1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22 */
23
24#include "bcache.h"
25#include "btree.h"
26#include "debug.h"
27#include "extents.h"
28
29#include <linux/slab.h>
30#include <linux/bitops.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/prefetch.h>
34#include <linux/random.h>
35#include <linux/rcupdate.h>
36#include <linux/sched/clock.h>
37#include <linux/rculist.h>
38#include <linux/delay.h>
39#include <trace/events/bcache.h>
40
41/*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 *   Check for bad keys in replay
53 *   Propagate barriers
54 *   Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 *   Finish incremental gc
58 *   Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91#define MAX_NEED_GC		64
92#define MAX_SAVE_PRIO		72
93#define MAX_GC_TIMES		100
94#define MIN_GC_NODES		100
95#define GC_SLEEP_MS		100
96
97#define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
98
99#define PTR_HASH(c, k)							\
100	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102static struct workqueue_struct *btree_io_wq;
103
104#define insert_lock(s, b)	((b)->level <= (s)->lock)
105
106
107static inline struct bset *write_block(struct btree *b)
108{
109	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
110}
111
112static void bch_btree_init_next(struct btree *b)
113{
114	/* If not a leaf node, always sort */
115	if (b->level && b->keys.nsets)
116		bch_btree_sort(&b->keys, &b->c->sort);
117	else
118		bch_btree_sort_lazy(&b->keys, &b->c->sort);
119
120	if (b->written < btree_blocks(b))
121		bch_bset_init_next(&b->keys, write_block(b),
122				   bset_magic(&b->c->cache->sb));
123
124}
125
126/* Btree key manipulation */
127
128void bkey_put(struct cache_set *c, struct bkey *k)
129{
130	unsigned int i;
131
132	for (i = 0; i < KEY_PTRS(k); i++)
133		if (ptr_available(c, k, i))
134			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
135}
136
137/* Btree IO */
138
139static uint64_t btree_csum_set(struct btree *b, struct bset *i)
140{
141	uint64_t crc = b->key.ptr[0];
142	void *data = (void *) i + 8, *end = bset_bkey_last(i);
143
144	crc = bch_crc64_update(crc, data, end - data);
145	return crc ^ 0xffffffffffffffffULL;
146}
147
148void bch_btree_node_read_done(struct btree *b)
149{
150	const char *err = "bad btree header";
151	struct bset *i = btree_bset_first(b);
152	struct btree_iter *iter;
153
154	/*
155	 * c->fill_iter can allocate an iterator with more memory space
156	 * than static MAX_BSETS.
157	 * See the comment arount cache_set->fill_iter.
158	 */
159	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
160	iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
161	iter->used = 0;
162
163#ifdef CONFIG_BCACHE_DEBUG
164	iter->b = &b->keys;
165#endif
166
167	if (!i->seq)
168		goto err;
169
170	for (;
171	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
172	     i = write_block(b)) {
173		err = "unsupported bset version";
174		if (i->version > BCACHE_BSET_VERSION)
175			goto err;
176
177		err = "bad btree header";
178		if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
179		    btree_blocks(b))
180			goto err;
181
182		err = "bad magic";
183		if (i->magic != bset_magic(&b->c->cache->sb))
184			goto err;
185
186		err = "bad checksum";
187		switch (i->version) {
188		case 0:
189			if (i->csum != csum_set(i))
190				goto err;
191			break;
192		case BCACHE_BSET_VERSION:
193			if (i->csum != btree_csum_set(b, i))
194				goto err;
195			break;
196		}
197
198		err = "empty set";
199		if (i != b->keys.set[0].data && !i->keys)
200			goto err;
201
202		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
203
204		b->written += set_blocks(i, block_bytes(b->c->cache));
205	}
206
207	err = "corrupted btree";
208	for (i = write_block(b);
209	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
210	     i = ((void *) i) + block_bytes(b->c->cache))
211		if (i->seq == b->keys.set[0].data->seq)
212			goto err;
213
214	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
215
216	i = b->keys.set[0].data;
217	err = "short btree key";
218	if (b->keys.set[0].size &&
219	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
220		goto err;
221
222	if (b->written < btree_blocks(b))
223		bch_bset_init_next(&b->keys, write_block(b),
224				   bset_magic(&b->c->cache->sb));
225out:
226	mempool_free(iter, &b->c->fill_iter);
227	return;
228err:
229	set_btree_node_io_error(b);
230	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
231			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
232			    bset_block_offset(b, i), i->keys);
233	goto out;
234}
235
236static void btree_node_read_endio(struct bio *bio)
237{
238	struct closure *cl = bio->bi_private;
239
240	closure_put(cl);
241}
242
243static void bch_btree_node_read(struct btree *b)
244{
245	uint64_t start_time = local_clock();
246	struct closure cl;
247	struct bio *bio;
248
249	trace_bcache_btree_read(b);
250
251	closure_init_stack(&cl);
252
253	bio = bch_bbio_alloc(b->c);
254	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
255	bio->bi_end_io	= btree_node_read_endio;
256	bio->bi_private	= &cl;
257	bio->bi_opf = REQ_OP_READ | REQ_META;
258
259	bch_bio_map(bio, b->keys.set[0].data);
260
261	bch_submit_bbio(bio, b->c, &b->key, 0);
262	closure_sync(&cl);
263
264	if (bio->bi_status)
265		set_btree_node_io_error(b);
266
267	bch_bbio_free(bio, b->c);
268
269	if (btree_node_io_error(b))
270		goto err;
271
272	bch_btree_node_read_done(b);
273	bch_time_stats_update(&b->c->btree_read_time, start_time);
274
275	return;
276err:
277	bch_cache_set_error(b->c, "io error reading bucket %zu",
278			    PTR_BUCKET_NR(b->c, &b->key, 0));
279}
280
281static void btree_complete_write(struct btree *b, struct btree_write *w)
282{
283	if (w->prio_blocked &&
284	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
285		wake_up_allocators(b->c);
286
287	if (w->journal) {
288		atomic_dec_bug(w->journal);
289		__closure_wake_up(&b->c->journal.wait);
290	}
291
292	w->prio_blocked	= 0;
293	w->journal	= NULL;
294}
295
296static void btree_node_write_unlock(struct closure *cl)
297{
298	struct btree *b = container_of(cl, struct btree, io);
299
300	up(&b->io_mutex);
301}
302
303static void __btree_node_write_done(struct closure *cl)
304{
305	struct btree *b = container_of(cl, struct btree, io);
306	struct btree_write *w = btree_prev_write(b);
307
308	bch_bbio_free(b->bio, b->c);
309	b->bio = NULL;
310	btree_complete_write(b, w);
311
312	if (btree_node_dirty(b))
313		queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
314
315	closure_return_with_destructor(cl, btree_node_write_unlock);
316}
317
318static void btree_node_write_done(struct closure *cl)
319{
320	struct btree *b = container_of(cl, struct btree, io);
321
322	bio_free_pages(b->bio);
323	__btree_node_write_done(cl);
324}
325
326static void btree_node_write_endio(struct bio *bio)
327{
328	struct closure *cl = bio->bi_private;
329	struct btree *b = container_of(cl, struct btree, io);
330
331	if (bio->bi_status)
332		set_btree_node_io_error(b);
333
334	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
335	closure_put(cl);
336}
337
338static void do_btree_node_write(struct btree *b)
339{
340	struct closure *cl = &b->io;
341	struct bset *i = btree_bset_last(b);
342	BKEY_PADDED(key) k;
343
344	i->version	= BCACHE_BSET_VERSION;
345	i->csum		= btree_csum_set(b, i);
346
347	BUG_ON(b->bio);
348	b->bio = bch_bbio_alloc(b->c);
349
350	b->bio->bi_end_io	= btree_node_write_endio;
351	b->bio->bi_private	= cl;
352	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c->cache));
353	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
354	bch_bio_map(b->bio, i);
355
356	/*
357	 * If we're appending to a leaf node, we don't technically need FUA -
358	 * this write just needs to be persisted before the next journal write,
359	 * which will be marked FLUSH|FUA.
360	 *
361	 * Similarly if we're writing a new btree root - the pointer is going to
362	 * be in the next journal entry.
363	 *
364	 * But if we're writing a new btree node (that isn't a root) or
365	 * appending to a non leaf btree node, we need either FUA or a flush
366	 * when we write the parent with the new pointer. FUA is cheaper than a
367	 * flush, and writes appending to leaf nodes aren't blocking anything so
368	 * just make all btree node writes FUA to keep things sane.
369	 */
370
371	bkey_copy(&k.key, &b->key);
372	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
373		       bset_sector_offset(&b->keys, i));
374
375	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
376		struct bio_vec *bv;
377		void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
378		struct bvec_iter_all iter_all;
379
380		bio_for_each_segment_all(bv, b->bio, iter_all) {
381			memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
382			addr += PAGE_SIZE;
383		}
384
385		bch_submit_bbio(b->bio, b->c, &k.key, 0);
386
387		continue_at(cl, btree_node_write_done, NULL);
388	} else {
389		/*
390		 * No problem for multipage bvec since the bio is
391		 * just allocated
392		 */
393		b->bio->bi_vcnt = 0;
394		bch_bio_map(b->bio, i);
395
396		bch_submit_bbio(b->bio, b->c, &k.key, 0);
397
398		closure_sync(cl);
399		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
400	}
401}
402
403void __bch_btree_node_write(struct btree *b, struct closure *parent)
404{
405	struct bset *i = btree_bset_last(b);
406
407	lockdep_assert_held(&b->write_lock);
408
409	trace_bcache_btree_write(b);
410
411	BUG_ON(current->bio_list);
412	BUG_ON(b->written >= btree_blocks(b));
413	BUG_ON(b->written && !i->keys);
414	BUG_ON(btree_bset_first(b)->seq != i->seq);
415	bch_check_keys(&b->keys, "writing");
416
417	cancel_delayed_work(&b->work);
418
419	/* If caller isn't waiting for write, parent refcount is cache set */
420	down(&b->io_mutex);
421	closure_init(&b->io, parent ?: &b->c->cl);
422
423	clear_bit(BTREE_NODE_dirty,	 &b->flags);
424	change_bit(BTREE_NODE_write_idx, &b->flags);
425
426	do_btree_node_write(b);
427
428	atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
429			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
430
431	b->written += set_blocks(i, block_bytes(b->c->cache));
432}
433
434void bch_btree_node_write(struct btree *b, struct closure *parent)
435{
436	unsigned int nsets = b->keys.nsets;
437
438	lockdep_assert_held(&b->lock);
439
440	__bch_btree_node_write(b, parent);
441
442	/*
443	 * do verify if there was more than one set initially (i.e. we did a
444	 * sort) and we sorted down to a single set:
445	 */
446	if (nsets && !b->keys.nsets)
447		bch_btree_verify(b);
448
449	bch_btree_init_next(b);
450}
451
452static void bch_btree_node_write_sync(struct btree *b)
453{
454	struct closure cl;
455
456	closure_init_stack(&cl);
457
458	mutex_lock(&b->write_lock);
459	bch_btree_node_write(b, &cl);
460	mutex_unlock(&b->write_lock);
461
462	closure_sync(&cl);
463}
464
465static void btree_node_write_work(struct work_struct *w)
466{
467	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
468
469	mutex_lock(&b->write_lock);
470	if (btree_node_dirty(b))
471		__bch_btree_node_write(b, NULL);
472	mutex_unlock(&b->write_lock);
473}
474
475static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
476{
477	struct bset *i = btree_bset_last(b);
478	struct btree_write *w = btree_current_write(b);
479
480	lockdep_assert_held(&b->write_lock);
481
482	BUG_ON(!b->written);
483	BUG_ON(!i->keys);
484
485	if (!btree_node_dirty(b))
486		queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
487
488	set_btree_node_dirty(b);
489
490	/*
491	 * w->journal is always the oldest journal pin of all bkeys
492	 * in the leaf node, to make sure the oldest jset seq won't
493	 * be increased before this btree node is flushed.
494	 */
495	if (journal_ref) {
496		if (w->journal &&
497		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
498			atomic_dec_bug(w->journal);
499			w->journal = NULL;
500		}
501
502		if (!w->journal) {
503			w->journal = journal_ref;
504			atomic_inc(w->journal);
505		}
506	}
507
508	/* Force write if set is too big */
509	if (set_bytes(i) > PAGE_SIZE - 48 &&
510	    !current->bio_list)
511		bch_btree_node_write(b, NULL);
512}
513
514/*
515 * Btree in memory cache - allocation/freeing
516 * mca -> memory cache
517 */
518
519#define mca_reserve(c)	(((!IS_ERR_OR_NULL(c->root) && c->root->level) \
520			  ? c->root->level : 1) * 8 + 16)
521#define mca_can_free(c)						\
522	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
523
524static void mca_data_free(struct btree *b)
525{
526	BUG_ON(b->io_mutex.count != 1);
527
528	bch_btree_keys_free(&b->keys);
529
530	b->c->btree_cache_used--;
531	list_move(&b->list, &b->c->btree_cache_freed);
532}
533
534static void mca_bucket_free(struct btree *b)
535{
536	BUG_ON(btree_node_dirty(b));
537
538	b->key.ptr[0] = 0;
539	hlist_del_init_rcu(&b->hash);
540	list_move(&b->list, &b->c->btree_cache_freeable);
541}
542
543static unsigned int btree_order(struct bkey *k)
544{
545	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
546}
547
548static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
549{
550	if (!bch_btree_keys_alloc(&b->keys,
551				  max_t(unsigned int,
552					ilog2(b->c->btree_pages),
553					btree_order(k)),
554				  gfp)) {
555		b->c->btree_cache_used++;
556		list_move(&b->list, &b->c->btree_cache);
557	} else {
558		list_move(&b->list, &b->c->btree_cache_freed);
559	}
560}
561
562static struct btree *mca_bucket_alloc(struct cache_set *c,
563				      struct bkey *k, gfp_t gfp)
564{
565	/*
566	 * kzalloc() is necessary here for initialization,
567	 * see code comments in bch_btree_keys_init().
568	 */
569	struct btree *b = kzalloc(sizeof(struct btree), gfp);
570
571	if (!b)
572		return NULL;
573
574	init_rwsem(&b->lock);
575	lockdep_set_novalidate_class(&b->lock);
576	mutex_init(&b->write_lock);
577	lockdep_set_novalidate_class(&b->write_lock);
578	INIT_LIST_HEAD(&b->list);
579	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
580	b->c = c;
581	sema_init(&b->io_mutex, 1);
582
583	mca_data_alloc(b, k, gfp);
584	return b;
585}
586
587static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
588{
589	struct closure cl;
590
591	closure_init_stack(&cl);
592	lockdep_assert_held(&b->c->bucket_lock);
593
594	if (!down_write_trylock(&b->lock))
595		return -ENOMEM;
596
597	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
598
599	if (b->keys.page_order < min_order)
600		goto out_unlock;
601
602	if (!flush) {
603		if (btree_node_dirty(b))
604			goto out_unlock;
605
606		if (down_trylock(&b->io_mutex))
607			goto out_unlock;
608		up(&b->io_mutex);
609	}
610
611retry:
612	/*
613	 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
614	 * __bch_btree_node_write(). To avoid an extra flush, acquire
615	 * b->write_lock before checking BTREE_NODE_dirty bit.
616	 */
617	mutex_lock(&b->write_lock);
618	/*
619	 * If this btree node is selected in btree_flush_write() by journal
620	 * code, delay and retry until the node is flushed by journal code
621	 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
622	 */
623	if (btree_node_journal_flush(b)) {
624		pr_debug("bnode %p is flushing by journal, retry\n", b);
625		mutex_unlock(&b->write_lock);
626		udelay(1);
627		goto retry;
628	}
629
630	if (btree_node_dirty(b))
631		__bch_btree_node_write(b, &cl);
632	mutex_unlock(&b->write_lock);
633
634	closure_sync(&cl);
635
636	/* wait for any in flight btree write */
637	down(&b->io_mutex);
638	up(&b->io_mutex);
639
640	return 0;
641out_unlock:
642	rw_unlock(true, b);
643	return -ENOMEM;
644}
645
646static unsigned long bch_mca_scan(struct shrinker *shrink,
647				  struct shrink_control *sc)
648{
649	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
650	struct btree *b, *t;
651	unsigned long i, nr = sc->nr_to_scan;
652	unsigned long freed = 0;
653	unsigned int btree_cache_used;
654
655	if (c->shrinker_disabled)
656		return SHRINK_STOP;
657
658	if (c->btree_cache_alloc_lock)
659		return SHRINK_STOP;
660
661	/* Return -1 if we can't do anything right now */
662	if (sc->gfp_mask & __GFP_IO)
663		mutex_lock(&c->bucket_lock);
664	else if (!mutex_trylock(&c->bucket_lock))
665		return -1;
666
667	/*
668	 * It's _really_ critical that we don't free too many btree nodes - we
669	 * have to always leave ourselves a reserve. The reserve is how we
670	 * guarantee that allocating memory for a new btree node can always
671	 * succeed, so that inserting keys into the btree can always succeed and
672	 * IO can always make forward progress:
673	 */
674	nr /= c->btree_pages;
675	if (nr == 0)
676		nr = 1;
677	nr = min_t(unsigned long, nr, mca_can_free(c));
678
679	i = 0;
680	btree_cache_used = c->btree_cache_used;
681	list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
682		if (nr <= 0)
683			goto out;
684
685		if (!mca_reap(b, 0, false)) {
686			mca_data_free(b);
687			rw_unlock(true, b);
688			freed++;
689		}
690		nr--;
691		i++;
692	}
693
694	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
695		if (nr <= 0 || i >= btree_cache_used)
696			goto out;
697
698		if (!mca_reap(b, 0, false)) {
699			mca_bucket_free(b);
700			mca_data_free(b);
701			rw_unlock(true, b);
702			freed++;
703		}
704
705		nr--;
706		i++;
707	}
708out:
709	mutex_unlock(&c->bucket_lock);
710	return freed * c->btree_pages;
711}
712
713static unsigned long bch_mca_count(struct shrinker *shrink,
714				   struct shrink_control *sc)
715{
716	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
717
718	if (c->shrinker_disabled)
719		return 0;
720
721	if (c->btree_cache_alloc_lock)
722		return 0;
723
724	return mca_can_free(c) * c->btree_pages;
725}
726
727void bch_btree_cache_free(struct cache_set *c)
728{
729	struct btree *b;
730	struct closure cl;
731
732	closure_init_stack(&cl);
733
734	if (c->shrink.list.next)
735		unregister_shrinker(&c->shrink);
736
737	mutex_lock(&c->bucket_lock);
738
739#ifdef CONFIG_BCACHE_DEBUG
740	if (c->verify_data)
741		list_move(&c->verify_data->list, &c->btree_cache);
742
743	free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
744#endif
745
746	list_splice(&c->btree_cache_freeable,
747		    &c->btree_cache);
748
749	while (!list_empty(&c->btree_cache)) {
750		b = list_first_entry(&c->btree_cache, struct btree, list);
751
752		/*
753		 * This function is called by cache_set_free(), no I/O
754		 * request on cache now, it is unnecessary to acquire
755		 * b->write_lock before clearing BTREE_NODE_dirty anymore.
756		 */
757		if (btree_node_dirty(b)) {
758			btree_complete_write(b, btree_current_write(b));
759			clear_bit(BTREE_NODE_dirty, &b->flags);
760		}
761		mca_data_free(b);
762	}
763
764	while (!list_empty(&c->btree_cache_freed)) {
765		b = list_first_entry(&c->btree_cache_freed,
766				     struct btree, list);
767		list_del(&b->list);
768		cancel_delayed_work_sync(&b->work);
769		kfree(b);
770	}
771
772	mutex_unlock(&c->bucket_lock);
773}
774
775int bch_btree_cache_alloc(struct cache_set *c)
776{
777	unsigned int i;
778
779	for (i = 0; i < mca_reserve(c); i++)
780		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
781			return -ENOMEM;
782
783	list_splice_init(&c->btree_cache,
784			 &c->btree_cache_freeable);
785
786#ifdef CONFIG_BCACHE_DEBUG
787	mutex_init(&c->verify_lock);
788
789	c->verify_ondisk = (void *)
790		__get_free_pages(GFP_KERNEL|__GFP_COMP,
791				 ilog2(meta_bucket_pages(&c->cache->sb)));
792	if (!c->verify_ondisk) {
793		/*
794		 * Don't worry about the mca_rereserve buckets
795		 * allocated in previous for-loop, they will be
796		 * handled properly in bch_cache_set_unregister().
797		 */
798		return -ENOMEM;
799	}
800
801	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
802
803	if (c->verify_data &&
804	    c->verify_data->keys.set->data)
805		list_del_init(&c->verify_data->list);
806	else
807		c->verify_data = NULL;
808#endif
809
810	c->shrink.count_objects = bch_mca_count;
811	c->shrink.scan_objects = bch_mca_scan;
812	c->shrink.seeks = 4;
813	c->shrink.batch = c->btree_pages * 2;
814
815	if (register_shrinker(&c->shrink))
816		pr_warn("bcache: %s: could not register shrinker\n",
817				__func__);
818
819	return 0;
820}
821
822/* Btree in memory cache - hash table */
823
824static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
825{
826	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
827}
828
829static struct btree *mca_find(struct cache_set *c, struct bkey *k)
830{
831	struct btree *b;
832
833	rcu_read_lock();
834	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
835		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
836			goto out;
837	b = NULL;
838out:
839	rcu_read_unlock();
840	return b;
841}
842
843static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
844{
845	spin_lock(&c->btree_cannibalize_lock);
846	if (likely(c->btree_cache_alloc_lock == NULL)) {
847		c->btree_cache_alloc_lock = current;
848	} else if (c->btree_cache_alloc_lock != current) {
849		if (op)
850			prepare_to_wait(&c->btree_cache_wait, &op->wait,
851					TASK_UNINTERRUPTIBLE);
852		spin_unlock(&c->btree_cannibalize_lock);
853		return -EINTR;
854	}
855	spin_unlock(&c->btree_cannibalize_lock);
856
857	return 0;
858}
859
860static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
861				     struct bkey *k)
862{
863	struct btree *b;
864
865	trace_bcache_btree_cache_cannibalize(c);
866
867	if (mca_cannibalize_lock(c, op))
868		return ERR_PTR(-EINTR);
869
870	list_for_each_entry_reverse(b, &c->btree_cache, list)
871		if (!mca_reap(b, btree_order(k), false))
872			return b;
873
874	list_for_each_entry_reverse(b, &c->btree_cache, list)
875		if (!mca_reap(b, btree_order(k), true))
876			return b;
877
878	WARN(1, "btree cache cannibalize failed\n");
879	return ERR_PTR(-ENOMEM);
880}
881
882/*
883 * We can only have one thread cannibalizing other cached btree nodes at a time,
884 * or we'll deadlock. We use an open coded mutex to ensure that, which a
885 * cannibalize_bucket() will take. This means every time we unlock the root of
886 * the btree, we need to release this lock if we have it held.
887 */
888void bch_cannibalize_unlock(struct cache_set *c)
889{
890	spin_lock(&c->btree_cannibalize_lock);
891	if (c->btree_cache_alloc_lock == current) {
892		c->btree_cache_alloc_lock = NULL;
893		wake_up(&c->btree_cache_wait);
894	}
895	spin_unlock(&c->btree_cannibalize_lock);
896}
897
898static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
899			       struct bkey *k, int level)
900{
901	struct btree *b;
902
903	BUG_ON(current->bio_list);
904
905	lockdep_assert_held(&c->bucket_lock);
906
907	if (mca_find(c, k))
908		return NULL;
909
910	/* btree_free() doesn't free memory; it sticks the node on the end of
911	 * the list. Check if there's any freed nodes there:
912	 */
913	list_for_each_entry(b, &c->btree_cache_freeable, list)
914		if (!mca_reap(b, btree_order(k), false))
915			goto out;
916
917	/* We never free struct btree itself, just the memory that holds the on
918	 * disk node. Check the freed list before allocating a new one:
919	 */
920	list_for_each_entry(b, &c->btree_cache_freed, list)
921		if (!mca_reap(b, 0, false)) {
922			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
923			if (!b->keys.set[0].data)
924				goto err;
925			else
926				goto out;
927		}
928
929	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
930	if (!b)
931		goto err;
932
933	BUG_ON(!down_write_trylock(&b->lock));
934	if (!b->keys.set->data)
935		goto err;
936out:
937	BUG_ON(b->io_mutex.count != 1);
938
939	bkey_copy(&b->key, k);
940	list_move(&b->list, &c->btree_cache);
941	hlist_del_init_rcu(&b->hash);
942	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
943
944	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
945	b->parent	= (void *) ~0UL;
946	b->flags	= 0;
947	b->written	= 0;
948	b->level	= level;
949
950	if (!b->level)
951		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
952				    &b->c->expensive_debug_checks);
953	else
954		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
955				    &b->c->expensive_debug_checks);
956
957	return b;
958err:
959	if (b)
960		rw_unlock(true, b);
961
962	b = mca_cannibalize(c, op, k);
963	if (!IS_ERR(b))
964		goto out;
965
966	return b;
967}
968
969/*
970 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
971 * in from disk if necessary.
972 *
973 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
974 *
975 * The btree node will have either a read or a write lock held, depending on
976 * level and op->lock.
977 *
978 * Note: Only error code or btree pointer will be returned, it is unncessary
979 *       for callers to check NULL pointer.
980 */
981struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
982				 struct bkey *k, int level, bool write,
983				 struct btree *parent)
984{
985	int i = 0;
986	struct btree *b;
987
988	BUG_ON(level < 0);
989retry:
990	b = mca_find(c, k);
991
992	if (!b) {
993		if (current->bio_list)
994			return ERR_PTR(-EAGAIN);
995
996		mutex_lock(&c->bucket_lock);
997		b = mca_alloc(c, op, k, level);
998		mutex_unlock(&c->bucket_lock);
999
1000		if (!b)
1001			goto retry;
1002		if (IS_ERR(b))
1003			return b;
1004
1005		bch_btree_node_read(b);
1006
1007		if (!write)
1008			downgrade_write(&b->lock);
1009	} else {
1010		rw_lock(write, b, level);
1011		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1012			rw_unlock(write, b);
1013			goto retry;
1014		}
1015		BUG_ON(b->level != level);
1016	}
1017
1018	if (btree_node_io_error(b)) {
1019		rw_unlock(write, b);
1020		return ERR_PTR(-EIO);
1021	}
1022
1023	BUG_ON(!b->written);
1024
1025	b->parent = parent;
1026
1027	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1028		prefetch(b->keys.set[i].tree);
1029		prefetch(b->keys.set[i].data);
1030	}
1031
1032	for (; i <= b->keys.nsets; i++)
1033		prefetch(b->keys.set[i].data);
1034
1035	return b;
1036}
1037
1038static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1039{
1040	struct btree *b;
1041
1042	mutex_lock(&parent->c->bucket_lock);
1043	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1044	mutex_unlock(&parent->c->bucket_lock);
1045
1046	if (!IS_ERR_OR_NULL(b)) {
1047		b->parent = parent;
1048		bch_btree_node_read(b);
1049		rw_unlock(true, b);
1050	}
1051}
1052
1053/* Btree alloc */
1054
1055static void btree_node_free(struct btree *b)
1056{
1057	trace_bcache_btree_node_free(b);
1058
1059	BUG_ON(b == b->c->root);
1060
1061retry:
1062	mutex_lock(&b->write_lock);
1063	/*
1064	 * If the btree node is selected and flushing in btree_flush_write(),
1065	 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1066	 * then it is safe to free the btree node here. Otherwise this btree
1067	 * node will be in race condition.
1068	 */
1069	if (btree_node_journal_flush(b)) {
1070		mutex_unlock(&b->write_lock);
1071		pr_debug("bnode %p journal_flush set, retry\n", b);
1072		udelay(1);
1073		goto retry;
1074	}
1075
1076	if (btree_node_dirty(b)) {
1077		btree_complete_write(b, btree_current_write(b));
1078		clear_bit(BTREE_NODE_dirty, &b->flags);
1079	}
1080
1081	mutex_unlock(&b->write_lock);
1082
1083	cancel_delayed_work(&b->work);
1084
1085	mutex_lock(&b->c->bucket_lock);
1086	bch_bucket_free(b->c, &b->key);
1087	mca_bucket_free(b);
1088	mutex_unlock(&b->c->bucket_lock);
1089}
1090
1091/*
1092 * Only error code or btree pointer will be returned, it is unncessary for
1093 * callers to check NULL pointer.
1094 */
1095struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1096				     int level, bool wait,
1097				     struct btree *parent)
1098{
1099	BKEY_PADDED(key) k;
1100	struct btree *b;
1101
1102	mutex_lock(&c->bucket_lock);
1103retry:
1104	/* return ERR_PTR(-EAGAIN) when it fails */
1105	b = ERR_PTR(-EAGAIN);
1106	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1107		goto err;
1108
1109	bkey_put(c, &k.key);
1110	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1111
1112	b = mca_alloc(c, op, &k.key, level);
1113	if (IS_ERR(b))
1114		goto err_free;
1115
1116	if (!b) {
1117		cache_bug(c,
1118			"Tried to allocate bucket that was in btree cache");
1119		goto retry;
1120	}
1121
1122	b->parent = parent;
1123	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1124
1125	mutex_unlock(&c->bucket_lock);
1126
1127	trace_bcache_btree_node_alloc(b);
1128	return b;
1129err_free:
1130	bch_bucket_free(c, &k.key);
1131err:
1132	mutex_unlock(&c->bucket_lock);
1133
1134	trace_bcache_btree_node_alloc_fail(c);
1135	return b;
1136}
1137
1138static struct btree *bch_btree_node_alloc(struct cache_set *c,
1139					  struct btree_op *op, int level,
1140					  struct btree *parent)
1141{
1142	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1143}
1144
1145static struct btree *btree_node_alloc_replacement(struct btree *b,
1146						  struct btree_op *op)
1147{
1148	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1149
1150	if (!IS_ERR(n)) {
1151		mutex_lock(&n->write_lock);
1152		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1153		bkey_copy_key(&n->key, &b->key);
1154		mutex_unlock(&n->write_lock);
1155	}
1156
1157	return n;
1158}
1159
1160static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1161{
1162	unsigned int i;
1163
1164	mutex_lock(&b->c->bucket_lock);
1165
1166	atomic_inc(&b->c->prio_blocked);
1167
1168	bkey_copy(k, &b->key);
1169	bkey_copy_key(k, &ZERO_KEY);
1170
1171	for (i = 0; i < KEY_PTRS(k); i++)
1172		SET_PTR_GEN(k, i,
1173			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1174					PTR_BUCKET(b->c, &b->key, i)));
1175
1176	mutex_unlock(&b->c->bucket_lock);
1177}
1178
1179static int btree_check_reserve(struct btree *b, struct btree_op *op)
1180{
1181	struct cache_set *c = b->c;
1182	struct cache *ca = c->cache;
1183	unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1184
1185	mutex_lock(&c->bucket_lock);
1186
1187	if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1188		if (op)
1189			prepare_to_wait(&c->btree_cache_wait, &op->wait,
1190					TASK_UNINTERRUPTIBLE);
1191		mutex_unlock(&c->bucket_lock);
1192		return -EINTR;
1193	}
1194
1195	mutex_unlock(&c->bucket_lock);
1196
1197	return mca_cannibalize_lock(b->c, op);
1198}
1199
1200/* Garbage collection */
1201
1202static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1203				    struct bkey *k)
1204{
1205	uint8_t stale = 0;
1206	unsigned int i;
1207	struct bucket *g;
1208
1209	/*
1210	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1211	 * freed, but since ptr_bad() returns true we'll never actually use them
1212	 * for anything and thus we don't want mark their pointers here
1213	 */
1214	if (!bkey_cmp(k, &ZERO_KEY))
1215		return stale;
1216
1217	for (i = 0; i < KEY_PTRS(k); i++) {
1218		if (!ptr_available(c, k, i))
1219			continue;
1220
1221		g = PTR_BUCKET(c, k, i);
1222
1223		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1224			g->last_gc = PTR_GEN(k, i);
1225
1226		if (ptr_stale(c, k, i)) {
1227			stale = max(stale, ptr_stale(c, k, i));
1228			continue;
1229		}
1230
1231		cache_bug_on(GC_MARK(g) &&
1232			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1233			     c, "inconsistent ptrs: mark = %llu, level = %i",
1234			     GC_MARK(g), level);
1235
1236		if (level)
1237			SET_GC_MARK(g, GC_MARK_METADATA);
1238		else if (KEY_DIRTY(k))
1239			SET_GC_MARK(g, GC_MARK_DIRTY);
1240		else if (!GC_MARK(g))
1241			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1242
1243		/* guard against overflow */
1244		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1245					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1246					     MAX_GC_SECTORS_USED));
1247
1248		BUG_ON(!GC_SECTORS_USED(g));
1249	}
1250
1251	return stale;
1252}
1253
1254#define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1255
1256void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1257{
1258	unsigned int i;
1259
1260	for (i = 0; i < KEY_PTRS(k); i++)
1261		if (ptr_available(c, k, i) &&
1262		    !ptr_stale(c, k, i)) {
1263			struct bucket *b = PTR_BUCKET(c, k, i);
1264
1265			b->gen = PTR_GEN(k, i);
1266
1267			if (level && bkey_cmp(k, &ZERO_KEY))
1268				b->prio = BTREE_PRIO;
1269			else if (!level && b->prio == BTREE_PRIO)
1270				b->prio = INITIAL_PRIO;
1271		}
1272
1273	__bch_btree_mark_key(c, level, k);
1274}
1275
1276void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1277{
1278	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1279}
1280
1281static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1282{
1283	uint8_t stale = 0;
1284	unsigned int keys = 0, good_keys = 0;
1285	struct bkey *k;
1286	struct btree_iter iter;
1287	struct bset_tree *t;
1288
1289	gc->nodes++;
1290
1291	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1292		stale = max(stale, btree_mark_key(b, k));
1293		keys++;
1294
1295		if (bch_ptr_bad(&b->keys, k))
1296			continue;
1297
1298		gc->key_bytes += bkey_u64s(k);
1299		gc->nkeys++;
1300		good_keys++;
1301
1302		gc->data += KEY_SIZE(k);
1303	}
1304
1305	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1306		btree_bug_on(t->size &&
1307			     bset_written(&b->keys, t) &&
1308			     bkey_cmp(&b->key, &t->end) < 0,
1309			     b, "found short btree key in gc");
1310
1311	if (b->c->gc_always_rewrite)
1312		return true;
1313
1314	if (stale > 10)
1315		return true;
1316
1317	if ((keys - good_keys) * 2 > keys)
1318		return true;
1319
1320	return false;
1321}
1322
1323#define GC_MERGE_NODES	4U
1324
1325struct gc_merge_info {
1326	struct btree	*b;
1327	unsigned int	keys;
1328};
1329
1330static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1331				 struct keylist *insert_keys,
1332				 atomic_t *journal_ref,
1333				 struct bkey *replace_key);
1334
1335static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1336			     struct gc_stat *gc, struct gc_merge_info *r)
1337{
1338	unsigned int i, nodes = 0, keys = 0, blocks;
1339	struct btree *new_nodes[GC_MERGE_NODES];
1340	struct keylist keylist;
1341	struct closure cl;
1342	struct bkey *k;
1343
1344	bch_keylist_init(&keylist);
1345
1346	if (btree_check_reserve(b, NULL))
1347		return 0;
1348
1349	memset(new_nodes, 0, sizeof(new_nodes));
1350	closure_init_stack(&cl);
1351
1352	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1353		keys += r[nodes++].keys;
1354
1355	blocks = btree_default_blocks(b->c) * 2 / 3;
1356
1357	if (nodes < 2 ||
1358	    __set_blocks(b->keys.set[0].data, keys,
1359			 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1360		return 0;
1361
1362	for (i = 0; i < nodes; i++) {
1363		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1364		if (IS_ERR(new_nodes[i]))
1365			goto out_nocoalesce;
1366	}
1367
1368	/*
1369	 * We have to check the reserve here, after we've allocated our new
1370	 * nodes, to make sure the insert below will succeed - we also check
1371	 * before as an optimization to potentially avoid a bunch of expensive
1372	 * allocs/sorts
1373	 */
1374	if (btree_check_reserve(b, NULL))
1375		goto out_nocoalesce;
1376
1377	for (i = 0; i < nodes; i++)
1378		mutex_lock(&new_nodes[i]->write_lock);
1379
1380	for (i = nodes - 1; i > 0; --i) {
1381		struct bset *n1 = btree_bset_first(new_nodes[i]);
1382		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1383		struct bkey *k, *last = NULL;
1384
1385		keys = 0;
1386
1387		if (i > 1) {
1388			for (k = n2->start;
1389			     k < bset_bkey_last(n2);
1390			     k = bkey_next(k)) {
1391				if (__set_blocks(n1, n1->keys + keys +
1392						 bkey_u64s(k),
1393						 block_bytes(b->c->cache)) > blocks)
1394					break;
1395
1396				last = k;
1397				keys += bkey_u64s(k);
1398			}
1399		} else {
1400			/*
1401			 * Last node we're not getting rid of - we're getting
1402			 * rid of the node at r[0]. Have to try and fit all of
1403			 * the remaining keys into this node; we can't ensure
1404			 * they will always fit due to rounding and variable
1405			 * length keys (shouldn't be possible in practice,
1406			 * though)
1407			 */
1408			if (__set_blocks(n1, n1->keys + n2->keys,
1409					 block_bytes(b->c->cache)) >
1410			    btree_blocks(new_nodes[i]))
1411				goto out_unlock_nocoalesce;
1412
1413			keys = n2->keys;
1414			/* Take the key of the node we're getting rid of */
1415			last = &r->b->key;
1416		}
1417
1418		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1419		       btree_blocks(new_nodes[i]));
1420
1421		if (last)
1422			bkey_copy_key(&new_nodes[i]->key, last);
1423
1424		memcpy(bset_bkey_last(n1),
1425		       n2->start,
1426		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1427
1428		n1->keys += keys;
1429		r[i].keys = n1->keys;
1430
1431		memmove(n2->start,
1432			bset_bkey_idx(n2, keys),
1433			(void *) bset_bkey_last(n2) -
1434			(void *) bset_bkey_idx(n2, keys));
1435
1436		n2->keys -= keys;
1437
1438		if (__bch_keylist_realloc(&keylist,
1439					  bkey_u64s(&new_nodes[i]->key)))
1440			goto out_unlock_nocoalesce;
1441
1442		bch_btree_node_write(new_nodes[i], &cl);
1443		bch_keylist_add(&keylist, &new_nodes[i]->key);
1444	}
1445
1446	for (i = 0; i < nodes; i++)
1447		mutex_unlock(&new_nodes[i]->write_lock);
1448
1449	closure_sync(&cl);
1450
1451	/* We emptied out this node */
1452	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1453	btree_node_free(new_nodes[0]);
1454	rw_unlock(true, new_nodes[0]);
1455	new_nodes[0] = NULL;
1456
1457	for (i = 0; i < nodes; i++) {
1458		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1459			goto out_nocoalesce;
1460
1461		make_btree_freeing_key(r[i].b, keylist.top);
1462		bch_keylist_push(&keylist);
1463	}
1464
1465	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1466	BUG_ON(!bch_keylist_empty(&keylist));
1467
1468	for (i = 0; i < nodes; i++) {
1469		btree_node_free(r[i].b);
1470		rw_unlock(true, r[i].b);
1471
1472		r[i].b = new_nodes[i];
1473	}
1474
1475	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1476	r[nodes - 1].b = ERR_PTR(-EINTR);
1477
1478	trace_bcache_btree_gc_coalesce(nodes);
1479	gc->nodes--;
1480
1481	bch_keylist_free(&keylist);
1482
1483	/* Invalidated our iterator */
1484	return -EINTR;
1485
1486out_unlock_nocoalesce:
1487	for (i = 0; i < nodes; i++)
1488		mutex_unlock(&new_nodes[i]->write_lock);
1489
1490out_nocoalesce:
1491	closure_sync(&cl);
1492
1493	while ((k = bch_keylist_pop(&keylist)))
1494		if (!bkey_cmp(k, &ZERO_KEY))
1495			atomic_dec(&b->c->prio_blocked);
1496	bch_keylist_free(&keylist);
1497
1498	for (i = 0; i < nodes; i++)
1499		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1500			btree_node_free(new_nodes[i]);
1501			rw_unlock(true, new_nodes[i]);
1502		}
1503	return 0;
1504}
1505
1506static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1507				 struct btree *replace)
1508{
1509	struct keylist keys;
1510	struct btree *n;
1511
1512	if (btree_check_reserve(b, NULL))
1513		return 0;
1514
1515	n = btree_node_alloc_replacement(replace, NULL);
1516	if (IS_ERR(n))
1517		return 0;
1518
1519	/* recheck reserve after allocating replacement node */
1520	if (btree_check_reserve(b, NULL)) {
1521		btree_node_free(n);
1522		rw_unlock(true, n);
1523		return 0;
1524	}
1525
1526	bch_btree_node_write_sync(n);
1527
1528	bch_keylist_init(&keys);
1529	bch_keylist_add(&keys, &n->key);
1530
1531	make_btree_freeing_key(replace, keys.top);
1532	bch_keylist_push(&keys);
1533
1534	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1535	BUG_ON(!bch_keylist_empty(&keys));
1536
1537	btree_node_free(replace);
1538	rw_unlock(true, n);
1539
1540	/* Invalidated our iterator */
1541	return -EINTR;
1542}
1543
1544static unsigned int btree_gc_count_keys(struct btree *b)
1545{
1546	struct bkey *k;
1547	struct btree_iter iter;
1548	unsigned int ret = 0;
1549
1550	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1551		ret += bkey_u64s(k);
1552
1553	return ret;
1554}
1555
1556static size_t btree_gc_min_nodes(struct cache_set *c)
1557{
1558	size_t min_nodes;
1559
1560	/*
1561	 * Since incremental GC would stop 100ms when front
1562	 * side I/O comes, so when there are many btree nodes,
1563	 * if GC only processes constant (100) nodes each time,
1564	 * GC would last a long time, and the front side I/Os
1565	 * would run out of the buckets (since no new bucket
1566	 * can be allocated during GC), and be blocked again.
1567	 * So GC should not process constant nodes, but varied
1568	 * nodes according to the number of btree nodes, which
1569	 * realized by dividing GC into constant(100) times,
1570	 * so when there are many btree nodes, GC can process
1571	 * more nodes each time, otherwise, GC will process less
1572	 * nodes each time (but no less than MIN_GC_NODES)
1573	 */
1574	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1575	if (min_nodes < MIN_GC_NODES)
1576		min_nodes = MIN_GC_NODES;
1577
1578	return min_nodes;
1579}
1580
1581
1582static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1583			    struct closure *writes, struct gc_stat *gc)
1584{
1585	int ret = 0;
1586	bool should_rewrite;
1587	struct bkey *k;
1588	struct btree_iter iter;
1589	struct gc_merge_info r[GC_MERGE_NODES];
1590	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1591
1592	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1593
1594	for (i = r; i < r + ARRAY_SIZE(r); i++)
1595		i->b = ERR_PTR(-EINTR);
1596
1597	while (1) {
1598		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1599		if (k) {
1600			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1601						  true, b);
1602			if (IS_ERR(r->b)) {
1603				ret = PTR_ERR(r->b);
1604				break;
1605			}
1606
1607			r->keys = btree_gc_count_keys(r->b);
1608
1609			ret = btree_gc_coalesce(b, op, gc, r);
1610			if (ret)
1611				break;
1612		}
1613
1614		if (!last->b)
1615			break;
1616
1617		if (!IS_ERR(last->b)) {
1618			should_rewrite = btree_gc_mark_node(last->b, gc);
1619			if (should_rewrite) {
1620				ret = btree_gc_rewrite_node(b, op, last->b);
1621				if (ret)
1622					break;
1623			}
1624
1625			if (last->b->level) {
1626				ret = btree_gc_recurse(last->b, op, writes, gc);
1627				if (ret)
1628					break;
1629			}
1630
1631			bkey_copy_key(&b->c->gc_done, &last->b->key);
1632
1633			/*
1634			 * Must flush leaf nodes before gc ends, since replace
1635			 * operations aren't journalled
1636			 */
1637			mutex_lock(&last->b->write_lock);
1638			if (btree_node_dirty(last->b))
1639				bch_btree_node_write(last->b, writes);
1640			mutex_unlock(&last->b->write_lock);
1641			rw_unlock(true, last->b);
1642		}
1643
1644		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1645		r->b = NULL;
1646
1647		if (atomic_read(&b->c->search_inflight) &&
1648		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1649			gc->nodes_pre =  gc->nodes;
1650			ret = -EAGAIN;
1651			break;
1652		}
1653
1654		if (need_resched()) {
1655			ret = -EAGAIN;
1656			break;
1657		}
1658	}
1659
1660	for (i = r; i < r + ARRAY_SIZE(r); i++)
1661		if (!IS_ERR_OR_NULL(i->b)) {
1662			mutex_lock(&i->b->write_lock);
1663			if (btree_node_dirty(i->b))
1664				bch_btree_node_write(i->b, writes);
1665			mutex_unlock(&i->b->write_lock);
1666			rw_unlock(true, i->b);
1667		}
1668
1669	return ret;
1670}
1671
1672static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1673			     struct closure *writes, struct gc_stat *gc)
1674{
1675	struct btree *n = NULL;
1676	int ret = 0;
1677	bool should_rewrite;
1678
1679	should_rewrite = btree_gc_mark_node(b, gc);
1680	if (should_rewrite) {
1681		n = btree_node_alloc_replacement(b, NULL);
1682
1683		if (!IS_ERR(n)) {
1684			bch_btree_node_write_sync(n);
1685
1686			bch_btree_set_root(n);
1687			btree_node_free(b);
1688			rw_unlock(true, n);
1689
1690			return -EINTR;
1691		}
1692	}
1693
1694	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1695
1696	if (b->level) {
1697		ret = btree_gc_recurse(b, op, writes, gc);
1698		if (ret)
1699			return ret;
1700	}
1701
1702	bkey_copy_key(&b->c->gc_done, &b->key);
1703
1704	return ret;
1705}
1706
1707static void btree_gc_start(struct cache_set *c)
1708{
1709	struct cache *ca;
1710	struct bucket *b;
1711
1712	if (!c->gc_mark_valid)
1713		return;
1714
1715	mutex_lock(&c->bucket_lock);
1716
1717	c->gc_mark_valid = 0;
1718	c->gc_done = ZERO_KEY;
1719
1720	ca = c->cache;
1721	for_each_bucket(b, ca) {
1722		b->last_gc = b->gen;
1723		if (!atomic_read(&b->pin)) {
1724			SET_GC_MARK(b, 0);
1725			SET_GC_SECTORS_USED(b, 0);
1726		}
1727	}
1728
1729	mutex_unlock(&c->bucket_lock);
1730}
1731
1732static void bch_btree_gc_finish(struct cache_set *c)
1733{
1734	struct bucket *b;
1735	struct cache *ca;
1736	unsigned int i, j;
1737	uint64_t *k;
1738
1739	mutex_lock(&c->bucket_lock);
1740
1741	set_gc_sectors(c);
1742	c->gc_mark_valid = 1;
1743	c->need_gc	= 0;
1744
1745	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1746		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1747			    GC_MARK_METADATA);
1748
1749	/* don't reclaim buckets to which writeback keys point */
1750	rcu_read_lock();
1751	for (i = 0; i < c->devices_max_used; i++) {
1752		struct bcache_device *d = c->devices[i];
1753		struct cached_dev *dc;
1754		struct keybuf_key *w, *n;
1755
1756		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1757			continue;
1758		dc = container_of(d, struct cached_dev, disk);
1759
1760		spin_lock(&dc->writeback_keys.lock);
1761		rbtree_postorder_for_each_entry_safe(w, n,
1762					&dc->writeback_keys.keys, node)
1763			for (j = 0; j < KEY_PTRS(&w->key); j++)
1764				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1765					    GC_MARK_DIRTY);
1766		spin_unlock(&dc->writeback_keys.lock);
1767	}
1768	rcu_read_unlock();
1769
1770	c->avail_nbuckets = 0;
1771
1772	ca = c->cache;
1773	ca->invalidate_needs_gc = 0;
1774
1775	for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1776		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1777
1778	for (k = ca->prio_buckets;
1779	     k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1780		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1781
1782	for_each_bucket(b, ca) {
1783		c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1784
1785		if (atomic_read(&b->pin))
1786			continue;
1787
1788		BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1789
1790		if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1791			c->avail_nbuckets++;
1792	}
1793
1794	mutex_unlock(&c->bucket_lock);
1795}
1796
1797static void bch_btree_gc(struct cache_set *c)
1798{
1799	int ret;
1800	struct gc_stat stats;
1801	struct closure writes;
1802	struct btree_op op;
1803	uint64_t start_time = local_clock();
1804
1805	trace_bcache_gc_start(c);
1806
1807	memset(&stats, 0, sizeof(struct gc_stat));
1808	closure_init_stack(&writes);
1809	bch_btree_op_init(&op, SHRT_MAX);
1810
1811	btree_gc_start(c);
1812
1813	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1814	do {
1815		ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1816		closure_sync(&writes);
1817		cond_resched();
1818
1819		if (ret == -EAGAIN)
1820			schedule_timeout_interruptible(msecs_to_jiffies
1821						       (GC_SLEEP_MS));
1822		else if (ret)
1823			pr_warn("gc failed!\n");
1824	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1825
1826	bch_btree_gc_finish(c);
1827	wake_up_allocators(c);
1828
1829	bch_time_stats_update(&c->btree_gc_time, start_time);
1830
1831	stats.key_bytes *= sizeof(uint64_t);
1832	stats.data	<<= 9;
1833	bch_update_bucket_in_use(c, &stats);
1834	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1835
1836	trace_bcache_gc_end(c);
1837
1838	bch_moving_gc(c);
1839}
1840
1841static bool gc_should_run(struct cache_set *c)
1842{
1843	struct cache *ca = c->cache;
1844
1845	if (ca->invalidate_needs_gc)
1846		return true;
1847
1848	if (atomic_read(&c->sectors_to_gc) < 0)
1849		return true;
1850
1851	return false;
1852}
1853
1854static int bch_gc_thread(void *arg)
1855{
1856	struct cache_set *c = arg;
1857
1858	while (1) {
1859		wait_event_interruptible(c->gc_wait,
1860			   kthread_should_stop() ||
1861			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1862			   gc_should_run(c));
1863
1864		if (kthread_should_stop() ||
1865		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1866			break;
1867
1868		set_gc_sectors(c);
1869		bch_btree_gc(c);
1870	}
1871
1872	wait_for_kthread_stop();
1873	return 0;
1874}
1875
1876int bch_gc_thread_start(struct cache_set *c)
1877{
1878	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1879	return PTR_ERR_OR_ZERO(c->gc_thread);
1880}
1881
1882/* Initial partial gc */
1883
1884static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1885{
1886	int ret = 0;
1887	struct bkey *k, *p = NULL;
1888	struct btree_iter iter;
1889
1890	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1891		bch_initial_mark_key(b->c, b->level, k);
1892
1893	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1894
1895	if (b->level) {
1896		bch_btree_iter_init(&b->keys, &iter, NULL);
1897
1898		do {
1899			k = bch_btree_iter_next_filter(&iter, &b->keys,
1900						       bch_ptr_bad);
1901			if (k) {
1902				btree_node_prefetch(b, k);
1903				/*
1904				 * initiallize c->gc_stats.nodes
1905				 * for incremental GC
1906				 */
1907				b->c->gc_stats.nodes++;
1908			}
1909
1910			if (p)
1911				ret = bcache_btree(check_recurse, p, b, op);
1912
1913			p = k;
1914		} while (p && !ret);
1915	}
1916
1917	return ret;
1918}
1919
1920
1921static int bch_btree_check_thread(void *arg)
1922{
1923	int ret;
1924	struct btree_check_info *info = arg;
1925	struct btree_check_state *check_state = info->state;
1926	struct cache_set *c = check_state->c;
1927	struct btree_iter iter;
1928	struct bkey *k, *p;
1929	int cur_idx, prev_idx, skip_nr;
1930
1931	k = p = NULL;
1932	cur_idx = prev_idx = 0;
1933	ret = 0;
1934
1935	/* root node keys are checked before thread created */
1936	bch_btree_iter_init(&c->root->keys, &iter, NULL);
1937	k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1938	BUG_ON(!k);
1939
1940	p = k;
1941	while (k) {
1942		/*
1943		 * Fetch a root node key index, skip the keys which
1944		 * should be fetched by other threads, then check the
1945		 * sub-tree indexed by the fetched key.
1946		 */
1947		spin_lock(&check_state->idx_lock);
1948		cur_idx = check_state->key_idx;
1949		check_state->key_idx++;
1950		spin_unlock(&check_state->idx_lock);
1951
1952		skip_nr = cur_idx - prev_idx;
1953
1954		while (skip_nr) {
1955			k = bch_btree_iter_next_filter(&iter,
1956						       &c->root->keys,
1957						       bch_ptr_bad);
1958			if (k)
1959				p = k;
1960			else {
1961				/*
1962				 * No more keys to check in root node,
1963				 * current checking threads are enough,
1964				 * stop creating more.
1965				 */
1966				atomic_set(&check_state->enough, 1);
1967				/* Update check_state->enough earlier */
1968				smp_mb__after_atomic();
1969				goto out;
1970			}
1971			skip_nr--;
1972			cond_resched();
1973		}
1974
1975		if (p) {
1976			struct btree_op op;
1977
1978			btree_node_prefetch(c->root, p);
1979			c->gc_stats.nodes++;
1980			bch_btree_op_init(&op, 0);
1981			ret = bcache_btree(check_recurse, p, c->root, &op);
1982			/*
1983			 * The op may be added to cache_set's btree_cache_wait
1984			 * in mca_cannibalize(), must ensure it is removed from
1985			 * the list and release btree_cache_alloc_lock before
1986			 * free op memory.
1987			 * Otherwise, the btree_cache_wait will be damaged.
1988			 */
1989			bch_cannibalize_unlock(c);
1990			finish_wait(&c->btree_cache_wait, &(&op)->wait);
1991			if (ret)
1992				goto out;
1993		}
1994		p = NULL;
1995		prev_idx = cur_idx;
1996		cond_resched();
1997	}
1998
1999out:
2000	info->result = ret;
2001	/* update check_state->started among all CPUs */
2002	smp_mb__before_atomic();
2003	if (atomic_dec_and_test(&check_state->started))
2004		wake_up(&check_state->wait);
2005
2006	return ret;
2007}
2008
2009
2010
2011static int bch_btree_chkthread_nr(void)
2012{
2013	int n = num_online_cpus()/2;
2014
2015	if (n == 0)
2016		n = 1;
2017	else if (n > BCH_BTR_CHKTHREAD_MAX)
2018		n = BCH_BTR_CHKTHREAD_MAX;
2019
2020	return n;
2021}
2022
2023int bch_btree_check(struct cache_set *c)
2024{
2025	int ret = 0;
2026	int i;
2027	struct bkey *k = NULL;
2028	struct btree_iter iter;
2029	struct btree_check_state check_state;
2030
2031	/* check and mark root node keys */
2032	for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2033		bch_initial_mark_key(c, c->root->level, k);
2034
2035	bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2036
2037	if (c->root->level == 0)
2038		return 0;
2039
2040	memset(&check_state, 0, sizeof(struct btree_check_state));
2041	check_state.c = c;
2042	check_state.total_threads = bch_btree_chkthread_nr();
2043	check_state.key_idx = 0;
2044	spin_lock_init(&check_state.idx_lock);
2045	atomic_set(&check_state.started, 0);
2046	atomic_set(&check_state.enough, 0);
2047	init_waitqueue_head(&check_state.wait);
2048
2049	rw_lock(0, c->root, c->root->level);
2050	/*
2051	 * Run multiple threads to check btree nodes in parallel,
2052	 * if check_state.enough is non-zero, it means current
2053	 * running check threads are enough, unncessary to create
2054	 * more.
2055	 */
2056	for (i = 0; i < check_state.total_threads; i++) {
2057		/* fetch latest check_state.enough earlier */
2058		smp_mb__before_atomic();
2059		if (atomic_read(&check_state.enough))
2060			break;
2061
2062		check_state.infos[i].result = 0;
2063		check_state.infos[i].state = &check_state;
2064
2065		check_state.infos[i].thread =
2066			kthread_run(bch_btree_check_thread,
2067				    &check_state.infos[i],
2068				    "bch_btrchk[%d]", i);
2069		if (IS_ERR(check_state.infos[i].thread)) {
2070			pr_err("fails to run thread bch_btrchk[%d]\n", i);
2071			for (--i; i >= 0; i--)
2072				kthread_stop(check_state.infos[i].thread);
2073			ret = -ENOMEM;
2074			goto out;
2075		}
2076		atomic_inc(&check_state.started);
2077	}
2078
2079	/*
2080	 * Must wait for all threads to stop.
2081	 */
2082	wait_event(check_state.wait, atomic_read(&check_state.started) == 0);
2083
2084	for (i = 0; i < check_state.total_threads; i++) {
2085		if (check_state.infos[i].result) {
2086			ret = check_state.infos[i].result;
2087			goto out;
2088		}
2089	}
2090
2091out:
2092	rw_unlock(0, c->root);
2093	return ret;
2094}
2095
2096void bch_initial_gc_finish(struct cache_set *c)
2097{
2098	struct cache *ca = c->cache;
2099	struct bucket *b;
2100
2101	bch_btree_gc_finish(c);
2102
2103	mutex_lock(&c->bucket_lock);
2104
2105	/*
2106	 * We need to put some unused buckets directly on the prio freelist in
2107	 * order to get the allocator thread started - it needs freed buckets in
2108	 * order to rewrite the prios and gens, and it needs to rewrite prios
2109	 * and gens in order to free buckets.
2110	 *
2111	 * This is only safe for buckets that have no live data in them, which
2112	 * there should always be some of.
2113	 */
2114	for_each_bucket(b, ca) {
2115		if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2116		    fifo_full(&ca->free[RESERVE_BTREE]))
2117			break;
2118
2119		if (bch_can_invalidate_bucket(ca, b) &&
2120		    !GC_MARK(b)) {
2121			__bch_invalidate_one_bucket(ca, b);
2122			if (!fifo_push(&ca->free[RESERVE_PRIO],
2123			   b - ca->buckets))
2124				fifo_push(&ca->free[RESERVE_BTREE],
2125					  b - ca->buckets);
2126		}
2127	}
2128
2129	mutex_unlock(&c->bucket_lock);
2130}
2131
2132/* Btree insertion */
2133
2134static bool btree_insert_key(struct btree *b, struct bkey *k,
2135			     struct bkey *replace_key)
2136{
2137	unsigned int status;
2138
2139	BUG_ON(bkey_cmp(k, &b->key) > 0);
2140
2141	status = bch_btree_insert_key(&b->keys, k, replace_key);
2142	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2143		bch_check_keys(&b->keys, "%u for %s", status,
2144			       replace_key ? "replace" : "insert");
2145
2146		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2147					      status);
2148		return true;
2149	} else
2150		return false;
2151}
2152
2153static size_t insert_u64s_remaining(struct btree *b)
2154{
2155	long ret = bch_btree_keys_u64s_remaining(&b->keys);
2156
2157	/*
2158	 * Might land in the middle of an existing extent and have to split it
2159	 */
2160	if (b->keys.ops->is_extents)
2161		ret -= KEY_MAX_U64S;
2162
2163	return max(ret, 0L);
2164}
2165
2166static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2167				  struct keylist *insert_keys,
2168				  struct bkey *replace_key)
2169{
2170	bool ret = false;
2171	int oldsize = bch_count_data(&b->keys);
2172
2173	while (!bch_keylist_empty(insert_keys)) {
2174		struct bkey *k = insert_keys->keys;
2175
2176		if (bkey_u64s(k) > insert_u64s_remaining(b))
2177			break;
2178
2179		if (bkey_cmp(k, &b->key) <= 0) {
2180			if (!b->level)
2181				bkey_put(b->c, k);
2182
2183			ret |= btree_insert_key(b, k, replace_key);
2184			bch_keylist_pop_front(insert_keys);
2185		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2186			BKEY_PADDED(key) temp;
2187			bkey_copy(&temp.key, insert_keys->keys);
2188
2189			bch_cut_back(&b->key, &temp.key);
2190			bch_cut_front(&b->key, insert_keys->keys);
2191
2192			ret |= btree_insert_key(b, &temp.key, replace_key);
2193			break;
2194		} else {
2195			break;
2196		}
2197	}
2198
2199	if (!ret)
2200		op->insert_collision = true;
2201
2202	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2203
2204	BUG_ON(bch_count_data(&b->keys) < oldsize);
2205	return ret;
2206}
2207
2208static int btree_split(struct btree *b, struct btree_op *op,
2209		       struct keylist *insert_keys,
2210		       struct bkey *replace_key)
2211{
2212	bool split;
2213	struct btree *n1, *n2 = NULL, *n3 = NULL;
2214	uint64_t start_time = local_clock();
2215	struct closure cl;
2216	struct keylist parent_keys;
2217
2218	closure_init_stack(&cl);
2219	bch_keylist_init(&parent_keys);
2220
2221	if (btree_check_reserve(b, op)) {
2222		if (!b->level)
2223			return -EINTR;
2224		else
2225			WARN(1, "insufficient reserve for split\n");
2226	}
2227
2228	n1 = btree_node_alloc_replacement(b, op);
2229	if (IS_ERR(n1))
2230		goto err;
2231
2232	split = set_blocks(btree_bset_first(n1),
2233			   block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2234
2235	if (split) {
2236		unsigned int keys = 0;
2237
2238		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2239
2240		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2241		if (IS_ERR(n2))
2242			goto err_free1;
2243
2244		if (!b->parent) {
2245			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2246			if (IS_ERR(n3))
2247				goto err_free2;
2248		}
2249
2250		mutex_lock(&n1->write_lock);
2251		mutex_lock(&n2->write_lock);
2252
2253		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2254
2255		/*
2256		 * Has to be a linear search because we don't have an auxiliary
2257		 * search tree yet
2258		 */
2259
2260		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2261			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2262							keys));
2263
2264		bkey_copy_key(&n1->key,
2265			      bset_bkey_idx(btree_bset_first(n1), keys));
2266		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2267
2268		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2269		btree_bset_first(n1)->keys = keys;
2270
2271		memcpy(btree_bset_first(n2)->start,
2272		       bset_bkey_last(btree_bset_first(n1)),
2273		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2274
2275		bkey_copy_key(&n2->key, &b->key);
2276
2277		bch_keylist_add(&parent_keys, &n2->key);
2278		bch_btree_node_write(n2, &cl);
2279		mutex_unlock(&n2->write_lock);
2280		rw_unlock(true, n2);
2281	} else {
2282		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2283
2284		mutex_lock(&n1->write_lock);
2285		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2286	}
2287
2288	bch_keylist_add(&parent_keys, &n1->key);
2289	bch_btree_node_write(n1, &cl);
2290	mutex_unlock(&n1->write_lock);
2291
2292	if (n3) {
2293		/* Depth increases, make a new root */
2294		mutex_lock(&n3->write_lock);
2295		bkey_copy_key(&n3->key, &MAX_KEY);
2296		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2297		bch_btree_node_write(n3, &cl);
2298		mutex_unlock(&n3->write_lock);
2299
2300		closure_sync(&cl);
2301		bch_btree_set_root(n3);
2302		rw_unlock(true, n3);
2303	} else if (!b->parent) {
2304		/* Root filled up but didn't need to be split */
2305		closure_sync(&cl);
2306		bch_btree_set_root(n1);
2307	} else {
2308		/* Split a non root node */
2309		closure_sync(&cl);
2310		make_btree_freeing_key(b, parent_keys.top);
2311		bch_keylist_push(&parent_keys);
2312
2313		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2314		BUG_ON(!bch_keylist_empty(&parent_keys));
2315	}
2316
2317	btree_node_free(b);
2318	rw_unlock(true, n1);
2319
2320	bch_time_stats_update(&b->c->btree_split_time, start_time);
2321
2322	return 0;
2323err_free2:
2324	bkey_put(b->c, &n2->key);
2325	btree_node_free(n2);
2326	rw_unlock(true, n2);
2327err_free1:
2328	bkey_put(b->c, &n1->key);
2329	btree_node_free(n1);
2330	rw_unlock(true, n1);
2331err:
2332	WARN(1, "bcache: btree split failed (level %u)", b->level);
2333
2334	if (n3 == ERR_PTR(-EAGAIN) ||
2335	    n2 == ERR_PTR(-EAGAIN) ||
2336	    n1 == ERR_PTR(-EAGAIN))
2337		return -EAGAIN;
2338
2339	return -ENOMEM;
2340}
2341
2342static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2343				 struct keylist *insert_keys,
2344				 atomic_t *journal_ref,
2345				 struct bkey *replace_key)
2346{
2347	struct closure cl;
2348
2349	BUG_ON(b->level && replace_key);
2350
2351	closure_init_stack(&cl);
2352
2353	mutex_lock(&b->write_lock);
2354
2355	if (write_block(b) != btree_bset_last(b) &&
2356	    b->keys.last_set_unwritten)
2357		bch_btree_init_next(b); /* just wrote a set */
2358
2359	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2360		mutex_unlock(&b->write_lock);
2361		goto split;
2362	}
2363
2364	BUG_ON(write_block(b) != btree_bset_last(b));
2365
2366	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2367		if (!b->level)
2368			bch_btree_leaf_dirty(b, journal_ref);
2369		else
2370			bch_btree_node_write(b, &cl);
2371	}
2372
2373	mutex_unlock(&b->write_lock);
2374
2375	/* wait for btree node write if necessary, after unlock */
2376	closure_sync(&cl);
2377
2378	return 0;
2379split:
2380	if (current->bio_list) {
2381		op->lock = b->c->root->level + 1;
2382		return -EAGAIN;
2383	} else if (op->lock <= b->c->root->level) {
2384		op->lock = b->c->root->level + 1;
2385		return -EINTR;
2386	} else {
2387		/* Invalidated all iterators */
2388		int ret = btree_split(b, op, insert_keys, replace_key);
2389
2390		if (bch_keylist_empty(insert_keys))
2391			return 0;
2392		else if (!ret)
2393			return -EINTR;
2394		return ret;
2395	}
2396}
2397
2398int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2399			       struct bkey *check_key)
2400{
2401	int ret = -EINTR;
2402	uint64_t btree_ptr = b->key.ptr[0];
2403	unsigned long seq = b->seq;
2404	struct keylist insert;
2405	bool upgrade = op->lock == -1;
2406
2407	bch_keylist_init(&insert);
2408
2409	if (upgrade) {
2410		rw_unlock(false, b);
2411		rw_lock(true, b, b->level);
2412
2413		if (b->key.ptr[0] != btree_ptr ||
2414		    b->seq != seq + 1) {
2415			op->lock = b->level;
2416			goto out;
2417		}
2418	}
2419
2420	SET_KEY_PTRS(check_key, 1);
2421	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2422
2423	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2424
2425	bch_keylist_add(&insert, check_key);
2426
2427	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2428
2429	BUG_ON(!ret && !bch_keylist_empty(&insert));
2430out:
2431	if (upgrade)
2432		downgrade_write(&b->lock);
2433	return ret;
2434}
2435
2436struct btree_insert_op {
2437	struct btree_op	op;
2438	struct keylist	*keys;
2439	atomic_t	*journal_ref;
2440	struct bkey	*replace_key;
2441};
2442
2443static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2444{
2445	struct btree_insert_op *op = container_of(b_op,
2446					struct btree_insert_op, op);
2447
2448	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2449					op->journal_ref, op->replace_key);
2450	if (ret && !bch_keylist_empty(op->keys))
2451		return ret;
2452	else
2453		return MAP_DONE;
2454}
2455
2456int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2457		     atomic_t *journal_ref, struct bkey *replace_key)
2458{
2459	struct btree_insert_op op;
2460	int ret = 0;
2461
2462	BUG_ON(current->bio_list);
2463	BUG_ON(bch_keylist_empty(keys));
2464
2465	bch_btree_op_init(&op.op, 0);
2466	op.keys		= keys;
2467	op.journal_ref	= journal_ref;
2468	op.replace_key	= replace_key;
2469
2470	while (!ret && !bch_keylist_empty(keys)) {
2471		op.op.lock = 0;
2472		ret = bch_btree_map_leaf_nodes(&op.op, c,
2473					       &START_KEY(keys->keys),
2474					       btree_insert_fn);
2475	}
2476
2477	if (ret) {
2478		struct bkey *k;
2479
2480		pr_err("error %i\n", ret);
2481
2482		while ((k = bch_keylist_pop(keys)))
2483			bkey_put(c, k);
2484	} else if (op.op.insert_collision)
2485		ret = -ESRCH;
2486
2487	return ret;
2488}
2489
2490void bch_btree_set_root(struct btree *b)
2491{
2492	unsigned int i;
2493	struct closure cl;
2494
2495	closure_init_stack(&cl);
2496
2497	trace_bcache_btree_set_root(b);
2498
2499	BUG_ON(!b->written);
2500
2501	for (i = 0; i < KEY_PTRS(&b->key); i++)
2502		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2503
2504	mutex_lock(&b->c->bucket_lock);
2505	list_del_init(&b->list);
2506	mutex_unlock(&b->c->bucket_lock);
2507
2508	b->c->root = b;
2509
2510	bch_journal_meta(b->c, &cl);
2511	closure_sync(&cl);
2512}
2513
2514/* Map across nodes or keys */
2515
2516static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2517				       struct bkey *from,
2518				       btree_map_nodes_fn *fn, int flags)
2519{
2520	int ret = MAP_CONTINUE;
2521
2522	if (b->level) {
2523		struct bkey *k;
2524		struct btree_iter iter;
2525
2526		bch_btree_iter_init(&b->keys, &iter, from);
2527
2528		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2529						       bch_ptr_bad))) {
2530			ret = bcache_btree(map_nodes_recurse, k, b,
2531				    op, from, fn, flags);
2532			from = NULL;
2533
2534			if (ret != MAP_CONTINUE)
2535				return ret;
2536		}
2537	}
2538
2539	if (!b->level || flags == MAP_ALL_NODES)
2540		ret = fn(op, b);
2541
2542	return ret;
2543}
2544
2545int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2546			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2547{
2548	return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2549}
2550
2551int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2552				      struct bkey *from, btree_map_keys_fn *fn,
2553				      int flags)
2554{
2555	int ret = MAP_CONTINUE;
2556	struct bkey *k;
2557	struct btree_iter iter;
2558
2559	bch_btree_iter_init(&b->keys, &iter, from);
2560
2561	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2562		ret = !b->level
2563			? fn(op, b, k)
2564			: bcache_btree(map_keys_recurse, k,
2565				       b, op, from, fn, flags);
2566		from = NULL;
2567
2568		if (ret != MAP_CONTINUE)
2569			return ret;
2570	}
2571
2572	if (!b->level && (flags & MAP_END_KEY))
2573		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2574				     KEY_OFFSET(&b->key), 0));
2575
2576	return ret;
2577}
2578
2579int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2580		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2581{
2582	return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2583}
2584
2585/* Keybuf code */
2586
2587static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2588{
2589	/* Overlapping keys compare equal */
2590	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2591		return -1;
2592	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2593		return 1;
2594	return 0;
2595}
2596
2597static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2598					    struct keybuf_key *r)
2599{
2600	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2601}
2602
2603struct refill {
2604	struct btree_op	op;
2605	unsigned int	nr_found;
2606	struct keybuf	*buf;
2607	struct bkey	*end;
2608	keybuf_pred_fn	*pred;
2609};
2610
2611static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2612			    struct bkey *k)
2613{
2614	struct refill *refill = container_of(op, struct refill, op);
2615	struct keybuf *buf = refill->buf;
2616	int ret = MAP_CONTINUE;
2617
2618	if (bkey_cmp(k, refill->end) > 0) {
2619		ret = MAP_DONE;
2620		goto out;
2621	}
2622
2623	if (!KEY_SIZE(k)) /* end key */
2624		goto out;
2625
2626	if (refill->pred(buf, k)) {
2627		struct keybuf_key *w;
2628
2629		spin_lock(&buf->lock);
2630
2631		w = array_alloc(&buf->freelist);
2632		if (!w) {
2633			spin_unlock(&buf->lock);
2634			return MAP_DONE;
2635		}
2636
2637		w->private = NULL;
2638		bkey_copy(&w->key, k);
2639
2640		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2641			array_free(&buf->freelist, w);
2642		else
2643			refill->nr_found++;
2644
2645		if (array_freelist_empty(&buf->freelist))
2646			ret = MAP_DONE;
2647
2648		spin_unlock(&buf->lock);
2649	}
2650out:
2651	buf->last_scanned = *k;
2652	return ret;
2653}
2654
2655void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2656		       struct bkey *end, keybuf_pred_fn *pred)
2657{
2658	struct bkey start = buf->last_scanned;
2659	struct refill refill;
2660
2661	cond_resched();
2662
2663	bch_btree_op_init(&refill.op, -1);
2664	refill.nr_found	= 0;
2665	refill.buf	= buf;
2666	refill.end	= end;
2667	refill.pred	= pred;
2668
2669	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2670			   refill_keybuf_fn, MAP_END_KEY);
2671
2672	trace_bcache_keyscan(refill.nr_found,
2673			     KEY_INODE(&start), KEY_OFFSET(&start),
2674			     KEY_INODE(&buf->last_scanned),
2675			     KEY_OFFSET(&buf->last_scanned));
2676
2677	spin_lock(&buf->lock);
2678
2679	if (!RB_EMPTY_ROOT(&buf->keys)) {
2680		struct keybuf_key *w;
2681
2682		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2683		buf->start	= START_KEY(&w->key);
2684
2685		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2686		buf->end	= w->key;
2687	} else {
2688		buf->start	= MAX_KEY;
2689		buf->end	= MAX_KEY;
2690	}
2691
2692	spin_unlock(&buf->lock);
2693}
2694
2695static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2696{
2697	rb_erase(&w->node, &buf->keys);
2698	array_free(&buf->freelist, w);
2699}
2700
2701void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2702{
2703	spin_lock(&buf->lock);
2704	__bch_keybuf_del(buf, w);
2705	spin_unlock(&buf->lock);
2706}
2707
2708bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2709				  struct bkey *end)
2710{
2711	bool ret = false;
2712	struct keybuf_key *p, *w, s;
2713
2714	s.key = *start;
2715
2716	if (bkey_cmp(end, &buf->start) <= 0 ||
2717	    bkey_cmp(start, &buf->end) >= 0)
2718		return false;
2719
2720	spin_lock(&buf->lock);
2721	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2722
2723	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2724		p = w;
2725		w = RB_NEXT(w, node);
2726
2727		if (p->private)
2728			ret = true;
2729		else
2730			__bch_keybuf_del(buf, p);
2731	}
2732
2733	spin_unlock(&buf->lock);
2734	return ret;
2735}
2736
2737struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2738{
2739	struct keybuf_key *w;
2740
2741	spin_lock(&buf->lock);
2742
2743	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2744
2745	while (w && w->private)
2746		w = RB_NEXT(w, node);
2747
2748	if (w)
2749		w->private = ERR_PTR(-EINTR);
2750
2751	spin_unlock(&buf->lock);
2752	return w;
2753}
2754
2755struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2756					  struct keybuf *buf,
2757					  struct bkey *end,
2758					  keybuf_pred_fn *pred)
2759{
2760	struct keybuf_key *ret;
2761
2762	while (1) {
2763		ret = bch_keybuf_next(buf);
2764		if (ret)
2765			break;
2766
2767		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2768			pr_debug("scan finished\n");
2769			break;
2770		}
2771
2772		bch_refill_keybuf(c, buf, end, pred);
2773	}
2774
2775	return ret;
2776}
2777
2778void bch_keybuf_init(struct keybuf *buf)
2779{
2780	buf->last_scanned	= MAX_KEY;
2781	buf->keys		= RB_ROOT;
2782
2783	spin_lock_init(&buf->lock);
2784	array_allocator_init(&buf->freelist);
2785}
2786
2787void bch_btree_exit(void)
2788{
2789	if (btree_io_wq)
2790		destroy_workqueue(btree_io_wq);
2791}
2792
2793int __init bch_btree_init(void)
2794{
2795	btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2796	if (!btree_io_wq)
2797		return -ENOMEM;
2798
2799	return 0;
2800}
2801