1/*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm.h"
8#include "dm-bio-prison-v2.h"
9#include "dm-bio-record.h"
10#include "dm-cache-metadata.h"
11
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
14#include <linux/jiffies.h>
15#include <linux/init.h>
16#include <linux/mempool.h>
17#include <linux/module.h>
18#include <linux/rwsem.h>
19#include <linux/slab.h>
20#include <linux/vmalloc.h>
21
22#define DM_MSG_PREFIX "cache"
23
24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25	"A percentage of time allocated for copying to and/or from cache");
26
27/*----------------------------------------------------------------*/
28
29/*
30 * Glossary:
31 *
32 * oblock: index of an origin block
33 * cblock: index of a cache block
34 * promotion: movement of a block from origin to cache
35 * demotion: movement of a block from cache to origin
36 * migration: movement of a block between the origin and cache device,
37 *	      either direction
38 */
39
40/*----------------------------------------------------------------*/
41
42struct io_tracker {
43	spinlock_t lock;
44
45	/*
46	 * Sectors of in-flight IO.
47	 */
48	sector_t in_flight;
49
50	/*
51	 * The time, in jiffies, when this device became idle (if it is
52	 * indeed idle).
53	 */
54	unsigned long idle_time;
55	unsigned long last_update_time;
56};
57
58static void iot_init(struct io_tracker *iot)
59{
60	spin_lock_init(&iot->lock);
61	iot->in_flight = 0ul;
62	iot->idle_time = 0ul;
63	iot->last_update_time = jiffies;
64}
65
66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67{
68	if (iot->in_flight)
69		return false;
70
71	return time_after(jiffies, iot->idle_time + jifs);
72}
73
74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75{
76	bool r;
77
78	spin_lock_irq(&iot->lock);
79	r = __iot_idle_for(iot, jifs);
80	spin_unlock_irq(&iot->lock);
81
82	return r;
83}
84
85static void iot_io_begin(struct io_tracker *iot, sector_t len)
86{
87	spin_lock_irq(&iot->lock);
88	iot->in_flight += len;
89	spin_unlock_irq(&iot->lock);
90}
91
92static void __iot_io_end(struct io_tracker *iot, sector_t len)
93{
94	if (!len)
95		return;
96
97	iot->in_flight -= len;
98	if (!iot->in_flight)
99		iot->idle_time = jiffies;
100}
101
102static void iot_io_end(struct io_tracker *iot, sector_t len)
103{
104	unsigned long flags;
105
106	spin_lock_irqsave(&iot->lock, flags);
107	__iot_io_end(iot, len);
108	spin_unlock_irqrestore(&iot->lock, flags);
109}
110
111/*----------------------------------------------------------------*/
112
113/*
114 * Represents a chunk of future work.  'input' allows continuations to pass
115 * values between themselves, typically error values.
116 */
117struct continuation {
118	struct work_struct ws;
119	blk_status_t input;
120};
121
122static inline void init_continuation(struct continuation *k,
123				     void (*fn)(struct work_struct *))
124{
125	INIT_WORK(&k->ws, fn);
126	k->input = 0;
127}
128
129static inline void queue_continuation(struct workqueue_struct *wq,
130				      struct continuation *k)
131{
132	queue_work(wq, &k->ws);
133}
134
135/*----------------------------------------------------------------*/
136
137/*
138 * The batcher collects together pieces of work that need a particular
139 * operation to occur before they can proceed (typically a commit).
140 */
141struct batcher {
142	/*
143	 * The operation that everyone is waiting for.
144	 */
145	blk_status_t (*commit_op)(void *context);
146	void *commit_context;
147
148	/*
149	 * This is how bios should be issued once the commit op is complete
150	 * (accounted_request).
151	 */
152	void (*issue_op)(struct bio *bio, void *context);
153	void *issue_context;
154
155	/*
156	 * Queued work gets put on here after commit.
157	 */
158	struct workqueue_struct *wq;
159
160	spinlock_t lock;
161	struct list_head work_items;
162	struct bio_list bios;
163	struct work_struct commit_work;
164
165	bool commit_scheduled;
166};
167
168static void __commit(struct work_struct *_ws)
169{
170	struct batcher *b = container_of(_ws, struct batcher, commit_work);
171	blk_status_t r;
172	struct list_head work_items;
173	struct work_struct *ws, *tmp;
174	struct continuation *k;
175	struct bio *bio;
176	struct bio_list bios;
177
178	INIT_LIST_HEAD(&work_items);
179	bio_list_init(&bios);
180
181	/*
182	 * We have to grab these before the commit_op to avoid a race
183	 * condition.
184	 */
185	spin_lock_irq(&b->lock);
186	list_splice_init(&b->work_items, &work_items);
187	bio_list_merge(&bios, &b->bios);
188	bio_list_init(&b->bios);
189	b->commit_scheduled = false;
190	spin_unlock_irq(&b->lock);
191
192	r = b->commit_op(b->commit_context);
193
194	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
195		k = container_of(ws, struct continuation, ws);
196		k->input = r;
197		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
198		queue_work(b->wq, ws);
199	}
200
201	while ((bio = bio_list_pop(&bios))) {
202		if (r) {
203			bio->bi_status = r;
204			bio_endio(bio);
205		} else
206			b->issue_op(bio, b->issue_context);
207	}
208}
209
210static void batcher_init(struct batcher *b,
211			 blk_status_t (*commit_op)(void *),
212			 void *commit_context,
213			 void (*issue_op)(struct bio *bio, void *),
214			 void *issue_context,
215			 struct workqueue_struct *wq)
216{
217	b->commit_op = commit_op;
218	b->commit_context = commit_context;
219	b->issue_op = issue_op;
220	b->issue_context = issue_context;
221	b->wq = wq;
222
223	spin_lock_init(&b->lock);
224	INIT_LIST_HEAD(&b->work_items);
225	bio_list_init(&b->bios);
226	INIT_WORK(&b->commit_work, __commit);
227	b->commit_scheduled = false;
228}
229
230static void async_commit(struct batcher *b)
231{
232	queue_work(b->wq, &b->commit_work);
233}
234
235static void continue_after_commit(struct batcher *b, struct continuation *k)
236{
237	bool commit_scheduled;
238
239	spin_lock_irq(&b->lock);
240	commit_scheduled = b->commit_scheduled;
241	list_add_tail(&k->ws.entry, &b->work_items);
242	spin_unlock_irq(&b->lock);
243
244	if (commit_scheduled)
245		async_commit(b);
246}
247
248/*
249 * Bios are errored if commit failed.
250 */
251static void issue_after_commit(struct batcher *b, struct bio *bio)
252{
253       bool commit_scheduled;
254
255       spin_lock_irq(&b->lock);
256       commit_scheduled = b->commit_scheduled;
257       bio_list_add(&b->bios, bio);
258       spin_unlock_irq(&b->lock);
259
260       if (commit_scheduled)
261	       async_commit(b);
262}
263
264/*
265 * Call this if some urgent work is waiting for the commit to complete.
266 */
267static void schedule_commit(struct batcher *b)
268{
269	bool immediate;
270
271	spin_lock_irq(&b->lock);
272	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
273	b->commit_scheduled = true;
274	spin_unlock_irq(&b->lock);
275
276	if (immediate)
277		async_commit(b);
278}
279
280/*
281 * There are a couple of places where we let a bio run, but want to do some
282 * work before calling its endio function.  We do this by temporarily
283 * changing the endio fn.
284 */
285struct dm_hook_info {
286	bio_end_io_t *bi_end_io;
287};
288
289static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
290			bio_end_io_t *bi_end_io, void *bi_private)
291{
292	h->bi_end_io = bio->bi_end_io;
293
294	bio->bi_end_io = bi_end_io;
295	bio->bi_private = bi_private;
296}
297
298static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
299{
300	bio->bi_end_io = h->bi_end_io;
301}
302
303/*----------------------------------------------------------------*/
304
305#define MIGRATION_POOL_SIZE 128
306#define COMMIT_PERIOD HZ
307#define MIGRATION_COUNT_WINDOW 10
308
309/*
310 * The block size of the device holding cache data must be
311 * between 32KB and 1GB.
312 */
313#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
314#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
315
316enum cache_metadata_mode {
317	CM_WRITE,		/* metadata may be changed */
318	CM_READ_ONLY,		/* metadata may not be changed */
319	CM_FAIL
320};
321
322enum cache_io_mode {
323	/*
324	 * Data is written to cached blocks only.  These blocks are marked
325	 * dirty.  If you lose the cache device you will lose data.
326	 * Potential performance increase for both reads and writes.
327	 */
328	CM_IO_WRITEBACK,
329
330	/*
331	 * Data is written to both cache and origin.  Blocks are never
332	 * dirty.  Potential performance benfit for reads only.
333	 */
334	CM_IO_WRITETHROUGH,
335
336	/*
337	 * A degraded mode useful for various cache coherency situations
338	 * (eg, rolling back snapshots).  Reads and writes always go to the
339	 * origin.  If a write goes to a cached oblock, then the cache
340	 * block is invalidated.
341	 */
342	CM_IO_PASSTHROUGH
343};
344
345struct cache_features {
346	enum cache_metadata_mode mode;
347	enum cache_io_mode io_mode;
348	unsigned metadata_version;
349	bool discard_passdown:1;
350};
351
352struct cache_stats {
353	atomic_t read_hit;
354	atomic_t read_miss;
355	atomic_t write_hit;
356	atomic_t write_miss;
357	atomic_t demotion;
358	atomic_t promotion;
359	atomic_t writeback;
360	atomic_t copies_avoided;
361	atomic_t cache_cell_clash;
362	atomic_t commit_count;
363	atomic_t discard_count;
364};
365
366struct cache {
367	struct dm_target *ti;
368	spinlock_t lock;
369
370	/*
371	 * Fields for converting from sectors to blocks.
372	 */
373	int sectors_per_block_shift;
374	sector_t sectors_per_block;
375
376	struct dm_cache_metadata *cmd;
377
378	/*
379	 * Metadata is written to this device.
380	 */
381	struct dm_dev *metadata_dev;
382
383	/*
384	 * The slower of the two data devices.  Typically a spindle.
385	 */
386	struct dm_dev *origin_dev;
387
388	/*
389	 * The faster of the two data devices.  Typically an SSD.
390	 */
391	struct dm_dev *cache_dev;
392
393	/*
394	 * Size of the origin device in _complete_ blocks and native sectors.
395	 */
396	dm_oblock_t origin_blocks;
397	sector_t origin_sectors;
398
399	/*
400	 * Size of the cache device in blocks.
401	 */
402	dm_cblock_t cache_size;
403
404	/*
405	 * Invalidation fields.
406	 */
407	spinlock_t invalidation_lock;
408	struct list_head invalidation_requests;
409
410	sector_t migration_threshold;
411	wait_queue_head_t migration_wait;
412	atomic_t nr_allocated_migrations;
413
414	/*
415	 * The number of in flight migrations that are performing
416	 * background io. eg, promotion, writeback.
417	 */
418	atomic_t nr_io_migrations;
419
420	struct bio_list deferred_bios;
421
422	struct rw_semaphore quiesce_lock;
423
424	/*
425	 * origin_blocks entries, discarded if set.
426	 */
427	dm_dblock_t discard_nr_blocks;
428	unsigned long *discard_bitset;
429	uint32_t discard_block_size; /* a power of 2 times sectors per block */
430
431	/*
432	 * Rather than reconstructing the table line for the status we just
433	 * save it and regurgitate.
434	 */
435	unsigned nr_ctr_args;
436	const char **ctr_args;
437
438	struct dm_kcopyd_client *copier;
439	struct work_struct deferred_bio_worker;
440	struct work_struct migration_worker;
441	struct workqueue_struct *wq;
442	struct delayed_work waker;
443	struct dm_bio_prison_v2 *prison;
444
445	/*
446	 * cache_size entries, dirty if set
447	 */
448	unsigned long *dirty_bitset;
449	atomic_t nr_dirty;
450
451	unsigned policy_nr_args;
452	struct dm_cache_policy *policy;
453
454	/*
455	 * Cache features such as write-through.
456	 */
457	struct cache_features features;
458
459	struct cache_stats stats;
460
461	bool need_tick_bio:1;
462	bool sized:1;
463	bool invalidate:1;
464	bool commit_requested:1;
465	bool loaded_mappings:1;
466	bool loaded_discards:1;
467
468	struct rw_semaphore background_work_lock;
469
470	struct batcher committer;
471	struct work_struct commit_ws;
472
473	struct io_tracker tracker;
474
475	mempool_t migration_pool;
476
477	struct bio_set bs;
478};
479
480struct per_bio_data {
481	bool tick:1;
482	unsigned req_nr:2;
483	struct dm_bio_prison_cell_v2 *cell;
484	struct dm_hook_info hook_info;
485	sector_t len;
486};
487
488struct dm_cache_migration {
489	struct continuation k;
490	struct cache *cache;
491
492	struct policy_work *op;
493	struct bio *overwrite_bio;
494	struct dm_bio_prison_cell_v2 *cell;
495
496	dm_cblock_t invalidate_cblock;
497	dm_oblock_t invalidate_oblock;
498};
499
500/*----------------------------------------------------------------*/
501
502static bool writethrough_mode(struct cache *cache)
503{
504	return cache->features.io_mode == CM_IO_WRITETHROUGH;
505}
506
507static bool writeback_mode(struct cache *cache)
508{
509	return cache->features.io_mode == CM_IO_WRITEBACK;
510}
511
512static inline bool passthrough_mode(struct cache *cache)
513{
514	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
515}
516
517/*----------------------------------------------------------------*/
518
519static void wake_deferred_bio_worker(struct cache *cache)
520{
521	queue_work(cache->wq, &cache->deferred_bio_worker);
522}
523
524static void wake_migration_worker(struct cache *cache)
525{
526	if (passthrough_mode(cache))
527		return;
528
529	queue_work(cache->wq, &cache->migration_worker);
530}
531
532/*----------------------------------------------------------------*/
533
534static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
535{
536	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
537}
538
539static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
540{
541	dm_bio_prison_free_cell_v2(cache->prison, cell);
542}
543
544static struct dm_cache_migration *alloc_migration(struct cache *cache)
545{
546	struct dm_cache_migration *mg;
547
548	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
549
550	memset(mg, 0, sizeof(*mg));
551
552	mg->cache = cache;
553	atomic_inc(&cache->nr_allocated_migrations);
554
555	return mg;
556}
557
558static void free_migration(struct dm_cache_migration *mg)
559{
560	struct cache *cache = mg->cache;
561
562	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
563		wake_up(&cache->migration_wait);
564
565	mempool_free(mg, &cache->migration_pool);
566}
567
568/*----------------------------------------------------------------*/
569
570static inline dm_oblock_t oblock_succ(dm_oblock_t b)
571{
572	return to_oblock(from_oblock(b) + 1ull);
573}
574
575static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
576{
577	key->virtual = 0;
578	key->dev = 0;
579	key->block_begin = from_oblock(begin);
580	key->block_end = from_oblock(end);
581}
582
583/*
584 * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
585 * level 1 which prevents *both* READs and WRITEs.
586 */
587#define WRITE_LOCK_LEVEL 0
588#define READ_WRITE_LOCK_LEVEL 1
589
590static unsigned lock_level(struct bio *bio)
591{
592	return bio_data_dir(bio) == WRITE ?
593		WRITE_LOCK_LEVEL :
594		READ_WRITE_LOCK_LEVEL;
595}
596
597/*----------------------------------------------------------------
598 * Per bio data
599 *--------------------------------------------------------------*/
600
601static struct per_bio_data *get_per_bio_data(struct bio *bio)
602{
603	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
604	BUG_ON(!pb);
605	return pb;
606}
607
608static struct per_bio_data *init_per_bio_data(struct bio *bio)
609{
610	struct per_bio_data *pb = get_per_bio_data(bio);
611
612	pb->tick = false;
613	pb->req_nr = dm_bio_get_target_bio_nr(bio);
614	pb->cell = NULL;
615	pb->len = 0;
616
617	return pb;
618}
619
620/*----------------------------------------------------------------*/
621
622static void defer_bio(struct cache *cache, struct bio *bio)
623{
624	spin_lock_irq(&cache->lock);
625	bio_list_add(&cache->deferred_bios, bio);
626	spin_unlock_irq(&cache->lock);
627
628	wake_deferred_bio_worker(cache);
629}
630
631static void defer_bios(struct cache *cache, struct bio_list *bios)
632{
633	spin_lock_irq(&cache->lock);
634	bio_list_merge(&cache->deferred_bios, bios);
635	bio_list_init(bios);
636	spin_unlock_irq(&cache->lock);
637
638	wake_deferred_bio_worker(cache);
639}
640
641/*----------------------------------------------------------------*/
642
643static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
644{
645	bool r;
646	struct per_bio_data *pb;
647	struct dm_cell_key_v2 key;
648	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
649	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
650
651	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
652
653	build_key(oblock, end, &key);
654	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
655	if (!r) {
656		/*
657		 * Failed to get the lock.
658		 */
659		free_prison_cell(cache, cell_prealloc);
660		return r;
661	}
662
663	if (cell != cell_prealloc)
664		free_prison_cell(cache, cell_prealloc);
665
666	pb = get_per_bio_data(bio);
667	pb->cell = cell;
668
669	return r;
670}
671
672/*----------------------------------------------------------------*/
673
674static bool is_dirty(struct cache *cache, dm_cblock_t b)
675{
676	return test_bit(from_cblock(b), cache->dirty_bitset);
677}
678
679static void set_dirty(struct cache *cache, dm_cblock_t cblock)
680{
681	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
682		atomic_inc(&cache->nr_dirty);
683		policy_set_dirty(cache->policy, cblock);
684	}
685}
686
687/*
688 * These two are called when setting after migrations to force the policy
689 * and dirty bitset to be in sync.
690 */
691static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
692{
693	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
694		atomic_inc(&cache->nr_dirty);
695	policy_set_dirty(cache->policy, cblock);
696}
697
698static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
699{
700	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
701		if (atomic_dec_return(&cache->nr_dirty) == 0)
702			dm_table_event(cache->ti->table);
703	}
704
705	policy_clear_dirty(cache->policy, cblock);
706}
707
708/*----------------------------------------------------------------*/
709
710static bool block_size_is_power_of_two(struct cache *cache)
711{
712	return cache->sectors_per_block_shift >= 0;
713}
714
715static dm_block_t block_div(dm_block_t b, uint32_t n)
716{
717	do_div(b, n);
718
719	return b;
720}
721
722static dm_block_t oblocks_per_dblock(struct cache *cache)
723{
724	dm_block_t oblocks = cache->discard_block_size;
725
726	if (block_size_is_power_of_two(cache))
727		oblocks >>= cache->sectors_per_block_shift;
728	else
729		oblocks = block_div(oblocks, cache->sectors_per_block);
730
731	return oblocks;
732}
733
734static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
735{
736	return to_dblock(block_div(from_oblock(oblock),
737				   oblocks_per_dblock(cache)));
738}
739
740static void set_discard(struct cache *cache, dm_dblock_t b)
741{
742	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
743	atomic_inc(&cache->stats.discard_count);
744
745	spin_lock_irq(&cache->lock);
746	set_bit(from_dblock(b), cache->discard_bitset);
747	spin_unlock_irq(&cache->lock);
748}
749
750static void clear_discard(struct cache *cache, dm_dblock_t b)
751{
752	spin_lock_irq(&cache->lock);
753	clear_bit(from_dblock(b), cache->discard_bitset);
754	spin_unlock_irq(&cache->lock);
755}
756
757static bool is_discarded(struct cache *cache, dm_dblock_t b)
758{
759	int r;
760	spin_lock_irq(&cache->lock);
761	r = test_bit(from_dblock(b), cache->discard_bitset);
762	spin_unlock_irq(&cache->lock);
763
764	return r;
765}
766
767static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
768{
769	int r;
770	spin_lock_irq(&cache->lock);
771	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
772		     cache->discard_bitset);
773	spin_unlock_irq(&cache->lock);
774
775	return r;
776}
777
778/*----------------------------------------------------------------
779 * Remapping
780 *--------------------------------------------------------------*/
781static void remap_to_origin(struct cache *cache, struct bio *bio)
782{
783	bio_set_dev(bio, cache->origin_dev->bdev);
784}
785
786static void remap_to_cache(struct cache *cache, struct bio *bio,
787			   dm_cblock_t cblock)
788{
789	sector_t bi_sector = bio->bi_iter.bi_sector;
790	sector_t block = from_cblock(cblock);
791
792	bio_set_dev(bio, cache->cache_dev->bdev);
793	if (!block_size_is_power_of_two(cache))
794		bio->bi_iter.bi_sector =
795			(block * cache->sectors_per_block) +
796			sector_div(bi_sector, cache->sectors_per_block);
797	else
798		bio->bi_iter.bi_sector =
799			(block << cache->sectors_per_block_shift) |
800			(bi_sector & (cache->sectors_per_block - 1));
801}
802
803static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
804{
805	struct per_bio_data *pb;
806
807	spin_lock_irq(&cache->lock);
808	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
809	    bio_op(bio) != REQ_OP_DISCARD) {
810		pb = get_per_bio_data(bio);
811		pb->tick = true;
812		cache->need_tick_bio = false;
813	}
814	spin_unlock_irq(&cache->lock);
815}
816
817static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
818					    dm_oblock_t oblock, bool bio_has_pbd)
819{
820	if (bio_has_pbd)
821		check_if_tick_bio_needed(cache, bio);
822	remap_to_origin(cache, bio);
823	if (bio_data_dir(bio) == WRITE)
824		clear_discard(cache, oblock_to_dblock(cache, oblock));
825}
826
827static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
828					  dm_oblock_t oblock)
829{
830	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
831	__remap_to_origin_clear_discard(cache, bio, oblock, true);
832}
833
834static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
835				 dm_oblock_t oblock, dm_cblock_t cblock)
836{
837	check_if_tick_bio_needed(cache, bio);
838	remap_to_cache(cache, bio, cblock);
839	if (bio_data_dir(bio) == WRITE) {
840		set_dirty(cache, cblock);
841		clear_discard(cache, oblock_to_dblock(cache, oblock));
842	}
843}
844
845static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
846{
847	sector_t block_nr = bio->bi_iter.bi_sector;
848
849	if (!block_size_is_power_of_two(cache))
850		(void) sector_div(block_nr, cache->sectors_per_block);
851	else
852		block_nr >>= cache->sectors_per_block_shift;
853
854	return to_oblock(block_nr);
855}
856
857static bool accountable_bio(struct cache *cache, struct bio *bio)
858{
859	return bio_op(bio) != REQ_OP_DISCARD;
860}
861
862static void accounted_begin(struct cache *cache, struct bio *bio)
863{
864	struct per_bio_data *pb;
865
866	if (accountable_bio(cache, bio)) {
867		pb = get_per_bio_data(bio);
868		pb->len = bio_sectors(bio);
869		iot_io_begin(&cache->tracker, pb->len);
870	}
871}
872
873static void accounted_complete(struct cache *cache, struct bio *bio)
874{
875	struct per_bio_data *pb = get_per_bio_data(bio);
876
877	iot_io_end(&cache->tracker, pb->len);
878}
879
880static void accounted_request(struct cache *cache, struct bio *bio)
881{
882	accounted_begin(cache, bio);
883	submit_bio_noacct(bio);
884}
885
886static void issue_op(struct bio *bio, void *context)
887{
888	struct cache *cache = context;
889	accounted_request(cache, bio);
890}
891
892/*
893 * When running in writethrough mode we need to send writes to clean blocks
894 * to both the cache and origin devices.  Clone the bio and send them in parallel.
895 */
896static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
897				      dm_oblock_t oblock, dm_cblock_t cblock)
898{
899	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
900
901	BUG_ON(!origin_bio);
902
903	bio_chain(origin_bio, bio);
904	/*
905	 * Passing false to __remap_to_origin_clear_discard() skips
906	 * all code that might use per_bio_data (since clone doesn't have it)
907	 */
908	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
909	submit_bio(origin_bio);
910
911	remap_to_cache(cache, bio, cblock);
912}
913
914/*----------------------------------------------------------------
915 * Failure modes
916 *--------------------------------------------------------------*/
917static enum cache_metadata_mode get_cache_mode(struct cache *cache)
918{
919	return cache->features.mode;
920}
921
922static const char *cache_device_name(struct cache *cache)
923{
924	return dm_table_device_name(cache->ti->table);
925}
926
927static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
928{
929	const char *descs[] = {
930		"write",
931		"read-only",
932		"fail"
933	};
934
935	dm_table_event(cache->ti->table);
936	DMINFO("%s: switching cache to %s mode",
937	       cache_device_name(cache), descs[(int)mode]);
938}
939
940static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
941{
942	bool needs_check;
943	enum cache_metadata_mode old_mode = get_cache_mode(cache);
944
945	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
946		DMERR("%s: unable to read needs_check flag, setting failure mode.",
947		      cache_device_name(cache));
948		new_mode = CM_FAIL;
949	}
950
951	if (new_mode == CM_WRITE && needs_check) {
952		DMERR("%s: unable to switch cache to write mode until repaired.",
953		      cache_device_name(cache));
954		if (old_mode != new_mode)
955			new_mode = old_mode;
956		else
957			new_mode = CM_READ_ONLY;
958	}
959
960	/* Never move out of fail mode */
961	if (old_mode == CM_FAIL)
962		new_mode = CM_FAIL;
963
964	switch (new_mode) {
965	case CM_FAIL:
966	case CM_READ_ONLY:
967		dm_cache_metadata_set_read_only(cache->cmd);
968		break;
969
970	case CM_WRITE:
971		dm_cache_metadata_set_read_write(cache->cmd);
972		break;
973	}
974
975	cache->features.mode = new_mode;
976
977	if (new_mode != old_mode)
978		notify_mode_switch(cache, new_mode);
979}
980
981static void abort_transaction(struct cache *cache)
982{
983	const char *dev_name = cache_device_name(cache);
984
985	if (get_cache_mode(cache) >= CM_READ_ONLY)
986		return;
987
988	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
989	if (dm_cache_metadata_abort(cache->cmd)) {
990		DMERR("%s: failed to abort metadata transaction", dev_name);
991		set_cache_mode(cache, CM_FAIL);
992	}
993
994	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
995		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
996		set_cache_mode(cache, CM_FAIL);
997	}
998}
999
1000static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1001{
1002	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1003		    cache_device_name(cache), op, r);
1004	abort_transaction(cache);
1005	set_cache_mode(cache, CM_READ_ONLY);
1006}
1007
1008/*----------------------------------------------------------------*/
1009
1010static void load_stats(struct cache *cache)
1011{
1012	struct dm_cache_statistics stats;
1013
1014	dm_cache_metadata_get_stats(cache->cmd, &stats);
1015	atomic_set(&cache->stats.read_hit, stats.read_hits);
1016	atomic_set(&cache->stats.read_miss, stats.read_misses);
1017	atomic_set(&cache->stats.write_hit, stats.write_hits);
1018	atomic_set(&cache->stats.write_miss, stats.write_misses);
1019}
1020
1021static void save_stats(struct cache *cache)
1022{
1023	struct dm_cache_statistics stats;
1024
1025	if (get_cache_mode(cache) >= CM_READ_ONLY)
1026		return;
1027
1028	stats.read_hits = atomic_read(&cache->stats.read_hit);
1029	stats.read_misses = atomic_read(&cache->stats.read_miss);
1030	stats.write_hits = atomic_read(&cache->stats.write_hit);
1031	stats.write_misses = atomic_read(&cache->stats.write_miss);
1032
1033	dm_cache_metadata_set_stats(cache->cmd, &stats);
1034}
1035
1036static void update_stats(struct cache_stats *stats, enum policy_operation op)
1037{
1038	switch (op) {
1039	case POLICY_PROMOTE:
1040		atomic_inc(&stats->promotion);
1041		break;
1042
1043	case POLICY_DEMOTE:
1044		atomic_inc(&stats->demotion);
1045		break;
1046
1047	case POLICY_WRITEBACK:
1048		atomic_inc(&stats->writeback);
1049		break;
1050	}
1051}
1052
1053/*----------------------------------------------------------------
1054 * Migration processing
1055 *
1056 * Migration covers moving data from the origin device to the cache, or
1057 * vice versa.
1058 *--------------------------------------------------------------*/
1059
1060static void inc_io_migrations(struct cache *cache)
1061{
1062	atomic_inc(&cache->nr_io_migrations);
1063}
1064
1065static void dec_io_migrations(struct cache *cache)
1066{
1067	atomic_dec(&cache->nr_io_migrations);
1068}
1069
1070static bool discard_or_flush(struct bio *bio)
1071{
1072	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1073}
1074
1075static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1076				     dm_dblock_t *b, dm_dblock_t *e)
1077{
1078	sector_t sb = bio->bi_iter.bi_sector;
1079	sector_t se = bio_end_sector(bio);
1080
1081	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1082
1083	if (se - sb < cache->discard_block_size)
1084		*e = *b;
1085	else
1086		*e = to_dblock(block_div(se, cache->discard_block_size));
1087}
1088
1089/*----------------------------------------------------------------*/
1090
1091static void prevent_background_work(struct cache *cache)
1092{
1093	lockdep_off();
1094	down_write(&cache->background_work_lock);
1095	lockdep_on();
1096}
1097
1098static void allow_background_work(struct cache *cache)
1099{
1100	lockdep_off();
1101	up_write(&cache->background_work_lock);
1102	lockdep_on();
1103}
1104
1105static bool background_work_begin(struct cache *cache)
1106{
1107	bool r;
1108
1109	lockdep_off();
1110	r = down_read_trylock(&cache->background_work_lock);
1111	lockdep_on();
1112
1113	return r;
1114}
1115
1116static void background_work_end(struct cache *cache)
1117{
1118	lockdep_off();
1119	up_read(&cache->background_work_lock);
1120	lockdep_on();
1121}
1122
1123/*----------------------------------------------------------------*/
1124
1125static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1126{
1127	return (bio_data_dir(bio) == WRITE) &&
1128		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1129}
1130
1131static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1132{
1133	return writeback_mode(cache) &&
1134		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1135}
1136
1137static void quiesce(struct dm_cache_migration *mg,
1138		    void (*continuation)(struct work_struct *))
1139{
1140	init_continuation(&mg->k, continuation);
1141	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1142}
1143
1144static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1145{
1146	struct continuation *k = container_of(ws, struct continuation, ws);
1147	return container_of(k, struct dm_cache_migration, k);
1148}
1149
1150static void copy_complete(int read_err, unsigned long write_err, void *context)
1151{
1152	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1153
1154	if (read_err || write_err)
1155		mg->k.input = BLK_STS_IOERR;
1156
1157	queue_continuation(mg->cache->wq, &mg->k);
1158}
1159
1160static void copy(struct dm_cache_migration *mg, bool promote)
1161{
1162	struct dm_io_region o_region, c_region;
1163	struct cache *cache = mg->cache;
1164
1165	o_region.bdev = cache->origin_dev->bdev;
1166	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1167	o_region.count = cache->sectors_per_block;
1168
1169	c_region.bdev = cache->cache_dev->bdev;
1170	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1171	c_region.count = cache->sectors_per_block;
1172
1173	if (promote)
1174		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1175	else
1176		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1177}
1178
1179static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1180{
1181	struct per_bio_data *pb = get_per_bio_data(bio);
1182
1183	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1184		free_prison_cell(cache, pb->cell);
1185	pb->cell = NULL;
1186}
1187
1188static void overwrite_endio(struct bio *bio)
1189{
1190	struct dm_cache_migration *mg = bio->bi_private;
1191	struct cache *cache = mg->cache;
1192	struct per_bio_data *pb = get_per_bio_data(bio);
1193
1194	dm_unhook_bio(&pb->hook_info, bio);
1195
1196	if (bio->bi_status)
1197		mg->k.input = bio->bi_status;
1198
1199	queue_continuation(cache->wq, &mg->k);
1200}
1201
1202static void overwrite(struct dm_cache_migration *mg,
1203		      void (*continuation)(struct work_struct *))
1204{
1205	struct bio *bio = mg->overwrite_bio;
1206	struct per_bio_data *pb = get_per_bio_data(bio);
1207
1208	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1209
1210	/*
1211	 * The overwrite bio is part of the copy operation, as such it does
1212	 * not set/clear discard or dirty flags.
1213	 */
1214	if (mg->op->op == POLICY_PROMOTE)
1215		remap_to_cache(mg->cache, bio, mg->op->cblock);
1216	else
1217		remap_to_origin(mg->cache, bio);
1218
1219	init_continuation(&mg->k, continuation);
1220	accounted_request(mg->cache, bio);
1221}
1222
1223/*
1224 * Migration steps:
1225 *
1226 * 1) exclusive lock preventing WRITEs
1227 * 2) quiesce
1228 * 3) copy or issue overwrite bio
1229 * 4) upgrade to exclusive lock preventing READs and WRITEs
1230 * 5) quiesce
1231 * 6) update metadata and commit
1232 * 7) unlock
1233 */
1234static void mg_complete(struct dm_cache_migration *mg, bool success)
1235{
1236	struct bio_list bios;
1237	struct cache *cache = mg->cache;
1238	struct policy_work *op = mg->op;
1239	dm_cblock_t cblock = op->cblock;
1240
1241	if (success)
1242		update_stats(&cache->stats, op->op);
1243
1244	switch (op->op) {
1245	case POLICY_PROMOTE:
1246		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1247		policy_complete_background_work(cache->policy, op, success);
1248
1249		if (mg->overwrite_bio) {
1250			if (success)
1251				force_set_dirty(cache, cblock);
1252			else if (mg->k.input)
1253				mg->overwrite_bio->bi_status = mg->k.input;
1254			else
1255				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1256			bio_endio(mg->overwrite_bio);
1257		} else {
1258			if (success)
1259				force_clear_dirty(cache, cblock);
1260			dec_io_migrations(cache);
1261		}
1262		break;
1263
1264	case POLICY_DEMOTE:
1265		/*
1266		 * We clear dirty here to update the nr_dirty counter.
1267		 */
1268		if (success)
1269			force_clear_dirty(cache, cblock);
1270		policy_complete_background_work(cache->policy, op, success);
1271		dec_io_migrations(cache);
1272		break;
1273
1274	case POLICY_WRITEBACK:
1275		if (success)
1276			force_clear_dirty(cache, cblock);
1277		policy_complete_background_work(cache->policy, op, success);
1278		dec_io_migrations(cache);
1279		break;
1280	}
1281
1282	bio_list_init(&bios);
1283	if (mg->cell) {
1284		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1285			free_prison_cell(cache, mg->cell);
1286	}
1287
1288	free_migration(mg);
1289	defer_bios(cache, &bios);
1290	wake_migration_worker(cache);
1291
1292	background_work_end(cache);
1293}
1294
1295static void mg_success(struct work_struct *ws)
1296{
1297	struct dm_cache_migration *mg = ws_to_mg(ws);
1298	mg_complete(mg, mg->k.input == 0);
1299}
1300
1301static void mg_update_metadata(struct work_struct *ws)
1302{
1303	int r;
1304	struct dm_cache_migration *mg = ws_to_mg(ws);
1305	struct cache *cache = mg->cache;
1306	struct policy_work *op = mg->op;
1307
1308	switch (op->op) {
1309	case POLICY_PROMOTE:
1310		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1311		if (r) {
1312			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1313				    cache_device_name(cache));
1314			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1315
1316			mg_complete(mg, false);
1317			return;
1318		}
1319		mg_complete(mg, true);
1320		break;
1321
1322	case POLICY_DEMOTE:
1323		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1324		if (r) {
1325			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1326				    cache_device_name(cache));
1327			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1328
1329			mg_complete(mg, false);
1330			return;
1331		}
1332
1333		/*
1334		 * It would be nice if we only had to commit when a REQ_FLUSH
1335		 * comes through.  But there's one scenario that we have to
1336		 * look out for:
1337		 *
1338		 * - vblock x in a cache block
1339		 * - domotion occurs
1340		 * - cache block gets reallocated and over written
1341		 * - crash
1342		 *
1343		 * When we recover, because there was no commit the cache will
1344		 * rollback to having the data for vblock x in the cache block.
1345		 * But the cache block has since been overwritten, so it'll end
1346		 * up pointing to data that was never in 'x' during the history
1347		 * of the device.
1348		 *
1349		 * To avoid this issue we require a commit as part of the
1350		 * demotion operation.
1351		 */
1352		init_continuation(&mg->k, mg_success);
1353		continue_after_commit(&cache->committer, &mg->k);
1354		schedule_commit(&cache->committer);
1355		break;
1356
1357	case POLICY_WRITEBACK:
1358		mg_complete(mg, true);
1359		break;
1360	}
1361}
1362
1363static void mg_update_metadata_after_copy(struct work_struct *ws)
1364{
1365	struct dm_cache_migration *mg = ws_to_mg(ws);
1366
1367	/*
1368	 * Did the copy succeed?
1369	 */
1370	if (mg->k.input)
1371		mg_complete(mg, false);
1372	else
1373		mg_update_metadata(ws);
1374}
1375
1376static void mg_upgrade_lock(struct work_struct *ws)
1377{
1378	int r;
1379	struct dm_cache_migration *mg = ws_to_mg(ws);
1380
1381	/*
1382	 * Did the copy succeed?
1383	 */
1384	if (mg->k.input)
1385		mg_complete(mg, false);
1386
1387	else {
1388		/*
1389		 * Now we want the lock to prevent both reads and writes.
1390		 */
1391		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1392					    READ_WRITE_LOCK_LEVEL);
1393		if (r < 0)
1394			mg_complete(mg, false);
1395
1396		else if (r)
1397			quiesce(mg, mg_update_metadata);
1398
1399		else
1400			mg_update_metadata(ws);
1401	}
1402}
1403
1404static void mg_full_copy(struct work_struct *ws)
1405{
1406	struct dm_cache_migration *mg = ws_to_mg(ws);
1407	struct cache *cache = mg->cache;
1408	struct policy_work *op = mg->op;
1409	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1410
1411	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1412	    is_discarded_oblock(cache, op->oblock)) {
1413		mg_upgrade_lock(ws);
1414		return;
1415	}
1416
1417	init_continuation(&mg->k, mg_upgrade_lock);
1418	copy(mg, is_policy_promote);
1419}
1420
1421static void mg_copy(struct work_struct *ws)
1422{
1423	struct dm_cache_migration *mg = ws_to_mg(ws);
1424
1425	if (mg->overwrite_bio) {
1426		/*
1427		 * No exclusive lock was held when we last checked if the bio
1428		 * was optimisable.  So we have to check again in case things
1429		 * have changed (eg, the block may no longer be discarded).
1430		 */
1431		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1432			/*
1433			 * Fallback to a real full copy after doing some tidying up.
1434			 */
1435			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1436			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1437			mg->overwrite_bio = NULL;
1438			inc_io_migrations(mg->cache);
1439			mg_full_copy(ws);
1440			return;
1441		}
1442
1443		/*
1444		 * It's safe to do this here, even though it's new data
1445		 * because all IO has been locked out of the block.
1446		 *
1447		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1448		 * so _not_ using mg_upgrade_lock() as continutation.
1449		 */
1450		overwrite(mg, mg_update_metadata_after_copy);
1451
1452	} else
1453		mg_full_copy(ws);
1454}
1455
1456static int mg_lock_writes(struct dm_cache_migration *mg)
1457{
1458	int r;
1459	struct dm_cell_key_v2 key;
1460	struct cache *cache = mg->cache;
1461	struct dm_bio_prison_cell_v2 *prealloc;
1462
1463	prealloc = alloc_prison_cell(cache);
1464
1465	/*
1466	 * Prevent writes to the block, but allow reads to continue.
1467	 * Unless we're using an overwrite bio, in which case we lock
1468	 * everything.
1469	 */
1470	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1471	r = dm_cell_lock_v2(cache->prison, &key,
1472			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1473			    prealloc, &mg->cell);
1474	if (r < 0) {
1475		free_prison_cell(cache, prealloc);
1476		mg_complete(mg, false);
1477		return r;
1478	}
1479
1480	if (mg->cell != prealloc)
1481		free_prison_cell(cache, prealloc);
1482
1483	if (r == 0)
1484		mg_copy(&mg->k.ws);
1485	else
1486		quiesce(mg, mg_copy);
1487
1488	return 0;
1489}
1490
1491static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1492{
1493	struct dm_cache_migration *mg;
1494
1495	if (!background_work_begin(cache)) {
1496		policy_complete_background_work(cache->policy, op, false);
1497		return -EPERM;
1498	}
1499
1500	mg = alloc_migration(cache);
1501
1502	mg->op = op;
1503	mg->overwrite_bio = bio;
1504
1505	if (!bio)
1506		inc_io_migrations(cache);
1507
1508	return mg_lock_writes(mg);
1509}
1510
1511/*----------------------------------------------------------------
1512 * invalidation processing
1513 *--------------------------------------------------------------*/
1514
1515static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1516{
1517	struct bio_list bios;
1518	struct cache *cache = mg->cache;
1519
1520	bio_list_init(&bios);
1521	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1522		free_prison_cell(cache, mg->cell);
1523
1524	if (!success && mg->overwrite_bio)
1525		bio_io_error(mg->overwrite_bio);
1526
1527	free_migration(mg);
1528	defer_bios(cache, &bios);
1529
1530	background_work_end(cache);
1531}
1532
1533static void invalidate_completed(struct work_struct *ws)
1534{
1535	struct dm_cache_migration *mg = ws_to_mg(ws);
1536	invalidate_complete(mg, !mg->k.input);
1537}
1538
1539static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1540{
1541	int r = policy_invalidate_mapping(cache->policy, cblock);
1542	if (!r) {
1543		r = dm_cache_remove_mapping(cache->cmd, cblock);
1544		if (r) {
1545			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1546				    cache_device_name(cache));
1547			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1548		}
1549
1550	} else if (r == -ENODATA) {
1551		/*
1552		 * Harmless, already unmapped.
1553		 */
1554		r = 0;
1555
1556	} else
1557		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1558
1559	return r;
1560}
1561
1562static void invalidate_remove(struct work_struct *ws)
1563{
1564	int r;
1565	struct dm_cache_migration *mg = ws_to_mg(ws);
1566	struct cache *cache = mg->cache;
1567
1568	r = invalidate_cblock(cache, mg->invalidate_cblock);
1569	if (r) {
1570		invalidate_complete(mg, false);
1571		return;
1572	}
1573
1574	init_continuation(&mg->k, invalidate_completed);
1575	continue_after_commit(&cache->committer, &mg->k);
1576	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1577	mg->overwrite_bio = NULL;
1578	schedule_commit(&cache->committer);
1579}
1580
1581static int invalidate_lock(struct dm_cache_migration *mg)
1582{
1583	int r;
1584	struct dm_cell_key_v2 key;
1585	struct cache *cache = mg->cache;
1586	struct dm_bio_prison_cell_v2 *prealloc;
1587
1588	prealloc = alloc_prison_cell(cache);
1589
1590	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1591	r = dm_cell_lock_v2(cache->prison, &key,
1592			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1593	if (r < 0) {
1594		free_prison_cell(cache, prealloc);
1595		invalidate_complete(mg, false);
1596		return r;
1597	}
1598
1599	if (mg->cell != prealloc)
1600		free_prison_cell(cache, prealloc);
1601
1602	if (r)
1603		quiesce(mg, invalidate_remove);
1604
1605	else {
1606		/*
1607		 * We can't call invalidate_remove() directly here because we
1608		 * might still be in request context.
1609		 */
1610		init_continuation(&mg->k, invalidate_remove);
1611		queue_work(cache->wq, &mg->k.ws);
1612	}
1613
1614	return 0;
1615}
1616
1617static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1618			    dm_oblock_t oblock, struct bio *bio)
1619{
1620	struct dm_cache_migration *mg;
1621
1622	if (!background_work_begin(cache))
1623		return -EPERM;
1624
1625	mg = alloc_migration(cache);
1626
1627	mg->overwrite_bio = bio;
1628	mg->invalidate_cblock = cblock;
1629	mg->invalidate_oblock = oblock;
1630
1631	return invalidate_lock(mg);
1632}
1633
1634/*----------------------------------------------------------------
1635 * bio processing
1636 *--------------------------------------------------------------*/
1637
1638enum busy {
1639	IDLE,
1640	BUSY
1641};
1642
1643static enum busy spare_migration_bandwidth(struct cache *cache)
1644{
1645	bool idle = iot_idle_for(&cache->tracker, HZ);
1646	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1647		cache->sectors_per_block;
1648
1649	if (idle && current_volume <= cache->migration_threshold)
1650		return IDLE;
1651	else
1652		return BUSY;
1653}
1654
1655static void inc_hit_counter(struct cache *cache, struct bio *bio)
1656{
1657	atomic_inc(bio_data_dir(bio) == READ ?
1658		   &cache->stats.read_hit : &cache->stats.write_hit);
1659}
1660
1661static void inc_miss_counter(struct cache *cache, struct bio *bio)
1662{
1663	atomic_inc(bio_data_dir(bio) == READ ?
1664		   &cache->stats.read_miss : &cache->stats.write_miss);
1665}
1666
1667/*----------------------------------------------------------------*/
1668
1669static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1670		   bool *commit_needed)
1671{
1672	int r, data_dir;
1673	bool rb, background_queued;
1674	dm_cblock_t cblock;
1675
1676	*commit_needed = false;
1677
1678	rb = bio_detain_shared(cache, block, bio);
1679	if (!rb) {
1680		/*
1681		 * An exclusive lock is held for this block, so we have to
1682		 * wait.  We set the commit_needed flag so the current
1683		 * transaction will be committed asap, allowing this lock
1684		 * to be dropped.
1685		 */
1686		*commit_needed = true;
1687		return DM_MAPIO_SUBMITTED;
1688	}
1689
1690	data_dir = bio_data_dir(bio);
1691
1692	if (optimisable_bio(cache, bio, block)) {
1693		struct policy_work *op = NULL;
1694
1695		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1696		if (unlikely(r && r != -ENOENT)) {
1697			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1698				    cache_device_name(cache), r);
1699			bio_io_error(bio);
1700			return DM_MAPIO_SUBMITTED;
1701		}
1702
1703		if (r == -ENOENT && op) {
1704			bio_drop_shared_lock(cache, bio);
1705			BUG_ON(op->op != POLICY_PROMOTE);
1706			mg_start(cache, op, bio);
1707			return DM_MAPIO_SUBMITTED;
1708		}
1709	} else {
1710		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1711		if (unlikely(r && r != -ENOENT)) {
1712			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1713				    cache_device_name(cache), r);
1714			bio_io_error(bio);
1715			return DM_MAPIO_SUBMITTED;
1716		}
1717
1718		if (background_queued)
1719			wake_migration_worker(cache);
1720	}
1721
1722	if (r == -ENOENT) {
1723		struct per_bio_data *pb = get_per_bio_data(bio);
1724
1725		/*
1726		 * Miss.
1727		 */
1728		inc_miss_counter(cache, bio);
1729		if (pb->req_nr == 0) {
1730			accounted_begin(cache, bio);
1731			remap_to_origin_clear_discard(cache, bio, block);
1732		} else {
1733			/*
1734			 * This is a duplicate writethrough io that is no
1735			 * longer needed because the block has been demoted.
1736			 */
1737			bio_endio(bio);
1738			return DM_MAPIO_SUBMITTED;
1739		}
1740	} else {
1741		/*
1742		 * Hit.
1743		 */
1744		inc_hit_counter(cache, bio);
1745
1746		/*
1747		 * Passthrough always maps to the origin, invalidating any
1748		 * cache blocks that are written to.
1749		 */
1750		if (passthrough_mode(cache)) {
1751			if (bio_data_dir(bio) == WRITE) {
1752				bio_drop_shared_lock(cache, bio);
1753				atomic_inc(&cache->stats.demotion);
1754				invalidate_start(cache, cblock, block, bio);
1755			} else
1756				remap_to_origin_clear_discard(cache, bio, block);
1757		} else {
1758			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1759			    !is_dirty(cache, cblock)) {
1760				remap_to_origin_and_cache(cache, bio, block, cblock);
1761				accounted_begin(cache, bio);
1762			} else
1763				remap_to_cache_dirty(cache, bio, block, cblock);
1764		}
1765	}
1766
1767	/*
1768	 * dm core turns FUA requests into a separate payload and FLUSH req.
1769	 */
1770	if (bio->bi_opf & REQ_FUA) {
1771		/*
1772		 * issue_after_commit will call accounted_begin a second time.  So
1773		 * we call accounted_complete() to avoid double accounting.
1774		 */
1775		accounted_complete(cache, bio);
1776		issue_after_commit(&cache->committer, bio);
1777		*commit_needed = true;
1778		return DM_MAPIO_SUBMITTED;
1779	}
1780
1781	return DM_MAPIO_REMAPPED;
1782}
1783
1784static bool process_bio(struct cache *cache, struct bio *bio)
1785{
1786	bool commit_needed;
1787
1788	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1789		submit_bio_noacct(bio);
1790
1791	return commit_needed;
1792}
1793
1794/*
1795 * A non-zero return indicates read_only or fail_io mode.
1796 */
1797static int commit(struct cache *cache, bool clean_shutdown)
1798{
1799	int r;
1800
1801	if (get_cache_mode(cache) >= CM_READ_ONLY)
1802		return -EINVAL;
1803
1804	atomic_inc(&cache->stats.commit_count);
1805	r = dm_cache_commit(cache->cmd, clean_shutdown);
1806	if (r)
1807		metadata_operation_failed(cache, "dm_cache_commit", r);
1808
1809	return r;
1810}
1811
1812/*
1813 * Used by the batcher.
1814 */
1815static blk_status_t commit_op(void *context)
1816{
1817	struct cache *cache = context;
1818
1819	if (dm_cache_changed_this_transaction(cache->cmd))
1820		return errno_to_blk_status(commit(cache, false));
1821
1822	return 0;
1823}
1824
1825/*----------------------------------------------------------------*/
1826
1827static bool process_flush_bio(struct cache *cache, struct bio *bio)
1828{
1829	struct per_bio_data *pb = get_per_bio_data(bio);
1830
1831	if (!pb->req_nr)
1832		remap_to_origin(cache, bio);
1833	else
1834		remap_to_cache(cache, bio, 0);
1835
1836	issue_after_commit(&cache->committer, bio);
1837	return true;
1838}
1839
1840static bool process_discard_bio(struct cache *cache, struct bio *bio)
1841{
1842	dm_dblock_t b, e;
1843
1844	// FIXME: do we need to lock the region?  Or can we just assume the
1845	// user wont be so foolish as to issue discard concurrently with
1846	// other IO?
1847	calc_discard_block_range(cache, bio, &b, &e);
1848	while (b != e) {
1849		set_discard(cache, b);
1850		b = to_dblock(from_dblock(b) + 1);
1851	}
1852
1853	if (cache->features.discard_passdown) {
1854		remap_to_origin(cache, bio);
1855		submit_bio_noacct(bio);
1856	} else
1857		bio_endio(bio);
1858
1859	return false;
1860}
1861
1862static void process_deferred_bios(struct work_struct *ws)
1863{
1864	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1865
1866	bool commit_needed = false;
1867	struct bio_list bios;
1868	struct bio *bio;
1869
1870	bio_list_init(&bios);
1871
1872	spin_lock_irq(&cache->lock);
1873	bio_list_merge(&bios, &cache->deferred_bios);
1874	bio_list_init(&cache->deferred_bios);
1875	spin_unlock_irq(&cache->lock);
1876
1877	while ((bio = bio_list_pop(&bios))) {
1878		if (bio->bi_opf & REQ_PREFLUSH)
1879			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1880
1881		else if (bio_op(bio) == REQ_OP_DISCARD)
1882			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1883
1884		else
1885			commit_needed = process_bio(cache, bio) || commit_needed;
1886		cond_resched();
1887	}
1888
1889	if (commit_needed)
1890		schedule_commit(&cache->committer);
1891}
1892
1893/*----------------------------------------------------------------
1894 * Main worker loop
1895 *--------------------------------------------------------------*/
1896
1897static void requeue_deferred_bios(struct cache *cache)
1898{
1899	struct bio *bio;
1900	struct bio_list bios;
1901
1902	bio_list_init(&bios);
1903	bio_list_merge(&bios, &cache->deferred_bios);
1904	bio_list_init(&cache->deferred_bios);
1905
1906	while ((bio = bio_list_pop(&bios))) {
1907		bio->bi_status = BLK_STS_DM_REQUEUE;
1908		bio_endio(bio);
1909		cond_resched();
1910	}
1911}
1912
1913/*
1914 * We want to commit periodically so that not too much
1915 * unwritten metadata builds up.
1916 */
1917static void do_waker(struct work_struct *ws)
1918{
1919	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1920
1921	policy_tick(cache->policy, true);
1922	wake_migration_worker(cache);
1923	schedule_commit(&cache->committer);
1924	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1925}
1926
1927static void check_migrations(struct work_struct *ws)
1928{
1929	int r;
1930	struct policy_work *op;
1931	struct cache *cache = container_of(ws, struct cache, migration_worker);
1932	enum busy b;
1933
1934	for (;;) {
1935		b = spare_migration_bandwidth(cache);
1936
1937		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1938		if (r == -ENODATA)
1939			break;
1940
1941		if (r) {
1942			DMERR_LIMIT("%s: policy_background_work failed",
1943				    cache_device_name(cache));
1944			break;
1945		}
1946
1947		r = mg_start(cache, op, NULL);
1948		if (r)
1949			break;
1950
1951		cond_resched();
1952	}
1953}
1954
1955/*----------------------------------------------------------------
1956 * Target methods
1957 *--------------------------------------------------------------*/
1958
1959/*
1960 * This function gets called on the error paths of the constructor, so we
1961 * have to cope with a partially initialised struct.
1962 */
1963static void destroy(struct cache *cache)
1964{
1965	unsigned i;
1966
1967	mempool_exit(&cache->migration_pool);
1968
1969	if (cache->prison)
1970		dm_bio_prison_destroy_v2(cache->prison);
1971
1972	cancel_delayed_work_sync(&cache->waker);
1973	if (cache->wq)
1974		destroy_workqueue(cache->wq);
1975
1976	if (cache->dirty_bitset)
1977		free_bitset(cache->dirty_bitset);
1978
1979	if (cache->discard_bitset)
1980		free_bitset(cache->discard_bitset);
1981
1982	if (cache->copier)
1983		dm_kcopyd_client_destroy(cache->copier);
1984
1985	if (cache->cmd)
1986		dm_cache_metadata_close(cache->cmd);
1987
1988	if (cache->metadata_dev)
1989		dm_put_device(cache->ti, cache->metadata_dev);
1990
1991	if (cache->origin_dev)
1992		dm_put_device(cache->ti, cache->origin_dev);
1993
1994	if (cache->cache_dev)
1995		dm_put_device(cache->ti, cache->cache_dev);
1996
1997	if (cache->policy)
1998		dm_cache_policy_destroy(cache->policy);
1999
2000	for (i = 0; i < cache->nr_ctr_args ; i++)
2001		kfree(cache->ctr_args[i]);
2002	kfree(cache->ctr_args);
2003
2004	bioset_exit(&cache->bs);
2005
2006	kfree(cache);
2007}
2008
2009static void cache_dtr(struct dm_target *ti)
2010{
2011	struct cache *cache = ti->private;
2012
2013	destroy(cache);
2014}
2015
2016static sector_t get_dev_size(struct dm_dev *dev)
2017{
2018	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2019}
2020
2021/*----------------------------------------------------------------*/
2022
2023/*
2024 * Construct a cache device mapping.
2025 *
2026 * cache <metadata dev> <cache dev> <origin dev> <block size>
2027 *       <#feature args> [<feature arg>]*
2028 *       <policy> <#policy args> [<policy arg>]*
2029 *
2030 * metadata dev    : fast device holding the persistent metadata
2031 * cache dev	   : fast device holding cached data blocks
2032 * origin dev	   : slow device holding original data blocks
2033 * block size	   : cache unit size in sectors
2034 *
2035 * #feature args   : number of feature arguments passed
2036 * feature args    : writethrough.  (The default is writeback.)
2037 *
2038 * policy	   : the replacement policy to use
2039 * #policy args    : an even number of policy arguments corresponding
2040 *		     to key/value pairs passed to the policy
2041 * policy args	   : key/value pairs passed to the policy
2042 *		     E.g. 'sequential_threshold 1024'
2043 *		     See cache-policies.txt for details.
2044 *
2045 * Optional feature arguments are:
2046 *   writethrough  : write through caching that prohibits cache block
2047 *		     content from being different from origin block content.
2048 *		     Without this argument, the default behaviour is to write
2049 *		     back cache block contents later for performance reasons,
2050 *		     so they may differ from the corresponding origin blocks.
2051 */
2052struct cache_args {
2053	struct dm_target *ti;
2054
2055	struct dm_dev *metadata_dev;
2056
2057	struct dm_dev *cache_dev;
2058	sector_t cache_sectors;
2059
2060	struct dm_dev *origin_dev;
2061	sector_t origin_sectors;
2062
2063	uint32_t block_size;
2064
2065	const char *policy_name;
2066	int policy_argc;
2067	const char **policy_argv;
2068
2069	struct cache_features features;
2070};
2071
2072static void destroy_cache_args(struct cache_args *ca)
2073{
2074	if (ca->metadata_dev)
2075		dm_put_device(ca->ti, ca->metadata_dev);
2076
2077	if (ca->cache_dev)
2078		dm_put_device(ca->ti, ca->cache_dev);
2079
2080	if (ca->origin_dev)
2081		dm_put_device(ca->ti, ca->origin_dev);
2082
2083	kfree(ca);
2084}
2085
2086static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2087{
2088	if (!as->argc) {
2089		*error = "Insufficient args";
2090		return false;
2091	}
2092
2093	return true;
2094}
2095
2096static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2097			      char **error)
2098{
2099	int r;
2100	sector_t metadata_dev_size;
2101	char b[BDEVNAME_SIZE];
2102
2103	if (!at_least_one_arg(as, error))
2104		return -EINVAL;
2105
2106	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2107			  &ca->metadata_dev);
2108	if (r) {
2109		*error = "Error opening metadata device";
2110		return r;
2111	}
2112
2113	metadata_dev_size = get_dev_size(ca->metadata_dev);
2114	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2115		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2116		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2117
2118	return 0;
2119}
2120
2121static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2122			   char **error)
2123{
2124	int r;
2125
2126	if (!at_least_one_arg(as, error))
2127		return -EINVAL;
2128
2129	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2130			  &ca->cache_dev);
2131	if (r) {
2132		*error = "Error opening cache device";
2133		return r;
2134	}
2135	ca->cache_sectors = get_dev_size(ca->cache_dev);
2136
2137	return 0;
2138}
2139
2140static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2141			    char **error)
2142{
2143	int r;
2144
2145	if (!at_least_one_arg(as, error))
2146		return -EINVAL;
2147
2148	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2149			  &ca->origin_dev);
2150	if (r) {
2151		*error = "Error opening origin device";
2152		return r;
2153	}
2154
2155	ca->origin_sectors = get_dev_size(ca->origin_dev);
2156	if (ca->ti->len > ca->origin_sectors) {
2157		*error = "Device size larger than cached device";
2158		return -EINVAL;
2159	}
2160
2161	return 0;
2162}
2163
2164static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2165			    char **error)
2166{
2167	unsigned long block_size;
2168
2169	if (!at_least_one_arg(as, error))
2170		return -EINVAL;
2171
2172	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2173	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2174	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2175	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2176		*error = "Invalid data block size";
2177		return -EINVAL;
2178	}
2179
2180	if (block_size > ca->cache_sectors) {
2181		*error = "Data block size is larger than the cache device";
2182		return -EINVAL;
2183	}
2184
2185	ca->block_size = block_size;
2186
2187	return 0;
2188}
2189
2190static void init_features(struct cache_features *cf)
2191{
2192	cf->mode = CM_WRITE;
2193	cf->io_mode = CM_IO_WRITEBACK;
2194	cf->metadata_version = 1;
2195	cf->discard_passdown = true;
2196}
2197
2198static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2199			  char **error)
2200{
2201	static const struct dm_arg _args[] = {
2202		{0, 3, "Invalid number of cache feature arguments"},
2203	};
2204
2205	int r, mode_ctr = 0;
2206	unsigned argc;
2207	const char *arg;
2208	struct cache_features *cf = &ca->features;
2209
2210	init_features(cf);
2211
2212	r = dm_read_arg_group(_args, as, &argc, error);
2213	if (r)
2214		return -EINVAL;
2215
2216	while (argc--) {
2217		arg = dm_shift_arg(as);
2218
2219		if (!strcasecmp(arg, "writeback")) {
2220			cf->io_mode = CM_IO_WRITEBACK;
2221			mode_ctr++;
2222		}
2223
2224		else if (!strcasecmp(arg, "writethrough")) {
2225			cf->io_mode = CM_IO_WRITETHROUGH;
2226			mode_ctr++;
2227		}
2228
2229		else if (!strcasecmp(arg, "passthrough")) {
2230			cf->io_mode = CM_IO_PASSTHROUGH;
2231			mode_ctr++;
2232		}
2233
2234		else if (!strcasecmp(arg, "metadata2"))
2235			cf->metadata_version = 2;
2236
2237		else if (!strcasecmp(arg, "no_discard_passdown"))
2238			cf->discard_passdown = false;
2239
2240		else {
2241			*error = "Unrecognised cache feature requested";
2242			return -EINVAL;
2243		}
2244	}
2245
2246	if (mode_ctr > 1) {
2247		*error = "Duplicate cache io_mode features requested";
2248		return -EINVAL;
2249	}
2250
2251	return 0;
2252}
2253
2254static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2255			char **error)
2256{
2257	static const struct dm_arg _args[] = {
2258		{0, 1024, "Invalid number of policy arguments"},
2259	};
2260
2261	int r;
2262
2263	if (!at_least_one_arg(as, error))
2264		return -EINVAL;
2265
2266	ca->policy_name = dm_shift_arg(as);
2267
2268	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2269	if (r)
2270		return -EINVAL;
2271
2272	ca->policy_argv = (const char **)as->argv;
2273	dm_consume_args(as, ca->policy_argc);
2274
2275	return 0;
2276}
2277
2278static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2279			    char **error)
2280{
2281	int r;
2282	struct dm_arg_set as;
2283
2284	as.argc = argc;
2285	as.argv = argv;
2286
2287	r = parse_metadata_dev(ca, &as, error);
2288	if (r)
2289		return r;
2290
2291	r = parse_cache_dev(ca, &as, error);
2292	if (r)
2293		return r;
2294
2295	r = parse_origin_dev(ca, &as, error);
2296	if (r)
2297		return r;
2298
2299	r = parse_block_size(ca, &as, error);
2300	if (r)
2301		return r;
2302
2303	r = parse_features(ca, &as, error);
2304	if (r)
2305		return r;
2306
2307	r = parse_policy(ca, &as, error);
2308	if (r)
2309		return r;
2310
2311	return 0;
2312}
2313
2314/*----------------------------------------------------------------*/
2315
2316static struct kmem_cache *migration_cache;
2317
2318#define NOT_CORE_OPTION 1
2319
2320static int process_config_option(struct cache *cache, const char *key, const char *value)
2321{
2322	unsigned long tmp;
2323
2324	if (!strcasecmp(key, "migration_threshold")) {
2325		if (kstrtoul(value, 10, &tmp))
2326			return -EINVAL;
2327
2328		cache->migration_threshold = tmp;
2329		return 0;
2330	}
2331
2332	return NOT_CORE_OPTION;
2333}
2334
2335static int set_config_value(struct cache *cache, const char *key, const char *value)
2336{
2337	int r = process_config_option(cache, key, value);
2338
2339	if (r == NOT_CORE_OPTION)
2340		r = policy_set_config_value(cache->policy, key, value);
2341
2342	if (r)
2343		DMWARN("bad config value for %s: %s", key, value);
2344
2345	return r;
2346}
2347
2348static int set_config_values(struct cache *cache, int argc, const char **argv)
2349{
2350	int r = 0;
2351
2352	if (argc & 1) {
2353		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2354		return -EINVAL;
2355	}
2356
2357	while (argc) {
2358		r = set_config_value(cache, argv[0], argv[1]);
2359		if (r)
2360			break;
2361
2362		argc -= 2;
2363		argv += 2;
2364	}
2365
2366	return r;
2367}
2368
2369static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2370			       char **error)
2371{
2372	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2373							   cache->cache_size,
2374							   cache->origin_sectors,
2375							   cache->sectors_per_block);
2376	if (IS_ERR(p)) {
2377		*error = "Error creating cache's policy";
2378		return PTR_ERR(p);
2379	}
2380	cache->policy = p;
2381	BUG_ON(!cache->policy);
2382
2383	return 0;
2384}
2385
2386/*
2387 * We want the discard block size to be at least the size of the cache
2388 * block size and have no more than 2^14 discard blocks across the origin.
2389 */
2390#define MAX_DISCARD_BLOCKS (1 << 14)
2391
2392static bool too_many_discard_blocks(sector_t discard_block_size,
2393				    sector_t origin_size)
2394{
2395	(void) sector_div(origin_size, discard_block_size);
2396
2397	return origin_size > MAX_DISCARD_BLOCKS;
2398}
2399
2400static sector_t calculate_discard_block_size(sector_t cache_block_size,
2401					     sector_t origin_size)
2402{
2403	sector_t discard_block_size = cache_block_size;
2404
2405	if (origin_size)
2406		while (too_many_discard_blocks(discard_block_size, origin_size))
2407			discard_block_size *= 2;
2408
2409	return discard_block_size;
2410}
2411
2412static void set_cache_size(struct cache *cache, dm_cblock_t size)
2413{
2414	dm_block_t nr_blocks = from_cblock(size);
2415
2416	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2417		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2418			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2419			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2420			     (unsigned long long) nr_blocks);
2421
2422	cache->cache_size = size;
2423}
2424
2425#define DEFAULT_MIGRATION_THRESHOLD 2048
2426
2427static int cache_create(struct cache_args *ca, struct cache **result)
2428{
2429	int r = 0;
2430	char **error = &ca->ti->error;
2431	struct cache *cache;
2432	struct dm_target *ti = ca->ti;
2433	dm_block_t origin_blocks;
2434	struct dm_cache_metadata *cmd;
2435	bool may_format = ca->features.mode == CM_WRITE;
2436
2437	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2438	if (!cache)
2439		return -ENOMEM;
2440
2441	cache->ti = ca->ti;
2442	ti->private = cache;
2443	ti->num_flush_bios = 2;
2444	ti->flush_supported = true;
2445
2446	ti->num_discard_bios = 1;
2447	ti->discards_supported = true;
2448
2449	ti->per_io_data_size = sizeof(struct per_bio_data);
2450
2451	cache->features = ca->features;
2452	if (writethrough_mode(cache)) {
2453		/* Create bioset for writethrough bios issued to origin */
2454		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2455		if (r)
2456			goto bad;
2457	}
2458
2459	cache->metadata_dev = ca->metadata_dev;
2460	cache->origin_dev = ca->origin_dev;
2461	cache->cache_dev = ca->cache_dev;
2462
2463	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2464
2465	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2466	origin_blocks = block_div(origin_blocks, ca->block_size);
2467	cache->origin_blocks = to_oblock(origin_blocks);
2468
2469	cache->sectors_per_block = ca->block_size;
2470	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2471		r = -EINVAL;
2472		goto bad;
2473	}
2474
2475	if (ca->block_size & (ca->block_size - 1)) {
2476		dm_block_t cache_size = ca->cache_sectors;
2477
2478		cache->sectors_per_block_shift = -1;
2479		cache_size = block_div(cache_size, ca->block_size);
2480		set_cache_size(cache, to_cblock(cache_size));
2481	} else {
2482		cache->sectors_per_block_shift = __ffs(ca->block_size);
2483		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2484	}
2485
2486	r = create_cache_policy(cache, ca, error);
2487	if (r)
2488		goto bad;
2489
2490	cache->policy_nr_args = ca->policy_argc;
2491	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2492
2493	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2494	if (r) {
2495		*error = "Error setting cache policy's config values";
2496		goto bad;
2497	}
2498
2499	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2500				     ca->block_size, may_format,
2501				     dm_cache_policy_get_hint_size(cache->policy),
2502				     ca->features.metadata_version);
2503	if (IS_ERR(cmd)) {
2504		*error = "Error creating metadata object";
2505		r = PTR_ERR(cmd);
2506		goto bad;
2507	}
2508	cache->cmd = cmd;
2509	set_cache_mode(cache, CM_WRITE);
2510	if (get_cache_mode(cache) != CM_WRITE) {
2511		*error = "Unable to get write access to metadata, please check/repair metadata.";
2512		r = -EINVAL;
2513		goto bad;
2514	}
2515
2516	if (passthrough_mode(cache)) {
2517		bool all_clean;
2518
2519		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2520		if (r) {
2521			*error = "dm_cache_metadata_all_clean() failed";
2522			goto bad;
2523		}
2524
2525		if (!all_clean) {
2526			*error = "Cannot enter passthrough mode unless all blocks are clean";
2527			r = -EINVAL;
2528			goto bad;
2529		}
2530
2531		policy_allow_migrations(cache->policy, false);
2532	}
2533
2534	spin_lock_init(&cache->lock);
2535	bio_list_init(&cache->deferred_bios);
2536	atomic_set(&cache->nr_allocated_migrations, 0);
2537	atomic_set(&cache->nr_io_migrations, 0);
2538	init_waitqueue_head(&cache->migration_wait);
2539
2540	r = -ENOMEM;
2541	atomic_set(&cache->nr_dirty, 0);
2542	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2543	if (!cache->dirty_bitset) {
2544		*error = "could not allocate dirty bitset";
2545		goto bad;
2546	}
2547	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2548
2549	cache->discard_block_size =
2550		calculate_discard_block_size(cache->sectors_per_block,
2551					     cache->origin_sectors);
2552	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2553							      cache->discard_block_size));
2554	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2555	if (!cache->discard_bitset) {
2556		*error = "could not allocate discard bitset";
2557		goto bad;
2558	}
2559	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2560
2561	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2562	if (IS_ERR(cache->copier)) {
2563		*error = "could not create kcopyd client";
2564		r = PTR_ERR(cache->copier);
2565		goto bad;
2566	}
2567
2568	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2569	if (!cache->wq) {
2570		*error = "could not create workqueue for metadata object";
2571		goto bad;
2572	}
2573	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2574	INIT_WORK(&cache->migration_worker, check_migrations);
2575	INIT_DELAYED_WORK(&cache->waker, do_waker);
2576
2577	cache->prison = dm_bio_prison_create_v2(cache->wq);
2578	if (!cache->prison) {
2579		*error = "could not create bio prison";
2580		goto bad;
2581	}
2582
2583	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2584				   migration_cache);
2585	if (r) {
2586		*error = "Error creating cache's migration mempool";
2587		goto bad;
2588	}
2589
2590	cache->need_tick_bio = true;
2591	cache->sized = false;
2592	cache->invalidate = false;
2593	cache->commit_requested = false;
2594	cache->loaded_mappings = false;
2595	cache->loaded_discards = false;
2596
2597	load_stats(cache);
2598
2599	atomic_set(&cache->stats.demotion, 0);
2600	atomic_set(&cache->stats.promotion, 0);
2601	atomic_set(&cache->stats.copies_avoided, 0);
2602	atomic_set(&cache->stats.cache_cell_clash, 0);
2603	atomic_set(&cache->stats.commit_count, 0);
2604	atomic_set(&cache->stats.discard_count, 0);
2605
2606	spin_lock_init(&cache->invalidation_lock);
2607	INIT_LIST_HEAD(&cache->invalidation_requests);
2608
2609	batcher_init(&cache->committer, commit_op, cache,
2610		     issue_op, cache, cache->wq);
2611	iot_init(&cache->tracker);
2612
2613	init_rwsem(&cache->background_work_lock);
2614	prevent_background_work(cache);
2615
2616	*result = cache;
2617	return 0;
2618bad:
2619	destroy(cache);
2620	return r;
2621}
2622
2623static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2624{
2625	unsigned i;
2626	const char **copy;
2627
2628	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2629	if (!copy)
2630		return -ENOMEM;
2631	for (i = 0; i < argc; i++) {
2632		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2633		if (!copy[i]) {
2634			while (i--)
2635				kfree(copy[i]);
2636			kfree(copy);
2637			return -ENOMEM;
2638		}
2639	}
2640
2641	cache->nr_ctr_args = argc;
2642	cache->ctr_args = copy;
2643
2644	return 0;
2645}
2646
2647static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2648{
2649	int r = -EINVAL;
2650	struct cache_args *ca;
2651	struct cache *cache = NULL;
2652
2653	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2654	if (!ca) {
2655		ti->error = "Error allocating memory for cache";
2656		return -ENOMEM;
2657	}
2658	ca->ti = ti;
2659
2660	r = parse_cache_args(ca, argc, argv, &ti->error);
2661	if (r)
2662		goto out;
2663
2664	r = cache_create(ca, &cache);
2665	if (r)
2666		goto out;
2667
2668	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2669	if (r) {
2670		destroy(cache);
2671		goto out;
2672	}
2673
2674	ti->private = cache;
2675out:
2676	destroy_cache_args(ca);
2677	return r;
2678}
2679
2680/*----------------------------------------------------------------*/
2681
2682static int cache_map(struct dm_target *ti, struct bio *bio)
2683{
2684	struct cache *cache = ti->private;
2685
2686	int r;
2687	bool commit_needed;
2688	dm_oblock_t block = get_bio_block(cache, bio);
2689
2690	init_per_bio_data(bio);
2691	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2692		/*
2693		 * This can only occur if the io goes to a partial block at
2694		 * the end of the origin device.  We don't cache these.
2695		 * Just remap to the origin and carry on.
2696		 */
2697		remap_to_origin(cache, bio);
2698		accounted_begin(cache, bio);
2699		return DM_MAPIO_REMAPPED;
2700	}
2701
2702	if (discard_or_flush(bio)) {
2703		defer_bio(cache, bio);
2704		return DM_MAPIO_SUBMITTED;
2705	}
2706
2707	r = map_bio(cache, bio, block, &commit_needed);
2708	if (commit_needed)
2709		schedule_commit(&cache->committer);
2710
2711	return r;
2712}
2713
2714static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2715{
2716	struct cache *cache = ti->private;
2717	unsigned long flags;
2718	struct per_bio_data *pb = get_per_bio_data(bio);
2719
2720	if (pb->tick) {
2721		policy_tick(cache->policy, false);
2722
2723		spin_lock_irqsave(&cache->lock, flags);
2724		cache->need_tick_bio = true;
2725		spin_unlock_irqrestore(&cache->lock, flags);
2726	}
2727
2728	bio_drop_shared_lock(cache, bio);
2729	accounted_complete(cache, bio);
2730
2731	return DM_ENDIO_DONE;
2732}
2733
2734static int write_dirty_bitset(struct cache *cache)
2735{
2736	int r;
2737
2738	if (get_cache_mode(cache) >= CM_READ_ONLY)
2739		return -EINVAL;
2740
2741	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2742	if (r)
2743		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2744
2745	return r;
2746}
2747
2748static int write_discard_bitset(struct cache *cache)
2749{
2750	unsigned i, r;
2751
2752	if (get_cache_mode(cache) >= CM_READ_ONLY)
2753		return -EINVAL;
2754
2755	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2756					   cache->discard_nr_blocks);
2757	if (r) {
2758		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2759		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2760		return r;
2761	}
2762
2763	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2764		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2765					 is_discarded(cache, to_dblock(i)));
2766		if (r) {
2767			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2768			return r;
2769		}
2770	}
2771
2772	return 0;
2773}
2774
2775static int write_hints(struct cache *cache)
2776{
2777	int r;
2778
2779	if (get_cache_mode(cache) >= CM_READ_ONLY)
2780		return -EINVAL;
2781
2782	r = dm_cache_write_hints(cache->cmd, cache->policy);
2783	if (r) {
2784		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2785		return r;
2786	}
2787
2788	return 0;
2789}
2790
2791/*
2792 * returns true on success
2793 */
2794static bool sync_metadata(struct cache *cache)
2795{
2796	int r1, r2, r3, r4;
2797
2798	r1 = write_dirty_bitset(cache);
2799	if (r1)
2800		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2801
2802	r2 = write_discard_bitset(cache);
2803	if (r2)
2804		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2805
2806	save_stats(cache);
2807
2808	r3 = write_hints(cache);
2809	if (r3)
2810		DMERR("%s: could not write hints", cache_device_name(cache));
2811
2812	/*
2813	 * If writing the above metadata failed, we still commit, but don't
2814	 * set the clean shutdown flag.  This will effectively force every
2815	 * dirty bit to be set on reload.
2816	 */
2817	r4 = commit(cache, !r1 && !r2 && !r3);
2818	if (r4)
2819		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2820
2821	return !r1 && !r2 && !r3 && !r4;
2822}
2823
2824static void cache_postsuspend(struct dm_target *ti)
2825{
2826	struct cache *cache = ti->private;
2827
2828	prevent_background_work(cache);
2829	BUG_ON(atomic_read(&cache->nr_io_migrations));
2830
2831	cancel_delayed_work_sync(&cache->waker);
2832	drain_workqueue(cache->wq);
2833	WARN_ON(cache->tracker.in_flight);
2834
2835	/*
2836	 * If it's a flush suspend there won't be any deferred bios, so this
2837	 * call is harmless.
2838	 */
2839	requeue_deferred_bios(cache);
2840
2841	if (get_cache_mode(cache) == CM_WRITE)
2842		(void) sync_metadata(cache);
2843}
2844
2845static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2846			bool dirty, uint32_t hint, bool hint_valid)
2847{
2848	int r;
2849	struct cache *cache = context;
2850
2851	if (dirty) {
2852		set_bit(from_cblock(cblock), cache->dirty_bitset);
2853		atomic_inc(&cache->nr_dirty);
2854	} else
2855		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2856
2857	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2858	if (r)
2859		return r;
2860
2861	return 0;
2862}
2863
2864/*
2865 * The discard block size in the on disk metadata is not
2866 * neccessarily the same as we're currently using.  So we have to
2867 * be careful to only set the discarded attribute if we know it
2868 * covers a complete block of the new size.
2869 */
2870struct discard_load_info {
2871	struct cache *cache;
2872
2873	/*
2874	 * These blocks are sized using the on disk dblock size, rather
2875	 * than the current one.
2876	 */
2877	dm_block_t block_size;
2878	dm_block_t discard_begin, discard_end;
2879};
2880
2881static void discard_load_info_init(struct cache *cache,
2882				   struct discard_load_info *li)
2883{
2884	li->cache = cache;
2885	li->discard_begin = li->discard_end = 0;
2886}
2887
2888static void set_discard_range(struct discard_load_info *li)
2889{
2890	sector_t b, e;
2891
2892	if (li->discard_begin == li->discard_end)
2893		return;
2894
2895	/*
2896	 * Convert to sectors.
2897	 */
2898	b = li->discard_begin * li->block_size;
2899	e = li->discard_end * li->block_size;
2900
2901	/*
2902	 * Then convert back to the current dblock size.
2903	 */
2904	b = dm_sector_div_up(b, li->cache->discard_block_size);
2905	sector_div(e, li->cache->discard_block_size);
2906
2907	/*
2908	 * The origin may have shrunk, so we need to check we're still in
2909	 * bounds.
2910	 */
2911	if (e > from_dblock(li->cache->discard_nr_blocks))
2912		e = from_dblock(li->cache->discard_nr_blocks);
2913
2914	for (; b < e; b++)
2915		set_discard(li->cache, to_dblock(b));
2916}
2917
2918static int load_discard(void *context, sector_t discard_block_size,
2919			dm_dblock_t dblock, bool discard)
2920{
2921	struct discard_load_info *li = context;
2922
2923	li->block_size = discard_block_size;
2924
2925	if (discard) {
2926		if (from_dblock(dblock) == li->discard_end)
2927			/*
2928			 * We're already in a discard range, just extend it.
2929			 */
2930			li->discard_end = li->discard_end + 1ULL;
2931
2932		else {
2933			/*
2934			 * Emit the old range and start a new one.
2935			 */
2936			set_discard_range(li);
2937			li->discard_begin = from_dblock(dblock);
2938			li->discard_end = li->discard_begin + 1ULL;
2939		}
2940	} else {
2941		set_discard_range(li);
2942		li->discard_begin = li->discard_end = 0;
2943	}
2944
2945	return 0;
2946}
2947
2948static dm_cblock_t get_cache_dev_size(struct cache *cache)
2949{
2950	sector_t size = get_dev_size(cache->cache_dev);
2951	(void) sector_div(size, cache->sectors_per_block);
2952	return to_cblock(size);
2953}
2954
2955static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2956{
2957	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2958		if (cache->sized) {
2959			DMERR("%s: unable to extend cache due to missing cache table reload",
2960			      cache_device_name(cache));
2961			return false;
2962		}
2963	}
2964
2965	/*
2966	 * We can't drop a dirty block when shrinking the cache.
2967	 */
2968	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2969		new_size = to_cblock(from_cblock(new_size) + 1);
2970		if (is_dirty(cache, new_size)) {
2971			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2972			      cache_device_name(cache),
2973			      (unsigned long long) from_cblock(new_size));
2974			return false;
2975		}
2976	}
2977
2978	return true;
2979}
2980
2981static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2982{
2983	int r;
2984
2985	r = dm_cache_resize(cache->cmd, new_size);
2986	if (r) {
2987		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2988		metadata_operation_failed(cache, "dm_cache_resize", r);
2989		return r;
2990	}
2991
2992	set_cache_size(cache, new_size);
2993
2994	return 0;
2995}
2996
2997static int cache_preresume(struct dm_target *ti)
2998{
2999	int r = 0;
3000	struct cache *cache = ti->private;
3001	dm_cblock_t csize = get_cache_dev_size(cache);
3002
3003	/*
3004	 * Check to see if the cache has resized.
3005	 */
3006	if (!cache->sized) {
3007		r = resize_cache_dev(cache, csize);
3008		if (r)
3009			return r;
3010
3011		cache->sized = true;
3012
3013	} else if (csize != cache->cache_size) {
3014		if (!can_resize(cache, csize))
3015			return -EINVAL;
3016
3017		r = resize_cache_dev(cache, csize);
3018		if (r)
3019			return r;
3020	}
3021
3022	if (!cache->loaded_mappings) {
3023		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3024					   load_mapping, cache);
3025		if (r) {
3026			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3027			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3028			return r;
3029		}
3030
3031		cache->loaded_mappings = true;
3032	}
3033
3034	if (!cache->loaded_discards) {
3035		struct discard_load_info li;
3036
3037		/*
3038		 * The discard bitset could have been resized, or the
3039		 * discard block size changed.  To be safe we start by
3040		 * setting every dblock to not discarded.
3041		 */
3042		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3043
3044		discard_load_info_init(cache, &li);
3045		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3046		if (r) {
3047			DMERR("%s: could not load origin discards", cache_device_name(cache));
3048			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3049			return r;
3050		}
3051		set_discard_range(&li);
3052
3053		cache->loaded_discards = true;
3054	}
3055
3056	return r;
3057}
3058
3059static void cache_resume(struct dm_target *ti)
3060{
3061	struct cache *cache = ti->private;
3062
3063	cache->need_tick_bio = true;
3064	allow_background_work(cache);
3065	do_waker(&cache->waker.work);
3066}
3067
3068static void emit_flags(struct cache *cache, char *result,
3069		       unsigned maxlen, ssize_t *sz_ptr)
3070{
3071	ssize_t sz = *sz_ptr;
3072	struct cache_features *cf = &cache->features;
3073	unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3074
3075	DMEMIT("%u ", count);
3076
3077	if (cf->metadata_version == 2)
3078		DMEMIT("metadata2 ");
3079
3080	if (writethrough_mode(cache))
3081		DMEMIT("writethrough ");
3082
3083	else if (passthrough_mode(cache))
3084		DMEMIT("passthrough ");
3085
3086	else if (writeback_mode(cache))
3087		DMEMIT("writeback ");
3088
3089	else {
3090		DMEMIT("unknown ");
3091		DMERR("%s: internal error: unknown io mode: %d",
3092		      cache_device_name(cache), (int) cf->io_mode);
3093	}
3094
3095	if (!cf->discard_passdown)
3096		DMEMIT("no_discard_passdown ");
3097
3098	*sz_ptr = sz;
3099}
3100
3101/*
3102 * Status format:
3103 *
3104 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3105 * <cache block size> <#used cache blocks>/<#total cache blocks>
3106 * <#read hits> <#read misses> <#write hits> <#write misses>
3107 * <#demotions> <#promotions> <#dirty>
3108 * <#features> <features>*
3109 * <#core args> <core args>
3110 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3111 */
3112static void cache_status(struct dm_target *ti, status_type_t type,
3113			 unsigned status_flags, char *result, unsigned maxlen)
3114{
3115	int r = 0;
3116	unsigned i;
3117	ssize_t sz = 0;
3118	dm_block_t nr_free_blocks_metadata = 0;
3119	dm_block_t nr_blocks_metadata = 0;
3120	char buf[BDEVNAME_SIZE];
3121	struct cache *cache = ti->private;
3122	dm_cblock_t residency;
3123	bool needs_check;
3124
3125	switch (type) {
3126	case STATUSTYPE_INFO:
3127		if (get_cache_mode(cache) == CM_FAIL) {
3128			DMEMIT("Fail");
3129			break;
3130		}
3131
3132		/* Commit to ensure statistics aren't out-of-date */
3133		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3134			(void) commit(cache, false);
3135
3136		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3137		if (r) {
3138			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3139			      cache_device_name(cache), r);
3140			goto err;
3141		}
3142
3143		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3144		if (r) {
3145			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3146			      cache_device_name(cache), r);
3147			goto err;
3148		}
3149
3150		residency = policy_residency(cache->policy);
3151
3152		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3153		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3154		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3155		       (unsigned long long)nr_blocks_metadata,
3156		       (unsigned long long)cache->sectors_per_block,
3157		       (unsigned long long) from_cblock(residency),
3158		       (unsigned long long) from_cblock(cache->cache_size),
3159		       (unsigned) atomic_read(&cache->stats.read_hit),
3160		       (unsigned) atomic_read(&cache->stats.read_miss),
3161		       (unsigned) atomic_read(&cache->stats.write_hit),
3162		       (unsigned) atomic_read(&cache->stats.write_miss),
3163		       (unsigned) atomic_read(&cache->stats.demotion),
3164		       (unsigned) atomic_read(&cache->stats.promotion),
3165		       (unsigned long) atomic_read(&cache->nr_dirty));
3166
3167		emit_flags(cache, result, maxlen, &sz);
3168
3169		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3170
3171		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3172		if (sz < maxlen) {
3173			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3174			if (r)
3175				DMERR("%s: policy_emit_config_values returned %d",
3176				      cache_device_name(cache), r);
3177		}
3178
3179		if (get_cache_mode(cache) == CM_READ_ONLY)
3180			DMEMIT("ro ");
3181		else
3182			DMEMIT("rw ");
3183
3184		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3185
3186		if (r || needs_check)
3187			DMEMIT("needs_check ");
3188		else
3189			DMEMIT("- ");
3190
3191		break;
3192
3193	case STATUSTYPE_TABLE:
3194		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3195		DMEMIT("%s ", buf);
3196		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3197		DMEMIT("%s ", buf);
3198		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3199		DMEMIT("%s", buf);
3200
3201		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3202			DMEMIT(" %s", cache->ctr_args[i]);
3203		if (cache->nr_ctr_args)
3204			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3205	}
3206
3207	return;
3208
3209err:
3210	DMEMIT("Error");
3211}
3212
3213/*
3214 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3215 * the one-past-the-end value.
3216 */
3217struct cblock_range {
3218	dm_cblock_t begin;
3219	dm_cblock_t end;
3220};
3221
3222/*
3223 * A cache block range can take two forms:
3224 *
3225 * i) A single cblock, eg. '3456'
3226 * ii) A begin and end cblock with a dash between, eg. 123-234
3227 */
3228static int parse_cblock_range(struct cache *cache, const char *str,
3229			      struct cblock_range *result)
3230{
3231	char dummy;
3232	uint64_t b, e;
3233	int r;
3234
3235	/*
3236	 * Try and parse form (ii) first.
3237	 */
3238	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3239	if (r < 0)
3240		return r;
3241
3242	if (r == 2) {
3243		result->begin = to_cblock(b);
3244		result->end = to_cblock(e);
3245		return 0;
3246	}
3247
3248	/*
3249	 * That didn't work, try form (i).
3250	 */
3251	r = sscanf(str, "%llu%c", &b, &dummy);
3252	if (r < 0)
3253		return r;
3254
3255	if (r == 1) {
3256		result->begin = to_cblock(b);
3257		result->end = to_cblock(from_cblock(result->begin) + 1u);
3258		return 0;
3259	}
3260
3261	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3262	return -EINVAL;
3263}
3264
3265static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3266{
3267	uint64_t b = from_cblock(range->begin);
3268	uint64_t e = from_cblock(range->end);
3269	uint64_t n = from_cblock(cache->cache_size);
3270
3271	if (b >= n) {
3272		DMERR("%s: begin cblock out of range: %llu >= %llu",
3273		      cache_device_name(cache), b, n);
3274		return -EINVAL;
3275	}
3276
3277	if (e > n) {
3278		DMERR("%s: end cblock out of range: %llu > %llu",
3279		      cache_device_name(cache), e, n);
3280		return -EINVAL;
3281	}
3282
3283	if (b >= e) {
3284		DMERR("%s: invalid cblock range: %llu >= %llu",
3285		      cache_device_name(cache), b, e);
3286		return -EINVAL;
3287	}
3288
3289	return 0;
3290}
3291
3292static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3293{
3294	return to_cblock(from_cblock(b) + 1);
3295}
3296
3297static int request_invalidation(struct cache *cache, struct cblock_range *range)
3298{
3299	int r = 0;
3300
3301	/*
3302	 * We don't need to do any locking here because we know we're in
3303	 * passthrough mode.  There's is potential for a race between an
3304	 * invalidation triggered by an io and an invalidation message.  This
3305	 * is harmless, we must not worry if the policy call fails.
3306	 */
3307	while (range->begin != range->end) {
3308		r = invalidate_cblock(cache, range->begin);
3309		if (r)
3310			return r;
3311
3312		range->begin = cblock_succ(range->begin);
3313	}
3314
3315	cache->commit_requested = true;
3316	return r;
3317}
3318
3319static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3320					      const char **cblock_ranges)
3321{
3322	int r = 0;
3323	unsigned i;
3324	struct cblock_range range;
3325
3326	if (!passthrough_mode(cache)) {
3327		DMERR("%s: cache has to be in passthrough mode for invalidation",
3328		      cache_device_name(cache));
3329		return -EPERM;
3330	}
3331
3332	for (i = 0; i < count; i++) {
3333		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3334		if (r)
3335			break;
3336
3337		r = validate_cblock_range(cache, &range);
3338		if (r)
3339			break;
3340
3341		/*
3342		 * Pass begin and end origin blocks to the worker and wake it.
3343		 */
3344		r = request_invalidation(cache, &range);
3345		if (r)
3346			break;
3347	}
3348
3349	return r;
3350}
3351
3352/*
3353 * Supports
3354 *	"<key> <value>"
3355 * and
3356 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3357 *
3358 * The key migration_threshold is supported by the cache target core.
3359 */
3360static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3361			 char *result, unsigned maxlen)
3362{
3363	struct cache *cache = ti->private;
3364
3365	if (!argc)
3366		return -EINVAL;
3367
3368	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3369		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3370		      cache_device_name(cache));
3371		return -EOPNOTSUPP;
3372	}
3373
3374	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3375		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3376
3377	if (argc != 2)
3378		return -EINVAL;
3379
3380	return set_config_value(cache, argv[0], argv[1]);
3381}
3382
3383static int cache_iterate_devices(struct dm_target *ti,
3384				 iterate_devices_callout_fn fn, void *data)
3385{
3386	int r = 0;
3387	struct cache *cache = ti->private;
3388
3389	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3390	if (!r)
3391		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3392
3393	return r;
3394}
3395
3396static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3397{
3398	struct request_queue *q = bdev_get_queue(origin_bdev);
3399
3400	return q && blk_queue_discard(q);
3401}
3402
3403/*
3404 * If discard_passdown was enabled verify that the origin device
3405 * supports discards.  Disable discard_passdown if not.
3406 */
3407static void disable_passdown_if_not_supported(struct cache *cache)
3408{
3409	struct block_device *origin_bdev = cache->origin_dev->bdev;
3410	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3411	const char *reason = NULL;
3412	char buf[BDEVNAME_SIZE];
3413
3414	if (!cache->features.discard_passdown)
3415		return;
3416
3417	if (!origin_dev_supports_discard(origin_bdev))
3418		reason = "discard unsupported";
3419
3420	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3421		reason = "max discard sectors smaller than a block";
3422
3423	if (reason) {
3424		DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3425		       bdevname(origin_bdev, buf), reason);
3426		cache->features.discard_passdown = false;
3427	}
3428}
3429
3430static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3431{
3432	struct block_device *origin_bdev = cache->origin_dev->bdev;
3433	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3434
3435	if (!cache->features.discard_passdown) {
3436		/* No passdown is done so setting own virtual limits */
3437		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3438						    cache->origin_sectors);
3439		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3440		return;
3441	}
3442
3443	/*
3444	 * cache_iterate_devices() is stacking both origin and fast device limits
3445	 * but discards aren't passed to fast device, so inherit origin's limits.
3446	 */
3447	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3448	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3449	limits->discard_granularity = origin_limits->discard_granularity;
3450	limits->discard_alignment = origin_limits->discard_alignment;
3451	limits->discard_misaligned = origin_limits->discard_misaligned;
3452}
3453
3454static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3455{
3456	struct cache *cache = ti->private;
3457	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3458
3459	/*
3460	 * If the system-determined stacked limits are compatible with the
3461	 * cache's blocksize (io_opt is a factor) do not override them.
3462	 */
3463	if (io_opt_sectors < cache->sectors_per_block ||
3464	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3465		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3466		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3467	}
3468
3469	disable_passdown_if_not_supported(cache);
3470	set_discard_limits(cache, limits);
3471}
3472
3473/*----------------------------------------------------------------*/
3474
3475static struct target_type cache_target = {
3476	.name = "cache",
3477	.version = {2, 2, 0},
3478	.module = THIS_MODULE,
3479	.ctr = cache_ctr,
3480	.dtr = cache_dtr,
3481	.map = cache_map,
3482	.end_io = cache_end_io,
3483	.postsuspend = cache_postsuspend,
3484	.preresume = cache_preresume,
3485	.resume = cache_resume,
3486	.status = cache_status,
3487	.message = cache_message,
3488	.iterate_devices = cache_iterate_devices,
3489	.io_hints = cache_io_hints,
3490};
3491
3492static int __init dm_cache_init(void)
3493{
3494	int r;
3495
3496	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3497	if (!migration_cache)
3498		return -ENOMEM;
3499
3500	r = dm_register_target(&cache_target);
3501	if (r) {
3502		DMERR("cache target registration failed: %d", r);
3503		kmem_cache_destroy(migration_cache);
3504		return r;
3505	}
3506
3507	return 0;
3508}
3509
3510static void __exit dm_cache_exit(void)
3511{
3512	dm_unregister_target(&cache_target);
3513	kmem_cache_destroy(migration_cache);
3514}
3515
3516module_init(dm_cache_init);
3517module_exit(dm_cache_exit);
3518
3519MODULE_DESCRIPTION(DM_NAME " cache target");
3520MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3521MODULE_LICENSE("GPL");
3522