1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24#include "bcache.h" 25#include "btree.h" 26#include "debug.h" 27#include "extents.h" 28 29#include <linux/slab.h> 30#include <linux/bitops.h> 31#include <linux/hash.h> 32#include <linux/kthread.h> 33#include <linux/prefetch.h> 34#include <linux/random.h> 35#include <linux/rcupdate.h> 36#include <linux/sched/clock.h> 37#include <linux/rculist.h> 38#include <linux/delay.h> 39#include <trace/events/bcache.h> 40 41/* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91#define MAX_NEED_GC 64 92#define MAX_SAVE_PRIO 72 93#define MAX_GC_TIMES 100 94#define MIN_GC_NODES 100 95#define GC_SLEEP_MS 100 96 97#define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99#define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102static struct workqueue_struct *btree_io_wq; 103 104#define insert_lock(s, b) ((b)->level <= (s)->lock) 105 106 107static inline struct bset *write_block(struct btree *b) 108{ 109 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache); 110} 111 112static void bch_btree_init_next(struct btree *b) 113{ 114 /* If not a leaf node, always sort */ 115 if (b->level && b->keys.nsets) 116 bch_btree_sort(&b->keys, &b->c->sort); 117 else 118 bch_btree_sort_lazy(&b->keys, &b->c->sort); 119 120 if (b->written < btree_blocks(b)) 121 bch_bset_init_next(&b->keys, write_block(b), 122 bset_magic(&b->c->cache->sb)); 123 124} 125 126/* Btree key manipulation */ 127 128void bkey_put(struct cache_set *c, struct bkey *k) 129{ 130 unsigned int i; 131 132 for (i = 0; i < KEY_PTRS(k); i++) 133 if (ptr_available(c, k, i)) 134 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 135} 136 137/* Btree IO */ 138 139static uint64_t btree_csum_set(struct btree *b, struct bset *i) 140{ 141 uint64_t crc = b->key.ptr[0]; 142 void *data = (void *) i + 8, *end = bset_bkey_last(i); 143 144 crc = bch_crc64_update(crc, data, end - data); 145 return crc ^ 0xffffffffffffffffULL; 146} 147 148void bch_btree_node_read_done(struct btree *b) 149{ 150 const char *err = "bad btree header"; 151 struct bset *i = btree_bset_first(b); 152 struct btree_iter *iter; 153 154 /* 155 * c->fill_iter can allocate an iterator with more memory space 156 * than static MAX_BSETS. 157 * See the comment arount cache_set->fill_iter. 158 */ 159 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 160 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size; 161 iter->used = 0; 162 163#ifdef CONFIG_BCACHE_DEBUG 164 iter->b = &b->keys; 165#endif 166 167 if (!i->seq) 168 goto err; 169 170 for (; 171 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 172 i = write_block(b)) { 173 err = "unsupported bset version"; 174 if (i->version > BCACHE_BSET_VERSION) 175 goto err; 176 177 err = "bad btree header"; 178 if (b->written + set_blocks(i, block_bytes(b->c->cache)) > 179 btree_blocks(b)) 180 goto err; 181 182 err = "bad magic"; 183 if (i->magic != bset_magic(&b->c->cache->sb)) 184 goto err; 185 186 err = "bad checksum"; 187 switch (i->version) { 188 case 0: 189 if (i->csum != csum_set(i)) 190 goto err; 191 break; 192 case BCACHE_BSET_VERSION: 193 if (i->csum != btree_csum_set(b, i)) 194 goto err; 195 break; 196 } 197 198 err = "empty set"; 199 if (i != b->keys.set[0].data && !i->keys) 200 goto err; 201 202 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 203 204 b->written += set_blocks(i, block_bytes(b->c->cache)); 205 } 206 207 err = "corrupted btree"; 208 for (i = write_block(b); 209 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 210 i = ((void *) i) + block_bytes(b->c->cache)) 211 if (i->seq == b->keys.set[0].data->seq) 212 goto err; 213 214 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 215 216 i = b->keys.set[0].data; 217 err = "short btree key"; 218 if (b->keys.set[0].size && 219 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 220 goto err; 221 222 if (b->written < btree_blocks(b)) 223 bch_bset_init_next(&b->keys, write_block(b), 224 bset_magic(&b->c->cache->sb)); 225out: 226 mempool_free(iter, &b->c->fill_iter); 227 return; 228err: 229 set_btree_node_io_error(b); 230 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 231 err, PTR_BUCKET_NR(b->c, &b->key, 0), 232 bset_block_offset(b, i), i->keys); 233 goto out; 234} 235 236static void btree_node_read_endio(struct bio *bio) 237{ 238 struct closure *cl = bio->bi_private; 239 240 closure_put(cl); 241} 242 243static void bch_btree_node_read(struct btree *b) 244{ 245 uint64_t start_time = local_clock(); 246 struct closure cl; 247 struct bio *bio; 248 249 trace_bcache_btree_read(b); 250 251 closure_init_stack(&cl); 252 253 bio = bch_bbio_alloc(b->c); 254 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 255 bio->bi_end_io = btree_node_read_endio; 256 bio->bi_private = &cl; 257 bio->bi_opf = REQ_OP_READ | REQ_META; 258 259 bch_bio_map(bio, b->keys.set[0].data); 260 261 bch_submit_bbio(bio, b->c, &b->key, 0); 262 closure_sync(&cl); 263 264 if (bio->bi_status) 265 set_btree_node_io_error(b); 266 267 bch_bbio_free(bio, b->c); 268 269 if (btree_node_io_error(b)) 270 goto err; 271 272 bch_btree_node_read_done(b); 273 bch_time_stats_update(&b->c->btree_read_time, start_time); 274 275 return; 276err: 277 bch_cache_set_error(b->c, "io error reading bucket %zu", 278 PTR_BUCKET_NR(b->c, &b->key, 0)); 279} 280 281static void btree_complete_write(struct btree *b, struct btree_write *w) 282{ 283 if (w->prio_blocked && 284 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 285 wake_up_allocators(b->c); 286 287 if (w->journal) { 288 atomic_dec_bug(w->journal); 289 __closure_wake_up(&b->c->journal.wait); 290 } 291 292 w->prio_blocked = 0; 293 w->journal = NULL; 294} 295 296static void btree_node_write_unlock(struct closure *cl) 297{ 298 struct btree *b = container_of(cl, struct btree, io); 299 300 up(&b->io_mutex); 301} 302 303static void __btree_node_write_done(struct closure *cl) 304{ 305 struct btree *b = container_of(cl, struct btree, io); 306 struct btree_write *w = btree_prev_write(b); 307 308 bch_bbio_free(b->bio, b->c); 309 b->bio = NULL; 310 btree_complete_write(b, w); 311 312 if (btree_node_dirty(b)) 313 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 314 315 closure_return_with_destructor(cl, btree_node_write_unlock); 316} 317 318static void btree_node_write_done(struct closure *cl) 319{ 320 struct btree *b = container_of(cl, struct btree, io); 321 322 bio_free_pages(b->bio); 323 __btree_node_write_done(cl); 324} 325 326static void btree_node_write_endio(struct bio *bio) 327{ 328 struct closure *cl = bio->bi_private; 329 struct btree *b = container_of(cl, struct btree, io); 330 331 if (bio->bi_status) 332 set_btree_node_io_error(b); 333 334 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 335 closure_put(cl); 336} 337 338static void do_btree_node_write(struct btree *b) 339{ 340 struct closure *cl = &b->io; 341 struct bset *i = btree_bset_last(b); 342 BKEY_PADDED(key) k; 343 344 i->version = BCACHE_BSET_VERSION; 345 i->csum = btree_csum_set(b, i); 346 347 BUG_ON(b->bio); 348 b->bio = bch_bbio_alloc(b->c); 349 350 b->bio->bi_end_io = btree_node_write_endio; 351 b->bio->bi_private = cl; 352 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache)); 353 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 354 bch_bio_map(b->bio, i); 355 356 /* 357 * If we're appending to a leaf node, we don't technically need FUA - 358 * this write just needs to be persisted before the next journal write, 359 * which will be marked FLUSH|FUA. 360 * 361 * Similarly if we're writing a new btree root - the pointer is going to 362 * be in the next journal entry. 363 * 364 * But if we're writing a new btree node (that isn't a root) or 365 * appending to a non leaf btree node, we need either FUA or a flush 366 * when we write the parent with the new pointer. FUA is cheaper than a 367 * flush, and writes appending to leaf nodes aren't blocking anything so 368 * just make all btree node writes FUA to keep things sane. 369 */ 370 371 bkey_copy(&k.key, &b->key); 372 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 373 bset_sector_offset(&b->keys, i)); 374 375 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 376 struct bio_vec *bv; 377 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 378 struct bvec_iter_all iter_all; 379 380 bio_for_each_segment_all(bv, b->bio, iter_all) { 381 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 382 addr += PAGE_SIZE; 383 } 384 385 bch_submit_bbio(b->bio, b->c, &k.key, 0); 386 387 continue_at(cl, btree_node_write_done, NULL); 388 } else { 389 /* 390 * No problem for multipage bvec since the bio is 391 * just allocated 392 */ 393 b->bio->bi_vcnt = 0; 394 bch_bio_map(b->bio, i); 395 396 bch_submit_bbio(b->bio, b->c, &k.key, 0); 397 398 closure_sync(cl); 399 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 400 } 401} 402 403void __bch_btree_node_write(struct btree *b, struct closure *parent) 404{ 405 struct bset *i = btree_bset_last(b); 406 407 lockdep_assert_held(&b->write_lock); 408 409 trace_bcache_btree_write(b); 410 411 BUG_ON(current->bio_list); 412 BUG_ON(b->written >= btree_blocks(b)); 413 BUG_ON(b->written && !i->keys); 414 BUG_ON(btree_bset_first(b)->seq != i->seq); 415 bch_check_keys(&b->keys, "writing"); 416 417 cancel_delayed_work(&b->work); 418 419 /* If caller isn't waiting for write, parent refcount is cache set */ 420 down(&b->io_mutex); 421 closure_init(&b->io, parent ?: &b->c->cl); 422 423 clear_bit(BTREE_NODE_dirty, &b->flags); 424 change_bit(BTREE_NODE_write_idx, &b->flags); 425 426 do_btree_node_write(b); 427 428 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size, 429 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 430 431 b->written += set_blocks(i, block_bytes(b->c->cache)); 432} 433 434void bch_btree_node_write(struct btree *b, struct closure *parent) 435{ 436 unsigned int nsets = b->keys.nsets; 437 438 lockdep_assert_held(&b->lock); 439 440 __bch_btree_node_write(b, parent); 441 442 /* 443 * do verify if there was more than one set initially (i.e. we did a 444 * sort) and we sorted down to a single set: 445 */ 446 if (nsets && !b->keys.nsets) 447 bch_btree_verify(b); 448 449 bch_btree_init_next(b); 450} 451 452static void bch_btree_node_write_sync(struct btree *b) 453{ 454 struct closure cl; 455 456 closure_init_stack(&cl); 457 458 mutex_lock(&b->write_lock); 459 bch_btree_node_write(b, &cl); 460 mutex_unlock(&b->write_lock); 461 462 closure_sync(&cl); 463} 464 465static void btree_node_write_work(struct work_struct *w) 466{ 467 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 468 469 mutex_lock(&b->write_lock); 470 if (btree_node_dirty(b)) 471 __bch_btree_node_write(b, NULL); 472 mutex_unlock(&b->write_lock); 473} 474 475static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 476{ 477 struct bset *i = btree_bset_last(b); 478 struct btree_write *w = btree_current_write(b); 479 480 lockdep_assert_held(&b->write_lock); 481 482 BUG_ON(!b->written); 483 BUG_ON(!i->keys); 484 485 if (!btree_node_dirty(b)) 486 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 487 488 set_btree_node_dirty(b); 489 490 /* 491 * w->journal is always the oldest journal pin of all bkeys 492 * in the leaf node, to make sure the oldest jset seq won't 493 * be increased before this btree node is flushed. 494 */ 495 if (journal_ref) { 496 if (w->journal && 497 journal_pin_cmp(b->c, w->journal, journal_ref)) { 498 atomic_dec_bug(w->journal); 499 w->journal = NULL; 500 } 501 502 if (!w->journal) { 503 w->journal = journal_ref; 504 atomic_inc(w->journal); 505 } 506 } 507 508 /* Force write if set is too big */ 509 if (set_bytes(i) > PAGE_SIZE - 48 && 510 !current->bio_list) 511 bch_btree_node_write(b, NULL); 512} 513 514/* 515 * Btree in memory cache - allocation/freeing 516 * mca -> memory cache 517 */ 518 519#define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \ 520 ? c->root->level : 1) * 8 + 16) 521#define mca_can_free(c) \ 522 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 523 524static void mca_data_free(struct btree *b) 525{ 526 BUG_ON(b->io_mutex.count != 1); 527 528 bch_btree_keys_free(&b->keys); 529 530 b->c->btree_cache_used--; 531 list_move(&b->list, &b->c->btree_cache_freed); 532} 533 534static void mca_bucket_free(struct btree *b) 535{ 536 BUG_ON(btree_node_dirty(b)); 537 538 b->key.ptr[0] = 0; 539 hlist_del_init_rcu(&b->hash); 540 list_move(&b->list, &b->c->btree_cache_freeable); 541} 542 543static unsigned int btree_order(struct bkey *k) 544{ 545 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 546} 547 548static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 549{ 550 if (!bch_btree_keys_alloc(&b->keys, 551 max_t(unsigned int, 552 ilog2(b->c->btree_pages), 553 btree_order(k)), 554 gfp)) { 555 b->c->btree_cache_used++; 556 list_move(&b->list, &b->c->btree_cache); 557 } else { 558 list_move(&b->list, &b->c->btree_cache_freed); 559 } 560} 561 562static struct btree *mca_bucket_alloc(struct cache_set *c, 563 struct bkey *k, gfp_t gfp) 564{ 565 /* 566 * kzalloc() is necessary here for initialization, 567 * see code comments in bch_btree_keys_init(). 568 */ 569 struct btree *b = kzalloc(sizeof(struct btree), gfp); 570 571 if (!b) 572 return NULL; 573 574 init_rwsem(&b->lock); 575 lockdep_set_novalidate_class(&b->lock); 576 mutex_init(&b->write_lock); 577 lockdep_set_novalidate_class(&b->write_lock); 578 INIT_LIST_HEAD(&b->list); 579 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 580 b->c = c; 581 sema_init(&b->io_mutex, 1); 582 583 mca_data_alloc(b, k, gfp); 584 return b; 585} 586 587static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 588{ 589 struct closure cl; 590 591 closure_init_stack(&cl); 592 lockdep_assert_held(&b->c->bucket_lock); 593 594 if (!down_write_trylock(&b->lock)) 595 return -ENOMEM; 596 597 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 598 599 if (b->keys.page_order < min_order) 600 goto out_unlock; 601 602 if (!flush) { 603 if (btree_node_dirty(b)) 604 goto out_unlock; 605 606 if (down_trylock(&b->io_mutex)) 607 goto out_unlock; 608 up(&b->io_mutex); 609 } 610 611retry: 612 /* 613 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 614 * __bch_btree_node_write(). To avoid an extra flush, acquire 615 * b->write_lock before checking BTREE_NODE_dirty bit. 616 */ 617 mutex_lock(&b->write_lock); 618 /* 619 * If this btree node is selected in btree_flush_write() by journal 620 * code, delay and retry until the node is flushed by journal code 621 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 622 */ 623 if (btree_node_journal_flush(b)) { 624 pr_debug("bnode %p is flushing by journal, retry\n", b); 625 mutex_unlock(&b->write_lock); 626 udelay(1); 627 goto retry; 628 } 629 630 if (btree_node_dirty(b)) 631 __bch_btree_node_write(b, &cl); 632 mutex_unlock(&b->write_lock); 633 634 closure_sync(&cl); 635 636 /* wait for any in flight btree write */ 637 down(&b->io_mutex); 638 up(&b->io_mutex); 639 640 return 0; 641out_unlock: 642 rw_unlock(true, b); 643 return -ENOMEM; 644} 645 646static unsigned long bch_mca_scan(struct shrinker *shrink, 647 struct shrink_control *sc) 648{ 649 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 650 struct btree *b, *t; 651 unsigned long i, nr = sc->nr_to_scan; 652 unsigned long freed = 0; 653 unsigned int btree_cache_used; 654 655 if (c->shrinker_disabled) 656 return SHRINK_STOP; 657 658 if (c->btree_cache_alloc_lock) 659 return SHRINK_STOP; 660 661 /* Return -1 if we can't do anything right now */ 662 if (sc->gfp_mask & __GFP_IO) 663 mutex_lock(&c->bucket_lock); 664 else if (!mutex_trylock(&c->bucket_lock)) 665 return -1; 666 667 /* 668 * It's _really_ critical that we don't free too many btree nodes - we 669 * have to always leave ourselves a reserve. The reserve is how we 670 * guarantee that allocating memory for a new btree node can always 671 * succeed, so that inserting keys into the btree can always succeed and 672 * IO can always make forward progress: 673 */ 674 nr /= c->btree_pages; 675 if (nr == 0) 676 nr = 1; 677 nr = min_t(unsigned long, nr, mca_can_free(c)); 678 679 i = 0; 680 btree_cache_used = c->btree_cache_used; 681 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) { 682 if (nr <= 0) 683 goto out; 684 685 if (!mca_reap(b, 0, false)) { 686 mca_data_free(b); 687 rw_unlock(true, b); 688 freed++; 689 } 690 nr--; 691 i++; 692 } 693 694 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 695 if (nr <= 0 || i >= btree_cache_used) 696 goto out; 697 698 if (!mca_reap(b, 0, false)) { 699 mca_bucket_free(b); 700 mca_data_free(b); 701 rw_unlock(true, b); 702 freed++; 703 } 704 705 nr--; 706 i++; 707 } 708out: 709 mutex_unlock(&c->bucket_lock); 710 return freed * c->btree_pages; 711} 712 713static unsigned long bch_mca_count(struct shrinker *shrink, 714 struct shrink_control *sc) 715{ 716 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 717 718 if (c->shrinker_disabled) 719 return 0; 720 721 if (c->btree_cache_alloc_lock) 722 return 0; 723 724 return mca_can_free(c) * c->btree_pages; 725} 726 727void bch_btree_cache_free(struct cache_set *c) 728{ 729 struct btree *b; 730 struct closure cl; 731 732 closure_init_stack(&cl); 733 734 if (c->shrink.list.next) 735 unregister_shrinker(&c->shrink); 736 737 mutex_lock(&c->bucket_lock); 738 739#ifdef CONFIG_BCACHE_DEBUG 740 if (c->verify_data) 741 list_move(&c->verify_data->list, &c->btree_cache); 742 743 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb))); 744#endif 745 746 list_splice(&c->btree_cache_freeable, 747 &c->btree_cache); 748 749 while (!list_empty(&c->btree_cache)) { 750 b = list_first_entry(&c->btree_cache, struct btree, list); 751 752 /* 753 * This function is called by cache_set_free(), no I/O 754 * request on cache now, it is unnecessary to acquire 755 * b->write_lock before clearing BTREE_NODE_dirty anymore. 756 */ 757 if (btree_node_dirty(b)) { 758 btree_complete_write(b, btree_current_write(b)); 759 clear_bit(BTREE_NODE_dirty, &b->flags); 760 } 761 mca_data_free(b); 762 } 763 764 while (!list_empty(&c->btree_cache_freed)) { 765 b = list_first_entry(&c->btree_cache_freed, 766 struct btree, list); 767 list_del(&b->list); 768 cancel_delayed_work_sync(&b->work); 769 kfree(b); 770 } 771 772 mutex_unlock(&c->bucket_lock); 773} 774 775int bch_btree_cache_alloc(struct cache_set *c) 776{ 777 unsigned int i; 778 779 for (i = 0; i < mca_reserve(c); i++) 780 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 781 return -ENOMEM; 782 783 list_splice_init(&c->btree_cache, 784 &c->btree_cache_freeable); 785 786#ifdef CONFIG_BCACHE_DEBUG 787 mutex_init(&c->verify_lock); 788 789 c->verify_ondisk = (void *) 790 __get_free_pages(GFP_KERNEL|__GFP_COMP, 791 ilog2(meta_bucket_pages(&c->cache->sb))); 792 if (!c->verify_ondisk) { 793 /* 794 * Don't worry about the mca_rereserve buckets 795 * allocated in previous for-loop, they will be 796 * handled properly in bch_cache_set_unregister(). 797 */ 798 return -ENOMEM; 799 } 800 801 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 802 803 if (c->verify_data && 804 c->verify_data->keys.set->data) 805 list_del_init(&c->verify_data->list); 806 else 807 c->verify_data = NULL; 808#endif 809 810 c->shrink.count_objects = bch_mca_count; 811 c->shrink.scan_objects = bch_mca_scan; 812 c->shrink.seeks = 4; 813 c->shrink.batch = c->btree_pages * 2; 814 815 if (register_shrinker(&c->shrink)) 816 pr_warn("bcache: %s: could not register shrinker\n", 817 __func__); 818 819 return 0; 820} 821 822/* Btree in memory cache - hash table */ 823 824static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 825{ 826 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 827} 828 829static struct btree *mca_find(struct cache_set *c, struct bkey *k) 830{ 831 struct btree *b; 832 833 rcu_read_lock(); 834 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 835 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 836 goto out; 837 b = NULL; 838out: 839 rcu_read_unlock(); 840 return b; 841} 842 843static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 844{ 845 spin_lock(&c->btree_cannibalize_lock); 846 if (likely(c->btree_cache_alloc_lock == NULL)) { 847 c->btree_cache_alloc_lock = current; 848 } else if (c->btree_cache_alloc_lock != current) { 849 if (op) 850 prepare_to_wait(&c->btree_cache_wait, &op->wait, 851 TASK_UNINTERRUPTIBLE); 852 spin_unlock(&c->btree_cannibalize_lock); 853 return -EINTR; 854 } 855 spin_unlock(&c->btree_cannibalize_lock); 856 857 return 0; 858} 859 860static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 861 struct bkey *k) 862{ 863 struct btree *b; 864 865 trace_bcache_btree_cache_cannibalize(c); 866 867 if (mca_cannibalize_lock(c, op)) 868 return ERR_PTR(-EINTR); 869 870 list_for_each_entry_reverse(b, &c->btree_cache, list) 871 if (!mca_reap(b, btree_order(k), false)) 872 return b; 873 874 list_for_each_entry_reverse(b, &c->btree_cache, list) 875 if (!mca_reap(b, btree_order(k), true)) 876 return b; 877 878 WARN(1, "btree cache cannibalize failed\n"); 879 return ERR_PTR(-ENOMEM); 880} 881 882/* 883 * We can only have one thread cannibalizing other cached btree nodes at a time, 884 * or we'll deadlock. We use an open coded mutex to ensure that, which a 885 * cannibalize_bucket() will take. This means every time we unlock the root of 886 * the btree, we need to release this lock if we have it held. 887 */ 888void bch_cannibalize_unlock(struct cache_set *c) 889{ 890 spin_lock(&c->btree_cannibalize_lock); 891 if (c->btree_cache_alloc_lock == current) { 892 c->btree_cache_alloc_lock = NULL; 893 wake_up(&c->btree_cache_wait); 894 } 895 spin_unlock(&c->btree_cannibalize_lock); 896} 897 898static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 899 struct bkey *k, int level) 900{ 901 struct btree *b; 902 903 BUG_ON(current->bio_list); 904 905 lockdep_assert_held(&c->bucket_lock); 906 907 if (mca_find(c, k)) 908 return NULL; 909 910 /* btree_free() doesn't free memory; it sticks the node on the end of 911 * the list. Check if there's any freed nodes there: 912 */ 913 list_for_each_entry(b, &c->btree_cache_freeable, list) 914 if (!mca_reap(b, btree_order(k), false)) 915 goto out; 916 917 /* We never free struct btree itself, just the memory that holds the on 918 * disk node. Check the freed list before allocating a new one: 919 */ 920 list_for_each_entry(b, &c->btree_cache_freed, list) 921 if (!mca_reap(b, 0, false)) { 922 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 923 if (!b->keys.set[0].data) 924 goto err; 925 else 926 goto out; 927 } 928 929 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 930 if (!b) 931 goto err; 932 933 BUG_ON(!down_write_trylock(&b->lock)); 934 if (!b->keys.set->data) 935 goto err; 936out: 937 BUG_ON(b->io_mutex.count != 1); 938 939 bkey_copy(&b->key, k); 940 list_move(&b->list, &c->btree_cache); 941 hlist_del_init_rcu(&b->hash); 942 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 943 944 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 945 b->parent = (void *) ~0UL; 946 b->flags = 0; 947 b->written = 0; 948 b->level = level; 949 950 if (!b->level) 951 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 952 &b->c->expensive_debug_checks); 953 else 954 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 955 &b->c->expensive_debug_checks); 956 957 return b; 958err: 959 if (b) 960 rw_unlock(true, b); 961 962 b = mca_cannibalize(c, op, k); 963 if (!IS_ERR(b)) 964 goto out; 965 966 return b; 967} 968 969/* 970 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 971 * in from disk if necessary. 972 * 973 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN. 974 * 975 * The btree node will have either a read or a write lock held, depending on 976 * level and op->lock. 977 * 978 * Note: Only error code or btree pointer will be returned, it is unncessary 979 * for callers to check NULL pointer. 980 */ 981struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 982 struct bkey *k, int level, bool write, 983 struct btree *parent) 984{ 985 int i = 0; 986 struct btree *b; 987 988 BUG_ON(level < 0); 989retry: 990 b = mca_find(c, k); 991 992 if (!b) { 993 if (current->bio_list) 994 return ERR_PTR(-EAGAIN); 995 996 mutex_lock(&c->bucket_lock); 997 b = mca_alloc(c, op, k, level); 998 mutex_unlock(&c->bucket_lock); 999 1000 if (!b) 1001 goto retry; 1002 if (IS_ERR(b)) 1003 return b; 1004 1005 bch_btree_node_read(b); 1006 1007 if (!write) 1008 downgrade_write(&b->lock); 1009 } else { 1010 rw_lock(write, b, level); 1011 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1012 rw_unlock(write, b); 1013 goto retry; 1014 } 1015 BUG_ON(b->level != level); 1016 } 1017 1018 if (btree_node_io_error(b)) { 1019 rw_unlock(write, b); 1020 return ERR_PTR(-EIO); 1021 } 1022 1023 BUG_ON(!b->written); 1024 1025 b->parent = parent; 1026 1027 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1028 prefetch(b->keys.set[i].tree); 1029 prefetch(b->keys.set[i].data); 1030 } 1031 1032 for (; i <= b->keys.nsets; i++) 1033 prefetch(b->keys.set[i].data); 1034 1035 return b; 1036} 1037 1038static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1039{ 1040 struct btree *b; 1041 1042 mutex_lock(&parent->c->bucket_lock); 1043 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1044 mutex_unlock(&parent->c->bucket_lock); 1045 1046 if (!IS_ERR_OR_NULL(b)) { 1047 b->parent = parent; 1048 bch_btree_node_read(b); 1049 rw_unlock(true, b); 1050 } 1051} 1052 1053/* Btree alloc */ 1054 1055static void btree_node_free(struct btree *b) 1056{ 1057 trace_bcache_btree_node_free(b); 1058 1059 BUG_ON(b == b->c->root); 1060 1061retry: 1062 mutex_lock(&b->write_lock); 1063 /* 1064 * If the btree node is selected and flushing in btree_flush_write(), 1065 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1066 * then it is safe to free the btree node here. Otherwise this btree 1067 * node will be in race condition. 1068 */ 1069 if (btree_node_journal_flush(b)) { 1070 mutex_unlock(&b->write_lock); 1071 pr_debug("bnode %p journal_flush set, retry\n", b); 1072 udelay(1); 1073 goto retry; 1074 } 1075 1076 if (btree_node_dirty(b)) { 1077 btree_complete_write(b, btree_current_write(b)); 1078 clear_bit(BTREE_NODE_dirty, &b->flags); 1079 } 1080 1081 mutex_unlock(&b->write_lock); 1082 1083 cancel_delayed_work(&b->work); 1084 1085 mutex_lock(&b->c->bucket_lock); 1086 bch_bucket_free(b->c, &b->key); 1087 mca_bucket_free(b); 1088 mutex_unlock(&b->c->bucket_lock); 1089} 1090 1091/* 1092 * Only error code or btree pointer will be returned, it is unncessary for 1093 * callers to check NULL pointer. 1094 */ 1095struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1096 int level, bool wait, 1097 struct btree *parent) 1098{ 1099 BKEY_PADDED(key) k; 1100 struct btree *b; 1101 1102 mutex_lock(&c->bucket_lock); 1103retry: 1104 /* return ERR_PTR(-EAGAIN) when it fails */ 1105 b = ERR_PTR(-EAGAIN); 1106 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait)) 1107 goto err; 1108 1109 bkey_put(c, &k.key); 1110 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1111 1112 b = mca_alloc(c, op, &k.key, level); 1113 if (IS_ERR(b)) 1114 goto err_free; 1115 1116 if (!b) { 1117 cache_bug(c, 1118 "Tried to allocate bucket that was in btree cache"); 1119 goto retry; 1120 } 1121 1122 b->parent = parent; 1123 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb)); 1124 1125 mutex_unlock(&c->bucket_lock); 1126 1127 trace_bcache_btree_node_alloc(b); 1128 return b; 1129err_free: 1130 bch_bucket_free(c, &k.key); 1131err: 1132 mutex_unlock(&c->bucket_lock); 1133 1134 trace_bcache_btree_node_alloc_fail(c); 1135 return b; 1136} 1137 1138static struct btree *bch_btree_node_alloc(struct cache_set *c, 1139 struct btree_op *op, int level, 1140 struct btree *parent) 1141{ 1142 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1143} 1144 1145static struct btree *btree_node_alloc_replacement(struct btree *b, 1146 struct btree_op *op) 1147{ 1148 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1149 1150 if (!IS_ERR(n)) { 1151 mutex_lock(&n->write_lock); 1152 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1153 bkey_copy_key(&n->key, &b->key); 1154 mutex_unlock(&n->write_lock); 1155 } 1156 1157 return n; 1158} 1159 1160static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1161{ 1162 unsigned int i; 1163 1164 mutex_lock(&b->c->bucket_lock); 1165 1166 atomic_inc(&b->c->prio_blocked); 1167 1168 bkey_copy(k, &b->key); 1169 bkey_copy_key(k, &ZERO_KEY); 1170 1171 for (i = 0; i < KEY_PTRS(k); i++) 1172 SET_PTR_GEN(k, i, 1173 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1174 PTR_BUCKET(b->c, &b->key, i))); 1175 1176 mutex_unlock(&b->c->bucket_lock); 1177} 1178 1179static int btree_check_reserve(struct btree *b, struct btree_op *op) 1180{ 1181 struct cache_set *c = b->c; 1182 struct cache *ca = c->cache; 1183 unsigned int reserve = (c->root->level - b->level) * 2 + 1; 1184 1185 mutex_lock(&c->bucket_lock); 1186 1187 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1188 if (op) 1189 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1190 TASK_UNINTERRUPTIBLE); 1191 mutex_unlock(&c->bucket_lock); 1192 return -EINTR; 1193 } 1194 1195 mutex_unlock(&c->bucket_lock); 1196 1197 return mca_cannibalize_lock(b->c, op); 1198} 1199 1200/* Garbage collection */ 1201 1202static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1203 struct bkey *k) 1204{ 1205 uint8_t stale = 0; 1206 unsigned int i; 1207 struct bucket *g; 1208 1209 /* 1210 * ptr_invalid() can't return true for the keys that mark btree nodes as 1211 * freed, but since ptr_bad() returns true we'll never actually use them 1212 * for anything and thus we don't want mark their pointers here 1213 */ 1214 if (!bkey_cmp(k, &ZERO_KEY)) 1215 return stale; 1216 1217 for (i = 0; i < KEY_PTRS(k); i++) { 1218 if (!ptr_available(c, k, i)) 1219 continue; 1220 1221 g = PTR_BUCKET(c, k, i); 1222 1223 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1224 g->last_gc = PTR_GEN(k, i); 1225 1226 if (ptr_stale(c, k, i)) { 1227 stale = max(stale, ptr_stale(c, k, i)); 1228 continue; 1229 } 1230 1231 cache_bug_on(GC_MARK(g) && 1232 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1233 c, "inconsistent ptrs: mark = %llu, level = %i", 1234 GC_MARK(g), level); 1235 1236 if (level) 1237 SET_GC_MARK(g, GC_MARK_METADATA); 1238 else if (KEY_DIRTY(k)) 1239 SET_GC_MARK(g, GC_MARK_DIRTY); 1240 else if (!GC_MARK(g)) 1241 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1242 1243 /* guard against overflow */ 1244 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1245 GC_SECTORS_USED(g) + KEY_SIZE(k), 1246 MAX_GC_SECTORS_USED)); 1247 1248 BUG_ON(!GC_SECTORS_USED(g)); 1249 } 1250 1251 return stale; 1252} 1253 1254#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1255 1256void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1257{ 1258 unsigned int i; 1259 1260 for (i = 0; i < KEY_PTRS(k); i++) 1261 if (ptr_available(c, k, i) && 1262 !ptr_stale(c, k, i)) { 1263 struct bucket *b = PTR_BUCKET(c, k, i); 1264 1265 b->gen = PTR_GEN(k, i); 1266 1267 if (level && bkey_cmp(k, &ZERO_KEY)) 1268 b->prio = BTREE_PRIO; 1269 else if (!level && b->prio == BTREE_PRIO) 1270 b->prio = INITIAL_PRIO; 1271 } 1272 1273 __bch_btree_mark_key(c, level, k); 1274} 1275 1276void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1277{ 1278 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1279} 1280 1281static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1282{ 1283 uint8_t stale = 0; 1284 unsigned int keys = 0, good_keys = 0; 1285 struct bkey *k; 1286 struct btree_iter iter; 1287 struct bset_tree *t; 1288 1289 gc->nodes++; 1290 1291 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1292 stale = max(stale, btree_mark_key(b, k)); 1293 keys++; 1294 1295 if (bch_ptr_bad(&b->keys, k)) 1296 continue; 1297 1298 gc->key_bytes += bkey_u64s(k); 1299 gc->nkeys++; 1300 good_keys++; 1301 1302 gc->data += KEY_SIZE(k); 1303 } 1304 1305 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1306 btree_bug_on(t->size && 1307 bset_written(&b->keys, t) && 1308 bkey_cmp(&b->key, &t->end) < 0, 1309 b, "found short btree key in gc"); 1310 1311 if (b->c->gc_always_rewrite) 1312 return true; 1313 1314 if (stale > 10) 1315 return true; 1316 1317 if ((keys - good_keys) * 2 > keys) 1318 return true; 1319 1320 return false; 1321} 1322 1323#define GC_MERGE_NODES 4U 1324 1325struct gc_merge_info { 1326 struct btree *b; 1327 unsigned int keys; 1328}; 1329 1330static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1331 struct keylist *insert_keys, 1332 atomic_t *journal_ref, 1333 struct bkey *replace_key); 1334 1335static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1336 struct gc_stat *gc, struct gc_merge_info *r) 1337{ 1338 unsigned int i, nodes = 0, keys = 0, blocks; 1339 struct btree *new_nodes[GC_MERGE_NODES]; 1340 struct keylist keylist; 1341 struct closure cl; 1342 struct bkey *k; 1343 1344 bch_keylist_init(&keylist); 1345 1346 if (btree_check_reserve(b, NULL)) 1347 return 0; 1348 1349 memset(new_nodes, 0, sizeof(new_nodes)); 1350 closure_init_stack(&cl); 1351 1352 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1353 keys += r[nodes++].keys; 1354 1355 blocks = btree_default_blocks(b->c) * 2 / 3; 1356 1357 if (nodes < 2 || 1358 __set_blocks(b->keys.set[0].data, keys, 1359 block_bytes(b->c->cache)) > blocks * (nodes - 1)) 1360 return 0; 1361 1362 for (i = 0; i < nodes; i++) { 1363 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1364 if (IS_ERR(new_nodes[i])) 1365 goto out_nocoalesce; 1366 } 1367 1368 /* 1369 * We have to check the reserve here, after we've allocated our new 1370 * nodes, to make sure the insert below will succeed - we also check 1371 * before as an optimization to potentially avoid a bunch of expensive 1372 * allocs/sorts 1373 */ 1374 if (btree_check_reserve(b, NULL)) 1375 goto out_nocoalesce; 1376 1377 for (i = 0; i < nodes; i++) 1378 mutex_lock(&new_nodes[i]->write_lock); 1379 1380 for (i = nodes - 1; i > 0; --i) { 1381 struct bset *n1 = btree_bset_first(new_nodes[i]); 1382 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1383 struct bkey *k, *last = NULL; 1384 1385 keys = 0; 1386 1387 if (i > 1) { 1388 for (k = n2->start; 1389 k < bset_bkey_last(n2); 1390 k = bkey_next(k)) { 1391 if (__set_blocks(n1, n1->keys + keys + 1392 bkey_u64s(k), 1393 block_bytes(b->c->cache)) > blocks) 1394 break; 1395 1396 last = k; 1397 keys += bkey_u64s(k); 1398 } 1399 } else { 1400 /* 1401 * Last node we're not getting rid of - we're getting 1402 * rid of the node at r[0]. Have to try and fit all of 1403 * the remaining keys into this node; we can't ensure 1404 * they will always fit due to rounding and variable 1405 * length keys (shouldn't be possible in practice, 1406 * though) 1407 */ 1408 if (__set_blocks(n1, n1->keys + n2->keys, 1409 block_bytes(b->c->cache)) > 1410 btree_blocks(new_nodes[i])) 1411 goto out_unlock_nocoalesce; 1412 1413 keys = n2->keys; 1414 /* Take the key of the node we're getting rid of */ 1415 last = &r->b->key; 1416 } 1417 1418 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) > 1419 btree_blocks(new_nodes[i])); 1420 1421 if (last) 1422 bkey_copy_key(&new_nodes[i]->key, last); 1423 1424 memcpy(bset_bkey_last(n1), 1425 n2->start, 1426 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1427 1428 n1->keys += keys; 1429 r[i].keys = n1->keys; 1430 1431 memmove(n2->start, 1432 bset_bkey_idx(n2, keys), 1433 (void *) bset_bkey_last(n2) - 1434 (void *) bset_bkey_idx(n2, keys)); 1435 1436 n2->keys -= keys; 1437 1438 if (__bch_keylist_realloc(&keylist, 1439 bkey_u64s(&new_nodes[i]->key))) 1440 goto out_unlock_nocoalesce; 1441 1442 bch_btree_node_write(new_nodes[i], &cl); 1443 bch_keylist_add(&keylist, &new_nodes[i]->key); 1444 } 1445 1446 for (i = 0; i < nodes; i++) 1447 mutex_unlock(&new_nodes[i]->write_lock); 1448 1449 closure_sync(&cl); 1450 1451 /* We emptied out this node */ 1452 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1453 btree_node_free(new_nodes[0]); 1454 rw_unlock(true, new_nodes[0]); 1455 new_nodes[0] = NULL; 1456 1457 for (i = 0; i < nodes; i++) { 1458 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1459 goto out_nocoalesce; 1460 1461 make_btree_freeing_key(r[i].b, keylist.top); 1462 bch_keylist_push(&keylist); 1463 } 1464 1465 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1466 BUG_ON(!bch_keylist_empty(&keylist)); 1467 1468 for (i = 0; i < nodes; i++) { 1469 btree_node_free(r[i].b); 1470 rw_unlock(true, r[i].b); 1471 1472 r[i].b = new_nodes[i]; 1473 } 1474 1475 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1476 r[nodes - 1].b = ERR_PTR(-EINTR); 1477 1478 trace_bcache_btree_gc_coalesce(nodes); 1479 gc->nodes--; 1480 1481 bch_keylist_free(&keylist); 1482 1483 /* Invalidated our iterator */ 1484 return -EINTR; 1485 1486out_unlock_nocoalesce: 1487 for (i = 0; i < nodes; i++) 1488 mutex_unlock(&new_nodes[i]->write_lock); 1489 1490out_nocoalesce: 1491 closure_sync(&cl); 1492 1493 while ((k = bch_keylist_pop(&keylist))) 1494 if (!bkey_cmp(k, &ZERO_KEY)) 1495 atomic_dec(&b->c->prio_blocked); 1496 bch_keylist_free(&keylist); 1497 1498 for (i = 0; i < nodes; i++) 1499 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1500 btree_node_free(new_nodes[i]); 1501 rw_unlock(true, new_nodes[i]); 1502 } 1503 return 0; 1504} 1505 1506static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1507 struct btree *replace) 1508{ 1509 struct keylist keys; 1510 struct btree *n; 1511 1512 if (btree_check_reserve(b, NULL)) 1513 return 0; 1514 1515 n = btree_node_alloc_replacement(replace, NULL); 1516 if (IS_ERR(n)) 1517 return 0; 1518 1519 /* recheck reserve after allocating replacement node */ 1520 if (btree_check_reserve(b, NULL)) { 1521 btree_node_free(n); 1522 rw_unlock(true, n); 1523 return 0; 1524 } 1525 1526 bch_btree_node_write_sync(n); 1527 1528 bch_keylist_init(&keys); 1529 bch_keylist_add(&keys, &n->key); 1530 1531 make_btree_freeing_key(replace, keys.top); 1532 bch_keylist_push(&keys); 1533 1534 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1535 BUG_ON(!bch_keylist_empty(&keys)); 1536 1537 btree_node_free(replace); 1538 rw_unlock(true, n); 1539 1540 /* Invalidated our iterator */ 1541 return -EINTR; 1542} 1543 1544static unsigned int btree_gc_count_keys(struct btree *b) 1545{ 1546 struct bkey *k; 1547 struct btree_iter iter; 1548 unsigned int ret = 0; 1549 1550 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1551 ret += bkey_u64s(k); 1552 1553 return ret; 1554} 1555 1556static size_t btree_gc_min_nodes(struct cache_set *c) 1557{ 1558 size_t min_nodes; 1559 1560 /* 1561 * Since incremental GC would stop 100ms when front 1562 * side I/O comes, so when there are many btree nodes, 1563 * if GC only processes constant (100) nodes each time, 1564 * GC would last a long time, and the front side I/Os 1565 * would run out of the buckets (since no new bucket 1566 * can be allocated during GC), and be blocked again. 1567 * So GC should not process constant nodes, but varied 1568 * nodes according to the number of btree nodes, which 1569 * realized by dividing GC into constant(100) times, 1570 * so when there are many btree nodes, GC can process 1571 * more nodes each time, otherwise, GC will process less 1572 * nodes each time (but no less than MIN_GC_NODES) 1573 */ 1574 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1575 if (min_nodes < MIN_GC_NODES) 1576 min_nodes = MIN_GC_NODES; 1577 1578 return min_nodes; 1579} 1580 1581 1582static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1583 struct closure *writes, struct gc_stat *gc) 1584{ 1585 int ret = 0; 1586 bool should_rewrite; 1587 struct bkey *k; 1588 struct btree_iter iter; 1589 struct gc_merge_info r[GC_MERGE_NODES]; 1590 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1591 1592 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1593 1594 for (i = r; i < r + ARRAY_SIZE(r); i++) 1595 i->b = ERR_PTR(-EINTR); 1596 1597 while (1) { 1598 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1599 if (k) { 1600 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1601 true, b); 1602 if (IS_ERR(r->b)) { 1603 ret = PTR_ERR(r->b); 1604 break; 1605 } 1606 1607 r->keys = btree_gc_count_keys(r->b); 1608 1609 ret = btree_gc_coalesce(b, op, gc, r); 1610 if (ret) 1611 break; 1612 } 1613 1614 if (!last->b) 1615 break; 1616 1617 if (!IS_ERR(last->b)) { 1618 should_rewrite = btree_gc_mark_node(last->b, gc); 1619 if (should_rewrite) { 1620 ret = btree_gc_rewrite_node(b, op, last->b); 1621 if (ret) 1622 break; 1623 } 1624 1625 if (last->b->level) { 1626 ret = btree_gc_recurse(last->b, op, writes, gc); 1627 if (ret) 1628 break; 1629 } 1630 1631 bkey_copy_key(&b->c->gc_done, &last->b->key); 1632 1633 /* 1634 * Must flush leaf nodes before gc ends, since replace 1635 * operations aren't journalled 1636 */ 1637 mutex_lock(&last->b->write_lock); 1638 if (btree_node_dirty(last->b)) 1639 bch_btree_node_write(last->b, writes); 1640 mutex_unlock(&last->b->write_lock); 1641 rw_unlock(true, last->b); 1642 } 1643 1644 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1645 r->b = NULL; 1646 1647 if (atomic_read(&b->c->search_inflight) && 1648 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1649 gc->nodes_pre = gc->nodes; 1650 ret = -EAGAIN; 1651 break; 1652 } 1653 1654 if (need_resched()) { 1655 ret = -EAGAIN; 1656 break; 1657 } 1658 } 1659 1660 for (i = r; i < r + ARRAY_SIZE(r); i++) 1661 if (!IS_ERR_OR_NULL(i->b)) { 1662 mutex_lock(&i->b->write_lock); 1663 if (btree_node_dirty(i->b)) 1664 bch_btree_node_write(i->b, writes); 1665 mutex_unlock(&i->b->write_lock); 1666 rw_unlock(true, i->b); 1667 } 1668 1669 return ret; 1670} 1671 1672static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1673 struct closure *writes, struct gc_stat *gc) 1674{ 1675 struct btree *n = NULL; 1676 int ret = 0; 1677 bool should_rewrite; 1678 1679 should_rewrite = btree_gc_mark_node(b, gc); 1680 if (should_rewrite) { 1681 n = btree_node_alloc_replacement(b, NULL); 1682 1683 if (!IS_ERR(n)) { 1684 bch_btree_node_write_sync(n); 1685 1686 bch_btree_set_root(n); 1687 btree_node_free(b); 1688 rw_unlock(true, n); 1689 1690 return -EINTR; 1691 } 1692 } 1693 1694 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1695 1696 if (b->level) { 1697 ret = btree_gc_recurse(b, op, writes, gc); 1698 if (ret) 1699 return ret; 1700 } 1701 1702 bkey_copy_key(&b->c->gc_done, &b->key); 1703 1704 return ret; 1705} 1706 1707static void btree_gc_start(struct cache_set *c) 1708{ 1709 struct cache *ca; 1710 struct bucket *b; 1711 1712 if (!c->gc_mark_valid) 1713 return; 1714 1715 mutex_lock(&c->bucket_lock); 1716 1717 c->gc_mark_valid = 0; 1718 c->gc_done = ZERO_KEY; 1719 1720 ca = c->cache; 1721 for_each_bucket(b, ca) { 1722 b->last_gc = b->gen; 1723 if (!atomic_read(&b->pin)) { 1724 SET_GC_MARK(b, 0); 1725 SET_GC_SECTORS_USED(b, 0); 1726 } 1727 } 1728 1729 mutex_unlock(&c->bucket_lock); 1730} 1731 1732static void bch_btree_gc_finish(struct cache_set *c) 1733{ 1734 struct bucket *b; 1735 struct cache *ca; 1736 unsigned int i, j; 1737 uint64_t *k; 1738 1739 mutex_lock(&c->bucket_lock); 1740 1741 set_gc_sectors(c); 1742 c->gc_mark_valid = 1; 1743 c->need_gc = 0; 1744 1745 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1746 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1747 GC_MARK_METADATA); 1748 1749 /* don't reclaim buckets to which writeback keys point */ 1750 rcu_read_lock(); 1751 for (i = 0; i < c->devices_max_used; i++) { 1752 struct bcache_device *d = c->devices[i]; 1753 struct cached_dev *dc; 1754 struct keybuf_key *w, *n; 1755 1756 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1757 continue; 1758 dc = container_of(d, struct cached_dev, disk); 1759 1760 spin_lock(&dc->writeback_keys.lock); 1761 rbtree_postorder_for_each_entry_safe(w, n, 1762 &dc->writeback_keys.keys, node) 1763 for (j = 0; j < KEY_PTRS(&w->key); j++) 1764 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1765 GC_MARK_DIRTY); 1766 spin_unlock(&dc->writeback_keys.lock); 1767 } 1768 rcu_read_unlock(); 1769 1770 c->avail_nbuckets = 0; 1771 1772 ca = c->cache; 1773 ca->invalidate_needs_gc = 0; 1774 1775 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++) 1776 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1777 1778 for (k = ca->prio_buckets; 1779 k < ca->prio_buckets + prio_buckets(ca) * 2; k++) 1780 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1781 1782 for_each_bucket(b, ca) { 1783 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1784 1785 if (atomic_read(&b->pin)) 1786 continue; 1787 1788 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1789 1790 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1791 c->avail_nbuckets++; 1792 } 1793 1794 mutex_unlock(&c->bucket_lock); 1795} 1796 1797static void bch_btree_gc(struct cache_set *c) 1798{ 1799 int ret; 1800 struct gc_stat stats; 1801 struct closure writes; 1802 struct btree_op op; 1803 uint64_t start_time = local_clock(); 1804 1805 trace_bcache_gc_start(c); 1806 1807 memset(&stats, 0, sizeof(struct gc_stat)); 1808 closure_init_stack(&writes); 1809 bch_btree_op_init(&op, SHRT_MAX); 1810 1811 btree_gc_start(c); 1812 1813 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1814 do { 1815 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats); 1816 closure_sync(&writes); 1817 cond_resched(); 1818 1819 if (ret == -EAGAIN) 1820 schedule_timeout_interruptible(msecs_to_jiffies 1821 (GC_SLEEP_MS)); 1822 else if (ret) 1823 pr_warn("gc failed!\n"); 1824 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1825 1826 bch_btree_gc_finish(c); 1827 wake_up_allocators(c); 1828 1829 bch_time_stats_update(&c->btree_gc_time, start_time); 1830 1831 stats.key_bytes *= sizeof(uint64_t); 1832 stats.data <<= 9; 1833 bch_update_bucket_in_use(c, &stats); 1834 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1835 1836 trace_bcache_gc_end(c); 1837 1838 bch_moving_gc(c); 1839} 1840 1841static bool gc_should_run(struct cache_set *c) 1842{ 1843 struct cache *ca = c->cache; 1844 1845 if (ca->invalidate_needs_gc) 1846 return true; 1847 1848 if (atomic_read(&c->sectors_to_gc) < 0) 1849 return true; 1850 1851 return false; 1852} 1853 1854static int bch_gc_thread(void *arg) 1855{ 1856 struct cache_set *c = arg; 1857 1858 while (1) { 1859 wait_event_interruptible(c->gc_wait, 1860 kthread_should_stop() || 1861 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1862 gc_should_run(c)); 1863 1864 if (kthread_should_stop() || 1865 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1866 break; 1867 1868 set_gc_sectors(c); 1869 bch_btree_gc(c); 1870 } 1871 1872 wait_for_kthread_stop(); 1873 return 0; 1874} 1875 1876int bch_gc_thread_start(struct cache_set *c) 1877{ 1878 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1879 return PTR_ERR_OR_ZERO(c->gc_thread); 1880} 1881 1882/* Initial partial gc */ 1883 1884static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1885{ 1886 int ret = 0; 1887 struct bkey *k, *p = NULL; 1888 struct btree_iter iter; 1889 1890 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1891 bch_initial_mark_key(b->c, b->level, k); 1892 1893 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1894 1895 if (b->level) { 1896 bch_btree_iter_init(&b->keys, &iter, NULL); 1897 1898 do { 1899 k = bch_btree_iter_next_filter(&iter, &b->keys, 1900 bch_ptr_bad); 1901 if (k) { 1902 btree_node_prefetch(b, k); 1903 /* 1904 * initiallize c->gc_stats.nodes 1905 * for incremental GC 1906 */ 1907 b->c->gc_stats.nodes++; 1908 } 1909 1910 if (p) 1911 ret = bcache_btree(check_recurse, p, b, op); 1912 1913 p = k; 1914 } while (p && !ret); 1915 } 1916 1917 return ret; 1918} 1919 1920 1921static int bch_btree_check_thread(void *arg) 1922{ 1923 int ret; 1924 struct btree_check_info *info = arg; 1925 struct btree_check_state *check_state = info->state; 1926 struct cache_set *c = check_state->c; 1927 struct btree_iter iter; 1928 struct bkey *k, *p; 1929 int cur_idx, prev_idx, skip_nr; 1930 1931 k = p = NULL; 1932 cur_idx = prev_idx = 0; 1933 ret = 0; 1934 1935 /* root node keys are checked before thread created */ 1936 bch_btree_iter_init(&c->root->keys, &iter, NULL); 1937 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad); 1938 BUG_ON(!k); 1939 1940 p = k; 1941 while (k) { 1942 /* 1943 * Fetch a root node key index, skip the keys which 1944 * should be fetched by other threads, then check the 1945 * sub-tree indexed by the fetched key. 1946 */ 1947 spin_lock(&check_state->idx_lock); 1948 cur_idx = check_state->key_idx; 1949 check_state->key_idx++; 1950 spin_unlock(&check_state->idx_lock); 1951 1952 skip_nr = cur_idx - prev_idx; 1953 1954 while (skip_nr) { 1955 k = bch_btree_iter_next_filter(&iter, 1956 &c->root->keys, 1957 bch_ptr_bad); 1958 if (k) 1959 p = k; 1960 else { 1961 /* 1962 * No more keys to check in root node, 1963 * current checking threads are enough, 1964 * stop creating more. 1965 */ 1966 atomic_set(&check_state->enough, 1); 1967 /* Update check_state->enough earlier */ 1968 smp_mb__after_atomic(); 1969 goto out; 1970 } 1971 skip_nr--; 1972 cond_resched(); 1973 } 1974 1975 if (p) { 1976 struct btree_op op; 1977 1978 btree_node_prefetch(c->root, p); 1979 c->gc_stats.nodes++; 1980 bch_btree_op_init(&op, 0); 1981 ret = bcache_btree(check_recurse, p, c->root, &op); 1982 /* 1983 * The op may be added to cache_set's btree_cache_wait 1984 * in mca_cannibalize(), must ensure it is removed from 1985 * the list and release btree_cache_alloc_lock before 1986 * free op memory. 1987 * Otherwise, the btree_cache_wait will be damaged. 1988 */ 1989 bch_cannibalize_unlock(c); 1990 finish_wait(&c->btree_cache_wait, &(&op)->wait); 1991 if (ret) 1992 goto out; 1993 } 1994 p = NULL; 1995 prev_idx = cur_idx; 1996 cond_resched(); 1997 } 1998 1999out: 2000 info->result = ret; 2001 /* update check_state->started among all CPUs */ 2002 smp_mb__before_atomic(); 2003 if (atomic_dec_and_test(&check_state->started)) 2004 wake_up(&check_state->wait); 2005 2006 return ret; 2007} 2008 2009 2010 2011static int bch_btree_chkthread_nr(void) 2012{ 2013 int n = num_online_cpus()/2; 2014 2015 if (n == 0) 2016 n = 1; 2017 else if (n > BCH_BTR_CHKTHREAD_MAX) 2018 n = BCH_BTR_CHKTHREAD_MAX; 2019 2020 return n; 2021} 2022 2023int bch_btree_check(struct cache_set *c) 2024{ 2025 int ret = 0; 2026 int i; 2027 struct bkey *k = NULL; 2028 struct btree_iter iter; 2029 struct btree_check_state check_state; 2030 2031 /* check and mark root node keys */ 2032 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid) 2033 bch_initial_mark_key(c, c->root->level, k); 2034 2035 bch_initial_mark_key(c, c->root->level + 1, &c->root->key); 2036 2037 if (c->root->level == 0) 2038 return 0; 2039 2040 memset(&check_state, 0, sizeof(struct btree_check_state)); 2041 check_state.c = c; 2042 check_state.total_threads = bch_btree_chkthread_nr(); 2043 check_state.key_idx = 0; 2044 spin_lock_init(&check_state.idx_lock); 2045 atomic_set(&check_state.started, 0); 2046 atomic_set(&check_state.enough, 0); 2047 init_waitqueue_head(&check_state.wait); 2048 2049 rw_lock(0, c->root, c->root->level); 2050 /* 2051 * Run multiple threads to check btree nodes in parallel, 2052 * if check_state.enough is non-zero, it means current 2053 * running check threads are enough, unncessary to create 2054 * more. 2055 */ 2056 for (i = 0; i < check_state.total_threads; i++) { 2057 /* fetch latest check_state.enough earlier */ 2058 smp_mb__before_atomic(); 2059 if (atomic_read(&check_state.enough)) 2060 break; 2061 2062 check_state.infos[i].result = 0; 2063 check_state.infos[i].state = &check_state; 2064 2065 check_state.infos[i].thread = 2066 kthread_run(bch_btree_check_thread, 2067 &check_state.infos[i], 2068 "bch_btrchk[%d]", i); 2069 if (IS_ERR(check_state.infos[i].thread)) { 2070 pr_err("fails to run thread bch_btrchk[%d]\n", i); 2071 for (--i; i >= 0; i--) 2072 kthread_stop(check_state.infos[i].thread); 2073 ret = -ENOMEM; 2074 goto out; 2075 } 2076 atomic_inc(&check_state.started); 2077 } 2078 2079 /* 2080 * Must wait for all threads to stop. 2081 */ 2082 wait_event(check_state.wait, atomic_read(&check_state.started) == 0); 2083 2084 for (i = 0; i < check_state.total_threads; i++) { 2085 if (check_state.infos[i].result) { 2086 ret = check_state.infos[i].result; 2087 goto out; 2088 } 2089 } 2090 2091out: 2092 rw_unlock(0, c->root); 2093 return ret; 2094} 2095 2096void bch_initial_gc_finish(struct cache_set *c) 2097{ 2098 struct cache *ca = c->cache; 2099 struct bucket *b; 2100 2101 bch_btree_gc_finish(c); 2102 2103 mutex_lock(&c->bucket_lock); 2104 2105 /* 2106 * We need to put some unused buckets directly on the prio freelist in 2107 * order to get the allocator thread started - it needs freed buckets in 2108 * order to rewrite the prios and gens, and it needs to rewrite prios 2109 * and gens in order to free buckets. 2110 * 2111 * This is only safe for buckets that have no live data in them, which 2112 * there should always be some of. 2113 */ 2114 for_each_bucket(b, ca) { 2115 if (fifo_full(&ca->free[RESERVE_PRIO]) && 2116 fifo_full(&ca->free[RESERVE_BTREE])) 2117 break; 2118 2119 if (bch_can_invalidate_bucket(ca, b) && 2120 !GC_MARK(b)) { 2121 __bch_invalidate_one_bucket(ca, b); 2122 if (!fifo_push(&ca->free[RESERVE_PRIO], 2123 b - ca->buckets)) 2124 fifo_push(&ca->free[RESERVE_BTREE], 2125 b - ca->buckets); 2126 } 2127 } 2128 2129 mutex_unlock(&c->bucket_lock); 2130} 2131 2132/* Btree insertion */ 2133 2134static bool btree_insert_key(struct btree *b, struct bkey *k, 2135 struct bkey *replace_key) 2136{ 2137 unsigned int status; 2138 2139 BUG_ON(bkey_cmp(k, &b->key) > 0); 2140 2141 status = bch_btree_insert_key(&b->keys, k, replace_key); 2142 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2143 bch_check_keys(&b->keys, "%u for %s", status, 2144 replace_key ? "replace" : "insert"); 2145 2146 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2147 status); 2148 return true; 2149 } else 2150 return false; 2151} 2152 2153static size_t insert_u64s_remaining(struct btree *b) 2154{ 2155 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2156 2157 /* 2158 * Might land in the middle of an existing extent and have to split it 2159 */ 2160 if (b->keys.ops->is_extents) 2161 ret -= KEY_MAX_U64S; 2162 2163 return max(ret, 0L); 2164} 2165 2166static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2167 struct keylist *insert_keys, 2168 struct bkey *replace_key) 2169{ 2170 bool ret = false; 2171 int oldsize = bch_count_data(&b->keys); 2172 2173 while (!bch_keylist_empty(insert_keys)) { 2174 struct bkey *k = insert_keys->keys; 2175 2176 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2177 break; 2178 2179 if (bkey_cmp(k, &b->key) <= 0) { 2180 if (!b->level) 2181 bkey_put(b->c, k); 2182 2183 ret |= btree_insert_key(b, k, replace_key); 2184 bch_keylist_pop_front(insert_keys); 2185 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2186 BKEY_PADDED(key) temp; 2187 bkey_copy(&temp.key, insert_keys->keys); 2188 2189 bch_cut_back(&b->key, &temp.key); 2190 bch_cut_front(&b->key, insert_keys->keys); 2191 2192 ret |= btree_insert_key(b, &temp.key, replace_key); 2193 break; 2194 } else { 2195 break; 2196 } 2197 } 2198 2199 if (!ret) 2200 op->insert_collision = true; 2201 2202 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2203 2204 BUG_ON(bch_count_data(&b->keys) < oldsize); 2205 return ret; 2206} 2207 2208static int btree_split(struct btree *b, struct btree_op *op, 2209 struct keylist *insert_keys, 2210 struct bkey *replace_key) 2211{ 2212 bool split; 2213 struct btree *n1, *n2 = NULL, *n3 = NULL; 2214 uint64_t start_time = local_clock(); 2215 struct closure cl; 2216 struct keylist parent_keys; 2217 2218 closure_init_stack(&cl); 2219 bch_keylist_init(&parent_keys); 2220 2221 if (btree_check_reserve(b, op)) { 2222 if (!b->level) 2223 return -EINTR; 2224 else 2225 WARN(1, "insufficient reserve for split\n"); 2226 } 2227 2228 n1 = btree_node_alloc_replacement(b, op); 2229 if (IS_ERR(n1)) 2230 goto err; 2231 2232 split = set_blocks(btree_bset_first(n1), 2233 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5; 2234 2235 if (split) { 2236 unsigned int keys = 0; 2237 2238 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2239 2240 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2241 if (IS_ERR(n2)) 2242 goto err_free1; 2243 2244 if (!b->parent) { 2245 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2246 if (IS_ERR(n3)) 2247 goto err_free2; 2248 } 2249 2250 mutex_lock(&n1->write_lock); 2251 mutex_lock(&n2->write_lock); 2252 2253 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2254 2255 /* 2256 * Has to be a linear search because we don't have an auxiliary 2257 * search tree yet 2258 */ 2259 2260 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2261 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2262 keys)); 2263 2264 bkey_copy_key(&n1->key, 2265 bset_bkey_idx(btree_bset_first(n1), keys)); 2266 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2267 2268 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2269 btree_bset_first(n1)->keys = keys; 2270 2271 memcpy(btree_bset_first(n2)->start, 2272 bset_bkey_last(btree_bset_first(n1)), 2273 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2274 2275 bkey_copy_key(&n2->key, &b->key); 2276 2277 bch_keylist_add(&parent_keys, &n2->key); 2278 bch_btree_node_write(n2, &cl); 2279 mutex_unlock(&n2->write_lock); 2280 rw_unlock(true, n2); 2281 } else { 2282 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2283 2284 mutex_lock(&n1->write_lock); 2285 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2286 } 2287 2288 bch_keylist_add(&parent_keys, &n1->key); 2289 bch_btree_node_write(n1, &cl); 2290 mutex_unlock(&n1->write_lock); 2291 2292 if (n3) { 2293 /* Depth increases, make a new root */ 2294 mutex_lock(&n3->write_lock); 2295 bkey_copy_key(&n3->key, &MAX_KEY); 2296 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2297 bch_btree_node_write(n3, &cl); 2298 mutex_unlock(&n3->write_lock); 2299 2300 closure_sync(&cl); 2301 bch_btree_set_root(n3); 2302 rw_unlock(true, n3); 2303 } else if (!b->parent) { 2304 /* Root filled up but didn't need to be split */ 2305 closure_sync(&cl); 2306 bch_btree_set_root(n1); 2307 } else { 2308 /* Split a non root node */ 2309 closure_sync(&cl); 2310 make_btree_freeing_key(b, parent_keys.top); 2311 bch_keylist_push(&parent_keys); 2312 2313 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2314 BUG_ON(!bch_keylist_empty(&parent_keys)); 2315 } 2316 2317 btree_node_free(b); 2318 rw_unlock(true, n1); 2319 2320 bch_time_stats_update(&b->c->btree_split_time, start_time); 2321 2322 return 0; 2323err_free2: 2324 bkey_put(b->c, &n2->key); 2325 btree_node_free(n2); 2326 rw_unlock(true, n2); 2327err_free1: 2328 bkey_put(b->c, &n1->key); 2329 btree_node_free(n1); 2330 rw_unlock(true, n1); 2331err: 2332 WARN(1, "bcache: btree split failed (level %u)", b->level); 2333 2334 if (n3 == ERR_PTR(-EAGAIN) || 2335 n2 == ERR_PTR(-EAGAIN) || 2336 n1 == ERR_PTR(-EAGAIN)) 2337 return -EAGAIN; 2338 2339 return -ENOMEM; 2340} 2341 2342static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2343 struct keylist *insert_keys, 2344 atomic_t *journal_ref, 2345 struct bkey *replace_key) 2346{ 2347 struct closure cl; 2348 2349 BUG_ON(b->level && replace_key); 2350 2351 closure_init_stack(&cl); 2352 2353 mutex_lock(&b->write_lock); 2354 2355 if (write_block(b) != btree_bset_last(b) && 2356 b->keys.last_set_unwritten) 2357 bch_btree_init_next(b); /* just wrote a set */ 2358 2359 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2360 mutex_unlock(&b->write_lock); 2361 goto split; 2362 } 2363 2364 BUG_ON(write_block(b) != btree_bset_last(b)); 2365 2366 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2367 if (!b->level) 2368 bch_btree_leaf_dirty(b, journal_ref); 2369 else 2370 bch_btree_node_write(b, &cl); 2371 } 2372 2373 mutex_unlock(&b->write_lock); 2374 2375 /* wait for btree node write if necessary, after unlock */ 2376 closure_sync(&cl); 2377 2378 return 0; 2379split: 2380 if (current->bio_list) { 2381 op->lock = b->c->root->level + 1; 2382 return -EAGAIN; 2383 } else if (op->lock <= b->c->root->level) { 2384 op->lock = b->c->root->level + 1; 2385 return -EINTR; 2386 } else { 2387 /* Invalidated all iterators */ 2388 int ret = btree_split(b, op, insert_keys, replace_key); 2389 2390 if (bch_keylist_empty(insert_keys)) 2391 return 0; 2392 else if (!ret) 2393 return -EINTR; 2394 return ret; 2395 } 2396} 2397 2398int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2399 struct bkey *check_key) 2400{ 2401 int ret = -EINTR; 2402 uint64_t btree_ptr = b->key.ptr[0]; 2403 unsigned long seq = b->seq; 2404 struct keylist insert; 2405 bool upgrade = op->lock == -1; 2406 2407 bch_keylist_init(&insert); 2408 2409 if (upgrade) { 2410 rw_unlock(false, b); 2411 rw_lock(true, b, b->level); 2412 2413 if (b->key.ptr[0] != btree_ptr || 2414 b->seq != seq + 1) { 2415 op->lock = b->level; 2416 goto out; 2417 } 2418 } 2419 2420 SET_KEY_PTRS(check_key, 1); 2421 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2422 2423 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2424 2425 bch_keylist_add(&insert, check_key); 2426 2427 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2428 2429 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2430out: 2431 if (upgrade) 2432 downgrade_write(&b->lock); 2433 return ret; 2434} 2435 2436struct btree_insert_op { 2437 struct btree_op op; 2438 struct keylist *keys; 2439 atomic_t *journal_ref; 2440 struct bkey *replace_key; 2441}; 2442 2443static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2444{ 2445 struct btree_insert_op *op = container_of(b_op, 2446 struct btree_insert_op, op); 2447 2448 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2449 op->journal_ref, op->replace_key); 2450 if (ret && !bch_keylist_empty(op->keys)) 2451 return ret; 2452 else 2453 return MAP_DONE; 2454} 2455 2456int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2457 atomic_t *journal_ref, struct bkey *replace_key) 2458{ 2459 struct btree_insert_op op; 2460 int ret = 0; 2461 2462 BUG_ON(current->bio_list); 2463 BUG_ON(bch_keylist_empty(keys)); 2464 2465 bch_btree_op_init(&op.op, 0); 2466 op.keys = keys; 2467 op.journal_ref = journal_ref; 2468 op.replace_key = replace_key; 2469 2470 while (!ret && !bch_keylist_empty(keys)) { 2471 op.op.lock = 0; 2472 ret = bch_btree_map_leaf_nodes(&op.op, c, 2473 &START_KEY(keys->keys), 2474 btree_insert_fn); 2475 } 2476 2477 if (ret) { 2478 struct bkey *k; 2479 2480 pr_err("error %i\n", ret); 2481 2482 while ((k = bch_keylist_pop(keys))) 2483 bkey_put(c, k); 2484 } else if (op.op.insert_collision) 2485 ret = -ESRCH; 2486 2487 return ret; 2488} 2489 2490void bch_btree_set_root(struct btree *b) 2491{ 2492 unsigned int i; 2493 struct closure cl; 2494 2495 closure_init_stack(&cl); 2496 2497 trace_bcache_btree_set_root(b); 2498 2499 BUG_ON(!b->written); 2500 2501 for (i = 0; i < KEY_PTRS(&b->key); i++) 2502 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2503 2504 mutex_lock(&b->c->bucket_lock); 2505 list_del_init(&b->list); 2506 mutex_unlock(&b->c->bucket_lock); 2507 2508 b->c->root = b; 2509 2510 bch_journal_meta(b->c, &cl); 2511 closure_sync(&cl); 2512} 2513 2514/* Map across nodes or keys */ 2515 2516static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2517 struct bkey *from, 2518 btree_map_nodes_fn *fn, int flags) 2519{ 2520 int ret = MAP_CONTINUE; 2521 2522 if (b->level) { 2523 struct bkey *k; 2524 struct btree_iter iter; 2525 2526 bch_btree_iter_init(&b->keys, &iter, from); 2527 2528 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2529 bch_ptr_bad))) { 2530 ret = bcache_btree(map_nodes_recurse, k, b, 2531 op, from, fn, flags); 2532 from = NULL; 2533 2534 if (ret != MAP_CONTINUE) 2535 return ret; 2536 } 2537 } 2538 2539 if (!b->level || flags == MAP_ALL_NODES) 2540 ret = fn(op, b); 2541 2542 return ret; 2543} 2544 2545int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2546 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2547{ 2548 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags); 2549} 2550 2551int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2552 struct bkey *from, btree_map_keys_fn *fn, 2553 int flags) 2554{ 2555 int ret = MAP_CONTINUE; 2556 struct bkey *k; 2557 struct btree_iter iter; 2558 2559 bch_btree_iter_init(&b->keys, &iter, from); 2560 2561 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2562 ret = !b->level 2563 ? fn(op, b, k) 2564 : bcache_btree(map_keys_recurse, k, 2565 b, op, from, fn, flags); 2566 from = NULL; 2567 2568 if (ret != MAP_CONTINUE) 2569 return ret; 2570 } 2571 2572 if (!b->level && (flags & MAP_END_KEY)) 2573 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2574 KEY_OFFSET(&b->key), 0)); 2575 2576 return ret; 2577} 2578 2579int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2580 struct bkey *from, btree_map_keys_fn *fn, int flags) 2581{ 2582 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags); 2583} 2584 2585/* Keybuf code */ 2586 2587static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2588{ 2589 /* Overlapping keys compare equal */ 2590 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2591 return -1; 2592 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2593 return 1; 2594 return 0; 2595} 2596 2597static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2598 struct keybuf_key *r) 2599{ 2600 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2601} 2602 2603struct refill { 2604 struct btree_op op; 2605 unsigned int nr_found; 2606 struct keybuf *buf; 2607 struct bkey *end; 2608 keybuf_pred_fn *pred; 2609}; 2610 2611static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2612 struct bkey *k) 2613{ 2614 struct refill *refill = container_of(op, struct refill, op); 2615 struct keybuf *buf = refill->buf; 2616 int ret = MAP_CONTINUE; 2617 2618 if (bkey_cmp(k, refill->end) > 0) { 2619 ret = MAP_DONE; 2620 goto out; 2621 } 2622 2623 if (!KEY_SIZE(k)) /* end key */ 2624 goto out; 2625 2626 if (refill->pred(buf, k)) { 2627 struct keybuf_key *w; 2628 2629 spin_lock(&buf->lock); 2630 2631 w = array_alloc(&buf->freelist); 2632 if (!w) { 2633 spin_unlock(&buf->lock); 2634 return MAP_DONE; 2635 } 2636 2637 w->private = NULL; 2638 bkey_copy(&w->key, k); 2639 2640 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2641 array_free(&buf->freelist, w); 2642 else 2643 refill->nr_found++; 2644 2645 if (array_freelist_empty(&buf->freelist)) 2646 ret = MAP_DONE; 2647 2648 spin_unlock(&buf->lock); 2649 } 2650out: 2651 buf->last_scanned = *k; 2652 return ret; 2653} 2654 2655void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2656 struct bkey *end, keybuf_pred_fn *pred) 2657{ 2658 struct bkey start = buf->last_scanned; 2659 struct refill refill; 2660 2661 cond_resched(); 2662 2663 bch_btree_op_init(&refill.op, -1); 2664 refill.nr_found = 0; 2665 refill.buf = buf; 2666 refill.end = end; 2667 refill.pred = pred; 2668 2669 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2670 refill_keybuf_fn, MAP_END_KEY); 2671 2672 trace_bcache_keyscan(refill.nr_found, 2673 KEY_INODE(&start), KEY_OFFSET(&start), 2674 KEY_INODE(&buf->last_scanned), 2675 KEY_OFFSET(&buf->last_scanned)); 2676 2677 spin_lock(&buf->lock); 2678 2679 if (!RB_EMPTY_ROOT(&buf->keys)) { 2680 struct keybuf_key *w; 2681 2682 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2683 buf->start = START_KEY(&w->key); 2684 2685 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2686 buf->end = w->key; 2687 } else { 2688 buf->start = MAX_KEY; 2689 buf->end = MAX_KEY; 2690 } 2691 2692 spin_unlock(&buf->lock); 2693} 2694 2695static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2696{ 2697 rb_erase(&w->node, &buf->keys); 2698 array_free(&buf->freelist, w); 2699} 2700 2701void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2702{ 2703 spin_lock(&buf->lock); 2704 __bch_keybuf_del(buf, w); 2705 spin_unlock(&buf->lock); 2706} 2707 2708bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2709 struct bkey *end) 2710{ 2711 bool ret = false; 2712 struct keybuf_key *p, *w, s; 2713 2714 s.key = *start; 2715 2716 if (bkey_cmp(end, &buf->start) <= 0 || 2717 bkey_cmp(start, &buf->end) >= 0) 2718 return false; 2719 2720 spin_lock(&buf->lock); 2721 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2722 2723 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2724 p = w; 2725 w = RB_NEXT(w, node); 2726 2727 if (p->private) 2728 ret = true; 2729 else 2730 __bch_keybuf_del(buf, p); 2731 } 2732 2733 spin_unlock(&buf->lock); 2734 return ret; 2735} 2736 2737struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2738{ 2739 struct keybuf_key *w; 2740 2741 spin_lock(&buf->lock); 2742 2743 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2744 2745 while (w && w->private) 2746 w = RB_NEXT(w, node); 2747 2748 if (w) 2749 w->private = ERR_PTR(-EINTR); 2750 2751 spin_unlock(&buf->lock); 2752 return w; 2753} 2754 2755struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2756 struct keybuf *buf, 2757 struct bkey *end, 2758 keybuf_pred_fn *pred) 2759{ 2760 struct keybuf_key *ret; 2761 2762 while (1) { 2763 ret = bch_keybuf_next(buf); 2764 if (ret) 2765 break; 2766 2767 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2768 pr_debug("scan finished\n"); 2769 break; 2770 } 2771 2772 bch_refill_keybuf(c, buf, end, pred); 2773 } 2774 2775 return ret; 2776} 2777 2778void bch_keybuf_init(struct keybuf *buf) 2779{ 2780 buf->last_scanned = MAX_KEY; 2781 buf->keys = RB_ROOT; 2782 2783 spin_lock_init(&buf->lock); 2784 array_allocator_init(&buf->freelist); 2785} 2786 2787void bch_btree_exit(void) 2788{ 2789 if (btree_io_wq) 2790 destroy_workqueue(btree_io_wq); 2791} 2792 2793int __init bch_btree_init(void) 2794{ 2795 btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0); 2796 if (!btree_io_wq) 2797 return -ENOMEM; 2798 2799 return 0; 2800} 2801