xref: /kernel/linux/linux-5.10/drivers/md/dm-bufio.c (revision 8c2ecf20)
1/*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
3 *
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
5 *
6 * This file is released under the GPL.
7 */
8
9#include <linux/dm-bufio.h>
10
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/slab.h>
14#include <linux/sched/mm.h>
15#include <linux/jiffies.h>
16#include <linux/vmalloc.h>
17#include <linux/shrinker.h>
18#include <linux/module.h>
19#include <linux/rbtree.h>
20#include <linux/stacktrace.h>
21
22#define DM_MSG_PREFIX "bufio"
23
24/*
25 * Memory management policy:
26 *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27 *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28 *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29 *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30 *	dirty buffers.
31 */
32#define DM_BUFIO_MIN_BUFFERS		8
33
34#define DM_BUFIO_MEMORY_PERCENT		2
35#define DM_BUFIO_VMALLOC_PERCENT	25
36#define DM_BUFIO_WRITEBACK_RATIO	3
37#define DM_BUFIO_LOW_WATERMARK_RATIO	16
38
39/*
40 * Check buffer ages in this interval (seconds)
41 */
42#define DM_BUFIO_WORK_TIMER_SECS	30
43
44/*
45 * Free buffers when they are older than this (seconds)
46 */
47#define DM_BUFIO_DEFAULT_AGE_SECS	300
48
49/*
50 * The nr of bytes of cached data to keep around.
51 */
52#define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
53
54/*
55 * Align buffer writes to this boundary.
56 * Tests show that SSDs have the highest IOPS when using 4k writes.
57 */
58#define DM_BUFIO_WRITE_ALIGN		4096
59
60/*
61 * dm_buffer->list_mode
62 */
63#define LIST_CLEAN	0
64#define LIST_DIRTY	1
65#define LIST_SIZE	2
66
67/*
68 * Linking of buffers:
69 *	All buffers are linked to buffer_tree with their node field.
70 *
71 *	Clean buffers that are not being written (B_WRITING not set)
72 *	are linked to lru[LIST_CLEAN] with their lru_list field.
73 *
74 *	Dirty and clean buffers that are being written are linked to
75 *	lru[LIST_DIRTY] with their lru_list field. When the write
76 *	finishes, the buffer cannot be relinked immediately (because we
77 *	are in an interrupt context and relinking requires process
78 *	context), so some clean-not-writing buffers can be held on
79 *	dirty_lru too.  They are later added to lru in the process
80 *	context.
81 */
82struct dm_bufio_client {
83	struct mutex lock;
84
85	struct list_head lru[LIST_SIZE];
86	unsigned long n_buffers[LIST_SIZE];
87
88	struct block_device *bdev;
89	unsigned block_size;
90	s8 sectors_per_block_bits;
91	void (*alloc_callback)(struct dm_buffer *);
92	void (*write_callback)(struct dm_buffer *);
93
94	struct kmem_cache *slab_buffer;
95	struct kmem_cache *slab_cache;
96	struct dm_io_client *dm_io;
97
98	struct list_head reserved_buffers;
99	unsigned need_reserved_buffers;
100
101	unsigned minimum_buffers;
102
103	struct rb_root buffer_tree;
104	wait_queue_head_t free_buffer_wait;
105
106	sector_t start;
107
108	int async_write_error;
109
110	struct list_head client_list;
111
112	struct shrinker shrinker;
113	struct work_struct shrink_work;
114	atomic_long_t need_shrink;
115};
116
117/*
118 * Buffer state bits.
119 */
120#define B_READING	0
121#define B_WRITING	1
122#define B_DIRTY		2
123
124/*
125 * Describes how the block was allocated:
126 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
127 * See the comment at alloc_buffer_data.
128 */
129enum data_mode {
130	DATA_MODE_SLAB = 0,
131	DATA_MODE_GET_FREE_PAGES = 1,
132	DATA_MODE_VMALLOC = 2,
133	DATA_MODE_LIMIT = 3
134};
135
136struct dm_buffer {
137	struct rb_node node;
138	struct list_head lru_list;
139	struct list_head global_list;
140	sector_t block;
141	void *data;
142	unsigned char data_mode;		/* DATA_MODE_* */
143	unsigned char list_mode;		/* LIST_* */
144	blk_status_t read_error;
145	blk_status_t write_error;
146	unsigned accessed;
147	unsigned hold_count;
148	unsigned long state;
149	unsigned long last_accessed;
150	unsigned dirty_start;
151	unsigned dirty_end;
152	unsigned write_start;
153	unsigned write_end;
154	struct dm_bufio_client *c;
155	struct list_head write_list;
156	void (*end_io)(struct dm_buffer *, blk_status_t);
157#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
158#define MAX_STACK 10
159	unsigned int stack_len;
160	unsigned long stack_entries[MAX_STACK];
161#endif
162};
163
164/*----------------------------------------------------------------*/
165
166#define dm_bufio_in_request()	(!!current->bio_list)
167
168static void dm_bufio_lock(struct dm_bufio_client *c)
169{
170	mutex_lock_nested(&c->lock, dm_bufio_in_request());
171}
172
173static int dm_bufio_trylock(struct dm_bufio_client *c)
174{
175	return mutex_trylock(&c->lock);
176}
177
178static void dm_bufio_unlock(struct dm_bufio_client *c)
179{
180	mutex_unlock(&c->lock);
181}
182
183/*----------------------------------------------------------------*/
184
185/*
186 * Default cache size: available memory divided by the ratio.
187 */
188static unsigned long dm_bufio_default_cache_size;
189
190/*
191 * Total cache size set by the user.
192 */
193static unsigned long dm_bufio_cache_size;
194
195/*
196 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
197 * at any time.  If it disagrees, the user has changed cache size.
198 */
199static unsigned long dm_bufio_cache_size_latch;
200
201static DEFINE_SPINLOCK(global_spinlock);
202
203static LIST_HEAD(global_queue);
204
205static unsigned long global_num = 0;
206
207/*
208 * Buffers are freed after this timeout
209 */
210static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
211static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
212
213static unsigned long dm_bufio_peak_allocated;
214static unsigned long dm_bufio_allocated_kmem_cache;
215static unsigned long dm_bufio_allocated_get_free_pages;
216static unsigned long dm_bufio_allocated_vmalloc;
217static unsigned long dm_bufio_current_allocated;
218
219/*----------------------------------------------------------------*/
220
221/*
222 * The current number of clients.
223 */
224static int dm_bufio_client_count;
225
226/*
227 * The list of all clients.
228 */
229static LIST_HEAD(dm_bufio_all_clients);
230
231/*
232 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
233 */
234static DEFINE_MUTEX(dm_bufio_clients_lock);
235
236static struct workqueue_struct *dm_bufio_wq;
237static struct delayed_work dm_bufio_cleanup_old_work;
238static struct work_struct dm_bufio_replacement_work;
239
240
241#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
242static void buffer_record_stack(struct dm_buffer *b)
243{
244	b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
245}
246#endif
247
248/*----------------------------------------------------------------
249 * A red/black tree acts as an index for all the buffers.
250 *--------------------------------------------------------------*/
251static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
252{
253	struct rb_node *n = c->buffer_tree.rb_node;
254	struct dm_buffer *b;
255
256	while (n) {
257		b = container_of(n, struct dm_buffer, node);
258
259		if (b->block == block)
260			return b;
261
262		n = block < b->block ? n->rb_left : n->rb_right;
263	}
264
265	return NULL;
266}
267
268static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block)
269{
270	struct rb_node *n = c->buffer_tree.rb_node;
271	struct dm_buffer *b;
272	struct dm_buffer *best = NULL;
273
274	while (n) {
275		b = container_of(n, struct dm_buffer, node);
276
277		if (b->block == block)
278			return b;
279
280		if (block <= b->block) {
281			n = n->rb_left;
282			best = b;
283		} else {
284			n = n->rb_right;
285		}
286	}
287
288	return best;
289}
290
291static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
292{
293	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
294	struct dm_buffer *found;
295
296	while (*new) {
297		found = container_of(*new, struct dm_buffer, node);
298
299		if (found->block == b->block) {
300			BUG_ON(found != b);
301			return;
302		}
303
304		parent = *new;
305		new = b->block < found->block ?
306			&found->node.rb_left : &found->node.rb_right;
307	}
308
309	rb_link_node(&b->node, parent, new);
310	rb_insert_color(&b->node, &c->buffer_tree);
311}
312
313static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
314{
315	rb_erase(&b->node, &c->buffer_tree);
316}
317
318/*----------------------------------------------------------------*/
319
320static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
321{
322	unsigned char data_mode;
323	long diff;
324
325	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
326		&dm_bufio_allocated_kmem_cache,
327		&dm_bufio_allocated_get_free_pages,
328		&dm_bufio_allocated_vmalloc,
329	};
330
331	data_mode = b->data_mode;
332	diff = (long)b->c->block_size;
333	if (unlink)
334		diff = -diff;
335
336	spin_lock(&global_spinlock);
337
338	*class_ptr[data_mode] += diff;
339
340	dm_bufio_current_allocated += diff;
341
342	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
343		dm_bufio_peak_allocated = dm_bufio_current_allocated;
344
345	b->accessed = 1;
346
347	if (!unlink) {
348		list_add(&b->global_list, &global_queue);
349		global_num++;
350		if (dm_bufio_current_allocated > dm_bufio_cache_size)
351			queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
352	} else {
353		list_del(&b->global_list);
354		global_num--;
355	}
356
357	spin_unlock(&global_spinlock);
358}
359
360/*
361 * Change the number of clients and recalculate per-client limit.
362 */
363static void __cache_size_refresh(void)
364{
365	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
366	BUG_ON(dm_bufio_client_count < 0);
367
368	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
369
370	/*
371	 * Use default if set to 0 and report the actual cache size used.
372	 */
373	if (!dm_bufio_cache_size_latch) {
374		(void)cmpxchg(&dm_bufio_cache_size, 0,
375			      dm_bufio_default_cache_size);
376		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
377	}
378}
379
380/*
381 * Allocating buffer data.
382 *
383 * Small buffers are allocated with kmem_cache, to use space optimally.
384 *
385 * For large buffers, we choose between get_free_pages and vmalloc.
386 * Each has advantages and disadvantages.
387 *
388 * __get_free_pages can randomly fail if the memory is fragmented.
389 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
390 * as low as 128M) so using it for caching is not appropriate.
391 *
392 * If the allocation may fail we use __get_free_pages. Memory fragmentation
393 * won't have a fatal effect here, but it just causes flushes of some other
394 * buffers and more I/O will be performed. Don't use __get_free_pages if it
395 * always fails (i.e. order >= MAX_ORDER).
396 *
397 * If the allocation shouldn't fail we use __vmalloc. This is only for the
398 * initial reserve allocation, so there's no risk of wasting all vmalloc
399 * space.
400 */
401static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
402			       unsigned char *data_mode)
403{
404	if (unlikely(c->slab_cache != NULL)) {
405		*data_mode = DATA_MODE_SLAB;
406		return kmem_cache_alloc(c->slab_cache, gfp_mask);
407	}
408
409	if (c->block_size <= KMALLOC_MAX_SIZE &&
410	    gfp_mask & __GFP_NORETRY) {
411		*data_mode = DATA_MODE_GET_FREE_PAGES;
412		return (void *)__get_free_pages(gfp_mask,
413						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
414	}
415
416	*data_mode = DATA_MODE_VMALLOC;
417
418	/*
419	 * __vmalloc allocates the data pages and auxiliary structures with
420	 * gfp_flags that were specified, but pagetables are always allocated
421	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
422	 *
423	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
424	 * all allocations done by this process (including pagetables) are done
425	 * as if GFP_NOIO was specified.
426	 */
427	if (gfp_mask & __GFP_NORETRY) {
428		unsigned noio_flag = memalloc_noio_save();
429		void *ptr = __vmalloc(c->block_size, gfp_mask);
430
431		memalloc_noio_restore(noio_flag);
432		return ptr;
433	}
434
435	return __vmalloc(c->block_size, gfp_mask);
436}
437
438/*
439 * Free buffer's data.
440 */
441static void free_buffer_data(struct dm_bufio_client *c,
442			     void *data, unsigned char data_mode)
443{
444	switch (data_mode) {
445	case DATA_MODE_SLAB:
446		kmem_cache_free(c->slab_cache, data);
447		break;
448
449	case DATA_MODE_GET_FREE_PAGES:
450		free_pages((unsigned long)data,
451			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
452		break;
453
454	case DATA_MODE_VMALLOC:
455		vfree(data);
456		break;
457
458	default:
459		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
460		       data_mode);
461		BUG();
462	}
463}
464
465/*
466 * Allocate buffer and its data.
467 */
468static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
469{
470	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
471
472	if (!b)
473		return NULL;
474
475	b->c = c;
476
477	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
478	if (!b->data) {
479		kmem_cache_free(c->slab_buffer, b);
480		return NULL;
481	}
482
483#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
484	b->stack_len = 0;
485#endif
486	return b;
487}
488
489/*
490 * Free buffer and its data.
491 */
492static void free_buffer(struct dm_buffer *b)
493{
494	struct dm_bufio_client *c = b->c;
495
496	free_buffer_data(c, b->data, b->data_mode);
497	kmem_cache_free(c->slab_buffer, b);
498}
499
500/*
501 * Link buffer to the buffer tree and clean or dirty queue.
502 */
503static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
504{
505	struct dm_bufio_client *c = b->c;
506
507	c->n_buffers[dirty]++;
508	b->block = block;
509	b->list_mode = dirty;
510	list_add(&b->lru_list, &c->lru[dirty]);
511	__insert(b->c, b);
512	b->last_accessed = jiffies;
513
514	adjust_total_allocated(b, false);
515}
516
517/*
518 * Unlink buffer from the buffer tree and dirty or clean queue.
519 */
520static void __unlink_buffer(struct dm_buffer *b)
521{
522	struct dm_bufio_client *c = b->c;
523
524	BUG_ON(!c->n_buffers[b->list_mode]);
525
526	c->n_buffers[b->list_mode]--;
527	__remove(b->c, b);
528	list_del(&b->lru_list);
529
530	adjust_total_allocated(b, true);
531}
532
533/*
534 * Place the buffer to the head of dirty or clean LRU queue.
535 */
536static void __relink_lru(struct dm_buffer *b, int dirty)
537{
538	struct dm_bufio_client *c = b->c;
539
540	b->accessed = 1;
541
542	BUG_ON(!c->n_buffers[b->list_mode]);
543
544	c->n_buffers[b->list_mode]--;
545	c->n_buffers[dirty]++;
546	b->list_mode = dirty;
547	list_move(&b->lru_list, &c->lru[dirty]);
548	b->last_accessed = jiffies;
549}
550
551/*----------------------------------------------------------------
552 * Submit I/O on the buffer.
553 *
554 * Bio interface is faster but it has some problems:
555 *	the vector list is limited (increasing this limit increases
556 *	memory-consumption per buffer, so it is not viable);
557 *
558 *	the memory must be direct-mapped, not vmalloced;
559 *
560 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
561 * it is not vmalloced, try using the bio interface.
562 *
563 * If the buffer is big, if it is vmalloced or if the underlying device
564 * rejects the bio because it is too large, use dm-io layer to do the I/O.
565 * The dm-io layer splits the I/O into multiple requests, avoiding the above
566 * shortcomings.
567 *--------------------------------------------------------------*/
568
569/*
570 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
571 * that the request was handled directly with bio interface.
572 */
573static void dmio_complete(unsigned long error, void *context)
574{
575	struct dm_buffer *b = context;
576
577	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
578}
579
580static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
581		     unsigned n_sectors, unsigned offset)
582{
583	int r;
584	struct dm_io_request io_req = {
585		.bi_op = rw,
586		.bi_op_flags = 0,
587		.notify.fn = dmio_complete,
588		.notify.context = b,
589		.client = b->c->dm_io,
590	};
591	struct dm_io_region region = {
592		.bdev = b->c->bdev,
593		.sector = sector,
594		.count = n_sectors,
595	};
596
597	if (b->data_mode != DATA_MODE_VMALLOC) {
598		io_req.mem.type = DM_IO_KMEM;
599		io_req.mem.ptr.addr = (char *)b->data + offset;
600	} else {
601		io_req.mem.type = DM_IO_VMA;
602		io_req.mem.ptr.vma = (char *)b->data + offset;
603	}
604
605	r = dm_io(&io_req, 1, &region, NULL);
606	if (unlikely(r))
607		b->end_io(b, errno_to_blk_status(r));
608}
609
610static void bio_complete(struct bio *bio)
611{
612	struct dm_buffer *b = bio->bi_private;
613	blk_status_t status = bio->bi_status;
614	bio_put(bio);
615	b->end_io(b, status);
616}
617
618static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
619		    unsigned n_sectors, unsigned offset)
620{
621	struct bio *bio;
622	char *ptr;
623	unsigned vec_size, len;
624
625	vec_size = b->c->block_size >> PAGE_SHIFT;
626	if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
627		vec_size += 2;
628
629	bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size);
630	if (!bio) {
631dmio:
632		use_dmio(b, rw, sector, n_sectors, offset);
633		return;
634	}
635
636	bio->bi_iter.bi_sector = sector;
637	bio_set_dev(bio, b->c->bdev);
638	bio_set_op_attrs(bio, rw, 0);
639	bio->bi_end_io = bio_complete;
640	bio->bi_private = b;
641
642	ptr = (char *)b->data + offset;
643	len = n_sectors << SECTOR_SHIFT;
644
645	do {
646		unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
647		if (!bio_add_page(bio, virt_to_page(ptr), this_step,
648				  offset_in_page(ptr))) {
649			bio_put(bio);
650			goto dmio;
651		}
652
653		len -= this_step;
654		ptr += this_step;
655	} while (len > 0);
656
657	submit_bio(bio);
658}
659
660static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
661{
662	sector_t sector;
663
664	if (likely(c->sectors_per_block_bits >= 0))
665		sector = block << c->sectors_per_block_bits;
666	else
667		sector = block * (c->block_size >> SECTOR_SHIFT);
668	sector += c->start;
669
670	return sector;
671}
672
673static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
674{
675	unsigned n_sectors;
676	sector_t sector;
677	unsigned offset, end;
678
679	b->end_io = end_io;
680
681	sector = block_to_sector(b->c, b->block);
682
683	if (rw != REQ_OP_WRITE) {
684		n_sectors = b->c->block_size >> SECTOR_SHIFT;
685		offset = 0;
686	} else {
687		if (b->c->write_callback)
688			b->c->write_callback(b);
689		offset = b->write_start;
690		end = b->write_end;
691		offset &= -DM_BUFIO_WRITE_ALIGN;
692		end += DM_BUFIO_WRITE_ALIGN - 1;
693		end &= -DM_BUFIO_WRITE_ALIGN;
694		if (unlikely(end > b->c->block_size))
695			end = b->c->block_size;
696
697		sector += offset >> SECTOR_SHIFT;
698		n_sectors = (end - offset) >> SECTOR_SHIFT;
699	}
700
701	if (b->data_mode != DATA_MODE_VMALLOC)
702		use_bio(b, rw, sector, n_sectors, offset);
703	else
704		use_dmio(b, rw, sector, n_sectors, offset);
705}
706
707/*----------------------------------------------------------------
708 * Writing dirty buffers
709 *--------------------------------------------------------------*/
710
711/*
712 * The endio routine for write.
713 *
714 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
715 * it.
716 */
717static void write_endio(struct dm_buffer *b, blk_status_t status)
718{
719	b->write_error = status;
720	if (unlikely(status)) {
721		struct dm_bufio_client *c = b->c;
722
723		(void)cmpxchg(&c->async_write_error, 0,
724				blk_status_to_errno(status));
725	}
726
727	BUG_ON(!test_bit(B_WRITING, &b->state));
728
729	smp_mb__before_atomic();
730	clear_bit(B_WRITING, &b->state);
731	smp_mb__after_atomic();
732
733	wake_up_bit(&b->state, B_WRITING);
734}
735
736/*
737 * Initiate a write on a dirty buffer, but don't wait for it.
738 *
739 * - If the buffer is not dirty, exit.
740 * - If there some previous write going on, wait for it to finish (we can't
741 *   have two writes on the same buffer simultaneously).
742 * - Submit our write and don't wait on it. We set B_WRITING indicating
743 *   that there is a write in progress.
744 */
745static void __write_dirty_buffer(struct dm_buffer *b,
746				 struct list_head *write_list)
747{
748	if (!test_bit(B_DIRTY, &b->state))
749		return;
750
751	clear_bit(B_DIRTY, &b->state);
752	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
753
754	b->write_start = b->dirty_start;
755	b->write_end = b->dirty_end;
756
757	if (!write_list)
758		submit_io(b, REQ_OP_WRITE, write_endio);
759	else
760		list_add_tail(&b->write_list, write_list);
761}
762
763static void __flush_write_list(struct list_head *write_list)
764{
765	struct blk_plug plug;
766	blk_start_plug(&plug);
767	while (!list_empty(write_list)) {
768		struct dm_buffer *b =
769			list_entry(write_list->next, struct dm_buffer, write_list);
770		list_del(&b->write_list);
771		submit_io(b, REQ_OP_WRITE, write_endio);
772		cond_resched();
773	}
774	blk_finish_plug(&plug);
775}
776
777/*
778 * Wait until any activity on the buffer finishes.  Possibly write the
779 * buffer if it is dirty.  When this function finishes, there is no I/O
780 * running on the buffer and the buffer is not dirty.
781 */
782static void __make_buffer_clean(struct dm_buffer *b)
783{
784	BUG_ON(b->hold_count);
785
786	if (!b->state)	/* fast case */
787		return;
788
789	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
790	__write_dirty_buffer(b, NULL);
791	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
792}
793
794/*
795 * Find some buffer that is not held by anybody, clean it, unlink it and
796 * return it.
797 */
798static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
799{
800	struct dm_buffer *b;
801
802	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
803		BUG_ON(test_bit(B_WRITING, &b->state));
804		BUG_ON(test_bit(B_DIRTY, &b->state));
805
806		if (!b->hold_count) {
807			__make_buffer_clean(b);
808			__unlink_buffer(b);
809			return b;
810		}
811		cond_resched();
812	}
813
814	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
815		BUG_ON(test_bit(B_READING, &b->state));
816
817		if (!b->hold_count) {
818			__make_buffer_clean(b);
819			__unlink_buffer(b);
820			return b;
821		}
822		cond_resched();
823	}
824
825	return NULL;
826}
827
828/*
829 * Wait until some other threads free some buffer or release hold count on
830 * some buffer.
831 *
832 * This function is entered with c->lock held, drops it and regains it
833 * before exiting.
834 */
835static void __wait_for_free_buffer(struct dm_bufio_client *c)
836{
837	DECLARE_WAITQUEUE(wait, current);
838
839	add_wait_queue(&c->free_buffer_wait, &wait);
840	set_current_state(TASK_UNINTERRUPTIBLE);
841	dm_bufio_unlock(c);
842
843	io_schedule();
844
845	remove_wait_queue(&c->free_buffer_wait, &wait);
846
847	dm_bufio_lock(c);
848}
849
850enum new_flag {
851	NF_FRESH = 0,
852	NF_READ = 1,
853	NF_GET = 2,
854	NF_PREFETCH = 3
855};
856
857/*
858 * Allocate a new buffer. If the allocation is not possible, wait until
859 * some other thread frees a buffer.
860 *
861 * May drop the lock and regain it.
862 */
863static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
864{
865	struct dm_buffer *b;
866	bool tried_noio_alloc = false;
867
868	/*
869	 * dm-bufio is resistant to allocation failures (it just keeps
870	 * one buffer reserved in cases all the allocations fail).
871	 * So set flags to not try too hard:
872	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
873	 *		    mutex and wait ourselves.
874	 *	__GFP_NORETRY: don't retry and rather return failure
875	 *	__GFP_NOMEMALLOC: don't use emergency reserves
876	 *	__GFP_NOWARN: don't print a warning in case of failure
877	 *
878	 * For debugging, if we set the cache size to 1, no new buffers will
879	 * be allocated.
880	 */
881	while (1) {
882		if (dm_bufio_cache_size_latch != 1) {
883			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
884			if (b)
885				return b;
886		}
887
888		if (nf == NF_PREFETCH)
889			return NULL;
890
891		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
892			dm_bufio_unlock(c);
893			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
894			dm_bufio_lock(c);
895			if (b)
896				return b;
897			tried_noio_alloc = true;
898		}
899
900		if (!list_empty(&c->reserved_buffers)) {
901			b = list_entry(c->reserved_buffers.next,
902				       struct dm_buffer, lru_list);
903			list_del(&b->lru_list);
904			c->need_reserved_buffers++;
905
906			return b;
907		}
908
909		b = __get_unclaimed_buffer(c);
910		if (b)
911			return b;
912
913		__wait_for_free_buffer(c);
914	}
915}
916
917static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
918{
919	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
920
921	if (!b)
922		return NULL;
923
924	if (c->alloc_callback)
925		c->alloc_callback(b);
926
927	return b;
928}
929
930/*
931 * Free a buffer and wake other threads waiting for free buffers.
932 */
933static void __free_buffer_wake(struct dm_buffer *b)
934{
935	struct dm_bufio_client *c = b->c;
936
937	if (!c->need_reserved_buffers)
938		free_buffer(b);
939	else {
940		list_add(&b->lru_list, &c->reserved_buffers);
941		c->need_reserved_buffers--;
942	}
943
944	wake_up(&c->free_buffer_wait);
945}
946
947static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
948					struct list_head *write_list)
949{
950	struct dm_buffer *b, *tmp;
951
952	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
953		BUG_ON(test_bit(B_READING, &b->state));
954
955		if (!test_bit(B_DIRTY, &b->state) &&
956		    !test_bit(B_WRITING, &b->state)) {
957			__relink_lru(b, LIST_CLEAN);
958			continue;
959		}
960
961		if (no_wait && test_bit(B_WRITING, &b->state))
962			return;
963
964		__write_dirty_buffer(b, write_list);
965		cond_resched();
966	}
967}
968
969/*
970 * Check if we're over watermark.
971 * If we are over threshold_buffers, start freeing buffers.
972 * If we're over "limit_buffers", block until we get under the limit.
973 */
974static void __check_watermark(struct dm_bufio_client *c,
975			      struct list_head *write_list)
976{
977	if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
978		__write_dirty_buffers_async(c, 1, write_list);
979}
980
981/*----------------------------------------------------------------
982 * Getting a buffer
983 *--------------------------------------------------------------*/
984
985static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
986				     enum new_flag nf, int *need_submit,
987				     struct list_head *write_list)
988{
989	struct dm_buffer *b, *new_b = NULL;
990
991	*need_submit = 0;
992
993	b = __find(c, block);
994	if (b)
995		goto found_buffer;
996
997	if (nf == NF_GET)
998		return NULL;
999
1000	new_b = __alloc_buffer_wait(c, nf);
1001	if (!new_b)
1002		return NULL;
1003
1004	/*
1005	 * We've had a period where the mutex was unlocked, so need to
1006	 * recheck the buffer tree.
1007	 */
1008	b = __find(c, block);
1009	if (b) {
1010		__free_buffer_wake(new_b);
1011		goto found_buffer;
1012	}
1013
1014	__check_watermark(c, write_list);
1015
1016	b = new_b;
1017	b->hold_count = 1;
1018	b->read_error = 0;
1019	b->write_error = 0;
1020	__link_buffer(b, block, LIST_CLEAN);
1021
1022	if (nf == NF_FRESH) {
1023		b->state = 0;
1024		return b;
1025	}
1026
1027	b->state = 1 << B_READING;
1028	*need_submit = 1;
1029
1030	return b;
1031
1032found_buffer:
1033	if (nf == NF_PREFETCH)
1034		return NULL;
1035	/*
1036	 * Note: it is essential that we don't wait for the buffer to be
1037	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1038	 * dm_bufio_prefetch can be used in the driver request routine.
1039	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1040	 * the same buffer, it would deadlock if we waited.
1041	 */
1042	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1043		return NULL;
1044
1045	b->hold_count++;
1046	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1047		     test_bit(B_WRITING, &b->state));
1048	return b;
1049}
1050
1051/*
1052 * The endio routine for reading: set the error, clear the bit and wake up
1053 * anyone waiting on the buffer.
1054 */
1055static void read_endio(struct dm_buffer *b, blk_status_t status)
1056{
1057	b->read_error = status;
1058
1059	BUG_ON(!test_bit(B_READING, &b->state));
1060
1061	smp_mb__before_atomic();
1062	clear_bit(B_READING, &b->state);
1063	smp_mb__after_atomic();
1064
1065	wake_up_bit(&b->state, B_READING);
1066}
1067
1068/*
1069 * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1070 * functions is similar except that dm_bufio_new doesn't read the
1071 * buffer from the disk (assuming that the caller overwrites all the data
1072 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1073 */
1074static void *new_read(struct dm_bufio_client *c, sector_t block,
1075		      enum new_flag nf, struct dm_buffer **bp)
1076{
1077	int need_submit;
1078	struct dm_buffer *b;
1079
1080	LIST_HEAD(write_list);
1081
1082	dm_bufio_lock(c);
1083	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1084#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1085	if (b && b->hold_count == 1)
1086		buffer_record_stack(b);
1087#endif
1088	dm_bufio_unlock(c);
1089
1090	__flush_write_list(&write_list);
1091
1092	if (!b)
1093		return NULL;
1094
1095	if (need_submit)
1096		submit_io(b, REQ_OP_READ, read_endio);
1097
1098	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1099
1100	if (b->read_error) {
1101		int error = blk_status_to_errno(b->read_error);
1102
1103		dm_bufio_release(b);
1104
1105		return ERR_PTR(error);
1106	}
1107
1108	*bp = b;
1109
1110	return b->data;
1111}
1112
1113void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1114		   struct dm_buffer **bp)
1115{
1116	return new_read(c, block, NF_GET, bp);
1117}
1118EXPORT_SYMBOL_GPL(dm_bufio_get);
1119
1120void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1121		    struct dm_buffer **bp)
1122{
1123	BUG_ON(dm_bufio_in_request());
1124
1125	return new_read(c, block, NF_READ, bp);
1126}
1127EXPORT_SYMBOL_GPL(dm_bufio_read);
1128
1129void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1130		   struct dm_buffer **bp)
1131{
1132	BUG_ON(dm_bufio_in_request());
1133
1134	return new_read(c, block, NF_FRESH, bp);
1135}
1136EXPORT_SYMBOL_GPL(dm_bufio_new);
1137
1138void dm_bufio_prefetch(struct dm_bufio_client *c,
1139		       sector_t block, unsigned n_blocks)
1140{
1141	struct blk_plug plug;
1142
1143	LIST_HEAD(write_list);
1144
1145	BUG_ON(dm_bufio_in_request());
1146
1147	blk_start_plug(&plug);
1148	dm_bufio_lock(c);
1149
1150	for (; n_blocks--; block++) {
1151		int need_submit;
1152		struct dm_buffer *b;
1153		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1154				&write_list);
1155		if (unlikely(!list_empty(&write_list))) {
1156			dm_bufio_unlock(c);
1157			blk_finish_plug(&plug);
1158			__flush_write_list(&write_list);
1159			blk_start_plug(&plug);
1160			dm_bufio_lock(c);
1161		}
1162		if (unlikely(b != NULL)) {
1163			dm_bufio_unlock(c);
1164
1165			if (need_submit)
1166				submit_io(b, REQ_OP_READ, read_endio);
1167			dm_bufio_release(b);
1168
1169			cond_resched();
1170
1171			if (!n_blocks)
1172				goto flush_plug;
1173			dm_bufio_lock(c);
1174		}
1175	}
1176
1177	dm_bufio_unlock(c);
1178
1179flush_plug:
1180	blk_finish_plug(&plug);
1181}
1182EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1183
1184void dm_bufio_release(struct dm_buffer *b)
1185{
1186	struct dm_bufio_client *c = b->c;
1187
1188	dm_bufio_lock(c);
1189
1190	BUG_ON(!b->hold_count);
1191
1192	b->hold_count--;
1193	if (!b->hold_count) {
1194		wake_up(&c->free_buffer_wait);
1195
1196		/*
1197		 * If there were errors on the buffer, and the buffer is not
1198		 * to be written, free the buffer. There is no point in caching
1199		 * invalid buffer.
1200		 */
1201		if ((b->read_error || b->write_error) &&
1202		    !test_bit(B_READING, &b->state) &&
1203		    !test_bit(B_WRITING, &b->state) &&
1204		    !test_bit(B_DIRTY, &b->state)) {
1205			__unlink_buffer(b);
1206			__free_buffer_wake(b);
1207		}
1208	}
1209
1210	dm_bufio_unlock(c);
1211}
1212EXPORT_SYMBOL_GPL(dm_bufio_release);
1213
1214void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1215					unsigned start, unsigned end)
1216{
1217	struct dm_bufio_client *c = b->c;
1218
1219	BUG_ON(start >= end);
1220	BUG_ON(end > b->c->block_size);
1221
1222	dm_bufio_lock(c);
1223
1224	BUG_ON(test_bit(B_READING, &b->state));
1225
1226	if (!test_and_set_bit(B_DIRTY, &b->state)) {
1227		b->dirty_start = start;
1228		b->dirty_end = end;
1229		__relink_lru(b, LIST_DIRTY);
1230	} else {
1231		if (start < b->dirty_start)
1232			b->dirty_start = start;
1233		if (end > b->dirty_end)
1234			b->dirty_end = end;
1235	}
1236
1237	dm_bufio_unlock(c);
1238}
1239EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1240
1241void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1242{
1243	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1244}
1245EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1246
1247void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1248{
1249	LIST_HEAD(write_list);
1250
1251	BUG_ON(dm_bufio_in_request());
1252
1253	dm_bufio_lock(c);
1254	__write_dirty_buffers_async(c, 0, &write_list);
1255	dm_bufio_unlock(c);
1256	__flush_write_list(&write_list);
1257}
1258EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1259
1260/*
1261 * For performance, it is essential that the buffers are written asynchronously
1262 * and simultaneously (so that the block layer can merge the writes) and then
1263 * waited upon.
1264 *
1265 * Finally, we flush hardware disk cache.
1266 */
1267int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1268{
1269	int a, f;
1270	unsigned long buffers_processed = 0;
1271	struct dm_buffer *b, *tmp;
1272
1273	LIST_HEAD(write_list);
1274
1275	dm_bufio_lock(c);
1276	__write_dirty_buffers_async(c, 0, &write_list);
1277	dm_bufio_unlock(c);
1278	__flush_write_list(&write_list);
1279	dm_bufio_lock(c);
1280
1281again:
1282	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1283		int dropped_lock = 0;
1284
1285		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1286			buffers_processed++;
1287
1288		BUG_ON(test_bit(B_READING, &b->state));
1289
1290		if (test_bit(B_WRITING, &b->state)) {
1291			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1292				dropped_lock = 1;
1293				b->hold_count++;
1294				dm_bufio_unlock(c);
1295				wait_on_bit_io(&b->state, B_WRITING,
1296					       TASK_UNINTERRUPTIBLE);
1297				dm_bufio_lock(c);
1298				b->hold_count--;
1299			} else
1300				wait_on_bit_io(&b->state, B_WRITING,
1301					       TASK_UNINTERRUPTIBLE);
1302		}
1303
1304		if (!test_bit(B_DIRTY, &b->state) &&
1305		    !test_bit(B_WRITING, &b->state))
1306			__relink_lru(b, LIST_CLEAN);
1307
1308		cond_resched();
1309
1310		/*
1311		 * If we dropped the lock, the list is no longer consistent,
1312		 * so we must restart the search.
1313		 *
1314		 * In the most common case, the buffer just processed is
1315		 * relinked to the clean list, so we won't loop scanning the
1316		 * same buffer again and again.
1317		 *
1318		 * This may livelock if there is another thread simultaneously
1319		 * dirtying buffers, so we count the number of buffers walked
1320		 * and if it exceeds the total number of buffers, it means that
1321		 * someone is doing some writes simultaneously with us.  In
1322		 * this case, stop, dropping the lock.
1323		 */
1324		if (dropped_lock)
1325			goto again;
1326	}
1327	wake_up(&c->free_buffer_wait);
1328	dm_bufio_unlock(c);
1329
1330	a = xchg(&c->async_write_error, 0);
1331	f = dm_bufio_issue_flush(c);
1332	if (a)
1333		return a;
1334
1335	return f;
1336}
1337EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1338
1339/*
1340 * Use dm-io to send an empty barrier to flush the device.
1341 */
1342int dm_bufio_issue_flush(struct dm_bufio_client *c)
1343{
1344	struct dm_io_request io_req = {
1345		.bi_op = REQ_OP_WRITE,
1346		.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1347		.mem.type = DM_IO_KMEM,
1348		.mem.ptr.addr = NULL,
1349		.client = c->dm_io,
1350	};
1351	struct dm_io_region io_reg = {
1352		.bdev = c->bdev,
1353		.sector = 0,
1354		.count = 0,
1355	};
1356
1357	BUG_ON(dm_bufio_in_request());
1358
1359	return dm_io(&io_req, 1, &io_reg, NULL);
1360}
1361EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1362
1363/*
1364 * Use dm-io to send a discard request to flush the device.
1365 */
1366int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
1367{
1368	struct dm_io_request io_req = {
1369		.bi_op = REQ_OP_DISCARD,
1370		.bi_op_flags = REQ_SYNC,
1371		.mem.type = DM_IO_KMEM,
1372		.mem.ptr.addr = NULL,
1373		.client = c->dm_io,
1374	};
1375	struct dm_io_region io_reg = {
1376		.bdev = c->bdev,
1377		.sector = block_to_sector(c, block),
1378		.count = block_to_sector(c, count),
1379	};
1380
1381	BUG_ON(dm_bufio_in_request());
1382
1383	return dm_io(&io_req, 1, &io_reg, NULL);
1384}
1385EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
1386
1387/*
1388 * We first delete any other buffer that may be at that new location.
1389 *
1390 * Then, we write the buffer to the original location if it was dirty.
1391 *
1392 * Then, if we are the only one who is holding the buffer, relink the buffer
1393 * in the buffer tree for the new location.
1394 *
1395 * If there was someone else holding the buffer, we write it to the new
1396 * location but not relink it, because that other user needs to have the buffer
1397 * at the same place.
1398 */
1399void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1400{
1401	struct dm_bufio_client *c = b->c;
1402	struct dm_buffer *new;
1403
1404	BUG_ON(dm_bufio_in_request());
1405
1406	dm_bufio_lock(c);
1407
1408retry:
1409	new = __find(c, new_block);
1410	if (new) {
1411		if (new->hold_count) {
1412			__wait_for_free_buffer(c);
1413			goto retry;
1414		}
1415
1416		/*
1417		 * FIXME: Is there any point waiting for a write that's going
1418		 * to be overwritten in a bit?
1419		 */
1420		__make_buffer_clean(new);
1421		__unlink_buffer(new);
1422		__free_buffer_wake(new);
1423	}
1424
1425	BUG_ON(!b->hold_count);
1426	BUG_ON(test_bit(B_READING, &b->state));
1427
1428	__write_dirty_buffer(b, NULL);
1429	if (b->hold_count == 1) {
1430		wait_on_bit_io(&b->state, B_WRITING,
1431			       TASK_UNINTERRUPTIBLE);
1432		set_bit(B_DIRTY, &b->state);
1433		b->dirty_start = 0;
1434		b->dirty_end = c->block_size;
1435		__unlink_buffer(b);
1436		__link_buffer(b, new_block, LIST_DIRTY);
1437	} else {
1438		sector_t old_block;
1439		wait_on_bit_lock_io(&b->state, B_WRITING,
1440				    TASK_UNINTERRUPTIBLE);
1441		/*
1442		 * Relink buffer to "new_block" so that write_callback
1443		 * sees "new_block" as a block number.
1444		 * After the write, link the buffer back to old_block.
1445		 * All this must be done in bufio lock, so that block number
1446		 * change isn't visible to other threads.
1447		 */
1448		old_block = b->block;
1449		__unlink_buffer(b);
1450		__link_buffer(b, new_block, b->list_mode);
1451		submit_io(b, REQ_OP_WRITE, write_endio);
1452		wait_on_bit_io(&b->state, B_WRITING,
1453			       TASK_UNINTERRUPTIBLE);
1454		__unlink_buffer(b);
1455		__link_buffer(b, old_block, b->list_mode);
1456	}
1457
1458	dm_bufio_unlock(c);
1459	dm_bufio_release(b);
1460}
1461EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1462
1463static void forget_buffer_locked(struct dm_buffer *b)
1464{
1465	if (likely(!b->hold_count) && likely(!b->state)) {
1466		__unlink_buffer(b);
1467		__free_buffer_wake(b);
1468	}
1469}
1470
1471/*
1472 * Free the given buffer.
1473 *
1474 * This is just a hint, if the buffer is in use or dirty, this function
1475 * does nothing.
1476 */
1477void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1478{
1479	struct dm_buffer *b;
1480
1481	dm_bufio_lock(c);
1482
1483	b = __find(c, block);
1484	if (b)
1485		forget_buffer_locked(b);
1486
1487	dm_bufio_unlock(c);
1488}
1489EXPORT_SYMBOL_GPL(dm_bufio_forget);
1490
1491void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
1492{
1493	struct dm_buffer *b;
1494	sector_t end_block = block + n_blocks;
1495
1496	while (block < end_block) {
1497		dm_bufio_lock(c);
1498
1499		b = __find_next(c, block);
1500		if (b) {
1501			block = b->block + 1;
1502			forget_buffer_locked(b);
1503		}
1504
1505		dm_bufio_unlock(c);
1506
1507		if (!b)
1508			break;
1509	}
1510
1511}
1512EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
1513
1514void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1515{
1516	c->minimum_buffers = n;
1517}
1518EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1519
1520unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1521{
1522	return c->block_size;
1523}
1524EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1525
1526sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1527{
1528	sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT;
1529	if (s >= c->start)
1530		s -= c->start;
1531	else
1532		s = 0;
1533	if (likely(c->sectors_per_block_bits >= 0))
1534		s >>= c->sectors_per_block_bits;
1535	else
1536		sector_div(s, c->block_size >> SECTOR_SHIFT);
1537	return s;
1538}
1539EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1540
1541struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
1542{
1543	return c->dm_io;
1544}
1545EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
1546
1547sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1548{
1549	return b->block;
1550}
1551EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1552
1553void *dm_bufio_get_block_data(struct dm_buffer *b)
1554{
1555	return b->data;
1556}
1557EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1558
1559void *dm_bufio_get_aux_data(struct dm_buffer *b)
1560{
1561	return b + 1;
1562}
1563EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1564
1565struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1566{
1567	return b->c;
1568}
1569EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1570
1571static void drop_buffers(struct dm_bufio_client *c)
1572{
1573	struct dm_buffer *b;
1574	int i;
1575	bool warned = false;
1576
1577	BUG_ON(dm_bufio_in_request());
1578
1579	/*
1580	 * An optimization so that the buffers are not written one-by-one.
1581	 */
1582	dm_bufio_write_dirty_buffers_async(c);
1583
1584	dm_bufio_lock(c);
1585
1586	while ((b = __get_unclaimed_buffer(c)))
1587		__free_buffer_wake(b);
1588
1589	for (i = 0; i < LIST_SIZE; i++)
1590		list_for_each_entry(b, &c->lru[i], lru_list) {
1591			WARN_ON(!warned);
1592			warned = true;
1593			DMERR("leaked buffer %llx, hold count %u, list %d",
1594			      (unsigned long long)b->block, b->hold_count, i);
1595#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1596			stack_trace_print(b->stack_entries, b->stack_len, 1);
1597			/* mark unclaimed to avoid BUG_ON below */
1598			b->hold_count = 0;
1599#endif
1600		}
1601
1602#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1603	while ((b = __get_unclaimed_buffer(c)))
1604		__free_buffer_wake(b);
1605#endif
1606
1607	for (i = 0; i < LIST_SIZE; i++)
1608		BUG_ON(!list_empty(&c->lru[i]));
1609
1610	dm_bufio_unlock(c);
1611}
1612
1613/*
1614 * We may not be able to evict this buffer if IO pending or the client
1615 * is still using it.  Caller is expected to know buffer is too old.
1616 *
1617 * And if GFP_NOFS is used, we must not do any I/O because we hold
1618 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1619 * rerouted to different bufio client.
1620 */
1621static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1622{
1623	if (!(gfp & __GFP_FS)) {
1624		if (test_bit(B_READING, &b->state) ||
1625		    test_bit(B_WRITING, &b->state) ||
1626		    test_bit(B_DIRTY, &b->state))
1627			return false;
1628	}
1629
1630	if (b->hold_count)
1631		return false;
1632
1633	__make_buffer_clean(b);
1634	__unlink_buffer(b);
1635	__free_buffer_wake(b);
1636
1637	return true;
1638}
1639
1640static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1641{
1642	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1643	if (likely(c->sectors_per_block_bits >= 0))
1644		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1645	else
1646		retain_bytes /= c->block_size;
1647	return retain_bytes;
1648}
1649
1650static void __scan(struct dm_bufio_client *c)
1651{
1652	int l;
1653	struct dm_buffer *b, *tmp;
1654	unsigned long freed = 0;
1655	unsigned long count = c->n_buffers[LIST_CLEAN] +
1656			      c->n_buffers[LIST_DIRTY];
1657	unsigned long retain_target = get_retain_buffers(c);
1658
1659	for (l = 0; l < LIST_SIZE; l++) {
1660		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1661			if (count - freed <= retain_target)
1662				atomic_long_set(&c->need_shrink, 0);
1663			if (!atomic_long_read(&c->need_shrink))
1664				return;
1665			if (__try_evict_buffer(b, GFP_KERNEL)) {
1666				atomic_long_dec(&c->need_shrink);
1667				freed++;
1668			}
1669			cond_resched();
1670		}
1671	}
1672}
1673
1674static void shrink_work(struct work_struct *w)
1675{
1676	struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
1677
1678	dm_bufio_lock(c);
1679	__scan(c);
1680	dm_bufio_unlock(c);
1681}
1682
1683static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1684{
1685	struct dm_bufio_client *c;
1686
1687	c = container_of(shrink, struct dm_bufio_client, shrinker);
1688	atomic_long_add(sc->nr_to_scan, &c->need_shrink);
1689	queue_work(dm_bufio_wq, &c->shrink_work);
1690
1691	return sc->nr_to_scan;
1692}
1693
1694static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1695{
1696	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1697	unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1698			      READ_ONCE(c->n_buffers[LIST_DIRTY]);
1699	unsigned long retain_target = get_retain_buffers(c);
1700	unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
1701
1702	if (unlikely(count < retain_target))
1703		count = 0;
1704	else
1705		count -= retain_target;
1706
1707	if (unlikely(count < queued_for_cleanup))
1708		count = 0;
1709	else
1710		count -= queued_for_cleanup;
1711
1712	return count;
1713}
1714
1715/*
1716 * Create the buffering interface
1717 */
1718struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1719					       unsigned reserved_buffers, unsigned aux_size,
1720					       void (*alloc_callback)(struct dm_buffer *),
1721					       void (*write_callback)(struct dm_buffer *))
1722{
1723	int r;
1724	struct dm_bufio_client *c;
1725	unsigned i;
1726	char slab_name[27];
1727
1728	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1729		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1730		r = -EINVAL;
1731		goto bad_client;
1732	}
1733
1734	c = kzalloc(sizeof(*c), GFP_KERNEL);
1735	if (!c) {
1736		r = -ENOMEM;
1737		goto bad_client;
1738	}
1739	c->buffer_tree = RB_ROOT;
1740
1741	c->bdev = bdev;
1742	c->block_size = block_size;
1743	if (is_power_of_2(block_size))
1744		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1745	else
1746		c->sectors_per_block_bits = -1;
1747
1748	c->alloc_callback = alloc_callback;
1749	c->write_callback = write_callback;
1750
1751	for (i = 0; i < LIST_SIZE; i++) {
1752		INIT_LIST_HEAD(&c->lru[i]);
1753		c->n_buffers[i] = 0;
1754	}
1755
1756	mutex_init(&c->lock);
1757	INIT_LIST_HEAD(&c->reserved_buffers);
1758	c->need_reserved_buffers = reserved_buffers;
1759
1760	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1761
1762	init_waitqueue_head(&c->free_buffer_wait);
1763	c->async_write_error = 0;
1764
1765	c->dm_io = dm_io_client_create();
1766	if (IS_ERR(c->dm_io)) {
1767		r = PTR_ERR(c->dm_io);
1768		goto bad_dm_io;
1769	}
1770
1771	if (block_size <= KMALLOC_MAX_SIZE &&
1772	    (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1773		unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1774		snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1775		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1776						  SLAB_RECLAIM_ACCOUNT, NULL);
1777		if (!c->slab_cache) {
1778			r = -ENOMEM;
1779			goto bad;
1780		}
1781	}
1782	if (aux_size)
1783		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1784	else
1785		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1786	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1787					   0, SLAB_RECLAIM_ACCOUNT, NULL);
1788	if (!c->slab_buffer) {
1789		r = -ENOMEM;
1790		goto bad;
1791	}
1792
1793	while (c->need_reserved_buffers) {
1794		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1795
1796		if (!b) {
1797			r = -ENOMEM;
1798			goto bad;
1799		}
1800		__free_buffer_wake(b);
1801	}
1802
1803	INIT_WORK(&c->shrink_work, shrink_work);
1804	atomic_long_set(&c->need_shrink, 0);
1805
1806	c->shrinker.count_objects = dm_bufio_shrink_count;
1807	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1808	c->shrinker.seeks = 1;
1809	c->shrinker.batch = 0;
1810	r = register_shrinker(&c->shrinker);
1811	if (r)
1812		goto bad;
1813
1814	mutex_lock(&dm_bufio_clients_lock);
1815	dm_bufio_client_count++;
1816	list_add(&c->client_list, &dm_bufio_all_clients);
1817	__cache_size_refresh();
1818	mutex_unlock(&dm_bufio_clients_lock);
1819
1820	return c;
1821
1822bad:
1823	while (!list_empty(&c->reserved_buffers)) {
1824		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1825						 struct dm_buffer, lru_list);
1826		list_del(&b->lru_list);
1827		free_buffer(b);
1828	}
1829	kmem_cache_destroy(c->slab_cache);
1830	kmem_cache_destroy(c->slab_buffer);
1831	dm_io_client_destroy(c->dm_io);
1832bad_dm_io:
1833	mutex_destroy(&c->lock);
1834	kfree(c);
1835bad_client:
1836	return ERR_PTR(r);
1837}
1838EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1839
1840/*
1841 * Free the buffering interface.
1842 * It is required that there are no references on any buffers.
1843 */
1844void dm_bufio_client_destroy(struct dm_bufio_client *c)
1845{
1846	unsigned i;
1847
1848	drop_buffers(c);
1849
1850	unregister_shrinker(&c->shrinker);
1851	flush_work(&c->shrink_work);
1852
1853	mutex_lock(&dm_bufio_clients_lock);
1854
1855	list_del(&c->client_list);
1856	dm_bufio_client_count--;
1857	__cache_size_refresh();
1858
1859	mutex_unlock(&dm_bufio_clients_lock);
1860
1861	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1862	BUG_ON(c->need_reserved_buffers);
1863
1864	while (!list_empty(&c->reserved_buffers)) {
1865		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1866						 struct dm_buffer, lru_list);
1867		list_del(&b->lru_list);
1868		free_buffer(b);
1869	}
1870
1871	for (i = 0; i < LIST_SIZE; i++)
1872		if (c->n_buffers[i])
1873			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1874
1875	for (i = 0; i < LIST_SIZE; i++)
1876		BUG_ON(c->n_buffers[i]);
1877
1878	kmem_cache_destroy(c->slab_cache);
1879	kmem_cache_destroy(c->slab_buffer);
1880	dm_io_client_destroy(c->dm_io);
1881	mutex_destroy(&c->lock);
1882	kfree(c);
1883}
1884EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1885
1886void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1887{
1888	c->start = start;
1889}
1890EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1891
1892static unsigned get_max_age_hz(void)
1893{
1894	unsigned max_age = READ_ONCE(dm_bufio_max_age);
1895
1896	if (max_age > UINT_MAX / HZ)
1897		max_age = UINT_MAX / HZ;
1898
1899	return max_age * HZ;
1900}
1901
1902static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1903{
1904	return time_after_eq(jiffies, b->last_accessed + age_hz);
1905}
1906
1907static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1908{
1909	struct dm_buffer *b, *tmp;
1910	unsigned long retain_target = get_retain_buffers(c);
1911	unsigned long count;
1912	LIST_HEAD(write_list);
1913
1914	dm_bufio_lock(c);
1915
1916	__check_watermark(c, &write_list);
1917	if (unlikely(!list_empty(&write_list))) {
1918		dm_bufio_unlock(c);
1919		__flush_write_list(&write_list);
1920		dm_bufio_lock(c);
1921	}
1922
1923	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1924	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1925		if (count <= retain_target)
1926			break;
1927
1928		if (!older_than(b, age_hz))
1929			break;
1930
1931		if (__try_evict_buffer(b, 0))
1932			count--;
1933
1934		cond_resched();
1935	}
1936
1937	dm_bufio_unlock(c);
1938}
1939
1940static void do_global_cleanup(struct work_struct *w)
1941{
1942	struct dm_bufio_client *locked_client = NULL;
1943	struct dm_bufio_client *current_client;
1944	struct dm_buffer *b;
1945	unsigned spinlock_hold_count;
1946	unsigned long threshold = dm_bufio_cache_size -
1947		dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
1948	unsigned long loops = global_num * 2;
1949
1950	mutex_lock(&dm_bufio_clients_lock);
1951
1952	while (1) {
1953		cond_resched();
1954
1955		spin_lock(&global_spinlock);
1956		if (unlikely(dm_bufio_current_allocated <= threshold))
1957			break;
1958
1959		spinlock_hold_count = 0;
1960get_next:
1961		if (!loops--)
1962			break;
1963		if (unlikely(list_empty(&global_queue)))
1964			break;
1965		b = list_entry(global_queue.prev, struct dm_buffer, global_list);
1966
1967		if (b->accessed) {
1968			b->accessed = 0;
1969			list_move(&b->global_list, &global_queue);
1970			if (likely(++spinlock_hold_count < 16))
1971				goto get_next;
1972			spin_unlock(&global_spinlock);
1973			continue;
1974		}
1975
1976		current_client = b->c;
1977		if (unlikely(current_client != locked_client)) {
1978			if (locked_client)
1979				dm_bufio_unlock(locked_client);
1980
1981			if (!dm_bufio_trylock(current_client)) {
1982				spin_unlock(&global_spinlock);
1983				dm_bufio_lock(current_client);
1984				locked_client = current_client;
1985				continue;
1986			}
1987
1988			locked_client = current_client;
1989		}
1990
1991		spin_unlock(&global_spinlock);
1992
1993		if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
1994			spin_lock(&global_spinlock);
1995			list_move(&b->global_list, &global_queue);
1996			spin_unlock(&global_spinlock);
1997		}
1998	}
1999
2000	spin_unlock(&global_spinlock);
2001
2002	if (locked_client)
2003		dm_bufio_unlock(locked_client);
2004
2005	mutex_unlock(&dm_bufio_clients_lock);
2006}
2007
2008static void cleanup_old_buffers(void)
2009{
2010	unsigned long max_age_hz = get_max_age_hz();
2011	struct dm_bufio_client *c;
2012
2013	mutex_lock(&dm_bufio_clients_lock);
2014
2015	__cache_size_refresh();
2016
2017	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2018		__evict_old_buffers(c, max_age_hz);
2019
2020	mutex_unlock(&dm_bufio_clients_lock);
2021}
2022
2023static void work_fn(struct work_struct *w)
2024{
2025	cleanup_old_buffers();
2026
2027	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2028			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2029}
2030
2031/*----------------------------------------------------------------
2032 * Module setup
2033 *--------------------------------------------------------------*/
2034
2035/*
2036 * This is called only once for the whole dm_bufio module.
2037 * It initializes memory limit.
2038 */
2039static int __init dm_bufio_init(void)
2040{
2041	__u64 mem;
2042
2043	dm_bufio_allocated_kmem_cache = 0;
2044	dm_bufio_allocated_get_free_pages = 0;
2045	dm_bufio_allocated_vmalloc = 0;
2046	dm_bufio_current_allocated = 0;
2047
2048	mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2049			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2050
2051	if (mem > ULONG_MAX)
2052		mem = ULONG_MAX;
2053
2054#ifdef CONFIG_MMU
2055	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2056		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2057#endif
2058
2059	dm_bufio_default_cache_size = mem;
2060
2061	mutex_lock(&dm_bufio_clients_lock);
2062	__cache_size_refresh();
2063	mutex_unlock(&dm_bufio_clients_lock);
2064
2065	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2066	if (!dm_bufio_wq)
2067		return -ENOMEM;
2068
2069	INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2070	INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2071	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2072			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2073
2074	return 0;
2075}
2076
2077/*
2078 * This is called once when unloading the dm_bufio module.
2079 */
2080static void __exit dm_bufio_exit(void)
2081{
2082	int bug = 0;
2083
2084	cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2085	flush_workqueue(dm_bufio_wq);
2086	destroy_workqueue(dm_bufio_wq);
2087
2088	if (dm_bufio_client_count) {
2089		DMCRIT("%s: dm_bufio_client_count leaked: %d",
2090			__func__, dm_bufio_client_count);
2091		bug = 1;
2092	}
2093
2094	if (dm_bufio_current_allocated) {
2095		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2096			__func__, dm_bufio_current_allocated);
2097		bug = 1;
2098	}
2099
2100	if (dm_bufio_allocated_get_free_pages) {
2101		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2102		       __func__, dm_bufio_allocated_get_free_pages);
2103		bug = 1;
2104	}
2105
2106	if (dm_bufio_allocated_vmalloc) {
2107		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2108		       __func__, dm_bufio_allocated_vmalloc);
2109		bug = 1;
2110	}
2111
2112	BUG_ON(bug);
2113}
2114
2115module_init(dm_bufio_init)
2116module_exit(dm_bufio_exit)
2117
2118module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
2119MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2120
2121module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2122MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2123
2124module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2125MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2126
2127module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2128MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2129
2130module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2131MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2132
2133module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2134MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2135
2136module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2137MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2138
2139module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2140MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2141
2142MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2143MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2144MODULE_LICENSE("GPL");
2145