1// SPDX-License-Identifier: GPL-2.0
2/*
3 * bcache journalling code, for btree insertions
4 *
5 * Copyright 2012 Google, Inc.
6 */
7
8#include "bcache.h"
9#include "btree.h"
10#include "debug.h"
11#include "extents.h"
12
13#include <trace/events/bcache.h>
14
15/*
16 * Journal replay/recovery:
17 *
18 * This code is all driven from run_cache_set(); we first read the journal
19 * entries, do some other stuff, then we mark all the keys in the journal
20 * entries (same as garbage collection would), then we replay them - reinserting
21 * them into the cache in precisely the same order as they appear in the
22 * journal.
23 *
24 * We only journal keys that go in leaf nodes, which simplifies things quite a
25 * bit.
26 */
27
28static void journal_read_endio(struct bio *bio)
29{
30	struct closure *cl = bio->bi_private;
31
32	closure_put(cl);
33}
34
35static int journal_read_bucket(struct cache *ca, struct list_head *list,
36			       unsigned int bucket_index)
37{
38	struct journal_device *ja = &ca->journal;
39	struct bio *bio = &ja->bio;
40
41	struct journal_replay *i;
42	struct jset *j, *data = ca->set->journal.w[0].data;
43	struct closure cl;
44	unsigned int len, left, offset = 0;
45	int ret = 0;
46	sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);
47
48	closure_init_stack(&cl);
49
50	pr_debug("reading %u\n", bucket_index);
51
52	while (offset < ca->sb.bucket_size) {
53reread:		left = ca->sb.bucket_size - offset;
54		len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS);
55
56		bio_reset(bio);
57		bio->bi_iter.bi_sector	= bucket + offset;
58		bio_set_dev(bio, ca->bdev);
59		bio->bi_iter.bi_size	= len << 9;
60
61		bio->bi_end_io	= journal_read_endio;
62		bio->bi_private = &cl;
63		bio_set_op_attrs(bio, REQ_OP_READ, 0);
64		bch_bio_map(bio, data);
65
66		closure_bio_submit(ca->set, bio, &cl);
67		closure_sync(&cl);
68
69		/* This function could be simpler now since we no longer write
70		 * journal entries that overlap bucket boundaries; this means
71		 * the start of a bucket will always have a valid journal entry
72		 * if it has any journal entries at all.
73		 */
74
75		j = data;
76		while (len) {
77			struct list_head *where;
78			size_t blocks, bytes = set_bytes(j);
79
80			if (j->magic != jset_magic(&ca->sb)) {
81				pr_debug("%u: bad magic\n", bucket_index);
82				return ret;
83			}
84
85			if (bytes > left << 9 ||
86			    bytes > PAGE_SIZE << JSET_BITS) {
87				pr_info("%u: too big, %zu bytes, offset %u\n",
88					bucket_index, bytes, offset);
89				return ret;
90			}
91
92			if (bytes > len << 9)
93				goto reread;
94
95			if (j->csum != csum_set(j)) {
96				pr_info("%u: bad csum, %zu bytes, offset %u\n",
97					bucket_index, bytes, offset);
98				return ret;
99			}
100
101			blocks = set_blocks(j, block_bytes(ca));
102
103			/*
104			 * Nodes in 'list' are in linear increasing order of
105			 * i->j.seq, the node on head has the smallest (oldest)
106			 * journal seq, the node on tail has the biggest
107			 * (latest) journal seq.
108			 */
109
110			/*
111			 * Check from the oldest jset for last_seq. If
112			 * i->j.seq < j->last_seq, it means the oldest jset
113			 * in list is expired and useless, remove it from
114			 * this list. Otherwise, j is a condidate jset for
115			 * further following checks.
116			 */
117			while (!list_empty(list)) {
118				i = list_first_entry(list,
119					struct journal_replay, list);
120				if (i->j.seq >= j->last_seq)
121					break;
122				list_del(&i->list);
123				kfree(i);
124			}
125
126			/* iterate list in reverse order (from latest jset) */
127			list_for_each_entry_reverse(i, list, list) {
128				if (j->seq == i->j.seq)
129					goto next_set;
130
131				/*
132				 * if j->seq is less than any i->j.last_seq
133				 * in list, j is an expired and useless jset.
134				 */
135				if (j->seq < i->j.last_seq)
136					goto next_set;
137
138				/*
139				 * 'where' points to first jset in list which
140				 * is elder then j.
141				 */
142				if (j->seq > i->j.seq) {
143					where = &i->list;
144					goto add;
145				}
146			}
147
148			where = list;
149add:
150			i = kmalloc(offsetof(struct journal_replay, j) +
151				    bytes, GFP_KERNEL);
152			if (!i)
153				return -ENOMEM;
154			memcpy(&i->j, j, bytes);
155			/* Add to the location after 'where' points to */
156			list_add(&i->list, where);
157			ret = 1;
158
159			if (j->seq > ja->seq[bucket_index])
160				ja->seq[bucket_index] = j->seq;
161next_set:
162			offset	+= blocks * ca->sb.block_size;
163			len	-= blocks * ca->sb.block_size;
164			j = ((void *) j) + blocks * block_bytes(ca);
165		}
166	}
167
168	return ret;
169}
170
171int bch_journal_read(struct cache_set *c, struct list_head *list)
172{
173#define read_bucket(b)							\
174	({								\
175		ret = journal_read_bucket(ca, list, b);			\
176		__set_bit(b, bitmap);					\
177		if (ret < 0)						\
178			return ret;					\
179		ret;							\
180	})
181
182	struct cache *ca = c->cache;
183	int ret = 0;
184	struct journal_device *ja = &ca->journal;
185	DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS);
186	unsigned int i, l, r, m;
187	uint64_t seq;
188
189	bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
190	pr_debug("%u journal buckets\n", ca->sb.njournal_buckets);
191
192	/*
193	 * Read journal buckets ordered by golden ratio hash to quickly
194	 * find a sequence of buckets with valid journal entries
195	 */
196	for (i = 0; i < ca->sb.njournal_buckets; i++) {
197		/*
198		 * We must try the index l with ZERO first for
199		 * correctness due to the scenario that the journal
200		 * bucket is circular buffer which might have wrapped
201		 */
202		l = (i * 2654435769U) % ca->sb.njournal_buckets;
203
204		if (test_bit(l, bitmap))
205			break;
206
207		if (read_bucket(l))
208			goto bsearch;
209	}
210
211	/*
212	 * If that fails, check all the buckets we haven't checked
213	 * already
214	 */
215	pr_debug("falling back to linear search\n");
216
217	for_each_clear_bit(l, bitmap, ca->sb.njournal_buckets)
218		if (read_bucket(l))
219			goto bsearch;
220
221	/* no journal entries on this device? */
222	if (l == ca->sb.njournal_buckets)
223		goto out;
224bsearch:
225	BUG_ON(list_empty(list));
226
227	/* Binary search */
228	m = l;
229	r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
230	pr_debug("starting binary search, l %u r %u\n", l, r);
231
232	while (l + 1 < r) {
233		seq = list_entry(list->prev, struct journal_replay,
234				 list)->j.seq;
235
236		m = (l + r) >> 1;
237		read_bucket(m);
238
239		if (seq != list_entry(list->prev, struct journal_replay,
240				      list)->j.seq)
241			l = m;
242		else
243			r = m;
244	}
245
246	/*
247	 * Read buckets in reverse order until we stop finding more
248	 * journal entries
249	 */
250	pr_debug("finishing up: m %u njournal_buckets %u\n",
251		 m, ca->sb.njournal_buckets);
252	l = m;
253
254	while (1) {
255		if (!l--)
256			l = ca->sb.njournal_buckets - 1;
257
258		if (l == m)
259			break;
260
261		if (test_bit(l, bitmap))
262			continue;
263
264		if (!read_bucket(l))
265			break;
266	}
267
268	seq = 0;
269
270	for (i = 0; i < ca->sb.njournal_buckets; i++)
271		if (ja->seq[i] > seq) {
272			seq = ja->seq[i];
273			/*
274			 * When journal_reclaim() goes to allocate for
275			 * the first time, it'll use the bucket after
276			 * ja->cur_idx
277			 */
278			ja->cur_idx = i;
279			ja->last_idx = ja->discard_idx = (i + 1) %
280				ca->sb.njournal_buckets;
281
282		}
283
284out:
285	if (!list_empty(list))
286		c->journal.seq = list_entry(list->prev,
287					    struct journal_replay,
288					    list)->j.seq;
289
290	return 0;
291#undef read_bucket
292}
293
294void bch_journal_mark(struct cache_set *c, struct list_head *list)
295{
296	atomic_t p = { 0 };
297	struct bkey *k;
298	struct journal_replay *i;
299	struct journal *j = &c->journal;
300	uint64_t last = j->seq;
301
302	/*
303	 * journal.pin should never fill up - we never write a journal
304	 * entry when it would fill up. But if for some reason it does, we
305	 * iterate over the list in reverse order so that we can just skip that
306	 * refcount instead of bugging.
307	 */
308
309	list_for_each_entry_reverse(i, list, list) {
310		BUG_ON(last < i->j.seq);
311		i->pin = NULL;
312
313		while (last-- != i->j.seq)
314			if (fifo_free(&j->pin) > 1) {
315				fifo_push_front(&j->pin, p);
316				atomic_set(&fifo_front(&j->pin), 0);
317			}
318
319		if (fifo_free(&j->pin) > 1) {
320			fifo_push_front(&j->pin, p);
321			i->pin = &fifo_front(&j->pin);
322			atomic_set(i->pin, 1);
323		}
324
325		for (k = i->j.start;
326		     k < bset_bkey_last(&i->j);
327		     k = bkey_next(k))
328			if (!__bch_extent_invalid(c, k)) {
329				unsigned int j;
330
331				for (j = 0; j < KEY_PTRS(k); j++)
332					if (ptr_available(c, k, j))
333						atomic_inc(&PTR_BUCKET(c, k, j)->pin);
334
335				bch_initial_mark_key(c, 0, k);
336			}
337	}
338}
339
340static bool is_discard_enabled(struct cache_set *s)
341{
342	struct cache *ca = s->cache;
343
344	if (ca->discard)
345		return true;
346
347	return false;
348}
349
350int bch_journal_replay(struct cache_set *s, struct list_head *list)
351{
352	int ret = 0, keys = 0, entries = 0;
353	struct bkey *k;
354	struct journal_replay *i =
355		list_entry(list->prev, struct journal_replay, list);
356
357	uint64_t start = i->j.last_seq, end = i->j.seq, n = start;
358	struct keylist keylist;
359
360	list_for_each_entry(i, list, list) {
361		BUG_ON(i->pin && atomic_read(i->pin) != 1);
362
363		if (n != i->j.seq) {
364			if (n == start && is_discard_enabled(s))
365				pr_info("journal entries %llu-%llu may be discarded! (replaying %llu-%llu)\n",
366					n, i->j.seq - 1, start, end);
367			else {
368				pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n",
369					n, i->j.seq - 1, start, end);
370				ret = -EIO;
371				goto err;
372			}
373		}
374
375		for (k = i->j.start;
376		     k < bset_bkey_last(&i->j);
377		     k = bkey_next(k)) {
378			trace_bcache_journal_replay_key(k);
379
380			bch_keylist_init_single(&keylist, k);
381
382			ret = bch_btree_insert(s, &keylist, i->pin, NULL);
383			if (ret)
384				goto err;
385
386			BUG_ON(!bch_keylist_empty(&keylist));
387			keys++;
388
389			cond_resched();
390		}
391
392		if (i->pin)
393			atomic_dec(i->pin);
394		n = i->j.seq + 1;
395		entries++;
396	}
397
398	pr_info("journal replay done, %i keys in %i entries, seq %llu\n",
399		keys, entries, end);
400err:
401	while (!list_empty(list)) {
402		i = list_first_entry(list, struct journal_replay, list);
403		list_del(&i->list);
404		kfree(i);
405	}
406
407	return ret;
408}
409
410void bch_journal_space_reserve(struct journal *j)
411{
412	j->do_reserve = true;
413}
414
415/* Journalling */
416
417static void btree_flush_write(struct cache_set *c)
418{
419	struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR];
420	unsigned int i, nr;
421	int ref_nr;
422	atomic_t *fifo_front_p, *now_fifo_front_p;
423	size_t mask;
424
425	if (c->journal.btree_flushing)
426		return;
427
428	spin_lock(&c->journal.flush_write_lock);
429	if (c->journal.btree_flushing) {
430		spin_unlock(&c->journal.flush_write_lock);
431		return;
432	}
433	c->journal.btree_flushing = true;
434	spin_unlock(&c->journal.flush_write_lock);
435
436	/* get the oldest journal entry and check its refcount */
437	spin_lock(&c->journal.lock);
438	fifo_front_p = &fifo_front(&c->journal.pin);
439	ref_nr = atomic_read(fifo_front_p);
440	if (ref_nr <= 0) {
441		/*
442		 * do nothing if no btree node references
443		 * the oldest journal entry
444		 */
445		spin_unlock(&c->journal.lock);
446		goto out;
447	}
448	spin_unlock(&c->journal.lock);
449
450	mask = c->journal.pin.mask;
451	nr = 0;
452	atomic_long_inc(&c->flush_write);
453	memset(btree_nodes, 0, sizeof(btree_nodes));
454
455	mutex_lock(&c->bucket_lock);
456	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
457		/*
458		 * It is safe to get now_fifo_front_p without holding
459		 * c->journal.lock here, because we don't need to know
460		 * the exactly accurate value, just check whether the
461		 * front pointer of c->journal.pin is changed.
462		 */
463		now_fifo_front_p = &fifo_front(&c->journal.pin);
464		/*
465		 * If the oldest journal entry is reclaimed and front
466		 * pointer of c->journal.pin changes, it is unnecessary
467		 * to scan c->btree_cache anymore, just quit the loop and
468		 * flush out what we have already.
469		 */
470		if (now_fifo_front_p != fifo_front_p)
471			break;
472		/*
473		 * quit this loop if all matching btree nodes are
474		 * scanned and record in btree_nodes[] already.
475		 */
476		ref_nr = atomic_read(fifo_front_p);
477		if (nr >= ref_nr)
478			break;
479
480		if (btree_node_journal_flush(b))
481			pr_err("BUG: flush_write bit should not be set here!\n");
482
483		mutex_lock(&b->write_lock);
484
485		if (!btree_node_dirty(b)) {
486			mutex_unlock(&b->write_lock);
487			continue;
488		}
489
490		if (!btree_current_write(b)->journal) {
491			mutex_unlock(&b->write_lock);
492			continue;
493		}
494
495		/*
496		 * Only select the btree node which exactly references
497		 * the oldest journal entry.
498		 *
499		 * If the journal entry pointed by fifo_front_p is
500		 * reclaimed in parallel, don't worry:
501		 * - the list_for_each_xxx loop will quit when checking
502		 *   next now_fifo_front_p.
503		 * - If there are matched nodes recorded in btree_nodes[],
504		 *   they are clean now (this is why and how the oldest
505		 *   journal entry can be reclaimed). These selected nodes
506		 *   will be ignored and skipped in the folowing for-loop.
507		 */
508		if (((btree_current_write(b)->journal - fifo_front_p) &
509		     mask) != 0) {
510			mutex_unlock(&b->write_lock);
511			continue;
512		}
513
514		set_btree_node_journal_flush(b);
515
516		mutex_unlock(&b->write_lock);
517
518		btree_nodes[nr++] = b;
519		/*
520		 * To avoid holding c->bucket_lock too long time,
521		 * only scan for BTREE_FLUSH_NR matched btree nodes
522		 * at most. If there are more btree nodes reference
523		 * the oldest journal entry, try to flush them next
524		 * time when btree_flush_write() is called.
525		 */
526		if (nr == BTREE_FLUSH_NR)
527			break;
528	}
529	mutex_unlock(&c->bucket_lock);
530
531	for (i = 0; i < nr; i++) {
532		b = btree_nodes[i];
533		if (!b) {
534			pr_err("BUG: btree_nodes[%d] is NULL\n", i);
535			continue;
536		}
537
538		/* safe to check without holding b->write_lock */
539		if (!btree_node_journal_flush(b)) {
540			pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b);
541			continue;
542		}
543
544		mutex_lock(&b->write_lock);
545		if (!btree_current_write(b)->journal) {
546			clear_bit(BTREE_NODE_journal_flush, &b->flags);
547			mutex_unlock(&b->write_lock);
548			pr_debug("bnode %p: written by others\n", b);
549			continue;
550		}
551
552		if (!btree_node_dirty(b)) {
553			clear_bit(BTREE_NODE_journal_flush, &b->flags);
554			mutex_unlock(&b->write_lock);
555			pr_debug("bnode %p: dirty bit cleaned by others\n", b);
556			continue;
557		}
558
559		__bch_btree_node_write(b, NULL);
560		clear_bit(BTREE_NODE_journal_flush, &b->flags);
561		mutex_unlock(&b->write_lock);
562	}
563
564out:
565	spin_lock(&c->journal.flush_write_lock);
566	c->journal.btree_flushing = false;
567	spin_unlock(&c->journal.flush_write_lock);
568}
569
570#define last_seq(j)	((j)->seq - fifo_used(&(j)->pin) + 1)
571
572static void journal_discard_endio(struct bio *bio)
573{
574	struct journal_device *ja =
575		container_of(bio, struct journal_device, discard_bio);
576	struct cache *ca = container_of(ja, struct cache, journal);
577
578	atomic_set(&ja->discard_in_flight, DISCARD_DONE);
579
580	closure_wake_up(&ca->set->journal.wait);
581	closure_put(&ca->set->cl);
582}
583
584static void journal_discard_work(struct work_struct *work)
585{
586	struct journal_device *ja =
587		container_of(work, struct journal_device, discard_work);
588
589	submit_bio(&ja->discard_bio);
590}
591
592static void do_journal_discard(struct cache *ca)
593{
594	struct journal_device *ja = &ca->journal;
595	struct bio *bio = &ja->discard_bio;
596
597	if (!ca->discard) {
598		ja->discard_idx = ja->last_idx;
599		return;
600	}
601
602	switch (atomic_read(&ja->discard_in_flight)) {
603	case DISCARD_IN_FLIGHT:
604		return;
605
606	case DISCARD_DONE:
607		ja->discard_idx = (ja->discard_idx + 1) %
608			ca->sb.njournal_buckets;
609
610		atomic_set(&ja->discard_in_flight, DISCARD_READY);
611		fallthrough;
612
613	case DISCARD_READY:
614		if (ja->discard_idx == ja->last_idx)
615			return;
616
617		atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT);
618
619		bio_init(bio, bio->bi_inline_vecs, 1);
620		bio_set_op_attrs(bio, REQ_OP_DISCARD, 0);
621		bio->bi_iter.bi_sector	= bucket_to_sector(ca->set,
622						ca->sb.d[ja->discard_idx]);
623		bio_set_dev(bio, ca->bdev);
624		bio->bi_iter.bi_size	= bucket_bytes(ca);
625		bio->bi_end_io		= journal_discard_endio;
626
627		closure_get(&ca->set->cl);
628		INIT_WORK(&ja->discard_work, journal_discard_work);
629		queue_work(bch_journal_wq, &ja->discard_work);
630	}
631}
632
633static unsigned int free_journal_buckets(struct cache_set *c)
634{
635	struct journal *j = &c->journal;
636	struct cache *ca = c->cache;
637	struct journal_device *ja = &c->cache->journal;
638	unsigned int n;
639
640	/* In case njournal_buckets is not power of 2 */
641	if (ja->cur_idx >= ja->discard_idx)
642		n = ca->sb.njournal_buckets +  ja->discard_idx - ja->cur_idx;
643	else
644		n = ja->discard_idx - ja->cur_idx;
645
646	if (n > (1 + j->do_reserve))
647		return n - (1 + j->do_reserve);
648
649	return 0;
650}
651
652static void journal_reclaim(struct cache_set *c)
653{
654	struct bkey *k = &c->journal.key;
655	struct cache *ca = c->cache;
656	uint64_t last_seq;
657	struct journal_device *ja = &ca->journal;
658	atomic_t p __maybe_unused;
659
660	atomic_long_inc(&c->reclaim);
661
662	while (!atomic_read(&fifo_front(&c->journal.pin)))
663		fifo_pop(&c->journal.pin, p);
664
665	last_seq = last_seq(&c->journal);
666
667	/* Update last_idx */
668
669	while (ja->last_idx != ja->cur_idx &&
670	       ja->seq[ja->last_idx] < last_seq)
671		ja->last_idx = (ja->last_idx + 1) %
672			ca->sb.njournal_buckets;
673
674	do_journal_discard(ca);
675
676	if (c->journal.blocks_free)
677		goto out;
678
679	if (!free_journal_buckets(c))
680		goto out;
681
682	ja->cur_idx = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
683	k->ptr[0] = MAKE_PTR(0,
684			     bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
685			     ca->sb.nr_this_dev);
686	atomic_long_inc(&c->reclaimed_journal_buckets);
687
688	bkey_init(k);
689	SET_KEY_PTRS(k, 1);
690	c->journal.blocks_free = ca->sb.bucket_size >> c->block_bits;
691
692out:
693	if (!journal_full(&c->journal))
694		__closure_wake_up(&c->journal.wait);
695}
696
697void bch_journal_next(struct journal *j)
698{
699	atomic_t p = { 1 };
700
701	j->cur = (j->cur == j->w)
702		? &j->w[1]
703		: &j->w[0];
704
705	/*
706	 * The fifo_push() needs to happen at the same time as j->seq is
707	 * incremented for last_seq() to be calculated correctly
708	 */
709	BUG_ON(!fifo_push(&j->pin, p));
710	atomic_set(&fifo_back(&j->pin), 1);
711
712	j->cur->data->seq	= ++j->seq;
713	j->cur->dirty		= false;
714	j->cur->need_write	= false;
715	j->cur->data->keys	= 0;
716
717	if (fifo_full(&j->pin))
718		pr_debug("journal_pin full (%zu)\n", fifo_used(&j->pin));
719}
720
721static void journal_write_endio(struct bio *bio)
722{
723	struct journal_write *w = bio->bi_private;
724
725	cache_set_err_on(bio->bi_status, w->c, "journal io error");
726	closure_put(&w->c->journal.io);
727}
728
729static void journal_write(struct closure *cl);
730
731static void journal_write_done(struct closure *cl)
732{
733	struct journal *j = container_of(cl, struct journal, io);
734	struct journal_write *w = (j->cur == j->w)
735		? &j->w[1]
736		: &j->w[0];
737
738	__closure_wake_up(&w->wait);
739	continue_at_nobarrier(cl, journal_write, bch_journal_wq);
740}
741
742static void journal_write_unlock(struct closure *cl)
743	__releases(&c->journal.lock)
744{
745	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
746
747	c->journal.io_in_flight = 0;
748	spin_unlock(&c->journal.lock);
749}
750
751static void journal_write_unlocked(struct closure *cl)
752	__releases(c->journal.lock)
753{
754	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
755	struct cache *ca = c->cache;
756	struct journal_write *w = c->journal.cur;
757	struct bkey *k = &c->journal.key;
758	unsigned int i, sectors = set_blocks(w->data, block_bytes(ca)) *
759		ca->sb.block_size;
760
761	struct bio *bio;
762	struct bio_list list;
763
764	bio_list_init(&list);
765
766	if (!w->need_write) {
767		closure_return_with_destructor(cl, journal_write_unlock);
768		return;
769	} else if (journal_full(&c->journal)) {
770		journal_reclaim(c);
771		spin_unlock(&c->journal.lock);
772
773		btree_flush_write(c);
774		continue_at(cl, journal_write, bch_journal_wq);
775		return;
776	}
777
778	c->journal.blocks_free -= set_blocks(w->data, block_bytes(ca));
779
780	w->data->btree_level = c->root->level;
781
782	bkey_copy(&w->data->btree_root, &c->root->key);
783	bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
784
785	w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
786	w->data->magic		= jset_magic(&ca->sb);
787	w->data->version	= BCACHE_JSET_VERSION;
788	w->data->last_seq	= last_seq(&c->journal);
789	w->data->csum		= csum_set(w->data);
790
791	for (i = 0; i < KEY_PTRS(k); i++) {
792		ca = PTR_CACHE(c, k, i);
793		bio = &ca->journal.bio;
794
795		atomic_long_add(sectors, &ca->meta_sectors_written);
796
797		bio_reset(bio);
798		bio->bi_iter.bi_sector	= PTR_OFFSET(k, i);
799		bio_set_dev(bio, ca->bdev);
800		bio->bi_iter.bi_size = sectors << 9;
801
802		bio->bi_end_io	= journal_write_endio;
803		bio->bi_private = w;
804		bio_set_op_attrs(bio, REQ_OP_WRITE,
805				 REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA);
806		bch_bio_map(bio, w->data);
807
808		trace_bcache_journal_write(bio, w->data->keys);
809		bio_list_add(&list, bio);
810
811		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);
812
813		ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
814	}
815
816	/* If KEY_PTRS(k) == 0, this jset gets lost in air */
817	BUG_ON(i == 0);
818
819	atomic_dec_bug(&fifo_back(&c->journal.pin));
820	bch_journal_next(&c->journal);
821	journal_reclaim(c);
822
823	spin_unlock(&c->journal.lock);
824
825	while ((bio = bio_list_pop(&list)))
826		closure_bio_submit(c, bio, cl);
827
828	continue_at(cl, journal_write_done, NULL);
829}
830
831static void journal_write(struct closure *cl)
832{
833	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
834
835	spin_lock(&c->journal.lock);
836	journal_write_unlocked(cl);
837}
838
839static void journal_try_write(struct cache_set *c)
840	__releases(c->journal.lock)
841{
842	struct closure *cl = &c->journal.io;
843	struct journal_write *w = c->journal.cur;
844
845	w->need_write = true;
846
847	if (!c->journal.io_in_flight) {
848		c->journal.io_in_flight = 1;
849		closure_call(cl, journal_write_unlocked, NULL, &c->cl);
850	} else {
851		spin_unlock(&c->journal.lock);
852	}
853}
854
855static struct journal_write *journal_wait_for_write(struct cache_set *c,
856						    unsigned int nkeys)
857	__acquires(&c->journal.lock)
858{
859	size_t sectors;
860	struct closure cl;
861	bool wait = false;
862	struct cache *ca = c->cache;
863
864	closure_init_stack(&cl);
865
866	spin_lock(&c->journal.lock);
867
868	while (1) {
869		struct journal_write *w = c->journal.cur;
870
871		sectors = __set_blocks(w->data, w->data->keys + nkeys,
872				       block_bytes(ca)) * ca->sb.block_size;
873
874		if (sectors <= min_t(size_t,
875				     c->journal.blocks_free * ca->sb.block_size,
876				     PAGE_SECTORS << JSET_BITS))
877			return w;
878
879		if (wait)
880			closure_wait(&c->journal.wait, &cl);
881
882		if (!journal_full(&c->journal)) {
883			if (wait)
884				trace_bcache_journal_entry_full(c);
885
886			/*
887			 * XXX: If we were inserting so many keys that they
888			 * won't fit in an _empty_ journal write, we'll
889			 * deadlock. For now, handle this in
890			 * bch_keylist_realloc() - but something to think about.
891			 */
892			BUG_ON(!w->data->keys);
893
894			journal_try_write(c); /* unlocks */
895		} else {
896			if (wait)
897				trace_bcache_journal_full(c);
898
899			journal_reclaim(c);
900			spin_unlock(&c->journal.lock);
901
902			btree_flush_write(c);
903		}
904
905		closure_sync(&cl);
906		spin_lock(&c->journal.lock);
907		wait = true;
908	}
909}
910
911static void journal_write_work(struct work_struct *work)
912{
913	struct cache_set *c = container_of(to_delayed_work(work),
914					   struct cache_set,
915					   journal.work);
916	spin_lock(&c->journal.lock);
917	if (c->journal.cur->dirty)
918		journal_try_write(c);
919	else
920		spin_unlock(&c->journal.lock);
921}
922
923/*
924 * Entry point to the journalling code - bio_insert() and btree_invalidate()
925 * pass bch_journal() a list of keys to be journalled, and then
926 * bch_journal() hands those same keys off to btree_insert_async()
927 */
928
929atomic_t *bch_journal(struct cache_set *c,
930		      struct keylist *keys,
931		      struct closure *parent)
932{
933	struct journal_write *w;
934	atomic_t *ret;
935
936	/* No journaling if CACHE_SET_IO_DISABLE set already */
937	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
938		return NULL;
939
940	if (!CACHE_SYNC(&c->cache->sb))
941		return NULL;
942
943	w = journal_wait_for_write(c, bch_keylist_nkeys(keys));
944
945	memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys));
946	w->data->keys += bch_keylist_nkeys(keys);
947
948	ret = &fifo_back(&c->journal.pin);
949	atomic_inc(ret);
950
951	if (parent) {
952		closure_wait(&w->wait, parent);
953		journal_try_write(c);
954	} else if (!w->dirty) {
955		w->dirty = true;
956		queue_delayed_work(bch_flush_wq, &c->journal.work,
957				   msecs_to_jiffies(c->journal_delay_ms));
958		spin_unlock(&c->journal.lock);
959	} else {
960		spin_unlock(&c->journal.lock);
961	}
962
963
964	return ret;
965}
966
967void bch_journal_meta(struct cache_set *c, struct closure *cl)
968{
969	struct keylist keys;
970	atomic_t *ref;
971
972	bch_keylist_init(&keys);
973
974	ref = bch_journal(c, &keys, cl);
975	if (ref)
976		atomic_dec_bug(ref);
977}
978
979void bch_journal_free(struct cache_set *c)
980{
981	free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
982	free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
983	free_fifo(&c->journal.pin);
984}
985
986int bch_journal_alloc(struct cache_set *c)
987{
988	struct journal *j = &c->journal;
989
990	spin_lock_init(&j->lock);
991	spin_lock_init(&j->flush_write_lock);
992	INIT_DELAYED_WORK(&j->work, journal_write_work);
993
994	c->journal_delay_ms = 100;
995
996	j->w[0].c = c;
997	j->w[1].c = c;
998
999	if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
1000	    !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)) ||
1001	    !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)))
1002		return -ENOMEM;
1003
1004	return 0;
1005}
1006