1// SPDX-License-Identifier: GPL-2.0 2/* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10#include "bcache.h" 11#include "btree.h" 12#include "debug.h" 13#include "extents.h" 14#include "request.h" 15#include "writeback.h" 16#include "features.h" 17 18#include <linux/blkdev.h> 19#include <linux/debugfs.h> 20#include <linux/genhd.h> 21#include <linux/idr.h> 22#include <linux/kthread.h> 23#include <linux/workqueue.h> 24#include <linux/module.h> 25#include <linux/random.h> 26#include <linux/reboot.h> 27#include <linux/sysfs.h> 28 29unsigned int bch_cutoff_writeback; 30unsigned int bch_cutoff_writeback_sync; 31 32static const char bcache_magic[] = { 33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 35}; 36 37static const char invalid_uuid[] = { 38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 40}; 41 42static struct kobject *bcache_kobj; 43struct mutex bch_register_lock; 44bool bcache_is_reboot; 45LIST_HEAD(bch_cache_sets); 46static LIST_HEAD(uncached_devices); 47 48static int bcache_major; 49static DEFINE_IDA(bcache_device_idx); 50static wait_queue_head_t unregister_wait; 51struct workqueue_struct *bcache_wq; 52struct workqueue_struct *bch_flush_wq; 53struct workqueue_struct *bch_journal_wq; 54 55 56#define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 57/* limitation of partitions number on single bcache device */ 58#define BCACHE_MINORS 128 59/* limitation of bcache devices number on single system */ 60#define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 61 62/* Superblock */ 63 64static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s) 65{ 66 unsigned int bucket_size = le16_to_cpu(s->bucket_size); 67 68 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 69 if (bch_has_feature_large_bucket(sb)) { 70 unsigned int max, order; 71 72 max = sizeof(unsigned int) * BITS_PER_BYTE - 1; 73 order = le16_to_cpu(s->bucket_size); 74 /* 75 * bcache tool will make sure the overflow won't 76 * happen, an error message here is enough. 77 */ 78 if (order > max) 79 pr_err("Bucket size (1 << %u) overflows\n", 80 order); 81 bucket_size = 1 << order; 82 } else if (bch_has_feature_obso_large_bucket(sb)) { 83 bucket_size += 84 le16_to_cpu(s->obso_bucket_size_hi) << 16; 85 } 86 } 87 88 return bucket_size; 89} 90 91static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev, 92 struct cache_sb_disk *s) 93{ 94 const char *err; 95 unsigned int i; 96 97 sb->first_bucket= le16_to_cpu(s->first_bucket); 98 sb->nbuckets = le64_to_cpu(s->nbuckets); 99 sb->bucket_size = get_bucket_size(sb, s); 100 101 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 102 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 103 104 err = "Too many journal buckets"; 105 if (sb->keys > SB_JOURNAL_BUCKETS) 106 goto err; 107 108 err = "Too many buckets"; 109 if (sb->nbuckets > LONG_MAX) 110 goto err; 111 112 err = "Not enough buckets"; 113 if (sb->nbuckets < 1 << 7) 114 goto err; 115 116 err = "Bad block size (not power of 2)"; 117 if (!is_power_of_2(sb->block_size)) 118 goto err; 119 120 err = "Bad block size (larger than page size)"; 121 if (sb->block_size > PAGE_SECTORS) 122 goto err; 123 124 err = "Bad bucket size (not power of 2)"; 125 if (!is_power_of_2(sb->bucket_size)) 126 goto err; 127 128 err = "Bad bucket size (smaller than page size)"; 129 if (sb->bucket_size < PAGE_SECTORS) 130 goto err; 131 132 err = "Invalid superblock: device too small"; 133 if (get_capacity(bdev->bd_disk) < 134 sb->bucket_size * sb->nbuckets) 135 goto err; 136 137 err = "Bad UUID"; 138 if (bch_is_zero(sb->set_uuid, 16)) 139 goto err; 140 141 err = "Bad cache device number in set"; 142 if (!sb->nr_in_set || 143 sb->nr_in_set <= sb->nr_this_dev || 144 sb->nr_in_set > MAX_CACHES_PER_SET) 145 goto err; 146 147 err = "Journal buckets not sequential"; 148 for (i = 0; i < sb->keys; i++) 149 if (sb->d[i] != sb->first_bucket + i) 150 goto err; 151 152 err = "Too many journal buckets"; 153 if (sb->first_bucket + sb->keys > sb->nbuckets) 154 goto err; 155 156 err = "Invalid superblock: first bucket comes before end of super"; 157 if (sb->first_bucket * sb->bucket_size < 16) 158 goto err; 159 160 err = NULL; 161err: 162 return err; 163} 164 165 166static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 167 struct cache_sb_disk **res) 168{ 169 const char *err; 170 struct cache_sb_disk *s; 171 struct page *page; 172 unsigned int i; 173 174 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 175 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 176 if (IS_ERR(page)) 177 return "IO error"; 178 s = page_address(page) + offset_in_page(SB_OFFSET); 179 180 sb->offset = le64_to_cpu(s->offset); 181 sb->version = le64_to_cpu(s->version); 182 183 memcpy(sb->magic, s->magic, 16); 184 memcpy(sb->uuid, s->uuid, 16); 185 memcpy(sb->set_uuid, s->set_uuid, 16); 186 memcpy(sb->label, s->label, SB_LABEL_SIZE); 187 188 sb->flags = le64_to_cpu(s->flags); 189 sb->seq = le64_to_cpu(s->seq); 190 sb->last_mount = le32_to_cpu(s->last_mount); 191 sb->keys = le16_to_cpu(s->keys); 192 193 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 194 sb->d[i] = le64_to_cpu(s->d[i]); 195 196 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 197 sb->version, sb->flags, sb->seq, sb->keys); 198 199 err = "Not a bcache superblock (bad offset)"; 200 if (sb->offset != SB_SECTOR) 201 goto err; 202 203 err = "Not a bcache superblock (bad magic)"; 204 if (memcmp(sb->magic, bcache_magic, 16)) 205 goto err; 206 207 err = "Bad checksum"; 208 if (s->csum != csum_set(s)) 209 goto err; 210 211 err = "Bad UUID"; 212 if (bch_is_zero(sb->uuid, 16)) 213 goto err; 214 215 sb->block_size = le16_to_cpu(s->block_size); 216 217 err = "Superblock block size smaller than device block size"; 218 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 219 goto err; 220 221 switch (sb->version) { 222 case BCACHE_SB_VERSION_BDEV: 223 sb->data_offset = BDEV_DATA_START_DEFAULT; 224 break; 225 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 226 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES: 227 sb->data_offset = le64_to_cpu(s->data_offset); 228 229 err = "Bad data offset"; 230 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 231 goto err; 232 233 break; 234 case BCACHE_SB_VERSION_CDEV: 235 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 236 err = read_super_common(sb, bdev, s); 237 if (err) 238 goto err; 239 break; 240 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES: 241 /* 242 * Feature bits are needed in read_super_common(), 243 * convert them firstly. 244 */ 245 sb->feature_compat = le64_to_cpu(s->feature_compat); 246 sb->feature_incompat = le64_to_cpu(s->feature_incompat); 247 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat); 248 249 /* Check incompatible features */ 250 err = "Unsupported compatible feature found"; 251 if (bch_has_unknown_compat_features(sb)) 252 goto err; 253 254 err = "Unsupported read-only compatible feature found"; 255 if (bch_has_unknown_ro_compat_features(sb)) 256 goto err; 257 258 err = "Unsupported incompatible feature found"; 259 if (bch_has_unknown_incompat_features(sb)) 260 goto err; 261 262 err = read_super_common(sb, bdev, s); 263 if (err) 264 goto err; 265 break; 266 default: 267 err = "Unsupported superblock version"; 268 goto err; 269 } 270 271 sb->last_mount = (u32)ktime_get_real_seconds(); 272 *res = s; 273 return NULL; 274err: 275 put_page(page); 276 return err; 277} 278 279static void write_bdev_super_endio(struct bio *bio) 280{ 281 struct cached_dev *dc = bio->bi_private; 282 283 if (bio->bi_status) 284 bch_count_backing_io_errors(dc, bio); 285 286 closure_put(&dc->sb_write); 287} 288 289static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 290 struct bio *bio) 291{ 292 unsigned int i; 293 294 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 295 bio->bi_iter.bi_sector = SB_SECTOR; 296 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 297 offset_in_page(out)); 298 299 out->offset = cpu_to_le64(sb->offset); 300 301 memcpy(out->uuid, sb->uuid, 16); 302 memcpy(out->set_uuid, sb->set_uuid, 16); 303 memcpy(out->label, sb->label, SB_LABEL_SIZE); 304 305 out->flags = cpu_to_le64(sb->flags); 306 out->seq = cpu_to_le64(sb->seq); 307 308 out->last_mount = cpu_to_le32(sb->last_mount); 309 out->first_bucket = cpu_to_le16(sb->first_bucket); 310 out->keys = cpu_to_le16(sb->keys); 311 312 for (i = 0; i < sb->keys; i++) 313 out->d[i] = cpu_to_le64(sb->d[i]); 314 315 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 316 out->feature_compat = cpu_to_le64(sb->feature_compat); 317 out->feature_incompat = cpu_to_le64(sb->feature_incompat); 318 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat); 319 } 320 321 out->version = cpu_to_le64(sb->version); 322 out->csum = csum_set(out); 323 324 pr_debug("ver %llu, flags %llu, seq %llu\n", 325 sb->version, sb->flags, sb->seq); 326 327 submit_bio(bio); 328} 329 330static void bch_write_bdev_super_unlock(struct closure *cl) 331{ 332 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 333 334 up(&dc->sb_write_mutex); 335} 336 337void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 338{ 339 struct closure *cl = &dc->sb_write; 340 struct bio *bio = &dc->sb_bio; 341 342 down(&dc->sb_write_mutex); 343 closure_init(cl, parent); 344 345 bio_init(bio, dc->sb_bv, 1); 346 bio_set_dev(bio, dc->bdev); 347 bio->bi_end_io = write_bdev_super_endio; 348 bio->bi_private = dc; 349 350 closure_get(cl); 351 /* I/O request sent to backing device */ 352 __write_super(&dc->sb, dc->sb_disk, bio); 353 354 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 355} 356 357static void write_super_endio(struct bio *bio) 358{ 359 struct cache *ca = bio->bi_private; 360 361 /* is_read = 0 */ 362 bch_count_io_errors(ca, bio->bi_status, 0, 363 "writing superblock"); 364 closure_put(&ca->set->sb_write); 365} 366 367static void bcache_write_super_unlock(struct closure *cl) 368{ 369 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 370 371 up(&c->sb_write_mutex); 372} 373 374void bcache_write_super(struct cache_set *c) 375{ 376 struct closure *cl = &c->sb_write; 377 struct cache *ca = c->cache; 378 struct bio *bio = &ca->sb_bio; 379 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 380 381 down(&c->sb_write_mutex); 382 closure_init(cl, &c->cl); 383 384 ca->sb.seq++; 385 386 if (ca->sb.version < version) 387 ca->sb.version = version; 388 389 bio_init(bio, ca->sb_bv, 1); 390 bio_set_dev(bio, ca->bdev); 391 bio->bi_end_io = write_super_endio; 392 bio->bi_private = ca; 393 394 closure_get(cl); 395 __write_super(&ca->sb, ca->sb_disk, bio); 396 397 closure_return_with_destructor(cl, bcache_write_super_unlock); 398} 399 400/* UUID io */ 401 402static void uuid_endio(struct bio *bio) 403{ 404 struct closure *cl = bio->bi_private; 405 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 406 407 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 408 bch_bbio_free(bio, c); 409 closure_put(cl); 410} 411 412static void uuid_io_unlock(struct closure *cl) 413{ 414 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 415 416 up(&c->uuid_write_mutex); 417} 418 419static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 420 struct bkey *k, struct closure *parent) 421{ 422 struct closure *cl = &c->uuid_write; 423 struct uuid_entry *u; 424 unsigned int i; 425 char buf[80]; 426 427 BUG_ON(!parent); 428 down(&c->uuid_write_mutex); 429 closure_init(cl, parent); 430 431 for (i = 0; i < KEY_PTRS(k); i++) { 432 struct bio *bio = bch_bbio_alloc(c); 433 434 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 435 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 436 437 bio->bi_end_io = uuid_endio; 438 bio->bi_private = cl; 439 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 440 bch_bio_map(bio, c->uuids); 441 442 bch_submit_bbio(bio, c, k, i); 443 444 if (op != REQ_OP_WRITE) 445 break; 446 } 447 448 bch_extent_to_text(buf, sizeof(buf), k); 449 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf); 450 451 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 452 if (!bch_is_zero(u->uuid, 16)) 453 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 454 u - c->uuids, u->uuid, u->label, 455 u->first_reg, u->last_reg, u->invalidated); 456 457 closure_return_with_destructor(cl, uuid_io_unlock); 458} 459 460static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 461{ 462 struct bkey *k = &j->uuid_bucket; 463 464 if (__bch_btree_ptr_invalid(c, k)) 465 return "bad uuid pointer"; 466 467 bkey_copy(&c->uuid_bucket, k); 468 uuid_io(c, REQ_OP_READ, 0, k, cl); 469 470 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 471 struct uuid_entry_v0 *u0 = (void *) c->uuids; 472 struct uuid_entry *u1 = (void *) c->uuids; 473 int i; 474 475 closure_sync(cl); 476 477 /* 478 * Since the new uuid entry is bigger than the old, we have to 479 * convert starting at the highest memory address and work down 480 * in order to do it in place 481 */ 482 483 for (i = c->nr_uuids - 1; 484 i >= 0; 485 --i) { 486 memcpy(u1[i].uuid, u0[i].uuid, 16); 487 memcpy(u1[i].label, u0[i].label, 32); 488 489 u1[i].first_reg = u0[i].first_reg; 490 u1[i].last_reg = u0[i].last_reg; 491 u1[i].invalidated = u0[i].invalidated; 492 493 u1[i].flags = 0; 494 u1[i].sectors = 0; 495 } 496 } 497 498 return NULL; 499} 500 501static int __uuid_write(struct cache_set *c) 502{ 503 BKEY_PADDED(key) k; 504 struct closure cl; 505 struct cache *ca = c->cache; 506 unsigned int size; 507 508 closure_init_stack(&cl); 509 lockdep_assert_held(&bch_register_lock); 510 511 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true)) 512 return 1; 513 514 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS; 515 SET_KEY_SIZE(&k.key, size); 516 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 517 closure_sync(&cl); 518 519 /* Only one bucket used for uuid write */ 520 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 521 522 bkey_copy(&c->uuid_bucket, &k.key); 523 bkey_put(c, &k.key); 524 return 0; 525} 526 527int bch_uuid_write(struct cache_set *c) 528{ 529 int ret = __uuid_write(c); 530 531 if (!ret) 532 bch_journal_meta(c, NULL); 533 534 return ret; 535} 536 537static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 538{ 539 struct uuid_entry *u; 540 541 for (u = c->uuids; 542 u < c->uuids + c->nr_uuids; u++) 543 if (!memcmp(u->uuid, uuid, 16)) 544 return u; 545 546 return NULL; 547} 548 549static struct uuid_entry *uuid_find_empty(struct cache_set *c) 550{ 551 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 552 553 return uuid_find(c, zero_uuid); 554} 555 556/* 557 * Bucket priorities/gens: 558 * 559 * For each bucket, we store on disk its 560 * 8 bit gen 561 * 16 bit priority 562 * 563 * See alloc.c for an explanation of the gen. The priority is used to implement 564 * lru (and in the future other) cache replacement policies; for most purposes 565 * it's just an opaque integer. 566 * 567 * The gens and the priorities don't have a whole lot to do with each other, and 568 * it's actually the gens that must be written out at specific times - it's no 569 * big deal if the priorities don't get written, if we lose them we just reuse 570 * buckets in suboptimal order. 571 * 572 * On disk they're stored in a packed array, and in as many buckets are required 573 * to fit them all. The buckets we use to store them form a list; the journal 574 * header points to the first bucket, the first bucket points to the second 575 * bucket, et cetera. 576 * 577 * This code is used by the allocation code; periodically (whenever it runs out 578 * of buckets to allocate from) the allocation code will invalidate some 579 * buckets, but it can't use those buckets until their new gens are safely on 580 * disk. 581 */ 582 583static void prio_endio(struct bio *bio) 584{ 585 struct cache *ca = bio->bi_private; 586 587 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 588 bch_bbio_free(bio, ca->set); 589 closure_put(&ca->prio); 590} 591 592static void prio_io(struct cache *ca, uint64_t bucket, int op, 593 unsigned long op_flags) 594{ 595 struct closure *cl = &ca->prio; 596 struct bio *bio = bch_bbio_alloc(ca->set); 597 598 closure_init_stack(cl); 599 600 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 601 bio_set_dev(bio, ca->bdev); 602 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb); 603 604 bio->bi_end_io = prio_endio; 605 bio->bi_private = ca; 606 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 607 bch_bio_map(bio, ca->disk_buckets); 608 609 closure_bio_submit(ca->set, bio, &ca->prio); 610 closure_sync(cl); 611} 612 613int bch_prio_write(struct cache *ca, bool wait) 614{ 615 int i; 616 struct bucket *b; 617 struct closure cl; 618 619 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 620 fifo_used(&ca->free[RESERVE_PRIO]), 621 fifo_used(&ca->free[RESERVE_NONE]), 622 fifo_used(&ca->free_inc)); 623 624 /* 625 * Pre-check if there are enough free buckets. In the non-blocking 626 * scenario it's better to fail early rather than starting to allocate 627 * buckets and do a cleanup later in case of failure. 628 */ 629 if (!wait) { 630 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 631 fifo_used(&ca->free[RESERVE_NONE]); 632 if (prio_buckets(ca) > avail) 633 return -ENOMEM; 634 } 635 636 closure_init_stack(&cl); 637 638 lockdep_assert_held(&ca->set->bucket_lock); 639 640 ca->disk_buckets->seq++; 641 642 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 643 &ca->meta_sectors_written); 644 645 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 646 long bucket; 647 struct prio_set *p = ca->disk_buckets; 648 struct bucket_disk *d = p->data; 649 struct bucket_disk *end = d + prios_per_bucket(ca); 650 651 for (b = ca->buckets + i * prios_per_bucket(ca); 652 b < ca->buckets + ca->sb.nbuckets && d < end; 653 b++, d++) { 654 d->prio = cpu_to_le16(b->prio); 655 d->gen = b->gen; 656 } 657 658 p->next_bucket = ca->prio_buckets[i + 1]; 659 p->magic = pset_magic(&ca->sb); 660 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8); 661 662 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 663 BUG_ON(bucket == -1); 664 665 mutex_unlock(&ca->set->bucket_lock); 666 prio_io(ca, bucket, REQ_OP_WRITE, 0); 667 mutex_lock(&ca->set->bucket_lock); 668 669 ca->prio_buckets[i] = bucket; 670 atomic_dec_bug(&ca->buckets[bucket].pin); 671 } 672 673 mutex_unlock(&ca->set->bucket_lock); 674 675 bch_journal_meta(ca->set, &cl); 676 closure_sync(&cl); 677 678 mutex_lock(&ca->set->bucket_lock); 679 680 /* 681 * Don't want the old priorities to get garbage collected until after we 682 * finish writing the new ones, and they're journalled 683 */ 684 for (i = 0; i < prio_buckets(ca); i++) { 685 if (ca->prio_last_buckets[i]) 686 __bch_bucket_free(ca, 687 &ca->buckets[ca->prio_last_buckets[i]]); 688 689 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 690 } 691 return 0; 692} 693 694static int prio_read(struct cache *ca, uint64_t bucket) 695{ 696 struct prio_set *p = ca->disk_buckets; 697 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 698 struct bucket *b; 699 unsigned int bucket_nr = 0; 700 int ret = -EIO; 701 702 for (b = ca->buckets; 703 b < ca->buckets + ca->sb.nbuckets; 704 b++, d++) { 705 if (d == end) { 706 ca->prio_buckets[bucket_nr] = bucket; 707 ca->prio_last_buckets[bucket_nr] = bucket; 708 bucket_nr++; 709 710 prio_io(ca, bucket, REQ_OP_READ, 0); 711 712 if (p->csum != 713 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) { 714 pr_warn("bad csum reading priorities\n"); 715 goto out; 716 } 717 718 if (p->magic != pset_magic(&ca->sb)) { 719 pr_warn("bad magic reading priorities\n"); 720 goto out; 721 } 722 723 bucket = p->next_bucket; 724 d = p->data; 725 } 726 727 b->prio = le16_to_cpu(d->prio); 728 b->gen = b->last_gc = d->gen; 729 } 730 731 ret = 0; 732out: 733 return ret; 734} 735 736/* Bcache device */ 737 738static int open_dev(struct block_device *b, fmode_t mode) 739{ 740 struct bcache_device *d = b->bd_disk->private_data; 741 742 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 743 return -ENXIO; 744 745 closure_get(&d->cl); 746 return 0; 747} 748 749static void release_dev(struct gendisk *b, fmode_t mode) 750{ 751 struct bcache_device *d = b->private_data; 752 753 closure_put(&d->cl); 754} 755 756static int ioctl_dev(struct block_device *b, fmode_t mode, 757 unsigned int cmd, unsigned long arg) 758{ 759 struct bcache_device *d = b->bd_disk->private_data; 760 761 return d->ioctl(d, mode, cmd, arg); 762} 763 764static const struct block_device_operations bcache_cached_ops = { 765 .submit_bio = cached_dev_submit_bio, 766 .open = open_dev, 767 .release = release_dev, 768 .ioctl = ioctl_dev, 769 .owner = THIS_MODULE, 770}; 771 772static const struct block_device_operations bcache_flash_ops = { 773 .submit_bio = flash_dev_submit_bio, 774 .open = open_dev, 775 .release = release_dev, 776 .ioctl = ioctl_dev, 777 .owner = THIS_MODULE, 778}; 779 780void bcache_device_stop(struct bcache_device *d) 781{ 782 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 783 /* 784 * closure_fn set to 785 * - cached device: cached_dev_flush() 786 * - flash dev: flash_dev_flush() 787 */ 788 closure_queue(&d->cl); 789} 790 791static void bcache_device_unlink(struct bcache_device *d) 792{ 793 lockdep_assert_held(&bch_register_lock); 794 795 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 796 struct cache *ca = d->c->cache; 797 798 sysfs_remove_link(&d->c->kobj, d->name); 799 sysfs_remove_link(&d->kobj, "cache"); 800 801 bd_unlink_disk_holder(ca->bdev, d->disk); 802 } 803} 804 805static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 806 const char *name) 807{ 808 struct cache *ca = c->cache; 809 int ret; 810 811 bd_link_disk_holder(ca->bdev, d->disk); 812 813 snprintf(d->name, BCACHEDEVNAME_SIZE, 814 "%s%u", name, d->id); 815 816 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 817 if (ret < 0) 818 pr_err("Couldn't create device -> cache set symlink\n"); 819 820 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 821 if (ret < 0) 822 pr_err("Couldn't create cache set -> device symlink\n"); 823 824 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 825} 826 827static void bcache_device_detach(struct bcache_device *d) 828{ 829 lockdep_assert_held(&bch_register_lock); 830 831 atomic_dec(&d->c->attached_dev_nr); 832 833 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 834 struct uuid_entry *u = d->c->uuids + d->id; 835 836 SET_UUID_FLASH_ONLY(u, 0); 837 memcpy(u->uuid, invalid_uuid, 16); 838 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 839 bch_uuid_write(d->c); 840 } 841 842 bcache_device_unlink(d); 843 844 d->c->devices[d->id] = NULL; 845 closure_put(&d->c->caching); 846 d->c = NULL; 847} 848 849static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 850 unsigned int id) 851{ 852 d->id = id; 853 d->c = c; 854 c->devices[id] = d; 855 856 if (id >= c->devices_max_used) 857 c->devices_max_used = id + 1; 858 859 closure_get(&c->caching); 860} 861 862static inline int first_minor_to_idx(int first_minor) 863{ 864 return (first_minor/BCACHE_MINORS); 865} 866 867static inline int idx_to_first_minor(int idx) 868{ 869 return (idx * BCACHE_MINORS); 870} 871 872static void bcache_device_free(struct bcache_device *d) 873{ 874 struct gendisk *disk = d->disk; 875 876 lockdep_assert_held(&bch_register_lock); 877 878 if (disk) 879 pr_info("%s stopped\n", disk->disk_name); 880 else 881 pr_err("bcache device (NULL gendisk) stopped\n"); 882 883 if (d->c) 884 bcache_device_detach(d); 885 886 if (disk) { 887 bool disk_added = (disk->flags & GENHD_FL_UP) != 0; 888 889 if (disk_added) 890 del_gendisk(disk); 891 892 if (disk->queue) 893 blk_cleanup_queue(disk->queue); 894 895 ida_simple_remove(&bcache_device_idx, 896 first_minor_to_idx(disk->first_minor)); 897 if (disk_added) 898 put_disk(disk); 899 } 900 901 bioset_exit(&d->bio_split); 902 kvfree(d->full_dirty_stripes); 903 kvfree(d->stripe_sectors_dirty); 904 905 closure_debug_destroy(&d->cl); 906} 907 908static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 909 sector_t sectors, struct block_device *cached_bdev, 910 const struct block_device_operations *ops) 911{ 912 struct request_queue *q; 913 const size_t max_stripes = min_t(size_t, INT_MAX, 914 SIZE_MAX / sizeof(atomic_t)); 915 uint64_t n; 916 int idx; 917 918 if (!d->stripe_size) 919 d->stripe_size = 1 << 31; 920 else if (d->stripe_size < BCH_MIN_STRIPE_SZ) 921 d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size); 922 923 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 924 if (!n || n > max_stripes) { 925 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", 926 n); 927 return -ENOMEM; 928 } 929 d->nr_stripes = n; 930 931 n = d->nr_stripes * sizeof(atomic_t); 932 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 933 if (!d->stripe_sectors_dirty) 934 return -ENOMEM; 935 936 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 937 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 938 if (!d->full_dirty_stripes) 939 goto out_free_stripe_sectors_dirty; 940 941 idx = ida_simple_get(&bcache_device_idx, 0, 942 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 943 if (idx < 0) 944 goto out_free_full_dirty_stripes; 945 946 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 947 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 948 goto out_ida_remove; 949 950 d->disk = alloc_disk(BCACHE_MINORS); 951 if (!d->disk) 952 goto out_bioset_exit; 953 954 set_capacity(d->disk, sectors); 955 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 956 957 d->disk->major = bcache_major; 958 d->disk->first_minor = idx_to_first_minor(idx); 959 d->disk->fops = ops; 960 d->disk->private_data = d; 961 962 q = blk_alloc_queue(NUMA_NO_NODE); 963 if (!q) 964 return -ENOMEM; 965 966 d->disk->queue = q; 967 q->limits.max_hw_sectors = UINT_MAX; 968 q->limits.max_sectors = UINT_MAX; 969 q->limits.max_segment_size = UINT_MAX; 970 q->limits.max_segments = BIO_MAX_PAGES; 971 blk_queue_max_discard_sectors(q, UINT_MAX); 972 q->limits.discard_granularity = 512; 973 q->limits.io_min = block_size; 974 q->limits.logical_block_size = block_size; 975 q->limits.physical_block_size = block_size; 976 977 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { 978 /* 979 * This should only happen with BCACHE_SB_VERSION_BDEV. 980 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 981 */ 982 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 983 d->disk->disk_name, q->limits.logical_block_size, 984 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 985 986 /* This also adjusts physical block size/min io size if needed */ 987 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); 988 } 989 990 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 991 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 992 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 993 994 blk_queue_write_cache(q, true, true); 995 996 return 0; 997 998out_bioset_exit: 999 bioset_exit(&d->bio_split); 1000out_ida_remove: 1001 ida_simple_remove(&bcache_device_idx, idx); 1002out_free_full_dirty_stripes: 1003 kvfree(d->full_dirty_stripes); 1004out_free_stripe_sectors_dirty: 1005 kvfree(d->stripe_sectors_dirty); 1006 return -ENOMEM; 1007 1008} 1009 1010/* Cached device */ 1011 1012static void calc_cached_dev_sectors(struct cache_set *c) 1013{ 1014 uint64_t sectors = 0; 1015 struct cached_dev *dc; 1016 1017 list_for_each_entry(dc, &c->cached_devs, list) 1018 sectors += bdev_sectors(dc->bdev); 1019 1020 c->cached_dev_sectors = sectors; 1021} 1022 1023#define BACKING_DEV_OFFLINE_TIMEOUT 5 1024static int cached_dev_status_update(void *arg) 1025{ 1026 struct cached_dev *dc = arg; 1027 struct request_queue *q; 1028 1029 /* 1030 * If this delayed worker is stopping outside, directly quit here. 1031 * dc->io_disable might be set via sysfs interface, so check it 1032 * here too. 1033 */ 1034 while (!kthread_should_stop() && !dc->io_disable) { 1035 q = bdev_get_queue(dc->bdev); 1036 if (blk_queue_dying(q)) 1037 dc->offline_seconds++; 1038 else 1039 dc->offline_seconds = 0; 1040 1041 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 1042 pr_err("%s: device offline for %d seconds\n", 1043 dc->backing_dev_name, 1044 BACKING_DEV_OFFLINE_TIMEOUT); 1045 pr_err("%s: disable I/O request due to backing device offline\n", 1046 dc->disk.name); 1047 dc->io_disable = true; 1048 /* let others know earlier that io_disable is true */ 1049 smp_mb(); 1050 bcache_device_stop(&dc->disk); 1051 break; 1052 } 1053 schedule_timeout_interruptible(HZ); 1054 } 1055 1056 wait_for_kthread_stop(); 1057 return 0; 1058} 1059 1060 1061int bch_cached_dev_run(struct cached_dev *dc) 1062{ 1063 struct bcache_device *d = &dc->disk; 1064 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 1065 char *env[] = { 1066 "DRIVER=bcache", 1067 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 1068 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 1069 NULL, 1070 }; 1071 1072 if (dc->io_disable) { 1073 pr_err("I/O disabled on cached dev %s\n", 1074 dc->backing_dev_name); 1075 kfree(env[1]); 1076 kfree(env[2]); 1077 kfree(buf); 1078 return -EIO; 1079 } 1080 1081 if (atomic_xchg(&dc->running, 1)) { 1082 kfree(env[1]); 1083 kfree(env[2]); 1084 kfree(buf); 1085 pr_info("cached dev %s is running already\n", 1086 dc->backing_dev_name); 1087 return -EBUSY; 1088 } 1089 1090 if (!d->c && 1091 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1092 struct closure cl; 1093 1094 closure_init_stack(&cl); 1095 1096 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1097 bch_write_bdev_super(dc, &cl); 1098 closure_sync(&cl); 1099 } 1100 1101 add_disk(d->disk); 1102 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1103 /* 1104 * won't show up in the uevent file, use udevadm monitor -e instead 1105 * only class / kset properties are persistent 1106 */ 1107 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1108 kfree(env[1]); 1109 kfree(env[2]); 1110 kfree(buf); 1111 1112 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1113 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1114 &d->kobj, "bcache")) { 1115 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1116 return -ENOMEM; 1117 } 1118 1119 dc->status_update_thread = kthread_run(cached_dev_status_update, 1120 dc, "bcache_status_update"); 1121 if (IS_ERR(dc->status_update_thread)) { 1122 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1123 } 1124 1125 return 0; 1126} 1127 1128/* 1129 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1130 * work dc->writeback_rate_update is running. Wait until the routine 1131 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1132 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1133 * seconds, give up waiting here and continue to cancel it too. 1134 */ 1135static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1136{ 1137 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1138 1139 do { 1140 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1141 &dc->disk.flags)) 1142 break; 1143 time_out--; 1144 schedule_timeout_interruptible(1); 1145 } while (time_out > 0); 1146 1147 if (time_out == 0) 1148 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1149 1150 cancel_delayed_work_sync(&dc->writeback_rate_update); 1151} 1152 1153static void cached_dev_detach_finish(struct work_struct *w) 1154{ 1155 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1156 struct closure cl; 1157 1158 closure_init_stack(&cl); 1159 1160 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1161 BUG_ON(refcount_read(&dc->count)); 1162 1163 1164 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1165 cancel_writeback_rate_update_dwork(dc); 1166 1167 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1168 kthread_stop(dc->writeback_thread); 1169 dc->writeback_thread = NULL; 1170 } 1171 1172 memset(&dc->sb.set_uuid, 0, 16); 1173 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE); 1174 1175 bch_write_bdev_super(dc, &cl); 1176 closure_sync(&cl); 1177 1178 mutex_lock(&bch_register_lock); 1179 1180 calc_cached_dev_sectors(dc->disk.c); 1181 bcache_device_detach(&dc->disk); 1182 list_move(&dc->list, &uncached_devices); 1183 1184 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1185 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1186 1187 mutex_unlock(&bch_register_lock); 1188 1189 pr_info("Caching disabled for %s\n", dc->backing_dev_name); 1190 1191 /* Drop ref we took in cached_dev_detach() */ 1192 closure_put(&dc->disk.cl); 1193} 1194 1195void bch_cached_dev_detach(struct cached_dev *dc) 1196{ 1197 lockdep_assert_held(&bch_register_lock); 1198 1199 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1200 return; 1201 1202 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1203 return; 1204 1205 /* 1206 * Block the device from being closed and freed until we're finished 1207 * detaching 1208 */ 1209 closure_get(&dc->disk.cl); 1210 1211 bch_writeback_queue(dc); 1212 1213 cached_dev_put(dc); 1214} 1215 1216int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1217 uint8_t *set_uuid) 1218{ 1219 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1220 struct uuid_entry *u; 1221 struct cached_dev *exist_dc, *t; 1222 int ret = 0; 1223 1224 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) || 1225 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16))) 1226 return -ENOENT; 1227 1228 if (dc->disk.c) { 1229 pr_err("Can't attach %s: already attached\n", 1230 dc->backing_dev_name); 1231 return -EINVAL; 1232 } 1233 1234 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1235 pr_err("Can't attach %s: shutting down\n", 1236 dc->backing_dev_name); 1237 return -EINVAL; 1238 } 1239 1240 if (dc->sb.block_size < c->cache->sb.block_size) { 1241 /* Will die */ 1242 pr_err("Couldn't attach %s: block size less than set's block size\n", 1243 dc->backing_dev_name); 1244 return -EINVAL; 1245 } 1246 1247 /* Check whether already attached */ 1248 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1249 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1250 pr_err("Tried to attach %s but duplicate UUID already attached\n", 1251 dc->backing_dev_name); 1252 1253 return -EINVAL; 1254 } 1255 } 1256 1257 u = uuid_find(c, dc->sb.uuid); 1258 1259 if (u && 1260 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1261 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1262 memcpy(u->uuid, invalid_uuid, 16); 1263 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1264 u = NULL; 1265 } 1266 1267 if (!u) { 1268 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1269 pr_err("Couldn't find uuid for %s in set\n", 1270 dc->backing_dev_name); 1271 return -ENOENT; 1272 } 1273 1274 u = uuid_find_empty(c); 1275 if (!u) { 1276 pr_err("Not caching %s, no room for UUID\n", 1277 dc->backing_dev_name); 1278 return -EINVAL; 1279 } 1280 } 1281 1282 /* 1283 * Deadlocks since we're called via sysfs... 1284 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1285 */ 1286 1287 if (bch_is_zero(u->uuid, 16)) { 1288 struct closure cl; 1289 1290 closure_init_stack(&cl); 1291 1292 memcpy(u->uuid, dc->sb.uuid, 16); 1293 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1294 u->first_reg = u->last_reg = rtime; 1295 bch_uuid_write(c); 1296 1297 memcpy(dc->sb.set_uuid, c->set_uuid, 16); 1298 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1299 1300 bch_write_bdev_super(dc, &cl); 1301 closure_sync(&cl); 1302 } else { 1303 u->last_reg = rtime; 1304 bch_uuid_write(c); 1305 } 1306 1307 bcache_device_attach(&dc->disk, c, u - c->uuids); 1308 list_move(&dc->list, &c->cached_devs); 1309 calc_cached_dev_sectors(c); 1310 1311 /* 1312 * dc->c must be set before dc->count != 0 - paired with the mb in 1313 * cached_dev_get() 1314 */ 1315 smp_wmb(); 1316 refcount_set(&dc->count, 1); 1317 1318 /* Block writeback thread, but spawn it */ 1319 down_write(&dc->writeback_lock); 1320 if (bch_cached_dev_writeback_start(dc)) { 1321 up_write(&dc->writeback_lock); 1322 pr_err("Couldn't start writeback facilities for %s\n", 1323 dc->disk.disk->disk_name); 1324 return -ENOMEM; 1325 } 1326 1327 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1328 atomic_set(&dc->has_dirty, 1); 1329 bch_writeback_queue(dc); 1330 } 1331 1332 bch_sectors_dirty_init(&dc->disk); 1333 1334 ret = bch_cached_dev_run(dc); 1335 if (ret && (ret != -EBUSY)) { 1336 up_write(&dc->writeback_lock); 1337 /* 1338 * bch_register_lock is held, bcache_device_stop() is not 1339 * able to be directly called. The kthread and kworker 1340 * created previously in bch_cached_dev_writeback_start() 1341 * have to be stopped manually here. 1342 */ 1343 kthread_stop(dc->writeback_thread); 1344 cancel_writeback_rate_update_dwork(dc); 1345 pr_err("Couldn't run cached device %s\n", 1346 dc->backing_dev_name); 1347 return ret; 1348 } 1349 1350 bcache_device_link(&dc->disk, c, "bdev"); 1351 atomic_inc(&c->attached_dev_nr); 1352 1353 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) { 1354 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1355 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1356 set_disk_ro(dc->disk.disk, 1); 1357 } 1358 1359 /* Allow the writeback thread to proceed */ 1360 up_write(&dc->writeback_lock); 1361 1362 pr_info("Caching %s as %s on set %pU\n", 1363 dc->backing_dev_name, 1364 dc->disk.disk->disk_name, 1365 dc->disk.c->set_uuid); 1366 return 0; 1367} 1368 1369/* when dc->disk.kobj released */ 1370void bch_cached_dev_release(struct kobject *kobj) 1371{ 1372 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1373 disk.kobj); 1374 kfree(dc); 1375 module_put(THIS_MODULE); 1376} 1377 1378static void cached_dev_free(struct closure *cl) 1379{ 1380 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1381 1382 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1383 cancel_writeback_rate_update_dwork(dc); 1384 1385 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1386 kthread_stop(dc->writeback_thread); 1387 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1388 kthread_stop(dc->status_update_thread); 1389 1390 mutex_lock(&bch_register_lock); 1391 1392 if (atomic_read(&dc->running)) 1393 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1394 bcache_device_free(&dc->disk); 1395 list_del(&dc->list); 1396 1397 mutex_unlock(&bch_register_lock); 1398 1399 if (dc->sb_disk) 1400 put_page(virt_to_page(dc->sb_disk)); 1401 1402 if (!IS_ERR_OR_NULL(dc->bdev)) 1403 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1404 1405 wake_up(&unregister_wait); 1406 1407 kobject_put(&dc->disk.kobj); 1408} 1409 1410static void cached_dev_flush(struct closure *cl) 1411{ 1412 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1413 struct bcache_device *d = &dc->disk; 1414 1415 mutex_lock(&bch_register_lock); 1416 bcache_device_unlink(d); 1417 mutex_unlock(&bch_register_lock); 1418 1419 bch_cache_accounting_destroy(&dc->accounting); 1420 kobject_del(&d->kobj); 1421 1422 continue_at(cl, cached_dev_free, system_wq); 1423} 1424 1425static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1426{ 1427 int ret; 1428 struct io *io; 1429 struct request_queue *q = bdev_get_queue(dc->bdev); 1430 1431 __module_get(THIS_MODULE); 1432 INIT_LIST_HEAD(&dc->list); 1433 closure_init(&dc->disk.cl, NULL); 1434 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1435 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1436 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1437 sema_init(&dc->sb_write_mutex, 1); 1438 INIT_LIST_HEAD(&dc->io_lru); 1439 spin_lock_init(&dc->io_lock); 1440 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1441 1442 dc->sequential_cutoff = 4 << 20; 1443 1444 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1445 list_add(&io->lru, &dc->io_lru); 1446 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1447 } 1448 1449 dc->disk.stripe_size = q->limits.io_opt >> 9; 1450 1451 if (dc->disk.stripe_size) 1452 dc->partial_stripes_expensive = 1453 q->limits.raid_partial_stripes_expensive; 1454 1455 ret = bcache_device_init(&dc->disk, block_size, 1456 dc->bdev->bd_part->nr_sects - dc->sb.data_offset, 1457 dc->bdev, &bcache_cached_ops); 1458 if (ret) 1459 return ret; 1460 1461 blk_queue_io_opt(dc->disk.disk->queue, 1462 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q))); 1463 1464 atomic_set(&dc->io_errors, 0); 1465 dc->io_disable = false; 1466 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1467 /* default to auto */ 1468 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1469 1470 bch_cached_dev_request_init(dc); 1471 bch_cached_dev_writeback_init(dc); 1472 return 0; 1473} 1474 1475/* Cached device - bcache superblock */ 1476 1477static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1478 struct block_device *bdev, 1479 struct cached_dev *dc) 1480{ 1481 const char *err = "cannot allocate memory"; 1482 struct cache_set *c; 1483 int ret = -ENOMEM; 1484 1485 bdevname(bdev, dc->backing_dev_name); 1486 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1487 dc->bdev = bdev; 1488 dc->bdev->bd_holder = dc; 1489 dc->sb_disk = sb_disk; 1490 1491 if (cached_dev_init(dc, sb->block_size << 9)) 1492 goto err; 1493 1494 err = "error creating kobject"; 1495 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj, 1496 "bcache")) 1497 goto err; 1498 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1499 goto err; 1500 1501 pr_info("registered backing device %s\n", dc->backing_dev_name); 1502 1503 list_add(&dc->list, &uncached_devices); 1504 /* attach to a matched cache set if it exists */ 1505 list_for_each_entry(c, &bch_cache_sets, list) 1506 bch_cached_dev_attach(dc, c, NULL); 1507 1508 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1509 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1510 err = "failed to run cached device"; 1511 ret = bch_cached_dev_run(dc); 1512 if (ret) 1513 goto err; 1514 } 1515 1516 return 0; 1517err: 1518 pr_notice("error %s: %s\n", dc->backing_dev_name, err); 1519 bcache_device_stop(&dc->disk); 1520 return ret; 1521} 1522 1523/* Flash only volumes */ 1524 1525/* When d->kobj released */ 1526void bch_flash_dev_release(struct kobject *kobj) 1527{ 1528 struct bcache_device *d = container_of(kobj, struct bcache_device, 1529 kobj); 1530 kfree(d); 1531} 1532 1533static void flash_dev_free(struct closure *cl) 1534{ 1535 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1536 1537 mutex_lock(&bch_register_lock); 1538 atomic_long_sub(bcache_dev_sectors_dirty(d), 1539 &d->c->flash_dev_dirty_sectors); 1540 bcache_device_free(d); 1541 mutex_unlock(&bch_register_lock); 1542 kobject_put(&d->kobj); 1543} 1544 1545static void flash_dev_flush(struct closure *cl) 1546{ 1547 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1548 1549 mutex_lock(&bch_register_lock); 1550 bcache_device_unlink(d); 1551 mutex_unlock(&bch_register_lock); 1552 kobject_del(&d->kobj); 1553 continue_at(cl, flash_dev_free, system_wq); 1554} 1555 1556static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1557{ 1558 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1559 GFP_KERNEL); 1560 if (!d) 1561 return -ENOMEM; 1562 1563 closure_init(&d->cl, NULL); 1564 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1565 1566 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1567 1568 if (bcache_device_init(d, block_bytes(c->cache), u->sectors, 1569 NULL, &bcache_flash_ops)) 1570 goto err; 1571 1572 bcache_device_attach(d, c, u - c->uuids); 1573 bch_sectors_dirty_init(d); 1574 bch_flash_dev_request_init(d); 1575 add_disk(d->disk); 1576 1577 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1578 goto err; 1579 1580 bcache_device_link(d, c, "volume"); 1581 1582 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) { 1583 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1584 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1585 set_disk_ro(d->disk, 1); 1586 } 1587 1588 return 0; 1589err: 1590 kobject_put(&d->kobj); 1591 return -ENOMEM; 1592} 1593 1594static int flash_devs_run(struct cache_set *c) 1595{ 1596 int ret = 0; 1597 struct uuid_entry *u; 1598 1599 for (u = c->uuids; 1600 u < c->uuids + c->nr_uuids && !ret; 1601 u++) 1602 if (UUID_FLASH_ONLY(u)) 1603 ret = flash_dev_run(c, u); 1604 1605 return ret; 1606} 1607 1608int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1609{ 1610 struct uuid_entry *u; 1611 1612 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1613 return -EINTR; 1614 1615 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1616 return -EPERM; 1617 1618 u = uuid_find_empty(c); 1619 if (!u) { 1620 pr_err("Can't create volume, no room for UUID\n"); 1621 return -EINVAL; 1622 } 1623 1624 get_random_bytes(u->uuid, 16); 1625 memset(u->label, 0, 32); 1626 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1627 1628 SET_UUID_FLASH_ONLY(u, 1); 1629 u->sectors = size >> 9; 1630 1631 bch_uuid_write(c); 1632 1633 return flash_dev_run(c, u); 1634} 1635 1636bool bch_cached_dev_error(struct cached_dev *dc) 1637{ 1638 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1639 return false; 1640 1641 dc->io_disable = true; 1642 /* make others know io_disable is true earlier */ 1643 smp_mb(); 1644 1645 pr_err("stop %s: too many IO errors on backing device %s\n", 1646 dc->disk.disk->disk_name, dc->backing_dev_name); 1647 1648 bcache_device_stop(&dc->disk); 1649 return true; 1650} 1651 1652/* Cache set */ 1653 1654__printf(2, 3) 1655bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1656{ 1657 struct va_format vaf; 1658 va_list args; 1659 1660 if (c->on_error != ON_ERROR_PANIC && 1661 test_bit(CACHE_SET_STOPPING, &c->flags)) 1662 return false; 1663 1664 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1665 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1666 1667 /* 1668 * XXX: we can be called from atomic context 1669 * acquire_console_sem(); 1670 */ 1671 1672 va_start(args, fmt); 1673 1674 vaf.fmt = fmt; 1675 vaf.va = &args; 1676 1677 pr_err("error on %pU: %pV, disabling caching\n", 1678 c->set_uuid, &vaf); 1679 1680 va_end(args); 1681 1682 if (c->on_error == ON_ERROR_PANIC) 1683 panic("panic forced after error\n"); 1684 1685 bch_cache_set_unregister(c); 1686 return true; 1687} 1688 1689/* When c->kobj released */ 1690void bch_cache_set_release(struct kobject *kobj) 1691{ 1692 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1693 1694 kfree(c); 1695 module_put(THIS_MODULE); 1696} 1697 1698static void cache_set_free(struct closure *cl) 1699{ 1700 struct cache_set *c = container_of(cl, struct cache_set, cl); 1701 struct cache *ca; 1702 1703 debugfs_remove(c->debug); 1704 1705 bch_open_buckets_free(c); 1706 bch_btree_cache_free(c); 1707 bch_journal_free(c); 1708 1709 mutex_lock(&bch_register_lock); 1710 bch_bset_sort_state_free(&c->sort); 1711 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb))); 1712 1713 ca = c->cache; 1714 if (ca) { 1715 ca->set = NULL; 1716 c->cache = NULL; 1717 kobject_put(&ca->kobj); 1718 } 1719 1720 1721 if (c->moving_gc_wq) 1722 destroy_workqueue(c->moving_gc_wq); 1723 bioset_exit(&c->bio_split); 1724 mempool_exit(&c->fill_iter); 1725 mempool_exit(&c->bio_meta); 1726 mempool_exit(&c->search); 1727 kfree(c->devices); 1728 1729 list_del(&c->list); 1730 mutex_unlock(&bch_register_lock); 1731 1732 pr_info("Cache set %pU unregistered\n", c->set_uuid); 1733 wake_up(&unregister_wait); 1734 1735 closure_debug_destroy(&c->cl); 1736 kobject_put(&c->kobj); 1737} 1738 1739static void cache_set_flush(struct closure *cl) 1740{ 1741 struct cache_set *c = container_of(cl, struct cache_set, caching); 1742 struct cache *ca = c->cache; 1743 struct btree *b; 1744 1745 bch_cache_accounting_destroy(&c->accounting); 1746 1747 kobject_put(&c->internal); 1748 kobject_del(&c->kobj); 1749 1750 if (!IS_ERR_OR_NULL(c->gc_thread)) 1751 kthread_stop(c->gc_thread); 1752 1753 if (!IS_ERR(c->root)) 1754 list_add(&c->root->list, &c->btree_cache); 1755 1756 /* 1757 * Avoid flushing cached nodes if cache set is retiring 1758 * due to too many I/O errors detected. 1759 */ 1760 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1761 list_for_each_entry(b, &c->btree_cache, list) { 1762 mutex_lock(&b->write_lock); 1763 if (btree_node_dirty(b)) 1764 __bch_btree_node_write(b, NULL); 1765 mutex_unlock(&b->write_lock); 1766 } 1767 1768 if (ca->alloc_thread) 1769 kthread_stop(ca->alloc_thread); 1770 1771 if (c->journal.cur) { 1772 cancel_delayed_work_sync(&c->journal.work); 1773 /* flush last journal entry if needed */ 1774 c->journal.work.work.func(&c->journal.work.work); 1775 } 1776 1777 closure_return(cl); 1778} 1779 1780/* 1781 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1782 * cache set is unregistering due to too many I/O errors. In this condition, 1783 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1784 * value and whether the broken cache has dirty data: 1785 * 1786 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1787 * BCH_CACHED_STOP_AUTO 0 NO 1788 * BCH_CACHED_STOP_AUTO 1 YES 1789 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1790 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1791 * 1792 * The expected behavior is, if stop_when_cache_set_failed is configured to 1793 * "auto" via sysfs interface, the bcache device will not be stopped if the 1794 * backing device is clean on the broken cache device. 1795 */ 1796static void conditional_stop_bcache_device(struct cache_set *c, 1797 struct bcache_device *d, 1798 struct cached_dev *dc) 1799{ 1800 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1801 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1802 d->disk->disk_name, c->set_uuid); 1803 bcache_device_stop(d); 1804 } else if (atomic_read(&dc->has_dirty)) { 1805 /* 1806 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1807 * and dc->has_dirty == 1 1808 */ 1809 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1810 d->disk->disk_name); 1811 /* 1812 * There might be a small time gap that cache set is 1813 * released but bcache device is not. Inside this time 1814 * gap, regular I/O requests will directly go into 1815 * backing device as no cache set attached to. This 1816 * behavior may also introduce potential inconsistence 1817 * data in writeback mode while cache is dirty. 1818 * Therefore before calling bcache_device_stop() due 1819 * to a broken cache device, dc->io_disable should be 1820 * explicitly set to true. 1821 */ 1822 dc->io_disable = true; 1823 /* make others know io_disable is true earlier */ 1824 smp_mb(); 1825 bcache_device_stop(d); 1826 } else { 1827 /* 1828 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1829 * and dc->has_dirty == 0 1830 */ 1831 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1832 d->disk->disk_name); 1833 } 1834} 1835 1836static void __cache_set_unregister(struct closure *cl) 1837{ 1838 struct cache_set *c = container_of(cl, struct cache_set, caching); 1839 struct cached_dev *dc; 1840 struct bcache_device *d; 1841 size_t i; 1842 1843 mutex_lock(&bch_register_lock); 1844 1845 for (i = 0; i < c->devices_max_used; i++) { 1846 d = c->devices[i]; 1847 if (!d) 1848 continue; 1849 1850 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1851 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1852 dc = container_of(d, struct cached_dev, disk); 1853 bch_cached_dev_detach(dc); 1854 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1855 conditional_stop_bcache_device(c, d, dc); 1856 } else { 1857 bcache_device_stop(d); 1858 } 1859 } 1860 1861 mutex_unlock(&bch_register_lock); 1862 1863 continue_at(cl, cache_set_flush, system_wq); 1864} 1865 1866void bch_cache_set_stop(struct cache_set *c) 1867{ 1868 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1869 /* closure_fn set to __cache_set_unregister() */ 1870 closure_queue(&c->caching); 1871} 1872 1873void bch_cache_set_unregister(struct cache_set *c) 1874{ 1875 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1876 bch_cache_set_stop(c); 1877} 1878 1879#define alloc_meta_bucket_pages(gfp, sb) \ 1880 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb)))) 1881 1882struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1883{ 1884 int iter_size; 1885 struct cache *ca = container_of(sb, struct cache, sb); 1886 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1887 1888 if (!c) 1889 return NULL; 1890 1891 __module_get(THIS_MODULE); 1892 closure_init(&c->cl, NULL); 1893 set_closure_fn(&c->cl, cache_set_free, system_wq); 1894 1895 closure_init(&c->caching, &c->cl); 1896 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1897 1898 /* Maybe create continue_at_noreturn() and use it here? */ 1899 closure_set_stopped(&c->cl); 1900 closure_put(&c->cl); 1901 1902 kobject_init(&c->kobj, &bch_cache_set_ktype); 1903 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1904 1905 bch_cache_accounting_init(&c->accounting, &c->cl); 1906 1907 memcpy(c->set_uuid, sb->set_uuid, 16); 1908 1909 c->cache = ca; 1910 c->cache->set = c; 1911 c->bucket_bits = ilog2(sb->bucket_size); 1912 c->block_bits = ilog2(sb->block_size); 1913 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry); 1914 c->devices_max_used = 0; 1915 atomic_set(&c->attached_dev_nr, 0); 1916 c->btree_pages = meta_bucket_pages(sb); 1917 if (c->btree_pages > BTREE_MAX_PAGES) 1918 c->btree_pages = max_t(int, c->btree_pages / 4, 1919 BTREE_MAX_PAGES); 1920 1921 sema_init(&c->sb_write_mutex, 1); 1922 mutex_init(&c->bucket_lock); 1923 init_waitqueue_head(&c->btree_cache_wait); 1924 spin_lock_init(&c->btree_cannibalize_lock); 1925 init_waitqueue_head(&c->bucket_wait); 1926 init_waitqueue_head(&c->gc_wait); 1927 sema_init(&c->uuid_write_mutex, 1); 1928 1929 spin_lock_init(&c->btree_gc_time.lock); 1930 spin_lock_init(&c->btree_split_time.lock); 1931 spin_lock_init(&c->btree_read_time.lock); 1932 1933 bch_moving_init_cache_set(c); 1934 1935 INIT_LIST_HEAD(&c->list); 1936 INIT_LIST_HEAD(&c->cached_devs); 1937 INIT_LIST_HEAD(&c->btree_cache); 1938 INIT_LIST_HEAD(&c->btree_cache_freeable); 1939 INIT_LIST_HEAD(&c->btree_cache_freed); 1940 INIT_LIST_HEAD(&c->data_buckets); 1941 1942 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) * 1943 sizeof(struct btree_iter_set); 1944 1945 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); 1946 if (!c->devices) 1947 goto err; 1948 1949 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache)) 1950 goto err; 1951 1952 if (mempool_init_kmalloc_pool(&c->bio_meta, 2, 1953 sizeof(struct bbio) + 1954 sizeof(struct bio_vec) * meta_bucket_pages(sb))) 1955 goto err; 1956 1957 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size)) 1958 goto err; 1959 1960 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1961 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 1962 goto err; 1963 1964 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb); 1965 if (!c->uuids) 1966 goto err; 1967 1968 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0); 1969 if (!c->moving_gc_wq) 1970 goto err; 1971 1972 if (bch_journal_alloc(c)) 1973 goto err; 1974 1975 if (bch_btree_cache_alloc(c)) 1976 goto err; 1977 1978 if (bch_open_buckets_alloc(c)) 1979 goto err; 1980 1981 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1982 goto err; 1983 1984 c->congested_read_threshold_us = 2000; 1985 c->congested_write_threshold_us = 20000; 1986 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1987 c->idle_max_writeback_rate_enabled = 1; 1988 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1989 1990 return c; 1991err: 1992 bch_cache_set_unregister(c); 1993 return NULL; 1994} 1995 1996static int run_cache_set(struct cache_set *c) 1997{ 1998 const char *err = "cannot allocate memory"; 1999 struct cached_dev *dc, *t; 2000 struct cache *ca = c->cache; 2001 struct closure cl; 2002 LIST_HEAD(journal); 2003 struct journal_replay *l; 2004 2005 closure_init_stack(&cl); 2006 2007 c->nbuckets = ca->sb.nbuckets; 2008 set_gc_sectors(c); 2009 2010 if (CACHE_SYNC(&c->cache->sb)) { 2011 struct bkey *k; 2012 struct jset *j; 2013 2014 err = "cannot allocate memory for journal"; 2015 if (bch_journal_read(c, &journal)) 2016 goto err; 2017 2018 pr_debug("btree_journal_read() done\n"); 2019 2020 err = "no journal entries found"; 2021 if (list_empty(&journal)) 2022 goto err; 2023 2024 j = &list_entry(journal.prev, struct journal_replay, list)->j; 2025 2026 err = "IO error reading priorities"; 2027 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 2028 goto err; 2029 2030 /* 2031 * If prio_read() fails it'll call cache_set_error and we'll 2032 * tear everything down right away, but if we perhaps checked 2033 * sooner we could avoid journal replay. 2034 */ 2035 2036 k = &j->btree_root; 2037 2038 err = "bad btree root"; 2039 if (__bch_btree_ptr_invalid(c, k)) 2040 goto err; 2041 2042 err = "error reading btree root"; 2043 c->root = bch_btree_node_get(c, NULL, k, 2044 j->btree_level, 2045 true, NULL); 2046 if (IS_ERR(c->root)) 2047 goto err; 2048 2049 list_del_init(&c->root->list); 2050 rw_unlock(true, c->root); 2051 2052 err = uuid_read(c, j, &cl); 2053 if (err) 2054 goto err; 2055 2056 err = "error in recovery"; 2057 if (bch_btree_check(c)) 2058 goto err; 2059 2060 bch_journal_mark(c, &journal); 2061 bch_initial_gc_finish(c); 2062 pr_debug("btree_check() done\n"); 2063 2064 /* 2065 * bcache_journal_next() can't happen sooner, or 2066 * btree_gc_finish() will give spurious errors about last_gc > 2067 * gc_gen - this is a hack but oh well. 2068 */ 2069 bch_journal_next(&c->journal); 2070 2071 err = "error starting allocator thread"; 2072 if (bch_cache_allocator_start(ca)) 2073 goto err; 2074 2075 /* 2076 * First place it's safe to allocate: btree_check() and 2077 * btree_gc_finish() have to run before we have buckets to 2078 * allocate, and bch_bucket_alloc_set() might cause a journal 2079 * entry to be written so bcache_journal_next() has to be called 2080 * first. 2081 * 2082 * If the uuids were in the old format we have to rewrite them 2083 * before the next journal entry is written: 2084 */ 2085 if (j->version < BCACHE_JSET_VERSION_UUID) 2086 __uuid_write(c); 2087 2088 err = "bcache: replay journal failed"; 2089 if (bch_journal_replay(c, &journal)) 2090 goto err; 2091 } else { 2092 unsigned int j; 2093 2094 pr_notice("invalidating existing data\n"); 2095 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 2096 2, SB_JOURNAL_BUCKETS); 2097 2098 for (j = 0; j < ca->sb.keys; j++) 2099 ca->sb.d[j] = ca->sb.first_bucket + j; 2100 2101 bch_initial_gc_finish(c); 2102 2103 err = "error starting allocator thread"; 2104 if (bch_cache_allocator_start(ca)) 2105 goto err; 2106 2107 mutex_lock(&c->bucket_lock); 2108 bch_prio_write(ca, true); 2109 mutex_unlock(&c->bucket_lock); 2110 2111 err = "cannot allocate new UUID bucket"; 2112 if (__uuid_write(c)) 2113 goto err; 2114 2115 err = "cannot allocate new btree root"; 2116 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2117 if (IS_ERR(c->root)) 2118 goto err; 2119 2120 mutex_lock(&c->root->write_lock); 2121 bkey_copy_key(&c->root->key, &MAX_KEY); 2122 bch_btree_node_write(c->root, &cl); 2123 mutex_unlock(&c->root->write_lock); 2124 2125 bch_btree_set_root(c->root); 2126 rw_unlock(true, c->root); 2127 2128 /* 2129 * We don't want to write the first journal entry until 2130 * everything is set up - fortunately journal entries won't be 2131 * written until the SET_CACHE_SYNC() here: 2132 */ 2133 SET_CACHE_SYNC(&c->cache->sb, true); 2134 2135 bch_journal_next(&c->journal); 2136 bch_journal_meta(c, &cl); 2137 } 2138 2139 err = "error starting gc thread"; 2140 if (bch_gc_thread_start(c)) 2141 goto err; 2142 2143 closure_sync(&cl); 2144 c->cache->sb.last_mount = (u32)ktime_get_real_seconds(); 2145 bcache_write_super(c); 2146 2147 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) 2148 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n"); 2149 2150 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2151 bch_cached_dev_attach(dc, c, NULL); 2152 2153 flash_devs_run(c); 2154 2155 bch_journal_space_reserve(&c->journal); 2156 set_bit(CACHE_SET_RUNNING, &c->flags); 2157 return 0; 2158err: 2159 while (!list_empty(&journal)) { 2160 l = list_first_entry(&journal, struct journal_replay, list); 2161 list_del(&l->list); 2162 kfree(l); 2163 } 2164 2165 closure_sync(&cl); 2166 2167 bch_cache_set_error(c, "%s", err); 2168 2169 return -EIO; 2170} 2171 2172static const char *register_cache_set(struct cache *ca) 2173{ 2174 char buf[12]; 2175 const char *err = "cannot allocate memory"; 2176 struct cache_set *c; 2177 2178 list_for_each_entry(c, &bch_cache_sets, list) 2179 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) { 2180 if (c->cache) 2181 return "duplicate cache set member"; 2182 2183 goto found; 2184 } 2185 2186 c = bch_cache_set_alloc(&ca->sb); 2187 if (!c) 2188 return err; 2189 2190 err = "error creating kobject"; 2191 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) || 2192 kobject_add(&c->internal, &c->kobj, "internal")) 2193 goto err; 2194 2195 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2196 goto err; 2197 2198 bch_debug_init_cache_set(c); 2199 2200 list_add(&c->list, &bch_cache_sets); 2201found: 2202 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2203 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2204 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2205 goto err; 2206 2207 kobject_get(&ca->kobj); 2208 ca->set = c; 2209 ca->set->cache = ca; 2210 2211 err = "failed to run cache set"; 2212 if (run_cache_set(c) < 0) 2213 goto err; 2214 2215 return NULL; 2216err: 2217 bch_cache_set_unregister(c); 2218 return err; 2219} 2220 2221/* Cache device */ 2222 2223/* When ca->kobj released */ 2224void bch_cache_release(struct kobject *kobj) 2225{ 2226 struct cache *ca = container_of(kobj, struct cache, kobj); 2227 unsigned int i; 2228 2229 if (ca->set) { 2230 BUG_ON(ca->set->cache != ca); 2231 ca->set->cache = NULL; 2232 } 2233 2234 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb))); 2235 kfree(ca->prio_buckets); 2236 vfree(ca->buckets); 2237 2238 free_heap(&ca->heap); 2239 free_fifo(&ca->free_inc); 2240 2241 for (i = 0; i < RESERVE_NR; i++) 2242 free_fifo(&ca->free[i]); 2243 2244 if (ca->sb_disk) 2245 put_page(virt_to_page(ca->sb_disk)); 2246 2247 if (!IS_ERR_OR_NULL(ca->bdev)) 2248 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2249 2250 kfree(ca); 2251 module_put(THIS_MODULE); 2252} 2253 2254static int cache_alloc(struct cache *ca) 2255{ 2256 size_t free; 2257 size_t btree_buckets; 2258 struct bucket *b; 2259 int ret = -ENOMEM; 2260 const char *err = NULL; 2261 2262 __module_get(THIS_MODULE); 2263 kobject_init(&ca->kobj, &bch_cache_ktype); 2264 2265 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2266 2267 /* 2268 * when ca->sb.njournal_buckets is not zero, journal exists, 2269 * and in bch_journal_replay(), tree node may split, 2270 * so bucket of RESERVE_BTREE type is needed, 2271 * the worst situation is all journal buckets are valid journal, 2272 * and all the keys need to replay, 2273 * so the number of RESERVE_BTREE type buckets should be as much 2274 * as journal buckets 2275 */ 2276 btree_buckets = ca->sb.njournal_buckets ?: 8; 2277 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2278 if (!free) { 2279 ret = -EPERM; 2280 err = "ca->sb.nbuckets is too small"; 2281 goto err_free; 2282 } 2283 2284 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2285 GFP_KERNEL)) { 2286 err = "ca->free[RESERVE_BTREE] alloc failed"; 2287 goto err_btree_alloc; 2288 } 2289 2290 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2291 GFP_KERNEL)) { 2292 err = "ca->free[RESERVE_PRIO] alloc failed"; 2293 goto err_prio_alloc; 2294 } 2295 2296 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2297 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2298 goto err_movinggc_alloc; 2299 } 2300 2301 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2302 err = "ca->free[RESERVE_NONE] alloc failed"; 2303 goto err_none_alloc; 2304 } 2305 2306 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2307 err = "ca->free_inc alloc failed"; 2308 goto err_free_inc_alloc; 2309 } 2310 2311 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2312 err = "ca->heap alloc failed"; 2313 goto err_heap_alloc; 2314 } 2315 2316 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2317 ca->sb.nbuckets)); 2318 if (!ca->buckets) { 2319 err = "ca->buckets alloc failed"; 2320 goto err_buckets_alloc; 2321 } 2322 2323 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2324 prio_buckets(ca), 2), 2325 GFP_KERNEL); 2326 if (!ca->prio_buckets) { 2327 err = "ca->prio_buckets alloc failed"; 2328 goto err_prio_buckets_alloc; 2329 } 2330 2331 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb); 2332 if (!ca->disk_buckets) { 2333 err = "ca->disk_buckets alloc failed"; 2334 goto err_disk_buckets_alloc; 2335 } 2336 2337 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2338 2339 for_each_bucket(b, ca) 2340 atomic_set(&b->pin, 0); 2341 return 0; 2342 2343err_disk_buckets_alloc: 2344 kfree(ca->prio_buckets); 2345err_prio_buckets_alloc: 2346 vfree(ca->buckets); 2347err_buckets_alloc: 2348 free_heap(&ca->heap); 2349err_heap_alloc: 2350 free_fifo(&ca->free_inc); 2351err_free_inc_alloc: 2352 free_fifo(&ca->free[RESERVE_NONE]); 2353err_none_alloc: 2354 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2355err_movinggc_alloc: 2356 free_fifo(&ca->free[RESERVE_PRIO]); 2357err_prio_alloc: 2358 free_fifo(&ca->free[RESERVE_BTREE]); 2359err_btree_alloc: 2360err_free: 2361 module_put(THIS_MODULE); 2362 if (err) 2363 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2364 return ret; 2365} 2366 2367static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2368 struct block_device *bdev, struct cache *ca) 2369{ 2370 const char *err = NULL; /* must be set for any error case */ 2371 int ret = 0; 2372 2373 bdevname(bdev, ca->cache_dev_name); 2374 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2375 ca->bdev = bdev; 2376 ca->bdev->bd_holder = ca; 2377 ca->sb_disk = sb_disk; 2378 2379 if (blk_queue_discard(bdev_get_queue(bdev))) 2380 ca->discard = CACHE_DISCARD(&ca->sb); 2381 2382 ret = cache_alloc(ca); 2383 if (ret != 0) { 2384 /* 2385 * If we failed here, it means ca->kobj is not initialized yet, 2386 * kobject_put() won't be called and there is no chance to 2387 * call blkdev_put() to bdev in bch_cache_release(). So we 2388 * explicitly call blkdev_put() here. 2389 */ 2390 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2391 if (ret == -ENOMEM) 2392 err = "cache_alloc(): -ENOMEM"; 2393 else if (ret == -EPERM) 2394 err = "cache_alloc(): cache device is too small"; 2395 else 2396 err = "cache_alloc(): unknown error"; 2397 goto err; 2398 } 2399 2400 if (kobject_add(&ca->kobj, 2401 &part_to_dev(bdev->bd_part)->kobj, 2402 "bcache")) { 2403 err = "error calling kobject_add"; 2404 ret = -ENOMEM; 2405 goto out; 2406 } 2407 2408 mutex_lock(&bch_register_lock); 2409 err = register_cache_set(ca); 2410 mutex_unlock(&bch_register_lock); 2411 2412 if (err) { 2413 ret = -ENODEV; 2414 goto out; 2415 } 2416 2417 pr_info("registered cache device %s\n", ca->cache_dev_name); 2418 2419out: 2420 kobject_put(&ca->kobj); 2421 2422err: 2423 if (err) 2424 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2425 2426 return ret; 2427} 2428 2429/* Global interfaces/init */ 2430 2431static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2432 const char *buffer, size_t size); 2433static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2434 struct kobj_attribute *attr, 2435 const char *buffer, size_t size); 2436 2437kobj_attribute_write(register, register_bcache); 2438kobj_attribute_write(register_quiet, register_bcache); 2439kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2440 2441static bool bch_is_open_backing(struct block_device *bdev) 2442{ 2443 struct cache_set *c, *tc; 2444 struct cached_dev *dc, *t; 2445 2446 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2447 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2448 if (dc->bdev == bdev) 2449 return true; 2450 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2451 if (dc->bdev == bdev) 2452 return true; 2453 return false; 2454} 2455 2456static bool bch_is_open_cache(struct block_device *bdev) 2457{ 2458 struct cache_set *c, *tc; 2459 2460 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2461 struct cache *ca = c->cache; 2462 2463 if (ca->bdev == bdev) 2464 return true; 2465 } 2466 2467 return false; 2468} 2469 2470static bool bch_is_open(struct block_device *bdev) 2471{ 2472 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev); 2473} 2474 2475struct async_reg_args { 2476 struct delayed_work reg_work; 2477 char *path; 2478 struct cache_sb *sb; 2479 struct cache_sb_disk *sb_disk; 2480 struct block_device *bdev; 2481}; 2482 2483static void register_bdev_worker(struct work_struct *work) 2484{ 2485 int fail = false; 2486 struct async_reg_args *args = 2487 container_of(work, struct async_reg_args, reg_work.work); 2488 struct cached_dev *dc; 2489 2490 dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2491 if (!dc) { 2492 fail = true; 2493 put_page(virt_to_page(args->sb_disk)); 2494 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2495 goto out; 2496 } 2497 2498 mutex_lock(&bch_register_lock); 2499 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) 2500 fail = true; 2501 mutex_unlock(&bch_register_lock); 2502 2503out: 2504 if (fail) 2505 pr_info("error %s: fail to register backing device\n", 2506 args->path); 2507 kfree(args->sb); 2508 kfree(args->path); 2509 kfree(args); 2510 module_put(THIS_MODULE); 2511} 2512 2513static void register_cache_worker(struct work_struct *work) 2514{ 2515 int fail = false; 2516 struct async_reg_args *args = 2517 container_of(work, struct async_reg_args, reg_work.work); 2518 struct cache *ca; 2519 2520 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2521 if (!ca) { 2522 fail = true; 2523 put_page(virt_to_page(args->sb_disk)); 2524 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2525 goto out; 2526 } 2527 2528 /* blkdev_put() will be called in bch_cache_release() */ 2529 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) 2530 fail = true; 2531 2532out: 2533 if (fail) 2534 pr_info("error %s: fail to register cache device\n", 2535 args->path); 2536 kfree(args->sb); 2537 kfree(args->path); 2538 kfree(args); 2539 module_put(THIS_MODULE); 2540} 2541 2542static void register_device_aync(struct async_reg_args *args) 2543{ 2544 if (SB_IS_BDEV(args->sb)) 2545 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2546 else 2547 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2548 2549 /* 10 jiffies is enough for a delay */ 2550 queue_delayed_work(system_wq, &args->reg_work, 10); 2551} 2552 2553static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2554 const char *buffer, size_t size) 2555{ 2556 const char *err; 2557 char *path = NULL; 2558 struct cache_sb *sb; 2559 struct cache_sb_disk *sb_disk; 2560 struct block_device *bdev; 2561 ssize_t ret; 2562 bool async_registration = false; 2563 2564#ifdef CONFIG_BCACHE_ASYNC_REGISTRATION 2565 async_registration = true; 2566#endif 2567 2568 ret = -EBUSY; 2569 err = "failed to reference bcache module"; 2570 if (!try_module_get(THIS_MODULE)) 2571 goto out; 2572 2573 /* For latest state of bcache_is_reboot */ 2574 smp_mb(); 2575 err = "bcache is in reboot"; 2576 if (bcache_is_reboot) 2577 goto out_module_put; 2578 2579 ret = -ENOMEM; 2580 err = "cannot allocate memory"; 2581 path = kstrndup(buffer, size, GFP_KERNEL); 2582 if (!path) 2583 goto out_module_put; 2584 2585 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2586 if (!sb) 2587 goto out_free_path; 2588 2589 ret = -EINVAL; 2590 err = "failed to open device"; 2591 bdev = blkdev_get_by_path(strim(path), 2592 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2593 sb); 2594 if (IS_ERR(bdev)) { 2595 if (bdev == ERR_PTR(-EBUSY)) { 2596 bdev = lookup_bdev(strim(path)); 2597 mutex_lock(&bch_register_lock); 2598 if (!IS_ERR(bdev) && bch_is_open(bdev)) 2599 err = "device already registered"; 2600 else 2601 err = "device busy"; 2602 mutex_unlock(&bch_register_lock); 2603 if (!IS_ERR(bdev)) 2604 bdput(bdev); 2605 if (attr == &ksysfs_register_quiet) 2606 goto done; 2607 } 2608 goto out_free_sb; 2609 } 2610 2611 err = "failed to set blocksize"; 2612 if (set_blocksize(bdev, 4096)) 2613 goto out_blkdev_put; 2614 2615 err = read_super(sb, bdev, &sb_disk); 2616 if (err) 2617 goto out_blkdev_put; 2618 2619 err = "failed to register device"; 2620 2621 if (async_registration) { 2622 /* register in asynchronous way */ 2623 struct async_reg_args *args = 2624 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2625 2626 if (!args) { 2627 ret = -ENOMEM; 2628 err = "cannot allocate memory"; 2629 goto out_put_sb_page; 2630 } 2631 2632 args->path = path; 2633 args->sb = sb; 2634 args->sb_disk = sb_disk; 2635 args->bdev = bdev; 2636 register_device_aync(args); 2637 /* No wait and returns to user space */ 2638 goto async_done; 2639 } 2640 2641 if (SB_IS_BDEV(sb)) { 2642 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2643 2644 if (!dc) 2645 goto out_put_sb_page; 2646 2647 mutex_lock(&bch_register_lock); 2648 ret = register_bdev(sb, sb_disk, bdev, dc); 2649 mutex_unlock(&bch_register_lock); 2650 /* blkdev_put() will be called in cached_dev_free() */ 2651 if (ret < 0) 2652 goto out_free_sb; 2653 } else { 2654 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2655 2656 if (!ca) 2657 goto out_put_sb_page; 2658 2659 /* blkdev_put() will be called in bch_cache_release() */ 2660 if (register_cache(sb, sb_disk, bdev, ca) != 0) 2661 goto out_free_sb; 2662 } 2663 2664done: 2665 kfree(sb); 2666 kfree(path); 2667 module_put(THIS_MODULE); 2668async_done: 2669 return size; 2670 2671out_put_sb_page: 2672 put_page(virt_to_page(sb_disk)); 2673out_blkdev_put: 2674 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2675out_free_sb: 2676 kfree(sb); 2677out_free_path: 2678 kfree(path); 2679 path = NULL; 2680out_module_put: 2681 module_put(THIS_MODULE); 2682out: 2683 pr_info("error %s: %s\n", path?path:"", err); 2684 return ret; 2685} 2686 2687 2688struct pdev { 2689 struct list_head list; 2690 struct cached_dev *dc; 2691}; 2692 2693static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2694 struct kobj_attribute *attr, 2695 const char *buffer, 2696 size_t size) 2697{ 2698 LIST_HEAD(pending_devs); 2699 ssize_t ret = size; 2700 struct cached_dev *dc, *tdc; 2701 struct pdev *pdev, *tpdev; 2702 struct cache_set *c, *tc; 2703 2704 mutex_lock(&bch_register_lock); 2705 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2706 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2707 if (!pdev) 2708 break; 2709 pdev->dc = dc; 2710 list_add(&pdev->list, &pending_devs); 2711 } 2712 2713 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2714 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2715 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2716 char *set_uuid = c->set_uuid; 2717 2718 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2719 list_del(&pdev->list); 2720 kfree(pdev); 2721 break; 2722 } 2723 } 2724 } 2725 mutex_unlock(&bch_register_lock); 2726 2727 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2728 pr_info("delete pdev %p\n", pdev); 2729 list_del(&pdev->list); 2730 bcache_device_stop(&pdev->dc->disk); 2731 kfree(pdev); 2732 } 2733 2734 return ret; 2735} 2736 2737static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2738{ 2739 if (bcache_is_reboot) 2740 return NOTIFY_DONE; 2741 2742 if (code == SYS_DOWN || 2743 code == SYS_HALT || 2744 code == SYS_POWER_OFF) { 2745 DEFINE_WAIT(wait); 2746 unsigned long start = jiffies; 2747 bool stopped = false; 2748 2749 struct cache_set *c, *tc; 2750 struct cached_dev *dc, *tdc; 2751 2752 mutex_lock(&bch_register_lock); 2753 2754 if (bcache_is_reboot) 2755 goto out; 2756 2757 /* New registration is rejected since now */ 2758 bcache_is_reboot = true; 2759 /* 2760 * Make registering caller (if there is) on other CPU 2761 * core know bcache_is_reboot set to true earlier 2762 */ 2763 smp_mb(); 2764 2765 if (list_empty(&bch_cache_sets) && 2766 list_empty(&uncached_devices)) 2767 goto out; 2768 2769 mutex_unlock(&bch_register_lock); 2770 2771 pr_info("Stopping all devices:\n"); 2772 2773 /* 2774 * The reason bch_register_lock is not held to call 2775 * bch_cache_set_stop() and bcache_device_stop() is to 2776 * avoid potential deadlock during reboot, because cache 2777 * set or bcache device stopping process will acqurie 2778 * bch_register_lock too. 2779 * 2780 * We are safe here because bcache_is_reboot sets to 2781 * true already, register_bcache() will reject new 2782 * registration now. bcache_is_reboot also makes sure 2783 * bcache_reboot() won't be re-entered on by other thread, 2784 * so there is no race in following list iteration by 2785 * list_for_each_entry_safe(). 2786 */ 2787 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2788 bch_cache_set_stop(c); 2789 2790 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2791 bcache_device_stop(&dc->disk); 2792 2793 2794 /* 2795 * Give an early chance for other kthreads and 2796 * kworkers to stop themselves 2797 */ 2798 schedule(); 2799 2800 /* What's a condition variable? */ 2801 while (1) { 2802 long timeout = start + 10 * HZ - jiffies; 2803 2804 mutex_lock(&bch_register_lock); 2805 stopped = list_empty(&bch_cache_sets) && 2806 list_empty(&uncached_devices); 2807 2808 if (timeout < 0 || stopped) 2809 break; 2810 2811 prepare_to_wait(&unregister_wait, &wait, 2812 TASK_UNINTERRUPTIBLE); 2813 2814 mutex_unlock(&bch_register_lock); 2815 schedule_timeout(timeout); 2816 } 2817 2818 finish_wait(&unregister_wait, &wait); 2819 2820 if (stopped) 2821 pr_info("All devices stopped\n"); 2822 else 2823 pr_notice("Timeout waiting for devices to be closed\n"); 2824out: 2825 mutex_unlock(&bch_register_lock); 2826 } 2827 2828 return NOTIFY_DONE; 2829} 2830 2831static struct notifier_block reboot = { 2832 .notifier_call = bcache_reboot, 2833 .priority = INT_MAX, /* before any real devices */ 2834}; 2835 2836static void bcache_exit(void) 2837{ 2838 bch_debug_exit(); 2839 bch_request_exit(); 2840 if (bcache_kobj) 2841 kobject_put(bcache_kobj); 2842 if (bcache_wq) 2843 destroy_workqueue(bcache_wq); 2844 if (bch_journal_wq) 2845 destroy_workqueue(bch_journal_wq); 2846 if (bch_flush_wq) 2847 destroy_workqueue(bch_flush_wq); 2848 bch_btree_exit(); 2849 2850 if (bcache_major) 2851 unregister_blkdev(bcache_major, "bcache"); 2852 unregister_reboot_notifier(&reboot); 2853 mutex_destroy(&bch_register_lock); 2854} 2855 2856/* Check and fixup module parameters */ 2857static void check_module_parameters(void) 2858{ 2859 if (bch_cutoff_writeback_sync == 0) 2860 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2861 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2862 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2863 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2864 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2865 } 2866 2867 if (bch_cutoff_writeback == 0) 2868 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2869 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2870 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2871 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2872 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2873 } 2874 2875 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2876 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2877 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2878 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2879 } 2880} 2881 2882static int __init bcache_init(void) 2883{ 2884 static const struct attribute *files[] = { 2885 &ksysfs_register.attr, 2886 &ksysfs_register_quiet.attr, 2887 &ksysfs_pendings_cleanup.attr, 2888 NULL 2889 }; 2890 2891 check_module_parameters(); 2892 2893 mutex_init(&bch_register_lock); 2894 init_waitqueue_head(&unregister_wait); 2895 register_reboot_notifier(&reboot); 2896 2897 bcache_major = register_blkdev(0, "bcache"); 2898 if (bcache_major < 0) { 2899 unregister_reboot_notifier(&reboot); 2900 mutex_destroy(&bch_register_lock); 2901 return bcache_major; 2902 } 2903 2904 if (bch_btree_init()) 2905 goto err; 2906 2907 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2908 if (!bcache_wq) 2909 goto err; 2910 2911 /* 2912 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons: 2913 * 2914 * 1. It used `system_wq` before which also does no memory reclaim. 2915 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and 2916 * reduced throughput can be observed. 2917 * 2918 * We still want to user our own queue to not congest the `system_wq`. 2919 */ 2920 bch_flush_wq = alloc_workqueue("bch_flush", 0, 0); 2921 if (!bch_flush_wq) 2922 goto err; 2923 2924 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2925 if (!bch_journal_wq) 2926 goto err; 2927 2928 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2929 if (!bcache_kobj) 2930 goto err; 2931 2932 if (bch_request_init() || 2933 sysfs_create_files(bcache_kobj, files)) 2934 goto err; 2935 2936 bch_debug_init(); 2937 closure_debug_init(); 2938 2939 bcache_is_reboot = false; 2940 2941 return 0; 2942err: 2943 bcache_exit(); 2944 return -ENOMEM; 2945} 2946 2947/* 2948 * Module hooks 2949 */ 2950module_exit(bcache_exit); 2951module_init(bcache_init); 2952 2953module_param(bch_cutoff_writeback, uint, 0); 2954MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2955 2956module_param(bch_cutoff_writeback_sync, uint, 0); 2957MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2958 2959MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2960MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2961MODULE_LICENSE("GPL"); 2962