1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
13#include "request.h"
14#include "writeback.h"
15
16#include <linux/module.h>
17#include <linux/hash.h>
18#include <linux/random.h>
19#include <linux/backing-dev.h>
20
21#include <trace/events/bcache.h>
22
23#define CUTOFF_CACHE_ADD	95
24#define CUTOFF_CACHE_READA	90
25
26struct kmem_cache *bch_search_cache;
27
28static void bch_data_insert_start(struct closure *cl);
29
30static unsigned int cache_mode(struct cached_dev *dc)
31{
32	return BDEV_CACHE_MODE(&dc->sb);
33}
34
35static bool verify(struct cached_dev *dc)
36{
37	return dc->verify;
38}
39
40static void bio_csum(struct bio *bio, struct bkey *k)
41{
42	struct bio_vec bv;
43	struct bvec_iter iter;
44	uint64_t csum = 0;
45
46	bio_for_each_segment(bv, bio, iter) {
47		void *d = kmap(bv.bv_page) + bv.bv_offset;
48
49		csum = bch_crc64_update(csum, d, bv.bv_len);
50		kunmap(bv.bv_page);
51	}
52
53	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
54}
55
56/* Insert data into cache */
57
58static void bch_data_insert_keys(struct closure *cl)
59{
60	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
61	atomic_t *journal_ref = NULL;
62	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
63	int ret;
64
65	if (!op->replace)
66		journal_ref = bch_journal(op->c, &op->insert_keys,
67					  op->flush_journal ? cl : NULL);
68
69	ret = bch_btree_insert(op->c, &op->insert_keys,
70			       journal_ref, replace_key);
71	if (ret == -ESRCH) {
72		op->replace_collision = true;
73	} else if (ret) {
74		op->status		= BLK_STS_RESOURCE;
75		op->insert_data_done	= true;
76	}
77
78	if (journal_ref)
79		atomic_dec_bug(journal_ref);
80
81	if (!op->insert_data_done) {
82		continue_at(cl, bch_data_insert_start, op->wq);
83		return;
84	}
85
86	bch_keylist_free(&op->insert_keys);
87	closure_return(cl);
88}
89
90static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
91			       struct cache_set *c)
92{
93	size_t oldsize = bch_keylist_nkeys(l);
94	size_t newsize = oldsize + u64s;
95
96	/*
97	 * The journalling code doesn't handle the case where the keys to insert
98	 * is bigger than an empty write: If we just return -ENOMEM here,
99	 * bch_data_insert_keys() will insert the keys created so far
100	 * and finish the rest when the keylist is empty.
101	 */
102	if (newsize * sizeof(uint64_t) > block_bytes(c->cache) - sizeof(struct jset))
103		return -ENOMEM;
104
105	return __bch_keylist_realloc(l, u64s);
106}
107
108static void bch_data_invalidate(struct closure *cl)
109{
110	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
111	struct bio *bio = op->bio;
112
113	pr_debug("invalidating %i sectors from %llu\n",
114		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
115
116	while (bio_sectors(bio)) {
117		unsigned int sectors = min(bio_sectors(bio),
118				       1U << (KEY_SIZE_BITS - 1));
119
120		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
121			goto out;
122
123		bio->bi_iter.bi_sector	+= sectors;
124		bio->bi_iter.bi_size	-= sectors << 9;
125
126		bch_keylist_add(&op->insert_keys,
127				&KEY(op->inode,
128				     bio->bi_iter.bi_sector,
129				     sectors));
130	}
131
132	op->insert_data_done = true;
133	/* get in bch_data_insert() */
134	bio_put(bio);
135out:
136	continue_at(cl, bch_data_insert_keys, op->wq);
137}
138
139static void bch_data_insert_error(struct closure *cl)
140{
141	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
142
143	/*
144	 * Our data write just errored, which means we've got a bunch of keys to
145	 * insert that point to data that wasn't successfully written.
146	 *
147	 * We don't have to insert those keys but we still have to invalidate
148	 * that region of the cache - so, if we just strip off all the pointers
149	 * from the keys we'll accomplish just that.
150	 */
151
152	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
153
154	while (src != op->insert_keys.top) {
155		struct bkey *n = bkey_next(src);
156
157		SET_KEY_PTRS(src, 0);
158		memmove(dst, src, bkey_bytes(src));
159
160		dst = bkey_next(dst);
161		src = n;
162	}
163
164	op->insert_keys.top = dst;
165
166	bch_data_insert_keys(cl);
167}
168
169static void bch_data_insert_endio(struct bio *bio)
170{
171	struct closure *cl = bio->bi_private;
172	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
173
174	if (bio->bi_status) {
175		/* TODO: We could try to recover from this. */
176		if (op->writeback)
177			op->status = bio->bi_status;
178		else if (!op->replace)
179			set_closure_fn(cl, bch_data_insert_error, op->wq);
180		else
181			set_closure_fn(cl, NULL, NULL);
182	}
183
184	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
185}
186
187static void bch_data_insert_start(struct closure *cl)
188{
189	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
190	struct bio *bio = op->bio, *n;
191
192	if (op->bypass)
193		return bch_data_invalidate(cl);
194
195	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
196		wake_up_gc(op->c);
197
198	/*
199	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
200	 * flush, it'll wait on the journal write.
201	 */
202	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
203
204	do {
205		unsigned int i;
206		struct bkey *k;
207		struct bio_set *split = &op->c->bio_split;
208
209		/* 1 for the device pointer and 1 for the chksum */
210		if (bch_keylist_realloc(&op->insert_keys,
211					3 + (op->csum ? 1 : 0),
212					op->c)) {
213			continue_at(cl, bch_data_insert_keys, op->wq);
214			return;
215		}
216
217		k = op->insert_keys.top;
218		bkey_init(k);
219		SET_KEY_INODE(k, op->inode);
220		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
221
222		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
223				       op->write_point, op->write_prio,
224				       op->writeback))
225			goto err;
226
227		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
228
229		n->bi_end_io	= bch_data_insert_endio;
230		n->bi_private	= cl;
231
232		if (op->writeback) {
233			SET_KEY_DIRTY(k, true);
234
235			for (i = 0; i < KEY_PTRS(k); i++)
236				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
237					    GC_MARK_DIRTY);
238		}
239
240		SET_KEY_CSUM(k, op->csum);
241		if (KEY_CSUM(k))
242			bio_csum(n, k);
243
244		trace_bcache_cache_insert(k);
245		bch_keylist_push(&op->insert_keys);
246
247		bio_set_op_attrs(n, REQ_OP_WRITE, 0);
248		bch_submit_bbio(n, op->c, k, 0);
249	} while (n != bio);
250
251	op->insert_data_done = true;
252	continue_at(cl, bch_data_insert_keys, op->wq);
253	return;
254err:
255	/* bch_alloc_sectors() blocks if s->writeback = true */
256	BUG_ON(op->writeback);
257
258	/*
259	 * But if it's not a writeback write we'd rather just bail out if
260	 * there aren't any buckets ready to write to - it might take awhile and
261	 * we might be starving btree writes for gc or something.
262	 */
263
264	if (!op->replace) {
265		/*
266		 * Writethrough write: We can't complete the write until we've
267		 * updated the index. But we don't want to delay the write while
268		 * we wait for buckets to be freed up, so just invalidate the
269		 * rest of the write.
270		 */
271		op->bypass = true;
272		return bch_data_invalidate(cl);
273	} else {
274		/*
275		 * From a cache miss, we can just insert the keys for the data
276		 * we have written or bail out if we didn't do anything.
277		 */
278		op->insert_data_done = true;
279		bio_put(bio);
280
281		if (!bch_keylist_empty(&op->insert_keys))
282			continue_at(cl, bch_data_insert_keys, op->wq);
283		else
284			closure_return(cl);
285	}
286}
287
288/**
289 * bch_data_insert - stick some data in the cache
290 * @cl: closure pointer.
291 *
292 * This is the starting point for any data to end up in a cache device; it could
293 * be from a normal write, or a writeback write, or a write to a flash only
294 * volume - it's also used by the moving garbage collector to compact data in
295 * mostly empty buckets.
296 *
297 * It first writes the data to the cache, creating a list of keys to be inserted
298 * (if the data had to be fragmented there will be multiple keys); after the
299 * data is written it calls bch_journal, and after the keys have been added to
300 * the next journal write they're inserted into the btree.
301 *
302 * It inserts the data in op->bio; bi_sector is used for the key offset,
303 * and op->inode is used for the key inode.
304 *
305 * If op->bypass is true, instead of inserting the data it invalidates the
306 * region of the cache represented by op->bio and op->inode.
307 */
308void bch_data_insert(struct closure *cl)
309{
310	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
311
312	trace_bcache_write(op->c, op->inode, op->bio,
313			   op->writeback, op->bypass);
314
315	bch_keylist_init(&op->insert_keys);
316	bio_get(op->bio);
317	bch_data_insert_start(cl);
318}
319
320/*
321 * Congested?  Return 0 (not congested) or the limit (in sectors)
322 * beyond which we should bypass the cache due to congestion.
323 */
324unsigned int bch_get_congested(const struct cache_set *c)
325{
326	int i;
327
328	if (!c->congested_read_threshold_us &&
329	    !c->congested_write_threshold_us)
330		return 0;
331
332	i = (local_clock_us() - c->congested_last_us) / 1024;
333	if (i < 0)
334		return 0;
335
336	i += atomic_read(&c->congested);
337	if (i >= 0)
338		return 0;
339
340	i += CONGESTED_MAX;
341
342	if (i > 0)
343		i = fract_exp_two(i, 6);
344
345	i -= hweight32(get_random_u32());
346
347	return i > 0 ? i : 1;
348}
349
350static void add_sequential(struct task_struct *t)
351{
352	ewma_add(t->sequential_io_avg,
353		 t->sequential_io, 8, 0);
354
355	t->sequential_io = 0;
356}
357
358static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
359{
360	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
361}
362
363static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
364{
365	struct cache_set *c = dc->disk.c;
366	unsigned int mode = cache_mode(dc);
367	unsigned int sectors, congested;
368	struct task_struct *task = current;
369	struct io *i;
370
371	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
372	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
373	    (bio_op(bio) == REQ_OP_DISCARD))
374		goto skip;
375
376	if (mode == CACHE_MODE_NONE ||
377	    (mode == CACHE_MODE_WRITEAROUND &&
378	     op_is_write(bio_op(bio))))
379		goto skip;
380
381	/*
382	 * If the bio is for read-ahead or background IO, bypass it or
383	 * not depends on the following situations,
384	 * - If the IO is for meta data, always cache it and no bypass
385	 * - If the IO is not meta data, check dc->cache_reada_policy,
386	 *      BCH_CACHE_READA_ALL: cache it and not bypass
387	 *      BCH_CACHE_READA_META_ONLY: not cache it and bypass
388	 * That is, read-ahead request for metadata always get cached
389	 * (eg, for gfs2 or xfs).
390	 */
391	if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
392		if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
393		    (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
394			goto skip;
395	}
396
397	if (bio->bi_iter.bi_sector & (c->cache->sb.block_size - 1) ||
398	    bio_sectors(bio) & (c->cache->sb.block_size - 1)) {
399		pr_debug("skipping unaligned io\n");
400		goto skip;
401	}
402
403	if (bypass_torture_test(dc)) {
404		if ((get_random_int() & 3) == 3)
405			goto skip;
406		else
407			goto rescale;
408	}
409
410	congested = bch_get_congested(c);
411	if (!congested && !dc->sequential_cutoff)
412		goto rescale;
413
414	spin_lock(&dc->io_lock);
415
416	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
417		if (i->last == bio->bi_iter.bi_sector &&
418		    time_before(jiffies, i->jiffies))
419			goto found;
420
421	i = list_first_entry(&dc->io_lru, struct io, lru);
422
423	add_sequential(task);
424	i->sequential = 0;
425found:
426	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
427		i->sequential	+= bio->bi_iter.bi_size;
428
429	i->last			 = bio_end_sector(bio);
430	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
431	task->sequential_io	 = i->sequential;
432
433	hlist_del(&i->hash);
434	hlist_add_head(&i->hash, iohash(dc, i->last));
435	list_move_tail(&i->lru, &dc->io_lru);
436
437	spin_unlock(&dc->io_lock);
438
439	sectors = max(task->sequential_io,
440		      task->sequential_io_avg) >> 9;
441
442	if (dc->sequential_cutoff &&
443	    sectors >= dc->sequential_cutoff >> 9) {
444		trace_bcache_bypass_sequential(bio);
445		goto skip;
446	}
447
448	if (congested && sectors >= congested) {
449		trace_bcache_bypass_congested(bio);
450		goto skip;
451	}
452
453rescale:
454	bch_rescale_priorities(c, bio_sectors(bio));
455	return false;
456skip:
457	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
458	return true;
459}
460
461/* Cache lookup */
462
463struct search {
464	/* Stack frame for bio_complete */
465	struct closure		cl;
466
467	struct bbio		bio;
468	struct bio		*orig_bio;
469	struct bio		*cache_miss;
470	struct bcache_device	*d;
471
472	unsigned int		insert_bio_sectors;
473	unsigned int		recoverable:1;
474	unsigned int		write:1;
475	unsigned int		read_dirty_data:1;
476	unsigned int		cache_missed:1;
477
478	struct hd_struct	*part;
479	unsigned long		start_time;
480
481	struct btree_op		op;
482	struct data_insert_op	iop;
483};
484
485static void bch_cache_read_endio(struct bio *bio)
486{
487	struct bbio *b = container_of(bio, struct bbio, bio);
488	struct closure *cl = bio->bi_private;
489	struct search *s = container_of(cl, struct search, cl);
490
491	/*
492	 * If the bucket was reused while our bio was in flight, we might have
493	 * read the wrong data. Set s->error but not error so it doesn't get
494	 * counted against the cache device, but we'll still reread the data
495	 * from the backing device.
496	 */
497
498	if (bio->bi_status)
499		s->iop.status = bio->bi_status;
500	else if (!KEY_DIRTY(&b->key) &&
501		 ptr_stale(s->iop.c, &b->key, 0)) {
502		atomic_long_inc(&s->iop.c->cache_read_races);
503		s->iop.status = BLK_STS_IOERR;
504	}
505
506	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
507}
508
509/*
510 * Read from a single key, handling the initial cache miss if the key starts in
511 * the middle of the bio
512 */
513static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
514{
515	struct search *s = container_of(op, struct search, op);
516	struct bio *n, *bio = &s->bio.bio;
517	struct bkey *bio_key;
518	unsigned int ptr;
519
520	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
521		return MAP_CONTINUE;
522
523	if (KEY_INODE(k) != s->iop.inode ||
524	    KEY_START(k) > bio->bi_iter.bi_sector) {
525		unsigned int bio_sectors = bio_sectors(bio);
526		unsigned int sectors = KEY_INODE(k) == s->iop.inode
527			? min_t(uint64_t, INT_MAX,
528				KEY_START(k) - bio->bi_iter.bi_sector)
529			: INT_MAX;
530		int ret = s->d->cache_miss(b, s, bio, sectors);
531
532		if (ret != MAP_CONTINUE)
533			return ret;
534
535		/* if this was a complete miss we shouldn't get here */
536		BUG_ON(bio_sectors <= sectors);
537	}
538
539	if (!KEY_SIZE(k))
540		return MAP_CONTINUE;
541
542	/* XXX: figure out best pointer - for multiple cache devices */
543	ptr = 0;
544
545	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
546
547	if (KEY_DIRTY(k))
548		s->read_dirty_data = true;
549
550	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
551				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
552			   GFP_NOIO, &s->d->bio_split);
553
554	bio_key = &container_of(n, struct bbio, bio)->key;
555	bch_bkey_copy_single_ptr(bio_key, k, ptr);
556
557	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
558	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
559
560	n->bi_end_io	= bch_cache_read_endio;
561	n->bi_private	= &s->cl;
562
563	/*
564	 * The bucket we're reading from might be reused while our bio
565	 * is in flight, and we could then end up reading the wrong
566	 * data.
567	 *
568	 * We guard against this by checking (in cache_read_endio()) if
569	 * the pointer is stale again; if so, we treat it as an error
570	 * and reread from the backing device (but we don't pass that
571	 * error up anywhere).
572	 */
573
574	__bch_submit_bbio(n, b->c);
575	return n == bio ? MAP_DONE : MAP_CONTINUE;
576}
577
578static void cache_lookup(struct closure *cl)
579{
580	struct search *s = container_of(cl, struct search, iop.cl);
581	struct bio *bio = &s->bio.bio;
582	struct cached_dev *dc;
583	int ret;
584
585	bch_btree_op_init(&s->op, -1);
586
587	ret = bch_btree_map_keys(&s->op, s->iop.c,
588				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
589				 cache_lookup_fn, MAP_END_KEY);
590	if (ret == -EAGAIN) {
591		continue_at(cl, cache_lookup, bcache_wq);
592		return;
593	}
594
595	/*
596	 * We might meet err when searching the btree, If that happens, we will
597	 * get negative ret, in this scenario we should not recover data from
598	 * backing device (when cache device is dirty) because we don't know
599	 * whether bkeys the read request covered are all clean.
600	 *
601	 * And after that happened, s->iop.status is still its initial value
602	 * before we submit s->bio.bio
603	 */
604	if (ret < 0) {
605		BUG_ON(ret == -EINTR);
606		if (s->d && s->d->c &&
607				!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
608			dc = container_of(s->d, struct cached_dev, disk);
609			if (dc && atomic_read(&dc->has_dirty))
610				s->recoverable = false;
611		}
612		if (!s->iop.status)
613			s->iop.status = BLK_STS_IOERR;
614	}
615
616	closure_return(cl);
617}
618
619/* Common code for the make_request functions */
620
621static void request_endio(struct bio *bio)
622{
623	struct closure *cl = bio->bi_private;
624
625	if (bio->bi_status) {
626		struct search *s = container_of(cl, struct search, cl);
627
628		s->iop.status = bio->bi_status;
629		/* Only cache read errors are recoverable */
630		s->recoverable = false;
631	}
632
633	bio_put(bio);
634	closure_put(cl);
635}
636
637static void backing_request_endio(struct bio *bio)
638{
639	struct closure *cl = bio->bi_private;
640
641	if (bio->bi_status) {
642		struct search *s = container_of(cl, struct search, cl);
643		struct cached_dev *dc = container_of(s->d,
644						     struct cached_dev, disk);
645		/*
646		 * If a bio has REQ_PREFLUSH for writeback mode, it is
647		 * speically assembled in cached_dev_write() for a non-zero
648		 * write request which has REQ_PREFLUSH. we don't set
649		 * s->iop.status by this failure, the status will be decided
650		 * by result of bch_data_insert() operation.
651		 */
652		if (unlikely(s->iop.writeback &&
653			     bio->bi_opf & REQ_PREFLUSH)) {
654			pr_err("Can't flush %s: returned bi_status %i\n",
655				dc->backing_dev_name, bio->bi_status);
656		} else {
657			/* set to orig_bio->bi_status in bio_complete() */
658			s->iop.status = bio->bi_status;
659		}
660		s->recoverable = false;
661		/* should count I/O error for backing device here */
662		bch_count_backing_io_errors(dc, bio);
663	}
664
665	bio_put(bio);
666	closure_put(cl);
667}
668
669static void bio_complete(struct search *s)
670{
671	if (s->orig_bio) {
672		/* Count on bcache device */
673		part_end_io_acct(s->part, s->orig_bio, s->start_time);
674
675		trace_bcache_request_end(s->d, s->orig_bio);
676		s->orig_bio->bi_status = s->iop.status;
677		bio_endio(s->orig_bio);
678		s->orig_bio = NULL;
679	}
680}
681
682static void do_bio_hook(struct search *s,
683			struct bio *orig_bio,
684			bio_end_io_t *end_io_fn)
685{
686	struct bio *bio = &s->bio.bio;
687
688	bio_init(bio, NULL, 0);
689	__bio_clone_fast(bio, orig_bio);
690	/*
691	 * bi_end_io can be set separately somewhere else, e.g. the
692	 * variants in,
693	 * - cache_bio->bi_end_io from cached_dev_cache_miss()
694	 * - n->bi_end_io from cache_lookup_fn()
695	 */
696	bio->bi_end_io		= end_io_fn;
697	bio->bi_private		= &s->cl;
698
699	bio_cnt_set(bio, 3);
700}
701
702static void search_free(struct closure *cl)
703{
704	struct search *s = container_of(cl, struct search, cl);
705
706	atomic_dec(&s->iop.c->search_inflight);
707
708	if (s->iop.bio)
709		bio_put(s->iop.bio);
710
711	bio_complete(s);
712	closure_debug_destroy(cl);
713	mempool_free(s, &s->iop.c->search);
714}
715
716static inline struct search *search_alloc(struct bio *bio,
717					  struct bcache_device *d)
718{
719	struct search *s;
720
721	s = mempool_alloc(&d->c->search, GFP_NOIO);
722
723	closure_init(&s->cl, NULL);
724	do_bio_hook(s, bio, request_endio);
725	atomic_inc(&d->c->search_inflight);
726
727	s->orig_bio		= bio;
728	s->cache_miss		= NULL;
729	s->cache_missed		= 0;
730	s->d			= d;
731	s->recoverable		= 1;
732	s->write		= op_is_write(bio_op(bio));
733	s->read_dirty_data	= 0;
734	/* Count on the bcache device */
735	s->start_time		= part_start_io_acct(d->disk, &s->part, bio);
736	s->iop.c		= d->c;
737	s->iop.bio		= NULL;
738	s->iop.inode		= d->id;
739	s->iop.write_point	= hash_long((unsigned long) current, 16);
740	s->iop.write_prio	= 0;
741	s->iop.status		= 0;
742	s->iop.flags		= 0;
743	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
744	s->iop.wq		= bcache_wq;
745
746	return s;
747}
748
749/* Cached devices */
750
751static void cached_dev_bio_complete(struct closure *cl)
752{
753	struct search *s = container_of(cl, struct search, cl);
754	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
755
756	cached_dev_put(dc);
757	search_free(cl);
758}
759
760/* Process reads */
761
762static void cached_dev_read_error_done(struct closure *cl)
763{
764	struct search *s = container_of(cl, struct search, cl);
765
766	if (s->iop.replace_collision)
767		bch_mark_cache_miss_collision(s->iop.c, s->d);
768
769	if (s->iop.bio)
770		bio_free_pages(s->iop.bio);
771
772	cached_dev_bio_complete(cl);
773}
774
775static void cached_dev_read_error(struct closure *cl)
776{
777	struct search *s = container_of(cl, struct search, cl);
778	struct bio *bio = &s->bio.bio;
779
780	/*
781	 * If read request hit dirty data (s->read_dirty_data is true),
782	 * then recovery a failed read request from cached device may
783	 * get a stale data back. So read failure recovery is only
784	 * permitted when read request hit clean data in cache device,
785	 * or when cache read race happened.
786	 */
787	if (s->recoverable && !s->read_dirty_data) {
788		/* Retry from the backing device: */
789		trace_bcache_read_retry(s->orig_bio);
790
791		s->iop.status = 0;
792		do_bio_hook(s, s->orig_bio, backing_request_endio);
793
794		/* XXX: invalidate cache */
795
796		/* I/O request sent to backing device */
797		closure_bio_submit(s->iop.c, bio, cl);
798	}
799
800	continue_at(cl, cached_dev_read_error_done, NULL);
801}
802
803static void cached_dev_cache_miss_done(struct closure *cl)
804{
805	struct search *s = container_of(cl, struct search, cl);
806	struct bcache_device *d = s->d;
807
808	if (s->iop.replace_collision)
809		bch_mark_cache_miss_collision(s->iop.c, s->d);
810
811	if (s->iop.bio)
812		bio_free_pages(s->iop.bio);
813
814	cached_dev_bio_complete(cl);
815	closure_put(&d->cl);
816}
817
818static void cached_dev_read_done(struct closure *cl)
819{
820	struct search *s = container_of(cl, struct search, cl);
821	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
822
823	/*
824	 * We had a cache miss; cache_bio now contains data ready to be inserted
825	 * into the cache.
826	 *
827	 * First, we copy the data we just read from cache_bio's bounce buffers
828	 * to the buffers the original bio pointed to:
829	 */
830
831	if (s->iop.bio) {
832		bio_reset(s->iop.bio);
833		s->iop.bio->bi_iter.bi_sector =
834			s->cache_miss->bi_iter.bi_sector;
835		bio_copy_dev(s->iop.bio, s->cache_miss);
836		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
837		bch_bio_map(s->iop.bio, NULL);
838
839		bio_copy_data(s->cache_miss, s->iop.bio);
840
841		bio_put(s->cache_miss);
842		s->cache_miss = NULL;
843	}
844
845	if (verify(dc) && s->recoverable && !s->read_dirty_data)
846		bch_data_verify(dc, s->orig_bio);
847
848	closure_get(&dc->disk.cl);
849	bio_complete(s);
850
851	if (s->iop.bio &&
852	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
853		BUG_ON(!s->iop.replace);
854		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
855	}
856
857	continue_at(cl, cached_dev_cache_miss_done, NULL);
858}
859
860static void cached_dev_read_done_bh(struct closure *cl)
861{
862	struct search *s = container_of(cl, struct search, cl);
863	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
864
865	bch_mark_cache_accounting(s->iop.c, s->d,
866				  !s->cache_missed, s->iop.bypass);
867	trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
868
869	if (s->iop.status)
870		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
871	else if (s->iop.bio || verify(dc))
872		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
873	else
874		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
875}
876
877static int cached_dev_cache_miss(struct btree *b, struct search *s,
878				 struct bio *bio, unsigned int sectors)
879{
880	int ret = MAP_CONTINUE;
881	unsigned int reada = 0;
882	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
883	struct bio *miss, *cache_bio;
884
885	s->cache_missed = 1;
886
887	if (s->cache_miss || s->iop.bypass) {
888		miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
889		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
890		goto out_submit;
891	}
892
893	if (!(bio->bi_opf & REQ_RAHEAD) &&
894	    !(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
895	    s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
896		reada = min_t(sector_t, dc->readahead >> 9,
897			      get_capacity(bio->bi_disk) - bio_end_sector(bio));
898
899	s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
900
901	s->iop.replace_key = KEY(s->iop.inode,
902				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
903				 s->insert_bio_sectors);
904
905	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
906	if (ret)
907		return ret;
908
909	s->iop.replace = true;
910
911	miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
912
913	/* btree_search_recurse()'s btree iterator is no good anymore */
914	ret = miss == bio ? MAP_DONE : -EINTR;
915
916	cache_bio = bio_alloc_bioset(GFP_NOWAIT,
917			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
918			&dc->disk.bio_split);
919	if (!cache_bio)
920		goto out_submit;
921
922	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
923	bio_copy_dev(cache_bio, miss);
924	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
925
926	cache_bio->bi_end_io	= backing_request_endio;
927	cache_bio->bi_private	= &s->cl;
928
929	bch_bio_map(cache_bio, NULL);
930	if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
931		goto out_put;
932
933	if (reada)
934		bch_mark_cache_readahead(s->iop.c, s->d);
935
936	s->cache_miss	= miss;
937	s->iop.bio	= cache_bio;
938	bio_get(cache_bio);
939	/* I/O request sent to backing device */
940	closure_bio_submit(s->iop.c, cache_bio, &s->cl);
941
942	return ret;
943out_put:
944	bio_put(cache_bio);
945out_submit:
946	miss->bi_end_io		= backing_request_endio;
947	miss->bi_private	= &s->cl;
948	/* I/O request sent to backing device */
949	closure_bio_submit(s->iop.c, miss, &s->cl);
950	return ret;
951}
952
953static void cached_dev_read(struct cached_dev *dc, struct search *s)
954{
955	struct closure *cl = &s->cl;
956
957	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
958	continue_at(cl, cached_dev_read_done_bh, NULL);
959}
960
961/* Process writes */
962
963static void cached_dev_write_complete(struct closure *cl)
964{
965	struct search *s = container_of(cl, struct search, cl);
966	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
967
968	up_read_non_owner(&dc->writeback_lock);
969	cached_dev_bio_complete(cl);
970}
971
972static void cached_dev_write(struct cached_dev *dc, struct search *s)
973{
974	struct closure *cl = &s->cl;
975	struct bio *bio = &s->bio.bio;
976	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
977	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
978
979	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
980
981	down_read_non_owner(&dc->writeback_lock);
982	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
983		/*
984		 * We overlap with some dirty data undergoing background
985		 * writeback, force this write to writeback
986		 */
987		s->iop.bypass = false;
988		s->iop.writeback = true;
989	}
990
991	/*
992	 * Discards aren't _required_ to do anything, so skipping if
993	 * check_overlapping returned true is ok
994	 *
995	 * But check_overlapping drops dirty keys for which io hasn't started,
996	 * so we still want to call it.
997	 */
998	if (bio_op(bio) == REQ_OP_DISCARD)
999		s->iop.bypass = true;
1000
1001	if (should_writeback(dc, s->orig_bio,
1002			     cache_mode(dc),
1003			     s->iop.bypass)) {
1004		s->iop.bypass = false;
1005		s->iop.writeback = true;
1006	}
1007
1008	if (s->iop.bypass) {
1009		s->iop.bio = s->orig_bio;
1010		bio_get(s->iop.bio);
1011
1012		if (bio_op(bio) == REQ_OP_DISCARD &&
1013		    !blk_queue_discard(bdev_get_queue(dc->bdev)))
1014			goto insert_data;
1015
1016		/* I/O request sent to backing device */
1017		bio->bi_end_io = backing_request_endio;
1018		closure_bio_submit(s->iop.c, bio, cl);
1019
1020	} else if (s->iop.writeback) {
1021		bch_writeback_add(dc);
1022		s->iop.bio = bio;
1023
1024		if (bio->bi_opf & REQ_PREFLUSH) {
1025			/*
1026			 * Also need to send a flush to the backing
1027			 * device.
1028			 */
1029			struct bio *flush;
1030
1031			flush = bio_alloc_bioset(GFP_NOIO, 0,
1032						 &dc->disk.bio_split);
1033			if (!flush) {
1034				s->iop.status = BLK_STS_RESOURCE;
1035				goto insert_data;
1036			}
1037			bio_copy_dev(flush, bio);
1038			flush->bi_end_io = backing_request_endio;
1039			flush->bi_private = cl;
1040			flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1041			/* I/O request sent to backing device */
1042			closure_bio_submit(s->iop.c, flush, cl);
1043		}
1044	} else {
1045		s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
1046		/* I/O request sent to backing device */
1047		bio->bi_end_io = backing_request_endio;
1048		closure_bio_submit(s->iop.c, bio, cl);
1049	}
1050
1051insert_data:
1052	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1053	continue_at(cl, cached_dev_write_complete, NULL);
1054}
1055
1056static void cached_dev_nodata(struct closure *cl)
1057{
1058	struct search *s = container_of(cl, struct search, cl);
1059	struct bio *bio = &s->bio.bio;
1060
1061	if (s->iop.flush_journal)
1062		bch_journal_meta(s->iop.c, cl);
1063
1064	/* If it's a flush, we send the flush to the backing device too */
1065	bio->bi_end_io = backing_request_endio;
1066	closure_bio_submit(s->iop.c, bio, cl);
1067
1068	continue_at(cl, cached_dev_bio_complete, NULL);
1069}
1070
1071struct detached_dev_io_private {
1072	struct bcache_device	*d;
1073	unsigned long		start_time;
1074	bio_end_io_t		*bi_end_io;
1075	void			*bi_private;
1076	struct hd_struct	*part;
1077};
1078
1079static void detached_dev_end_io(struct bio *bio)
1080{
1081	struct detached_dev_io_private *ddip;
1082
1083	ddip = bio->bi_private;
1084	bio->bi_end_io = ddip->bi_end_io;
1085	bio->bi_private = ddip->bi_private;
1086
1087	/* Count on the bcache device */
1088	part_end_io_acct(ddip->part, bio, ddip->start_time);
1089
1090	if (bio->bi_status) {
1091		struct cached_dev *dc = container_of(ddip->d,
1092						     struct cached_dev, disk);
1093		/* should count I/O error for backing device here */
1094		bch_count_backing_io_errors(dc, bio);
1095	}
1096
1097	kfree(ddip);
1098	bio->bi_end_io(bio);
1099}
1100
1101static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1102{
1103	struct detached_dev_io_private *ddip;
1104	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1105
1106	/*
1107	 * no need to call closure_get(&dc->disk.cl),
1108	 * because upper layer had already opened bcache device,
1109	 * which would call closure_get(&dc->disk.cl)
1110	 */
1111	ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1112	if (!ddip) {
1113		bio->bi_status = BLK_STS_RESOURCE;
1114		bio->bi_end_io(bio);
1115		return;
1116	}
1117
1118	ddip->d = d;
1119	/* Count on the bcache device */
1120	ddip->start_time = part_start_io_acct(d->disk, &ddip->part, bio);
1121	ddip->bi_end_io = bio->bi_end_io;
1122	ddip->bi_private = bio->bi_private;
1123	bio->bi_end_io = detached_dev_end_io;
1124	bio->bi_private = ddip;
1125
1126	if ((bio_op(bio) == REQ_OP_DISCARD) &&
1127	    !blk_queue_discard(bdev_get_queue(dc->bdev)))
1128		bio->bi_end_io(bio);
1129	else
1130		submit_bio_noacct(bio);
1131}
1132
1133static void quit_max_writeback_rate(struct cache_set *c,
1134				    struct cached_dev *this_dc)
1135{
1136	int i;
1137	struct bcache_device *d;
1138	struct cached_dev *dc;
1139
1140	/*
1141	 * mutex bch_register_lock may compete with other parallel requesters,
1142	 * or attach/detach operations on other backing device. Waiting to
1143	 * the mutex lock may increase I/O request latency for seconds or more.
1144	 * To avoid such situation, if mutext_trylock() failed, only writeback
1145	 * rate of current cached device is set to 1, and __update_write_back()
1146	 * will decide writeback rate of other cached devices (remember now
1147	 * c->idle_counter is 0 already).
1148	 */
1149	if (mutex_trylock(&bch_register_lock)) {
1150		for (i = 0; i < c->devices_max_used; i++) {
1151			if (!c->devices[i])
1152				continue;
1153
1154			if (UUID_FLASH_ONLY(&c->uuids[i]))
1155				continue;
1156
1157			d = c->devices[i];
1158			dc = container_of(d, struct cached_dev, disk);
1159			/*
1160			 * set writeback rate to default minimum value,
1161			 * then let update_writeback_rate() to decide the
1162			 * upcoming rate.
1163			 */
1164			atomic_long_set(&dc->writeback_rate.rate, 1);
1165		}
1166		mutex_unlock(&bch_register_lock);
1167	} else
1168		atomic_long_set(&this_dc->writeback_rate.rate, 1);
1169}
1170
1171/* Cached devices - read & write stuff */
1172
1173blk_qc_t cached_dev_submit_bio(struct bio *bio)
1174{
1175	struct search *s;
1176	struct bcache_device *d = bio->bi_disk->private_data;
1177	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1178	int rw = bio_data_dir(bio);
1179
1180	if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1181		     dc->io_disable)) {
1182		bio->bi_status = BLK_STS_IOERR;
1183		bio_endio(bio);
1184		return BLK_QC_T_NONE;
1185	}
1186
1187	if (likely(d->c)) {
1188		if (atomic_read(&d->c->idle_counter))
1189			atomic_set(&d->c->idle_counter, 0);
1190		/*
1191		 * If at_max_writeback_rate of cache set is true and new I/O
1192		 * comes, quit max writeback rate of all cached devices
1193		 * attached to this cache set, and set at_max_writeback_rate
1194		 * to false.
1195		 */
1196		if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1197			atomic_set(&d->c->at_max_writeback_rate, 0);
1198			quit_max_writeback_rate(d->c, dc);
1199		}
1200	}
1201
1202	bio_set_dev(bio, dc->bdev);
1203	bio->bi_iter.bi_sector += dc->sb.data_offset;
1204
1205	if (cached_dev_get(dc)) {
1206		s = search_alloc(bio, d);
1207		trace_bcache_request_start(s->d, bio);
1208
1209		if (!bio->bi_iter.bi_size) {
1210			/*
1211			 * can't call bch_journal_meta from under
1212			 * submit_bio_noacct
1213			 */
1214			continue_at_nobarrier(&s->cl,
1215					      cached_dev_nodata,
1216					      bcache_wq);
1217		} else {
1218			s->iop.bypass = check_should_bypass(dc, bio);
1219
1220			if (rw)
1221				cached_dev_write(dc, s);
1222			else
1223				cached_dev_read(dc, s);
1224		}
1225	} else
1226		/* I/O request sent to backing device */
1227		detached_dev_do_request(d, bio);
1228
1229	return BLK_QC_T_NONE;
1230}
1231
1232static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1233			    unsigned int cmd, unsigned long arg)
1234{
1235	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1236
1237	if (dc->io_disable)
1238		return -EIO;
1239
1240	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1241}
1242
1243void bch_cached_dev_request_init(struct cached_dev *dc)
1244{
1245	dc->disk.cache_miss			= cached_dev_cache_miss;
1246	dc->disk.ioctl				= cached_dev_ioctl;
1247}
1248
1249/* Flash backed devices */
1250
1251static int flash_dev_cache_miss(struct btree *b, struct search *s,
1252				struct bio *bio, unsigned int sectors)
1253{
1254	unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1255
1256	swap(bio->bi_iter.bi_size, bytes);
1257	zero_fill_bio(bio);
1258	swap(bio->bi_iter.bi_size, bytes);
1259
1260	bio_advance(bio, bytes);
1261
1262	if (!bio->bi_iter.bi_size)
1263		return MAP_DONE;
1264
1265	return MAP_CONTINUE;
1266}
1267
1268static void flash_dev_nodata(struct closure *cl)
1269{
1270	struct search *s = container_of(cl, struct search, cl);
1271
1272	if (s->iop.flush_journal)
1273		bch_journal_meta(s->iop.c, cl);
1274
1275	continue_at(cl, search_free, NULL);
1276}
1277
1278blk_qc_t flash_dev_submit_bio(struct bio *bio)
1279{
1280	struct search *s;
1281	struct closure *cl;
1282	struct bcache_device *d = bio->bi_disk->private_data;
1283
1284	if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1285		bio->bi_status = BLK_STS_IOERR;
1286		bio_endio(bio);
1287		return BLK_QC_T_NONE;
1288	}
1289
1290	s = search_alloc(bio, d);
1291	cl = &s->cl;
1292	bio = &s->bio.bio;
1293
1294	trace_bcache_request_start(s->d, bio);
1295
1296	if (!bio->bi_iter.bi_size) {
1297		/*
1298		 * can't call bch_journal_meta from under submit_bio_noacct
1299		 */
1300		continue_at_nobarrier(&s->cl,
1301				      flash_dev_nodata,
1302				      bcache_wq);
1303		return BLK_QC_T_NONE;
1304	} else if (bio_data_dir(bio)) {
1305		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1306					&KEY(d->id, bio->bi_iter.bi_sector, 0),
1307					&KEY(d->id, bio_end_sector(bio), 0));
1308
1309		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
1310		s->iop.writeback	= true;
1311		s->iop.bio		= bio;
1312
1313		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1314	} else {
1315		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1316	}
1317
1318	continue_at(cl, search_free, NULL);
1319	return BLK_QC_T_NONE;
1320}
1321
1322static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1323			   unsigned int cmd, unsigned long arg)
1324{
1325	return -ENOTTY;
1326}
1327
1328void bch_flash_dev_request_init(struct bcache_device *d)
1329{
1330	d->cache_miss				= flash_dev_cache_miss;
1331	d->ioctl				= flash_dev_ioctl;
1332}
1333
1334void bch_request_exit(void)
1335{
1336	kmem_cache_destroy(bch_search_cache);
1337}
1338
1339int __init bch_request_init(void)
1340{
1341	bch_search_cache = KMEM_CACHE(search, 0);
1342	if (!bch_search_cache)
1343		return -ENOMEM;
1344
1345	return 0;
1346}
1347