1/*
2 * Copyright (C) 2014 Facebook. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include <linux/device-mapper.h>
8
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/blkdev.h>
12#include <linux/bio.h>
13#include <linux/dax.h>
14#include <linux/slab.h>
15#include <linux/kthread.h>
16#include <linux/freezer.h>
17#include <linux/uio.h>
18
19#define DM_MSG_PREFIX "log-writes"
20
21/*
22 * This target will sequentially log all writes to the target device onto the
23 * log device.  This is helpful for replaying writes to check for fs consistency
24 * at all times.  This target provides a mechanism to mark specific events to
25 * check data at a later time.  So for example you would:
26 *
27 * write data
28 * fsync
29 * dmsetup message /dev/whatever mark mymark
30 * unmount /mnt/test
31 *
32 * Then replay the log up to mymark and check the contents of the replay to
33 * verify it matches what was written.
34 *
35 * We log writes only after they have been flushed, this makes the log describe
36 * close to the order in which the data hits the actual disk, not its cache.  So
37 * for example the following sequence (W means write, C means complete)
38 *
39 * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
40 *
41 * Would result in the log looking like this:
42 *
43 * c,a,b,flush,fuad,<other writes>,<next flush>
44 *
45 * This is meant to help expose problems where file systems do not properly wait
46 * on data being written before invoking a FLUSH.  FUA bypasses cache so once it
47 * completes it is added to the log as it should be on disk.
48 *
49 * We treat DISCARDs as if they don't bypass cache so that they are logged in
50 * order of completion along with the normal writes.  If we didn't do it this
51 * way we would process all the discards first and then write all the data, when
52 * in fact we want to do the data and the discard in the order that they
53 * completed.
54 */
55#define LOG_FLUSH_FLAG		(1 << 0)
56#define LOG_FUA_FLAG		(1 << 1)
57#define LOG_DISCARD_FLAG	(1 << 2)
58#define LOG_MARK_FLAG		(1 << 3)
59#define LOG_METADATA_FLAG	(1 << 4)
60
61#define WRITE_LOG_VERSION 1ULL
62#define WRITE_LOG_MAGIC 0x6a736677736872ULL
63#define WRITE_LOG_SUPER_SECTOR 0
64
65/*
66 * The disk format for this is braindead simple.
67 *
68 * At byte 0 we have our super, followed by the following sequence for
69 * nr_entries:
70 *
71 * [   1 sector    ][  entry->nr_sectors ]
72 * [log_write_entry][    data written    ]
73 *
74 * The log_write_entry takes up a full sector so we can have arbitrary length
75 * marks and it leaves us room for extra content in the future.
76 */
77
78/*
79 * Basic info about the log for userspace.
80 */
81struct log_write_super {
82	__le64 magic;
83	__le64 version;
84	__le64 nr_entries;
85	__le32 sectorsize;
86};
87
88/*
89 * sector - the sector we wrote.
90 * nr_sectors - the number of sectors we wrote.
91 * flags - flags for this log entry.
92 * data_len - the size of the data in this log entry, this is for private log
93 * entry stuff, the MARK data provided by userspace for example.
94 */
95struct log_write_entry {
96	__le64 sector;
97	__le64 nr_sectors;
98	__le64 flags;
99	__le64 data_len;
100};
101
102struct log_writes_c {
103	struct dm_dev *dev;
104	struct dm_dev *logdev;
105	u64 logged_entries;
106	u32 sectorsize;
107	u32 sectorshift;
108	atomic_t io_blocks;
109	atomic_t pending_blocks;
110	sector_t next_sector;
111	sector_t end_sector;
112	bool logging_enabled;
113	bool device_supports_discard;
114	spinlock_t blocks_lock;
115	struct list_head unflushed_blocks;
116	struct list_head logging_blocks;
117	wait_queue_head_t wait;
118	struct task_struct *log_kthread;
119	struct completion super_done;
120};
121
122struct pending_block {
123	int vec_cnt;
124	u64 flags;
125	sector_t sector;
126	sector_t nr_sectors;
127	char *data;
128	u32 datalen;
129	struct list_head list;
130	struct bio_vec vecs[];
131};
132
133struct per_bio_data {
134	struct pending_block *block;
135};
136
137static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
138					  sector_t sectors)
139{
140	return sectors >> (lc->sectorshift - SECTOR_SHIFT);
141}
142
143static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
144					  sector_t sectors)
145{
146	return sectors << (lc->sectorshift - SECTOR_SHIFT);
147}
148
149static void put_pending_block(struct log_writes_c *lc)
150{
151	if (atomic_dec_and_test(&lc->pending_blocks)) {
152		smp_mb__after_atomic();
153		if (waitqueue_active(&lc->wait))
154			wake_up(&lc->wait);
155	}
156}
157
158static void put_io_block(struct log_writes_c *lc)
159{
160	if (atomic_dec_and_test(&lc->io_blocks)) {
161		smp_mb__after_atomic();
162		if (waitqueue_active(&lc->wait))
163			wake_up(&lc->wait);
164	}
165}
166
167static void log_end_io(struct bio *bio)
168{
169	struct log_writes_c *lc = bio->bi_private;
170
171	if (bio->bi_status) {
172		unsigned long flags;
173
174		DMERR("Error writing log block, error=%d", bio->bi_status);
175		spin_lock_irqsave(&lc->blocks_lock, flags);
176		lc->logging_enabled = false;
177		spin_unlock_irqrestore(&lc->blocks_lock, flags);
178	}
179
180	bio_free_pages(bio);
181	put_io_block(lc);
182	bio_put(bio);
183}
184
185static void log_end_super(struct bio *bio)
186{
187	struct log_writes_c *lc = bio->bi_private;
188
189	complete(&lc->super_done);
190	log_end_io(bio);
191}
192
193/*
194 * Meant to be called if there is an error, it will free all the pages
195 * associated with the block.
196 */
197static void free_pending_block(struct log_writes_c *lc,
198			       struct pending_block *block)
199{
200	int i;
201
202	for (i = 0; i < block->vec_cnt; i++) {
203		if (block->vecs[i].bv_page)
204			__free_page(block->vecs[i].bv_page);
205	}
206	kfree(block->data);
207	kfree(block);
208	put_pending_block(lc);
209}
210
211static int write_metadata(struct log_writes_c *lc, void *entry,
212			  size_t entrylen, void *data, size_t datalen,
213			  sector_t sector)
214{
215	struct bio *bio;
216	struct page *page;
217	void *ptr;
218	size_t ret;
219
220	bio = bio_alloc(GFP_KERNEL, 1);
221	if (!bio) {
222		DMERR("Couldn't alloc log bio");
223		goto error;
224	}
225	bio->bi_iter.bi_size = 0;
226	bio->bi_iter.bi_sector = sector;
227	bio_set_dev(bio, lc->logdev->bdev);
228	bio->bi_end_io = (sector == WRITE_LOG_SUPER_SECTOR) ?
229			  log_end_super : log_end_io;
230	bio->bi_private = lc;
231	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
232
233	page = alloc_page(GFP_KERNEL);
234	if (!page) {
235		DMERR("Couldn't alloc log page");
236		bio_put(bio);
237		goto error;
238	}
239
240	ptr = kmap_atomic(page);
241	memcpy(ptr, entry, entrylen);
242	if (datalen)
243		memcpy(ptr + entrylen, data, datalen);
244	memset(ptr + entrylen + datalen, 0,
245	       lc->sectorsize - entrylen - datalen);
246	kunmap_atomic(ptr);
247
248	ret = bio_add_page(bio, page, lc->sectorsize, 0);
249	if (ret != lc->sectorsize) {
250		DMERR("Couldn't add page to the log block");
251		goto error_bio;
252	}
253	submit_bio(bio);
254	return 0;
255error_bio:
256	bio_put(bio);
257	__free_page(page);
258error:
259	put_io_block(lc);
260	return -1;
261}
262
263static int write_inline_data(struct log_writes_c *lc, void *entry,
264			     size_t entrylen, void *data, size_t datalen,
265			     sector_t sector)
266{
267	int num_pages, bio_pages, pg_datalen, pg_sectorlen, i;
268	struct page *page;
269	struct bio *bio;
270	size_t ret;
271	void *ptr;
272
273	while (datalen) {
274		num_pages = ALIGN(datalen, PAGE_SIZE) >> PAGE_SHIFT;
275		bio_pages = min(num_pages, BIO_MAX_PAGES);
276
277		atomic_inc(&lc->io_blocks);
278
279		bio = bio_alloc(GFP_KERNEL, bio_pages);
280		if (!bio) {
281			DMERR("Couldn't alloc inline data bio");
282			goto error;
283		}
284
285		bio->bi_iter.bi_size = 0;
286		bio->bi_iter.bi_sector = sector;
287		bio_set_dev(bio, lc->logdev->bdev);
288		bio->bi_end_io = log_end_io;
289		bio->bi_private = lc;
290		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
291
292		for (i = 0; i < bio_pages; i++) {
293			pg_datalen = min_t(int, datalen, PAGE_SIZE);
294			pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
295
296			page = alloc_page(GFP_KERNEL);
297			if (!page) {
298				DMERR("Couldn't alloc inline data page");
299				goto error_bio;
300			}
301
302			ptr = kmap_atomic(page);
303			memcpy(ptr, data, pg_datalen);
304			if (pg_sectorlen > pg_datalen)
305				memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
306			kunmap_atomic(ptr);
307
308			ret = bio_add_page(bio, page, pg_sectorlen, 0);
309			if (ret != pg_sectorlen) {
310				DMERR("Couldn't add page of inline data");
311				__free_page(page);
312				goto error_bio;
313			}
314
315			datalen -= pg_datalen;
316			data	+= pg_datalen;
317		}
318		submit_bio(bio);
319
320		sector += bio_pages * PAGE_SECTORS;
321	}
322	return 0;
323error_bio:
324	bio_free_pages(bio);
325	bio_put(bio);
326error:
327	put_io_block(lc);
328	return -1;
329}
330
331static int log_one_block(struct log_writes_c *lc,
332			 struct pending_block *block, sector_t sector)
333{
334	struct bio *bio;
335	struct log_write_entry entry;
336	size_t metadatalen, ret;
337	int i;
338
339	entry.sector = cpu_to_le64(block->sector);
340	entry.nr_sectors = cpu_to_le64(block->nr_sectors);
341	entry.flags = cpu_to_le64(block->flags);
342	entry.data_len = cpu_to_le64(block->datalen);
343
344	metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
345	if (write_metadata(lc, &entry, sizeof(entry), block->data,
346			   metadatalen, sector)) {
347		free_pending_block(lc, block);
348		return -1;
349	}
350
351	sector += dev_to_bio_sectors(lc, 1);
352
353	if (block->datalen && metadatalen == 0) {
354		if (write_inline_data(lc, &entry, sizeof(entry), block->data,
355				      block->datalen, sector)) {
356			free_pending_block(lc, block);
357			return -1;
358		}
359		/* we don't support both inline data & bio data */
360		goto out;
361	}
362
363	if (!block->vec_cnt)
364		goto out;
365
366	atomic_inc(&lc->io_blocks);
367	bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt, BIO_MAX_PAGES));
368	if (!bio) {
369		DMERR("Couldn't alloc log bio");
370		goto error;
371	}
372	bio->bi_iter.bi_size = 0;
373	bio->bi_iter.bi_sector = sector;
374	bio_set_dev(bio, lc->logdev->bdev);
375	bio->bi_end_io = log_end_io;
376	bio->bi_private = lc;
377	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
378
379	for (i = 0; i < block->vec_cnt; i++) {
380		/*
381		 * The page offset is always 0 because we allocate a new page
382		 * for every bvec in the original bio for simplicity sake.
383		 */
384		ret = bio_add_page(bio, block->vecs[i].bv_page,
385				   block->vecs[i].bv_len, 0);
386		if (ret != block->vecs[i].bv_len) {
387			atomic_inc(&lc->io_blocks);
388			submit_bio(bio);
389			bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt - i, BIO_MAX_PAGES));
390			if (!bio) {
391				DMERR("Couldn't alloc log bio");
392				goto error;
393			}
394			bio->bi_iter.bi_size = 0;
395			bio->bi_iter.bi_sector = sector;
396			bio_set_dev(bio, lc->logdev->bdev);
397			bio->bi_end_io = log_end_io;
398			bio->bi_private = lc;
399			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
400
401			ret = bio_add_page(bio, block->vecs[i].bv_page,
402					   block->vecs[i].bv_len, 0);
403			if (ret != block->vecs[i].bv_len) {
404				DMERR("Couldn't add page on new bio?");
405				bio_put(bio);
406				goto error;
407			}
408		}
409		sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
410	}
411	submit_bio(bio);
412out:
413	kfree(block->data);
414	kfree(block);
415	put_pending_block(lc);
416	return 0;
417error:
418	free_pending_block(lc, block);
419	put_io_block(lc);
420	return -1;
421}
422
423static int log_super(struct log_writes_c *lc)
424{
425	struct log_write_super super;
426
427	super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
428	super.version = cpu_to_le64(WRITE_LOG_VERSION);
429	super.nr_entries = cpu_to_le64(lc->logged_entries);
430	super.sectorsize = cpu_to_le32(lc->sectorsize);
431
432	if (write_metadata(lc, &super, sizeof(super), NULL, 0,
433			   WRITE_LOG_SUPER_SECTOR)) {
434		DMERR("Couldn't write super");
435		return -1;
436	}
437
438	/*
439	 * Super sector should be writen in-order, otherwise the
440	 * nr_entries could be rewritten incorrectly by an old bio.
441	 */
442	wait_for_completion_io(&lc->super_done);
443
444	return 0;
445}
446
447static inline sector_t logdev_last_sector(struct log_writes_c *lc)
448{
449	return i_size_read(lc->logdev->bdev->bd_inode) >> SECTOR_SHIFT;
450}
451
452static int log_writes_kthread(void *arg)
453{
454	struct log_writes_c *lc = (struct log_writes_c *)arg;
455	sector_t sector = 0;
456
457	while (!kthread_should_stop()) {
458		bool super = false;
459		bool logging_enabled;
460		struct pending_block *block = NULL;
461		int ret;
462
463		spin_lock_irq(&lc->blocks_lock);
464		if (!list_empty(&lc->logging_blocks)) {
465			block = list_first_entry(&lc->logging_blocks,
466						 struct pending_block, list);
467			list_del_init(&block->list);
468			if (!lc->logging_enabled)
469				goto next;
470
471			sector = lc->next_sector;
472			if (!(block->flags & LOG_DISCARD_FLAG))
473				lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
474			lc->next_sector += dev_to_bio_sectors(lc, 1);
475
476			/*
477			 * Apparently the size of the device may not be known
478			 * right away, so handle this properly.
479			 */
480			if (!lc->end_sector)
481				lc->end_sector = logdev_last_sector(lc);
482			if (lc->end_sector &&
483			    lc->next_sector >= lc->end_sector) {
484				DMERR("Ran out of space on the logdev");
485				lc->logging_enabled = false;
486				goto next;
487			}
488			lc->logged_entries++;
489			atomic_inc(&lc->io_blocks);
490
491			super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
492			if (super)
493				atomic_inc(&lc->io_blocks);
494		}
495next:
496		logging_enabled = lc->logging_enabled;
497		spin_unlock_irq(&lc->blocks_lock);
498		if (block) {
499			if (logging_enabled) {
500				ret = log_one_block(lc, block, sector);
501				if (!ret && super)
502					ret = log_super(lc);
503				if (ret) {
504					spin_lock_irq(&lc->blocks_lock);
505					lc->logging_enabled = false;
506					spin_unlock_irq(&lc->blocks_lock);
507				}
508			} else
509				free_pending_block(lc, block);
510			continue;
511		}
512
513		if (!try_to_freeze()) {
514			set_current_state(TASK_INTERRUPTIBLE);
515			if (!kthread_should_stop() &&
516			    list_empty(&lc->logging_blocks))
517				schedule();
518			__set_current_state(TASK_RUNNING);
519		}
520	}
521	return 0;
522}
523
524/*
525 * Construct a log-writes mapping:
526 * log-writes <dev_path> <log_dev_path>
527 */
528static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
529{
530	struct log_writes_c *lc;
531	struct dm_arg_set as;
532	const char *devname, *logdevname;
533	int ret;
534
535	as.argc = argc;
536	as.argv = argv;
537
538	if (argc < 2) {
539		ti->error = "Invalid argument count";
540		return -EINVAL;
541	}
542
543	lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
544	if (!lc) {
545		ti->error = "Cannot allocate context";
546		return -ENOMEM;
547	}
548	spin_lock_init(&lc->blocks_lock);
549	INIT_LIST_HEAD(&lc->unflushed_blocks);
550	INIT_LIST_HEAD(&lc->logging_blocks);
551	init_waitqueue_head(&lc->wait);
552	init_completion(&lc->super_done);
553	atomic_set(&lc->io_blocks, 0);
554	atomic_set(&lc->pending_blocks, 0);
555
556	devname = dm_shift_arg(&as);
557	ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
558	if (ret) {
559		ti->error = "Device lookup failed";
560		goto bad;
561	}
562
563	logdevname = dm_shift_arg(&as);
564	ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
565			    &lc->logdev);
566	if (ret) {
567		ti->error = "Log device lookup failed";
568		dm_put_device(ti, lc->dev);
569		goto bad;
570	}
571
572	lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
573	lc->sectorshift = ilog2(lc->sectorsize);
574	lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
575	if (IS_ERR(lc->log_kthread)) {
576		ret = PTR_ERR(lc->log_kthread);
577		ti->error = "Couldn't alloc kthread";
578		dm_put_device(ti, lc->dev);
579		dm_put_device(ti, lc->logdev);
580		goto bad;
581	}
582
583	/*
584	 * next_sector is in 512b sectors to correspond to what bi_sector expects.
585	 * The super starts at sector 0, and the next_sector is the next logical
586	 * one based on the sectorsize of the device.
587	 */
588	lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
589	lc->logging_enabled = true;
590	lc->end_sector = logdev_last_sector(lc);
591	lc->device_supports_discard = true;
592
593	ti->num_flush_bios = 1;
594	ti->flush_supported = true;
595	ti->num_discard_bios = 1;
596	ti->discards_supported = true;
597	ti->per_io_data_size = sizeof(struct per_bio_data);
598	ti->private = lc;
599	return 0;
600
601bad:
602	kfree(lc);
603	return ret;
604}
605
606static int log_mark(struct log_writes_c *lc, char *data)
607{
608	struct pending_block *block;
609	size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
610
611	block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
612	if (!block) {
613		DMERR("Error allocating pending block");
614		return -ENOMEM;
615	}
616
617	block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
618	if (!block->data) {
619		DMERR("Error copying mark data");
620		kfree(block);
621		return -ENOMEM;
622	}
623	atomic_inc(&lc->pending_blocks);
624	block->datalen = strlen(block->data);
625	block->flags |= LOG_MARK_FLAG;
626	spin_lock_irq(&lc->blocks_lock);
627	list_add_tail(&block->list, &lc->logging_blocks);
628	spin_unlock_irq(&lc->blocks_lock);
629	wake_up_process(lc->log_kthread);
630	return 0;
631}
632
633static void log_writes_dtr(struct dm_target *ti)
634{
635	struct log_writes_c *lc = ti->private;
636
637	spin_lock_irq(&lc->blocks_lock);
638	list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
639	spin_unlock_irq(&lc->blocks_lock);
640
641	/*
642	 * This is just nice to have since it'll update the super to include the
643	 * unflushed blocks, if it fails we don't really care.
644	 */
645	log_mark(lc, "dm-log-writes-end");
646	wake_up_process(lc->log_kthread);
647	wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
648		   !atomic_read(&lc->pending_blocks));
649	kthread_stop(lc->log_kthread);
650
651	WARN_ON(!list_empty(&lc->logging_blocks));
652	WARN_ON(!list_empty(&lc->unflushed_blocks));
653	dm_put_device(ti, lc->dev);
654	dm_put_device(ti, lc->logdev);
655	kfree(lc);
656}
657
658static void normal_map_bio(struct dm_target *ti, struct bio *bio)
659{
660	struct log_writes_c *lc = ti->private;
661
662	bio_set_dev(bio, lc->dev->bdev);
663}
664
665static int log_writes_map(struct dm_target *ti, struct bio *bio)
666{
667	struct log_writes_c *lc = ti->private;
668	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
669	struct pending_block *block;
670	struct bvec_iter iter;
671	struct bio_vec bv;
672	size_t alloc_size;
673	int i = 0;
674	bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
675	bool fua_bio = (bio->bi_opf & REQ_FUA);
676	bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
677	bool meta_bio = (bio->bi_opf & REQ_META);
678
679	pb->block = NULL;
680
681	/* Don't bother doing anything if logging has been disabled */
682	if (!lc->logging_enabled)
683		goto map_bio;
684
685	/*
686	 * Map reads as normal.
687	 */
688	if (bio_data_dir(bio) == READ)
689		goto map_bio;
690
691	/* No sectors and not a flush?  Don't care */
692	if (!bio_sectors(bio) && !flush_bio)
693		goto map_bio;
694
695	/*
696	 * Discards will have bi_size set but there's no actual data, so just
697	 * allocate the size of the pending block.
698	 */
699	if (discard_bio)
700		alloc_size = sizeof(struct pending_block);
701	else
702		alloc_size = struct_size(block, vecs, bio_segments(bio));
703
704	block = kzalloc(alloc_size, GFP_NOIO);
705	if (!block) {
706		DMERR("Error allocating pending block");
707		spin_lock_irq(&lc->blocks_lock);
708		lc->logging_enabled = false;
709		spin_unlock_irq(&lc->blocks_lock);
710		return DM_MAPIO_KILL;
711	}
712	INIT_LIST_HEAD(&block->list);
713	pb->block = block;
714	atomic_inc(&lc->pending_blocks);
715
716	if (flush_bio)
717		block->flags |= LOG_FLUSH_FLAG;
718	if (fua_bio)
719		block->flags |= LOG_FUA_FLAG;
720	if (discard_bio)
721		block->flags |= LOG_DISCARD_FLAG;
722	if (meta_bio)
723		block->flags |= LOG_METADATA_FLAG;
724
725	block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
726	block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
727
728	/* We don't need the data, just submit */
729	if (discard_bio) {
730		WARN_ON(flush_bio || fua_bio);
731		if (lc->device_supports_discard)
732			goto map_bio;
733		bio_endio(bio);
734		return DM_MAPIO_SUBMITTED;
735	}
736
737	/* Flush bio, splice the unflushed blocks onto this list and submit */
738	if (flush_bio && !bio_sectors(bio)) {
739		spin_lock_irq(&lc->blocks_lock);
740		list_splice_init(&lc->unflushed_blocks, &block->list);
741		spin_unlock_irq(&lc->blocks_lock);
742		goto map_bio;
743	}
744
745	/*
746	 * We will write this bio somewhere else way later so we need to copy
747	 * the actual contents into new pages so we know the data will always be
748	 * there.
749	 *
750	 * We do this because this could be a bio from O_DIRECT in which case we
751	 * can't just hold onto the page until some later point, we have to
752	 * manually copy the contents.
753	 */
754	bio_for_each_segment(bv, bio, iter) {
755		struct page *page;
756		void *src, *dst;
757
758		page = alloc_page(GFP_NOIO);
759		if (!page) {
760			DMERR("Error allocing page");
761			free_pending_block(lc, block);
762			spin_lock_irq(&lc->blocks_lock);
763			lc->logging_enabled = false;
764			spin_unlock_irq(&lc->blocks_lock);
765			return DM_MAPIO_KILL;
766		}
767
768		src = kmap_atomic(bv.bv_page);
769		dst = kmap_atomic(page);
770		memcpy(dst, src + bv.bv_offset, bv.bv_len);
771		kunmap_atomic(dst);
772		kunmap_atomic(src);
773		block->vecs[i].bv_page = page;
774		block->vecs[i].bv_len = bv.bv_len;
775		block->vec_cnt++;
776		i++;
777	}
778
779	/* Had a flush with data in it, weird */
780	if (flush_bio) {
781		spin_lock_irq(&lc->blocks_lock);
782		list_splice_init(&lc->unflushed_blocks, &block->list);
783		spin_unlock_irq(&lc->blocks_lock);
784	}
785map_bio:
786	normal_map_bio(ti, bio);
787	return DM_MAPIO_REMAPPED;
788}
789
790static int normal_end_io(struct dm_target *ti, struct bio *bio,
791		blk_status_t *error)
792{
793	struct log_writes_c *lc = ti->private;
794	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
795
796	if (bio_data_dir(bio) == WRITE && pb->block) {
797		struct pending_block *block = pb->block;
798		unsigned long flags;
799
800		spin_lock_irqsave(&lc->blocks_lock, flags);
801		if (block->flags & LOG_FLUSH_FLAG) {
802			list_splice_tail_init(&block->list, &lc->logging_blocks);
803			list_add_tail(&block->list, &lc->logging_blocks);
804			wake_up_process(lc->log_kthread);
805		} else if (block->flags & LOG_FUA_FLAG) {
806			list_add_tail(&block->list, &lc->logging_blocks);
807			wake_up_process(lc->log_kthread);
808		} else
809			list_add_tail(&block->list, &lc->unflushed_blocks);
810		spin_unlock_irqrestore(&lc->blocks_lock, flags);
811	}
812
813	return DM_ENDIO_DONE;
814}
815
816/*
817 * INFO format: <logged entries> <highest allocated sector>
818 */
819static void log_writes_status(struct dm_target *ti, status_type_t type,
820			      unsigned status_flags, char *result,
821			      unsigned maxlen)
822{
823	unsigned sz = 0;
824	struct log_writes_c *lc = ti->private;
825
826	switch (type) {
827	case STATUSTYPE_INFO:
828		DMEMIT("%llu %llu", lc->logged_entries,
829		       (unsigned long long)lc->next_sector - 1);
830		if (!lc->logging_enabled)
831			DMEMIT(" logging_disabled");
832		break;
833
834	case STATUSTYPE_TABLE:
835		DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
836		break;
837	}
838}
839
840static int log_writes_prepare_ioctl(struct dm_target *ti,
841				    struct block_device **bdev)
842{
843	struct log_writes_c *lc = ti->private;
844	struct dm_dev *dev = lc->dev;
845
846	*bdev = dev->bdev;
847	/*
848	 * Only pass ioctls through if the device sizes match exactly.
849	 */
850	if (ti->len != i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT)
851		return 1;
852	return 0;
853}
854
855static int log_writes_iterate_devices(struct dm_target *ti,
856				      iterate_devices_callout_fn fn,
857				      void *data)
858{
859	struct log_writes_c *lc = ti->private;
860
861	return fn(ti, lc->dev, 0, ti->len, data);
862}
863
864/*
865 * Messages supported:
866 *   mark <mark data> - specify the marked data.
867 */
868static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv,
869			      char *result, unsigned maxlen)
870{
871	int r = -EINVAL;
872	struct log_writes_c *lc = ti->private;
873
874	if (argc != 2) {
875		DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
876		return r;
877	}
878
879	if (!strcasecmp(argv[0], "mark"))
880		r = log_mark(lc, argv[1]);
881	else
882		DMWARN("Unrecognised log writes target message received: %s", argv[0]);
883
884	return r;
885}
886
887static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
888{
889	struct log_writes_c *lc = ti->private;
890	struct request_queue *q = bdev_get_queue(lc->dev->bdev);
891
892	if (!q || !blk_queue_discard(q)) {
893		lc->device_supports_discard = false;
894		limits->discard_granularity = lc->sectorsize;
895		limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
896	}
897	limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
898	limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
899	limits->io_min = limits->physical_block_size;
900}
901
902#if IS_ENABLED(CONFIG_DAX_DRIVER)
903static int log_dax(struct log_writes_c *lc, sector_t sector, size_t bytes,
904		   struct iov_iter *i)
905{
906	struct pending_block *block;
907
908	if (!bytes)
909		return 0;
910
911	block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
912	if (!block) {
913		DMERR("Error allocating dax pending block");
914		return -ENOMEM;
915	}
916
917	block->data = kzalloc(bytes, GFP_KERNEL);
918	if (!block->data) {
919		DMERR("Error allocating dax data space");
920		kfree(block);
921		return -ENOMEM;
922	}
923
924	/* write data provided via the iterator */
925	if (!copy_from_iter(block->data, bytes, i)) {
926		DMERR("Error copying dax data");
927		kfree(block->data);
928		kfree(block);
929		return -EIO;
930	}
931
932	/* rewind the iterator so that the block driver can use it */
933	iov_iter_revert(i, bytes);
934
935	block->datalen = bytes;
936	block->sector = bio_to_dev_sectors(lc, sector);
937	block->nr_sectors = ALIGN(bytes, lc->sectorsize) >> lc->sectorshift;
938
939	atomic_inc(&lc->pending_blocks);
940	spin_lock_irq(&lc->blocks_lock);
941	list_add_tail(&block->list, &lc->unflushed_blocks);
942	spin_unlock_irq(&lc->blocks_lock);
943	wake_up_process(lc->log_kthread);
944
945	return 0;
946}
947
948static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
949					 long nr_pages, void **kaddr, pfn_t *pfn)
950{
951	struct log_writes_c *lc = ti->private;
952	sector_t sector = pgoff * PAGE_SECTORS;
953	int ret;
954
955	ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages * PAGE_SIZE, &pgoff);
956	if (ret)
957		return ret;
958	return dax_direct_access(lc->dev->dax_dev, pgoff, nr_pages, kaddr, pfn);
959}
960
961static size_t log_writes_dax_copy_from_iter(struct dm_target *ti,
962					    pgoff_t pgoff, void *addr, size_t bytes,
963					    struct iov_iter *i)
964{
965	struct log_writes_c *lc = ti->private;
966	sector_t sector = pgoff * PAGE_SECTORS;
967	int err;
968
969	if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
970		return 0;
971
972	/* Don't bother doing anything if logging has been disabled */
973	if (!lc->logging_enabled)
974		goto dax_copy;
975
976	err = log_dax(lc, sector, bytes, i);
977	if (err) {
978		DMWARN("Error %d logging DAX write", err);
979		return 0;
980	}
981dax_copy:
982	return dax_copy_from_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
983}
984
985static size_t log_writes_dax_copy_to_iter(struct dm_target *ti,
986					  pgoff_t pgoff, void *addr, size_t bytes,
987					  struct iov_iter *i)
988{
989	struct log_writes_c *lc = ti->private;
990	sector_t sector = pgoff * PAGE_SECTORS;
991
992	if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
993		return 0;
994	return dax_copy_to_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
995}
996
997static int log_writes_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff,
998					  size_t nr_pages)
999{
1000	int ret;
1001	struct log_writes_c *lc = ti->private;
1002	sector_t sector = pgoff * PAGE_SECTORS;
1003
1004	ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages << PAGE_SHIFT,
1005			     &pgoff);
1006	if (ret)
1007		return ret;
1008	return dax_zero_page_range(lc->dev->dax_dev, pgoff,
1009				   nr_pages << PAGE_SHIFT);
1010}
1011
1012#else
1013#define log_writes_dax_direct_access NULL
1014#define log_writes_dax_copy_from_iter NULL
1015#define log_writes_dax_copy_to_iter NULL
1016#define log_writes_dax_zero_page_range NULL
1017#endif
1018
1019static struct target_type log_writes_target = {
1020	.name   = "log-writes",
1021	.version = {1, 1, 0},
1022	.module = THIS_MODULE,
1023	.ctr    = log_writes_ctr,
1024	.dtr    = log_writes_dtr,
1025	.map    = log_writes_map,
1026	.end_io = normal_end_io,
1027	.status = log_writes_status,
1028	.prepare_ioctl = log_writes_prepare_ioctl,
1029	.message = log_writes_message,
1030	.iterate_devices = log_writes_iterate_devices,
1031	.io_hints = log_writes_io_hints,
1032	.direct_access = log_writes_dax_direct_access,
1033	.dax_copy_from_iter = log_writes_dax_copy_from_iter,
1034	.dax_copy_to_iter = log_writes_dax_copy_to_iter,
1035	.dax_zero_page_range = log_writes_dax_zero_page_range,
1036};
1037
1038static int __init dm_log_writes_init(void)
1039{
1040	int r = dm_register_target(&log_writes_target);
1041
1042	if (r < 0)
1043		DMERR("register failed %d", r);
1044
1045	return r;
1046}
1047
1048static void __exit dm_log_writes_exit(void)
1049{
1050	dm_unregister_target(&log_writes_target);
1051}
1052
1053module_init(dm_log_writes_init);
1054module_exit(dm_log_writes_exit);
1055
1056MODULE_DESCRIPTION(DM_NAME " log writes target");
1057MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
1058MODULE_LICENSE("GPL");
1059