xref: /kernel/linux/linux-5.10/drivers/md/bcache/bset.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Code for working with individual keys, and sorted sets of keys with in a
4 * btree node
5 *
6 * Copyright 2012 Google, Inc.
7 */
8
9#define pr_fmt(fmt) "bcache: %s() " fmt, __func__
10
11#include "util.h"
12#include "bset.h"
13
14#include <linux/console.h>
15#include <linux/sched/clock.h>
16#include <linux/random.h>
17#include <linux/prefetch.h>
18
19#ifdef CONFIG_BCACHE_DEBUG
20
21void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
22{
23	struct bkey *k, *next;
24
25	for (k = i->start; k < bset_bkey_last(i); k = next) {
26		next = bkey_next(k);
27
28		pr_err("block %u key %u/%u: ", set,
29		       (unsigned int) ((u64 *) k - i->d), i->keys);
30
31		if (b->ops->key_dump)
32			b->ops->key_dump(b, k);
33		else
34			pr_cont("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
35
36		if (next < bset_bkey_last(i) &&
37		    bkey_cmp(k, b->ops->is_extents ?
38			     &START_KEY(next) : next) > 0)
39			pr_err("Key skipped backwards\n");
40	}
41}
42
43void bch_dump_bucket(struct btree_keys *b)
44{
45	unsigned int i;
46
47	console_lock();
48	for (i = 0; i <= b->nsets; i++)
49		bch_dump_bset(b, b->set[i].data,
50			      bset_sector_offset(b, b->set[i].data));
51	console_unlock();
52}
53
54int __bch_count_data(struct btree_keys *b)
55{
56	unsigned int ret = 0;
57	struct btree_iter iter;
58	struct bkey *k;
59
60	if (b->ops->is_extents)
61		for_each_key(b, k, &iter)
62			ret += KEY_SIZE(k);
63	return ret;
64}
65
66void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
67{
68	va_list args;
69	struct bkey *k, *p = NULL;
70	struct btree_iter iter;
71	const char *err;
72
73	for_each_key(b, k, &iter) {
74		if (b->ops->is_extents) {
75			err = "Keys out of order";
76			if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
77				goto bug;
78
79			if (bch_ptr_invalid(b, k))
80				continue;
81
82			err =  "Overlapping keys";
83			if (p && bkey_cmp(p, &START_KEY(k)) > 0)
84				goto bug;
85		} else {
86			if (bch_ptr_bad(b, k))
87				continue;
88
89			err = "Duplicate keys";
90			if (p && !bkey_cmp(p, k))
91				goto bug;
92		}
93		p = k;
94	}
95#if 0
96	err = "Key larger than btree node key";
97	if (p && bkey_cmp(p, &b->key) > 0)
98		goto bug;
99#endif
100	return;
101bug:
102	bch_dump_bucket(b);
103
104	va_start(args, fmt);
105	vprintk(fmt, args);
106	va_end(args);
107
108	panic("bch_check_keys error:  %s:\n", err);
109}
110
111static void bch_btree_iter_next_check(struct btree_iter *iter)
112{
113	struct bkey *k = iter->data->k, *next = bkey_next(k);
114
115	if (next < iter->data->end &&
116	    bkey_cmp(k, iter->b->ops->is_extents ?
117		     &START_KEY(next) : next) > 0) {
118		bch_dump_bucket(iter->b);
119		panic("Key skipped backwards\n");
120	}
121}
122
123#else
124
125static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
126
127#endif
128
129/* Keylists */
130
131int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
132{
133	size_t oldsize = bch_keylist_nkeys(l);
134	size_t newsize = oldsize + u64s;
135	uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
136	uint64_t *new_keys;
137
138	newsize = roundup_pow_of_two(newsize);
139
140	if (newsize <= KEYLIST_INLINE ||
141	    roundup_pow_of_two(oldsize) == newsize)
142		return 0;
143
144	new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
145
146	if (!new_keys)
147		return -ENOMEM;
148
149	if (!old_keys)
150		memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
151
152	l->keys_p = new_keys;
153	l->top_p = new_keys + oldsize;
154
155	return 0;
156}
157
158/* Pop the top key of keylist by pointing l->top to its previous key */
159struct bkey *bch_keylist_pop(struct keylist *l)
160{
161	struct bkey *k = l->keys;
162
163	if (k == l->top)
164		return NULL;
165
166	while (bkey_next(k) != l->top)
167		k = bkey_next(k);
168
169	return l->top = k;
170}
171
172/* Pop the bottom key of keylist and update l->top_p */
173void bch_keylist_pop_front(struct keylist *l)
174{
175	l->top_p -= bkey_u64s(l->keys);
176
177	memmove(l->keys,
178		bkey_next(l->keys),
179		bch_keylist_bytes(l));
180}
181
182/* Key/pointer manipulation */
183
184void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
185			      unsigned int i)
186{
187	BUG_ON(i > KEY_PTRS(src));
188
189	/* Only copy the header, key, and one pointer. */
190	memcpy(dest, src, 2 * sizeof(uint64_t));
191	dest->ptr[0] = src->ptr[i];
192	SET_KEY_PTRS(dest, 1);
193	/* We didn't copy the checksum so clear that bit. */
194	SET_KEY_CSUM(dest, 0);
195}
196
197bool __bch_cut_front(const struct bkey *where, struct bkey *k)
198{
199	unsigned int i, len = 0;
200
201	if (bkey_cmp(where, &START_KEY(k)) <= 0)
202		return false;
203
204	if (bkey_cmp(where, k) < 0)
205		len = KEY_OFFSET(k) - KEY_OFFSET(where);
206	else
207		bkey_copy_key(k, where);
208
209	for (i = 0; i < KEY_PTRS(k); i++)
210		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
211
212	BUG_ON(len > KEY_SIZE(k));
213	SET_KEY_SIZE(k, len);
214	return true;
215}
216
217bool __bch_cut_back(const struct bkey *where, struct bkey *k)
218{
219	unsigned int len = 0;
220
221	if (bkey_cmp(where, k) >= 0)
222		return false;
223
224	BUG_ON(KEY_INODE(where) != KEY_INODE(k));
225
226	if (bkey_cmp(where, &START_KEY(k)) > 0)
227		len = KEY_OFFSET(where) - KEY_START(k);
228
229	bkey_copy_key(k, where);
230
231	BUG_ON(len > KEY_SIZE(k));
232	SET_KEY_SIZE(k, len);
233	return true;
234}
235
236/* Auxiliary search trees */
237
238/* 32 bits total: */
239#define BKEY_MID_BITS		3
240#define BKEY_EXPONENT_BITS	7
241#define BKEY_MANTISSA_BITS	(32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
242#define BKEY_MANTISSA_MASK	((1 << BKEY_MANTISSA_BITS) - 1)
243
244struct bkey_float {
245	unsigned int	exponent:BKEY_EXPONENT_BITS;
246	unsigned int	m:BKEY_MID_BITS;
247	unsigned int	mantissa:BKEY_MANTISSA_BITS;
248} __packed;
249
250/*
251 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
252 * it used to be 64, but I realized the lookup code would touch slightly less
253 * memory if it was 128.
254 *
255 * It definites the number of bytes (in struct bset) per struct bkey_float in
256 * the auxiliar search tree - when we're done searching the bset_float tree we
257 * have this many bytes left that we do a linear search over.
258 *
259 * Since (after level 5) every level of the bset_tree is on a new cacheline,
260 * we're touching one fewer cacheline in the bset tree in exchange for one more
261 * cacheline in the linear search - but the linear search might stop before it
262 * gets to the second cacheline.
263 */
264
265#define BSET_CACHELINE		128
266
267/* Space required for the btree node keys */
268static inline size_t btree_keys_bytes(struct btree_keys *b)
269{
270	return PAGE_SIZE << b->page_order;
271}
272
273static inline size_t btree_keys_cachelines(struct btree_keys *b)
274{
275	return btree_keys_bytes(b) / BSET_CACHELINE;
276}
277
278/* Space required for the auxiliary search trees */
279static inline size_t bset_tree_bytes(struct btree_keys *b)
280{
281	return btree_keys_cachelines(b) * sizeof(struct bkey_float);
282}
283
284/* Space required for the prev pointers */
285static inline size_t bset_prev_bytes(struct btree_keys *b)
286{
287	return btree_keys_cachelines(b) * sizeof(uint8_t);
288}
289
290/* Memory allocation */
291
292void bch_btree_keys_free(struct btree_keys *b)
293{
294	struct bset_tree *t = b->set;
295
296	if (bset_prev_bytes(b) < PAGE_SIZE)
297		kfree(t->prev);
298	else
299		free_pages((unsigned long) t->prev,
300			   get_order(bset_prev_bytes(b)));
301
302	if (bset_tree_bytes(b) < PAGE_SIZE)
303		kfree(t->tree);
304	else
305		free_pages((unsigned long) t->tree,
306			   get_order(bset_tree_bytes(b)));
307
308	free_pages((unsigned long) t->data, b->page_order);
309
310	t->prev = NULL;
311	t->tree = NULL;
312	t->data = NULL;
313}
314
315int bch_btree_keys_alloc(struct btree_keys *b,
316			 unsigned int page_order,
317			 gfp_t gfp)
318{
319	struct bset_tree *t = b->set;
320
321	BUG_ON(t->data);
322
323	b->page_order = page_order;
324
325	t->data = (void *) __get_free_pages(__GFP_COMP|gfp, b->page_order);
326	if (!t->data)
327		goto err;
328
329	t->tree = bset_tree_bytes(b) < PAGE_SIZE
330		? kmalloc(bset_tree_bytes(b), gfp)
331		: (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
332	if (!t->tree)
333		goto err;
334
335	t->prev = bset_prev_bytes(b) < PAGE_SIZE
336		? kmalloc(bset_prev_bytes(b), gfp)
337		: (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
338	if (!t->prev)
339		goto err;
340
341	return 0;
342err:
343	bch_btree_keys_free(b);
344	return -ENOMEM;
345}
346
347void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
348			 bool *expensive_debug_checks)
349{
350	b->ops = ops;
351	b->expensive_debug_checks = expensive_debug_checks;
352	b->nsets = 0;
353	b->last_set_unwritten = 0;
354
355	/*
356	 * struct btree_keys in embedded in struct btree, and struct
357	 * bset_tree is embedded into struct btree_keys. They are all
358	 * initialized as 0 by kzalloc() in mca_bucket_alloc(), and
359	 * b->set[0].data is allocated in bch_btree_keys_alloc(), so we
360	 * don't have to initiate b->set[].size and b->set[].data here
361	 * any more.
362	 */
363}
364
365/* Binary tree stuff for auxiliary search trees */
366
367/*
368 * return array index next to j when does in-order traverse
369 * of a binary tree which is stored in a linear array
370 */
371static unsigned int inorder_next(unsigned int j, unsigned int size)
372{
373	if (j * 2 + 1 < size) {
374		j = j * 2 + 1;
375
376		while (j * 2 < size)
377			j *= 2;
378	} else
379		j >>= ffz(j) + 1;
380
381	return j;
382}
383
384/*
385 * return array index previous to j when does in-order traverse
386 * of a binary tree which is stored in a linear array
387 */
388static unsigned int inorder_prev(unsigned int j, unsigned int size)
389{
390	if (j * 2 < size) {
391		j = j * 2;
392
393		while (j * 2 + 1 < size)
394			j = j * 2 + 1;
395	} else
396		j >>= ffs(j);
397
398	return j;
399}
400
401/*
402 * I have no idea why this code works... and I'm the one who wrote it
403 *
404 * However, I do know what it does:
405 * Given a binary tree constructed in an array (i.e. how you normally implement
406 * a heap), it converts a node in the tree - referenced by array index - to the
407 * index it would have if you did an inorder traversal.
408 *
409 * Also tested for every j, size up to size somewhere around 6 million.
410 *
411 * The binary tree starts at array index 1, not 0
412 * extra is a function of size:
413 *   extra = (size - rounddown_pow_of_two(size - 1)) << 1;
414 */
415static unsigned int __to_inorder(unsigned int j,
416				  unsigned int size,
417				  unsigned int extra)
418{
419	unsigned int b = fls(j);
420	unsigned int shift = fls(size - 1) - b;
421
422	j  ^= 1U << (b - 1);
423	j <<= 1;
424	j  |= 1;
425	j <<= shift;
426
427	if (j > extra)
428		j -= (j - extra) >> 1;
429
430	return j;
431}
432
433/*
434 * Return the cacheline index in bset_tree->data, where j is index
435 * from a linear array which stores the auxiliar binary tree
436 */
437static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
438{
439	return __to_inorder(j, t->size, t->extra);
440}
441
442static unsigned int __inorder_to_tree(unsigned int j,
443				      unsigned int size,
444				      unsigned int extra)
445{
446	unsigned int shift;
447
448	if (j > extra)
449		j += j - extra;
450
451	shift = ffs(j);
452
453	j >>= shift;
454	j  |= roundup_pow_of_two(size) >> shift;
455
456	return j;
457}
458
459/*
460 * Return an index from a linear array which stores the auxiliar binary
461 * tree, j is the cacheline index of t->data.
462 */
463static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
464{
465	return __inorder_to_tree(j, t->size, t->extra);
466}
467
468#if 0
469void inorder_test(void)
470{
471	unsigned long done = 0;
472	ktime_t start = ktime_get();
473
474	for (unsigned int size = 2;
475	     size < 65536000;
476	     size++) {
477		unsigned int extra =
478			(size - rounddown_pow_of_two(size - 1)) << 1;
479		unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
480
481		if (!(size % 4096))
482			pr_notice("loop %u, %llu per us\n", size,
483			       done / ktime_us_delta(ktime_get(), start));
484
485		while (1) {
486			if (__inorder_to_tree(i, size, extra) != j)
487				panic("size %10u j %10u i %10u", size, j, i);
488
489			if (__to_inorder(j, size, extra) != i)
490				panic("size %10u j %10u i %10u", size, j, i);
491
492			if (j == rounddown_pow_of_two(size) - 1)
493				break;
494
495			BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
496
497			j = inorder_next(j, size);
498			i++;
499		}
500
501		done += size - 1;
502	}
503}
504#endif
505
506/*
507 * Cacheline/offset <-> bkey pointer arithmetic:
508 *
509 * t->tree is a binary search tree in an array; each node corresponds to a key
510 * in one cacheline in t->set (BSET_CACHELINE bytes).
511 *
512 * This means we don't have to store the full index of the key that a node in
513 * the binary tree points to; to_inorder() gives us the cacheline, and then
514 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
515 *
516 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
517 * make this work.
518 *
519 * To construct the bfloat for an arbitrary key we need to know what the key
520 * immediately preceding it is: we have to check if the two keys differ in the
521 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
522 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
523 */
524
525static struct bkey *cacheline_to_bkey(struct bset_tree *t,
526				      unsigned int cacheline,
527				      unsigned int offset)
528{
529	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
530}
531
532static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
533{
534	return ((void *) k - (void *) t->data) / BSET_CACHELINE;
535}
536
537static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
538					 unsigned int cacheline,
539					 struct bkey *k)
540{
541	return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
542}
543
544static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
545{
546	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
547}
548
549static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
550{
551	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
552}
553
554/*
555 * For the write set - the one we're currently inserting keys into - we don't
556 * maintain a full search tree, we just keep a simple lookup table in t->prev.
557 */
558static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
559{
560	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
561}
562
563static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
564{
565	low >>= shift;
566	low  |= (high << 1) << (63U - shift);
567	return low;
568}
569
570/*
571 * Calculate mantissa value for struct bkey_float.
572 * If most significant bit of f->exponent is not set, then
573 *  - f->exponent >> 6 is 0
574 *  - p[0] points to bkey->low
575 *  - p[-1] borrows bits from KEY_INODE() of bkey->high
576 * if most isgnificant bits of f->exponent is set, then
577 *  - f->exponent >> 6 is 1
578 *  - p[0] points to bits from KEY_INODE() of bkey->high
579 *  - p[-1] points to other bits from KEY_INODE() of
580 *    bkey->high too.
581 * See make_bfloat() to check when most significant bit of f->exponent
582 * is set or not.
583 */
584static inline unsigned int bfloat_mantissa(const struct bkey *k,
585				       struct bkey_float *f)
586{
587	const uint64_t *p = &k->low - (f->exponent >> 6);
588
589	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
590}
591
592static void make_bfloat(struct bset_tree *t, unsigned int j)
593{
594	struct bkey_float *f = &t->tree[j];
595	struct bkey *m = tree_to_bkey(t, j);
596	struct bkey *p = tree_to_prev_bkey(t, j);
597
598	struct bkey *l = is_power_of_2(j)
599		? t->data->start
600		: tree_to_prev_bkey(t, j >> ffs(j));
601
602	struct bkey *r = is_power_of_2(j + 1)
603		? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
604		: tree_to_bkey(t, j >> (ffz(j) + 1));
605
606	BUG_ON(m < l || m > r);
607	BUG_ON(bkey_next(p) != m);
608
609	/*
610	 * If l and r have different KEY_INODE values (different backing
611	 * device), f->exponent records how many least significant bits
612	 * are different in KEY_INODE values and sets most significant
613	 * bits to 1 (by +64).
614	 * If l and r have same KEY_INODE value, f->exponent records
615	 * how many different bits in least significant bits of bkey->low.
616	 * See bfloat_mantiss() how the most significant bit of
617	 * f->exponent is used to calculate bfloat mantissa value.
618	 */
619	if (KEY_INODE(l) != KEY_INODE(r))
620		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
621	else
622		f->exponent = fls64(r->low ^ l->low);
623
624	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
625
626	/*
627	 * Setting f->exponent = 127 flags this node as failed, and causes the
628	 * lookup code to fall back to comparing against the original key.
629	 */
630
631	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
632		f->mantissa = bfloat_mantissa(m, f) - 1;
633	else
634		f->exponent = 127;
635}
636
637static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
638{
639	if (t != b->set) {
640		unsigned int j = roundup(t[-1].size,
641				     64 / sizeof(struct bkey_float));
642
643		t->tree = t[-1].tree + j;
644		t->prev = t[-1].prev + j;
645	}
646
647	while (t < b->set + MAX_BSETS)
648		t++->size = 0;
649}
650
651static void bch_bset_build_unwritten_tree(struct btree_keys *b)
652{
653	struct bset_tree *t = bset_tree_last(b);
654
655	BUG_ON(b->last_set_unwritten);
656	b->last_set_unwritten = 1;
657
658	bset_alloc_tree(b, t);
659
660	if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
661		t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
662		t->size = 1;
663	}
664}
665
666void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
667{
668	if (i != b->set->data) {
669		b->set[++b->nsets].data = i;
670		i->seq = b->set->data->seq;
671	} else
672		get_random_bytes(&i->seq, sizeof(uint64_t));
673
674	i->magic	= magic;
675	i->version	= 0;
676	i->keys		= 0;
677
678	bch_bset_build_unwritten_tree(b);
679}
680
681/*
682 * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
683 * accelerate bkey search in a btree node (pointed by bset_tree->data in
684 * memory). After search in the auxiliar tree by calling bset_search_tree(),
685 * a struct bset_search_iter is returned which indicates range [l, r] from
686 * bset_tree->data where the searching bkey might be inside. Then a followed
687 * linear comparison does the exact search, see __bch_bset_search() for how
688 * the auxiliary tree is used.
689 */
690void bch_bset_build_written_tree(struct btree_keys *b)
691{
692	struct bset_tree *t = bset_tree_last(b);
693	struct bkey *prev = NULL, *k = t->data->start;
694	unsigned int j, cacheline = 1;
695
696	b->last_set_unwritten = 0;
697
698	bset_alloc_tree(b, t);
699
700	t->size = min_t(unsigned int,
701			bkey_to_cacheline(t, bset_bkey_last(t->data)),
702			b->set->tree + btree_keys_cachelines(b) - t->tree);
703
704	if (t->size < 2) {
705		t->size = 0;
706		return;
707	}
708
709	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
710
711	/* First we figure out where the first key in each cacheline is */
712	for (j = inorder_next(0, t->size);
713	     j;
714	     j = inorder_next(j, t->size)) {
715		while (bkey_to_cacheline(t, k) < cacheline)
716			prev = k, k = bkey_next(k);
717
718		t->prev[j] = bkey_u64s(prev);
719		t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
720	}
721
722	while (bkey_next(k) != bset_bkey_last(t->data))
723		k = bkey_next(k);
724
725	t->end = *k;
726
727	/* Then we build the tree */
728	for (j = inorder_next(0, t->size);
729	     j;
730	     j = inorder_next(j, t->size))
731		make_bfloat(t, j);
732}
733
734/* Insert */
735
736void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
737{
738	struct bset_tree *t;
739	unsigned int inorder, j = 1;
740
741	for (t = b->set; t <= bset_tree_last(b); t++)
742		if (k < bset_bkey_last(t->data))
743			goto found_set;
744
745	BUG();
746found_set:
747	if (!t->size || !bset_written(b, t))
748		return;
749
750	inorder = bkey_to_cacheline(t, k);
751
752	if (k == t->data->start)
753		goto fix_left;
754
755	if (bkey_next(k) == bset_bkey_last(t->data)) {
756		t->end = *k;
757		goto fix_right;
758	}
759
760	j = inorder_to_tree(inorder, t);
761
762	if (j &&
763	    j < t->size &&
764	    k == tree_to_bkey(t, j))
765fix_left:	do {
766			make_bfloat(t, j);
767			j = j * 2;
768		} while (j < t->size);
769
770	j = inorder_to_tree(inorder + 1, t);
771
772	if (j &&
773	    j < t->size &&
774	    k == tree_to_prev_bkey(t, j))
775fix_right:	do {
776			make_bfloat(t, j);
777			j = j * 2 + 1;
778		} while (j < t->size);
779}
780
781static void bch_bset_fix_lookup_table(struct btree_keys *b,
782				      struct bset_tree *t,
783				      struct bkey *k)
784{
785	unsigned int shift = bkey_u64s(k);
786	unsigned int j = bkey_to_cacheline(t, k);
787
788	/* We're getting called from btree_split() or btree_gc, just bail out */
789	if (!t->size)
790		return;
791
792	/*
793	 * k is the key we just inserted; we need to find the entry in the
794	 * lookup table for the first key that is strictly greater than k:
795	 * it's either k's cacheline or the next one
796	 */
797	while (j < t->size &&
798	       table_to_bkey(t, j) <= k)
799		j++;
800
801	/*
802	 * Adjust all the lookup table entries, and find a new key for any that
803	 * have gotten too big
804	 */
805	for (; j < t->size; j++) {
806		t->prev[j] += shift;
807
808		if (t->prev[j] > 7) {
809			k = table_to_bkey(t, j - 1);
810
811			while (k < cacheline_to_bkey(t, j, 0))
812				k = bkey_next(k);
813
814			t->prev[j] = bkey_to_cacheline_offset(t, j, k);
815		}
816	}
817
818	if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
819		return;
820
821	/* Possibly add a new entry to the end of the lookup table */
822
823	for (k = table_to_bkey(t, t->size - 1);
824	     k != bset_bkey_last(t->data);
825	     k = bkey_next(k))
826		if (t->size == bkey_to_cacheline(t, k)) {
827			t->prev[t->size] =
828				bkey_to_cacheline_offset(t, t->size, k);
829			t->size++;
830		}
831}
832
833/*
834 * Tries to merge l and r: l should be lower than r
835 * Returns true if we were able to merge. If we did merge, l will be the merged
836 * key, r will be untouched.
837 */
838bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
839{
840	if (!b->ops->key_merge)
841		return false;
842
843	/*
844	 * Generic header checks
845	 * Assumes left and right are in order
846	 * Left and right must be exactly aligned
847	 */
848	if (!bch_bkey_equal_header(l, r) ||
849	     bkey_cmp(l, &START_KEY(r)))
850		return false;
851
852	return b->ops->key_merge(b, l, r);
853}
854
855void bch_bset_insert(struct btree_keys *b, struct bkey *where,
856		     struct bkey *insert)
857{
858	struct bset_tree *t = bset_tree_last(b);
859
860	BUG_ON(!b->last_set_unwritten);
861	BUG_ON(bset_byte_offset(b, t->data) +
862	       __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
863	       PAGE_SIZE << b->page_order);
864
865	memmove((uint64_t *) where + bkey_u64s(insert),
866		where,
867		(void *) bset_bkey_last(t->data) - (void *) where);
868
869	t->data->keys += bkey_u64s(insert);
870	bkey_copy(where, insert);
871	bch_bset_fix_lookup_table(b, t, where);
872}
873
874unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
875			      struct bkey *replace_key)
876{
877	unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
878	struct bset *i = bset_tree_last(b)->data;
879	struct bkey *m, *prev = NULL;
880	struct btree_iter iter;
881	struct bkey preceding_key_on_stack = ZERO_KEY;
882	struct bkey *preceding_key_p = &preceding_key_on_stack;
883
884	BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
885
886	/*
887	 * If k has preceding key, preceding_key_p will be set to address
888	 *  of k's preceding key; otherwise preceding_key_p will be set
889	 * to NULL inside preceding_key().
890	 */
891	if (b->ops->is_extents)
892		preceding_key(&START_KEY(k), &preceding_key_p);
893	else
894		preceding_key(k, &preceding_key_p);
895
896	m = bch_btree_iter_init(b, &iter, preceding_key_p);
897
898	if (b->ops->insert_fixup(b, k, &iter, replace_key))
899		return status;
900
901	status = BTREE_INSERT_STATUS_INSERT;
902
903	while (m != bset_bkey_last(i) &&
904	       bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0)
905		prev = m, m = bkey_next(m);
906
907	/* prev is in the tree, if we merge we're done */
908	status = BTREE_INSERT_STATUS_BACK_MERGE;
909	if (prev &&
910	    bch_bkey_try_merge(b, prev, k))
911		goto merged;
912#if 0
913	status = BTREE_INSERT_STATUS_OVERWROTE;
914	if (m != bset_bkey_last(i) &&
915	    KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
916		goto copy;
917#endif
918	status = BTREE_INSERT_STATUS_FRONT_MERGE;
919	if (m != bset_bkey_last(i) &&
920	    bch_bkey_try_merge(b, k, m))
921		goto copy;
922
923	bch_bset_insert(b, m, k);
924copy:	bkey_copy(m, k);
925merged:
926	return status;
927}
928
929/* Lookup */
930
931struct bset_search_iter {
932	struct bkey *l, *r;
933};
934
935static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
936						     const struct bkey *search)
937{
938	unsigned int li = 0, ri = t->size;
939
940	while (li + 1 != ri) {
941		unsigned int m = (li + ri) >> 1;
942
943		if (bkey_cmp(table_to_bkey(t, m), search) > 0)
944			ri = m;
945		else
946			li = m;
947	}
948
949	return (struct bset_search_iter) {
950		table_to_bkey(t, li),
951		ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
952	};
953}
954
955static struct bset_search_iter bset_search_tree(struct bset_tree *t,
956						const struct bkey *search)
957{
958	struct bkey *l, *r;
959	struct bkey_float *f;
960	unsigned int inorder, j, n = 1;
961
962	do {
963		unsigned int p = n << 4;
964
965		if (p < t->size)
966			prefetch(&t->tree[p]);
967
968		j = n;
969		f = &t->tree[j];
970
971		if (likely(f->exponent != 127)) {
972			if (f->mantissa >= bfloat_mantissa(search, f))
973				n = j * 2;
974			else
975				n = j * 2 + 1;
976		} else {
977			if (bkey_cmp(tree_to_bkey(t, j), search) > 0)
978				n = j * 2;
979			else
980				n = j * 2 + 1;
981		}
982	} while (n < t->size);
983
984	inorder = to_inorder(j, t);
985
986	/*
987	 * n would have been the node we recursed to - the low bit tells us if
988	 * we recursed left or recursed right.
989	 */
990	if (n & 1) {
991		l = cacheline_to_bkey(t, inorder, f->m);
992
993		if (++inorder != t->size) {
994			f = &t->tree[inorder_next(j, t->size)];
995			r = cacheline_to_bkey(t, inorder, f->m);
996		} else
997			r = bset_bkey_last(t->data);
998	} else {
999		r = cacheline_to_bkey(t, inorder, f->m);
1000
1001		if (--inorder) {
1002			f = &t->tree[inorder_prev(j, t->size)];
1003			l = cacheline_to_bkey(t, inorder, f->m);
1004		} else
1005			l = t->data->start;
1006	}
1007
1008	return (struct bset_search_iter) {l, r};
1009}
1010
1011struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
1012			       const struct bkey *search)
1013{
1014	struct bset_search_iter i;
1015
1016	/*
1017	 * First, we search for a cacheline, then lastly we do a linear search
1018	 * within that cacheline.
1019	 *
1020	 * To search for the cacheline, there's three different possibilities:
1021	 *  * The set is too small to have a search tree, so we just do a linear
1022	 *    search over the whole set.
1023	 *  * The set is the one we're currently inserting into; keeping a full
1024	 *    auxiliary search tree up to date would be too expensive, so we
1025	 *    use a much simpler lookup table to do a binary search -
1026	 *    bset_search_write_set().
1027	 *  * Or we use the auxiliary search tree we constructed earlier -
1028	 *    bset_search_tree()
1029	 */
1030
1031	if (unlikely(!t->size)) {
1032		i.l = t->data->start;
1033		i.r = bset_bkey_last(t->data);
1034	} else if (bset_written(b, t)) {
1035		/*
1036		 * Each node in the auxiliary search tree covers a certain range
1037		 * of bits, and keys above and below the set it covers might
1038		 * differ outside those bits - so we have to special case the
1039		 * start and end - handle that here:
1040		 */
1041
1042		if (unlikely(bkey_cmp(search, &t->end) >= 0))
1043			return bset_bkey_last(t->data);
1044
1045		if (unlikely(bkey_cmp(search, t->data->start) < 0))
1046			return t->data->start;
1047
1048		i = bset_search_tree(t, search);
1049	} else {
1050		BUG_ON(!b->nsets &&
1051		       t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
1052
1053		i = bset_search_write_set(t, search);
1054	}
1055
1056	if (btree_keys_expensive_checks(b)) {
1057		BUG_ON(bset_written(b, t) &&
1058		       i.l != t->data->start &&
1059		       bkey_cmp(tree_to_prev_bkey(t,
1060			  inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1061				search) > 0);
1062
1063		BUG_ON(i.r != bset_bkey_last(t->data) &&
1064		       bkey_cmp(i.r, search) <= 0);
1065	}
1066
1067	while (likely(i.l != i.r) &&
1068	       bkey_cmp(i.l, search) <= 0)
1069		i.l = bkey_next(i.l);
1070
1071	return i.l;
1072}
1073
1074/* Btree iterator */
1075
1076typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
1077				 struct btree_iter_set);
1078
1079static inline bool btree_iter_cmp(struct btree_iter_set l,
1080				  struct btree_iter_set r)
1081{
1082	return bkey_cmp(l.k, r.k) > 0;
1083}
1084
1085static inline bool btree_iter_end(struct btree_iter *iter)
1086{
1087	return !iter->used;
1088}
1089
1090void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1091			 struct bkey *end)
1092{
1093	if (k != end)
1094		BUG_ON(!heap_add(iter,
1095				 ((struct btree_iter_set) { k, end }),
1096				 btree_iter_cmp));
1097}
1098
1099static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
1100					  struct btree_iter *iter,
1101					  struct bkey *search,
1102					  struct bset_tree *start)
1103{
1104	struct bkey *ret = NULL;
1105
1106	iter->size = ARRAY_SIZE(iter->data);
1107	iter->used = 0;
1108
1109#ifdef CONFIG_BCACHE_DEBUG
1110	iter->b = b;
1111#endif
1112
1113	for (; start <= bset_tree_last(b); start++) {
1114		ret = bch_bset_search(b, start, search);
1115		bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
1116	}
1117
1118	return ret;
1119}
1120
1121struct bkey *bch_btree_iter_init(struct btree_keys *b,
1122				 struct btree_iter *iter,
1123				 struct bkey *search)
1124{
1125	return __bch_btree_iter_init(b, iter, search, b->set);
1126}
1127
1128static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1129						 btree_iter_cmp_fn *cmp)
1130{
1131	struct btree_iter_set b __maybe_unused;
1132	struct bkey *ret = NULL;
1133
1134	if (!btree_iter_end(iter)) {
1135		bch_btree_iter_next_check(iter);
1136
1137		ret = iter->data->k;
1138		iter->data->k = bkey_next(iter->data->k);
1139
1140		if (iter->data->k > iter->data->end) {
1141			WARN_ONCE(1, "bset was corrupt!\n");
1142			iter->data->k = iter->data->end;
1143		}
1144
1145		if (iter->data->k == iter->data->end)
1146			heap_pop(iter, b, cmp);
1147		else
1148			heap_sift(iter, 0, cmp);
1149	}
1150
1151	return ret;
1152}
1153
1154struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1155{
1156	return __bch_btree_iter_next(iter, btree_iter_cmp);
1157
1158}
1159
1160struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
1161					struct btree_keys *b, ptr_filter_fn fn)
1162{
1163	struct bkey *ret;
1164
1165	do {
1166		ret = bch_btree_iter_next(iter);
1167	} while (ret && fn(b, ret));
1168
1169	return ret;
1170}
1171
1172/* Mergesort */
1173
1174void bch_bset_sort_state_free(struct bset_sort_state *state)
1175{
1176	mempool_exit(&state->pool);
1177}
1178
1179int bch_bset_sort_state_init(struct bset_sort_state *state,
1180			     unsigned int page_order)
1181{
1182	spin_lock_init(&state->time.lock);
1183
1184	state->page_order = page_order;
1185	state->crit_factor = int_sqrt(1 << page_order);
1186
1187	return mempool_init_page_pool(&state->pool, 1, page_order);
1188}
1189
1190static void btree_mergesort(struct btree_keys *b, struct bset *out,
1191			    struct btree_iter *iter,
1192			    bool fixup, bool remove_stale)
1193{
1194	int i;
1195	struct bkey *k, *last = NULL;
1196	BKEY_PADDED(k) tmp;
1197	bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
1198		? bch_ptr_bad
1199		: bch_ptr_invalid;
1200
1201	/* Heapify the iterator, using our comparison function */
1202	for (i = iter->used / 2 - 1; i >= 0; --i)
1203		heap_sift(iter, i, b->ops->sort_cmp);
1204
1205	while (!btree_iter_end(iter)) {
1206		if (b->ops->sort_fixup && fixup)
1207			k = b->ops->sort_fixup(iter, &tmp.k);
1208		else
1209			k = NULL;
1210
1211		if (!k)
1212			k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
1213
1214		if (bad(b, k))
1215			continue;
1216
1217		if (!last) {
1218			last = out->start;
1219			bkey_copy(last, k);
1220		} else if (!bch_bkey_try_merge(b, last, k)) {
1221			last = bkey_next(last);
1222			bkey_copy(last, k);
1223		}
1224	}
1225
1226	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1227
1228	pr_debug("sorted %i keys\n", out->keys);
1229}
1230
1231static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
1232			 unsigned int start, unsigned int order, bool fixup,
1233			 struct bset_sort_state *state)
1234{
1235	uint64_t start_time;
1236	bool used_mempool = false;
1237	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
1238						     order);
1239	if (!out) {
1240		struct page *outp;
1241
1242		BUG_ON(order > state->page_order);
1243
1244		outp = mempool_alloc(&state->pool, GFP_NOIO);
1245		out = page_address(outp);
1246		used_mempool = true;
1247		order = state->page_order;
1248	}
1249
1250	start_time = local_clock();
1251
1252	btree_mergesort(b, out, iter, fixup, false);
1253	b->nsets = start;
1254
1255	if (!start && order == b->page_order) {
1256		/*
1257		 * Our temporary buffer is the same size as the btree node's
1258		 * buffer, we can just swap buffers instead of doing a big
1259		 * memcpy()
1260		 *
1261		 * Don't worry event 'out' is allocated from mempool, it can
1262		 * still be swapped here. Because state->pool is a page mempool
1263		 * creaated by by mempool_init_page_pool(), which allocates
1264		 * pages by alloc_pages() indeed.
1265		 */
1266
1267		out->magic	= b->set->data->magic;
1268		out->seq	= b->set->data->seq;
1269		out->version	= b->set->data->version;
1270		swap(out, b->set->data);
1271	} else {
1272		b->set[start].data->keys = out->keys;
1273		memcpy(b->set[start].data->start, out->start,
1274		       (void *) bset_bkey_last(out) - (void *) out->start);
1275	}
1276
1277	if (used_mempool)
1278		mempool_free(virt_to_page(out), &state->pool);
1279	else
1280		free_pages((unsigned long) out, order);
1281
1282	bch_bset_build_written_tree(b);
1283
1284	if (!start)
1285		bch_time_stats_update(&state->time, start_time);
1286}
1287
1288void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
1289			    struct bset_sort_state *state)
1290{
1291	size_t order = b->page_order, keys = 0;
1292	struct btree_iter iter;
1293	int oldsize = bch_count_data(b);
1294
1295	__bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
1296
1297	if (start) {
1298		unsigned int i;
1299
1300		for (i = start; i <= b->nsets; i++)
1301			keys += b->set[i].data->keys;
1302
1303		order = get_order(__set_bytes(b->set->data, keys));
1304	}
1305
1306	__btree_sort(b, &iter, start, order, false, state);
1307
1308	EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
1309}
1310
1311void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1312				    struct btree_iter *iter,
1313				    struct bset_sort_state *state)
1314{
1315	__btree_sort(b, iter, 0, b->page_order, true, state);
1316}
1317
1318void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
1319			 struct bset_sort_state *state)
1320{
1321	uint64_t start_time = local_clock();
1322	struct btree_iter iter;
1323
1324	bch_btree_iter_init(b, &iter, NULL);
1325
1326	btree_mergesort(b, new->set->data, &iter, false, true);
1327
1328	bch_time_stats_update(&state->time, start_time);
1329
1330	new->set->size = 0; // XXX: why?
1331}
1332
1333#define SORT_CRIT	(4096 / sizeof(uint64_t))
1334
1335void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
1336{
1337	unsigned int crit = SORT_CRIT;
1338	int i;
1339
1340	/* Don't sort if nothing to do */
1341	if (!b->nsets)
1342		goto out;
1343
1344	for (i = b->nsets - 1; i >= 0; --i) {
1345		crit *= state->crit_factor;
1346
1347		if (b->set[i].data->keys < crit) {
1348			bch_btree_sort_partial(b, i, state);
1349			return;
1350		}
1351	}
1352
1353	/* Sort if we'd overflow */
1354	if (b->nsets + 1 == MAX_BSETS) {
1355		bch_btree_sort(b, state);
1356		return;
1357	}
1358
1359out:
1360	bch_bset_build_written_tree(b);
1361}
1362
1363void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
1364{
1365	unsigned int i;
1366
1367	for (i = 0; i <= b->nsets; i++) {
1368		struct bset_tree *t = &b->set[i];
1369		size_t bytes = t->data->keys * sizeof(uint64_t);
1370		size_t j;
1371
1372		if (bset_written(b, t)) {
1373			stats->sets_written++;
1374			stats->bytes_written += bytes;
1375
1376			stats->floats += t->size - 1;
1377
1378			for (j = 1; j < t->size; j++)
1379				if (t->tree[j].exponent == 127)
1380					stats->failed++;
1381		} else {
1382			stats->sets_unwritten++;
1383			stats->bytes_unwritten += bytes;
1384		}
1385	}
1386}
1387