1/*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-bio-record.h"
10
11#include <linux/compiler.h>
12#include <linux/module.h>
13#include <linux/device-mapper.h>
14#include <linux/dm-io.h>
15#include <linux/vmalloc.h>
16#include <linux/sort.h>
17#include <linux/rbtree.h>
18#include <linux/delay.h>
19#include <linux/random.h>
20#include <linux/reboot.h>
21#include <crypto/hash.h>
22#include <crypto/skcipher.h>
23#include <linux/async_tx.h>
24#include <linux/dm-bufio.h>
25
26#define DM_MSG_PREFIX "integrity"
27
28#define DEFAULT_INTERLEAVE_SECTORS	32768
29#define DEFAULT_JOURNAL_SIZE_FACTOR	7
30#define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
31#define DEFAULT_BUFFER_SECTORS		128
32#define DEFAULT_JOURNAL_WATERMARK	50
33#define DEFAULT_SYNC_MSEC		10000
34#define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
35#define MIN_LOG2_INTERLEAVE_SECTORS	3
36#define MAX_LOG2_INTERLEAVE_SECTORS	31
37#define METADATA_WORKQUEUE_MAX_ACTIVE	16
38#define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
39#define RECALC_WRITE_SUPER		16
40#define BITMAP_BLOCK_SIZE		4096	/* don't change it */
41#define BITMAP_FLUSH_INTERVAL		(10 * HZ)
42#define DISCARD_FILLER			0xf6
43
44/*
45 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
46 * so it should not be enabled in the official kernel
47 */
48//#define DEBUG_PRINT
49//#define INTERNAL_VERIFY
50
51/*
52 * On disk structures
53 */
54
55#define SB_MAGIC			"integrt"
56#define SB_VERSION_1			1
57#define SB_VERSION_2			2
58#define SB_VERSION_3			3
59#define SB_VERSION_4			4
60#define SB_SECTORS			8
61#define MAX_SECTORS_PER_BLOCK		8
62
63struct superblock {
64	__u8 magic[8];
65	__u8 version;
66	__u8 log2_interleave_sectors;
67	__u16 integrity_tag_size;
68	__u32 journal_sections;
69	__u64 provided_data_sectors;	/* userspace uses this value */
70	__u32 flags;
71	__u8 log2_sectors_per_block;
72	__u8 log2_blocks_per_bitmap_bit;
73	__u8 pad[2];
74	__u64 recalc_sector;
75};
76
77#define SB_FLAG_HAVE_JOURNAL_MAC	0x1
78#define SB_FLAG_RECALCULATING		0x2
79#define SB_FLAG_DIRTY_BITMAP		0x4
80#define SB_FLAG_FIXED_PADDING		0x8
81
82#define	JOURNAL_ENTRY_ROUNDUP		8
83
84typedef __u64 commit_id_t;
85#define JOURNAL_MAC_PER_SECTOR		8
86
87struct journal_entry {
88	union {
89		struct {
90			__u32 sector_lo;
91			__u32 sector_hi;
92		} s;
93		__u64 sector;
94	} u;
95	commit_id_t last_bytes[];
96	/* __u8 tag[0]; */
97};
98
99#define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
100
101#if BITS_PER_LONG == 64
102#define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
103#else
104#define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
105#endif
106#define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
107#define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
108#define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
109#define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
110#define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
111
112#define JOURNAL_BLOCK_SECTORS		8
113#define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
114#define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
115
116struct journal_sector {
117	__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
118	__u8 mac[JOURNAL_MAC_PER_SECTOR];
119	commit_id_t commit_id;
120};
121
122#define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
123
124#define METADATA_PADDING_SECTORS	8
125
126#define N_COMMIT_IDS			4
127
128static unsigned char prev_commit_seq(unsigned char seq)
129{
130	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
131}
132
133static unsigned char next_commit_seq(unsigned char seq)
134{
135	return (seq + 1) % N_COMMIT_IDS;
136}
137
138/*
139 * In-memory structures
140 */
141
142struct journal_node {
143	struct rb_node node;
144	sector_t sector;
145};
146
147struct alg_spec {
148	char *alg_string;
149	char *key_string;
150	__u8 *key;
151	unsigned key_size;
152};
153
154struct dm_integrity_c {
155	struct dm_dev *dev;
156	struct dm_dev *meta_dev;
157	unsigned tag_size;
158	__s8 log2_tag_size;
159	sector_t start;
160	mempool_t journal_io_mempool;
161	struct dm_io_client *io;
162	struct dm_bufio_client *bufio;
163	struct workqueue_struct *metadata_wq;
164	struct superblock *sb;
165	unsigned journal_pages;
166	unsigned n_bitmap_blocks;
167
168	struct page_list *journal;
169	struct page_list *journal_io;
170	struct page_list *journal_xor;
171	struct page_list *recalc_bitmap;
172	struct page_list *may_write_bitmap;
173	struct bitmap_block_status *bbs;
174	unsigned bitmap_flush_interval;
175	int synchronous_mode;
176	struct bio_list synchronous_bios;
177	struct delayed_work bitmap_flush_work;
178
179	struct crypto_skcipher *journal_crypt;
180	struct scatterlist **journal_scatterlist;
181	struct scatterlist **journal_io_scatterlist;
182	struct skcipher_request **sk_requests;
183
184	struct crypto_shash *journal_mac;
185
186	struct journal_node *journal_tree;
187	struct rb_root journal_tree_root;
188
189	sector_t provided_data_sectors;
190
191	unsigned short journal_entry_size;
192	unsigned char journal_entries_per_sector;
193	unsigned char journal_section_entries;
194	unsigned short journal_section_sectors;
195	unsigned journal_sections;
196	unsigned journal_entries;
197	sector_t data_device_sectors;
198	sector_t meta_device_sectors;
199	unsigned initial_sectors;
200	unsigned metadata_run;
201	__s8 log2_metadata_run;
202	__u8 log2_buffer_sectors;
203	__u8 sectors_per_block;
204	__u8 log2_blocks_per_bitmap_bit;
205
206	unsigned char mode;
207
208	int failed;
209
210	struct crypto_shash *internal_hash;
211
212	struct dm_target *ti;
213
214	/* these variables are locked with endio_wait.lock */
215	struct rb_root in_progress;
216	struct list_head wait_list;
217	wait_queue_head_t endio_wait;
218	struct workqueue_struct *wait_wq;
219	struct workqueue_struct *offload_wq;
220
221	unsigned char commit_seq;
222	commit_id_t commit_ids[N_COMMIT_IDS];
223
224	unsigned committed_section;
225	unsigned n_committed_sections;
226
227	unsigned uncommitted_section;
228	unsigned n_uncommitted_sections;
229
230	unsigned free_section;
231	unsigned char free_section_entry;
232	unsigned free_sectors;
233
234	unsigned free_sectors_threshold;
235
236	struct workqueue_struct *commit_wq;
237	struct work_struct commit_work;
238
239	struct workqueue_struct *writer_wq;
240	struct work_struct writer_work;
241
242	struct workqueue_struct *recalc_wq;
243	struct work_struct recalc_work;
244	u8 *recalc_buffer;
245	u8 *recalc_tags;
246
247	struct bio_list flush_bio_list;
248
249	unsigned long autocommit_jiffies;
250	struct timer_list autocommit_timer;
251	unsigned autocommit_msec;
252
253	wait_queue_head_t copy_to_journal_wait;
254
255	struct completion crypto_backoff;
256
257	bool wrote_to_journal;
258	bool journal_uptodate;
259	bool just_formatted;
260	bool recalculate_flag;
261	bool discard;
262	bool fix_padding;
263	bool legacy_recalculate;
264
265	struct alg_spec internal_hash_alg;
266	struct alg_spec journal_crypt_alg;
267	struct alg_spec journal_mac_alg;
268
269	atomic64_t number_of_mismatches;
270
271	struct notifier_block reboot_notifier;
272};
273
274struct dm_integrity_range {
275	sector_t logical_sector;
276	sector_t n_sectors;
277	bool waiting;
278	union {
279		struct rb_node node;
280		struct {
281			struct task_struct *task;
282			struct list_head wait_entry;
283		};
284	};
285};
286
287struct dm_integrity_io {
288	struct work_struct work;
289
290	struct dm_integrity_c *ic;
291	enum req_opf op;
292	bool fua;
293
294	struct dm_integrity_range range;
295
296	sector_t metadata_block;
297	unsigned metadata_offset;
298
299	atomic_t in_flight;
300	blk_status_t bi_status;
301
302	struct completion *completion;
303
304	struct dm_bio_details bio_details;
305};
306
307struct journal_completion {
308	struct dm_integrity_c *ic;
309	atomic_t in_flight;
310	struct completion comp;
311};
312
313struct journal_io {
314	struct dm_integrity_range range;
315	struct journal_completion *comp;
316};
317
318struct bitmap_block_status {
319	struct work_struct work;
320	struct dm_integrity_c *ic;
321	unsigned idx;
322	unsigned long *bitmap;
323	struct bio_list bio_queue;
324	spinlock_t bio_queue_lock;
325
326};
327
328static struct kmem_cache *journal_io_cache;
329
330#define JOURNAL_IO_MEMPOOL	32
331
332#ifdef DEBUG_PRINT
333#define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
334static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
335{
336	va_list args;
337	va_start(args, msg);
338	vprintk(msg, args);
339	va_end(args);
340	if (len)
341		pr_cont(":");
342	while (len) {
343		pr_cont(" %02x", *bytes);
344		bytes++;
345		len--;
346	}
347	pr_cont("\n");
348}
349#define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
350#else
351#define DEBUG_print(x, ...)			do { } while (0)
352#define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
353#endif
354
355static void dm_integrity_prepare(struct request *rq)
356{
357}
358
359static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
360{
361}
362
363/*
364 * DM Integrity profile, protection is performed layer above (dm-crypt)
365 */
366static const struct blk_integrity_profile dm_integrity_profile = {
367	.name			= "DM-DIF-EXT-TAG",
368	.generate_fn		= NULL,
369	.verify_fn		= NULL,
370	.prepare_fn		= dm_integrity_prepare,
371	.complete_fn		= dm_integrity_complete,
372};
373
374static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
375static void integrity_bio_wait(struct work_struct *w);
376static void dm_integrity_dtr(struct dm_target *ti);
377
378static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
379{
380	if (err == -EILSEQ)
381		atomic64_inc(&ic->number_of_mismatches);
382	if (!cmpxchg(&ic->failed, 0, err))
383		DMERR("Error on %s: %d", msg, err);
384}
385
386static int dm_integrity_failed(struct dm_integrity_c *ic)
387{
388	return READ_ONCE(ic->failed);
389}
390
391static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
392{
393	if ((ic->internal_hash_alg.key || ic->journal_mac_alg.key) &&
394	    !ic->legacy_recalculate)
395		return true;
396	return false;
397}
398
399static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
400					  unsigned j, unsigned char seq)
401{
402	/*
403	 * Xor the number with section and sector, so that if a piece of
404	 * journal is written at wrong place, it is detected.
405	 */
406	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
407}
408
409static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
410				sector_t *area, sector_t *offset)
411{
412	if (!ic->meta_dev) {
413		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
414		*area = data_sector >> log2_interleave_sectors;
415		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
416	} else {
417		*area = 0;
418		*offset = data_sector;
419	}
420}
421
422#define sector_to_block(ic, n)						\
423do {									\
424	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
425	(n) >>= (ic)->sb->log2_sectors_per_block;			\
426} while (0)
427
428static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
429					    sector_t offset, unsigned *metadata_offset)
430{
431	__u64 ms;
432	unsigned mo;
433
434	ms = area << ic->sb->log2_interleave_sectors;
435	if (likely(ic->log2_metadata_run >= 0))
436		ms += area << ic->log2_metadata_run;
437	else
438		ms += area * ic->metadata_run;
439	ms >>= ic->log2_buffer_sectors;
440
441	sector_to_block(ic, offset);
442
443	if (likely(ic->log2_tag_size >= 0)) {
444		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
445		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
446	} else {
447		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
448		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
449	}
450	*metadata_offset = mo;
451	return ms;
452}
453
454static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
455{
456	sector_t result;
457
458	if (ic->meta_dev)
459		return offset;
460
461	result = area << ic->sb->log2_interleave_sectors;
462	if (likely(ic->log2_metadata_run >= 0))
463		result += (area + 1) << ic->log2_metadata_run;
464	else
465		result += (area + 1) * ic->metadata_run;
466
467	result += (sector_t)ic->initial_sectors + offset;
468	result += ic->start;
469
470	return result;
471}
472
473static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
474{
475	if (unlikely(*sec_ptr >= ic->journal_sections))
476		*sec_ptr -= ic->journal_sections;
477}
478
479static void sb_set_version(struct dm_integrity_c *ic)
480{
481	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
482		ic->sb->version = SB_VERSION_4;
483	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
484		ic->sb->version = SB_VERSION_3;
485	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
486		ic->sb->version = SB_VERSION_2;
487	else
488		ic->sb->version = SB_VERSION_1;
489}
490
491static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
492{
493	struct dm_io_request io_req;
494	struct dm_io_region io_loc;
495
496	io_req.bi_op = op;
497	io_req.bi_op_flags = op_flags;
498	io_req.mem.type = DM_IO_KMEM;
499	io_req.mem.ptr.addr = ic->sb;
500	io_req.notify.fn = NULL;
501	io_req.client = ic->io;
502	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
503	io_loc.sector = ic->start;
504	io_loc.count = SB_SECTORS;
505
506	if (op == REQ_OP_WRITE)
507		sb_set_version(ic);
508
509	return dm_io(&io_req, 1, &io_loc, NULL);
510}
511
512#define BITMAP_OP_TEST_ALL_SET		0
513#define BITMAP_OP_TEST_ALL_CLEAR	1
514#define BITMAP_OP_SET			2
515#define BITMAP_OP_CLEAR			3
516
517static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
518			    sector_t sector, sector_t n_sectors, int mode)
519{
520	unsigned long bit, end_bit, this_end_bit, page, end_page;
521	unsigned long *data;
522
523	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
524		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
525			sector,
526			n_sectors,
527			ic->sb->log2_sectors_per_block,
528			ic->log2_blocks_per_bitmap_bit,
529			mode);
530		BUG();
531	}
532
533	if (unlikely(!n_sectors))
534		return true;
535
536	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
537	end_bit = (sector + n_sectors - 1) >>
538		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
539
540	page = bit / (PAGE_SIZE * 8);
541	bit %= PAGE_SIZE * 8;
542
543	end_page = end_bit / (PAGE_SIZE * 8);
544	end_bit %= PAGE_SIZE * 8;
545
546repeat:
547	if (page < end_page) {
548		this_end_bit = PAGE_SIZE * 8 - 1;
549	} else {
550		this_end_bit = end_bit;
551	}
552
553	data = lowmem_page_address(bitmap[page].page);
554
555	if (mode == BITMAP_OP_TEST_ALL_SET) {
556		while (bit <= this_end_bit) {
557			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
558				do {
559					if (data[bit / BITS_PER_LONG] != -1)
560						return false;
561					bit += BITS_PER_LONG;
562				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
563				continue;
564			}
565			if (!test_bit(bit, data))
566				return false;
567			bit++;
568		}
569	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
570		while (bit <= this_end_bit) {
571			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
572				do {
573					if (data[bit / BITS_PER_LONG] != 0)
574						return false;
575					bit += BITS_PER_LONG;
576				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
577				continue;
578			}
579			if (test_bit(bit, data))
580				return false;
581			bit++;
582		}
583	} else if (mode == BITMAP_OP_SET) {
584		while (bit <= this_end_bit) {
585			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
586				do {
587					data[bit / BITS_PER_LONG] = -1;
588					bit += BITS_PER_LONG;
589				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
590				continue;
591			}
592			__set_bit(bit, data);
593			bit++;
594		}
595	} else if (mode == BITMAP_OP_CLEAR) {
596		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
597			clear_page(data);
598		else while (bit <= this_end_bit) {
599			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
600				do {
601					data[bit / BITS_PER_LONG] = 0;
602					bit += BITS_PER_LONG;
603				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
604				continue;
605			}
606			__clear_bit(bit, data);
607			bit++;
608		}
609	} else {
610		BUG();
611	}
612
613	if (unlikely(page < end_page)) {
614		bit = 0;
615		page++;
616		goto repeat;
617	}
618
619	return true;
620}
621
622static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
623{
624	unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
625	unsigned i;
626
627	for (i = 0; i < n_bitmap_pages; i++) {
628		unsigned long *dst_data = lowmem_page_address(dst[i].page);
629		unsigned long *src_data = lowmem_page_address(src[i].page);
630		copy_page(dst_data, src_data);
631	}
632}
633
634static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
635{
636	unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
637	unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
638
639	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
640	return &ic->bbs[bitmap_block];
641}
642
643static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
644				 bool e, const char *function)
645{
646#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
647	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
648
649	if (unlikely(section >= ic->journal_sections) ||
650	    unlikely(offset >= limit)) {
651		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
652		       function, section, offset, ic->journal_sections, limit);
653		BUG();
654	}
655#endif
656}
657
658static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
659			       unsigned *pl_index, unsigned *pl_offset)
660{
661	unsigned sector;
662
663	access_journal_check(ic, section, offset, false, "page_list_location");
664
665	sector = section * ic->journal_section_sectors + offset;
666
667	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
668	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
669}
670
671static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
672					       unsigned section, unsigned offset, unsigned *n_sectors)
673{
674	unsigned pl_index, pl_offset;
675	char *va;
676
677	page_list_location(ic, section, offset, &pl_index, &pl_offset);
678
679	if (n_sectors)
680		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
681
682	va = lowmem_page_address(pl[pl_index].page);
683
684	return (struct journal_sector *)(va + pl_offset);
685}
686
687static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
688{
689	return access_page_list(ic, ic->journal, section, offset, NULL);
690}
691
692static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
693{
694	unsigned rel_sector, offset;
695	struct journal_sector *js;
696
697	access_journal_check(ic, section, n, true, "access_journal_entry");
698
699	rel_sector = n % JOURNAL_BLOCK_SECTORS;
700	offset = n / JOURNAL_BLOCK_SECTORS;
701
702	js = access_journal(ic, section, rel_sector);
703	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
704}
705
706static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
707{
708	n <<= ic->sb->log2_sectors_per_block;
709
710	n += JOURNAL_BLOCK_SECTORS;
711
712	access_journal_check(ic, section, n, false, "access_journal_data");
713
714	return access_journal(ic, section, n);
715}
716
717static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
718{
719	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
720	int r;
721	unsigned j, size;
722
723	desc->tfm = ic->journal_mac;
724
725	r = crypto_shash_init(desc);
726	if (unlikely(r)) {
727		dm_integrity_io_error(ic, "crypto_shash_init", r);
728		goto err;
729	}
730
731	for (j = 0; j < ic->journal_section_entries; j++) {
732		struct journal_entry *je = access_journal_entry(ic, section, j);
733		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
734		if (unlikely(r)) {
735			dm_integrity_io_error(ic, "crypto_shash_update", r);
736			goto err;
737		}
738	}
739
740	size = crypto_shash_digestsize(ic->journal_mac);
741
742	if (likely(size <= JOURNAL_MAC_SIZE)) {
743		r = crypto_shash_final(desc, result);
744		if (unlikely(r)) {
745			dm_integrity_io_error(ic, "crypto_shash_final", r);
746			goto err;
747		}
748		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
749	} else {
750		__u8 digest[HASH_MAX_DIGESTSIZE];
751
752		if (WARN_ON(size > sizeof(digest))) {
753			dm_integrity_io_error(ic, "digest_size", -EINVAL);
754			goto err;
755		}
756		r = crypto_shash_final(desc, digest);
757		if (unlikely(r)) {
758			dm_integrity_io_error(ic, "crypto_shash_final", r);
759			goto err;
760		}
761		memcpy(result, digest, JOURNAL_MAC_SIZE);
762	}
763
764	return;
765err:
766	memset(result, 0, JOURNAL_MAC_SIZE);
767}
768
769static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
770{
771	__u8 result[JOURNAL_MAC_SIZE];
772	unsigned j;
773
774	if (!ic->journal_mac)
775		return;
776
777	section_mac(ic, section, result);
778
779	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
780		struct journal_sector *js = access_journal(ic, section, j);
781
782		if (likely(wr))
783			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
784		else {
785			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
786				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
787		}
788	}
789}
790
791static void complete_journal_op(void *context)
792{
793	struct journal_completion *comp = context;
794	BUG_ON(!atomic_read(&comp->in_flight));
795	if (likely(atomic_dec_and_test(&comp->in_flight)))
796		complete(&comp->comp);
797}
798
799static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
800			unsigned n_sections, struct journal_completion *comp)
801{
802	struct async_submit_ctl submit;
803	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
804	unsigned pl_index, pl_offset, section_index;
805	struct page_list *source_pl, *target_pl;
806
807	if (likely(encrypt)) {
808		source_pl = ic->journal;
809		target_pl = ic->journal_io;
810	} else {
811		source_pl = ic->journal_io;
812		target_pl = ic->journal;
813	}
814
815	page_list_location(ic, section, 0, &pl_index, &pl_offset);
816
817	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
818
819	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
820
821	section_index = pl_index;
822
823	do {
824		size_t this_step;
825		struct page *src_pages[2];
826		struct page *dst_page;
827
828		while (unlikely(pl_index == section_index)) {
829			unsigned dummy;
830			if (likely(encrypt))
831				rw_section_mac(ic, section, true);
832			section++;
833			n_sections--;
834			if (!n_sections)
835				break;
836			page_list_location(ic, section, 0, &section_index, &dummy);
837		}
838
839		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
840		dst_page = target_pl[pl_index].page;
841		src_pages[0] = source_pl[pl_index].page;
842		src_pages[1] = ic->journal_xor[pl_index].page;
843
844		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
845
846		pl_index++;
847		pl_offset = 0;
848		n_bytes -= this_step;
849	} while (n_bytes);
850
851	BUG_ON(n_sections);
852
853	async_tx_issue_pending_all();
854}
855
856static void complete_journal_encrypt(struct crypto_async_request *req, int err)
857{
858	struct journal_completion *comp = req->data;
859	if (unlikely(err)) {
860		if (likely(err == -EINPROGRESS)) {
861			complete(&comp->ic->crypto_backoff);
862			return;
863		}
864		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
865	}
866	complete_journal_op(comp);
867}
868
869static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
870{
871	int r;
872	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
873				      complete_journal_encrypt, comp);
874	if (likely(encrypt))
875		r = crypto_skcipher_encrypt(req);
876	else
877		r = crypto_skcipher_decrypt(req);
878	if (likely(!r))
879		return false;
880	if (likely(r == -EINPROGRESS))
881		return true;
882	if (likely(r == -EBUSY)) {
883		wait_for_completion(&comp->ic->crypto_backoff);
884		reinit_completion(&comp->ic->crypto_backoff);
885		return true;
886	}
887	dm_integrity_io_error(comp->ic, "encrypt", r);
888	return false;
889}
890
891static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
892			  unsigned n_sections, struct journal_completion *comp)
893{
894	struct scatterlist **source_sg;
895	struct scatterlist **target_sg;
896
897	atomic_add(2, &comp->in_flight);
898
899	if (likely(encrypt)) {
900		source_sg = ic->journal_scatterlist;
901		target_sg = ic->journal_io_scatterlist;
902	} else {
903		source_sg = ic->journal_io_scatterlist;
904		target_sg = ic->journal_scatterlist;
905	}
906
907	do {
908		struct skcipher_request *req;
909		unsigned ivsize;
910		char *iv;
911
912		if (likely(encrypt))
913			rw_section_mac(ic, section, true);
914
915		req = ic->sk_requests[section];
916		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
917		iv = req->iv;
918
919		memcpy(iv, iv + ivsize, ivsize);
920
921		req->src = source_sg[section];
922		req->dst = target_sg[section];
923
924		if (unlikely(do_crypt(encrypt, req, comp)))
925			atomic_inc(&comp->in_flight);
926
927		section++;
928		n_sections--;
929	} while (n_sections);
930
931	atomic_dec(&comp->in_flight);
932	complete_journal_op(comp);
933}
934
935static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
936			    unsigned n_sections, struct journal_completion *comp)
937{
938	if (ic->journal_xor)
939		return xor_journal(ic, encrypt, section, n_sections, comp);
940	else
941		return crypt_journal(ic, encrypt, section, n_sections, comp);
942}
943
944static void complete_journal_io(unsigned long error, void *context)
945{
946	struct journal_completion *comp = context;
947	if (unlikely(error != 0))
948		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
949	complete_journal_op(comp);
950}
951
952static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
953			       unsigned sector, unsigned n_sectors, struct journal_completion *comp)
954{
955	struct dm_io_request io_req;
956	struct dm_io_region io_loc;
957	unsigned pl_index, pl_offset;
958	int r;
959
960	if (unlikely(dm_integrity_failed(ic))) {
961		if (comp)
962			complete_journal_io(-1UL, comp);
963		return;
964	}
965
966	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
967	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
968
969	io_req.bi_op = op;
970	io_req.bi_op_flags = op_flags;
971	io_req.mem.type = DM_IO_PAGE_LIST;
972	if (ic->journal_io)
973		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
974	else
975		io_req.mem.ptr.pl = &ic->journal[pl_index];
976	io_req.mem.offset = pl_offset;
977	if (likely(comp != NULL)) {
978		io_req.notify.fn = complete_journal_io;
979		io_req.notify.context = comp;
980	} else {
981		io_req.notify.fn = NULL;
982	}
983	io_req.client = ic->io;
984	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
985	io_loc.sector = ic->start + SB_SECTORS + sector;
986	io_loc.count = n_sectors;
987
988	r = dm_io(&io_req, 1, &io_loc, NULL);
989	if (unlikely(r)) {
990		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
991		if (comp) {
992			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
993			complete_journal_io(-1UL, comp);
994		}
995	}
996}
997
998static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
999		       unsigned n_sections, struct journal_completion *comp)
1000{
1001	unsigned sector, n_sectors;
1002
1003	sector = section * ic->journal_section_sectors;
1004	n_sectors = n_sections * ic->journal_section_sectors;
1005
1006	rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1007}
1008
1009static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1010{
1011	struct journal_completion io_comp;
1012	struct journal_completion crypt_comp_1;
1013	struct journal_completion crypt_comp_2;
1014	unsigned i;
1015
1016	io_comp.ic = ic;
1017	init_completion(&io_comp.comp);
1018
1019	if (commit_start + commit_sections <= ic->journal_sections) {
1020		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1021		if (ic->journal_io) {
1022			crypt_comp_1.ic = ic;
1023			init_completion(&crypt_comp_1.comp);
1024			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1025			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1026			wait_for_completion_io(&crypt_comp_1.comp);
1027		} else {
1028			for (i = 0; i < commit_sections; i++)
1029				rw_section_mac(ic, commit_start + i, true);
1030		}
1031		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1032			   commit_sections, &io_comp);
1033	} else {
1034		unsigned to_end;
1035		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1036		to_end = ic->journal_sections - commit_start;
1037		if (ic->journal_io) {
1038			crypt_comp_1.ic = ic;
1039			init_completion(&crypt_comp_1.comp);
1040			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1041			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1042			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1043				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1044				reinit_completion(&crypt_comp_1.comp);
1045				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1046				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1047				wait_for_completion_io(&crypt_comp_1.comp);
1048			} else {
1049				crypt_comp_2.ic = ic;
1050				init_completion(&crypt_comp_2.comp);
1051				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1052				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1053				wait_for_completion_io(&crypt_comp_1.comp);
1054				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1055				wait_for_completion_io(&crypt_comp_2.comp);
1056			}
1057		} else {
1058			for (i = 0; i < to_end; i++)
1059				rw_section_mac(ic, commit_start + i, true);
1060			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1061			for (i = 0; i < commit_sections - to_end; i++)
1062				rw_section_mac(ic, i, true);
1063		}
1064		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1065	}
1066
1067	wait_for_completion_io(&io_comp.comp);
1068}
1069
1070static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1071			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1072{
1073	struct dm_io_request io_req;
1074	struct dm_io_region io_loc;
1075	int r;
1076	unsigned sector, pl_index, pl_offset;
1077
1078	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1079
1080	if (unlikely(dm_integrity_failed(ic))) {
1081		fn(-1UL, data);
1082		return;
1083	}
1084
1085	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1086
1087	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1088	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1089
1090	io_req.bi_op = REQ_OP_WRITE;
1091	io_req.bi_op_flags = 0;
1092	io_req.mem.type = DM_IO_PAGE_LIST;
1093	io_req.mem.ptr.pl = &ic->journal[pl_index];
1094	io_req.mem.offset = pl_offset;
1095	io_req.notify.fn = fn;
1096	io_req.notify.context = data;
1097	io_req.client = ic->io;
1098	io_loc.bdev = ic->dev->bdev;
1099	io_loc.sector = target;
1100	io_loc.count = n_sectors;
1101
1102	r = dm_io(&io_req, 1, &io_loc, NULL);
1103	if (unlikely(r)) {
1104		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1105		fn(-1UL, data);
1106	}
1107}
1108
1109static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1110{
1111	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1112	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1113}
1114
1115static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1116{
1117	struct rb_node **n = &ic->in_progress.rb_node;
1118	struct rb_node *parent;
1119
1120	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1121
1122	if (likely(check_waiting)) {
1123		struct dm_integrity_range *range;
1124		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1125			if (unlikely(ranges_overlap(range, new_range)))
1126				return false;
1127		}
1128	}
1129
1130	parent = NULL;
1131
1132	while (*n) {
1133		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1134
1135		parent = *n;
1136		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1137			n = &range->node.rb_left;
1138		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1139			n = &range->node.rb_right;
1140		} else {
1141			return false;
1142		}
1143	}
1144
1145	rb_link_node(&new_range->node, parent, n);
1146	rb_insert_color(&new_range->node, &ic->in_progress);
1147
1148	return true;
1149}
1150
1151static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1152{
1153	rb_erase(&range->node, &ic->in_progress);
1154	while (unlikely(!list_empty(&ic->wait_list))) {
1155		struct dm_integrity_range *last_range =
1156			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1157		struct task_struct *last_range_task;
1158		last_range_task = last_range->task;
1159		list_del(&last_range->wait_entry);
1160		if (!add_new_range(ic, last_range, false)) {
1161			last_range->task = last_range_task;
1162			list_add(&last_range->wait_entry, &ic->wait_list);
1163			break;
1164		}
1165		last_range->waiting = false;
1166		wake_up_process(last_range_task);
1167	}
1168}
1169
1170static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1171{
1172	unsigned long flags;
1173
1174	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1175	remove_range_unlocked(ic, range);
1176	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1177}
1178
1179static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1180{
1181	new_range->waiting = true;
1182	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1183	new_range->task = current;
1184	do {
1185		__set_current_state(TASK_UNINTERRUPTIBLE);
1186		spin_unlock_irq(&ic->endio_wait.lock);
1187		io_schedule();
1188		spin_lock_irq(&ic->endio_wait.lock);
1189	} while (unlikely(new_range->waiting));
1190}
1191
1192static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1193{
1194	if (unlikely(!add_new_range(ic, new_range, true)))
1195		wait_and_add_new_range(ic, new_range);
1196}
1197
1198static void init_journal_node(struct journal_node *node)
1199{
1200	RB_CLEAR_NODE(&node->node);
1201	node->sector = (sector_t)-1;
1202}
1203
1204static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1205{
1206	struct rb_node **link;
1207	struct rb_node *parent;
1208
1209	node->sector = sector;
1210	BUG_ON(!RB_EMPTY_NODE(&node->node));
1211
1212	link = &ic->journal_tree_root.rb_node;
1213	parent = NULL;
1214
1215	while (*link) {
1216		struct journal_node *j;
1217		parent = *link;
1218		j = container_of(parent, struct journal_node, node);
1219		if (sector < j->sector)
1220			link = &j->node.rb_left;
1221		else
1222			link = &j->node.rb_right;
1223	}
1224
1225	rb_link_node(&node->node, parent, link);
1226	rb_insert_color(&node->node, &ic->journal_tree_root);
1227}
1228
1229static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1230{
1231	BUG_ON(RB_EMPTY_NODE(&node->node));
1232	rb_erase(&node->node, &ic->journal_tree_root);
1233	init_journal_node(node);
1234}
1235
1236#define NOT_FOUND	(-1U)
1237
1238static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1239{
1240	struct rb_node *n = ic->journal_tree_root.rb_node;
1241	unsigned found = NOT_FOUND;
1242	*next_sector = (sector_t)-1;
1243	while (n) {
1244		struct journal_node *j = container_of(n, struct journal_node, node);
1245		if (sector == j->sector) {
1246			found = j - ic->journal_tree;
1247		}
1248		if (sector < j->sector) {
1249			*next_sector = j->sector;
1250			n = j->node.rb_left;
1251		} else {
1252			n = j->node.rb_right;
1253		}
1254	}
1255
1256	return found;
1257}
1258
1259static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1260{
1261	struct journal_node *node, *next_node;
1262	struct rb_node *next;
1263
1264	if (unlikely(pos >= ic->journal_entries))
1265		return false;
1266	node = &ic->journal_tree[pos];
1267	if (unlikely(RB_EMPTY_NODE(&node->node)))
1268		return false;
1269	if (unlikely(node->sector != sector))
1270		return false;
1271
1272	next = rb_next(&node->node);
1273	if (unlikely(!next))
1274		return true;
1275
1276	next_node = container_of(next, struct journal_node, node);
1277	return next_node->sector != sector;
1278}
1279
1280static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1281{
1282	struct rb_node *next;
1283	struct journal_node *next_node;
1284	unsigned next_section;
1285
1286	BUG_ON(RB_EMPTY_NODE(&node->node));
1287
1288	next = rb_next(&node->node);
1289	if (unlikely(!next))
1290		return false;
1291
1292	next_node = container_of(next, struct journal_node, node);
1293
1294	if (next_node->sector != node->sector)
1295		return false;
1296
1297	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1298	if (next_section >= ic->committed_section &&
1299	    next_section < ic->committed_section + ic->n_committed_sections)
1300		return true;
1301	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1302		return true;
1303
1304	return false;
1305}
1306
1307#define TAG_READ	0
1308#define TAG_WRITE	1
1309#define TAG_CMP		2
1310
1311static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1312			       unsigned *metadata_offset, unsigned total_size, int op)
1313{
1314#define MAY_BE_FILLER		1
1315#define MAY_BE_HASH		2
1316	unsigned hash_offset = 0;
1317	unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1318
1319	do {
1320		unsigned char *data, *dp;
1321		struct dm_buffer *b;
1322		unsigned to_copy;
1323		int r;
1324
1325		r = dm_integrity_failed(ic);
1326		if (unlikely(r))
1327			return r;
1328
1329		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1330		if (IS_ERR(data))
1331			return PTR_ERR(data);
1332
1333		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1334		dp = data + *metadata_offset;
1335		if (op == TAG_READ) {
1336			memcpy(tag, dp, to_copy);
1337		} else if (op == TAG_WRITE) {
1338			memcpy(dp, tag, to_copy);
1339			dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1340		} else {
1341			/* e.g.: op == TAG_CMP */
1342
1343			if (likely(is_power_of_2(ic->tag_size))) {
1344				if (unlikely(memcmp(dp, tag, to_copy)))
1345					if (unlikely(!ic->discard) ||
1346					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1347						goto thorough_test;
1348				}
1349			} else {
1350				unsigned i, ts;
1351thorough_test:
1352				ts = total_size;
1353
1354				for (i = 0; i < to_copy; i++, ts--) {
1355					if (unlikely(dp[i] != tag[i]))
1356						may_be &= ~MAY_BE_HASH;
1357					if (likely(dp[i] != DISCARD_FILLER))
1358						may_be &= ~MAY_BE_FILLER;
1359					hash_offset++;
1360					if (unlikely(hash_offset == ic->tag_size)) {
1361						if (unlikely(!may_be)) {
1362							dm_bufio_release(b);
1363							return ts;
1364						}
1365						hash_offset = 0;
1366						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1367					}
1368				}
1369			}
1370		}
1371		dm_bufio_release(b);
1372
1373		tag += to_copy;
1374		*metadata_offset += to_copy;
1375		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1376			(*metadata_block)++;
1377			*metadata_offset = 0;
1378		}
1379
1380		if (unlikely(!is_power_of_2(ic->tag_size))) {
1381			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1382		}
1383
1384		total_size -= to_copy;
1385	} while (unlikely(total_size));
1386
1387	return 0;
1388#undef MAY_BE_FILLER
1389#undef MAY_BE_HASH
1390}
1391
1392struct flush_request {
1393	struct dm_io_request io_req;
1394	struct dm_io_region io_reg;
1395	struct dm_integrity_c *ic;
1396	struct completion comp;
1397};
1398
1399static void flush_notify(unsigned long error, void *fr_)
1400{
1401	struct flush_request *fr = fr_;
1402	if (unlikely(error != 0))
1403		dm_integrity_io_error(fr->ic, "flusing disk cache", -EIO);
1404	complete(&fr->comp);
1405}
1406
1407static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1408{
1409	int r;
1410
1411	struct flush_request fr;
1412
1413	if (!ic->meta_dev)
1414		flush_data = false;
1415	if (flush_data) {
1416		fr.io_req.bi_op = REQ_OP_WRITE,
1417		fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1418		fr.io_req.mem.type = DM_IO_KMEM,
1419		fr.io_req.mem.ptr.addr = NULL,
1420		fr.io_req.notify.fn = flush_notify,
1421		fr.io_req.notify.context = &fr;
1422		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1423		fr.io_reg.bdev = ic->dev->bdev,
1424		fr.io_reg.sector = 0,
1425		fr.io_reg.count = 0,
1426		fr.ic = ic;
1427		init_completion(&fr.comp);
1428		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1429		BUG_ON(r);
1430	}
1431
1432	r = dm_bufio_write_dirty_buffers(ic->bufio);
1433	if (unlikely(r))
1434		dm_integrity_io_error(ic, "writing tags", r);
1435
1436	if (flush_data)
1437		wait_for_completion(&fr.comp);
1438}
1439
1440static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1441{
1442	DECLARE_WAITQUEUE(wait, current);
1443	__add_wait_queue(&ic->endio_wait, &wait);
1444	__set_current_state(TASK_UNINTERRUPTIBLE);
1445	spin_unlock_irq(&ic->endio_wait.lock);
1446	io_schedule();
1447	spin_lock_irq(&ic->endio_wait.lock);
1448	__remove_wait_queue(&ic->endio_wait, &wait);
1449}
1450
1451static void autocommit_fn(struct timer_list *t)
1452{
1453	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1454
1455	if (likely(!dm_integrity_failed(ic)))
1456		queue_work(ic->commit_wq, &ic->commit_work);
1457}
1458
1459static void schedule_autocommit(struct dm_integrity_c *ic)
1460{
1461	if (!timer_pending(&ic->autocommit_timer))
1462		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1463}
1464
1465static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1466{
1467	struct bio *bio;
1468	unsigned long flags;
1469
1470	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1471	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1472	bio_list_add(&ic->flush_bio_list, bio);
1473	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1474
1475	queue_work(ic->commit_wq, &ic->commit_work);
1476}
1477
1478static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1479{
1480	int r = dm_integrity_failed(ic);
1481	if (unlikely(r) && !bio->bi_status)
1482		bio->bi_status = errno_to_blk_status(r);
1483	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1484		unsigned long flags;
1485		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1486		bio_list_add(&ic->synchronous_bios, bio);
1487		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1488		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1489		return;
1490	}
1491	bio_endio(bio);
1492}
1493
1494static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1495{
1496	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1497
1498	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1499		submit_flush_bio(ic, dio);
1500	else
1501		do_endio(ic, bio);
1502}
1503
1504static void dec_in_flight(struct dm_integrity_io *dio)
1505{
1506	if (atomic_dec_and_test(&dio->in_flight)) {
1507		struct dm_integrity_c *ic = dio->ic;
1508		struct bio *bio;
1509
1510		remove_range(ic, &dio->range);
1511
1512		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1513			schedule_autocommit(ic);
1514
1515		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1516
1517		if (unlikely(dio->bi_status) && !bio->bi_status)
1518			bio->bi_status = dio->bi_status;
1519		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1520			dio->range.logical_sector += dio->range.n_sectors;
1521			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1522			INIT_WORK(&dio->work, integrity_bio_wait);
1523			queue_work(ic->offload_wq, &dio->work);
1524			return;
1525		}
1526		do_endio_flush(ic, dio);
1527	}
1528}
1529
1530static void integrity_end_io(struct bio *bio)
1531{
1532	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1533
1534	dm_bio_restore(&dio->bio_details, bio);
1535	if (bio->bi_integrity)
1536		bio->bi_opf |= REQ_INTEGRITY;
1537
1538	if (dio->completion)
1539		complete(dio->completion);
1540
1541	dec_in_flight(dio);
1542}
1543
1544static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1545				      const char *data, char *result)
1546{
1547	__u64 sector_le = cpu_to_le64(sector);
1548	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1549	int r;
1550	unsigned digest_size;
1551
1552	req->tfm = ic->internal_hash;
1553
1554	r = crypto_shash_init(req);
1555	if (unlikely(r < 0)) {
1556		dm_integrity_io_error(ic, "crypto_shash_init", r);
1557		goto failed;
1558	}
1559
1560	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1561	if (unlikely(r < 0)) {
1562		dm_integrity_io_error(ic, "crypto_shash_update", r);
1563		goto failed;
1564	}
1565
1566	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1567	if (unlikely(r < 0)) {
1568		dm_integrity_io_error(ic, "crypto_shash_update", r);
1569		goto failed;
1570	}
1571
1572	r = crypto_shash_final(req, result);
1573	if (unlikely(r < 0)) {
1574		dm_integrity_io_error(ic, "crypto_shash_final", r);
1575		goto failed;
1576	}
1577
1578	digest_size = crypto_shash_digestsize(ic->internal_hash);
1579	if (unlikely(digest_size < ic->tag_size))
1580		memset(result + digest_size, 0, ic->tag_size - digest_size);
1581
1582	return;
1583
1584failed:
1585	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1586	get_random_bytes(result, ic->tag_size);
1587}
1588
1589static void integrity_metadata(struct work_struct *w)
1590{
1591	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1592	struct dm_integrity_c *ic = dio->ic;
1593
1594	int r;
1595
1596	if (ic->internal_hash) {
1597		struct bvec_iter iter;
1598		struct bio_vec bv;
1599		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1600		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1601		char *checksums;
1602		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1603		char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1604		sector_t sector;
1605		unsigned sectors_to_process;
1606
1607		if (unlikely(ic->mode == 'R'))
1608			goto skip_io;
1609
1610		if (likely(dio->op != REQ_OP_DISCARD))
1611			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1612					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1613		else
1614			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1615		if (!checksums) {
1616			checksums = checksums_onstack;
1617			if (WARN_ON(extra_space &&
1618				    digest_size > sizeof(checksums_onstack))) {
1619				r = -EINVAL;
1620				goto error;
1621			}
1622		}
1623
1624		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1625			sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1626			unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1627			unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1628			unsigned max_blocks = max_size / ic->tag_size;
1629			memset(checksums, DISCARD_FILLER, max_size);
1630
1631			while (bi_size) {
1632				unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1633				this_step_blocks = min(this_step_blocks, max_blocks);
1634				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1635							this_step_blocks * ic->tag_size, TAG_WRITE);
1636				if (unlikely(r)) {
1637					if (likely(checksums != checksums_onstack))
1638						kfree(checksums);
1639					goto error;
1640				}
1641
1642				/*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1643					printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1644					printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1645					BUG();
1646				}*/
1647				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1648				bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1649			}
1650
1651			if (likely(checksums != checksums_onstack))
1652				kfree(checksums);
1653			goto skip_io;
1654		}
1655
1656		sector = dio->range.logical_sector;
1657		sectors_to_process = dio->range.n_sectors;
1658
1659		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1660			struct bio_vec bv_copy = bv;
1661			unsigned pos;
1662			char *mem, *checksums_ptr;
1663
1664again:
1665			mem = (char *)kmap_atomic(bv_copy.bv_page) + bv_copy.bv_offset;
1666			pos = 0;
1667			checksums_ptr = checksums;
1668			do {
1669				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1670				checksums_ptr += ic->tag_size;
1671				sectors_to_process -= ic->sectors_per_block;
1672				pos += ic->sectors_per_block << SECTOR_SHIFT;
1673				sector += ic->sectors_per_block;
1674			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1675			kunmap_atomic(mem);
1676
1677			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1678						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1679			if (unlikely(r)) {
1680				if (r > 0) {
1681					char b[BDEVNAME_SIZE];
1682					DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1683						    (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1684					r = -EILSEQ;
1685					atomic64_inc(&ic->number_of_mismatches);
1686				}
1687				if (likely(checksums != checksums_onstack))
1688					kfree(checksums);
1689				goto error;
1690			}
1691
1692			if (!sectors_to_process)
1693				break;
1694
1695			if (unlikely(pos < bv_copy.bv_len)) {
1696				bv_copy.bv_offset += pos;
1697				bv_copy.bv_len -= pos;
1698				goto again;
1699			}
1700		}
1701
1702		if (likely(checksums != checksums_onstack))
1703			kfree(checksums);
1704	} else {
1705		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1706
1707		if (bip) {
1708			struct bio_vec biv;
1709			struct bvec_iter iter;
1710			unsigned data_to_process = dio->range.n_sectors;
1711			sector_to_block(ic, data_to_process);
1712			data_to_process *= ic->tag_size;
1713
1714			bip_for_each_vec(biv, bip, iter) {
1715				unsigned char *tag;
1716				unsigned this_len;
1717
1718				BUG_ON(PageHighMem(biv.bv_page));
1719				tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1720				this_len = min(biv.bv_len, data_to_process);
1721				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1722							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1723				if (unlikely(r))
1724					goto error;
1725				data_to_process -= this_len;
1726				if (!data_to_process)
1727					break;
1728			}
1729		}
1730	}
1731skip_io:
1732	dec_in_flight(dio);
1733	return;
1734error:
1735	dio->bi_status = errno_to_blk_status(r);
1736	dec_in_flight(dio);
1737}
1738
1739static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1740{
1741	struct dm_integrity_c *ic = ti->private;
1742	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1743	struct bio_integrity_payload *bip;
1744
1745	sector_t area, offset;
1746
1747	dio->ic = ic;
1748	dio->bi_status = 0;
1749	dio->op = bio_op(bio);
1750
1751	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1752		if (ti->max_io_len) {
1753			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1754			unsigned log2_max_io_len = __fls(ti->max_io_len);
1755			sector_t start_boundary = sec >> log2_max_io_len;
1756			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1757			if (start_boundary < end_boundary) {
1758				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1759				dm_accept_partial_bio(bio, len);
1760			}
1761		}
1762	}
1763
1764	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1765		submit_flush_bio(ic, dio);
1766		return DM_MAPIO_SUBMITTED;
1767	}
1768
1769	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1770	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1771	if (unlikely(dio->fua)) {
1772		/*
1773		 * Don't pass down the FUA flag because we have to flush
1774		 * disk cache anyway.
1775		 */
1776		bio->bi_opf &= ~REQ_FUA;
1777	}
1778	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1779		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1780		      dio->range.logical_sector, bio_sectors(bio),
1781		      ic->provided_data_sectors);
1782		return DM_MAPIO_KILL;
1783	}
1784	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1785		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1786		      ic->sectors_per_block,
1787		      dio->range.logical_sector, bio_sectors(bio));
1788		return DM_MAPIO_KILL;
1789	}
1790
1791	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1792		struct bvec_iter iter;
1793		struct bio_vec bv;
1794		bio_for_each_segment(bv, bio, iter) {
1795			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1796				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1797					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1798				return DM_MAPIO_KILL;
1799			}
1800		}
1801	}
1802
1803	bip = bio_integrity(bio);
1804	if (!ic->internal_hash) {
1805		if (bip) {
1806			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1807			if (ic->log2_tag_size >= 0)
1808				wanted_tag_size <<= ic->log2_tag_size;
1809			else
1810				wanted_tag_size *= ic->tag_size;
1811			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1812				DMERR("Invalid integrity data size %u, expected %u",
1813				      bip->bip_iter.bi_size, wanted_tag_size);
1814				return DM_MAPIO_KILL;
1815			}
1816		}
1817	} else {
1818		if (unlikely(bip != NULL)) {
1819			DMERR("Unexpected integrity data when using internal hash");
1820			return DM_MAPIO_KILL;
1821		}
1822	}
1823
1824	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1825		return DM_MAPIO_KILL;
1826
1827	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1828	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1829	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1830
1831	dm_integrity_map_continue(dio, true);
1832	return DM_MAPIO_SUBMITTED;
1833}
1834
1835static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1836				 unsigned journal_section, unsigned journal_entry)
1837{
1838	struct dm_integrity_c *ic = dio->ic;
1839	sector_t logical_sector;
1840	unsigned n_sectors;
1841
1842	logical_sector = dio->range.logical_sector;
1843	n_sectors = dio->range.n_sectors;
1844	do {
1845		struct bio_vec bv = bio_iovec(bio);
1846		char *mem;
1847
1848		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1849			bv.bv_len = n_sectors << SECTOR_SHIFT;
1850		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1851		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1852retry_kmap:
1853		mem = kmap_atomic(bv.bv_page);
1854		if (likely(dio->op == REQ_OP_WRITE))
1855			flush_dcache_page(bv.bv_page);
1856
1857		do {
1858			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1859
1860			if (unlikely(dio->op == REQ_OP_READ)) {
1861				struct journal_sector *js;
1862				char *mem_ptr;
1863				unsigned s;
1864
1865				if (unlikely(journal_entry_is_inprogress(je))) {
1866					flush_dcache_page(bv.bv_page);
1867					kunmap_atomic(mem);
1868
1869					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1870					goto retry_kmap;
1871				}
1872				smp_rmb();
1873				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1874				js = access_journal_data(ic, journal_section, journal_entry);
1875				mem_ptr = mem + bv.bv_offset;
1876				s = 0;
1877				do {
1878					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1879					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1880					js++;
1881					mem_ptr += 1 << SECTOR_SHIFT;
1882				} while (++s < ic->sectors_per_block);
1883#ifdef INTERNAL_VERIFY
1884				if (ic->internal_hash) {
1885					char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1886
1887					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1888					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1889						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1890							    logical_sector);
1891					}
1892				}
1893#endif
1894			}
1895
1896			if (!ic->internal_hash) {
1897				struct bio_integrity_payload *bip = bio_integrity(bio);
1898				unsigned tag_todo = ic->tag_size;
1899				char *tag_ptr = journal_entry_tag(ic, je);
1900
1901				if (bip) do {
1902					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1903					unsigned tag_now = min(biv.bv_len, tag_todo);
1904					char *tag_addr;
1905					BUG_ON(PageHighMem(biv.bv_page));
1906					tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1907					if (likely(dio->op == REQ_OP_WRITE))
1908						memcpy(tag_ptr, tag_addr, tag_now);
1909					else
1910						memcpy(tag_addr, tag_ptr, tag_now);
1911					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1912					tag_ptr += tag_now;
1913					tag_todo -= tag_now;
1914				} while (unlikely(tag_todo)); else {
1915					if (likely(dio->op == REQ_OP_WRITE))
1916						memset(tag_ptr, 0, tag_todo);
1917				}
1918			}
1919
1920			if (likely(dio->op == REQ_OP_WRITE)) {
1921				struct journal_sector *js;
1922				unsigned s;
1923
1924				js = access_journal_data(ic, journal_section, journal_entry);
1925				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1926
1927				s = 0;
1928				do {
1929					je->last_bytes[s] = js[s].commit_id;
1930				} while (++s < ic->sectors_per_block);
1931
1932				if (ic->internal_hash) {
1933					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1934					if (unlikely(digest_size > ic->tag_size)) {
1935						char checksums_onstack[HASH_MAX_DIGESTSIZE];
1936						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1937						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1938					} else
1939						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1940				}
1941
1942				journal_entry_set_sector(je, logical_sector);
1943			}
1944			logical_sector += ic->sectors_per_block;
1945
1946			journal_entry++;
1947			if (unlikely(journal_entry == ic->journal_section_entries)) {
1948				journal_entry = 0;
1949				journal_section++;
1950				wraparound_section(ic, &journal_section);
1951			}
1952
1953			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1954		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1955
1956		if (unlikely(dio->op == REQ_OP_READ))
1957			flush_dcache_page(bv.bv_page);
1958		kunmap_atomic(mem);
1959	} while (n_sectors);
1960
1961	if (likely(dio->op == REQ_OP_WRITE)) {
1962		smp_mb();
1963		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1964			wake_up(&ic->copy_to_journal_wait);
1965		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1966			queue_work(ic->commit_wq, &ic->commit_work);
1967		} else {
1968			schedule_autocommit(ic);
1969		}
1970	} else {
1971		remove_range(ic, &dio->range);
1972	}
1973
1974	if (unlikely(bio->bi_iter.bi_size)) {
1975		sector_t area, offset;
1976
1977		dio->range.logical_sector = logical_sector;
1978		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1979		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1980		return true;
1981	}
1982
1983	return false;
1984}
1985
1986static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1987{
1988	struct dm_integrity_c *ic = dio->ic;
1989	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1990	unsigned journal_section, journal_entry;
1991	unsigned journal_read_pos;
1992	struct completion read_comp;
1993	bool discard_retried = false;
1994	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
1995	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
1996		need_sync_io = true;
1997
1998	if (need_sync_io && from_map) {
1999		INIT_WORK(&dio->work, integrity_bio_wait);
2000		queue_work(ic->offload_wq, &dio->work);
2001		return;
2002	}
2003
2004lock_retry:
2005	spin_lock_irq(&ic->endio_wait.lock);
2006retry:
2007	if (unlikely(dm_integrity_failed(ic))) {
2008		spin_unlock_irq(&ic->endio_wait.lock);
2009		do_endio(ic, bio);
2010		return;
2011	}
2012	dio->range.n_sectors = bio_sectors(bio);
2013	journal_read_pos = NOT_FOUND;
2014	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2015		if (dio->op == REQ_OP_WRITE) {
2016			unsigned next_entry, i, pos;
2017			unsigned ws, we, range_sectors;
2018
2019			dio->range.n_sectors = min(dio->range.n_sectors,
2020						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2021			if (unlikely(!dio->range.n_sectors)) {
2022				if (from_map)
2023					goto offload_to_thread;
2024				sleep_on_endio_wait(ic);
2025				goto retry;
2026			}
2027			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2028			ic->free_sectors -= range_sectors;
2029			journal_section = ic->free_section;
2030			journal_entry = ic->free_section_entry;
2031
2032			next_entry = ic->free_section_entry + range_sectors;
2033			ic->free_section_entry = next_entry % ic->journal_section_entries;
2034			ic->free_section += next_entry / ic->journal_section_entries;
2035			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2036			wraparound_section(ic, &ic->free_section);
2037
2038			pos = journal_section * ic->journal_section_entries + journal_entry;
2039			ws = journal_section;
2040			we = journal_entry;
2041			i = 0;
2042			do {
2043				struct journal_entry *je;
2044
2045				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2046				pos++;
2047				if (unlikely(pos >= ic->journal_entries))
2048					pos = 0;
2049
2050				je = access_journal_entry(ic, ws, we);
2051				BUG_ON(!journal_entry_is_unused(je));
2052				journal_entry_set_inprogress(je);
2053				we++;
2054				if (unlikely(we == ic->journal_section_entries)) {
2055					we = 0;
2056					ws++;
2057					wraparound_section(ic, &ws);
2058				}
2059			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2060
2061			spin_unlock_irq(&ic->endio_wait.lock);
2062			goto journal_read_write;
2063		} else {
2064			sector_t next_sector;
2065			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2066			if (likely(journal_read_pos == NOT_FOUND)) {
2067				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2068					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2069			} else {
2070				unsigned i;
2071				unsigned jp = journal_read_pos + 1;
2072				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2073					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2074						break;
2075				}
2076				dio->range.n_sectors = i;
2077			}
2078		}
2079	}
2080	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2081		/*
2082		 * We must not sleep in the request routine because it could
2083		 * stall bios on current->bio_list.
2084		 * So, we offload the bio to a workqueue if we have to sleep.
2085		 */
2086		if (from_map) {
2087offload_to_thread:
2088			spin_unlock_irq(&ic->endio_wait.lock);
2089			INIT_WORK(&dio->work, integrity_bio_wait);
2090			queue_work(ic->wait_wq, &dio->work);
2091			return;
2092		}
2093		if (journal_read_pos != NOT_FOUND)
2094			dio->range.n_sectors = ic->sectors_per_block;
2095		wait_and_add_new_range(ic, &dio->range);
2096		/*
2097		 * wait_and_add_new_range drops the spinlock, so the journal
2098		 * may have been changed arbitrarily. We need to recheck.
2099		 * To simplify the code, we restrict I/O size to just one block.
2100		 */
2101		if (journal_read_pos != NOT_FOUND) {
2102			sector_t next_sector;
2103			unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2104			if (unlikely(new_pos != journal_read_pos)) {
2105				remove_range_unlocked(ic, &dio->range);
2106				goto retry;
2107			}
2108		}
2109	}
2110	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2111		sector_t next_sector;
2112		unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2113		if (unlikely(new_pos != NOT_FOUND) ||
2114		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2115			remove_range_unlocked(ic, &dio->range);
2116			spin_unlock_irq(&ic->endio_wait.lock);
2117			queue_work(ic->commit_wq, &ic->commit_work);
2118			flush_workqueue(ic->commit_wq);
2119			queue_work(ic->writer_wq, &ic->writer_work);
2120			flush_workqueue(ic->writer_wq);
2121			discard_retried = true;
2122			goto lock_retry;
2123		}
2124	}
2125	spin_unlock_irq(&ic->endio_wait.lock);
2126
2127	if (unlikely(journal_read_pos != NOT_FOUND)) {
2128		journal_section = journal_read_pos / ic->journal_section_entries;
2129		journal_entry = journal_read_pos % ic->journal_section_entries;
2130		goto journal_read_write;
2131	}
2132
2133	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2134		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2135				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2136			struct bitmap_block_status *bbs;
2137
2138			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2139			spin_lock(&bbs->bio_queue_lock);
2140			bio_list_add(&bbs->bio_queue, bio);
2141			spin_unlock(&bbs->bio_queue_lock);
2142			queue_work(ic->writer_wq, &bbs->work);
2143			return;
2144		}
2145	}
2146
2147	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2148
2149	if (need_sync_io) {
2150		init_completion(&read_comp);
2151		dio->completion = &read_comp;
2152	} else
2153		dio->completion = NULL;
2154
2155	dm_bio_record(&dio->bio_details, bio);
2156	bio_set_dev(bio, ic->dev->bdev);
2157	bio->bi_integrity = NULL;
2158	bio->bi_opf &= ~REQ_INTEGRITY;
2159	bio->bi_end_io = integrity_end_io;
2160	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2161
2162	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2163		integrity_metadata(&dio->work);
2164		dm_integrity_flush_buffers(ic, false);
2165
2166		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2167		dio->completion = NULL;
2168
2169		submit_bio_noacct(bio);
2170
2171		return;
2172	}
2173
2174	submit_bio_noacct(bio);
2175
2176	if (need_sync_io) {
2177		wait_for_completion_io(&read_comp);
2178		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2179		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2180			goto skip_check;
2181		if (ic->mode == 'B') {
2182			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2183					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2184				goto skip_check;
2185		}
2186
2187		if (likely(!bio->bi_status))
2188			integrity_metadata(&dio->work);
2189		else
2190skip_check:
2191			dec_in_flight(dio);
2192
2193	} else {
2194		INIT_WORK(&dio->work, integrity_metadata);
2195		queue_work(ic->metadata_wq, &dio->work);
2196	}
2197
2198	return;
2199
2200journal_read_write:
2201	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2202		goto lock_retry;
2203
2204	do_endio_flush(ic, dio);
2205}
2206
2207
2208static void integrity_bio_wait(struct work_struct *w)
2209{
2210	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2211
2212	dm_integrity_map_continue(dio, false);
2213}
2214
2215static void pad_uncommitted(struct dm_integrity_c *ic)
2216{
2217	if (ic->free_section_entry) {
2218		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2219		ic->free_section_entry = 0;
2220		ic->free_section++;
2221		wraparound_section(ic, &ic->free_section);
2222		ic->n_uncommitted_sections++;
2223	}
2224	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2225		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2226		    ic->journal_section_entries + ic->free_sectors)) {
2227		DMCRIT("journal_sections %u, journal_section_entries %u, "
2228		       "n_uncommitted_sections %u, n_committed_sections %u, "
2229		       "journal_section_entries %u, free_sectors %u",
2230		       ic->journal_sections, ic->journal_section_entries,
2231		       ic->n_uncommitted_sections, ic->n_committed_sections,
2232		       ic->journal_section_entries, ic->free_sectors);
2233	}
2234}
2235
2236static void integrity_commit(struct work_struct *w)
2237{
2238	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2239	unsigned commit_start, commit_sections;
2240	unsigned i, j, n;
2241	struct bio *flushes;
2242
2243	del_timer(&ic->autocommit_timer);
2244
2245	spin_lock_irq(&ic->endio_wait.lock);
2246	flushes = bio_list_get(&ic->flush_bio_list);
2247	if (unlikely(ic->mode != 'J')) {
2248		spin_unlock_irq(&ic->endio_wait.lock);
2249		dm_integrity_flush_buffers(ic, true);
2250		goto release_flush_bios;
2251	}
2252
2253	pad_uncommitted(ic);
2254	commit_start = ic->uncommitted_section;
2255	commit_sections = ic->n_uncommitted_sections;
2256	spin_unlock_irq(&ic->endio_wait.lock);
2257
2258	if (!commit_sections)
2259		goto release_flush_bios;
2260
2261	ic->wrote_to_journal = true;
2262
2263	i = commit_start;
2264	for (n = 0; n < commit_sections; n++) {
2265		for (j = 0; j < ic->journal_section_entries; j++) {
2266			struct journal_entry *je;
2267			je = access_journal_entry(ic, i, j);
2268			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2269		}
2270		for (j = 0; j < ic->journal_section_sectors; j++) {
2271			struct journal_sector *js;
2272			js = access_journal(ic, i, j);
2273			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2274		}
2275		i++;
2276		if (unlikely(i >= ic->journal_sections))
2277			ic->commit_seq = next_commit_seq(ic->commit_seq);
2278		wraparound_section(ic, &i);
2279	}
2280	smp_rmb();
2281
2282	write_journal(ic, commit_start, commit_sections);
2283
2284	spin_lock_irq(&ic->endio_wait.lock);
2285	ic->uncommitted_section += commit_sections;
2286	wraparound_section(ic, &ic->uncommitted_section);
2287	ic->n_uncommitted_sections -= commit_sections;
2288	ic->n_committed_sections += commit_sections;
2289	spin_unlock_irq(&ic->endio_wait.lock);
2290
2291	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2292		queue_work(ic->writer_wq, &ic->writer_work);
2293
2294release_flush_bios:
2295	while (flushes) {
2296		struct bio *next = flushes->bi_next;
2297		flushes->bi_next = NULL;
2298		do_endio(ic, flushes);
2299		flushes = next;
2300	}
2301}
2302
2303static void complete_copy_from_journal(unsigned long error, void *context)
2304{
2305	struct journal_io *io = context;
2306	struct journal_completion *comp = io->comp;
2307	struct dm_integrity_c *ic = comp->ic;
2308	remove_range(ic, &io->range);
2309	mempool_free(io, &ic->journal_io_mempool);
2310	if (unlikely(error != 0))
2311		dm_integrity_io_error(ic, "copying from journal", -EIO);
2312	complete_journal_op(comp);
2313}
2314
2315static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2316			       struct journal_entry *je)
2317{
2318	unsigned s = 0;
2319	do {
2320		js->commit_id = je->last_bytes[s];
2321		js++;
2322	} while (++s < ic->sectors_per_block);
2323}
2324
2325static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2326			     unsigned write_sections, bool from_replay)
2327{
2328	unsigned i, j, n;
2329	struct journal_completion comp;
2330	struct blk_plug plug;
2331
2332	blk_start_plug(&plug);
2333
2334	comp.ic = ic;
2335	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2336	init_completion(&comp.comp);
2337
2338	i = write_start;
2339	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2340#ifndef INTERNAL_VERIFY
2341		if (unlikely(from_replay))
2342#endif
2343			rw_section_mac(ic, i, false);
2344		for (j = 0; j < ic->journal_section_entries; j++) {
2345			struct journal_entry *je = access_journal_entry(ic, i, j);
2346			sector_t sec, area, offset;
2347			unsigned k, l, next_loop;
2348			sector_t metadata_block;
2349			unsigned metadata_offset;
2350			struct journal_io *io;
2351
2352			if (journal_entry_is_unused(je))
2353				continue;
2354			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2355			sec = journal_entry_get_sector(je);
2356			if (unlikely(from_replay)) {
2357				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2358					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2359					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2360				}
2361				if (unlikely(sec >= ic->provided_data_sectors)) {
2362					journal_entry_set_unused(je);
2363					continue;
2364				}
2365			}
2366			get_area_and_offset(ic, sec, &area, &offset);
2367			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2368			for (k = j + 1; k < ic->journal_section_entries; k++) {
2369				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2370				sector_t sec2, area2, offset2;
2371				if (journal_entry_is_unused(je2))
2372					break;
2373				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2374				sec2 = journal_entry_get_sector(je2);
2375				if (unlikely(sec2 >= ic->provided_data_sectors))
2376					break;
2377				get_area_and_offset(ic, sec2, &area2, &offset2);
2378				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2379					break;
2380				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2381			}
2382			next_loop = k - 1;
2383
2384			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2385			io->comp = &comp;
2386			io->range.logical_sector = sec;
2387			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2388
2389			spin_lock_irq(&ic->endio_wait.lock);
2390			add_new_range_and_wait(ic, &io->range);
2391
2392			if (likely(!from_replay)) {
2393				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2394
2395				/* don't write if there is newer committed sector */
2396				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2397					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2398
2399					journal_entry_set_unused(je2);
2400					remove_journal_node(ic, &section_node[j]);
2401					j++;
2402					sec += ic->sectors_per_block;
2403					offset += ic->sectors_per_block;
2404				}
2405				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2406					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2407
2408					journal_entry_set_unused(je2);
2409					remove_journal_node(ic, &section_node[k - 1]);
2410					k--;
2411				}
2412				if (j == k) {
2413					remove_range_unlocked(ic, &io->range);
2414					spin_unlock_irq(&ic->endio_wait.lock);
2415					mempool_free(io, &ic->journal_io_mempool);
2416					goto skip_io;
2417				}
2418				for (l = j; l < k; l++) {
2419					remove_journal_node(ic, &section_node[l]);
2420				}
2421			}
2422			spin_unlock_irq(&ic->endio_wait.lock);
2423
2424			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2425			for (l = j; l < k; l++) {
2426				int r;
2427				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2428
2429				if (
2430#ifndef INTERNAL_VERIFY
2431				    unlikely(from_replay) &&
2432#endif
2433				    ic->internal_hash) {
2434					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2435
2436					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2437								  (char *)access_journal_data(ic, i, l), test_tag);
2438					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2439						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2440				}
2441
2442				journal_entry_set_unused(je2);
2443				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2444							ic->tag_size, TAG_WRITE);
2445				if (unlikely(r)) {
2446					dm_integrity_io_error(ic, "reading tags", r);
2447				}
2448			}
2449
2450			atomic_inc(&comp.in_flight);
2451			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2452					  (k - j) << ic->sb->log2_sectors_per_block,
2453					  get_data_sector(ic, area, offset),
2454					  complete_copy_from_journal, io);
2455skip_io:
2456			j = next_loop;
2457		}
2458	}
2459
2460	dm_bufio_write_dirty_buffers_async(ic->bufio);
2461
2462	blk_finish_plug(&plug);
2463
2464	complete_journal_op(&comp);
2465	wait_for_completion_io(&comp.comp);
2466
2467	dm_integrity_flush_buffers(ic, true);
2468}
2469
2470static void integrity_writer(struct work_struct *w)
2471{
2472	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2473	unsigned write_start, write_sections;
2474
2475	unsigned prev_free_sectors;
2476
2477	spin_lock_irq(&ic->endio_wait.lock);
2478	write_start = ic->committed_section;
2479	write_sections = ic->n_committed_sections;
2480	spin_unlock_irq(&ic->endio_wait.lock);
2481
2482	if (!write_sections)
2483		return;
2484
2485	do_journal_write(ic, write_start, write_sections, false);
2486
2487	spin_lock_irq(&ic->endio_wait.lock);
2488
2489	ic->committed_section += write_sections;
2490	wraparound_section(ic, &ic->committed_section);
2491	ic->n_committed_sections -= write_sections;
2492
2493	prev_free_sectors = ic->free_sectors;
2494	ic->free_sectors += write_sections * ic->journal_section_entries;
2495	if (unlikely(!prev_free_sectors))
2496		wake_up_locked(&ic->endio_wait);
2497
2498	spin_unlock_irq(&ic->endio_wait.lock);
2499}
2500
2501static void recalc_write_super(struct dm_integrity_c *ic)
2502{
2503	int r;
2504
2505	dm_integrity_flush_buffers(ic, false);
2506	if (dm_integrity_failed(ic))
2507		return;
2508
2509	r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2510	if (unlikely(r))
2511		dm_integrity_io_error(ic, "writing superblock", r);
2512}
2513
2514static void integrity_recalc(struct work_struct *w)
2515{
2516	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2517	struct dm_integrity_range range;
2518	struct dm_io_request io_req;
2519	struct dm_io_region io_loc;
2520	sector_t area, offset;
2521	sector_t metadata_block;
2522	unsigned metadata_offset;
2523	sector_t logical_sector, n_sectors;
2524	__u8 *t;
2525	unsigned i;
2526	int r;
2527	unsigned super_counter = 0;
2528
2529	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2530
2531	spin_lock_irq(&ic->endio_wait.lock);
2532
2533next_chunk:
2534
2535	if (unlikely(dm_post_suspending(ic->ti)))
2536		goto unlock_ret;
2537
2538	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2539	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2540		if (ic->mode == 'B') {
2541			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2542			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2543			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2544		}
2545		goto unlock_ret;
2546	}
2547
2548	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2549	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2550	if (!ic->meta_dev)
2551		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2552
2553	add_new_range_and_wait(ic, &range);
2554	spin_unlock_irq(&ic->endio_wait.lock);
2555	logical_sector = range.logical_sector;
2556	n_sectors = range.n_sectors;
2557
2558	if (ic->mode == 'B') {
2559		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2560			goto advance_and_next;
2561		}
2562		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2563				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2564			logical_sector += ic->sectors_per_block;
2565			n_sectors -= ic->sectors_per_block;
2566			cond_resched();
2567		}
2568		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2569				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2570			n_sectors -= ic->sectors_per_block;
2571			cond_resched();
2572		}
2573		get_area_and_offset(ic, logical_sector, &area, &offset);
2574	}
2575
2576	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2577
2578	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2579		recalc_write_super(ic);
2580		if (ic->mode == 'B') {
2581			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2582		}
2583		super_counter = 0;
2584	}
2585
2586	if (unlikely(dm_integrity_failed(ic)))
2587		goto err;
2588
2589	io_req.bi_op = REQ_OP_READ;
2590	io_req.bi_op_flags = 0;
2591	io_req.mem.type = DM_IO_VMA;
2592	io_req.mem.ptr.addr = ic->recalc_buffer;
2593	io_req.notify.fn = NULL;
2594	io_req.client = ic->io;
2595	io_loc.bdev = ic->dev->bdev;
2596	io_loc.sector = get_data_sector(ic, area, offset);
2597	io_loc.count = n_sectors;
2598
2599	r = dm_io(&io_req, 1, &io_loc, NULL);
2600	if (unlikely(r)) {
2601		dm_integrity_io_error(ic, "reading data", r);
2602		goto err;
2603	}
2604
2605	t = ic->recalc_tags;
2606	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2607		integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2608		t += ic->tag_size;
2609	}
2610
2611	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2612
2613	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2614	if (unlikely(r)) {
2615		dm_integrity_io_error(ic, "writing tags", r);
2616		goto err;
2617	}
2618
2619	if (ic->mode == 'B') {
2620		sector_t start, end;
2621		start = (range.logical_sector >>
2622			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2623			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2624		end = ((range.logical_sector + range.n_sectors) >>
2625		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2626			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2627		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2628	}
2629
2630advance_and_next:
2631	cond_resched();
2632
2633	spin_lock_irq(&ic->endio_wait.lock);
2634	remove_range_unlocked(ic, &range);
2635	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2636	goto next_chunk;
2637
2638err:
2639	remove_range(ic, &range);
2640	return;
2641
2642unlock_ret:
2643	spin_unlock_irq(&ic->endio_wait.lock);
2644
2645	recalc_write_super(ic);
2646}
2647
2648static void bitmap_block_work(struct work_struct *w)
2649{
2650	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2651	struct dm_integrity_c *ic = bbs->ic;
2652	struct bio *bio;
2653	struct bio_list bio_queue;
2654	struct bio_list waiting;
2655
2656	bio_list_init(&waiting);
2657
2658	spin_lock(&bbs->bio_queue_lock);
2659	bio_queue = bbs->bio_queue;
2660	bio_list_init(&bbs->bio_queue);
2661	spin_unlock(&bbs->bio_queue_lock);
2662
2663	while ((bio = bio_list_pop(&bio_queue))) {
2664		struct dm_integrity_io *dio;
2665
2666		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2667
2668		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2669				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2670			remove_range(ic, &dio->range);
2671			INIT_WORK(&dio->work, integrity_bio_wait);
2672			queue_work(ic->offload_wq, &dio->work);
2673		} else {
2674			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2675					dio->range.n_sectors, BITMAP_OP_SET);
2676			bio_list_add(&waiting, bio);
2677		}
2678	}
2679
2680	if (bio_list_empty(&waiting))
2681		return;
2682
2683	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2684			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2685			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2686
2687	while ((bio = bio_list_pop(&waiting))) {
2688		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2689
2690		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2691				dio->range.n_sectors, BITMAP_OP_SET);
2692
2693		remove_range(ic, &dio->range);
2694		INIT_WORK(&dio->work, integrity_bio_wait);
2695		queue_work(ic->offload_wq, &dio->work);
2696	}
2697
2698	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2699}
2700
2701static void bitmap_flush_work(struct work_struct *work)
2702{
2703	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2704	struct dm_integrity_range range;
2705	unsigned long limit;
2706	struct bio *bio;
2707
2708	dm_integrity_flush_buffers(ic, false);
2709
2710	range.logical_sector = 0;
2711	range.n_sectors = ic->provided_data_sectors;
2712
2713	spin_lock_irq(&ic->endio_wait.lock);
2714	add_new_range_and_wait(ic, &range);
2715	spin_unlock_irq(&ic->endio_wait.lock);
2716
2717	dm_integrity_flush_buffers(ic, true);
2718
2719	limit = ic->provided_data_sectors;
2720	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2721		limit = le64_to_cpu(ic->sb->recalc_sector)
2722			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2723			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2724	}
2725	/*DEBUG_print("zeroing journal\n");*/
2726	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2727	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2728
2729	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2730			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2731
2732	spin_lock_irq(&ic->endio_wait.lock);
2733	remove_range_unlocked(ic, &range);
2734	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2735		bio_endio(bio);
2736		spin_unlock_irq(&ic->endio_wait.lock);
2737		spin_lock_irq(&ic->endio_wait.lock);
2738	}
2739	spin_unlock_irq(&ic->endio_wait.lock);
2740}
2741
2742
2743static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2744			 unsigned n_sections, unsigned char commit_seq)
2745{
2746	unsigned i, j, n;
2747
2748	if (!n_sections)
2749		return;
2750
2751	for (n = 0; n < n_sections; n++) {
2752		i = start_section + n;
2753		wraparound_section(ic, &i);
2754		for (j = 0; j < ic->journal_section_sectors; j++) {
2755			struct journal_sector *js = access_journal(ic, i, j);
2756			memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2757			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2758		}
2759		for (j = 0; j < ic->journal_section_entries; j++) {
2760			struct journal_entry *je = access_journal_entry(ic, i, j);
2761			journal_entry_set_unused(je);
2762		}
2763	}
2764
2765	write_journal(ic, start_section, n_sections);
2766}
2767
2768static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2769{
2770	unsigned char k;
2771	for (k = 0; k < N_COMMIT_IDS; k++) {
2772		if (dm_integrity_commit_id(ic, i, j, k) == id)
2773			return k;
2774	}
2775	dm_integrity_io_error(ic, "journal commit id", -EIO);
2776	return -EIO;
2777}
2778
2779static void replay_journal(struct dm_integrity_c *ic)
2780{
2781	unsigned i, j;
2782	bool used_commit_ids[N_COMMIT_IDS];
2783	unsigned max_commit_id_sections[N_COMMIT_IDS];
2784	unsigned write_start, write_sections;
2785	unsigned continue_section;
2786	bool journal_empty;
2787	unsigned char unused, last_used, want_commit_seq;
2788
2789	if (ic->mode == 'R')
2790		return;
2791
2792	if (ic->journal_uptodate)
2793		return;
2794
2795	last_used = 0;
2796	write_start = 0;
2797
2798	if (!ic->just_formatted) {
2799		DEBUG_print("reading journal\n");
2800		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2801		if (ic->journal_io)
2802			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2803		if (ic->journal_io) {
2804			struct journal_completion crypt_comp;
2805			crypt_comp.ic = ic;
2806			init_completion(&crypt_comp.comp);
2807			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2808			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2809			wait_for_completion(&crypt_comp.comp);
2810		}
2811		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2812	}
2813
2814	if (dm_integrity_failed(ic))
2815		goto clear_journal;
2816
2817	journal_empty = true;
2818	memset(used_commit_ids, 0, sizeof used_commit_ids);
2819	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2820	for (i = 0; i < ic->journal_sections; i++) {
2821		for (j = 0; j < ic->journal_section_sectors; j++) {
2822			int k;
2823			struct journal_sector *js = access_journal(ic, i, j);
2824			k = find_commit_seq(ic, i, j, js->commit_id);
2825			if (k < 0)
2826				goto clear_journal;
2827			used_commit_ids[k] = true;
2828			max_commit_id_sections[k] = i;
2829		}
2830		if (journal_empty) {
2831			for (j = 0; j < ic->journal_section_entries; j++) {
2832				struct journal_entry *je = access_journal_entry(ic, i, j);
2833				if (!journal_entry_is_unused(je)) {
2834					journal_empty = false;
2835					break;
2836				}
2837			}
2838		}
2839	}
2840
2841	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2842		unused = N_COMMIT_IDS - 1;
2843		while (unused && !used_commit_ids[unused - 1])
2844			unused--;
2845	} else {
2846		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2847			if (!used_commit_ids[unused])
2848				break;
2849		if (unused == N_COMMIT_IDS) {
2850			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2851			goto clear_journal;
2852		}
2853	}
2854	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2855		    unused, used_commit_ids[0], used_commit_ids[1],
2856		    used_commit_ids[2], used_commit_ids[3]);
2857
2858	last_used = prev_commit_seq(unused);
2859	want_commit_seq = prev_commit_seq(last_used);
2860
2861	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2862		journal_empty = true;
2863
2864	write_start = max_commit_id_sections[last_used] + 1;
2865	if (unlikely(write_start >= ic->journal_sections))
2866		want_commit_seq = next_commit_seq(want_commit_seq);
2867	wraparound_section(ic, &write_start);
2868
2869	i = write_start;
2870	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2871		for (j = 0; j < ic->journal_section_sectors; j++) {
2872			struct journal_sector *js = access_journal(ic, i, j);
2873
2874			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2875				/*
2876				 * This could be caused by crash during writing.
2877				 * We won't replay the inconsistent part of the
2878				 * journal.
2879				 */
2880				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2881					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2882				goto brk;
2883			}
2884		}
2885		i++;
2886		if (unlikely(i >= ic->journal_sections))
2887			want_commit_seq = next_commit_seq(want_commit_seq);
2888		wraparound_section(ic, &i);
2889	}
2890brk:
2891
2892	if (!journal_empty) {
2893		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2894			    write_sections, write_start, want_commit_seq);
2895		do_journal_write(ic, write_start, write_sections, true);
2896	}
2897
2898	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2899		continue_section = write_start;
2900		ic->commit_seq = want_commit_seq;
2901		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2902	} else {
2903		unsigned s;
2904		unsigned char erase_seq;
2905clear_journal:
2906		DEBUG_print("clearing journal\n");
2907
2908		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2909		s = write_start;
2910		init_journal(ic, s, 1, erase_seq);
2911		s++;
2912		wraparound_section(ic, &s);
2913		if (ic->journal_sections >= 2) {
2914			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2915			s += ic->journal_sections - 2;
2916			wraparound_section(ic, &s);
2917			init_journal(ic, s, 1, erase_seq);
2918		}
2919
2920		continue_section = 0;
2921		ic->commit_seq = next_commit_seq(erase_seq);
2922	}
2923
2924	ic->committed_section = continue_section;
2925	ic->n_committed_sections = 0;
2926
2927	ic->uncommitted_section = continue_section;
2928	ic->n_uncommitted_sections = 0;
2929
2930	ic->free_section = continue_section;
2931	ic->free_section_entry = 0;
2932	ic->free_sectors = ic->journal_entries;
2933
2934	ic->journal_tree_root = RB_ROOT;
2935	for (i = 0; i < ic->journal_entries; i++)
2936		init_journal_node(&ic->journal_tree[i]);
2937}
2938
2939static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2940{
2941	DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2942
2943	if (ic->mode == 'B') {
2944		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2945		ic->synchronous_mode = 1;
2946
2947		cancel_delayed_work_sync(&ic->bitmap_flush_work);
2948		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2949		flush_workqueue(ic->commit_wq);
2950	}
2951}
2952
2953static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2954{
2955	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2956
2957	DEBUG_print("dm_integrity_reboot\n");
2958
2959	dm_integrity_enter_synchronous_mode(ic);
2960
2961	return NOTIFY_DONE;
2962}
2963
2964static void dm_integrity_postsuspend(struct dm_target *ti)
2965{
2966	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2967	int r;
2968
2969	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2970
2971	del_timer_sync(&ic->autocommit_timer);
2972
2973	if (ic->recalc_wq)
2974		drain_workqueue(ic->recalc_wq);
2975
2976	if (ic->mode == 'B')
2977		cancel_delayed_work_sync(&ic->bitmap_flush_work);
2978
2979	queue_work(ic->commit_wq, &ic->commit_work);
2980	drain_workqueue(ic->commit_wq);
2981
2982	if (ic->mode == 'J') {
2983		queue_work(ic->writer_wq, &ic->writer_work);
2984		drain_workqueue(ic->writer_wq);
2985		dm_integrity_flush_buffers(ic, true);
2986		if (ic->wrote_to_journal) {
2987			init_journal(ic, ic->free_section,
2988				     ic->journal_sections - ic->free_section, ic->commit_seq);
2989			if (ic->free_section) {
2990				init_journal(ic, 0, ic->free_section,
2991					     next_commit_seq(ic->commit_seq));
2992			}
2993		}
2994	}
2995
2996	if (ic->mode == 'B') {
2997		dm_integrity_flush_buffers(ic, true);
2998#if 1
2999		/* set to 0 to test bitmap replay code */
3000		init_journal(ic, 0, ic->journal_sections, 0);
3001		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3002		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3003		if (unlikely(r))
3004			dm_integrity_io_error(ic, "writing superblock", r);
3005#endif
3006	}
3007
3008	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3009
3010	ic->journal_uptodate = true;
3011}
3012
3013static void dm_integrity_resume(struct dm_target *ti)
3014{
3015	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3016	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3017	int r;
3018
3019	DEBUG_print("resume\n");
3020
3021	ic->wrote_to_journal = false;
3022
3023	if (ic->provided_data_sectors != old_provided_data_sectors) {
3024		if (ic->provided_data_sectors > old_provided_data_sectors &&
3025		    ic->mode == 'B' &&
3026		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3027			rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3028					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3029			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3030					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3031			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3032					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3033		}
3034
3035		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3036		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3037		if (unlikely(r))
3038			dm_integrity_io_error(ic, "writing superblock", r);
3039	}
3040
3041	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3042		DEBUG_print("resume dirty_bitmap\n");
3043		rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3044				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3045		if (ic->mode == 'B') {
3046			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3047				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3048				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3049				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3050						     BITMAP_OP_TEST_ALL_CLEAR)) {
3051					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3052					ic->sb->recalc_sector = cpu_to_le64(0);
3053				}
3054			} else {
3055				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3056					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3057				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3058				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3059				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3060				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3061				rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3062						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3063				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3064				ic->sb->recalc_sector = cpu_to_le64(0);
3065			}
3066		} else {
3067			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3068			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
3069				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3070				ic->sb->recalc_sector = cpu_to_le64(0);
3071			}
3072			init_journal(ic, 0, ic->journal_sections, 0);
3073			replay_journal(ic);
3074			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3075		}
3076		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3077		if (unlikely(r))
3078			dm_integrity_io_error(ic, "writing superblock", r);
3079	} else {
3080		replay_journal(ic);
3081		if (ic->mode == 'B') {
3082			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3083			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3084			r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3085			if (unlikely(r))
3086				dm_integrity_io_error(ic, "writing superblock", r);
3087
3088			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3089			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3090			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3091			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3092			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3093				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3094						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3095				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3096						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3097				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3098						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3099			}
3100			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3101					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3102		}
3103	}
3104
3105	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3106	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3107		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3108		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3109		if (recalc_pos < ic->provided_data_sectors) {
3110			queue_work(ic->recalc_wq, &ic->recalc_work);
3111		} else if (recalc_pos > ic->provided_data_sectors) {
3112			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3113			recalc_write_super(ic);
3114		}
3115	}
3116
3117	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3118	ic->reboot_notifier.next = NULL;
3119	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3120	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3121
3122#if 0
3123	/* set to 1 to stress test synchronous mode */
3124	dm_integrity_enter_synchronous_mode(ic);
3125#endif
3126}
3127
3128static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3129				unsigned status_flags, char *result, unsigned maxlen)
3130{
3131	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3132	unsigned arg_count;
3133	size_t sz = 0;
3134
3135	switch (type) {
3136	case STATUSTYPE_INFO:
3137		DMEMIT("%llu %llu",
3138			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3139			ic->provided_data_sectors);
3140		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3141			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3142		else
3143			DMEMIT(" -");
3144		break;
3145
3146	case STATUSTYPE_TABLE: {
3147		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3148		watermark_percentage += ic->journal_entries / 2;
3149		do_div(watermark_percentage, ic->journal_entries);
3150		arg_count = 3;
3151		arg_count += !!ic->meta_dev;
3152		arg_count += ic->sectors_per_block != 1;
3153		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3154		arg_count += ic->discard;
3155		arg_count += ic->mode == 'J';
3156		arg_count += ic->mode == 'J';
3157		arg_count += ic->mode == 'B';
3158		arg_count += ic->mode == 'B';
3159		arg_count += !!ic->internal_hash_alg.alg_string;
3160		arg_count += !!ic->journal_crypt_alg.alg_string;
3161		arg_count += !!ic->journal_mac_alg.alg_string;
3162		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3163		arg_count += ic->legacy_recalculate;
3164		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3165		       ic->tag_size, ic->mode, arg_count);
3166		if (ic->meta_dev)
3167			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3168		if (ic->sectors_per_block != 1)
3169			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3170		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3171			DMEMIT(" recalculate");
3172		if (ic->discard)
3173			DMEMIT(" allow_discards");
3174		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3175		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3176		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3177		if (ic->mode == 'J') {
3178			DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3179			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3180		}
3181		if (ic->mode == 'B') {
3182			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3183			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3184		}
3185		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3186			DMEMIT(" fix_padding");
3187		if (ic->legacy_recalculate)
3188			DMEMIT(" legacy_recalculate");
3189
3190#define EMIT_ALG(a, n)							\
3191		do {							\
3192			if (ic->a.alg_string) {				\
3193				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3194				if (ic->a.key_string)			\
3195					DMEMIT(":%s", ic->a.key_string);\
3196			}						\
3197		} while (0)
3198		EMIT_ALG(internal_hash_alg, "internal_hash");
3199		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3200		EMIT_ALG(journal_mac_alg, "journal_mac");
3201		break;
3202	}
3203	}
3204}
3205
3206static int dm_integrity_iterate_devices(struct dm_target *ti,
3207					iterate_devices_callout_fn fn, void *data)
3208{
3209	struct dm_integrity_c *ic = ti->private;
3210
3211	if (!ic->meta_dev)
3212		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3213	else
3214		return fn(ti, ic->dev, 0, ti->len, data);
3215}
3216
3217static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3218{
3219	struct dm_integrity_c *ic = ti->private;
3220
3221	if (ic->sectors_per_block > 1) {
3222		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3223		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3224		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3225	}
3226}
3227
3228static void calculate_journal_section_size(struct dm_integrity_c *ic)
3229{
3230	unsigned sector_space = JOURNAL_SECTOR_DATA;
3231
3232	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3233	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3234					 JOURNAL_ENTRY_ROUNDUP);
3235
3236	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3237		sector_space -= JOURNAL_MAC_PER_SECTOR;
3238	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3239	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3240	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3241	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3242}
3243
3244static int calculate_device_limits(struct dm_integrity_c *ic)
3245{
3246	__u64 initial_sectors;
3247
3248	calculate_journal_section_size(ic);
3249	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3250	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3251		return -EINVAL;
3252	ic->initial_sectors = initial_sectors;
3253
3254	if (!ic->meta_dev) {
3255		sector_t last_sector, last_area, last_offset;
3256
3257		/* we have to maintain excessive padding for compatibility with existing volumes */
3258		__u64 metadata_run_padding =
3259			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3260			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3261			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3262
3263		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3264					    metadata_run_padding) >> SECTOR_SHIFT;
3265		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3266			ic->log2_metadata_run = __ffs(ic->metadata_run);
3267		else
3268			ic->log2_metadata_run = -1;
3269
3270		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3271		last_sector = get_data_sector(ic, last_area, last_offset);
3272		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3273			return -EINVAL;
3274	} else {
3275		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3276		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3277				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3278		meta_size <<= ic->log2_buffer_sectors;
3279		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3280		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3281			return -EINVAL;
3282		ic->metadata_run = 1;
3283		ic->log2_metadata_run = 0;
3284	}
3285
3286	return 0;
3287}
3288
3289static void get_provided_data_sectors(struct dm_integrity_c *ic)
3290{
3291	if (!ic->meta_dev) {
3292		int test_bit;
3293		ic->provided_data_sectors = 0;
3294		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3295			__u64 prev_data_sectors = ic->provided_data_sectors;
3296
3297			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3298			if (calculate_device_limits(ic))
3299				ic->provided_data_sectors = prev_data_sectors;
3300		}
3301	} else {
3302		ic->provided_data_sectors = ic->data_device_sectors;
3303		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3304	}
3305}
3306
3307static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3308{
3309	unsigned journal_sections;
3310	int test_bit;
3311
3312	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3313	memcpy(ic->sb->magic, SB_MAGIC, 8);
3314	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3315	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3316	if (ic->journal_mac_alg.alg_string)
3317		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3318
3319	calculate_journal_section_size(ic);
3320	journal_sections = journal_sectors / ic->journal_section_sectors;
3321	if (!journal_sections)
3322		journal_sections = 1;
3323
3324	if (!ic->meta_dev) {
3325		if (ic->fix_padding)
3326			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3327		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3328		if (!interleave_sectors)
3329			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3330		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3331		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3332		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3333
3334		get_provided_data_sectors(ic);
3335		if (!ic->provided_data_sectors)
3336			return -EINVAL;
3337	} else {
3338		ic->sb->log2_interleave_sectors = 0;
3339
3340		get_provided_data_sectors(ic);
3341		if (!ic->provided_data_sectors)
3342			return -EINVAL;
3343
3344try_smaller_buffer:
3345		ic->sb->journal_sections = cpu_to_le32(0);
3346		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3347			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3348			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3349			if (test_journal_sections > journal_sections)
3350				continue;
3351			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3352			if (calculate_device_limits(ic))
3353				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3354
3355		}
3356		if (!le32_to_cpu(ic->sb->journal_sections)) {
3357			if (ic->log2_buffer_sectors > 3) {
3358				ic->log2_buffer_sectors--;
3359				goto try_smaller_buffer;
3360			}
3361			return -EINVAL;
3362		}
3363	}
3364
3365	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3366
3367	sb_set_version(ic);
3368
3369	return 0;
3370}
3371
3372static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3373{
3374	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3375	struct blk_integrity bi;
3376
3377	memset(&bi, 0, sizeof(bi));
3378	bi.profile = &dm_integrity_profile;
3379	bi.tuple_size = ic->tag_size;
3380	bi.tag_size = bi.tuple_size;
3381	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3382
3383	blk_integrity_register(disk, &bi);
3384	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3385}
3386
3387static void dm_integrity_free_page_list(struct page_list *pl)
3388{
3389	unsigned i;
3390
3391	if (!pl)
3392		return;
3393	for (i = 0; pl[i].page; i++)
3394		__free_page(pl[i].page);
3395	kvfree(pl);
3396}
3397
3398static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3399{
3400	struct page_list *pl;
3401	unsigned i;
3402
3403	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3404	if (!pl)
3405		return NULL;
3406
3407	for (i = 0; i < n_pages; i++) {
3408		pl[i].page = alloc_page(GFP_KERNEL);
3409		if (!pl[i].page) {
3410			dm_integrity_free_page_list(pl);
3411			return NULL;
3412		}
3413		if (i)
3414			pl[i - 1].next = &pl[i];
3415	}
3416	pl[i].page = NULL;
3417	pl[i].next = NULL;
3418
3419	return pl;
3420}
3421
3422static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3423{
3424	unsigned i;
3425	for (i = 0; i < ic->journal_sections; i++)
3426		kvfree(sl[i]);
3427	kvfree(sl);
3428}
3429
3430static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3431								   struct page_list *pl)
3432{
3433	struct scatterlist **sl;
3434	unsigned i;
3435
3436	sl = kvmalloc_array(ic->journal_sections,
3437			    sizeof(struct scatterlist *),
3438			    GFP_KERNEL | __GFP_ZERO);
3439	if (!sl)
3440		return NULL;
3441
3442	for (i = 0; i < ic->journal_sections; i++) {
3443		struct scatterlist *s;
3444		unsigned start_index, start_offset;
3445		unsigned end_index, end_offset;
3446		unsigned n_pages;
3447		unsigned idx;
3448
3449		page_list_location(ic, i, 0, &start_index, &start_offset);
3450		page_list_location(ic, i, ic->journal_section_sectors - 1,
3451				   &end_index, &end_offset);
3452
3453		n_pages = (end_index - start_index + 1);
3454
3455		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3456				   GFP_KERNEL);
3457		if (!s) {
3458			dm_integrity_free_journal_scatterlist(ic, sl);
3459			return NULL;
3460		}
3461
3462		sg_init_table(s, n_pages);
3463		for (idx = start_index; idx <= end_index; idx++) {
3464			char *va = lowmem_page_address(pl[idx].page);
3465			unsigned start = 0, end = PAGE_SIZE;
3466			if (idx == start_index)
3467				start = start_offset;
3468			if (idx == end_index)
3469				end = end_offset + (1 << SECTOR_SHIFT);
3470			sg_set_buf(&s[idx - start_index], va + start, end - start);
3471		}
3472
3473		sl[i] = s;
3474	}
3475
3476	return sl;
3477}
3478
3479static void free_alg(struct alg_spec *a)
3480{
3481	kfree_sensitive(a->alg_string);
3482	kfree_sensitive(a->key);
3483	memset(a, 0, sizeof *a);
3484}
3485
3486static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3487{
3488	char *k;
3489
3490	free_alg(a);
3491
3492	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3493	if (!a->alg_string)
3494		goto nomem;
3495
3496	k = strchr(a->alg_string, ':');
3497	if (k) {
3498		*k = 0;
3499		a->key_string = k + 1;
3500		if (strlen(a->key_string) & 1)
3501			goto inval;
3502
3503		a->key_size = strlen(a->key_string) / 2;
3504		a->key = kmalloc(a->key_size, GFP_KERNEL);
3505		if (!a->key)
3506			goto nomem;
3507		if (hex2bin(a->key, a->key_string, a->key_size))
3508			goto inval;
3509	}
3510
3511	return 0;
3512inval:
3513	*error = error_inval;
3514	return -EINVAL;
3515nomem:
3516	*error = "Out of memory for an argument";
3517	return -ENOMEM;
3518}
3519
3520static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3521		   char *error_alg, char *error_key)
3522{
3523	int r;
3524
3525	if (a->alg_string) {
3526		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3527		if (IS_ERR(*hash)) {
3528			*error = error_alg;
3529			r = PTR_ERR(*hash);
3530			*hash = NULL;
3531			return r;
3532		}
3533
3534		if (a->key) {
3535			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3536			if (r) {
3537				*error = error_key;
3538				return r;
3539			}
3540		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3541			*error = error_key;
3542			return -ENOKEY;
3543		}
3544	}
3545
3546	return 0;
3547}
3548
3549static int create_journal(struct dm_integrity_c *ic, char **error)
3550{
3551	int r = 0;
3552	unsigned i;
3553	__u64 journal_pages, journal_desc_size, journal_tree_size;
3554	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3555	struct skcipher_request *req = NULL;
3556
3557	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3558	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3559	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3560	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3561
3562	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3563				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3564	journal_desc_size = journal_pages * sizeof(struct page_list);
3565	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3566		*error = "Journal doesn't fit into memory";
3567		r = -ENOMEM;
3568		goto bad;
3569	}
3570	ic->journal_pages = journal_pages;
3571
3572	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3573	if (!ic->journal) {
3574		*error = "Could not allocate memory for journal";
3575		r = -ENOMEM;
3576		goto bad;
3577	}
3578	if (ic->journal_crypt_alg.alg_string) {
3579		unsigned ivsize, blocksize;
3580		struct journal_completion comp;
3581
3582		comp.ic = ic;
3583		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3584		if (IS_ERR(ic->journal_crypt)) {
3585			*error = "Invalid journal cipher";
3586			r = PTR_ERR(ic->journal_crypt);
3587			ic->journal_crypt = NULL;
3588			goto bad;
3589		}
3590		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3591		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3592
3593		if (ic->journal_crypt_alg.key) {
3594			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3595						   ic->journal_crypt_alg.key_size);
3596			if (r) {
3597				*error = "Error setting encryption key";
3598				goto bad;
3599			}
3600		}
3601		DEBUG_print("cipher %s, block size %u iv size %u\n",
3602			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3603
3604		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3605		if (!ic->journal_io) {
3606			*error = "Could not allocate memory for journal io";
3607			r = -ENOMEM;
3608			goto bad;
3609		}
3610
3611		if (blocksize == 1) {
3612			struct scatterlist *sg;
3613
3614			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3615			if (!req) {
3616				*error = "Could not allocate crypt request";
3617				r = -ENOMEM;
3618				goto bad;
3619			}
3620
3621			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3622			if (!crypt_iv) {
3623				*error = "Could not allocate iv";
3624				r = -ENOMEM;
3625				goto bad;
3626			}
3627
3628			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3629			if (!ic->journal_xor) {
3630				*error = "Could not allocate memory for journal xor";
3631				r = -ENOMEM;
3632				goto bad;
3633			}
3634
3635			sg = kvmalloc_array(ic->journal_pages + 1,
3636					    sizeof(struct scatterlist),
3637					    GFP_KERNEL);
3638			if (!sg) {
3639				*error = "Unable to allocate sg list";
3640				r = -ENOMEM;
3641				goto bad;
3642			}
3643			sg_init_table(sg, ic->journal_pages + 1);
3644			for (i = 0; i < ic->journal_pages; i++) {
3645				char *va = lowmem_page_address(ic->journal_xor[i].page);
3646				clear_page(va);
3647				sg_set_buf(&sg[i], va, PAGE_SIZE);
3648			}
3649			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3650
3651			skcipher_request_set_crypt(req, sg, sg,
3652						   PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3653			init_completion(&comp.comp);
3654			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3655			if (do_crypt(true, req, &comp))
3656				wait_for_completion(&comp.comp);
3657			kvfree(sg);
3658			r = dm_integrity_failed(ic);
3659			if (r) {
3660				*error = "Unable to encrypt journal";
3661				goto bad;
3662			}
3663			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3664
3665			crypto_free_skcipher(ic->journal_crypt);
3666			ic->journal_crypt = NULL;
3667		} else {
3668			unsigned crypt_len = roundup(ivsize, blocksize);
3669
3670			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3671			if (!req) {
3672				*error = "Could not allocate crypt request";
3673				r = -ENOMEM;
3674				goto bad;
3675			}
3676
3677			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3678			if (!crypt_iv) {
3679				*error = "Could not allocate iv";
3680				r = -ENOMEM;
3681				goto bad;
3682			}
3683
3684			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3685			if (!crypt_data) {
3686				*error = "Unable to allocate crypt data";
3687				r = -ENOMEM;
3688				goto bad;
3689			}
3690
3691			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3692			if (!ic->journal_scatterlist) {
3693				*error = "Unable to allocate sg list";
3694				r = -ENOMEM;
3695				goto bad;
3696			}
3697			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3698			if (!ic->journal_io_scatterlist) {
3699				*error = "Unable to allocate sg list";
3700				r = -ENOMEM;
3701				goto bad;
3702			}
3703			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3704							 sizeof(struct skcipher_request *),
3705							 GFP_KERNEL | __GFP_ZERO);
3706			if (!ic->sk_requests) {
3707				*error = "Unable to allocate sk requests";
3708				r = -ENOMEM;
3709				goto bad;
3710			}
3711			for (i = 0; i < ic->journal_sections; i++) {
3712				struct scatterlist sg;
3713				struct skcipher_request *section_req;
3714				__u32 section_le = cpu_to_le32(i);
3715
3716				memset(crypt_iv, 0x00, ivsize);
3717				memset(crypt_data, 0x00, crypt_len);
3718				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3719
3720				sg_init_one(&sg, crypt_data, crypt_len);
3721				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3722				init_completion(&comp.comp);
3723				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3724				if (do_crypt(true, req, &comp))
3725					wait_for_completion(&comp.comp);
3726
3727				r = dm_integrity_failed(ic);
3728				if (r) {
3729					*error = "Unable to generate iv";
3730					goto bad;
3731				}
3732
3733				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3734				if (!section_req) {
3735					*error = "Unable to allocate crypt request";
3736					r = -ENOMEM;
3737					goto bad;
3738				}
3739				section_req->iv = kmalloc_array(ivsize, 2,
3740								GFP_KERNEL);
3741				if (!section_req->iv) {
3742					skcipher_request_free(section_req);
3743					*error = "Unable to allocate iv";
3744					r = -ENOMEM;
3745					goto bad;
3746				}
3747				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3748				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3749				ic->sk_requests[i] = section_req;
3750				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3751			}
3752		}
3753	}
3754
3755	for (i = 0; i < N_COMMIT_IDS; i++) {
3756		unsigned j;
3757retest_commit_id:
3758		for (j = 0; j < i; j++) {
3759			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3760				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3761				goto retest_commit_id;
3762			}
3763		}
3764		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3765	}
3766
3767	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3768	if (journal_tree_size > ULONG_MAX) {
3769		*error = "Journal doesn't fit into memory";
3770		r = -ENOMEM;
3771		goto bad;
3772	}
3773	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3774	if (!ic->journal_tree) {
3775		*error = "Could not allocate memory for journal tree";
3776		r = -ENOMEM;
3777	}
3778bad:
3779	kfree(crypt_data);
3780	kfree(crypt_iv);
3781	skcipher_request_free(req);
3782
3783	return r;
3784}
3785
3786/*
3787 * Construct a integrity mapping
3788 *
3789 * Arguments:
3790 *	device
3791 *	offset from the start of the device
3792 *	tag size
3793 *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3794 *	number of optional arguments
3795 *	optional arguments:
3796 *		journal_sectors
3797 *		interleave_sectors
3798 *		buffer_sectors
3799 *		journal_watermark
3800 *		commit_time
3801 *		meta_device
3802 *		block_size
3803 *		sectors_per_bit
3804 *		bitmap_flush_interval
3805 *		internal_hash
3806 *		journal_crypt
3807 *		journal_mac
3808 *		recalculate
3809 */
3810static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3811{
3812	struct dm_integrity_c *ic;
3813	char dummy;
3814	int r;
3815	unsigned extra_args;
3816	struct dm_arg_set as;
3817	static const struct dm_arg _args[] = {
3818		{0, 16, "Invalid number of feature args"},
3819	};
3820	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3821	bool should_write_sb;
3822	__u64 threshold;
3823	unsigned long long start;
3824	__s8 log2_sectors_per_bitmap_bit = -1;
3825	__s8 log2_blocks_per_bitmap_bit;
3826	__u64 bits_in_journal;
3827	__u64 n_bitmap_bits;
3828
3829#define DIRECT_ARGUMENTS	4
3830
3831	if (argc <= DIRECT_ARGUMENTS) {
3832		ti->error = "Invalid argument count";
3833		return -EINVAL;
3834	}
3835
3836	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3837	if (!ic) {
3838		ti->error = "Cannot allocate integrity context";
3839		return -ENOMEM;
3840	}
3841	ti->private = ic;
3842	ti->per_io_data_size = sizeof(struct dm_integrity_io);
3843	ic->ti = ti;
3844
3845	ic->in_progress = RB_ROOT;
3846	INIT_LIST_HEAD(&ic->wait_list);
3847	init_waitqueue_head(&ic->endio_wait);
3848	bio_list_init(&ic->flush_bio_list);
3849	init_waitqueue_head(&ic->copy_to_journal_wait);
3850	init_completion(&ic->crypto_backoff);
3851	atomic64_set(&ic->number_of_mismatches, 0);
3852	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3853
3854	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3855	if (r) {
3856		ti->error = "Device lookup failed";
3857		goto bad;
3858	}
3859
3860	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3861		ti->error = "Invalid starting offset";
3862		r = -EINVAL;
3863		goto bad;
3864	}
3865	ic->start = start;
3866
3867	if (strcmp(argv[2], "-")) {
3868		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3869			ti->error = "Invalid tag size";
3870			r = -EINVAL;
3871			goto bad;
3872		}
3873	}
3874
3875	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3876	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3877		ic->mode = argv[3][0];
3878	} else {
3879		ti->error = "Invalid mode (expecting J, B, D, R)";
3880		r = -EINVAL;
3881		goto bad;
3882	}
3883
3884	journal_sectors = 0;
3885	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3886	buffer_sectors = DEFAULT_BUFFER_SECTORS;
3887	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3888	sync_msec = DEFAULT_SYNC_MSEC;
3889	ic->sectors_per_block = 1;
3890
3891	as.argc = argc - DIRECT_ARGUMENTS;
3892	as.argv = argv + DIRECT_ARGUMENTS;
3893	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3894	if (r)
3895		goto bad;
3896
3897	while (extra_args--) {
3898		const char *opt_string;
3899		unsigned val;
3900		unsigned long long llval;
3901		opt_string = dm_shift_arg(&as);
3902		if (!opt_string) {
3903			r = -EINVAL;
3904			ti->error = "Not enough feature arguments";
3905			goto bad;
3906		}
3907		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3908			journal_sectors = val ? val : 1;
3909		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3910			interleave_sectors = val;
3911		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3912			buffer_sectors = val;
3913		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3914			journal_watermark = val;
3915		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3916			sync_msec = val;
3917		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3918			if (ic->meta_dev) {
3919				dm_put_device(ti, ic->meta_dev);
3920				ic->meta_dev = NULL;
3921			}
3922			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3923					  dm_table_get_mode(ti->table), &ic->meta_dev);
3924			if (r) {
3925				ti->error = "Device lookup failed";
3926				goto bad;
3927			}
3928		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3929			if (val < 1 << SECTOR_SHIFT ||
3930			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3931			    (val & (val -1))) {
3932				r = -EINVAL;
3933				ti->error = "Invalid block_size argument";
3934				goto bad;
3935			}
3936			ic->sectors_per_block = val >> SECTOR_SHIFT;
3937		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3938			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3939		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3940			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3941				r = -EINVAL;
3942				ti->error = "Invalid bitmap_flush_interval argument";
3943				goto bad;
3944			}
3945			ic->bitmap_flush_interval = msecs_to_jiffies(val);
3946		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3947			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3948					    "Invalid internal_hash argument");
3949			if (r)
3950				goto bad;
3951		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3952			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3953					    "Invalid journal_crypt argument");
3954			if (r)
3955				goto bad;
3956		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3957			r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
3958					    "Invalid journal_mac argument");
3959			if (r)
3960				goto bad;
3961		} else if (!strcmp(opt_string, "recalculate")) {
3962			ic->recalculate_flag = true;
3963		} else if (!strcmp(opt_string, "allow_discards")) {
3964			ic->discard = true;
3965		} else if (!strcmp(opt_string, "fix_padding")) {
3966			ic->fix_padding = true;
3967		} else if (!strcmp(opt_string, "legacy_recalculate")) {
3968			ic->legacy_recalculate = true;
3969		} else {
3970			r = -EINVAL;
3971			ti->error = "Invalid argument";
3972			goto bad;
3973		}
3974	}
3975
3976	ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3977	if (!ic->meta_dev)
3978		ic->meta_device_sectors = ic->data_device_sectors;
3979	else
3980		ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3981
3982	if (!journal_sectors) {
3983		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3984				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3985	}
3986
3987	if (!buffer_sectors)
3988		buffer_sectors = 1;
3989	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3990
3991	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3992		    "Invalid internal hash", "Error setting internal hash key");
3993	if (r)
3994		goto bad;
3995
3996	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3997		    "Invalid journal mac", "Error setting journal mac key");
3998	if (r)
3999		goto bad;
4000
4001	if (!ic->tag_size) {
4002		if (!ic->internal_hash) {
4003			ti->error = "Unknown tag size";
4004			r = -EINVAL;
4005			goto bad;
4006		}
4007		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4008	}
4009	if (ic->tag_size > MAX_TAG_SIZE) {
4010		ti->error = "Too big tag size";
4011		r = -EINVAL;
4012		goto bad;
4013	}
4014	if (!(ic->tag_size & (ic->tag_size - 1)))
4015		ic->log2_tag_size = __ffs(ic->tag_size);
4016	else
4017		ic->log2_tag_size = -1;
4018
4019	if (ic->mode == 'B' && !ic->internal_hash) {
4020		r = -EINVAL;
4021		ti->error = "Bitmap mode can be only used with internal hash";
4022		goto bad;
4023	}
4024
4025	if (ic->discard && !ic->internal_hash) {
4026		r = -EINVAL;
4027		ti->error = "Discard can be only used with internal hash";
4028		goto bad;
4029	}
4030
4031	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4032	ic->autocommit_msec = sync_msec;
4033	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4034
4035	ic->io = dm_io_client_create();
4036	if (IS_ERR(ic->io)) {
4037		r = PTR_ERR(ic->io);
4038		ic->io = NULL;
4039		ti->error = "Cannot allocate dm io";
4040		goto bad;
4041	}
4042
4043	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4044	if (r) {
4045		ti->error = "Cannot allocate mempool";
4046		goto bad;
4047	}
4048
4049	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4050					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4051	if (!ic->metadata_wq) {
4052		ti->error = "Cannot allocate workqueue";
4053		r = -ENOMEM;
4054		goto bad;
4055	}
4056
4057	/*
4058	 * If this workqueue were percpu, it would cause bio reordering
4059	 * and reduced performance.
4060	 */
4061	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4062	if (!ic->wait_wq) {
4063		ti->error = "Cannot allocate workqueue";
4064		r = -ENOMEM;
4065		goto bad;
4066	}
4067
4068	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4069					  METADATA_WORKQUEUE_MAX_ACTIVE);
4070	if (!ic->offload_wq) {
4071		ti->error = "Cannot allocate workqueue";
4072		r = -ENOMEM;
4073		goto bad;
4074	}
4075
4076	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4077	if (!ic->commit_wq) {
4078		ti->error = "Cannot allocate workqueue";
4079		r = -ENOMEM;
4080		goto bad;
4081	}
4082	INIT_WORK(&ic->commit_work, integrity_commit);
4083
4084	if (ic->mode == 'J' || ic->mode == 'B') {
4085		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4086		if (!ic->writer_wq) {
4087			ti->error = "Cannot allocate workqueue";
4088			r = -ENOMEM;
4089			goto bad;
4090		}
4091		INIT_WORK(&ic->writer_work, integrity_writer);
4092	}
4093
4094	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4095	if (!ic->sb) {
4096		r = -ENOMEM;
4097		ti->error = "Cannot allocate superblock area";
4098		goto bad;
4099	}
4100
4101	r = sync_rw_sb(ic, REQ_OP_READ, 0);
4102	if (r) {
4103		ti->error = "Error reading superblock";
4104		goto bad;
4105	}
4106	should_write_sb = false;
4107	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4108		if (ic->mode != 'R') {
4109			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4110				r = -EINVAL;
4111				ti->error = "The device is not initialized";
4112				goto bad;
4113			}
4114		}
4115
4116		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4117		if (r) {
4118			ti->error = "Could not initialize superblock";
4119			goto bad;
4120		}
4121		if (ic->mode != 'R')
4122			should_write_sb = true;
4123	}
4124
4125	if (!ic->sb->version || ic->sb->version > SB_VERSION_4) {
4126		r = -EINVAL;
4127		ti->error = "Unknown version";
4128		goto bad;
4129	}
4130	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4131		r = -EINVAL;
4132		ti->error = "Tag size doesn't match the information in superblock";
4133		goto bad;
4134	}
4135	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4136		r = -EINVAL;
4137		ti->error = "Block size doesn't match the information in superblock";
4138		goto bad;
4139	}
4140	if (!le32_to_cpu(ic->sb->journal_sections)) {
4141		r = -EINVAL;
4142		ti->error = "Corrupted superblock, journal_sections is 0";
4143		goto bad;
4144	}
4145	/* make sure that ti->max_io_len doesn't overflow */
4146	if (!ic->meta_dev) {
4147		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4148		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4149			r = -EINVAL;
4150			ti->error = "Invalid interleave_sectors in the superblock";
4151			goto bad;
4152		}
4153	} else {
4154		if (ic->sb->log2_interleave_sectors) {
4155			r = -EINVAL;
4156			ti->error = "Invalid interleave_sectors in the superblock";
4157			goto bad;
4158		}
4159	}
4160	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4161		r = -EINVAL;
4162		ti->error = "Journal mac mismatch";
4163		goto bad;
4164	}
4165
4166	get_provided_data_sectors(ic);
4167	if (!ic->provided_data_sectors) {
4168		r = -EINVAL;
4169		ti->error = "The device is too small";
4170		goto bad;
4171	}
4172
4173try_smaller_buffer:
4174	r = calculate_device_limits(ic);
4175	if (r) {
4176		if (ic->meta_dev) {
4177			if (ic->log2_buffer_sectors > 3) {
4178				ic->log2_buffer_sectors--;
4179				goto try_smaller_buffer;
4180			}
4181		}
4182		ti->error = "The device is too small";
4183		goto bad;
4184	}
4185
4186	if (log2_sectors_per_bitmap_bit < 0)
4187		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4188	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4189		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4190
4191	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4192	if (bits_in_journal > UINT_MAX)
4193		bits_in_journal = UINT_MAX;
4194	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4195		log2_sectors_per_bitmap_bit++;
4196
4197	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4198	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4199	if (should_write_sb) {
4200		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4201	}
4202	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4203				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4204	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4205
4206	if (!ic->meta_dev)
4207		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4208
4209	if (ti->len > ic->provided_data_sectors) {
4210		r = -EINVAL;
4211		ti->error = "Not enough provided sectors for requested mapping size";
4212		goto bad;
4213	}
4214
4215
4216	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4217	threshold += 50;
4218	do_div(threshold, 100);
4219	ic->free_sectors_threshold = threshold;
4220
4221	DEBUG_print("initialized:\n");
4222	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4223	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4224	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4225	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4226	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4227	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4228	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4229	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4230	DEBUG_print("	data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4231	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4232	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4233	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4234	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4235	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4236	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4237
4238	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4239		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4240		ic->sb->recalc_sector = cpu_to_le64(0);
4241	}
4242
4243	if (ic->internal_hash) {
4244		size_t recalc_tags_size;
4245		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4246		if (!ic->recalc_wq ) {
4247			ti->error = "Cannot allocate workqueue";
4248			r = -ENOMEM;
4249			goto bad;
4250		}
4251		INIT_WORK(&ic->recalc_work, integrity_recalc);
4252		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4253		if (!ic->recalc_buffer) {
4254			ti->error = "Cannot allocate buffer for recalculating";
4255			r = -ENOMEM;
4256			goto bad;
4257		}
4258		recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4259		if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
4260			recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
4261		ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL);
4262		if (!ic->recalc_tags) {
4263			ti->error = "Cannot allocate tags for recalculating";
4264			r = -ENOMEM;
4265			goto bad;
4266		}
4267	} else {
4268		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4269			ti->error = "Recalculate can only be specified with internal_hash";
4270			r = -EINVAL;
4271			goto bad;
4272		}
4273	}
4274
4275	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4276	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4277	    dm_integrity_disable_recalculate(ic)) {
4278		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4279		r = -EOPNOTSUPP;
4280		goto bad;
4281	}
4282
4283	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4284			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4285	if (IS_ERR(ic->bufio)) {
4286		r = PTR_ERR(ic->bufio);
4287		ti->error = "Cannot initialize dm-bufio";
4288		ic->bufio = NULL;
4289		goto bad;
4290	}
4291	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4292
4293	if (ic->mode != 'R') {
4294		r = create_journal(ic, &ti->error);
4295		if (r)
4296			goto bad;
4297
4298	}
4299
4300	if (ic->mode == 'B') {
4301		unsigned i;
4302		unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4303
4304		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4305		if (!ic->recalc_bitmap) {
4306			r = -ENOMEM;
4307			goto bad;
4308		}
4309		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4310		if (!ic->may_write_bitmap) {
4311			r = -ENOMEM;
4312			goto bad;
4313		}
4314		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4315		if (!ic->bbs) {
4316			r = -ENOMEM;
4317			goto bad;
4318		}
4319		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4320		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4321			struct bitmap_block_status *bbs = &ic->bbs[i];
4322			unsigned sector, pl_index, pl_offset;
4323
4324			INIT_WORK(&bbs->work, bitmap_block_work);
4325			bbs->ic = ic;
4326			bbs->idx = i;
4327			bio_list_init(&bbs->bio_queue);
4328			spin_lock_init(&bbs->bio_queue_lock);
4329
4330			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4331			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4332			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4333
4334			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4335		}
4336	}
4337
4338	if (should_write_sb) {
4339		init_journal(ic, 0, ic->journal_sections, 0);
4340		r = dm_integrity_failed(ic);
4341		if (unlikely(r)) {
4342			ti->error = "Error initializing journal";
4343			goto bad;
4344		}
4345		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4346		if (r) {
4347			ti->error = "Error initializing superblock";
4348			goto bad;
4349		}
4350		ic->just_formatted = true;
4351	}
4352
4353	if (!ic->meta_dev) {
4354		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4355		if (r)
4356			goto bad;
4357	}
4358	if (ic->mode == 'B') {
4359		unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4360		if (!max_io_len)
4361			max_io_len = 1U << 31;
4362		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4363		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4364			r = dm_set_target_max_io_len(ti, max_io_len);
4365			if (r)
4366				goto bad;
4367		}
4368	}
4369
4370	if (!ic->internal_hash)
4371		dm_integrity_set(ti, ic);
4372
4373	ti->num_flush_bios = 1;
4374	ti->flush_supported = true;
4375	if (ic->discard)
4376		ti->num_discard_bios = 1;
4377
4378	return 0;
4379
4380bad:
4381	dm_integrity_dtr(ti);
4382	return r;
4383}
4384
4385static void dm_integrity_dtr(struct dm_target *ti)
4386{
4387	struct dm_integrity_c *ic = ti->private;
4388
4389	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4390	BUG_ON(!list_empty(&ic->wait_list));
4391
4392	if (ic->mode == 'B')
4393		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4394	if (ic->metadata_wq)
4395		destroy_workqueue(ic->metadata_wq);
4396	if (ic->wait_wq)
4397		destroy_workqueue(ic->wait_wq);
4398	if (ic->offload_wq)
4399		destroy_workqueue(ic->offload_wq);
4400	if (ic->commit_wq)
4401		destroy_workqueue(ic->commit_wq);
4402	if (ic->writer_wq)
4403		destroy_workqueue(ic->writer_wq);
4404	if (ic->recalc_wq)
4405		destroy_workqueue(ic->recalc_wq);
4406	vfree(ic->recalc_buffer);
4407	kvfree(ic->recalc_tags);
4408	kvfree(ic->bbs);
4409	if (ic->bufio)
4410		dm_bufio_client_destroy(ic->bufio);
4411	mempool_exit(&ic->journal_io_mempool);
4412	if (ic->io)
4413		dm_io_client_destroy(ic->io);
4414	if (ic->dev)
4415		dm_put_device(ti, ic->dev);
4416	if (ic->meta_dev)
4417		dm_put_device(ti, ic->meta_dev);
4418	dm_integrity_free_page_list(ic->journal);
4419	dm_integrity_free_page_list(ic->journal_io);
4420	dm_integrity_free_page_list(ic->journal_xor);
4421	dm_integrity_free_page_list(ic->recalc_bitmap);
4422	dm_integrity_free_page_list(ic->may_write_bitmap);
4423	if (ic->journal_scatterlist)
4424		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4425	if (ic->journal_io_scatterlist)
4426		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4427	if (ic->sk_requests) {
4428		unsigned i;
4429
4430		for (i = 0; i < ic->journal_sections; i++) {
4431			struct skcipher_request *req = ic->sk_requests[i];
4432			if (req) {
4433				kfree_sensitive(req->iv);
4434				skcipher_request_free(req);
4435			}
4436		}
4437		kvfree(ic->sk_requests);
4438	}
4439	kvfree(ic->journal_tree);
4440	if (ic->sb)
4441		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4442
4443	if (ic->internal_hash)
4444		crypto_free_shash(ic->internal_hash);
4445	free_alg(&ic->internal_hash_alg);
4446
4447	if (ic->journal_crypt)
4448		crypto_free_skcipher(ic->journal_crypt);
4449	free_alg(&ic->journal_crypt_alg);
4450
4451	if (ic->journal_mac)
4452		crypto_free_shash(ic->journal_mac);
4453	free_alg(&ic->journal_mac_alg);
4454
4455	kfree(ic);
4456}
4457
4458static struct target_type integrity_target = {
4459	.name			= "integrity",
4460	.version		= {1, 6, 0},
4461	.module			= THIS_MODULE,
4462	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4463	.ctr			= dm_integrity_ctr,
4464	.dtr			= dm_integrity_dtr,
4465	.map			= dm_integrity_map,
4466	.postsuspend		= dm_integrity_postsuspend,
4467	.resume			= dm_integrity_resume,
4468	.status			= dm_integrity_status,
4469	.iterate_devices	= dm_integrity_iterate_devices,
4470	.io_hints		= dm_integrity_io_hints,
4471};
4472
4473static int __init dm_integrity_init(void)
4474{
4475	int r;
4476
4477	journal_io_cache = kmem_cache_create("integrity_journal_io",
4478					     sizeof(struct journal_io), 0, 0, NULL);
4479	if (!journal_io_cache) {
4480		DMERR("can't allocate journal io cache");
4481		return -ENOMEM;
4482	}
4483
4484	r = dm_register_target(&integrity_target);
4485	if (r < 0) {
4486		DMERR("register failed %d", r);
4487		kmem_cache_destroy(journal_io_cache);
4488		return r;
4489	}
4490
4491	return 0;
4492}
4493
4494static void __exit dm_integrity_exit(void)
4495{
4496	dm_unregister_target(&integrity_target);
4497	kmem_cache_destroy(journal_io_cache);
4498}
4499
4500module_init(dm_integrity_init);
4501module_exit(dm_integrity_exit);
4502
4503MODULE_AUTHOR("Milan Broz");
4504MODULE_AUTHOR("Mikulas Patocka");
4505MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4506MODULE_LICENSE("GPL");
4507