1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Windfarm PowerMac thermal control. iMac G5 iSight
4 *
5 * (c) Copyright 2007 Étienne Bersac <bersace@gmail.com>
6 *
7 * Bits & pieces from windfarm_pm81.c by (c) Copyright 2005 Benjamin
8 * Herrenschmidt, IBM Corp. <benh@kernel.crashing.org>
9 *
10 * PowerMac12,1
11 * ============
12 *
13 * The algorithm used is the PID control algorithm, used the same way
14 * the published Darwin code does, using the same values that are
15 * present in the Darwin 8.10 snapshot property lists (note however
16 * that none of the code has been re-used, it's a complete
17 * re-implementation
18 *
19 * There is two models using PowerMac12,1. Model 2 is iMac G5 iSight
20 * 17" while Model 3 is iMac G5 20". They do have both the same
21 * controls with a tiny difference. The control-ids of hard-drive-fan
22 * and cpu-fan is swapped.
23 *
24 * Target Correction :
25 *
26 * controls have a target correction calculated as :
27 *
28 * new_min = ((((average_power * slope) >> 16) + offset) >> 16) + min_value
29 * new_value = max(new_value, max(new_min, 0))
30 *
31 * OD Fan control correction.
32 *
33 * # model_id: 2
34 *   offset		: -19563152
35 *   slope		:  1956315
36 *
37 * # model_id: 3
38 *   offset		: -15650652
39 *   slope		:  1565065
40 *
41 * HD Fan control correction.
42 *
43 * # model_id: 2
44 *   offset		: -15650652
45 *   slope		:  1565065
46 *
47 * # model_id: 3
48 *   offset		: -19563152
49 *   slope		:  1956315
50 *
51 * CPU Fan control correction.
52 *
53 * # model_id: 2
54 *   offset		: -25431900
55 *   slope		:  2543190
56 *
57 * # model_id: 3
58 *   offset		: -15650652
59 *   slope		:  1565065
60 *
61 * Target rubber-banding :
62 *
63 * Some controls have a target correction which depends on another
64 * control value. The correction is computed in the following way :
65 *
66 * new_min = ref_value * slope + offset
67 *
68 * ref_value is the value of the reference control. If new_min is
69 * greater than 0, then we correct the target value using :
70 *
71 * new_target = max (new_target, new_min >> 16)
72 *
73 * # model_id : 2
74 *   control	: cpu-fan
75 *   ref	: optical-drive-fan
76 *   offset	: -15650652
77 *   slope	: 1565065
78 *
79 * # model_id : 3
80 *   control	: optical-drive-fan
81 *   ref	: hard-drive-fan
82 *   offset	: -32768000
83 *   slope	: 65536
84 *
85 * In order to have the moste efficient correction with those
86 * dependencies, we must trigger HD loop before OD loop before CPU
87 * loop.
88 *
89 * The various control loops found in Darwin config file are:
90 *
91 * HD Fan control loop.
92 *
93 * # model_id: 2
94 *   control        : hard-drive-fan
95 *   sensor         : hard-drive-temp
96 *   PID params     : G_d = 0x00000000
97 *                    G_p = 0x002D70A3
98 *                    G_r = 0x00019999
99 *                    History = 2 entries
100 *                    Input target = 0x370000
101 *                    Interval = 5s
102 *
103 * # model_id: 3
104 *   control        : hard-drive-fan
105 *   sensor         : hard-drive-temp
106 *   PID params     : G_d = 0x00000000
107 *                    G_p = 0x002170A3
108 *                    G_r = 0x00019999
109 *                    History = 2 entries
110 *                    Input target = 0x370000
111 *                    Interval = 5s
112 *
113 * OD Fan control loop.
114 *
115 * # model_id: 2
116 *   control        : optical-drive-fan
117 *   sensor         : optical-drive-temp
118 *   PID params     : G_d = 0x00000000
119 *                    G_p = 0x001FAE14
120 *                    G_r = 0x00019999
121 *                    History = 2 entries
122 *                    Input target = 0x320000
123 *                    Interval = 5s
124 *
125 * # model_id: 3
126 *   control        : optical-drive-fan
127 *   sensor         : optical-drive-temp
128 *   PID params     : G_d = 0x00000000
129 *                    G_p = 0x001FAE14
130 *                    G_r = 0x00019999
131 *                    History = 2 entries
132 *                    Input target = 0x320000
133 *                    Interval = 5s
134 *
135 * GPU Fan control loop.
136 *
137 * # model_id: 2
138 *   control        : hard-drive-fan
139 *   sensor         : gpu-temp
140 *   PID params     : G_d = 0x00000000
141 *                    G_p = 0x002A6666
142 *                    G_r = 0x00019999
143 *                    History = 2 entries
144 *                    Input target = 0x5A0000
145 *                    Interval = 5s
146 *
147 * # model_id: 3
148 *   control        : cpu-fan
149 *   sensor         : gpu-temp
150 *   PID params     : G_d = 0x00000000
151 *                    G_p = 0x0010CCCC
152 *                    G_r = 0x00019999
153 *                    History = 2 entries
154 *                    Input target = 0x500000
155 *                    Interval = 5s
156 *
157 * KODIAK (aka northbridge) Fan control loop.
158 *
159 * # model_id: 2
160 *   control        : optical-drive-fan
161 *   sensor         : north-bridge-temp
162 *   PID params     : G_d = 0x00000000
163 *                    G_p = 0x003BD70A
164 *                    G_r = 0x00019999
165 *                    History = 2 entries
166 *                    Input target = 0x550000
167 *                    Interval = 5s
168 *
169 * # model_id: 3
170 *   control        : hard-drive-fan
171 *   sensor         : north-bridge-temp
172 *   PID params     : G_d = 0x00000000
173 *                    G_p = 0x0030F5C2
174 *                    G_r = 0x00019999
175 *                    History = 2 entries
176 *                    Input target = 0x550000
177 *                    Interval = 5s
178 *
179 * CPU Fan control loop.
180 *
181 *   control        : cpu-fan
182 *   sensors        : cpu-temp, cpu-power
183 *   PID params     : from SDB partition
184 *
185 * CPU Slew control loop.
186 *
187 *   control        : cpufreq-clamp
188 *   sensor         : cpu-temp
189 */
190
191#undef	DEBUG
192
193#include <linux/types.h>
194#include <linux/errno.h>
195#include <linux/kernel.h>
196#include <linux/delay.h>
197#include <linux/slab.h>
198#include <linux/init.h>
199#include <linux/spinlock.h>
200#include <linux/wait.h>
201#include <linux/kmod.h>
202#include <linux/device.h>
203#include <linux/platform_device.h>
204#include <asm/prom.h>
205#include <asm/machdep.h>
206#include <asm/io.h>
207#include <asm/sections.h>
208#include <asm/smu.h>
209
210#include "windfarm.h"
211#include "windfarm_pid.h"
212
213#define VERSION "0.3"
214
215static int pm121_mach_model;	/* machine model id */
216
217/* Controls & sensors */
218static struct wf_sensor	*sensor_cpu_power;
219static struct wf_sensor	*sensor_cpu_temp;
220static struct wf_sensor	*sensor_cpu_voltage;
221static struct wf_sensor	*sensor_cpu_current;
222static struct wf_sensor	*sensor_gpu_temp;
223static struct wf_sensor	*sensor_north_bridge_temp;
224static struct wf_sensor	*sensor_hard_drive_temp;
225static struct wf_sensor	*sensor_optical_drive_temp;
226static struct wf_sensor	*sensor_incoming_air_temp; /* unused ! */
227
228enum {
229	FAN_CPU,
230	FAN_HD,
231	FAN_OD,
232	CPUFREQ,
233	N_CONTROLS
234};
235static struct wf_control *controls[N_CONTROLS] = {};
236
237/* Set to kick the control loop into life */
238static int pm121_all_controls_ok, pm121_all_sensors_ok;
239static bool pm121_started;
240
241enum {
242	FAILURE_FAN		= 1 << 0,
243	FAILURE_SENSOR		= 1 << 1,
244	FAILURE_OVERTEMP	= 1 << 2
245};
246
247/* All sys loops. Note the HD before the OD loop in order to have it
248   run before. */
249enum {
250	LOOP_GPU,		/* control = hd or cpu, but luckily,
251				   it doesn't matter */
252	LOOP_HD,		/* control = hd */
253	LOOP_KODIAK,		/* control = hd or od */
254	LOOP_OD,		/* control = od */
255	N_LOOPS
256};
257
258static const char *loop_names[N_LOOPS] = {
259	"GPU",
260	"HD",
261	"KODIAK",
262	"OD",
263};
264
265#define	PM121_NUM_CONFIGS	2
266
267static unsigned int pm121_failure_state;
268static int pm121_readjust, pm121_skipping;
269static bool pm121_overtemp;
270static s32 average_power;
271
272struct pm121_correction {
273	int	offset;
274	int	slope;
275};
276
277static struct pm121_correction corrections[N_CONTROLS][PM121_NUM_CONFIGS] = {
278	/* FAN_OD */
279	{
280		/* MODEL 2 */
281		{ .offset	= -19563152,
282		  .slope	=  1956315
283		},
284		/* MODEL 3 */
285		{ .offset	= -15650652,
286		  .slope	=  1565065
287		},
288	},
289	/* FAN_HD */
290	{
291		/* MODEL 2 */
292		{ .offset	= -15650652,
293		  .slope	=  1565065
294		},
295		/* MODEL 3 */
296		{ .offset	= -19563152,
297		  .slope	=  1956315
298		},
299	},
300	/* FAN_CPU */
301	{
302		/* MODEL 2 */
303		{ .offset	= -25431900,
304		  .slope	=  2543190
305		},
306		/* MODEL 3 */
307		{ .offset	= -15650652,
308		  .slope	=  1565065
309		},
310	},
311	/* CPUFREQ has no correction (and is not implemented at all) */
312};
313
314struct pm121_connection {
315	unsigned int	control_id;
316	unsigned int	ref_id;
317	struct pm121_correction	correction;
318};
319
320static struct pm121_connection pm121_connections[] = {
321	/* MODEL 2 */
322	{ .control_id	= FAN_CPU,
323	  .ref_id	= FAN_OD,
324	  { .offset	= -32768000,
325	    .slope	=  65536
326	  }
327	},
328	/* MODEL 3 */
329	{ .control_id	= FAN_OD,
330	  .ref_id	= FAN_HD,
331	  { .offset	= -32768000,
332	    .slope	=  65536
333	  }
334	},
335};
336
337/* pointer to the current model connection */
338static struct pm121_connection *pm121_connection;
339
340/*
341 * ****** System Fans Control Loop ******
342 *
343 */
344
345/* Since each loop handles only one control and we want to avoid
346 * writing virtual control, we store the control correction with the
347 * loop params. Some data are not set, there are common to all loop
348 * and thus, hardcoded.
349 */
350struct pm121_sys_param {
351	/* purely informative since we use mach_model-2 as index */
352	int			model_id;
353	struct wf_sensor	**sensor; /* use sensor_id instead ? */
354	s32			gp, itarget;
355	unsigned int		control_id;
356};
357
358static struct pm121_sys_param
359pm121_sys_all_params[N_LOOPS][PM121_NUM_CONFIGS] = {
360	/* GPU Fan control loop */
361	{
362		{ .model_id	= 2,
363		  .sensor	= &sensor_gpu_temp,
364		  .gp		= 0x002A6666,
365		  .itarget	= 0x5A0000,
366		  .control_id	= FAN_HD,
367		},
368		{ .model_id	= 3,
369		  .sensor	= &sensor_gpu_temp,
370		  .gp		= 0x0010CCCC,
371		  .itarget	= 0x500000,
372		  .control_id	= FAN_CPU,
373		},
374	},
375	/* HD Fan control loop */
376	{
377		{ .model_id	= 2,
378		  .sensor	= &sensor_hard_drive_temp,
379		  .gp		= 0x002D70A3,
380		  .itarget	= 0x370000,
381		  .control_id	= FAN_HD,
382		},
383		{ .model_id	= 3,
384		  .sensor	= &sensor_hard_drive_temp,
385		  .gp		= 0x002170A3,
386		  .itarget	= 0x370000,
387		  .control_id	= FAN_HD,
388		},
389	},
390	/* KODIAK Fan control loop */
391	{
392		{ .model_id	= 2,
393		  .sensor	= &sensor_north_bridge_temp,
394		  .gp		= 0x003BD70A,
395		  .itarget	= 0x550000,
396		  .control_id	= FAN_OD,
397		},
398		{ .model_id	= 3,
399		  .sensor	= &sensor_north_bridge_temp,
400		  .gp		= 0x0030F5C2,
401		  .itarget	= 0x550000,
402		  .control_id	= FAN_HD,
403		},
404	},
405	/* OD Fan control loop */
406	{
407		{ .model_id	= 2,
408		  .sensor	= &sensor_optical_drive_temp,
409		  .gp		= 0x001FAE14,
410		  .itarget	= 0x320000,
411		  .control_id	= FAN_OD,
412		},
413		{ .model_id	= 3,
414		  .sensor	= &sensor_optical_drive_temp,
415		  .gp		= 0x001FAE14,
416		  .itarget	= 0x320000,
417		  .control_id	= FAN_OD,
418		},
419	},
420};
421
422/* the hardcoded values */
423#define	PM121_SYS_GD		0x00000000
424#define	PM121_SYS_GR		0x00019999
425#define	PM121_SYS_HISTORY_SIZE	2
426#define	PM121_SYS_INTERVAL	5
427
428/* State data used by the system fans control loop
429 */
430struct pm121_sys_state {
431	int			ticks;
432	s32			setpoint;
433	struct wf_pid_state	pid;
434};
435
436struct pm121_sys_state *pm121_sys_state[N_LOOPS] = {};
437
438/*
439 * ****** CPU Fans Control Loop ******
440 *
441 */
442
443#define PM121_CPU_INTERVAL	1
444
445/* State data used by the cpu fans control loop
446 */
447struct pm121_cpu_state {
448	int			ticks;
449	s32			setpoint;
450	struct wf_cpu_pid_state	pid;
451};
452
453static struct pm121_cpu_state *pm121_cpu_state;
454
455
456
457/*
458 * ***** Implementation *****
459 *
460 */
461
462/* correction the value using the output-low-bound correction algo */
463static s32 pm121_correct(s32 new_setpoint,
464			 unsigned int control_id,
465			 s32 min)
466{
467	s32 new_min;
468	struct pm121_correction *correction;
469	correction = &corrections[control_id][pm121_mach_model - 2];
470
471	new_min = (average_power * correction->slope) >> 16;
472	new_min += correction->offset;
473	new_min = (new_min >> 16) + min;
474
475	return max3(new_setpoint, new_min, 0);
476}
477
478static s32 pm121_connect(unsigned int control_id, s32 setpoint)
479{
480	s32 new_min, value, new_setpoint;
481
482	if (pm121_connection->control_id == control_id) {
483		controls[control_id]->ops->get_value(controls[control_id],
484						     &value);
485		new_min = value * pm121_connection->correction.slope;
486		new_min += pm121_connection->correction.offset;
487		if (new_min > 0) {
488			new_setpoint = max(setpoint, (new_min >> 16));
489			if (new_setpoint != setpoint) {
490				pr_debug("pm121: %s depending on %s, "
491					 "corrected from %d to %d RPM\n",
492					 controls[control_id]->name,
493					 controls[pm121_connection->ref_id]->name,
494					 (int) setpoint, (int) new_setpoint);
495			}
496		} else
497			new_setpoint = setpoint;
498	}
499	/* no connection */
500	else
501		new_setpoint = setpoint;
502
503	return new_setpoint;
504}
505
506/* FAN LOOPS */
507static void pm121_create_sys_fans(int loop_id)
508{
509	struct pm121_sys_param *param = NULL;
510	struct wf_pid_param pid_param;
511	struct wf_control *control = NULL;
512	int i;
513
514	/* First, locate the params for this model */
515	for (i = 0; i < PM121_NUM_CONFIGS; i++) {
516		if (pm121_sys_all_params[loop_id][i].model_id == pm121_mach_model) {
517			param = &(pm121_sys_all_params[loop_id][i]);
518			break;
519		}
520	}
521
522	/* No params found, put fans to max */
523	if (param == NULL) {
524		printk(KERN_WARNING "pm121: %s fan config not found "
525		       " for this machine model\n",
526		       loop_names[loop_id]);
527		goto fail;
528	}
529
530	control = controls[param->control_id];
531
532	/* Alloc & initialize state */
533	pm121_sys_state[loop_id] = kmalloc(sizeof(struct pm121_sys_state),
534					   GFP_KERNEL);
535	if (pm121_sys_state[loop_id] == NULL) {
536		printk(KERN_WARNING "pm121: Memory allocation error\n");
537		goto fail;
538	}
539	pm121_sys_state[loop_id]->ticks = 1;
540
541	/* Fill PID params */
542	pid_param.gd		= PM121_SYS_GD;
543	pid_param.gp		= param->gp;
544	pid_param.gr		= PM121_SYS_GR;
545	pid_param.interval	= PM121_SYS_INTERVAL;
546	pid_param.history_len	= PM121_SYS_HISTORY_SIZE;
547	pid_param.itarget	= param->itarget;
548	if(control)
549	{
550		pid_param.min		= control->ops->get_min(control);
551		pid_param.max		= control->ops->get_max(control);
552	} else {
553		/*
554		 * This is probably not the right!?
555		 * Perhaps goto fail  if control == NULL  above?
556		 */
557		pid_param.min		= 0;
558		pid_param.max		= 0;
559	}
560
561	wf_pid_init(&pm121_sys_state[loop_id]->pid, &pid_param);
562
563	pr_debug("pm121: %s Fan control loop initialized.\n"
564		 "       itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
565		 loop_names[loop_id], FIX32TOPRINT(pid_param.itarget),
566		 pid_param.min, pid_param.max);
567	return;
568
569 fail:
570	/* note that this is not optimal since another loop may still
571	   control the same control */
572	printk(KERN_WARNING "pm121: failed to set up %s loop "
573	       "setting \"%s\" to max speed.\n",
574	       loop_names[loop_id], control ? control->name : "uninitialized value");
575
576	if (control)
577		wf_control_set_max(control);
578}
579
580static void pm121_sys_fans_tick(int loop_id)
581{
582	struct pm121_sys_param *param;
583	struct pm121_sys_state *st;
584	struct wf_sensor *sensor;
585	struct wf_control *control;
586	s32 temp, new_setpoint;
587	int rc;
588
589	param = &(pm121_sys_all_params[loop_id][pm121_mach_model-2]);
590	st = pm121_sys_state[loop_id];
591	sensor = *(param->sensor);
592	control = controls[param->control_id];
593
594	if (--st->ticks != 0) {
595		if (pm121_readjust)
596			goto readjust;
597		return;
598	}
599	st->ticks = PM121_SYS_INTERVAL;
600
601	rc = sensor->ops->get_value(sensor, &temp);
602	if (rc) {
603		printk(KERN_WARNING "windfarm: %s sensor error %d\n",
604		       sensor->name, rc);
605		pm121_failure_state |= FAILURE_SENSOR;
606		return;
607	}
608
609	pr_debug("pm121: %s Fan tick ! %s: %d.%03d\n",
610		 loop_names[loop_id], sensor->name,
611		 FIX32TOPRINT(temp));
612
613	new_setpoint = wf_pid_run(&st->pid, temp);
614
615	/* correction */
616	new_setpoint = pm121_correct(new_setpoint,
617				     param->control_id,
618				     st->pid.param.min);
619	/* linked corretion */
620	new_setpoint = pm121_connect(param->control_id, new_setpoint);
621
622	if (new_setpoint == st->setpoint)
623		return;
624	st->setpoint = new_setpoint;
625	pr_debug("pm121: %s corrected setpoint: %d RPM\n",
626		 control->name, (int)new_setpoint);
627 readjust:
628	if (control && pm121_failure_state == 0) {
629		rc = control->ops->set_value(control, st->setpoint);
630		if (rc) {
631			printk(KERN_WARNING "windfarm: %s fan error %d\n",
632			       control->name, rc);
633			pm121_failure_state |= FAILURE_FAN;
634		}
635	}
636}
637
638
639/* CPU LOOP */
640static void pm121_create_cpu_fans(void)
641{
642	struct wf_cpu_pid_param pid_param;
643	const struct smu_sdbp_header *hdr;
644	struct smu_sdbp_cpupiddata *piddata;
645	struct smu_sdbp_fvt *fvt;
646	struct wf_control *fan_cpu;
647	s32 tmax, tdelta, maxpow, powadj;
648
649	fan_cpu = controls[FAN_CPU];
650
651	/* First, locate the PID params in SMU SBD */
652	hdr = smu_get_sdb_partition(SMU_SDB_CPUPIDDATA_ID, NULL);
653	if (hdr == 0) {
654		printk(KERN_WARNING "pm121: CPU PID fan config not found.\n");
655		goto fail;
656	}
657	piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
658
659	/* Get the FVT params for operating point 0 (the only supported one
660	 * for now) in order to get tmax
661	 */
662	hdr = smu_get_sdb_partition(SMU_SDB_FVT_ID, NULL);
663	if (hdr) {
664		fvt = (struct smu_sdbp_fvt *)&hdr[1];
665		tmax = ((s32)fvt->maxtemp) << 16;
666	} else
667		tmax = 0x5e0000; /* 94 degree default */
668
669	/* Alloc & initialize state */
670	pm121_cpu_state = kmalloc(sizeof(struct pm121_cpu_state),
671				  GFP_KERNEL);
672	if (pm121_cpu_state == NULL)
673		goto fail;
674	pm121_cpu_state->ticks = 1;
675
676	/* Fill PID params */
677	pid_param.interval = PM121_CPU_INTERVAL;
678	pid_param.history_len = piddata->history_len;
679	if (pid_param.history_len > WF_CPU_PID_MAX_HISTORY) {
680		printk(KERN_WARNING "pm121: History size overflow on "
681		       "CPU control loop (%d)\n", piddata->history_len);
682		pid_param.history_len = WF_CPU_PID_MAX_HISTORY;
683	}
684	pid_param.gd = piddata->gd;
685	pid_param.gp = piddata->gp;
686	pid_param.gr = piddata->gr / pid_param.history_len;
687
688	tdelta = ((s32)piddata->target_temp_delta) << 16;
689	maxpow = ((s32)piddata->max_power) << 16;
690	powadj = ((s32)piddata->power_adj) << 16;
691
692	pid_param.tmax = tmax;
693	pid_param.ttarget = tmax - tdelta;
694	pid_param.pmaxadj = maxpow - powadj;
695
696	pid_param.min = fan_cpu->ops->get_min(fan_cpu);
697	pid_param.max = fan_cpu->ops->get_max(fan_cpu);
698
699	wf_cpu_pid_init(&pm121_cpu_state->pid, &pid_param);
700
701	pr_debug("pm121: CPU Fan control initialized.\n");
702	pr_debug("       ttarget=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM,\n",
703		 FIX32TOPRINT(pid_param.ttarget), FIX32TOPRINT(pid_param.tmax),
704		 pid_param.min, pid_param.max);
705
706	return;
707
708 fail:
709	printk(KERN_WARNING "pm121: CPU fan config not found, max fan speed\n");
710
711	if (controls[CPUFREQ])
712		wf_control_set_max(controls[CPUFREQ]);
713	if (fan_cpu)
714		wf_control_set_max(fan_cpu);
715}
716
717
718static void pm121_cpu_fans_tick(struct pm121_cpu_state *st)
719{
720	s32 new_setpoint, temp, power;
721	struct wf_control *fan_cpu = NULL;
722	int rc;
723
724	if (--st->ticks != 0) {
725		if (pm121_readjust)
726			goto readjust;
727		return;
728	}
729	st->ticks = PM121_CPU_INTERVAL;
730
731	fan_cpu = controls[FAN_CPU];
732
733	rc = sensor_cpu_temp->ops->get_value(sensor_cpu_temp, &temp);
734	if (rc) {
735		printk(KERN_WARNING "pm121: CPU temp sensor error %d\n",
736		       rc);
737		pm121_failure_state |= FAILURE_SENSOR;
738		return;
739	}
740
741	rc = sensor_cpu_power->ops->get_value(sensor_cpu_power, &power);
742	if (rc) {
743		printk(KERN_WARNING "pm121: CPU power sensor error %d\n",
744		       rc);
745		pm121_failure_state |= FAILURE_SENSOR;
746		return;
747	}
748
749	pr_debug("pm121: CPU Fans tick ! CPU temp: %d.%03d°C, power: %d.%03d\n",
750		 FIX32TOPRINT(temp), FIX32TOPRINT(power));
751
752	if (temp > st->pid.param.tmax)
753		pm121_failure_state |= FAILURE_OVERTEMP;
754
755	new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);
756
757	/* correction */
758	new_setpoint = pm121_correct(new_setpoint,
759				     FAN_CPU,
760				     st->pid.param.min);
761
762	/* connected correction */
763	new_setpoint = pm121_connect(FAN_CPU, new_setpoint);
764
765	if (st->setpoint == new_setpoint)
766		return;
767	st->setpoint = new_setpoint;
768	pr_debug("pm121: CPU corrected setpoint: %d RPM\n", (int)new_setpoint);
769
770 readjust:
771	if (fan_cpu && pm121_failure_state == 0) {
772		rc = fan_cpu->ops->set_value(fan_cpu, st->setpoint);
773		if (rc) {
774			printk(KERN_WARNING "pm121: %s fan error %d\n",
775			       fan_cpu->name, rc);
776			pm121_failure_state |= FAILURE_FAN;
777		}
778	}
779}
780
781/*
782 * ****** Common ******
783 *
784 */
785
786static void pm121_tick(void)
787{
788	unsigned int last_failure = pm121_failure_state;
789	unsigned int new_failure;
790	s32 total_power;
791	int i;
792
793	if (!pm121_started) {
794		pr_debug("pm121: creating control loops !\n");
795		for (i = 0; i < N_LOOPS; i++)
796			pm121_create_sys_fans(i);
797
798		pm121_create_cpu_fans();
799		pm121_started = true;
800	}
801
802	/* skipping ticks */
803	if (pm121_skipping && --pm121_skipping)
804		return;
805
806	/* compute average power */
807	total_power = 0;
808	for (i = 0; i < pm121_cpu_state->pid.param.history_len; i++)
809		total_power += pm121_cpu_state->pid.powers[i];
810
811	average_power = total_power / pm121_cpu_state->pid.param.history_len;
812
813
814	pm121_failure_state = 0;
815	for (i = 0 ; i < N_LOOPS; i++) {
816		if (pm121_sys_state[i])
817			pm121_sys_fans_tick(i);
818	}
819
820	if (pm121_cpu_state)
821		pm121_cpu_fans_tick(pm121_cpu_state);
822
823	pm121_readjust = 0;
824	new_failure = pm121_failure_state & ~last_failure;
825
826	/* If entering failure mode, clamp cpufreq and ramp all
827	 * fans to full speed.
828	 */
829	if (pm121_failure_state && !last_failure) {
830		for (i = 0; i < N_CONTROLS; i++) {
831			if (controls[i])
832				wf_control_set_max(controls[i]);
833		}
834	}
835
836	/* If leaving failure mode, unclamp cpufreq and readjust
837	 * all fans on next iteration
838	 */
839	if (!pm121_failure_state && last_failure) {
840		if (controls[CPUFREQ])
841			wf_control_set_min(controls[CPUFREQ]);
842		pm121_readjust = 1;
843	}
844
845	/* Overtemp condition detected, notify and start skipping a couple
846	 * ticks to let the temperature go down
847	 */
848	if (new_failure & FAILURE_OVERTEMP) {
849		wf_set_overtemp();
850		pm121_skipping = 2;
851		pm121_overtemp = true;
852	}
853
854	/* We only clear the overtemp condition if overtemp is cleared
855	 * _and_ no other failure is present. Since a sensor error will
856	 * clear the overtemp condition (can't measure temperature) at
857	 * the control loop levels, but we don't want to keep it clear
858	 * here in this case
859	 */
860	if (!pm121_failure_state && pm121_overtemp) {
861		wf_clear_overtemp();
862		pm121_overtemp = false;
863	}
864}
865
866
867static struct wf_control* pm121_register_control(struct wf_control *ct,
868						 const char *match,
869						 unsigned int id)
870{
871	if (controls[id] == NULL && !strcmp(ct->name, match)) {
872		if (wf_get_control(ct) == 0)
873			controls[id] = ct;
874	}
875	return controls[id];
876}
877
878static void pm121_new_control(struct wf_control *ct)
879{
880	int all = 1;
881
882	if (pm121_all_controls_ok)
883		return;
884
885	all = pm121_register_control(ct, "optical-drive-fan", FAN_OD) && all;
886	all = pm121_register_control(ct, "hard-drive-fan", FAN_HD) && all;
887	all = pm121_register_control(ct, "cpu-fan", FAN_CPU) && all;
888	all = pm121_register_control(ct, "cpufreq-clamp", CPUFREQ) && all;
889
890	if (all)
891		pm121_all_controls_ok = 1;
892}
893
894
895
896
897static struct wf_sensor* pm121_register_sensor(struct wf_sensor *sensor,
898					       const char *match,
899					       struct wf_sensor **var)
900{
901	if (*var == NULL && !strcmp(sensor->name, match)) {
902		if (wf_get_sensor(sensor) == 0)
903			*var = sensor;
904	}
905	return *var;
906}
907
908static void pm121_new_sensor(struct wf_sensor *sr)
909{
910	int all = 1;
911
912	if (pm121_all_sensors_ok)
913		return;
914
915	all = pm121_register_sensor(sr, "cpu-temp",
916				    &sensor_cpu_temp) && all;
917	all = pm121_register_sensor(sr, "cpu-current",
918				    &sensor_cpu_current) && all;
919	all = pm121_register_sensor(sr, "cpu-voltage",
920				    &sensor_cpu_voltage) && all;
921	all = pm121_register_sensor(sr, "cpu-power",
922				    &sensor_cpu_power) && all;
923	all = pm121_register_sensor(sr, "hard-drive-temp",
924				    &sensor_hard_drive_temp) && all;
925	all = pm121_register_sensor(sr, "optical-drive-temp",
926				    &sensor_optical_drive_temp) && all;
927	all = pm121_register_sensor(sr, "incoming-air-temp",
928				    &sensor_incoming_air_temp) && all;
929	all = pm121_register_sensor(sr, "north-bridge-temp",
930				    &sensor_north_bridge_temp) && all;
931	all = pm121_register_sensor(sr, "gpu-temp",
932				    &sensor_gpu_temp) && all;
933
934	if (all)
935		pm121_all_sensors_ok = 1;
936}
937
938
939
940static int pm121_notify(struct notifier_block *self,
941			unsigned long event, void *data)
942{
943	switch (event) {
944	case WF_EVENT_NEW_CONTROL:
945		pr_debug("pm121: new control %s detected\n",
946			 ((struct wf_control *)data)->name);
947		pm121_new_control(data);
948		break;
949	case WF_EVENT_NEW_SENSOR:
950		pr_debug("pm121: new sensor %s detected\n",
951			 ((struct wf_sensor *)data)->name);
952		pm121_new_sensor(data);
953		break;
954	case WF_EVENT_TICK:
955		if (pm121_all_controls_ok && pm121_all_sensors_ok)
956			pm121_tick();
957		break;
958	}
959
960	return 0;
961}
962
963static struct notifier_block pm121_events = {
964	.notifier_call	= pm121_notify,
965};
966
967static int pm121_init_pm(void)
968{
969	const struct smu_sdbp_header *hdr;
970
971	hdr = smu_get_sdb_partition(SMU_SDB_SENSORTREE_ID, NULL);
972	if (hdr != 0) {
973		struct smu_sdbp_sensortree *st =
974			(struct smu_sdbp_sensortree *)&hdr[1];
975		pm121_mach_model = st->model_id;
976	}
977
978	pm121_connection = &pm121_connections[pm121_mach_model - 2];
979
980	printk(KERN_INFO "pm121: Initializing for iMac G5 iSight model ID %d\n",
981	       pm121_mach_model);
982
983	return 0;
984}
985
986
987static int pm121_probe(struct platform_device *ddev)
988{
989	wf_register_client(&pm121_events);
990
991	return 0;
992}
993
994static int pm121_remove(struct platform_device *ddev)
995{
996	wf_unregister_client(&pm121_events);
997	return 0;
998}
999
1000static struct platform_driver pm121_driver = {
1001	.probe = pm121_probe,
1002	.remove = pm121_remove,
1003	.driver = {
1004		.name = "windfarm",
1005		.bus = &platform_bus_type,
1006	},
1007};
1008
1009
1010static int __init pm121_init(void)
1011{
1012	int rc = -ENODEV;
1013
1014	if (of_machine_is_compatible("PowerMac12,1"))
1015		rc = pm121_init_pm();
1016
1017	if (rc == 0) {
1018		request_module("windfarm_smu_controls");
1019		request_module("windfarm_smu_sensors");
1020		request_module("windfarm_smu_sat");
1021		request_module("windfarm_lm75_sensor");
1022		request_module("windfarm_max6690_sensor");
1023		request_module("windfarm_cpufreq_clamp");
1024		platform_driver_register(&pm121_driver);
1025	}
1026
1027	return rc;
1028}
1029
1030static void __exit pm121_exit(void)
1031{
1032
1033	platform_driver_unregister(&pm121_driver);
1034}
1035
1036
1037module_init(pm121_init);
1038module_exit(pm121_exit);
1039
1040MODULE_AUTHOR("Étienne Bersac <bersace@gmail.com>");
1041MODULE_DESCRIPTION("Thermal control logic for iMac G5 (iSight)");
1042MODULE_LICENSE("GPL");
1043
1044