xref: /kernel/linux/linux-5.10/drivers/md/bcache/bset.h (revision 8c2ecf20)
18c2ecf20Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */
28c2ecf20Sopenharmony_ci#ifndef _BCACHE_BSET_H
38c2ecf20Sopenharmony_ci#define _BCACHE_BSET_H
48c2ecf20Sopenharmony_ci
58c2ecf20Sopenharmony_ci#include <linux/bcache.h>
68c2ecf20Sopenharmony_ci#include <linux/kernel.h>
78c2ecf20Sopenharmony_ci#include <linux/types.h>
88c2ecf20Sopenharmony_ci
98c2ecf20Sopenharmony_ci#include "util.h" /* for time_stats */
108c2ecf20Sopenharmony_ci
118c2ecf20Sopenharmony_ci/*
128c2ecf20Sopenharmony_ci * BKEYS:
138c2ecf20Sopenharmony_ci *
148c2ecf20Sopenharmony_ci * A bkey contains a key, a size field, a variable number of pointers, and some
158c2ecf20Sopenharmony_ci * ancillary flag bits.
168c2ecf20Sopenharmony_ci *
178c2ecf20Sopenharmony_ci * We use two different functions for validating bkeys, bch_ptr_invalid and
188c2ecf20Sopenharmony_ci * bch_ptr_bad().
198c2ecf20Sopenharmony_ci *
208c2ecf20Sopenharmony_ci * bch_ptr_invalid() primarily filters out keys and pointers that would be
218c2ecf20Sopenharmony_ci * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and
228c2ecf20Sopenharmony_ci * pointer that occur in normal practice but don't point to real data.
238c2ecf20Sopenharmony_ci *
248c2ecf20Sopenharmony_ci * The one exception to the rule that ptr_invalid() filters out invalid keys is
258c2ecf20Sopenharmony_ci * that it also filters out keys of size 0 - these are keys that have been
268c2ecf20Sopenharmony_ci * completely overwritten. It'd be safe to delete these in memory while leaving
278c2ecf20Sopenharmony_ci * them on disk, just unnecessary work - so we filter them out when resorting
288c2ecf20Sopenharmony_ci * instead.
298c2ecf20Sopenharmony_ci *
308c2ecf20Sopenharmony_ci * We can't filter out stale keys when we're resorting, because garbage
318c2ecf20Sopenharmony_ci * collection needs to find them to ensure bucket gens don't wrap around -
328c2ecf20Sopenharmony_ci * unless we're rewriting the btree node those stale keys still exist on disk.
338c2ecf20Sopenharmony_ci *
348c2ecf20Sopenharmony_ci * We also implement functions here for removing some number of sectors from the
358c2ecf20Sopenharmony_ci * front or the back of a bkey - this is mainly used for fixing overlapping
368c2ecf20Sopenharmony_ci * extents, by removing the overlapping sectors from the older key.
378c2ecf20Sopenharmony_ci *
388c2ecf20Sopenharmony_ci * BSETS:
398c2ecf20Sopenharmony_ci *
408c2ecf20Sopenharmony_ci * A bset is an array of bkeys laid out contiguously in memory in sorted order,
418c2ecf20Sopenharmony_ci * along with a header. A btree node is made up of a number of these, written at
428c2ecf20Sopenharmony_ci * different times.
438c2ecf20Sopenharmony_ci *
448c2ecf20Sopenharmony_ci * There could be many of them on disk, but we never allow there to be more than
458c2ecf20Sopenharmony_ci * 4 in memory - we lazily resort as needed.
468c2ecf20Sopenharmony_ci *
478c2ecf20Sopenharmony_ci * We implement code here for creating and maintaining auxiliary search trees
488c2ecf20Sopenharmony_ci * (described below) for searching an individial bset, and on top of that we
498c2ecf20Sopenharmony_ci * implement a btree iterator.
508c2ecf20Sopenharmony_ci *
518c2ecf20Sopenharmony_ci * BTREE ITERATOR:
528c2ecf20Sopenharmony_ci *
538c2ecf20Sopenharmony_ci * Most of the code in bcache doesn't care about an individual bset - it needs
548c2ecf20Sopenharmony_ci * to search entire btree nodes and iterate over them in sorted order.
558c2ecf20Sopenharmony_ci *
568c2ecf20Sopenharmony_ci * The btree iterator code serves both functions; it iterates through the keys
578c2ecf20Sopenharmony_ci * in a btree node in sorted order, starting from either keys after a specific
588c2ecf20Sopenharmony_ci * point (if you pass it a search key) or the start of the btree node.
598c2ecf20Sopenharmony_ci *
608c2ecf20Sopenharmony_ci * AUXILIARY SEARCH TREES:
618c2ecf20Sopenharmony_ci *
628c2ecf20Sopenharmony_ci * Since keys are variable length, we can't use a binary search on a bset - we
638c2ecf20Sopenharmony_ci * wouldn't be able to find the start of the next key. But binary searches are
648c2ecf20Sopenharmony_ci * slow anyways, due to terrible cache behaviour; bcache originally used binary
658c2ecf20Sopenharmony_ci * searches and that code topped out at under 50k lookups/second.
668c2ecf20Sopenharmony_ci *
678c2ecf20Sopenharmony_ci * So we need to construct some sort of lookup table. Since we only insert keys
688c2ecf20Sopenharmony_ci * into the last (unwritten) set, most of the keys within a given btree node are
698c2ecf20Sopenharmony_ci * usually in sets that are mostly constant. We use two different types of
708c2ecf20Sopenharmony_ci * lookup tables to take advantage of this.
718c2ecf20Sopenharmony_ci *
728c2ecf20Sopenharmony_ci * Both lookup tables share in common that they don't index every key in the
738c2ecf20Sopenharmony_ci * set; they index one key every BSET_CACHELINE bytes, and then a linear search
748c2ecf20Sopenharmony_ci * is used for the rest.
758c2ecf20Sopenharmony_ci *
768c2ecf20Sopenharmony_ci * For sets that have been written to disk and are no longer being inserted
778c2ecf20Sopenharmony_ci * into, we construct a binary search tree in an array - traversing a binary
788c2ecf20Sopenharmony_ci * search tree in an array gives excellent locality of reference and is very
798c2ecf20Sopenharmony_ci * fast, since both children of any node are adjacent to each other in memory
808c2ecf20Sopenharmony_ci * (and their grandchildren, and great grandchildren...) - this means
818c2ecf20Sopenharmony_ci * prefetching can be used to great effect.
828c2ecf20Sopenharmony_ci *
838c2ecf20Sopenharmony_ci * It's quite useful performance wise to keep these nodes small - not just
848c2ecf20Sopenharmony_ci * because they're more likely to be in L2, but also because we can prefetch
858c2ecf20Sopenharmony_ci * more nodes on a single cacheline and thus prefetch more iterations in advance
868c2ecf20Sopenharmony_ci * when traversing this tree.
878c2ecf20Sopenharmony_ci *
888c2ecf20Sopenharmony_ci * Nodes in the auxiliary search tree must contain both a key to compare against
898c2ecf20Sopenharmony_ci * (we don't want to fetch the key from the set, that would defeat the purpose),
908c2ecf20Sopenharmony_ci * and a pointer to the key. We use a few tricks to compress both of these.
918c2ecf20Sopenharmony_ci *
928c2ecf20Sopenharmony_ci * To compress the pointer, we take advantage of the fact that one node in the
938c2ecf20Sopenharmony_ci * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
948c2ecf20Sopenharmony_ci * a function (to_inorder()) that takes the index of a node in a binary tree and
958c2ecf20Sopenharmony_ci * returns what its index would be in an inorder traversal, so we only have to
968c2ecf20Sopenharmony_ci * store the low bits of the offset.
978c2ecf20Sopenharmony_ci *
988c2ecf20Sopenharmony_ci * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
998c2ecf20Sopenharmony_ci * compress that,  we take advantage of the fact that when we're traversing the
1008c2ecf20Sopenharmony_ci * search tree at every iteration we know that both our search key and the key
1018c2ecf20Sopenharmony_ci * we're looking for lie within some range - bounded by our previous
1028c2ecf20Sopenharmony_ci * comparisons. (We special case the start of a search so that this is true even
1038c2ecf20Sopenharmony_ci * at the root of the tree).
1048c2ecf20Sopenharmony_ci *
1058c2ecf20Sopenharmony_ci * So we know the key we're looking for is between a and b, and a and b don't
1068c2ecf20Sopenharmony_ci * differ higher than bit 50, we don't need to check anything higher than bit
1078c2ecf20Sopenharmony_ci * 50.
1088c2ecf20Sopenharmony_ci *
1098c2ecf20Sopenharmony_ci * We don't usually need the rest of the bits, either; we only need enough bits
1108c2ecf20Sopenharmony_ci * to partition the key range we're currently checking.  Consider key n - the
1118c2ecf20Sopenharmony_ci * key our auxiliary search tree node corresponds to, and key p, the key
1128c2ecf20Sopenharmony_ci * immediately preceding n.  The lowest bit we need to store in the auxiliary
1138c2ecf20Sopenharmony_ci * search tree is the highest bit that differs between n and p.
1148c2ecf20Sopenharmony_ci *
1158c2ecf20Sopenharmony_ci * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
1168c2ecf20Sopenharmony_ci * comparison. But we'd really like our nodes in the auxiliary search tree to be
1178c2ecf20Sopenharmony_ci * of fixed size.
1188c2ecf20Sopenharmony_ci *
1198c2ecf20Sopenharmony_ci * The solution is to make them fixed size, and when we're constructing a node
1208c2ecf20Sopenharmony_ci * check if p and n differed in the bits we needed them to. If they don't we
1218c2ecf20Sopenharmony_ci * flag that node, and when doing lookups we fallback to comparing against the
1228c2ecf20Sopenharmony_ci * real key. As long as this doesn't happen to often (and it seems to reliably
1238c2ecf20Sopenharmony_ci * happen a bit less than 1% of the time), we win - even on failures, that key
1248c2ecf20Sopenharmony_ci * is then more likely to be in cache than if we were doing binary searches all
1258c2ecf20Sopenharmony_ci * the way, since we're touching so much less memory.
1268c2ecf20Sopenharmony_ci *
1278c2ecf20Sopenharmony_ci * The keys in the auxiliary search tree are stored in (software) floating
1288c2ecf20Sopenharmony_ci * point, with an exponent and a mantissa. The exponent needs to be big enough
1298c2ecf20Sopenharmony_ci * to address all the bits in the original key, but the number of bits in the
1308c2ecf20Sopenharmony_ci * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
1318c2ecf20Sopenharmony_ci *
1328c2ecf20Sopenharmony_ci * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
1338c2ecf20Sopenharmony_ci * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
1348c2ecf20Sopenharmony_ci * We need one node per 128 bytes in the btree node, which means the auxiliary
1358c2ecf20Sopenharmony_ci * search trees take up 3% as much memory as the btree itself.
1368c2ecf20Sopenharmony_ci *
1378c2ecf20Sopenharmony_ci * Constructing these auxiliary search trees is moderately expensive, and we
1388c2ecf20Sopenharmony_ci * don't want to be constantly rebuilding the search tree for the last set
1398c2ecf20Sopenharmony_ci * whenever we insert another key into it. For the unwritten set, we use a much
1408c2ecf20Sopenharmony_ci * simpler lookup table - it's just a flat array, so index i in the lookup table
1418c2ecf20Sopenharmony_ci * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
1428c2ecf20Sopenharmony_ci * within each byte range works the same as with the auxiliary search trees.
1438c2ecf20Sopenharmony_ci *
1448c2ecf20Sopenharmony_ci * These are much easier to keep up to date when we insert a key - we do it
1458c2ecf20Sopenharmony_ci * somewhat lazily; when we shift a key up we usually just increment the pointer
1468c2ecf20Sopenharmony_ci * to it, only when it would overflow do we go to the trouble of finding the
1478c2ecf20Sopenharmony_ci * first key in that range of bytes again.
1488c2ecf20Sopenharmony_ci */
1498c2ecf20Sopenharmony_ci
1508c2ecf20Sopenharmony_cistruct btree_keys;
1518c2ecf20Sopenharmony_cistruct btree_iter;
1528c2ecf20Sopenharmony_cistruct btree_iter_set;
1538c2ecf20Sopenharmony_cistruct bkey_float;
1548c2ecf20Sopenharmony_ci
1558c2ecf20Sopenharmony_ci#define MAX_BSETS		4U
1568c2ecf20Sopenharmony_ci
1578c2ecf20Sopenharmony_cistruct bset_tree {
1588c2ecf20Sopenharmony_ci	/*
1598c2ecf20Sopenharmony_ci	 * We construct a binary tree in an array as if the array
1608c2ecf20Sopenharmony_ci	 * started at 1, so that things line up on the same cachelines
1618c2ecf20Sopenharmony_ci	 * better: see comments in bset.c at cacheline_to_bkey() for
1628c2ecf20Sopenharmony_ci	 * details
1638c2ecf20Sopenharmony_ci	 */
1648c2ecf20Sopenharmony_ci
1658c2ecf20Sopenharmony_ci	/* size of the binary tree and prev array */
1668c2ecf20Sopenharmony_ci	unsigned int		size;
1678c2ecf20Sopenharmony_ci
1688c2ecf20Sopenharmony_ci	/* function of size - precalculated for to_inorder() */
1698c2ecf20Sopenharmony_ci	unsigned int		extra;
1708c2ecf20Sopenharmony_ci
1718c2ecf20Sopenharmony_ci	/* copy of the last key in the set */
1728c2ecf20Sopenharmony_ci	struct bkey		end;
1738c2ecf20Sopenharmony_ci	struct bkey_float	*tree;
1748c2ecf20Sopenharmony_ci
1758c2ecf20Sopenharmony_ci	/*
1768c2ecf20Sopenharmony_ci	 * The nodes in the bset tree point to specific keys - this
1778c2ecf20Sopenharmony_ci	 * array holds the sizes of the previous key.
1788c2ecf20Sopenharmony_ci	 *
1798c2ecf20Sopenharmony_ci	 * Conceptually it's a member of struct bkey_float, but we want
1808c2ecf20Sopenharmony_ci	 * to keep bkey_float to 4 bytes and prev isn't used in the fast
1818c2ecf20Sopenharmony_ci	 * path.
1828c2ecf20Sopenharmony_ci	 */
1838c2ecf20Sopenharmony_ci	uint8_t			*prev;
1848c2ecf20Sopenharmony_ci
1858c2ecf20Sopenharmony_ci	/* The actual btree node, with pointers to each sorted set */
1868c2ecf20Sopenharmony_ci	struct bset		*data;
1878c2ecf20Sopenharmony_ci};
1888c2ecf20Sopenharmony_ci
1898c2ecf20Sopenharmony_cistruct btree_keys_ops {
1908c2ecf20Sopenharmony_ci	bool		(*sort_cmp)(struct btree_iter_set l,
1918c2ecf20Sopenharmony_ci				    struct btree_iter_set r);
1928c2ecf20Sopenharmony_ci	struct bkey	*(*sort_fixup)(struct btree_iter *iter,
1938c2ecf20Sopenharmony_ci				       struct bkey *tmp);
1948c2ecf20Sopenharmony_ci	bool		(*insert_fixup)(struct btree_keys *b,
1958c2ecf20Sopenharmony_ci					struct bkey *insert,
1968c2ecf20Sopenharmony_ci					struct btree_iter *iter,
1978c2ecf20Sopenharmony_ci					struct bkey *replace_key);
1988c2ecf20Sopenharmony_ci	bool		(*key_invalid)(struct btree_keys *bk,
1998c2ecf20Sopenharmony_ci				       const struct bkey *k);
2008c2ecf20Sopenharmony_ci	bool		(*key_bad)(struct btree_keys *bk,
2018c2ecf20Sopenharmony_ci				   const struct bkey *k);
2028c2ecf20Sopenharmony_ci	bool		(*key_merge)(struct btree_keys *bk,
2038c2ecf20Sopenharmony_ci				     struct bkey *l, struct bkey *r);
2048c2ecf20Sopenharmony_ci	void		(*key_to_text)(char *buf,
2058c2ecf20Sopenharmony_ci				       size_t size,
2068c2ecf20Sopenharmony_ci				       const struct bkey *k);
2078c2ecf20Sopenharmony_ci	void		(*key_dump)(struct btree_keys *keys,
2088c2ecf20Sopenharmony_ci				    const struct bkey *k);
2098c2ecf20Sopenharmony_ci
2108c2ecf20Sopenharmony_ci	/*
2118c2ecf20Sopenharmony_ci	 * Only used for deciding whether to use START_KEY(k) or just the key
2128c2ecf20Sopenharmony_ci	 * itself in a couple places
2138c2ecf20Sopenharmony_ci	 */
2148c2ecf20Sopenharmony_ci	bool		is_extents;
2158c2ecf20Sopenharmony_ci};
2168c2ecf20Sopenharmony_ci
2178c2ecf20Sopenharmony_cistruct btree_keys {
2188c2ecf20Sopenharmony_ci	const struct btree_keys_ops	*ops;
2198c2ecf20Sopenharmony_ci	uint8_t			page_order;
2208c2ecf20Sopenharmony_ci	uint8_t			nsets;
2218c2ecf20Sopenharmony_ci	unsigned int		last_set_unwritten:1;
2228c2ecf20Sopenharmony_ci	bool			*expensive_debug_checks;
2238c2ecf20Sopenharmony_ci
2248c2ecf20Sopenharmony_ci	/*
2258c2ecf20Sopenharmony_ci	 * Sets of sorted keys - the real btree node - plus a binary search tree
2268c2ecf20Sopenharmony_ci	 *
2278c2ecf20Sopenharmony_ci	 * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
2288c2ecf20Sopenharmony_ci	 * to the memory we have allocated for this btree node. Additionally,
2298c2ecf20Sopenharmony_ci	 * set[0]->data points to the entire btree node as it exists on disk.
2308c2ecf20Sopenharmony_ci	 */
2318c2ecf20Sopenharmony_ci	struct bset_tree	set[MAX_BSETS];
2328c2ecf20Sopenharmony_ci};
2338c2ecf20Sopenharmony_ci
2348c2ecf20Sopenharmony_cistatic inline struct bset_tree *bset_tree_last(struct btree_keys *b)
2358c2ecf20Sopenharmony_ci{
2368c2ecf20Sopenharmony_ci	return b->set + b->nsets;
2378c2ecf20Sopenharmony_ci}
2388c2ecf20Sopenharmony_ci
2398c2ecf20Sopenharmony_cistatic inline bool bset_written(struct btree_keys *b, struct bset_tree *t)
2408c2ecf20Sopenharmony_ci{
2418c2ecf20Sopenharmony_ci	return t <= b->set + b->nsets - b->last_set_unwritten;
2428c2ecf20Sopenharmony_ci}
2438c2ecf20Sopenharmony_ci
2448c2ecf20Sopenharmony_cistatic inline bool bkey_written(struct btree_keys *b, struct bkey *k)
2458c2ecf20Sopenharmony_ci{
2468c2ecf20Sopenharmony_ci	return !b->last_set_unwritten || k < b->set[b->nsets].data->start;
2478c2ecf20Sopenharmony_ci}
2488c2ecf20Sopenharmony_ci
2498c2ecf20Sopenharmony_cistatic inline unsigned int bset_byte_offset(struct btree_keys *b,
2508c2ecf20Sopenharmony_ci					    struct bset *i)
2518c2ecf20Sopenharmony_ci{
2528c2ecf20Sopenharmony_ci	return ((size_t) i) - ((size_t) b->set->data);
2538c2ecf20Sopenharmony_ci}
2548c2ecf20Sopenharmony_ci
2558c2ecf20Sopenharmony_cistatic inline unsigned int bset_sector_offset(struct btree_keys *b,
2568c2ecf20Sopenharmony_ci					      struct bset *i)
2578c2ecf20Sopenharmony_ci{
2588c2ecf20Sopenharmony_ci	return bset_byte_offset(b, i) >> 9;
2598c2ecf20Sopenharmony_ci}
2608c2ecf20Sopenharmony_ci
2618c2ecf20Sopenharmony_ci#define __set_bytes(i, k)	(sizeof(*(i)) + (k) * sizeof(uint64_t))
2628c2ecf20Sopenharmony_ci#define set_bytes(i)		__set_bytes(i, i->keys)
2638c2ecf20Sopenharmony_ci
2648c2ecf20Sopenharmony_ci#define __set_blocks(i, k, block_bytes)				\
2658c2ecf20Sopenharmony_ci	DIV_ROUND_UP(__set_bytes(i, k), block_bytes)
2668c2ecf20Sopenharmony_ci#define set_blocks(i, block_bytes)				\
2678c2ecf20Sopenharmony_ci	__set_blocks(i, (i)->keys, block_bytes)
2688c2ecf20Sopenharmony_ci
2698c2ecf20Sopenharmony_cistatic inline size_t bch_btree_keys_u64s_remaining(struct btree_keys *b)
2708c2ecf20Sopenharmony_ci{
2718c2ecf20Sopenharmony_ci	struct bset_tree *t = bset_tree_last(b);
2728c2ecf20Sopenharmony_ci
2738c2ecf20Sopenharmony_ci	BUG_ON((PAGE_SIZE << b->page_order) <
2748c2ecf20Sopenharmony_ci	       (bset_byte_offset(b, t->data) + set_bytes(t->data)));
2758c2ecf20Sopenharmony_ci
2768c2ecf20Sopenharmony_ci	if (!b->last_set_unwritten)
2778c2ecf20Sopenharmony_ci		return 0;
2788c2ecf20Sopenharmony_ci
2798c2ecf20Sopenharmony_ci	return ((PAGE_SIZE << b->page_order) -
2808c2ecf20Sopenharmony_ci		(bset_byte_offset(b, t->data) + set_bytes(t->data))) /
2818c2ecf20Sopenharmony_ci		sizeof(u64);
2828c2ecf20Sopenharmony_ci}
2838c2ecf20Sopenharmony_ci
2848c2ecf20Sopenharmony_cistatic inline struct bset *bset_next_set(struct btree_keys *b,
2858c2ecf20Sopenharmony_ci					 unsigned int block_bytes)
2868c2ecf20Sopenharmony_ci{
2878c2ecf20Sopenharmony_ci	struct bset *i = bset_tree_last(b)->data;
2888c2ecf20Sopenharmony_ci
2898c2ecf20Sopenharmony_ci	return ((void *) i) + roundup(set_bytes(i), block_bytes);
2908c2ecf20Sopenharmony_ci}
2918c2ecf20Sopenharmony_ci
2928c2ecf20Sopenharmony_civoid bch_btree_keys_free(struct btree_keys *b);
2938c2ecf20Sopenharmony_ciint bch_btree_keys_alloc(struct btree_keys *b, unsigned int page_order,
2948c2ecf20Sopenharmony_ci			 gfp_t gfp);
2958c2ecf20Sopenharmony_civoid bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
2968c2ecf20Sopenharmony_ci			 bool *expensive_debug_checks);
2978c2ecf20Sopenharmony_ci
2988c2ecf20Sopenharmony_civoid bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic);
2998c2ecf20Sopenharmony_civoid bch_bset_build_written_tree(struct btree_keys *b);
3008c2ecf20Sopenharmony_civoid bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k);
3018c2ecf20Sopenharmony_cibool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r);
3028c2ecf20Sopenharmony_civoid bch_bset_insert(struct btree_keys *b, struct bkey *where,
3038c2ecf20Sopenharmony_ci		     struct bkey *insert);
3048c2ecf20Sopenharmony_ciunsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
3058c2ecf20Sopenharmony_ci			      struct bkey *replace_key);
3068c2ecf20Sopenharmony_ci
3078c2ecf20Sopenharmony_cienum {
3088c2ecf20Sopenharmony_ci	BTREE_INSERT_STATUS_NO_INSERT = 0,
3098c2ecf20Sopenharmony_ci	BTREE_INSERT_STATUS_INSERT,
3108c2ecf20Sopenharmony_ci	BTREE_INSERT_STATUS_BACK_MERGE,
3118c2ecf20Sopenharmony_ci	BTREE_INSERT_STATUS_OVERWROTE,
3128c2ecf20Sopenharmony_ci	BTREE_INSERT_STATUS_FRONT_MERGE,
3138c2ecf20Sopenharmony_ci};
3148c2ecf20Sopenharmony_ci
3158c2ecf20Sopenharmony_ci/* Btree key iteration */
3168c2ecf20Sopenharmony_ci
3178c2ecf20Sopenharmony_cistruct btree_iter {
3188c2ecf20Sopenharmony_ci	size_t size, used;
3198c2ecf20Sopenharmony_ci#ifdef CONFIG_BCACHE_DEBUG
3208c2ecf20Sopenharmony_ci	struct btree_keys *b;
3218c2ecf20Sopenharmony_ci#endif
3228c2ecf20Sopenharmony_ci	struct btree_iter_set {
3238c2ecf20Sopenharmony_ci		struct bkey *k, *end;
3248c2ecf20Sopenharmony_ci	} data[MAX_BSETS];
3258c2ecf20Sopenharmony_ci};
3268c2ecf20Sopenharmony_ci
3278c2ecf20Sopenharmony_citypedef bool (*ptr_filter_fn)(struct btree_keys *b, const struct bkey *k);
3288c2ecf20Sopenharmony_ci
3298c2ecf20Sopenharmony_cistruct bkey *bch_btree_iter_next(struct btree_iter *iter);
3308c2ecf20Sopenharmony_cistruct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
3318c2ecf20Sopenharmony_ci					struct btree_keys *b,
3328c2ecf20Sopenharmony_ci					ptr_filter_fn fn);
3338c2ecf20Sopenharmony_ci
3348c2ecf20Sopenharmony_civoid bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
3358c2ecf20Sopenharmony_ci			 struct bkey *end);
3368c2ecf20Sopenharmony_cistruct bkey *bch_btree_iter_init(struct btree_keys *b,
3378c2ecf20Sopenharmony_ci				 struct btree_iter *iter,
3388c2ecf20Sopenharmony_ci				 struct bkey *search);
3398c2ecf20Sopenharmony_ci
3408c2ecf20Sopenharmony_cistruct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
3418c2ecf20Sopenharmony_ci			       const struct bkey *search);
3428c2ecf20Sopenharmony_ci
3438c2ecf20Sopenharmony_ci/*
3448c2ecf20Sopenharmony_ci * Returns the first key that is strictly greater than search
3458c2ecf20Sopenharmony_ci */
3468c2ecf20Sopenharmony_cistatic inline struct bkey *bch_bset_search(struct btree_keys *b,
3478c2ecf20Sopenharmony_ci					   struct bset_tree *t,
3488c2ecf20Sopenharmony_ci					   const struct bkey *search)
3498c2ecf20Sopenharmony_ci{
3508c2ecf20Sopenharmony_ci	return search ? __bch_bset_search(b, t, search) : t->data->start;
3518c2ecf20Sopenharmony_ci}
3528c2ecf20Sopenharmony_ci
3538c2ecf20Sopenharmony_ci#define for_each_key_filter(b, k, iter, filter)				\
3548c2ecf20Sopenharmony_ci	for (bch_btree_iter_init((b), (iter), NULL);			\
3558c2ecf20Sopenharmony_ci	     ((k) = bch_btree_iter_next_filter((iter), (b), filter));)
3568c2ecf20Sopenharmony_ci
3578c2ecf20Sopenharmony_ci#define for_each_key(b, k, iter)					\
3588c2ecf20Sopenharmony_ci	for (bch_btree_iter_init((b), (iter), NULL);			\
3598c2ecf20Sopenharmony_ci	     ((k) = bch_btree_iter_next(iter));)
3608c2ecf20Sopenharmony_ci
3618c2ecf20Sopenharmony_ci/* Sorting */
3628c2ecf20Sopenharmony_ci
3638c2ecf20Sopenharmony_cistruct bset_sort_state {
3648c2ecf20Sopenharmony_ci	mempool_t		pool;
3658c2ecf20Sopenharmony_ci
3668c2ecf20Sopenharmony_ci	unsigned int		page_order;
3678c2ecf20Sopenharmony_ci	unsigned int		crit_factor;
3688c2ecf20Sopenharmony_ci
3698c2ecf20Sopenharmony_ci	struct time_stats	time;
3708c2ecf20Sopenharmony_ci};
3718c2ecf20Sopenharmony_ci
3728c2ecf20Sopenharmony_civoid bch_bset_sort_state_free(struct bset_sort_state *state);
3738c2ecf20Sopenharmony_ciint bch_bset_sort_state_init(struct bset_sort_state *state,
3748c2ecf20Sopenharmony_ci			     unsigned int page_order);
3758c2ecf20Sopenharmony_civoid bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state);
3768c2ecf20Sopenharmony_civoid bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
3778c2ecf20Sopenharmony_ci			 struct bset_sort_state *state);
3788c2ecf20Sopenharmony_civoid bch_btree_sort_and_fix_extents(struct btree_keys *b,
3798c2ecf20Sopenharmony_ci				    struct btree_iter *iter,
3808c2ecf20Sopenharmony_ci				    struct bset_sort_state *state);
3818c2ecf20Sopenharmony_civoid bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
3828c2ecf20Sopenharmony_ci			    struct bset_sort_state *state);
3838c2ecf20Sopenharmony_ci
3848c2ecf20Sopenharmony_cistatic inline void bch_btree_sort(struct btree_keys *b,
3858c2ecf20Sopenharmony_ci				  struct bset_sort_state *state)
3868c2ecf20Sopenharmony_ci{
3878c2ecf20Sopenharmony_ci	bch_btree_sort_partial(b, 0, state);
3888c2ecf20Sopenharmony_ci}
3898c2ecf20Sopenharmony_ci
3908c2ecf20Sopenharmony_cistruct bset_stats {
3918c2ecf20Sopenharmony_ci	size_t sets_written, sets_unwritten;
3928c2ecf20Sopenharmony_ci	size_t bytes_written, bytes_unwritten;
3938c2ecf20Sopenharmony_ci	size_t floats, failed;
3948c2ecf20Sopenharmony_ci};
3958c2ecf20Sopenharmony_ci
3968c2ecf20Sopenharmony_civoid bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *state);
3978c2ecf20Sopenharmony_ci
3988c2ecf20Sopenharmony_ci/* Bkey utility code */
3998c2ecf20Sopenharmony_ci
4008c2ecf20Sopenharmony_ci#define bset_bkey_last(i)	bkey_idx((struct bkey *) (i)->d, \
4018c2ecf20Sopenharmony_ci					 (unsigned int)(i)->keys)
4028c2ecf20Sopenharmony_ci
4038c2ecf20Sopenharmony_cistatic inline struct bkey *bset_bkey_idx(struct bset *i, unsigned int idx)
4048c2ecf20Sopenharmony_ci{
4058c2ecf20Sopenharmony_ci	return bkey_idx(i->start, idx);
4068c2ecf20Sopenharmony_ci}
4078c2ecf20Sopenharmony_ci
4088c2ecf20Sopenharmony_cistatic inline void bkey_init(struct bkey *k)
4098c2ecf20Sopenharmony_ci{
4108c2ecf20Sopenharmony_ci	*k = ZERO_KEY;
4118c2ecf20Sopenharmony_ci}
4128c2ecf20Sopenharmony_ci
4138c2ecf20Sopenharmony_cistatic __always_inline int64_t bkey_cmp(const struct bkey *l,
4148c2ecf20Sopenharmony_ci					const struct bkey *r)
4158c2ecf20Sopenharmony_ci{
4168c2ecf20Sopenharmony_ci	return unlikely(KEY_INODE(l) != KEY_INODE(r))
4178c2ecf20Sopenharmony_ci		? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r)
4188c2ecf20Sopenharmony_ci		: (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r);
4198c2ecf20Sopenharmony_ci}
4208c2ecf20Sopenharmony_ci
4218c2ecf20Sopenharmony_civoid bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
4228c2ecf20Sopenharmony_ci			      unsigned int i);
4238c2ecf20Sopenharmony_cibool __bch_cut_front(const struct bkey *where, struct bkey *k);
4248c2ecf20Sopenharmony_cibool __bch_cut_back(const struct bkey *where, struct bkey *k);
4258c2ecf20Sopenharmony_ci
4268c2ecf20Sopenharmony_cistatic inline bool bch_cut_front(const struct bkey *where, struct bkey *k)
4278c2ecf20Sopenharmony_ci{
4288c2ecf20Sopenharmony_ci	BUG_ON(bkey_cmp(where, k) > 0);
4298c2ecf20Sopenharmony_ci	return __bch_cut_front(where, k);
4308c2ecf20Sopenharmony_ci}
4318c2ecf20Sopenharmony_ci
4328c2ecf20Sopenharmony_cistatic inline bool bch_cut_back(const struct bkey *where, struct bkey *k)
4338c2ecf20Sopenharmony_ci{
4348c2ecf20Sopenharmony_ci	BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0);
4358c2ecf20Sopenharmony_ci	return __bch_cut_back(where, k);
4368c2ecf20Sopenharmony_ci}
4378c2ecf20Sopenharmony_ci
4388c2ecf20Sopenharmony_ci/*
4398c2ecf20Sopenharmony_ci * Pointer '*preceding_key_p' points to a memory object to store preceding
4408c2ecf20Sopenharmony_ci * key of k. If the preceding key does not exist, set '*preceding_key_p' to
4418c2ecf20Sopenharmony_ci * NULL. So the caller of preceding_key() needs to take care of memory
4428c2ecf20Sopenharmony_ci * which '*preceding_key_p' pointed to before calling preceding_key().
4438c2ecf20Sopenharmony_ci * Currently the only caller of preceding_key() is bch_btree_insert_key(),
4448c2ecf20Sopenharmony_ci * and it points to an on-stack variable, so the memory release is handled
4458c2ecf20Sopenharmony_ci * by stackframe itself.
4468c2ecf20Sopenharmony_ci */
4478c2ecf20Sopenharmony_cistatic inline void preceding_key(struct bkey *k, struct bkey **preceding_key_p)
4488c2ecf20Sopenharmony_ci{
4498c2ecf20Sopenharmony_ci	if (KEY_INODE(k) || KEY_OFFSET(k)) {
4508c2ecf20Sopenharmony_ci		(**preceding_key_p) = KEY(KEY_INODE(k), KEY_OFFSET(k), 0);
4518c2ecf20Sopenharmony_ci		if (!(*preceding_key_p)->low)
4528c2ecf20Sopenharmony_ci			(*preceding_key_p)->high--;
4538c2ecf20Sopenharmony_ci		(*preceding_key_p)->low--;
4548c2ecf20Sopenharmony_ci	} else {
4558c2ecf20Sopenharmony_ci		(*preceding_key_p) = NULL;
4568c2ecf20Sopenharmony_ci	}
4578c2ecf20Sopenharmony_ci}
4588c2ecf20Sopenharmony_ci
4598c2ecf20Sopenharmony_cistatic inline bool bch_ptr_invalid(struct btree_keys *b, const struct bkey *k)
4608c2ecf20Sopenharmony_ci{
4618c2ecf20Sopenharmony_ci	return b->ops->key_invalid(b, k);
4628c2ecf20Sopenharmony_ci}
4638c2ecf20Sopenharmony_ci
4648c2ecf20Sopenharmony_cistatic inline bool bch_ptr_bad(struct btree_keys *b, const struct bkey *k)
4658c2ecf20Sopenharmony_ci{
4668c2ecf20Sopenharmony_ci	return b->ops->key_bad(b, k);
4678c2ecf20Sopenharmony_ci}
4688c2ecf20Sopenharmony_ci
4698c2ecf20Sopenharmony_cistatic inline void bch_bkey_to_text(struct btree_keys *b, char *buf,
4708c2ecf20Sopenharmony_ci				    size_t size, const struct bkey *k)
4718c2ecf20Sopenharmony_ci{
4728c2ecf20Sopenharmony_ci	return b->ops->key_to_text(buf, size, k);
4738c2ecf20Sopenharmony_ci}
4748c2ecf20Sopenharmony_ci
4758c2ecf20Sopenharmony_cistatic inline bool bch_bkey_equal_header(const struct bkey *l,
4768c2ecf20Sopenharmony_ci					 const struct bkey *r)
4778c2ecf20Sopenharmony_ci{
4788c2ecf20Sopenharmony_ci	return (KEY_DIRTY(l) == KEY_DIRTY(r) &&
4798c2ecf20Sopenharmony_ci		KEY_PTRS(l) == KEY_PTRS(r) &&
4808c2ecf20Sopenharmony_ci		KEY_CSUM(l) == KEY_CSUM(r));
4818c2ecf20Sopenharmony_ci}
4828c2ecf20Sopenharmony_ci
4838c2ecf20Sopenharmony_ci/* Keylists */
4848c2ecf20Sopenharmony_ci
4858c2ecf20Sopenharmony_cistruct keylist {
4868c2ecf20Sopenharmony_ci	union {
4878c2ecf20Sopenharmony_ci		struct bkey		*keys;
4888c2ecf20Sopenharmony_ci		uint64_t		*keys_p;
4898c2ecf20Sopenharmony_ci	};
4908c2ecf20Sopenharmony_ci	union {
4918c2ecf20Sopenharmony_ci		struct bkey		*top;
4928c2ecf20Sopenharmony_ci		uint64_t		*top_p;
4938c2ecf20Sopenharmony_ci	};
4948c2ecf20Sopenharmony_ci
4958c2ecf20Sopenharmony_ci	/* Enough room for btree_split's keys without realloc */
4968c2ecf20Sopenharmony_ci#define KEYLIST_INLINE		16
4978c2ecf20Sopenharmony_ci	uint64_t		inline_keys[KEYLIST_INLINE];
4988c2ecf20Sopenharmony_ci};
4998c2ecf20Sopenharmony_ci
5008c2ecf20Sopenharmony_cistatic inline void bch_keylist_init(struct keylist *l)
5018c2ecf20Sopenharmony_ci{
5028c2ecf20Sopenharmony_ci	l->top_p = l->keys_p = l->inline_keys;
5038c2ecf20Sopenharmony_ci}
5048c2ecf20Sopenharmony_ci
5058c2ecf20Sopenharmony_cistatic inline void bch_keylist_init_single(struct keylist *l, struct bkey *k)
5068c2ecf20Sopenharmony_ci{
5078c2ecf20Sopenharmony_ci	l->keys = k;
5088c2ecf20Sopenharmony_ci	l->top = bkey_next(k);
5098c2ecf20Sopenharmony_ci}
5108c2ecf20Sopenharmony_ci
5118c2ecf20Sopenharmony_cistatic inline void bch_keylist_push(struct keylist *l)
5128c2ecf20Sopenharmony_ci{
5138c2ecf20Sopenharmony_ci	l->top = bkey_next(l->top);
5148c2ecf20Sopenharmony_ci}
5158c2ecf20Sopenharmony_ci
5168c2ecf20Sopenharmony_cistatic inline void bch_keylist_add(struct keylist *l, struct bkey *k)
5178c2ecf20Sopenharmony_ci{
5188c2ecf20Sopenharmony_ci	bkey_copy(l->top, k);
5198c2ecf20Sopenharmony_ci	bch_keylist_push(l);
5208c2ecf20Sopenharmony_ci}
5218c2ecf20Sopenharmony_ci
5228c2ecf20Sopenharmony_cistatic inline bool bch_keylist_empty(struct keylist *l)
5238c2ecf20Sopenharmony_ci{
5248c2ecf20Sopenharmony_ci	return l->top == l->keys;
5258c2ecf20Sopenharmony_ci}
5268c2ecf20Sopenharmony_ci
5278c2ecf20Sopenharmony_cistatic inline void bch_keylist_reset(struct keylist *l)
5288c2ecf20Sopenharmony_ci{
5298c2ecf20Sopenharmony_ci	l->top = l->keys;
5308c2ecf20Sopenharmony_ci}
5318c2ecf20Sopenharmony_ci
5328c2ecf20Sopenharmony_cistatic inline void bch_keylist_free(struct keylist *l)
5338c2ecf20Sopenharmony_ci{
5348c2ecf20Sopenharmony_ci	if (l->keys_p != l->inline_keys)
5358c2ecf20Sopenharmony_ci		kfree(l->keys_p);
5368c2ecf20Sopenharmony_ci}
5378c2ecf20Sopenharmony_ci
5388c2ecf20Sopenharmony_cistatic inline size_t bch_keylist_nkeys(struct keylist *l)
5398c2ecf20Sopenharmony_ci{
5408c2ecf20Sopenharmony_ci	return l->top_p - l->keys_p;
5418c2ecf20Sopenharmony_ci}
5428c2ecf20Sopenharmony_ci
5438c2ecf20Sopenharmony_cistatic inline size_t bch_keylist_bytes(struct keylist *l)
5448c2ecf20Sopenharmony_ci{
5458c2ecf20Sopenharmony_ci	return bch_keylist_nkeys(l) * sizeof(uint64_t);
5468c2ecf20Sopenharmony_ci}
5478c2ecf20Sopenharmony_ci
5488c2ecf20Sopenharmony_cistruct bkey *bch_keylist_pop(struct keylist *l);
5498c2ecf20Sopenharmony_civoid bch_keylist_pop_front(struct keylist *l);
5508c2ecf20Sopenharmony_ciint __bch_keylist_realloc(struct keylist *l, unsigned int u64s);
5518c2ecf20Sopenharmony_ci
5528c2ecf20Sopenharmony_ci/* Debug stuff */
5538c2ecf20Sopenharmony_ci
5548c2ecf20Sopenharmony_ci#ifdef CONFIG_BCACHE_DEBUG
5558c2ecf20Sopenharmony_ci
5568c2ecf20Sopenharmony_ciint __bch_count_data(struct btree_keys *b);
5578c2ecf20Sopenharmony_civoid __printf(2, 3) __bch_check_keys(struct btree_keys *b,
5588c2ecf20Sopenharmony_ci				     const char *fmt,
5598c2ecf20Sopenharmony_ci				     ...);
5608c2ecf20Sopenharmony_civoid bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set);
5618c2ecf20Sopenharmony_civoid bch_dump_bucket(struct btree_keys *b);
5628c2ecf20Sopenharmony_ci
5638c2ecf20Sopenharmony_ci#else
5648c2ecf20Sopenharmony_ci
5658c2ecf20Sopenharmony_cistatic inline int __bch_count_data(struct btree_keys *b) { return -1; }
5668c2ecf20Sopenharmony_cistatic inline void __printf(2, 3)
5678c2ecf20Sopenharmony_ci	__bch_check_keys(struct btree_keys *b, const char *fmt, ...) {}
5688c2ecf20Sopenharmony_cistatic inline void bch_dump_bucket(struct btree_keys *b) {}
5698c2ecf20Sopenharmony_civoid bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set);
5708c2ecf20Sopenharmony_ci
5718c2ecf20Sopenharmony_ci#endif
5728c2ecf20Sopenharmony_ci
5738c2ecf20Sopenharmony_cistatic inline bool btree_keys_expensive_checks(struct btree_keys *b)
5748c2ecf20Sopenharmony_ci{
5758c2ecf20Sopenharmony_ci#ifdef CONFIG_BCACHE_DEBUG
5768c2ecf20Sopenharmony_ci	return *b->expensive_debug_checks;
5778c2ecf20Sopenharmony_ci#else
5788c2ecf20Sopenharmony_ci	return false;
5798c2ecf20Sopenharmony_ci#endif
5808c2ecf20Sopenharmony_ci}
5818c2ecf20Sopenharmony_ci
5828c2ecf20Sopenharmony_cistatic inline int bch_count_data(struct btree_keys *b)
5838c2ecf20Sopenharmony_ci{
5848c2ecf20Sopenharmony_ci	return btree_keys_expensive_checks(b) ? __bch_count_data(b) : -1;
5858c2ecf20Sopenharmony_ci}
5868c2ecf20Sopenharmony_ci
5878c2ecf20Sopenharmony_ci#define bch_check_keys(b, ...)						\
5888c2ecf20Sopenharmony_cido {									\
5898c2ecf20Sopenharmony_ci	if (btree_keys_expensive_checks(b))				\
5908c2ecf20Sopenharmony_ci		__bch_check_keys(b, __VA_ARGS__);			\
5918c2ecf20Sopenharmony_ci} while (0)
5928c2ecf20Sopenharmony_ci
5938c2ecf20Sopenharmony_ci#endif
594