unlock_irq(&pool->lock); 1236 1237 list_for_each_entry_safe(m, tmp, &maps, list) 1238 (*fn)(m); 1239} 1240 1241/* 1242 * Deferred bio jobs. 1243 */ 1244static int io_overlaps_block(struct pool *pool, struct bio *bio) 1245{ 1246 return bio->bi_iter.bi_size == 1247 (pool->sectors_per_block << SECTOR_SHIFT); 1248} 1249 1250static int io_overwrites_block(struct pool *pool, struct bio *bio) 1251{ 1252 return (bio_data_dir(bio) == WRITE) && 1253 io_overlaps_block(pool, bio); 1254} 1255 1256static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1257 bio_end_io_t *fn) 1258{ 1259 *save = bio->bi_end_io; 1260 bio->bi_end_io = fn; 1261} 1262 1263static int ensure_next_mapping(struct pool *pool) 1264{ 1265 if (pool->next_mapping) 1266 return 0; 1267 1268 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1269 1270 return pool->next_mapping ? 0 : -ENOMEM; 1271} 1272 1273static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1274{ 1275 struct dm_thin_new_mapping *m = pool->next_mapping; 1276 1277 BUG_ON(!pool->next_mapping); 1278 1279 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1280 INIT_LIST_HEAD(&m->list); 1281 m->bio = NULL; 1282 1283 pool->next_mapping = NULL; 1284 1285 return m; 1286} 1287 1288static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1289 sector_t begin, sector_t end) 1290{ 1291 struct dm_io_region to; 1292 1293 to.bdev = tc->pool_dev->bdev; 1294 to.sector = begin; 1295 to.count = end - begin; 1296 1297 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1298} 1299 1300static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1301 dm_block_t data_begin, 1302 struct dm_thin_new_mapping *m) 1303{ 1304 struct pool *pool = tc->pool; 1305 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1306 1307 h->overwrite_mapping = m; 1308 m->bio = bio; 1309 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1310 inc_all_io_entry(pool, bio); 1311 remap_and_issue(tc, bio, data_begin); 1312} 1313 1314/* 1315 * A partial copy also needs to zero the uncopied region. 1316 */ 1317static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1318 struct dm_dev *origin, dm_block_t data_origin, 1319 dm_block_t data_dest, 1320 struct dm_bio_prison_cell *cell, struct bio *bio, 1321 sector_t len) 1322{ 1323 struct pool *pool = tc->pool; 1324 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1325 1326 m->tc = tc; 1327 m->virt_begin = virt_block; 1328 m->virt_end = virt_block + 1u; 1329 m->data_block = data_dest; 1330 m->cell = cell; 1331 1332 /* 1333 * quiesce action + copy action + an extra reference held for the 1334 * duration of this function (we may need to inc later for a 1335 * partial zero). 1336 */ 1337 atomic_set(&m->prepare_actions, 3); 1338 1339 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1340 complete_mapping_preparation(m); /* already quiesced */ 1341 1342 /* 1343 * IO to pool_dev remaps to the pool target's data_dev. 1344 * 1345 * If the whole block of data is being overwritten, we can issue the 1346 * bio immediately. Otherwise we use kcopyd to clone the data first. 1347 */ 1348 if (io_overwrites_block(pool, bio)) 1349 remap_and_issue_overwrite(tc, bio, data_dest, m); 1350 else { 1351 struct dm_io_region from, to; 1352 1353 from.bdev = origin->bdev; 1354 from.sector = data_origin * pool->sectors_per_block; 1355 from.count = len; 1356 1357 to.bdev = tc->pool_dev->bdev; 1358 to.sector = data_dest * pool->sectors_per_block; 1359 to.count = len; 1360 1361 dm_kcopyd_copy(pool->copier, &from, 1, &to, 1362 0, copy_complete, m); 1363 1364 /* 1365 * Do we need to zero a tail region? 1366 */ 1367 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1368 atomic_inc(&m->prepare_actions); 1369 ll_zero(tc, m, 1370 data_dest * pool->sectors_per_block + len, 1371 (data_dest + 1) * pool->sectors_per_block); 1372 } 1373 } 1374 1375 complete_mapping_preparation(m); /* drop our ref */ 1376} 1377 1378static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1379 dm_block_t data_origin, dm_block_t data_dest, 1380 struct dm_bio_prison_cell *cell, struct bio *bio) 1381{ 1382 schedule_copy(tc, virt_block, tc->pool_dev, 1383 data_origin, data_dest, cell, bio, 1384 tc->pool->sectors_per_block); 1385} 1386 1387static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1388 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1389 struct bio *bio) 1390{ 1391 struct pool *pool = tc->pool; 1392 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1393 1394 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1395 m->tc = tc; 1396 m->virt_begin = virt_block; 1397 m->virt_end = virt_block + 1u; 1398 m->data_block = data_block; 1399 m->cell = cell; 1400 1401 /* 1402 * If the whole block of data is being overwritten or we are not 1403 * zeroing pre-existing data, we can issue the bio immediately. 1404 * Otherwise we use kcopyd to zero the data first. 1405 */ 1406 if (pool->pf.zero_new_blocks) { 1407 if (io_overwrites_block(pool, bio)) 1408 remap_and_issue_overwrite(tc, bio, data_block, m); 1409 else 1410 ll_zero(tc, m, data_block * pool->sectors_per_block, 1411 (data_block + 1) * pool->sectors_per_block); 1412 } else 1413 process_prepared_mapping(m); 1414} 1415 1416static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1417 dm_block_t data_dest, 1418 struct dm_bio_prison_cell *cell, struct bio *bio) 1419{ 1420 struct pool *pool = tc->pool; 1421 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1422 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1423 1424 if (virt_block_end <= tc->origin_size) 1425 schedule_copy(tc, virt_block, tc->origin_dev, 1426 virt_block, data_dest, cell, bio, 1427 pool->sectors_per_block); 1428 1429 else if (virt_block_begin < tc->origin_size) 1430 schedule_copy(tc, virt_block, tc->origin_dev, 1431 virt_block, data_dest, cell, bio, 1432 tc->origin_size - virt_block_begin); 1433 1434 else 1435 schedule_zero(tc, virt_block, data_dest, cell, bio); 1436} 1437 1438static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1439 1440static void requeue_bios(struct pool *pool); 1441 1442static bool is_read_only_pool_mode(enum pool_mode mode) 1443{ 1444 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); 1445} 1446 1447static bool is_read_only(struct pool *pool) 1448{ 1449 return is_read_only_pool_mode(get_pool_mode(pool)); 1450} 1451 1452static void check_for_metadata_space(struct pool *pool) 1453{ 1454 int r; 1455 const char *ooms_reason = NULL; 1456 dm_block_t nr_free; 1457 1458 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); 1459 if (r) 1460 ooms_reason = "Could not get free metadata blocks"; 1461 else if (!nr_free) 1462 ooms_reason = "No free metadata blocks"; 1463 1464 if (ooms_reason && !is_read_only(pool)) { 1465 DMERR("%s", ooms_reason); 1466 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); 1467 } 1468} 1469 1470static void check_for_data_space(struct pool *pool) 1471{ 1472 int r; 1473 dm_block_t nr_free; 1474 1475 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1476 return; 1477 1478 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1479 if (r) 1480 return; 1481 1482 if (nr_free) { 1483 set_pool_mode(pool, PM_WRITE); 1484 requeue_bios(pool); 1485 } 1486} 1487 1488/* 1489 * A non-zero return indicates read_only or fail_io mode. 1490 * Many callers don't care about the return value. 1491 */ 1492static int commit(struct pool *pool) 1493{ 1494 int r; 1495 1496 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) 1497 return -EINVAL; 1498 1499 r = dm_pool_commit_metadata(pool->pmd); 1500 if (r) 1501 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1502 else { 1503 check_for_metadata_space(pool); 1504 check_for_data_space(pool); 1505 } 1506 1507 return r; 1508} 1509 1510static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1511{ 1512 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1513 DMWARN("%s: reached low water mark for data device: sending event.", 1514 dm_device_name(pool->pool_md)); 1515 spin_lock_irq(&pool->lock); 1516 pool->low_water_triggered = true; 1517 spin_unlock_irq(&pool->lock); 1518 dm_table_event(pool->ti->table); 1519 } 1520} 1521 1522static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1523{ 1524 int r; 1525 dm_block_t free_blocks; 1526 struct pool *pool = tc->pool; 1527 1528 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1529 return -EINVAL; 1530 1531 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1532 if (r) { 1533 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1534 return r; 1535 } 1536 1537 check_low_water_mark(pool, free_blocks); 1538 1539 if (!free_blocks) { 1540 /* 1541 * Try to commit to see if that will free up some 1542 * more space. 1543 */ 1544 r = commit(pool); 1545 if (r) 1546 return r; 1547 1548 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1549 if (r) { 1550 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1551 return r; 1552 } 1553 1554 if (!free_blocks) { 1555 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1556 return -ENOSPC; 1557 } 1558 } 1559 1560 r = dm_pool_alloc_data_block(pool->pmd, result); 1561 if (r) { 1562 if (r == -ENOSPC) 1563 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1564 else 1565 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1566 return r; 1567 } 1568 1569 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); 1570 if (r) { 1571 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); 1572 return r; 1573 } 1574 1575 if (!free_blocks) { 1576 /* Let's commit before we use up the metadata reserve. */ 1577 r = commit(pool); 1578 if (r) 1579 return r; 1580 } 1581 1582 return 0; 1583} 1584 1585/* 1586 * If we have run out of space, queue bios until the device is 1587 * resumed, presumably after having been reloaded with more space. 1588 */ 1589static void retry_on_resume(struct bio *bio) 1590{ 1591 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1592 struct thin_c *tc = h->tc; 1593 1594 spin_lock_irq(&tc->lock); 1595 bio_list_add(&tc->retry_on_resume_list, bio); 1596 spin_unlock_irq(&tc->lock); 1597} 1598 1599static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1600{ 1601 enum pool_mode m = get_pool_mode(pool); 1602 1603 switch (m) { 1604 case PM_WRITE: 1605 /* Shouldn't get here */ 1606 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1607 return BLK_STS_IOERR; 1608 1609 case PM_OUT_OF_DATA_SPACE: 1610 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1611 1612 case PM_OUT_OF_METADATA_SPACE: 1613 case PM_READ_ONLY: 1614 case PM_FAIL: 1615 return BLK_STS_IOERR; 1616 default: 1617 /* Shouldn't get here */ 1618 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1619 return BLK_STS_IOERR; 1620 } 1621} 1622 1623static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1624{ 1625 blk_status_t error = should_error_unserviceable_bio(pool); 1626 1627 if (error) { 1628 bio->bi_status = error; 1629 bio_endio(bio); 1630 } else 1631 retry_on_resume(bio); 1632} 1633 1634static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1635{ 1636 struct bio *bio; 1637 struct bio_list bios; 1638 blk_status_t error; 1639 1640 error = should_error_unserviceable_bio(pool); 1641 if (error) { 1642 cell_error_with_code(pool, cell, error); 1643 return; 1644 } 1645 1646 bio_list_init(&bios); 1647 cell_release(pool, cell, &bios); 1648 1649 while ((bio = bio_list_pop(&bios))) 1650 retry_on_resume(bio); 1651} 1652 1653static void process_discard_cell_no_passdown(struct thin_c *tc, 1654 struct dm_bio_prison_cell *virt_cell) 1655{ 1656 struct pool *pool = tc->pool; 1657 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1658 1659 /* 1660 * We don't need to lock the data blocks, since there's no 1661 * passdown. We only lock data blocks for allocation and breaking sharing. 1662 */ 1663 m->tc = tc; 1664 m->virt_begin = virt_cell->key.block_begin; 1665 m->virt_end = virt_cell->key.block_end; 1666 m->cell = virt_cell; 1667 m->bio = virt_cell->holder; 1668 1669 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1670 pool->process_prepared_discard(m); 1671} 1672 1673static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1674 struct bio *bio) 1675{ 1676 struct pool *pool = tc->pool; 1677 1678 int r; 1679 bool maybe_shared; 1680 struct dm_cell_key data_key; 1681 struct dm_bio_prison_cell *data_cell; 1682 struct dm_thin_new_mapping *m; 1683 dm_block_t virt_begin, virt_end, data_begin; 1684 1685 while (begin != end) { 1686 r = ensure_next_mapping(pool); 1687 if (r) 1688 /* we did our best */ 1689 return; 1690 1691 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1692 &data_begin, &maybe_shared); 1693 if (r) 1694 /* 1695 * Silently fail, letting any mappings we've 1696 * created complete. 1697 */ 1698 break; 1699 1700 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1701 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1702 /* contention, we'll give up with this range */ 1703 begin = virt_end; 1704 continue; 1705 } 1706 1707 /* 1708 * IO may still be going to the destination block. We must 1709 * quiesce before we can do the removal. 1710 */ 1711 m = get_next_mapping(pool); 1712 m->tc = tc; 1713 m->maybe_shared = maybe_shared; 1714 m->virt_begin = virt_begin; 1715 m->virt_end = virt_end; 1716 m->data_block = data_begin; 1717 m->cell = data_cell; 1718 m->bio = bio; 1719 1720 /* 1721 * The parent bio must not complete before sub discard bios are 1722 * chained to it (see end_discard's bio_chain)! 1723 * 1724 * This per-mapping bi_remaining increment is paired with 1725 * the implicit decrement that occurs via bio_endio() in 1726 * end_discard(). 1727 */ 1728 bio_inc_remaining(bio); 1729 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1730 pool->process_prepared_discard(m); 1731 1732 begin = virt_end; 1733 } 1734} 1735 1736static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1737{ 1738 struct bio *bio = virt_cell->holder; 1739 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1740 1741 /* 1742 * The virt_cell will only get freed once the origin bio completes. 1743 * This means it will remain locked while all the individual 1744 * passdown bios are in flight. 1745 */ 1746 h->cell = virt_cell; 1747 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1748 1749 /* 1750 * We complete the bio now, knowing that the bi_remaining field 1751 * will prevent completion until the sub range discards have 1752 * completed. 1753 */ 1754 bio_endio(bio); 1755} 1756 1757static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1758{ 1759 dm_block_t begin, end; 1760 struct dm_cell_key virt_key; 1761 struct dm_bio_prison_cell *virt_cell; 1762 1763 get_bio_block_range(tc, bio, &begin, &end); 1764 if (begin == end) { 1765 /* 1766 * The discard covers less than a block. 1767 */ 1768 bio_endio(bio); 1769 return; 1770 } 1771 1772 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1773 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1774 /* 1775 * Potential starvation issue: We're relying on the 1776 * fs/application being well behaved, and not trying to 1777 * send IO to a region at the same time as discarding it. 1778 * If they do this persistently then it's possible this 1779 * cell will never be granted. 1780 */ 1781 return; 1782 1783 tc->pool->process_discard_cell(tc, virt_cell); 1784} 1785 1786static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1787 struct dm_cell_key *key, 1788 struct dm_thin_lookup_result *lookup_result, 1789 struct dm_bio_prison_cell *cell) 1790{ 1791 int r; 1792 dm_block_t data_block; 1793 struct pool *pool = tc->pool; 1794 1795 r = alloc_data_block(tc, &data_block); 1796 switch (r) { 1797 case 0: 1798 schedule_internal_copy(tc, block, lookup_result->block, 1799 data_block, cell, bio); 1800 break; 1801 1802 case -ENOSPC: 1803 retry_bios_on_resume(pool, cell); 1804 break; 1805 1806 default: 1807 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1808 __func__, r); 1809 cell_error(pool, cell); 1810 break; 1811 } 1812} 1813 1814static void __remap_and_issue_shared_cell(void *context, 1815 struct dm_bio_prison_cell *cell) 1816{ 1817 struct remap_info *info = context; 1818 struct bio *bio; 1819 1820 while ((bio = bio_list_pop(&cell->bios))) { 1821 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1822 bio_op(bio) == REQ_OP_DISCARD) 1823 bio_list_add(&info->defer_bios, bio); 1824 else { 1825 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1826 1827 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1828 inc_all_io_entry(info->tc->pool, bio); 1829 bio_list_add(&info->issue_bios, bio); 1830 } 1831 } 1832} 1833 1834static void remap_and_issue_shared_cell(struct thin_c *tc, 1835 struct dm_bio_prison_cell *cell, 1836 dm_block_t block) 1837{ 1838 struct bio *bio; 1839 struct remap_info info; 1840 1841 info.tc = tc; 1842 bio_list_init(&info.defer_bios); 1843 bio_list_init(&info.issue_bios); 1844 1845 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1846 &info, cell); 1847 1848 while ((bio = bio_list_pop(&info.defer_bios))) 1849 thin_defer_bio(tc, bio); 1850 1851 while ((bio = bio_list_pop(&info.issue_bios))) 1852 remap_and_issue(tc, bio, block); 1853} 1854 1855static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1856 dm_block_t block, 1857 struct dm_thin_lookup_result *lookup_result, 1858 struct dm_bio_prison_cell *virt_cell) 1859{ 1860 struct dm_bio_prison_cell *data_cell; 1861 struct pool *pool = tc->pool; 1862 struct dm_cell_key key; 1863 1864 /* 1865 * If cell is already occupied, then sharing is already in the process 1866 * of being broken so we have nothing further to do here. 1867 */ 1868 build_data_key(tc->td, lookup_result->block, &key); 1869 if (bio_detain(pool, &key, bio, &data_cell)) { 1870 cell_defer_no_holder(tc, virt_cell); 1871 return; 1872 } 1873 1874 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1875 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1876 cell_defer_no_holder(tc, virt_cell); 1877 } else { 1878 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1879 1880 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1881 inc_all_io_entry(pool, bio); 1882 remap_and_issue(tc, bio, lookup_result->block); 1883 1884 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1885 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1886 } 1887} 1888 1889static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1890 struct dm_bio_prison_cell *cell) 1891{ 1892 int r; 1893 dm_block_t data_block; 1894 struct pool *pool = tc->pool; 1895 1896 /* 1897 * Remap empty bios (flushes) immediately, without provisioning. 1898 */ 1899 if (!bio->bi_iter.bi_size) { 1900 inc_all_io_entry(pool, bio); 1901 cell_defer_no_holder(tc, cell); 1902 1903 remap_and_issue(tc, bio, 0); 1904 return; 1905 } 1906 1907 /* 1908 * Fill read bios with zeroes and complete them immediately. 1909 */ 1910 if (bio_data_dir(bio) == READ) { 1911 zero_fill_bio(bio); 1912 cell_defer_no_holder(tc, cell); 1913 bio_endio(bio); 1914 return; 1915 } 1916 1917 r = alloc_data_block(tc, &data_block); 1918 switch (r) { 1919 case 0: 1920 if (tc->origin_dev) 1921 schedule_external_copy(tc, block, data_block, cell, bio); 1922 else 1923 schedule_zero(tc, block, data_block, cell, bio); 1924 break; 1925 1926 case -ENOSPC: 1927 retry_bios_on_resume(pool, cell); 1928 break; 1929 1930 default: 1931 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1932 __func__, r); 1933 cell_error(pool, cell); 1934 break; 1935 } 1936} 1937 1938static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1939{ 1940 int r; 1941 struct pool *pool = tc->pool; 1942 struct bio *bio = cell->holder; 1943 dm_block_t block = get_bio_block(tc, bio); 1944 struct dm_thin_lookup_result lookup_result; 1945 1946 if (tc->requeue_mode) { 1947 cell_requeue(pool, cell); 1948 return; 1949 } 1950 1951 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1952 switch (r) { 1953 case 0: 1954 if (lookup_result.shared) 1955 process_shared_bio(tc, bio, block, &lookup_result, cell); 1956 else { 1957 inc_all_io_entry(pool, bio); 1958 remap_and_issue(tc, bio, lookup_result.block); 1959 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1960 } 1961 break; 1962 1963 case -ENODATA: 1964 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1965 inc_all_io_entry(pool, bio); 1966 cell_defer_no_holder(tc, cell); 1967 1968 if (bio_end_sector(bio) <= tc->origin_size) 1969 remap_to_origin_and_issue(tc, bio); 1970 1971 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1972 zero_fill_bio(bio); 1973 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1974 remap_to_origin_and_issue(tc, bio); 1975 1976 } else { 1977 zero_fill_bio(bio); 1978 bio_endio(bio); 1979 } 1980 } else 1981 provision_block(tc, bio, block, cell); 1982 break; 1983 1984 default: 1985 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1986 __func__, r); 1987 cell_defer_no_holder(tc, cell); 1988 bio_io_error(bio); 1989 break; 1990 } 1991} 1992 1993static void process_bio(struct thin_c *tc, struct bio *bio) 1994{ 1995 struct pool *pool = tc->pool; 1996 dm_block_t block = get_bio_block(tc, bio); 1997 struct dm_bio_prison_cell *cell; 1998 struct dm_cell_key key; 1999 2000 /* 2001 * If cell is already occupied, then the block is already 2002 * being provisioned so we have nothing further to do here. 2003 */ 2004 build_virtual_key(tc->td, block, &key); 2005 if (bio_detain(pool, &key, bio, &cell)) 2006 return; 2007 2008 process_cell(tc, cell); 2009} 2010 2011static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 2012 struct dm_bio_prison_cell *cell) 2013{ 2014 int r; 2015 int rw = bio_data_dir(bio); 2016 dm_block_t block = get_bio_block(tc, bio); 2017 struct dm_thin_lookup_result lookup_result; 2018 2019 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 2020 switch (r) { 2021 case 0: 2022 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 2023 handle_unserviceable_bio(tc->pool, bio); 2024 if (cell) 2025 cell_defer_no_holder(tc, cell); 2026 } else { 2027 inc_all_io_entry(tc->pool, bio); 2028 remap_and_issue(tc, bio, lookup_result.block); 2029 if (cell) 2030 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 2031 } 2032 break; 2033 2034 case -ENODATA: 2035 if (cell) 2036 cell_defer_no_holder(tc, cell); 2037 if (rw != READ) { 2038 handle_unserviceable_bio(tc->pool, bio); 2039 break; 2040 } 2041 2042 if (tc->origin_dev) { 2043 inc_all_io_entry(tc->pool, bio); 2044 remap_to_origin_and_issue(tc, bio); 2045 break; 2046 } 2047 2048 zero_fill_bio(bio); 2049 bio_endio(bio); 2050 break; 2051 2052 default: 2053 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2054 __func__, r); 2055 if (cell) 2056 cell_defer_no_holder(tc, cell); 2057 bio_io_error(bio); 2058 break; 2059 } 2060} 2061 2062static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 2063{ 2064 __process_bio_read_only(tc, bio, NULL); 2065} 2066 2067static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2068{ 2069 __process_bio_read_only(tc, cell->holder, cell); 2070} 2071 2072static void process_bio_success(struct thin_c *tc, struct bio *bio) 2073{ 2074 bio_endio(bio); 2075} 2076 2077static void process_bio_fail(struct thin_c *tc, struct bio *bio) 2078{ 2079 bio_io_error(bio); 2080} 2081 2082static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2083{ 2084 cell_success(tc->pool, cell); 2085} 2086 2087static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2088{ 2089 cell_error(tc->pool, cell); 2090} 2091 2092/* 2093 * FIXME: should we also commit due to size of transaction, measured in 2094 * metadata blocks? 2095 */ 2096static int need_commit_due_to_time(struct pool *pool) 2097{ 2098 return !time_in_range(jiffies, pool->last_commit_jiffies, 2099 pool->last_commit_jiffies + COMMIT_PERIOD); 2100} 2101 2102#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2103#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2104 2105static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2106{ 2107 struct rb_node **rbp, *parent; 2108 struct dm_thin_endio_hook *pbd; 2109 sector_t bi_sector = bio->bi_iter.bi_sector; 2110 2111 rbp = &tc->sort_bio_list.rb_node; 2112 parent = NULL; 2113 while (*rbp) { 2114 parent = *rbp; 2115 pbd = thin_pbd(parent); 2116 2117 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2118 rbp = &(*rbp)->rb_left; 2119 else 2120 rbp = &(*rbp)->rb_right; 2121 } 2122 2123 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2124 rb_link_node(&pbd->rb_node, parent, rbp); 2125 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2126} 2127 2128static void __extract_sorted_bios(struct thin_c *tc) 2129{ 2130 struct rb_node *node; 2131 struct dm_thin_endio_hook *pbd; 2132 struct bio *bio; 2133 2134 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2135 pbd = thin_pbd(node); 2136 bio = thin_bio(pbd); 2137 2138 bio_list_add(&tc->deferred_bio_list, bio); 2139 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2140 } 2141 2142 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2143} 2144 2145static void __sort_thin_deferred_bios(struct thin_c *tc) 2146{ 2147 struct bio *bio; 2148 struct bio_list bios; 2149 2150 bio_list_init(&bios); 2151 bio_list_merge(&bios, &tc->deferred_bio_list); 2152 bio_list_init(&tc->deferred_bio_list); 2153 2154 /* Sort deferred_bio_list using rb-tree */ 2155 while ((bio = bio_list_pop(&bios))) 2156 __thin_bio_rb_add(tc, bio); 2157 2158 /* 2159 * Transfer the sorted bios in sort_bio_list back to 2160 * deferred_bio_list to allow lockless submission of 2161 * all bios. 2162 */ 2163 __extract_sorted_bios(tc); 2164} 2165 2166static void process_thin_deferred_bios(struct thin_c *tc) 2167{ 2168 struct pool *pool = tc->pool; 2169 struct bio *bio; 2170 struct bio_list bios; 2171 struct blk_plug plug; 2172 unsigned count = 0; 2173 2174 if (tc->requeue_mode) { 2175 error_thin_bio_list(tc, &tc->deferred_bio_list, 2176 BLK_STS_DM_REQUEUE); 2177 return; 2178 } 2179 2180 bio_list_init(&bios); 2181 2182 spin_lock_irq(&tc->lock); 2183 2184 if (bio_list_empty(&tc->deferred_bio_list)) { 2185 spin_unlock_irq(&tc->lock); 2186 return; 2187 } 2188 2189 __sort_thin_deferred_bios(tc); 2190 2191 bio_list_merge(&bios, &tc->deferred_bio_list); 2192 bio_list_init(&tc->deferred_bio_list); 2193 2194 spin_unlock_irq(&tc->lock); 2195 2196 blk_start_plug(&plug); 2197 while ((bio = bio_list_pop(&bios))) { 2198 /* 2199 * If we've got no free new_mapping structs, and processing 2200 * this bio might require one, we pause until there are some 2201 * prepared mappings to process. 2202 */ 2203 if (ensure_next_mapping(pool)) { 2204 spin_lock_irq(&tc->lock); 2205 bio_list_add(&tc->deferred_bio_list, bio); 2206 bio_list_merge(&tc->deferred_bio_list, &bios); 2207 spin_unlock_irq(&tc->lock); 2208 break; 2209 } 2210 2211 if (bio_op(bio) == REQ_OP_DISCARD) 2212 pool->process_discard(tc, bio); 2213 else 2214 pool->process_bio(tc, bio); 2215 2216 if ((count++ & 127) == 0) { 2217 throttle_work_update(&pool->throttle); 2218 dm_pool_issue_prefetches(pool->pmd); 2219 } 2220 cond_resched(); 2221 } 2222 blk_finish_plug(&plug); 2223} 2224 2225static int cmp_cells(const void *lhs, const void *rhs) 2226{ 2227 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2228 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2229 2230 BUG_ON(!lhs_cell->holder); 2231 BUG_ON(!rhs_cell->holder); 2232 2233 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2234 return -1; 2235 2236 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2237 return 1; 2238 2239 return 0; 2240} 2241 2242static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2243{ 2244 unsigned count = 0; 2245 struct dm_bio_prison_cell *cell, *tmp; 2246 2247 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2248 if (count >= CELL_SORT_ARRAY_SIZE) 2249 break; 2250 2251 pool->cell_sort_array[count++] = cell; 2252 list_del(&cell->user_list); 2253 } 2254 2255 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2256 2257 return count; 2258} 2259 2260static void process_thin_deferred_cells(struct thin_c *tc) 2261{ 2262 struct pool *pool = tc->pool; 2263 struct list_head cells; 2264 struct dm_bio_prison_cell *cell; 2265 unsigned i, j, count; 2266 2267 INIT_LIST_HEAD(&cells); 2268 2269 spin_lock_irq(&tc->lock); 2270 list_splice_init(&tc->deferred_cells, &cells); 2271 spin_unlock_irq(&tc->lock); 2272 2273 if (list_empty(&cells)) 2274 return; 2275 2276 do { 2277 count = sort_cells(tc->pool, &cells); 2278 2279 for (i = 0; i < count; i++) { 2280 cell = pool->cell_sort_array[i]; 2281 BUG_ON(!cell->holder); 2282 2283 /* 2284 * If we've got no free new_mapping structs, and processing 2285 * this bio might require one, we pause until there are some 2286 * prepared mappings to process. 2287 */ 2288 if (ensure_next_mapping(pool)) { 2289 for (j = i; j < count; j++) 2290 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2291 2292 spin_lock_irq(&tc->lock); 2293 list_splice(&cells, &tc->deferred_cells); 2294 spin_unlock_irq(&tc->lock); 2295 return; 2296 } 2297 2298 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2299 pool->process_discard_cell(tc, cell); 2300 else 2301 pool->process_cell(tc, cell); 2302 } 2303 cond_resched(); 2304 } while (!list_empty(&cells)); 2305} 2306 2307static void thin_get(struct thin_c *tc); 2308static void thin_put(struct thin_c *tc); 2309 2310/* 2311 * We can't hold rcu_read_lock() around code that can block. So we 2312 * find a thin with the rcu lock held; bump a refcount; then drop 2313 * the lock. 2314 */ 2315static struct thin_c *get_first_thin(struct pool *pool) 2316{ 2317 struct thin_c *tc = NULL; 2318 2319 rcu_read_lock(); 2320 if (!list_empty(&pool->active_thins)) { 2321 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2322 thin_get(tc); 2323 } 2324 rcu_read_unlock(); 2325 2326 return tc; 2327} 2328 2329static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2330{ 2331 struct thin_c *old_tc = tc; 2332 2333 rcu_read_lock(); 2334 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2335 thin_get(tc); 2336 thin_put(old_tc); 2337 rcu_read_unlock(); 2338 return tc; 2339 } 2340 thin_put(old_tc); 2341 rcu_read_unlock(); 2342 2343 return NULL; 2344} 2345 2346static void process_deferred_bios(struct pool *pool) 2347{ 2348 struct bio *bio; 2349 struct bio_list bios, bio_completions; 2350 struct thin_c *tc; 2351 2352 tc = get_first_thin(pool); 2353 while (tc) { 2354 process_thin_deferred_cells(tc); 2355 process_thin_deferred_bios(tc); 2356 tc = get_next_thin(pool, tc); 2357 } 2358 2359 /* 2360 * If there are any deferred flush bios, we must commit the metadata 2361 * before issuing them or signaling their completion. 2362 */ 2363 bio_list_init(&bios); 2364 bio_list_init(&bio_completions); 2365 2366 spin_lock_irq(&pool->lock); 2367 bio_list_merge(&bios, &pool->deferred_flush_bios); 2368 bio_list_init(&pool->deferred_flush_bios); 2369 2370 bio_list_merge(&bio_completions, &pool->deferred_flush_completions); 2371 bio_list_init(&pool->deferred_flush_completions); 2372 spin_unlock_irq(&pool->lock); 2373 2374 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) && 2375 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2376 return; 2377 2378 if (commit(pool)) { 2379 bio_list_merge(&bios, &bio_completions); 2380 2381 while ((bio = bio_list_pop(&bios))) 2382 bio_io_error(bio); 2383 return; 2384 } 2385 pool->last_commit_jiffies = jiffies; 2386 2387 while ((bio = bio_list_pop(&bio_completions))) 2388 bio_endio(bio); 2389 2390 while ((bio = bio_list_pop(&bios))) { 2391 /* 2392 * The data device was flushed as part of metadata commit, 2393 * so complete redundant flushes immediately. 2394 */ 2395 if (bio->bi_opf & REQ_PREFLUSH) 2396 bio_endio(bio); 2397 else 2398 submit_bio_noacct(bio); 2399 } 2400} 2401 2402static void do_worker(struct work_struct *ws) 2403{ 2404 struct pool *pool = container_of(ws, struct pool, worker); 2405 2406 throttle_work_start(&pool->throttle); 2407 dm_pool_issue_prefetches(pool->pmd); 2408 throttle_work_update(&pool->throttle); 2409 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2410 throttle_work_update(&pool->throttle); 2411 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2412 throttle_work_update(&pool->throttle); 2413 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2414 throttle_work_update(&pool->throttle); 2415 process_deferred_bios(pool); 2416 throttle_work_complete(&pool->throttle); 2417} 2418 2419/* 2420 * We want to commit periodically so that not too much 2421 * unwritten data builds up. 2422 */ 2423static void do_waker(struct work_struct *ws) 2424{ 2425 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2426 wake_worker(pool); 2427 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2428} 2429 2430/* 2431 * We're holding onto IO to allow userland time to react. After the 2432 * timeout either the pool will have been resized (and thus back in 2433 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2434 */ 2435static void do_no_space_timeout(struct work_struct *ws) 2436{ 2437 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2438 no_space_timeout); 2439 2440 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2441 pool->pf.error_if_no_space = true; 2442 notify_of_pool_mode_change(pool); 2443 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2444 } 2445} 2446 2447/*----------------------------------------------------------------*/ 2448 2449struct pool_work { 2450 struct work_struct worker; 2451 struct completion complete; 2452}; 2453 2454static struct pool_work *to_pool_work(struct work_struct *ws) 2455{ 2456 return container_of(ws, struct pool_work, worker); 2457} 2458 2459static void pool_work_complete(struct pool_work *pw) 2460{ 2461 complete(&pw->complete); 2462} 2463 2464static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2465 void (*fn)(struct work_struct *)) 2466{ 2467 INIT_WORK_ONSTACK(&pw->worker, fn); 2468 init_completion(&pw->complete); 2469 queue_work(pool->wq, &pw->worker); 2470 wait_for_completion(&pw->complete); 2471} 2472 2473/*----------------------------------------------------------------*/ 2474 2475struct noflush_work { 2476 struct pool_work pw; 2477 struct thin_c *tc; 2478}; 2479 2480static struct noflush_work *to_noflush(struct work_struct *ws) 2481{ 2482 return container_of(to_pool_work(ws), struct noflush_work, pw); 2483} 2484 2485static void do_noflush_start(struct work_struct *ws) 2486{ 2487 struct noflush_work *w = to_noflush(ws); 2488 w->tc->requeue_mode = true; 2489 requeue_io(w->tc); 2490 pool_work_complete(&w->pw); 2491} 2492 2493static void do_noflush_stop(struct work_struct *ws) 2494{ 2495 struct noflush_work *w = to_noflush(ws); 2496 w->tc->requeue_mode = false; 2497 pool_work_complete(&w->pw); 2498} 2499 2500static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2501{ 2502 struct noflush_work w; 2503 2504 w.tc = tc; 2505 pool_work_wait(&w.pw, tc->pool, fn); 2506} 2507 2508/*----------------------------------------------------------------*/ 2509 2510static bool passdown_enabled(struct pool_c *pt) 2511{ 2512 return pt->adjusted_pf.discard_passdown; 2513} 2514 2515static void set_discard_callbacks(struct pool *pool) 2516{ 2517 struct pool_c *pt = pool->ti->private; 2518 2519 if (passdown_enabled(pt)) { 2520 pool->process_discard_cell = process_discard_cell_passdown; 2521 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2522 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2523 } else { 2524 pool->process_discard_cell = process_discard_cell_no_passdown; 2525 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2526 } 2527} 2528 2529static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2530{ 2531 struct pool_c *pt = pool->ti->private; 2532 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2533 enum pool_mode old_mode = get_pool_mode(pool); 2534 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2535 2536 /* 2537 * Never allow the pool to transition to PM_WRITE mode if user 2538 * intervention is required to verify metadata and data consistency. 2539 */ 2540 if (new_mode == PM_WRITE && needs_check) { 2541 DMERR("%s: unable to switch pool to write mode until repaired.", 2542 dm_device_name(pool->pool_md)); 2543 if (old_mode != new_mode) 2544 new_mode = old_mode; 2545 else 2546 new_mode = PM_READ_ONLY; 2547 } 2548 /* 2549 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2550 * not going to recover without a thin_repair. So we never let the 2551 * pool move out of the old mode. 2552 */ 2553 if (old_mode == PM_FAIL) 2554 new_mode = old_mode; 2555 2556 switch (new_mode) { 2557 case PM_FAIL: 2558 dm_pool_metadata_read_only(pool->pmd); 2559 pool->process_bio = process_bio_fail; 2560 pool->process_discard = process_bio_fail; 2561 pool->process_cell = process_cell_fail; 2562 pool->process_discard_cell = process_cell_fail; 2563 pool->process_prepared_mapping = process_prepared_mapping_fail; 2564 pool->process_prepared_discard = process_prepared_discard_fail; 2565 2566 error_retry_list(pool); 2567 break; 2568 2569 case PM_OUT_OF_METADATA_SPACE: 2570 case PM_READ_ONLY: 2571 dm_pool_metadata_read_only(pool->pmd); 2572 pool->process_bio = process_bio_read_only; 2573 pool->process_discard = process_bio_success; 2574 pool->process_cell = process_cell_read_only; 2575 pool->process_discard_cell = process_cell_success; 2576 pool->process_prepared_mapping = process_prepared_mapping_fail; 2577 pool->process_prepared_discard = process_prepared_discard_success; 2578 2579 error_retry_list(pool); 2580 break; 2581 2582 case PM_OUT_OF_DATA_SPACE: 2583 /* 2584 * Ideally we'd never hit this state; the low water mark 2585 * would trigger userland to extend the pool before we 2586 * completely run out of data space. However, many small 2587 * IOs to unprovisioned space can consume data space at an 2588 * alarming rate. Adjust your low water mark if you're 2589 * frequently seeing this mode. 2590 */ 2591 pool->out_of_data_space = true; 2592 pool->process_bio = process_bio_read_only; 2593 pool->process_discard = process_discard_bio; 2594 pool->process_cell = process_cell_read_only; 2595 pool->process_prepared_mapping = process_prepared_mapping; 2596 set_discard_callbacks(pool); 2597 2598 if (!pool->pf.error_if_no_space && no_space_timeout) 2599 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2600 break; 2601 2602 case PM_WRITE: 2603 if (old_mode == PM_OUT_OF_DATA_SPACE) 2604 cancel_delayed_work_sync(&pool->no_space_timeout); 2605 pool->out_of_data_space = false; 2606 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2607 dm_pool_metadata_read_write(pool->pmd); 2608 pool->process_bio = process_bio; 2609 pool->process_discard = process_discard_bio; 2610 pool->process_cell = process_cell; 2611 pool->process_prepared_mapping = process_prepared_mapping; 2612 set_discard_callbacks(pool); 2613 break; 2614 } 2615 2616 pool->pf.mode = new_mode; 2617 /* 2618 * The pool mode may have changed, sync it so bind_control_target() 2619 * doesn't cause an unexpected mode transition on resume. 2620 */ 2621 pt->adjusted_pf.mode = new_mode; 2622 2623 if (old_mode != new_mode) 2624 notify_of_pool_mode_change(pool); 2625} 2626 2627static void abort_transaction(struct pool *pool) 2628{ 2629 const char *dev_name = dm_device_name(pool->pool_md); 2630 2631 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2632 if (dm_pool_abort_metadata(pool->pmd)) { 2633 DMERR("%s: failed to abort metadata transaction", dev_name); 2634 set_pool_mode(pool, PM_FAIL); 2635 } 2636 2637 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2638 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2639 set_pool_mode(pool, PM_FAIL); 2640 } 2641} 2642 2643static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2644{ 2645 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2646 dm_device_name(pool->pool_md), op, r); 2647 2648 abort_transaction(pool); 2649 set_pool_mode(pool, PM_READ_ONLY); 2650} 2651 2652/*----------------------------------------------------------------*/ 2653 2654/* 2655 * Mapping functions. 2656 */ 2657 2658/* 2659 * Called only while mapping a thin bio to hand it over to the workqueue. 2660 */ 2661static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2662{ 2663 struct pool *pool = tc->pool; 2664 2665 spin_lock_irq(&tc->lock); 2666 bio_list_add(&tc->deferred_bio_list, bio); 2667 spin_unlock_irq(&tc->lock); 2668 2669 wake_worker(pool); 2670} 2671 2672static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2673{ 2674 struct pool *pool = tc->pool; 2675 2676 throttle_lock(&pool->throttle); 2677 thin_defer_bio(tc, bio); 2678 throttle_unlock(&pool->throttle); 2679} 2680 2681static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2682{ 2683 struct pool *pool = tc->pool; 2684 2685 throttle_lock(&pool->throttle); 2686 spin_lock_irq(&tc->lock); 2687 list_add_tail(&cell->user_list, &tc->deferred_cells); 2688 spin_unlock_irq(&tc->lock); 2689 throttle_unlock(&pool->throttle); 2690 2691 wake_worker(pool); 2692} 2693 2694static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2695{ 2696 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2697 2698 h->tc = tc; 2699 h->shared_read_entry = NULL; 2700 h->all_io_entry = NULL; 2701 h->overwrite_mapping = NULL; 2702 h->cell = NULL; 2703} 2704 2705/* 2706 * Non-blocking function called from the thin target's map function. 2707 */ 2708static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2709{ 2710 int r; 2711 struct thin_c *tc = ti->private; 2712 dm_block_t block = get_bio_block(tc, bio); 2713 struct dm_thin_device *td = tc->td; 2714 struct dm_thin_lookup_result result; 2715 struct dm_bio_prison_cell *virt_cell, *data_cell; 2716 struct dm_cell_key key; 2717 2718 thin_hook_bio(tc, bio); 2719 2720 if (tc->requeue_mode) { 2721 bio->bi_status = BLK_STS_DM_REQUEUE; 2722 bio_endio(bio); 2723 return DM_MAPIO_SUBMITTED; 2724 } 2725 2726 if (get_pool_mode(tc->pool) == PM_FAIL) { 2727 bio_io_error(bio); 2728 return DM_MAPIO_SUBMITTED; 2729 } 2730 2731 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2732 thin_defer_bio_with_throttle(tc, bio); 2733 return DM_MAPIO_SUBMITTED; 2734 } 2735 2736 /* 2737 * We must hold the virtual cell before doing the lookup, otherwise 2738 * there's a race with discard. 2739 */ 2740 build_virtual_key(tc->td, block, &key); 2741 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2742 return DM_MAPIO_SUBMITTED; 2743 2744 r = dm_thin_find_block(td, block, 0, &result); 2745 2746 /* 2747 * Note that we defer readahead too. 2748 */ 2749 switch (r) { 2750 case 0: 2751 if (unlikely(result.shared)) { 2752 /* 2753 * We have a race condition here between the 2754 * result.shared value returned by the lookup and 2755 * snapshot creation, which may cause new 2756 * sharing. 2757 * 2758 * To avoid this always quiesce the origin before 2759 * taking the snap. You want to do this anyway to 2760 * ensure a consistent application view 2761 * (i.e. lockfs). 2762 * 2763 * More distant ancestors are irrelevant. The 2764 * shared flag will be set in their case. 2765 */ 2766 thin_defer_cell(tc, virt_cell); 2767 return DM_MAPIO_SUBMITTED; 2768 } 2769 2770 build_data_key(tc->td, result.block, &key); 2771 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2772 cell_defer_no_holder(tc, virt_cell); 2773 return DM_MAPIO_SUBMITTED; 2774 } 2775 2776 inc_all_io_entry(tc->pool, bio); 2777 cell_defer_no_holder(tc, data_cell); 2778 cell_defer_no_holder(tc, virt_cell); 2779 2780 remap(tc, bio, result.block); 2781 return DM_MAPIO_REMAPPED; 2782 2783 case -ENODATA: 2784 case -EWOULDBLOCK: 2785 thin_defer_cell(tc, virt_cell); 2786 return DM_MAPIO_SUBMITTED; 2787 2788 default: 2789 /* 2790 * Must always call bio_io_error on failure. 2791 * dm_thin_find_block can fail with -EINVAL if the 2792 * pool is switched to fail-io mode. 2793 */ 2794 bio_io_error(bio); 2795 cell_defer_no_holder(tc, virt_cell); 2796 return DM_MAPIO_SUBMITTED; 2797 } 2798} 2799 2800static void requeue_bios(struct pool *pool) 2801{ 2802 struct thin_c *tc; 2803 2804 rcu_read_lock(); 2805 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2806 spin_lock_irq(&tc->lock); 2807 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2808 bio_list_init(&tc->retry_on_resume_list); 2809 spin_unlock_irq(&tc->lock); 2810 } 2811 rcu_read_unlock(); 2812} 2813 2814/*---------------------------------------------------------------- 2815 * Binding of control targets to a pool object 2816 *--------------------------------------------------------------*/ 2817static bool data_dev_supports_discard(struct pool_c *pt) 2818{ 2819 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2820 2821 return q && blk_queue_discard(q); 2822} 2823 2824static bool is_factor(sector_t block_size, uint32_t n) 2825{ 2826 return !sector_div(block_size, n); 2827} 2828 2829/* 2830 * If discard_passdown was enabled verify that the data device 2831 * supports discards. Disable discard_passdown if not. 2832 */ 2833static void disable_passdown_if_not_supported(struct pool_c *pt) 2834{ 2835 struct pool *pool = pt->pool; 2836 struct block_device *data_bdev = pt->data_dev->bdev; 2837 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2838 const char *reason = NULL; 2839 char buf[BDEVNAME_SIZE]; 2840 2841 if (!pt->adjusted_pf.discard_passdown) 2842 return; 2843 2844 if (!data_dev_supports_discard(pt)) 2845 reason = "discard unsupported"; 2846 2847 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2848 reason = "max discard sectors smaller than a block"; 2849 2850 if (reason) { 2851 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2852 pt->adjusted_pf.discard_passdown = false; 2853 } 2854} 2855 2856static int bind_control_target(struct pool *pool, struct dm_target *ti) 2857{ 2858 struct pool_c *pt = ti->private; 2859 2860 /* 2861 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2862 */ 2863 enum pool_mode old_mode = get_pool_mode(pool); 2864 enum pool_mode new_mode = pt->adjusted_pf.mode; 2865 2866 /* 2867 * Don't change the pool's mode until set_pool_mode() below. 2868 * Otherwise the pool's process_* function pointers may 2869 * not match the desired pool mode. 2870 */ 2871 pt->adjusted_pf.mode = old_mode; 2872 2873 pool->ti = ti; 2874 pool->pf = pt->adjusted_pf; 2875 pool->low_water_blocks = pt->low_water_blocks; 2876 2877 set_pool_mode(pool, new_mode); 2878 2879 return 0; 2880} 2881 2882static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2883{ 2884 if (pool->ti == ti) 2885 pool->ti = NULL; 2886} 2887 2888/*---------------------------------------------------------------- 2889 * Pool creation 2890 *--------------------------------------------------------------*/ 2891/* Initialize pool features. */ 2892static void pool_features_init(struct pool_features *pf) 2893{ 2894 pf->mode = PM_WRITE; 2895 pf->zero_new_blocks = true; 2896 pf->discard_enabled = true; 2897 pf->discard_passdown = true; 2898 pf->error_if_no_space = false; 2899} 2900 2901static void __pool_destroy(struct pool *pool) 2902{ 2903 __pool_table_remove(pool); 2904 2905 vfree(pool->cell_sort_array); 2906 if (dm_pool_metadata_close(pool->pmd) < 0) 2907 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2908 2909 dm_bio_prison_destroy(pool->prison); 2910 dm_kcopyd_client_destroy(pool->copier); 2911 2912 cancel_delayed_work_sync(&pool->waker); 2913 cancel_delayed_work_sync(&pool->no_space_timeout); 2914 if (pool->wq) 2915 destroy_workqueue(pool->wq); 2916 2917 if (pool->next_mapping) 2918 mempool_free(pool->next_mapping, &pool->mapping_pool); 2919 mempool_exit(&pool->mapping_pool); 2920 bio_uninit(&pool->flush_bio); 2921 dm_deferred_set_destroy(pool->shared_read_ds); 2922 dm_deferred_set_destroy(pool->all_io_ds); 2923 kfree(pool); 2924} 2925 2926static struct kmem_cache *_new_mapping_cache; 2927 2928static struct pool *pool_create(struct mapped_device *pool_md, 2929 struct block_device *metadata_dev, 2930 struct block_device *data_dev, 2931 unsigned long block_size, 2932 int read_only, char **error) 2933{ 2934 int r; 2935 void *err_p; 2936 struct pool *pool; 2937 struct dm_pool_metadata *pmd; 2938 bool format_device = read_only ? false : true; 2939 2940 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2941 if (IS_ERR(pmd)) { 2942 *error = "Error creating metadata object"; 2943 return (struct pool *)pmd; 2944 } 2945 2946 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2947 if (!pool) { 2948 *error = "Error allocating memory for pool"; 2949 err_p = ERR_PTR(-ENOMEM); 2950 goto bad_pool; 2951 } 2952 2953 pool->pmd = pmd; 2954 pool->sectors_per_block = block_size; 2955 if (block_size & (block_size - 1)) 2956 pool->sectors_per_block_shift = -1; 2957 else 2958 pool->sectors_per_block_shift = __ffs(block_size); 2959 pool->low_water_blocks = 0; 2960 pool_features_init(&pool->pf); 2961 pool->prison = dm_bio_prison_create(); 2962 if (!pool->prison) { 2963 *error = "Error creating pool's bio prison"; 2964 err_p = ERR_PTR(-ENOMEM); 2965 goto bad_prison; 2966 } 2967 2968 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2969 if (IS_ERR(pool->copier)) { 2970 r = PTR_ERR(pool->copier); 2971 *error = "Error creating pool's kcopyd client"; 2972 err_p = ERR_PTR(r); 2973 goto bad_kcopyd_client; 2974 } 2975 2976 /* 2977 * Create singlethreaded workqueue that will service all devices 2978 * that use this metadata. 2979 */ 2980 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2981 if (!pool->wq) { 2982 *error = "Error creating pool's workqueue"; 2983 err_p = ERR_PTR(-ENOMEM); 2984 goto bad_wq; 2985 } 2986 2987 throttle_init(&pool->throttle); 2988 INIT_WORK(&pool->worker, do_worker); 2989 INIT_DELAYED_WORK(&pool->waker, do_waker); 2990 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2991 spin_lock_init(&pool->lock); 2992 bio_list_init(&pool->deferred_flush_bios); 2993 bio_list_init(&pool->deferred_flush_completions); 2994 INIT_LIST_HEAD(&pool->prepared_mappings); 2995 INIT_LIST_HEAD(&pool->prepared_discards); 2996 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 2997 INIT_LIST_HEAD(&pool->active_thins); 2998 pool->low_water_triggered = false; 2999 pool->suspended = true; 3000 pool->out_of_data_space = false; 3001 bio_init(&pool->flush_bio, NULL, 0); 3002 3003 pool->shared_read_ds = dm_deferred_set_create(); 3004 if (!pool->shared_read_ds) { 3005 *error = "Error creating pool's shared read deferred set"; 3006 err_p = ERR_PTR(-ENOMEM); 3007 goto bad_shared_read_ds; 3008 } 3009 3010 pool->all_io_ds = dm_deferred_set_create(); 3011 if (!pool->all_io_ds) { 3012 *error = "Error creating pool's all io deferred set"; 3013 err_p = ERR_PTR(-ENOMEM); 3014 goto bad_all_io_ds; 3015 } 3016 3017 pool->next_mapping = NULL; 3018 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 3019 _new_mapping_cache); 3020 if (r) { 3021 *error = "Error creating pool's mapping mempool"; 3022 err_p = ERR_PTR(r); 3023 goto bad_mapping_pool; 3024 } 3025 3026 pool->cell_sort_array = 3027 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 3028 sizeof(*pool->cell_sort_array))); 3029 if (!pool->cell_sort_array) { 3030 *error = "Error allocating cell sort array"; 3031 err_p = ERR_PTR(-ENOMEM); 3032 goto bad_sort_array; 3033 } 3034 3035 pool->ref_count = 1; 3036 pool->last_commit_jiffies = jiffies; 3037 pool->pool_md = pool_md; 3038 pool->md_dev = metadata_dev; 3039 pool->data_dev = data_dev; 3040 __pool_table_insert(pool); 3041 3042 return pool; 3043 3044bad_sort_array: 3045 mempool_exit(&pool->mapping_pool); 3046bad_mapping_pool: 3047 dm_deferred_set_destroy(pool->all_io_ds); 3048bad_all_io_ds: 3049 dm_deferred_set_destroy(pool->shared_read_ds); 3050bad_shared_read_ds: 3051 destroy_workqueue(pool->wq); 3052bad_wq: 3053 dm_kcopyd_client_destroy(pool->copier); 3054bad_kcopyd_client: 3055 dm_bio_prison_destroy(pool->prison); 3056bad_prison: 3057 kfree(pool); 3058bad_pool: 3059 if (dm_pool_metadata_close(pmd)) 3060 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 3061 3062 return err_p; 3063} 3064 3065static void __pool_inc(struct pool *pool) 3066{ 3067 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3068 pool->ref_count++; 3069} 3070 3071static void __pool_dec(struct pool *pool) 3072{ 3073 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3074 BUG_ON(!pool->ref_count); 3075 if (!--pool->ref_count) 3076 __pool_destroy(pool); 3077} 3078 3079static struct pool *__pool_find(struct mapped_device *pool_md, 3080 struct block_device *metadata_dev, 3081 struct block_device *data_dev, 3082 unsigned long block_size, int read_only, 3083 char **error, int *created) 3084{ 3085 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3086 3087 if (pool) { 3088 if (pool->pool_md != pool_md) { 3089 *error = "metadata device already in use by a pool"; 3090 return ERR_PTR(-EBUSY); 3091 } 3092 if (pool->data_dev != data_dev) { 3093 *error = "data device already in use by a pool"; 3094 return ERR_PTR(-EBUSY); 3095 } 3096 __pool_inc(pool); 3097 3098 } else { 3099 pool = __pool_table_lookup(pool_md); 3100 if (pool) { 3101 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) { 3102 *error = "different pool cannot replace a pool"; 3103 return ERR_PTR(-EINVAL); 3104 } 3105 __pool_inc(pool); 3106 3107 } else { 3108 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error); 3109 *created = 1; 3110 } 3111 } 3112 3113 return pool; 3114} 3115 3116/*---------------------------------------------------------------- 3117 * Pool target methods 3118 *--------------------------------------------------------------*/ 3119static void pool_dtr(struct dm_target *ti) 3120{ 3121 struct pool_c *pt = ti->private; 3122 3123 mutex_lock(&dm_thin_pool_table.mutex); 3124 3125 unbind_control_target(pt->pool, ti); 3126 __pool_dec(pt->pool); 3127 dm_put_device(ti, pt->metadata_dev); 3128 dm_put_device(ti, pt->data_dev); 3129 kfree(pt); 3130 3131 mutex_unlock(&dm_thin_pool_table.mutex); 3132} 3133 3134static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3135 struct dm_target *ti) 3136{ 3137 int r; 3138 unsigned argc; 3139 const char *arg_name; 3140 3141 static const struct dm_arg _args[] = { 3142 {0, 4, "Invalid number of pool feature arguments"}, 3143 }; 3144 3145 /* 3146 * No feature arguments supplied. 3147 */ 3148 if (!as->argc) 3149 return 0; 3150 3151 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3152 if (r) 3153 return -EINVAL; 3154 3155 while (argc && !r) { 3156 arg_name = dm_shift_arg(as); 3157 argc--; 3158 3159 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3160 pf->zero_new_blocks = false; 3161 3162 else if (!strcasecmp(arg_name, "ignore_discard")) 3163 pf->discard_enabled = false; 3164 3165 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3166 pf->discard_passdown = false; 3167 3168 else if (!strcasecmp(arg_name, "read_only")) 3169 pf->mode = PM_READ_ONLY; 3170 3171 else if (!strcasecmp(arg_name, "error_if_no_space")) 3172 pf->error_if_no_space = true; 3173 3174 else { 3175 ti->error = "Unrecognised pool feature requested"; 3176 r = -EINVAL; 3177 break; 3178 } 3179 } 3180 3181 return r; 3182} 3183 3184static void metadata_low_callback(void *context) 3185{ 3186 struct pool *pool = context; 3187 3188 DMWARN("%s: reached low water mark for metadata device: sending event.", 3189 dm_device_name(pool->pool_md)); 3190 3191 dm_table_event(pool->ti->table); 3192} 3193 3194/* 3195 * We need to flush the data device **before** committing the metadata. 3196 * 3197 * This ensures that the data blocks of any newly inserted mappings are 3198 * properly written to non-volatile storage and won't be lost in case of a 3199 * crash. 3200 * 3201 * Failure to do so can result in data corruption in the case of internal or 3202 * external snapshots and in the case of newly provisioned blocks, when block 3203 * zeroing is enabled. 3204 */ 3205static int metadata_pre_commit_callback(void *context) 3206{ 3207 struct pool *pool = context; 3208 struct bio *flush_bio = &pool->flush_bio; 3209 3210 bio_reset(flush_bio); 3211 bio_set_dev(flush_bio, pool->data_dev); 3212 flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 3213 3214 return submit_bio_wait(flush_bio); 3215} 3216 3217static sector_t get_dev_size(struct block_device *bdev) 3218{ 3219 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 3220} 3221 3222static void warn_if_metadata_device_too_big(struct block_device *bdev) 3223{ 3224 sector_t metadata_dev_size = get_dev_size(bdev); 3225 char buffer[BDEVNAME_SIZE]; 3226 3227 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3228 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3229 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3230} 3231 3232static sector_t get_metadata_dev_size(struct block_device *bdev) 3233{ 3234 sector_t metadata_dev_size = get_dev_size(bdev); 3235 3236 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3237 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3238 3239 return metadata_dev_size; 3240} 3241 3242static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3243{ 3244 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3245 3246 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3247 3248 return metadata_dev_size; 3249} 3250 3251/* 3252 * When a metadata threshold is crossed a dm event is triggered, and 3253 * userland should respond by growing the metadata device. We could let 3254 * userland set the threshold, like we do with the data threshold, but I'm 3255 * not sure they know enough to do this well. 3256 */ 3257static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3258{ 3259 /* 3260 * 4M is ample for all ops with the possible exception of thin 3261 * device deletion which is harmless if it fails (just retry the 3262 * delete after you've grown the device). 3263 */ 3264 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3265 return min((dm_block_t)1024ULL /* 4M */, quarter); 3266} 3267 3268/* 3269 * thin-pool <metadata dev> <data dev> 3270 * <data block size (sectors)> 3271 * <low water mark (blocks)> 3272 * [<#feature args> [<arg>]*] 3273 * 3274 * Optional feature arguments are: 3275 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3276 * ignore_discard: disable discard 3277 * no_discard_passdown: don't pass discards down to the data device 3278 * read_only: Don't allow any changes to be made to the pool metadata. 3279 * error_if_no_space: error IOs, instead of queueing, if no space. 3280 */ 3281static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3282{ 3283 int r, pool_created = 0; 3284 struct pool_c *pt; 3285 struct pool *pool; 3286 struct pool_features pf; 3287 struct dm_arg_set as; 3288 struct dm_dev *data_dev; 3289 unsigned long block_size; 3290 dm_block_t low_water_blocks; 3291 struct dm_dev *metadata_dev; 3292 fmode_t metadata_mode; 3293 3294 /* 3295 * FIXME Remove validation from scope of lock. 3296 */ 3297 mutex_lock(&dm_thin_pool_table.mutex); 3298 3299 if (argc < 4) { 3300 ti->error = "Invalid argument count"; 3301 r = -EINVAL; 3302 goto out_unlock; 3303 } 3304 3305 as.argc = argc; 3306 as.argv = argv; 3307 3308 /* make sure metadata and data are different devices */ 3309 if (!strcmp(argv[0], argv[1])) { 3310 ti->error = "Error setting metadata or data device"; 3311 r = -EINVAL; 3312 goto out_unlock; 3313 } 3314 3315 /* 3316 * Set default pool features. 3317 */ 3318 pool_features_init(&pf); 3319 3320 dm_consume_args(&as, 4); 3321 r = parse_pool_features(&as, &pf, ti); 3322 if (r) 3323 goto out_unlock; 3324 3325 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3326 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3327 if (r) { 3328 ti->error = "Error opening metadata block device"; 3329 goto out_unlock; 3330 } 3331 warn_if_metadata_device_too_big(metadata_dev->bdev); 3332 3333 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3334 if (r) { 3335 ti->error = "Error getting data device"; 3336 goto out_metadata; 3337 } 3338 3339 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3340 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3341 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3342 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3343 ti->error = "Invalid block size"; 3344 r = -EINVAL; 3345 goto out; 3346 } 3347 3348 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3349 ti->error = "Invalid low water mark"; 3350 r = -EINVAL; 3351 goto out; 3352 } 3353 3354 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3355 if (!pt) { 3356 r = -ENOMEM; 3357 goto out; 3358 } 3359 3360 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev, 3361 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3362 if (IS_ERR(pool)) { 3363 r = PTR_ERR(pool); 3364 goto out_free_pt; 3365 } 3366 3367 /* 3368 * 'pool_created' reflects whether this is the first table load. 3369 * Top level discard support is not allowed to be changed after 3370 * initial load. This would require a pool reload to trigger thin 3371 * device changes. 3372 */ 3373 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3374 ti->error = "Discard support cannot be disabled once enabled"; 3375 r = -EINVAL; 3376 goto out_flags_changed; 3377 } 3378 3379 pt->pool = pool; 3380 pt->ti = ti; 3381 pt->metadata_dev = metadata_dev; 3382 pt->data_dev = data_dev; 3383 pt->low_water_blocks = low_water_blocks; 3384 pt->adjusted_pf = pt->requested_pf = pf; 3385 ti->num_flush_bios = 1; 3386 ti->limit_swap_bios = true; 3387 3388 /* 3389 * Only need to enable discards if the pool should pass 3390 * them down to the data device. The thin device's discard 3391 * processing will cause mappings to be removed from the btree. 3392 */ 3393 if (pf.discard_enabled && pf.discard_passdown) { 3394 ti->num_discard_bios = 1; 3395 3396 /* 3397 * Setting 'discards_supported' circumvents the normal 3398 * stacking of discard limits (this keeps the pool and 3399 * thin devices' discard limits consistent). 3400 */ 3401 ti->discards_supported = true; 3402 } 3403 ti->private = pt; 3404 3405 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3406 calc_metadata_threshold(pt), 3407 metadata_low_callback, 3408 pool); 3409 if (r) { 3410 ti->error = "Error registering metadata threshold"; 3411 goto out_flags_changed; 3412 } 3413 3414 dm_pool_register_pre_commit_callback(pool->pmd, 3415 metadata_pre_commit_callback, pool); 3416 3417 mutex_unlock(&dm_thin_pool_table.mutex); 3418 3419 return 0; 3420 3421out_flags_changed: 3422 __pool_dec(pool); 3423out_free_pt: 3424 kfree(pt); 3425out: 3426 dm_put_device(ti, data_dev); 3427out_metadata: 3428 dm_put_device(ti, metadata_dev); 3429out_unlock: 3430 mutex_unlock(&dm_thin_pool_table.mutex); 3431 3432 return r; 3433} 3434 3435static int pool_map(struct dm_target *ti, struct bio *bio) 3436{ 3437 int r; 3438 struct pool_c *pt = ti->private; 3439 struct pool *pool = pt->pool; 3440 3441 /* 3442 * As this is a singleton target, ti->begin is always zero. 3443 */ 3444 spin_lock_irq(&pool->lock); 3445 bio_set_dev(bio, pt->data_dev->bdev); 3446 r = DM_MAPIO_REMAPPED; 3447 spin_unlock_irq(&pool->lock); 3448 3449 return r; 3450} 3451 3452static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3453{ 3454 int r; 3455 struct pool_c *pt = ti->private; 3456 struct pool *pool = pt->pool; 3457 sector_t data_size = ti->len; 3458 dm_block_t sb_data_size; 3459 3460 *need_commit = false; 3461 3462 (void) sector_div(data_size, pool->sectors_per_block); 3463 3464 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3465 if (r) { 3466 DMERR("%s: failed to retrieve data device size", 3467 dm_device_name(pool->pool_md)); 3468 return r; 3469 } 3470 3471 if (data_size < sb_data_size) { 3472 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3473 dm_device_name(pool->pool_md), 3474 (unsigned long long)data_size, sb_data_size); 3475 return -EINVAL; 3476 3477 } else if (data_size > sb_data_size) { 3478 if (dm_pool_metadata_needs_check(pool->pmd)) { 3479 DMERR("%s: unable to grow the data device until repaired.", 3480 dm_device_name(pool->pool_md)); 3481 return 0; 3482 } 3483 3484 if (sb_data_size) 3485 DMINFO("%s: growing the data device from %llu to %llu blocks", 3486 dm_device_name(pool->pool_md), 3487 sb_data_size, (unsigned long long)data_size); 3488 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3489 if (r) { 3490 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3491 return r; 3492 } 3493 3494 *need_commit = true; 3495 } 3496 3497 return 0; 3498} 3499 3500static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3501{ 3502 int r; 3503 struct pool_c *pt = ti->private; 3504 struct pool *pool = pt->pool; 3505 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3506 3507 *need_commit = false; 3508 3509 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3510 3511 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3512 if (r) { 3513 DMERR("%s: failed to retrieve metadata device size", 3514 dm_device_name(pool->pool_md)); 3515 return r; 3516 } 3517 3518 if (metadata_dev_size < sb_metadata_dev_size) { 3519 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3520 dm_device_name(pool->pool_md), 3521 metadata_dev_size, sb_metadata_dev_size); 3522 return -EINVAL; 3523 3524 } else if (metadata_dev_size > sb_metadata_dev_size) { 3525 if (dm_pool_metadata_needs_check(pool->pmd)) { 3526 DMERR("%s: unable to grow the metadata device until repaired.", 3527 dm_device_name(pool->pool_md)); 3528 return 0; 3529 } 3530 3531 warn_if_metadata_device_too_big(pool->md_dev); 3532 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3533 dm_device_name(pool->pool_md), 3534 sb_metadata_dev_size, metadata_dev_size); 3535 3536 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) 3537 set_pool_mode(pool, PM_WRITE); 3538 3539 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3540 if (r) { 3541 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3542 return r; 3543 } 3544 3545 *need_commit = true; 3546 } 3547 3548 return 0; 3549} 3550 3551/* 3552 * Retrieves the number of blocks of the data device from 3553 * the superblock and compares it to the actual device size, 3554 * thus resizing the data device in case it has grown. 3555 * 3556 * This both copes with opening preallocated data devices in the ctr 3557 * being followed by a resume 3558 * -and- 3559 * calling the resume method individually after userspace has 3560 * grown the data device in reaction to a table event. 3561 */ 3562static int pool_preresume(struct dm_target *ti) 3563{ 3564 int r; 3565 bool need_commit1, need_commit2; 3566 struct pool_c *pt = ti->private; 3567 struct pool *pool = pt->pool; 3568 3569 /* 3570 * Take control of the pool object. 3571 */ 3572 r = bind_control_target(pool, ti); 3573 if (r) 3574 goto out; 3575 3576 r = maybe_resize_data_dev(ti, &need_commit1); 3577 if (r) 3578 goto out; 3579 3580 r = maybe_resize_metadata_dev(ti, &need_commit2); 3581 if (r) 3582 goto out; 3583 3584 if (need_commit1 || need_commit2) 3585 (void) commit(pool); 3586out: 3587 /* 3588 * When a thin-pool is PM_FAIL, it cannot be rebuilt if 3589 * bio is in deferred list. Therefore need to return 0 3590 * to allow pool_resume() to flush IO. 3591 */ 3592 if (r && get_pool_mode(pool) == PM_FAIL) 3593 r = 0; 3594 3595 return r; 3596} 3597 3598static void pool_suspend_active_thins(struct pool *pool) 3599{ 3600 struct thin_c *tc; 3601 3602 /* Suspend all active thin devices */ 3603 tc = get_first_thin(pool); 3604 while (tc) { 3605 dm_internal_suspend_noflush(tc->thin_md); 3606 tc = get_next_thin(pool, tc); 3607 } 3608} 3609 3610static void pool_resume_active_thins(struct pool *pool) 3611{ 3612 struct thin_c *tc; 3613 3614 /* Resume all active thin devices */ 3615 tc = get_first_thin(pool); 3616 while (tc) { 3617 dm_internal_resume(tc->thin_md); 3618 tc = get_next_thin(pool, tc); 3619 } 3620} 3621 3622static void pool_resume(struct dm_target *ti) 3623{ 3624 struct pool_c *pt = ti->private; 3625 struct pool *pool = pt->pool; 3626 3627 /* 3628 * Must requeue active_thins' bios and then resume 3629 * active_thins _before_ clearing 'suspend' flag. 3630 */ 3631 requeue_bios(pool); 3632 pool_resume_active_thins(pool); 3633 3634 spin_lock_irq(&pool->lock); 3635 pool->low_water_triggered = false; 3636 pool->suspended = false; 3637 spin_unlock_irq(&pool->lock); 3638 3639 do_waker(&pool->waker.work); 3640} 3641 3642static void pool_presuspend(struct dm_target *ti) 3643{ 3644 struct pool_c *pt = ti->private; 3645 struct pool *pool = pt->pool; 3646 3647 spin_lock_irq(&pool->lock); 3648 pool->suspended = true; 3649 spin_unlock_irq(&pool->lock); 3650 3651 pool_suspend_active_thins(pool); 3652} 3653 3654static void pool_presuspend_undo(struct dm_target *ti) 3655{ 3656 struct pool_c *pt = ti->private; 3657 struct pool *pool = pt->pool; 3658 3659 pool_resume_active_thins(pool); 3660 3661 spin_lock_irq(&pool->lock); 3662 pool->suspended = false; 3663 spin_unlock_irq(&pool->lock); 3664} 3665 3666static void pool_postsuspend(struct dm_target *ti) 3667{ 3668 struct pool_c *pt = ti->private; 3669 struct pool *pool = pt->pool; 3670 3671 cancel_delayed_work_sync(&pool->waker); 3672 cancel_delayed_work_sync(&pool->no_space_timeout); 3673 flush_workqueue(pool->wq); 3674 (void) commit(pool); 3675} 3676 3677static int check_arg_count(unsigned argc, unsigned args_required) 3678{ 3679 if (argc != args_required) { 3680 DMWARN("Message received with %u arguments instead of %u.", 3681 argc, args_required); 3682 return -EINVAL; 3683 } 3684 3685 return 0; 3686} 3687 3688static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3689{ 3690 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3691 *dev_id <= MAX_DEV_ID) 3692 return 0; 3693 3694 if (warning) 3695 DMWARN("Message received with invalid device id: %s", arg); 3696 3697 return -EINVAL; 3698} 3699 3700static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3701{ 3702 dm_thin_id dev_id; 3703 int r; 3704 3705 r = check_arg_count(argc, 2); 3706 if (r) 3707 return r; 3708 3709 r = read_dev_id(argv[1], &dev_id, 1); 3710 if (r) 3711 return r; 3712 3713 r = dm_pool_create_thin(pool->pmd, dev_id); 3714 if (r) { 3715 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3716 argv[1]); 3717 return r; 3718 } 3719 3720 return 0; 3721} 3722 3723static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3724{ 3725 dm_thin_id dev_id; 3726 dm_thin_id origin_dev_id; 3727 int r; 3728 3729 r = check_arg_count(argc, 3); 3730 if (r) 3731 return r; 3732 3733 r = read_dev_id(argv[1], &dev_id, 1); 3734 if (r) 3735 return r; 3736 3737 r = read_dev_id(argv[2], &origin_dev_id, 1); 3738 if (r) 3739 return r; 3740 3741 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3742 if (r) { 3743 DMWARN("Creation of new snapshot %s of device %s failed.", 3744 argv[1], argv[2]); 3745 return r; 3746 } 3747 3748 return 0; 3749} 3750 3751static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3752{ 3753 dm_thin_id dev_id; 3754 int r; 3755 3756 r = check_arg_count(argc, 2); 3757 if (r) 3758 return r; 3759 3760 r = read_dev_id(argv[1], &dev_id, 1); 3761 if (r) 3762 return r; 3763 3764 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3765 if (r) 3766 DMWARN("Deletion of thin device %s failed.", argv[1]); 3767 3768 return r; 3769} 3770 3771static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3772{ 3773 dm_thin_id old_id, new_id; 3774 int r; 3775 3776 r = check_arg_count(argc, 3); 3777 if (r) 3778 return r; 3779 3780 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3781 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3782 return -EINVAL; 3783 } 3784 3785 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3786 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3787 return -EINVAL; 3788 } 3789 3790 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3791 if (r) { 3792 DMWARN("Failed to change transaction id from %s to %s.", 3793 argv[1], argv[2]); 3794 return r; 3795 } 3796 3797 return 0; 3798} 3799 3800static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3801{ 3802 int r; 3803 3804 r = check_arg_count(argc, 1); 3805 if (r) 3806 return r; 3807 3808 (void) commit(pool); 3809 3810 r = dm_pool_reserve_metadata_snap(pool->pmd); 3811 if (r) 3812 DMWARN("reserve_metadata_snap message failed."); 3813 3814 return r; 3815} 3816 3817static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3818{ 3819 int r; 3820 3821 r = check_arg_count(argc, 1); 3822 if (r) 3823 return r; 3824 3825 r = dm_pool_release_metadata_snap(pool->pmd); 3826 if (r) 3827 DMWARN("release_metadata_snap message failed."); 3828 3829 return r; 3830} 3831 3832/* 3833 * Messages supported: 3834 * create_thin <dev_id> 3835 * create_snap <dev_id> <origin_id> 3836 * delete <dev_id> 3837 * set_transaction_id <current_trans_id> <new_trans_id> 3838 * reserve_metadata_snap 3839 * release_metadata_snap 3840 */ 3841static int pool_message(struct dm_target *ti, unsigned argc, char **argv, 3842 char *result, unsigned maxlen) 3843{ 3844 int r = -EINVAL; 3845 struct pool_c *pt = ti->private; 3846 struct pool *pool = pt->pool; 3847 3848 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { 3849 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3850 dm_device_name(pool->pool_md)); 3851 return -EOPNOTSUPP; 3852 } 3853 3854 if (!strcasecmp(argv[0], "create_thin")) 3855 r = process_create_thin_mesg(argc, argv, pool); 3856 3857 else if (!strcasecmp(argv[0], "create_snap")) 3858 r = process_create_snap_mesg(argc, argv, pool); 3859 3860 else if (!strcasecmp(argv[0], "delete")) 3861 r = process_delete_mesg(argc, argv, pool); 3862 3863 else if (!strcasecmp(argv[0], "set_transaction_id")) 3864 r = process_set_transaction_id_mesg(argc, argv, pool); 3865 3866 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3867 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3868 3869 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3870 r = process_release_metadata_snap_mesg(argc, argv, pool); 3871 3872 else 3873 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3874 3875 if (!r) 3876 (void) commit(pool); 3877 3878 return r; 3879} 3880 3881static void emit_flags(struct pool_features *pf, char *result, 3882 unsigned sz, unsigned maxlen) 3883{ 3884 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3885 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3886 pf->error_if_no_space; 3887 DMEMIT("%u ", count); 3888 3889 if (!pf->zero_new_blocks) 3890 DMEMIT("skip_block_zeroing "); 3891 3892 if (!pf->discard_enabled) 3893 DMEMIT("ignore_discard "); 3894 3895 if (!pf->discard_passdown) 3896 DMEMIT("no_discard_passdown "); 3897 3898 if (pf->mode == PM_READ_ONLY) 3899 DMEMIT("read_only "); 3900 3901 if (pf->error_if_no_space) 3902 DMEMIT("error_if_no_space "); 3903} 3904 3905/* 3906 * Status line is: 3907 * <transaction id> <used metadata sectors>/<total metadata sectors> 3908 * <used data sectors>/<total data sectors> <held metadata root> 3909 * <pool mode> <discard config> <no space config> <needs_check> 3910 */ 3911static void pool_status(struct dm_target *ti, status_type_t type, 3912 unsigned status_flags, char *result, unsigned maxlen) 3913{ 3914 int r; 3915 unsigned sz = 0; 3916 uint64_t transaction_id; 3917 dm_block_t nr_free_blocks_data; 3918 dm_block_t nr_free_blocks_metadata; 3919 dm_block_t nr_blocks_data; 3920 dm_block_t nr_blocks_metadata; 3921 dm_block_t held_root; 3922 enum pool_mode mode; 3923 char buf[BDEVNAME_SIZE]; 3924 char buf2[BDEVNAME_SIZE]; 3925 struct pool_c *pt = ti->private; 3926 struct pool *pool = pt->pool; 3927 3928 switch (type) { 3929 case STATUSTYPE_INFO: 3930 if (get_pool_mode(pool) == PM_FAIL) { 3931 DMEMIT("Fail"); 3932 break; 3933 } 3934 3935 /* Commit to ensure statistics aren't out-of-date */ 3936 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3937 (void) commit(pool); 3938 3939 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3940 if (r) { 3941 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3942 dm_device_name(pool->pool_md), r); 3943 goto err; 3944 } 3945 3946 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3947 if (r) { 3948 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3949 dm_device_name(pool->pool_md), r); 3950 goto err; 3951 } 3952 3953 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3954 if (r) { 3955 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3956 dm_device_name(pool->pool_md), r); 3957 goto err; 3958 } 3959 3960 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3961 if (r) { 3962 DMERR("%s: dm_pool_get_free_block_count returned %d", 3963 dm_device_name(pool->pool_md), r); 3964 goto err; 3965 } 3966 3967 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3968 if (r) { 3969 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3970 dm_device_name(pool->pool_md), r); 3971 goto err; 3972 } 3973 3974 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3975 if (r) { 3976 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3977 dm_device_name(pool->pool_md), r); 3978 goto err; 3979 } 3980 3981 DMEMIT("%llu %llu/%llu %llu/%llu ", 3982 (unsigned long long)transaction_id, 3983 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3984 (unsigned long long)nr_blocks_metadata, 3985 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3986 (unsigned long long)nr_blocks_data); 3987 3988 if (held_root) 3989 DMEMIT("%llu ", held_root); 3990 else 3991 DMEMIT("- "); 3992 3993 mode = get_pool_mode(pool); 3994 if (mode == PM_OUT_OF_DATA_SPACE) 3995 DMEMIT("out_of_data_space "); 3996 else if (is_read_only_pool_mode(mode)) 3997 DMEMIT("ro "); 3998 else 3999 DMEMIT("rw "); 4000 4001 if (!pool->pf.discard_enabled) 4002 DMEMIT("ignore_discard "); 4003 else if (pool->pf.discard_passdown) 4004 DMEMIT("discard_passdown "); 4005 else 4006 DMEMIT("no_discard_passdown "); 4007 4008 if (pool->pf.error_if_no_space) 4009 DMEMIT("error_if_no_space "); 4010 else 4011 DMEMIT("queue_if_no_space "); 4012 4013 if (dm_pool_metadata_needs_check(pool->pmd)) 4014 DMEMIT("needs_check "); 4015 else 4016 DMEMIT("- "); 4017 4018 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); 4019 4020 break; 4021 4022 case STATUSTYPE_TABLE: 4023 DMEMIT("%s %s %lu %llu ", 4024 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 4025 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 4026 (unsigned long)pool->sectors_per_block, 4027 (unsigned long long)pt->low_water_blocks); 4028 emit_flags(&pt->requested_pf, result, sz, maxlen); 4029 break; 4030 } 4031 return; 4032 4033err: 4034 DMEMIT("Error"); 4035} 4036 4037static int pool_iterate_devices(struct dm_target *ti, 4038 iterate_devices_callout_fn fn, void *data) 4039{ 4040 struct pool_c *pt = ti->private; 4041 4042 return fn(ti, pt->data_dev, 0, ti->len, data); 4043} 4044 4045static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 4046{ 4047 struct pool_c *pt = ti->private; 4048 struct pool *pool = pt->pool; 4049 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 4050 4051 /* 4052 * If max_sectors is smaller than pool->sectors_per_block adjust it 4053 * to the highest possible power-of-2 factor of pool->sectors_per_block. 4054 * This is especially beneficial when the pool's data device is a RAID 4055 * device that has a full stripe width that matches pool->sectors_per_block 4056 * -- because even though partial RAID stripe-sized IOs will be issued to a 4057 * single RAID stripe; when aggregated they will end on a full RAID stripe 4058 * boundary.. which avoids additional partial RAID stripe writes cascading 4059 */ 4060 if (limits->max_sectors < pool->sectors_per_block) { 4061 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 4062 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 4063 limits->max_sectors--; 4064 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 4065 } 4066 } 4067 4068 /* 4069 * If the system-determined stacked limits are compatible with the 4070 * pool's blocksize (io_opt is a factor) do not override them. 4071 */ 4072 if (io_opt_sectors < pool->sectors_per_block || 4073 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 4074 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 4075 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 4076 else 4077 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 4078 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 4079 } 4080 4081 /* 4082 * pt->adjusted_pf is a staging area for the actual features to use. 4083 * They get transferred to the live pool in bind_control_target() 4084 * called from pool_preresume(). 4085 */ 4086 if (!pt->adjusted_pf.discard_enabled) { 4087 /* 4088 * Must explicitly disallow stacking discard limits otherwise the 4089 * block layer will stack them if pool's data device has support. 4090 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 4091 * user to see that, so make sure to set all discard limits to 0. 4092 */ 4093 limits->discard_granularity = 0; 4094 return; 4095 } 4096 4097 disable_passdown_if_not_supported(pt); 4098 4099 /* 4100 * The pool uses the same discard limits as the underlying data 4101 * device. DM core has already set this up. 4102 */ 4103} 4104 4105static struct target_type pool_target = { 4106 .name = "thin-pool", 4107 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 4108 DM_TARGET_IMMUTABLE, 4109 .version = {1, 22, 0}, 4110 .module = THIS_MODULE, 4111 .ctr = pool_ctr, 4112 .dtr = pool_dtr, 4113 .map = pool_map, 4114 .presuspend = pool_presuspend, 4115 .presuspend_undo = pool_presuspend_undo, 4116 .postsuspend = pool_postsuspend, 4117 .preresume = pool_preresume, 4118 .resume = pool_resume, 4119 .message = pool_message, 4120 .status = pool_status, 4121 .iterate_devices = pool_iterate_devices, 4122 .io_hints = pool_io_hints, 4123}; 4124 4125/*---------------------------------------------------------------- 4126 * Thin target methods 4127 *--------------------------------------------------------------*/ 4128static void thin_get(struct thin_c *tc) 4129{ 4130 refcount_inc(&tc->refcount); 4131} 4132 4133static void thin_put(struct thin_c *tc) 4134{ 4135 if (refcount_dec_and_test(&tc->refcount)) 4136 complete(&tc->can_destroy); 4137} 4138 4139static void thin_dtr(struct dm_target *ti) 4140{ 4141 struct thin_c *tc = ti->private; 4142 4143 spin_lock_irq(&tc->pool->lock); 4144 list_del_rcu(&tc->list); 4145 spin_unlock_irq(&tc->pool->lock); 4146 synchronize_rcu(); 4147 4148 thin_put(tc); 4149 wait_for_completion(&tc->can_destroy); 4150 4151 mutex_lock(&dm_thin_pool_table.mutex); 4152 4153 __pool_dec(tc->pool); 4154 dm_pool_close_thin_device(tc->td); 4155 dm_put_device(ti, tc->pool_dev); 4156 if (tc->origin_dev) 4157 dm_put_device(ti, tc->origin_dev); 4158 kfree(tc); 4159 4160 mutex_unlock(&dm_thin_pool_table.mutex); 4161} 4162 4163/* 4164 * Thin target parameters: 4165 * 4166 * <pool_dev> <dev_id> [origin_dev] 4167 * 4168 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4169 * dev_id: the internal device identifier 4170 * origin_dev: a device external to the pool that should act as the origin 4171 * 4172 * If the pool device has discards disabled, they get disabled for the thin 4173 * device as well. 4174 */ 4175static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 4176{ 4177 int r; 4178 struct thin_c *tc; 4179 struct dm_dev *pool_dev, *origin_dev; 4180 struct mapped_device *pool_md; 4181 4182 mutex_lock(&dm_thin_pool_table.mutex); 4183 4184 if (argc != 2 && argc != 3) { 4185 ti->error = "Invalid argument count"; 4186 r = -EINVAL; 4187 goto out_unlock; 4188 } 4189 4190 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4191 if (!tc) { 4192 ti->error = "Out of memory"; 4193 r = -ENOMEM; 4194 goto out_unlock; 4195 } 4196 tc->thin_md = dm_table_get_md(ti->table); 4197 spin_lock_init(&tc->lock); 4198 INIT_LIST_HEAD(&tc->deferred_cells); 4199 bio_list_init(&tc->deferred_bio_list); 4200 bio_list_init(&tc->retry_on_resume_list); 4201 tc->sort_bio_list = RB_ROOT; 4202 4203 if (argc == 3) { 4204 if (!strcmp(argv[0], argv[2])) { 4205 ti->error = "Error setting origin device"; 4206 r = -EINVAL; 4207 goto bad_origin_dev; 4208 } 4209 4210 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4211 if (r) { 4212 ti->error = "Error opening origin device"; 4213 goto bad_origin_dev; 4214 } 4215 tc->origin_dev = origin_dev; 4216 } 4217 4218 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4219 if (r) { 4220 ti->error = "Error opening pool device"; 4221 goto bad_pool_dev; 4222 } 4223 tc->pool_dev = pool_dev; 4224 4225 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4226 ti->error = "Invalid device id"; 4227 r = -EINVAL; 4228 goto bad_common; 4229 } 4230 4231 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4232 if (!pool_md) { 4233 ti->error = "Couldn't get pool mapped device"; 4234 r = -EINVAL; 4235 goto bad_common; 4236 } 4237 4238 tc->pool = __pool_table_lookup(pool_md); 4239 if (!tc->pool) { 4240 ti->error = "Couldn't find pool object"; 4241 r = -EINVAL; 4242 goto bad_pool_lookup; 4243 } 4244 __pool_inc(tc->pool); 4245 4246 if (get_pool_mode(tc->pool) == PM_FAIL) { 4247 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4248 r = -EINVAL; 4249 goto bad_pool; 4250 } 4251 4252 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4253 if (r) { 4254 ti->error = "Couldn't open thin internal device"; 4255 goto bad_pool; 4256 } 4257 4258 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4259 if (r) 4260 goto bad; 4261 4262 ti->num_flush_bios = 1; 4263 ti->limit_swap_bios = true; 4264 ti->flush_supported = true; 4265 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4266 4267 /* In case the pool supports discards, pass them on. */ 4268 if (tc->pool->pf.discard_enabled) { 4269 ti->discards_supported = true; 4270 ti->num_discard_bios = 1; 4271 } 4272 4273 mutex_unlock(&dm_thin_pool_table.mutex); 4274 4275 spin_lock_irq(&tc->pool->lock); 4276 if (tc->pool->suspended) { 4277 spin_unlock_irq(&tc->pool->lock); 4278 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4279 ti->error = "Unable to activate thin device while pool is suspended"; 4280 r = -EINVAL; 4281 goto bad; 4282 } 4283 refcount_set(&tc->refcount, 1); 4284 init_completion(&tc->can_destroy); 4285 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4286 spin_unlock_irq(&tc->pool->lock); 4287 /* 4288 * This synchronize_rcu() call is needed here otherwise we risk a 4289 * wake_worker() call finding no bios to process (because the newly 4290 * added tc isn't yet visible). So this reduces latency since we 4291 * aren't then dependent on the periodic commit to wake_worker(). 4292 */ 4293 synchronize_rcu(); 4294 4295 dm_put(pool_md); 4296 4297 return 0; 4298 4299bad: 4300 dm_pool_close_thin_device(tc->td); 4301bad_pool: 4302 __pool_dec(tc->pool); 4303bad_pool_lookup: 4304 dm_put(pool_md); 4305bad_common: 4306 dm_put_device(ti, tc->pool_dev); 4307bad_pool_dev: 4308 if (tc->origin_dev) 4309 dm_put_device(ti, tc->origin_dev); 4310bad_origin_dev: 4311 kfree(tc); 4312out_unlock: 4313 mutex_unlock(&dm_thin_pool_table.mutex); 4314 4315 return r; 4316} 4317 4318static int thin_map(struct dm_target *ti, struct bio *bio) 4319{ 4320 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4321 4322 return thin_bio_map(ti, bio); 4323} 4324 4325static int thin_endio(struct dm_target *ti, struct bio *bio, 4326 blk_status_t *err) 4327{ 4328 unsigned long flags; 4329 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4330 struct list_head work; 4331 struct dm_thin_new_mapping *m, *tmp; 4332 struct pool *pool = h->tc->pool; 4333 4334 if (h->shared_read_entry) { 4335 INIT_LIST_HEAD(&work); 4336 dm_deferred_entry_dec(h->shared_read_entry, &work); 4337 4338 spin_lock_irqsave(&pool->lock, flags); 4339 list_for_each_entry_safe(m, tmp, &work, list) { 4340 list_del(&m->list); 4341 __complete_mapping_preparation(m); 4342 } 4343 spin_unlock_irqrestore(&pool->lock, flags); 4344 } 4345 4346 if (h->all_io_entry) { 4347 INIT_LIST_HEAD(&work); 4348 dm_deferred_entry_dec(h->all_io_entry, &work); 4349 if (!list_empty(&work)) { 4350 spin_lock_irqsave(&pool->lock, flags); 4351 list_for_each_entry_safe(m, tmp, &work, list) 4352 list_add_tail(&m->list, &pool->prepared_discards); 4353 spin_unlock_irqrestore(&pool->lock, flags); 4354 wake_worker(pool); 4355 } 4356 } 4357 4358 if (h->cell) 4359 cell_defer_no_holder(h->tc, h->cell); 4360 4361 return DM_ENDIO_DONE; 4362} 4363 4364static void thin_presuspend(struct dm_target *ti) 4365{ 4366 struct thin_c *tc = ti->private; 4367 4368 if (dm_noflush_suspending(ti)) 4369 noflush_work(tc, do_noflush_start); 4370} 4371 4372static void thin_postsuspend(struct dm_target *ti) 4373{ 4374 struct thin_c *tc = ti->private; 4375 4376 /* 4377 * The dm_noflush_suspending flag has been cleared by now, so 4378 * unfortunately we must always run this. 4379 */ 4380 noflush_work(tc, do_noflush_stop); 4381} 4382 4383static int thin_preresume(struct dm_target *ti) 4384{ 4385 struct thin_c *tc = ti->private; 4386 4387 if (tc->origin_dev) 4388 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4389 4390 return 0; 4391} 4392 4393/* 4394 * <nr mapped sectors> <highest mapped sector> 4395 */ 4396static void thin_status(struct dm_target *ti, status_type_t type, 4397 unsigned status_flags, char *result, unsigned maxlen) 4398{ 4399 int r; 4400 ssize_t sz = 0; 4401 dm_block_t mapped, highest; 4402 char buf[BDEVNAME_SIZE]; 4403 struct thin_c *tc = ti->private; 4404 4405 if (get_pool_mode(tc->pool) == PM_FAIL) { 4406 DMEMIT("Fail"); 4407 return; 4408 } 4409 4410 if (!tc->td) 4411 DMEMIT("-"); 4412 else { 4413 switch (type) { 4414 case STATUSTYPE_INFO: 4415 r = dm_thin_get_mapped_count(tc->td, &mapped); 4416 if (r) { 4417 DMERR("dm_thin_get_mapped_count returned %d", r); 4418 goto err; 4419 } 4420 4421 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4422 if (r < 0) { 4423 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4424 goto err; 4425 } 4426 4427 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4428 if (r) 4429 DMEMIT("%llu", ((highest + 1) * 4430 tc->pool->sectors_per_block) - 1); 4431 else 4432 DMEMIT("-"); 4433 break; 4434 4435 case STATUSTYPE_TABLE: 4436 DMEMIT("%s %lu", 4437 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4438 (unsigned long) tc->dev_id); 4439 if (tc->origin_dev) 4440 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4441 break; 4442 } 4443 } 4444 4445 return; 4446 4447err: 4448 DMEMIT("Error"); 4449} 4450 4451static int thin_iterate_devices(struct dm_target *ti, 4452 iterate_devices_callout_fn fn, void *data) 4453{ 4454 sector_t blocks; 4455 struct thin_c *tc = ti->private; 4456 struct pool *pool = tc->pool; 4457 4458 /* 4459 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4460 * we follow a more convoluted path through to the pool's target. 4461 */ 4462 if (!pool->ti) 4463 return 0; /* nothing is bound */ 4464 4465 blocks = pool->ti->len; 4466 (void) sector_div(blocks, pool->sectors_per_block); 4467 if (blocks) 4468 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4469 4470 return 0; 4471} 4472 4473static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4474{ 4475 struct thin_c *tc = ti->private; 4476 struct pool *pool = tc->pool; 4477 4478 if (!pool->pf.discard_enabled) 4479 return; 4480 4481 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4482 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4483} 4484 4485static struct target_type thin_target = { 4486 .name = "thin", 4487 .version = {1, 22, 0}, 4488 .module = THIS_MODULE, 4489 .ctr = thin_ctr, 4490 .dtr = thin_dtr, 4491 .map = thin_map, 4492 .end_io = thin_endio, 4493 .preresume = thin_preresume, 4494 .presuspend = thin_presuspend, 4495 .postsuspend = thin_postsuspend, 4496 .status = thin_status, 4497 .iterate_devices = thin_iterate_devices, 4498 .io_hints = thin_io_hints, 4499}; 4500 4501/*----------------------------------------------------------------*/ 4502 4503static int __init dm_thin_init(void) 4504{ 4505 int r = -ENOMEM; 4506 4507 pool_table_init(); 4508 4509 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4510 if (!_new_mapping_cache) 4511 return r; 4512 4513 r = dm_register_target(&thin_target); 4514 if (r) 4515 goto bad_new_mapping_cache; 4516 4517 r = dm_register_target(&pool_target); 4518 if (r) 4519 goto bad_thin_target; 4520 4521 return 0; 4522 4523bad_thin_target: 4524 dm_unregister_target(&thin_target); 4525bad_new_mapping_cache: 4526 kmem_cache_destroy(_new_mapping_cache); 4527 4528 return r; 4529} 4530 4531static void dm_thin_exit(void) 4532{ 4533 dm_unregister_target(&thin_target); 4534 dm_unregister_target(&pool_target); 4535 4536 kmem_cache_destroy(_new_mapping_cache); 4537 4538 pool_table_exit(); 4539} 4540 4541module_init(dm_thin_init); 4542module_exit(dm_thin_exit); 4543 4544module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4545MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4546 4547MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4548MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4549MODULE_LICENSE("GPL"); 4550