1// SPDX-License-Identifier: GPL-2.0
2/*
3 * background writeback - scan btree for dirty data and write it to the backing
4 * device
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
13#include "writeback.h"
14
15#include <linux/delay.h>
16#include <linux/kthread.h>
17#include <linux/sched/clock.h>
18#include <trace/events/bcache.h>
19
20static void update_gc_after_writeback(struct cache_set *c)
21{
22	if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23	    c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24		return;
25
26	c->gc_after_writeback |= BCH_DO_AUTO_GC;
27}
28
29/* Rate limiting */
30static uint64_t __calc_target_rate(struct cached_dev *dc)
31{
32	struct cache_set *c = dc->disk.c;
33
34	/*
35	 * This is the size of the cache, minus the amount used for
36	 * flash-only devices
37	 */
38	uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
39				atomic_long_read(&c->flash_dev_dirty_sectors);
40
41	/*
42	 * Unfortunately there is no control of global dirty data.  If the
43	 * user states that they want 10% dirty data in the cache, and has,
44	 * e.g., 5 backing volumes of equal size, we try and ensure each
45	 * backing volume uses about 2% of the cache for dirty data.
46	 */
47	uint32_t bdev_share =
48		div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49				c->cached_dev_sectors);
50
51	uint64_t cache_dirty_target =
52		div_u64(cache_sectors * dc->writeback_percent, 100);
53
54	/* Ensure each backing dev gets at least one dirty share */
55	if (bdev_share < 1)
56		bdev_share = 1;
57
58	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59}
60
61static void __update_writeback_rate(struct cached_dev *dc)
62{
63	/*
64	 * PI controller:
65	 * Figures out the amount that should be written per second.
66	 *
67	 * First, the error (number of sectors that are dirty beyond our
68	 * target) is calculated.  The error is accumulated (numerically
69	 * integrated).
70	 *
71	 * Then, the proportional value and integral value are scaled
72	 * based on configured values.  These are stored as inverses to
73	 * avoid fixed point math and to make configuration easy-- e.g.
74	 * the default value of 40 for writeback_rate_p_term_inverse
75	 * attempts to write at a rate that would retire all the dirty
76	 * blocks in 40 seconds.
77	 *
78	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79	 * of the error is accumulated in the integral term per second.
80	 * This acts as a slow, long-term average that is not subject to
81	 * variations in usage like the p term.
82	 */
83	int64_t target = __calc_target_rate(dc);
84	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85	int64_t error = dirty - target;
86	int64_t proportional_scaled =
87		div_s64(error, dc->writeback_rate_p_term_inverse);
88	int64_t integral_scaled;
89	uint32_t new_rate;
90
91	if ((error < 0 && dc->writeback_rate_integral > 0) ||
92	    (error > 0 && time_before64(local_clock(),
93			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
94		/*
95		 * Only decrease the integral term if it's more than
96		 * zero.  Only increase the integral term if the device
97		 * is keeping up.  (Don't wind up the integral
98		 * ineffectively in either case).
99		 *
100		 * It's necessary to scale this by
101		 * writeback_rate_update_seconds to keep the integral
102		 * term dimensioned properly.
103		 */
104		dc->writeback_rate_integral += error *
105			dc->writeback_rate_update_seconds;
106	}
107
108	integral_scaled = div_s64(dc->writeback_rate_integral,
109			dc->writeback_rate_i_term_inverse);
110
111	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
112			dc->writeback_rate_minimum, NSEC_PER_SEC);
113
114	dc->writeback_rate_proportional = proportional_scaled;
115	dc->writeback_rate_integral_scaled = integral_scaled;
116	dc->writeback_rate_change = new_rate -
117			atomic_long_read(&dc->writeback_rate.rate);
118	atomic_long_set(&dc->writeback_rate.rate, new_rate);
119	dc->writeback_rate_target = target;
120}
121
122static bool idle_counter_exceeded(struct cache_set *c)
123{
124	int counter, dev_nr;
125
126	/*
127	 * If c->idle_counter is overflow (idel for really long time),
128	 * reset as 0 and not set maximum rate this time for code
129	 * simplicity.
130	 */
131	counter = atomic_inc_return(&c->idle_counter);
132	if (counter <= 0) {
133		atomic_set(&c->idle_counter, 0);
134		return false;
135	}
136
137	dev_nr = atomic_read(&c->attached_dev_nr);
138	if (dev_nr == 0)
139		return false;
140
141	/*
142	 * c->idle_counter is increased by writeback thread of all
143	 * attached backing devices, in order to represent a rough
144	 * time period, counter should be divided by dev_nr.
145	 * Otherwise the idle time cannot be larger with more backing
146	 * device attached.
147	 * The following calculation equals to checking
148	 *	(counter / dev_nr) < (dev_nr * 6)
149	 */
150	if (counter < (dev_nr * dev_nr * 6))
151		return false;
152
153	return true;
154}
155
156/*
157 * Idle_counter is increased every time when update_writeback_rate() is
158 * called. If all backing devices attached to the same cache set have
159 * identical dc->writeback_rate_update_seconds values, it is about 6
160 * rounds of update_writeback_rate() on each backing device before
161 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
162 * to each dc->writeback_rate.rate.
163 * In order to avoid extra locking cost for counting exact dirty cached
164 * devices number, c->attached_dev_nr is used to calculate the idle
165 * throushold. It might be bigger if not all cached device are in write-
166 * back mode, but it still works well with limited extra rounds of
167 * update_writeback_rate().
168 */
169static bool set_at_max_writeback_rate(struct cache_set *c,
170				       struct cached_dev *dc)
171{
172	/* Don't sst max writeback rate if it is disabled */
173	if (!c->idle_max_writeback_rate_enabled)
174		return false;
175
176	/* Don't set max writeback rate if gc is running */
177	if (!c->gc_mark_valid)
178		return false;
179
180	if (!idle_counter_exceeded(c))
181		return false;
182
183	if (atomic_read(&c->at_max_writeback_rate) != 1)
184		atomic_set(&c->at_max_writeback_rate, 1);
185
186	atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
187
188	/* keep writeback_rate_target as existing value */
189	dc->writeback_rate_proportional = 0;
190	dc->writeback_rate_integral_scaled = 0;
191	dc->writeback_rate_change = 0;
192
193	/*
194	 * In case new I/O arrives during before
195	 * set_at_max_writeback_rate() returns.
196	 */
197	if (!idle_counter_exceeded(c) ||
198	    !atomic_read(&c->at_max_writeback_rate))
199		return false;
200
201	return true;
202}
203
204static void update_writeback_rate(struct work_struct *work)
205{
206	struct cached_dev *dc = container_of(to_delayed_work(work),
207					     struct cached_dev,
208					     writeback_rate_update);
209	struct cache_set *c = dc->disk.c;
210
211	/*
212	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
213	 * cancel_delayed_work_sync().
214	 */
215	set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
216	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
217	smp_mb__after_atomic();
218
219	/*
220	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
221	 * check it here too.
222	 */
223	if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
224	    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
225		clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
226		/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
227		smp_mb__after_atomic();
228		return;
229	}
230
231	if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
232		/*
233		 * If the whole cache set is idle, set_at_max_writeback_rate()
234		 * will set writeback rate to a max number. Then it is
235		 * unncessary to update writeback rate for an idle cache set
236		 * in maximum writeback rate number(s).
237		 */
238		if (!set_at_max_writeback_rate(c, dc)) {
239			down_read(&dc->writeback_lock);
240			__update_writeback_rate(dc);
241			update_gc_after_writeback(c);
242			up_read(&dc->writeback_lock);
243		}
244	}
245
246
247	/*
248	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
249	 * check it here too.
250	 */
251	if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
252	    !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
253		schedule_delayed_work(&dc->writeback_rate_update,
254			      dc->writeback_rate_update_seconds * HZ);
255	}
256
257	/*
258	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
259	 * cancel_delayed_work_sync().
260	 */
261	clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
262	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
263	smp_mb__after_atomic();
264}
265
266static unsigned int writeback_delay(struct cached_dev *dc,
267				    unsigned int sectors)
268{
269	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
270	    !dc->writeback_percent)
271		return 0;
272
273	return bch_next_delay(&dc->writeback_rate, sectors);
274}
275
276struct dirty_io {
277	struct closure		cl;
278	struct cached_dev	*dc;
279	uint16_t		sequence;
280	struct bio		bio;
281};
282
283static void dirty_init(struct keybuf_key *w)
284{
285	struct dirty_io *io = w->private;
286	struct bio *bio = &io->bio;
287
288	bio_init(bio, bio->bi_inline_vecs,
289		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
290	if (!io->dc->writeback_percent)
291		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
292
293	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
294	bio->bi_private		= w;
295	bch_bio_map(bio, NULL);
296}
297
298static void dirty_io_destructor(struct closure *cl)
299{
300	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
301
302	kfree(io);
303}
304
305static void write_dirty_finish(struct closure *cl)
306{
307	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
308	struct keybuf_key *w = io->bio.bi_private;
309	struct cached_dev *dc = io->dc;
310
311	bio_free_pages(&io->bio);
312
313	/* This is kind of a dumb way of signalling errors. */
314	if (KEY_DIRTY(&w->key)) {
315		int ret;
316		unsigned int i;
317		struct keylist keys;
318
319		bch_keylist_init(&keys);
320
321		bkey_copy(keys.top, &w->key);
322		SET_KEY_DIRTY(keys.top, false);
323		bch_keylist_push(&keys);
324
325		for (i = 0; i < KEY_PTRS(&w->key); i++)
326			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
327
328		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
329
330		if (ret)
331			trace_bcache_writeback_collision(&w->key);
332
333		atomic_long_inc(ret
334				? &dc->disk.c->writeback_keys_failed
335				: &dc->disk.c->writeback_keys_done);
336	}
337
338	bch_keybuf_del(&dc->writeback_keys, w);
339	up(&dc->in_flight);
340
341	closure_return_with_destructor(cl, dirty_io_destructor);
342}
343
344static void dirty_endio(struct bio *bio)
345{
346	struct keybuf_key *w = bio->bi_private;
347	struct dirty_io *io = w->private;
348
349	if (bio->bi_status) {
350		SET_KEY_DIRTY(&w->key, false);
351		bch_count_backing_io_errors(io->dc, bio);
352	}
353
354	closure_put(&io->cl);
355}
356
357static void write_dirty(struct closure *cl)
358{
359	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
360	struct keybuf_key *w = io->bio.bi_private;
361	struct cached_dev *dc = io->dc;
362
363	uint16_t next_sequence;
364
365	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
366		/* Not our turn to write; wait for a write to complete */
367		closure_wait(&dc->writeback_ordering_wait, cl);
368
369		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
370			/*
371			 * Edge case-- it happened in indeterminate order
372			 * relative to when we were added to wait list..
373			 */
374			closure_wake_up(&dc->writeback_ordering_wait);
375		}
376
377		continue_at(cl, write_dirty, io->dc->writeback_write_wq);
378		return;
379	}
380
381	next_sequence = io->sequence + 1;
382
383	/*
384	 * IO errors are signalled using the dirty bit on the key.
385	 * If we failed to read, we should not attempt to write to the
386	 * backing device.  Instead, immediately go to write_dirty_finish
387	 * to clean up.
388	 */
389	if (KEY_DIRTY(&w->key)) {
390		dirty_init(w);
391		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
392		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
393		bio_set_dev(&io->bio, io->dc->bdev);
394		io->bio.bi_end_io	= dirty_endio;
395
396		/* I/O request sent to backing device */
397		closure_bio_submit(io->dc->disk.c, &io->bio, cl);
398	}
399
400	atomic_set(&dc->writeback_sequence_next, next_sequence);
401	closure_wake_up(&dc->writeback_ordering_wait);
402
403	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
404}
405
406static void read_dirty_endio(struct bio *bio)
407{
408	struct keybuf_key *w = bio->bi_private;
409	struct dirty_io *io = w->private;
410
411	/* is_read = 1 */
412	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
413			    bio->bi_status, 1,
414			    "reading dirty data from cache");
415
416	dirty_endio(bio);
417}
418
419static void read_dirty_submit(struct closure *cl)
420{
421	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
422
423	closure_bio_submit(io->dc->disk.c, &io->bio, cl);
424
425	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
426}
427
428static void read_dirty(struct cached_dev *dc)
429{
430	unsigned int delay = 0;
431	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
432	size_t size;
433	int nk, i;
434	struct dirty_io *io;
435	struct closure cl;
436	uint16_t sequence = 0;
437
438	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
439	atomic_set(&dc->writeback_sequence_next, sequence);
440	closure_init_stack(&cl);
441
442	/*
443	 * XXX: if we error, background writeback just spins. Should use some
444	 * mempools.
445	 */
446
447	next = bch_keybuf_next(&dc->writeback_keys);
448
449	while (!kthread_should_stop() &&
450	       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
451	       next) {
452		size = 0;
453		nk = 0;
454
455		do {
456			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
457
458			/*
459			 * Don't combine too many operations, even if they
460			 * are all small.
461			 */
462			if (nk >= MAX_WRITEBACKS_IN_PASS)
463				break;
464
465			/*
466			 * If the current operation is very large, don't
467			 * further combine operations.
468			 */
469			if (size >= MAX_WRITESIZE_IN_PASS)
470				break;
471
472			/*
473			 * Operations are only eligible to be combined
474			 * if they are contiguous.
475			 *
476			 * TODO: add a heuristic willing to fire a
477			 * certain amount of non-contiguous IO per pass,
478			 * so that we can benefit from backing device
479			 * command queueing.
480			 */
481			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
482						&START_KEY(&next->key)))
483				break;
484
485			size += KEY_SIZE(&next->key);
486			keys[nk++] = next;
487		} while ((next = bch_keybuf_next(&dc->writeback_keys)));
488
489		/* Now we have gathered a set of 1..5 keys to write back. */
490		for (i = 0; i < nk; i++) {
491			w = keys[i];
492
493			io = kzalloc(struct_size(io, bio.bi_inline_vecs,
494						DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
495				     GFP_KERNEL);
496			if (!io)
497				goto err;
498
499			w->private	= io;
500			io->dc		= dc;
501			io->sequence    = sequence++;
502
503			dirty_init(w);
504			bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
505			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
506			bio_set_dev(&io->bio,
507				    PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
508			io->bio.bi_end_io	= read_dirty_endio;
509
510			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
511				goto err_free;
512
513			trace_bcache_writeback(&w->key);
514
515			down(&dc->in_flight);
516
517			/*
518			 * We've acquired a semaphore for the maximum
519			 * simultaneous number of writebacks; from here
520			 * everything happens asynchronously.
521			 */
522			closure_call(&io->cl, read_dirty_submit, NULL, &cl);
523		}
524
525		delay = writeback_delay(dc, size);
526
527		while (!kthread_should_stop() &&
528		       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
529		       delay) {
530			schedule_timeout_interruptible(delay);
531			delay = writeback_delay(dc, 0);
532		}
533	}
534
535	if (0) {
536err_free:
537		kfree(w->private);
538err:
539		bch_keybuf_del(&dc->writeback_keys, w);
540	}
541
542	/*
543	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
544	 * freed) before refilling again
545	 */
546	closure_sync(&cl);
547}
548
549/* Scan for dirty data */
550
551void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
552				  uint64_t offset, int nr_sectors)
553{
554	struct bcache_device *d = c->devices[inode];
555	unsigned int stripe_offset, sectors_dirty;
556	int stripe;
557
558	if (!d)
559		return;
560
561	stripe = offset_to_stripe(d, offset);
562	if (stripe < 0)
563		return;
564
565	if (UUID_FLASH_ONLY(&c->uuids[inode]))
566		atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
567
568	stripe_offset = offset & (d->stripe_size - 1);
569
570	while (nr_sectors) {
571		int s = min_t(unsigned int, abs(nr_sectors),
572			      d->stripe_size - stripe_offset);
573
574		if (nr_sectors < 0)
575			s = -s;
576
577		if (stripe >= d->nr_stripes)
578			return;
579
580		sectors_dirty = atomic_add_return(s,
581					d->stripe_sectors_dirty + stripe);
582		if (sectors_dirty == d->stripe_size)
583			set_bit(stripe, d->full_dirty_stripes);
584		else
585			clear_bit(stripe, d->full_dirty_stripes);
586
587		nr_sectors -= s;
588		stripe_offset = 0;
589		stripe++;
590	}
591}
592
593static bool dirty_pred(struct keybuf *buf, struct bkey *k)
594{
595	struct cached_dev *dc = container_of(buf,
596					     struct cached_dev,
597					     writeback_keys);
598
599	BUG_ON(KEY_INODE(k) != dc->disk.id);
600
601	return KEY_DIRTY(k);
602}
603
604static void refill_full_stripes(struct cached_dev *dc)
605{
606	struct keybuf *buf = &dc->writeback_keys;
607	unsigned int start_stripe, next_stripe;
608	int stripe;
609	bool wrapped = false;
610
611	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
612	if (stripe < 0)
613		stripe = 0;
614
615	start_stripe = stripe;
616
617	while (1) {
618		stripe = find_next_bit(dc->disk.full_dirty_stripes,
619				       dc->disk.nr_stripes, stripe);
620
621		if (stripe == dc->disk.nr_stripes)
622			goto next;
623
624		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
625						 dc->disk.nr_stripes, stripe);
626
627		buf->last_scanned = KEY(dc->disk.id,
628					stripe * dc->disk.stripe_size, 0);
629
630		bch_refill_keybuf(dc->disk.c, buf,
631				  &KEY(dc->disk.id,
632				       next_stripe * dc->disk.stripe_size, 0),
633				  dirty_pred);
634
635		if (array_freelist_empty(&buf->freelist))
636			return;
637
638		stripe = next_stripe;
639next:
640		if (wrapped && stripe > start_stripe)
641			return;
642
643		if (stripe == dc->disk.nr_stripes) {
644			stripe = 0;
645			wrapped = true;
646		}
647	}
648}
649
650/*
651 * Returns true if we scanned the entire disk
652 */
653static bool refill_dirty(struct cached_dev *dc)
654{
655	struct keybuf *buf = &dc->writeback_keys;
656	struct bkey start = KEY(dc->disk.id, 0, 0);
657	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
658	struct bkey start_pos;
659
660	/*
661	 * make sure keybuf pos is inside the range for this disk - at bringup
662	 * we might not be attached yet so this disk's inode nr isn't
663	 * initialized then
664	 */
665	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
666	    bkey_cmp(&buf->last_scanned, &end) > 0)
667		buf->last_scanned = start;
668
669	if (dc->partial_stripes_expensive) {
670		refill_full_stripes(dc);
671		if (array_freelist_empty(&buf->freelist))
672			return false;
673	}
674
675	start_pos = buf->last_scanned;
676	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
677
678	if (bkey_cmp(&buf->last_scanned, &end) < 0)
679		return false;
680
681	/*
682	 * If we get to the end start scanning again from the beginning, and
683	 * only scan up to where we initially started scanning from:
684	 */
685	buf->last_scanned = start;
686	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
687
688	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
689}
690
691static int bch_writeback_thread(void *arg)
692{
693	struct cached_dev *dc = arg;
694	struct cache_set *c = dc->disk.c;
695	bool searched_full_index;
696
697	bch_ratelimit_reset(&dc->writeback_rate);
698
699	while (!kthread_should_stop() &&
700	       !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
701		down_write(&dc->writeback_lock);
702		set_current_state(TASK_INTERRUPTIBLE);
703		/*
704		 * If the bache device is detaching, skip here and continue
705		 * to perform writeback. Otherwise, if no dirty data on cache,
706		 * or there is dirty data on cache but writeback is disabled,
707		 * the writeback thread should sleep here and wait for others
708		 * to wake up it.
709		 */
710		if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
711		    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
712			up_write(&dc->writeback_lock);
713
714			if (kthread_should_stop() ||
715			    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
716				set_current_state(TASK_RUNNING);
717				break;
718			}
719
720			schedule();
721			continue;
722		}
723		set_current_state(TASK_RUNNING);
724
725		searched_full_index = refill_dirty(dc);
726
727		if (searched_full_index &&
728		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
729			atomic_set(&dc->has_dirty, 0);
730			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
731			bch_write_bdev_super(dc, NULL);
732			/*
733			 * If bcache device is detaching via sysfs interface,
734			 * writeback thread should stop after there is no dirty
735			 * data on cache. BCACHE_DEV_DETACHING flag is set in
736			 * bch_cached_dev_detach().
737			 */
738			if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
739				up_write(&dc->writeback_lock);
740				break;
741			}
742
743			/*
744			 * When dirty data rate is high (e.g. 50%+), there might
745			 * be heavy buckets fragmentation after writeback
746			 * finished, which hurts following write performance.
747			 * If users really care about write performance they
748			 * may set BCH_ENABLE_AUTO_GC via sysfs, then when
749			 * BCH_DO_AUTO_GC is set, garbage collection thread
750			 * will be wake up here. After moving gc, the shrunk
751			 * btree and discarded free buckets SSD space may be
752			 * helpful for following write requests.
753			 */
754			if (c->gc_after_writeback ==
755			    (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
756				c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
757				force_wake_up_gc(c);
758			}
759		}
760
761		up_write(&dc->writeback_lock);
762
763		read_dirty(dc);
764
765		if (searched_full_index) {
766			unsigned int delay = dc->writeback_delay * HZ;
767
768			while (delay &&
769			       !kthread_should_stop() &&
770			       !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
771			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
772				delay = schedule_timeout_interruptible(delay);
773
774			bch_ratelimit_reset(&dc->writeback_rate);
775		}
776	}
777
778	if (dc->writeback_write_wq) {
779		flush_workqueue(dc->writeback_write_wq);
780		destroy_workqueue(dc->writeback_write_wq);
781	}
782	cached_dev_put(dc);
783	wait_for_kthread_stop();
784
785	return 0;
786}
787
788/* Init */
789#define INIT_KEYS_EACH_TIME	500000
790
791struct sectors_dirty_init {
792	struct btree_op	op;
793	unsigned int	inode;
794	size_t		count;
795};
796
797static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
798				 struct bkey *k)
799{
800	struct sectors_dirty_init *op = container_of(_op,
801						struct sectors_dirty_init, op);
802	if (KEY_INODE(k) > op->inode)
803		return MAP_DONE;
804
805	if (KEY_DIRTY(k))
806		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
807					     KEY_START(k), KEY_SIZE(k));
808
809	op->count++;
810	if (!(op->count % INIT_KEYS_EACH_TIME))
811		cond_resched();
812
813	return MAP_CONTINUE;
814}
815
816static int bch_root_node_dirty_init(struct cache_set *c,
817				     struct bcache_device *d,
818				     struct bkey *k)
819{
820	struct sectors_dirty_init op;
821	int ret;
822
823	bch_btree_op_init(&op.op, -1);
824	op.inode = d->id;
825	op.count = 0;
826
827	ret = bcache_btree(map_keys_recurse,
828			   k,
829			   c->root,
830			   &op.op,
831			   &KEY(op.inode, 0, 0),
832			   sectors_dirty_init_fn,
833			   0);
834	if (ret < 0)
835		pr_warn("sectors dirty init failed, ret=%d!\n", ret);
836
837	/*
838	 * The op may be added to cache_set's btree_cache_wait
839	 * in mca_cannibalize(), must ensure it is removed from
840	 * the list and release btree_cache_alloc_lock before
841	 * free op memory.
842	 * Otherwise, the btree_cache_wait will be damaged.
843	 */
844	bch_cannibalize_unlock(c);
845	finish_wait(&c->btree_cache_wait, &(&op.op)->wait);
846
847	return ret;
848}
849
850static int bch_dirty_init_thread(void *arg)
851{
852	struct dirty_init_thrd_info *info = arg;
853	struct bch_dirty_init_state *state = info->state;
854	struct cache_set *c = state->c;
855	struct btree_iter iter;
856	struct bkey *k, *p;
857	int cur_idx, prev_idx, skip_nr;
858
859	k = p = NULL;
860	prev_idx = 0;
861
862	bch_btree_iter_init(&c->root->keys, &iter, NULL);
863	k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
864	BUG_ON(!k);
865
866	p = k;
867
868	while (k) {
869		spin_lock(&state->idx_lock);
870		cur_idx = state->key_idx;
871		state->key_idx++;
872		spin_unlock(&state->idx_lock);
873
874		skip_nr = cur_idx - prev_idx;
875
876		while (skip_nr) {
877			k = bch_btree_iter_next_filter(&iter,
878						       &c->root->keys,
879						       bch_ptr_bad);
880			if (k)
881				p = k;
882			else {
883				atomic_set(&state->enough, 1);
884				/* Update state->enough earlier */
885				smp_mb__after_atomic();
886				goto out;
887			}
888			skip_nr--;
889		}
890
891		if (p) {
892			if (bch_root_node_dirty_init(c, state->d, p) < 0)
893				goto out;
894		}
895
896		p = NULL;
897		prev_idx = cur_idx;
898	}
899
900out:
901	/* In order to wake up state->wait in time */
902	smp_mb__before_atomic();
903	if (atomic_dec_and_test(&state->started))
904		wake_up(&state->wait);
905
906	return 0;
907}
908
909static int bch_btre_dirty_init_thread_nr(void)
910{
911	int n = num_online_cpus()/2;
912
913	if (n == 0)
914		n = 1;
915	else if (n > BCH_DIRTY_INIT_THRD_MAX)
916		n = BCH_DIRTY_INIT_THRD_MAX;
917
918	return n;
919}
920
921void bch_sectors_dirty_init(struct bcache_device *d)
922{
923	int i;
924	struct btree *b = NULL;
925	struct bkey *k = NULL;
926	struct btree_iter iter;
927	struct sectors_dirty_init op;
928	struct cache_set *c = d->c;
929	struct bch_dirty_init_state state;
930
931retry_lock:
932	b = c->root;
933	rw_lock(0, b, b->level);
934	if (b != c->root) {
935		rw_unlock(0, b);
936		goto retry_lock;
937	}
938
939	/* Just count root keys if no leaf node */
940	if (c->root->level == 0) {
941		bch_btree_op_init(&op.op, -1);
942		op.inode = d->id;
943		op.count = 0;
944
945		for_each_key_filter(&c->root->keys,
946				    k, &iter, bch_ptr_invalid) {
947			if (KEY_INODE(k) != op.inode)
948				continue;
949			sectors_dirty_init_fn(&op.op, c->root, k);
950		}
951
952		rw_unlock(0, b);
953		return;
954	}
955
956	memset(&state, 0, sizeof(struct bch_dirty_init_state));
957	state.c = c;
958	state.d = d;
959	state.total_threads = bch_btre_dirty_init_thread_nr();
960	state.key_idx = 0;
961	spin_lock_init(&state.idx_lock);
962	atomic_set(&state.started, 0);
963	atomic_set(&state.enough, 0);
964	init_waitqueue_head(&state.wait);
965
966	for (i = 0; i < state.total_threads; i++) {
967		/* Fetch latest state.enough earlier */
968		smp_mb__before_atomic();
969		if (atomic_read(&state.enough))
970			break;
971
972		atomic_inc(&state.started);
973		state.infos[i].state = &state;
974		state.infos[i].thread =
975			kthread_run(bch_dirty_init_thread, &state.infos[i],
976				    "bch_dirtcnt[%d]", i);
977		if (IS_ERR(state.infos[i].thread)) {
978			pr_err("fails to run thread bch_dirty_init[%d]\n", i);
979			atomic_dec(&state.started);
980			for (--i; i >= 0; i--)
981				kthread_stop(state.infos[i].thread);
982			goto out;
983		}
984	}
985
986out:
987	/* Must wait for all threads to stop. */
988	wait_event(state.wait, atomic_read(&state.started) == 0);
989	rw_unlock(0, b);
990}
991
992void bch_cached_dev_writeback_init(struct cached_dev *dc)
993{
994	sema_init(&dc->in_flight, 64);
995	init_rwsem(&dc->writeback_lock);
996	bch_keybuf_init(&dc->writeback_keys);
997
998	dc->writeback_metadata		= true;
999	dc->writeback_running		= false;
1000	dc->writeback_percent		= 10;
1001	dc->writeback_delay		= 30;
1002	atomic_long_set(&dc->writeback_rate.rate, 1024);
1003	dc->writeback_rate_minimum	= 8;
1004
1005	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
1006	dc->writeback_rate_p_term_inverse = 40;
1007	dc->writeback_rate_i_term_inverse = 10000;
1008
1009	WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1010	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
1011}
1012
1013int bch_cached_dev_writeback_start(struct cached_dev *dc)
1014{
1015	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
1016						WQ_MEM_RECLAIM, 0);
1017	if (!dc->writeback_write_wq)
1018		return -ENOMEM;
1019
1020	cached_dev_get(dc);
1021	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
1022					      "bcache_writeback");
1023	if (IS_ERR(dc->writeback_thread)) {
1024		cached_dev_put(dc);
1025		destroy_workqueue(dc->writeback_write_wq);
1026		return PTR_ERR(dc->writeback_thread);
1027	}
1028	dc->writeback_running = true;
1029
1030	WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1031	schedule_delayed_work(&dc->writeback_rate_update,
1032			      dc->writeback_rate_update_seconds * HZ);
1033
1034	bch_writeback_queue(dc);
1035
1036	return 0;
1037}
1038