1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7#include <linux/acpi.h> 8#include <linux/acpi_iort.h> 9#include <linux/bitfield.h> 10#include <linux/bitmap.h> 11#include <linux/cpu.h> 12#include <linux/crash_dump.h> 13#include <linux/delay.h> 14#include <linux/dma-iommu.h> 15#include <linux/efi.h> 16#include <linux/interrupt.h> 17#include <linux/iopoll.h> 18#include <linux/irqdomain.h> 19#include <linux/list.h> 20#include <linux/log2.h> 21#include <linux/memblock.h> 22#include <linux/mm.h> 23#include <linux/msi.h> 24#include <linux/of.h> 25#include <linux/of_address.h> 26#include <linux/of_irq.h> 27#include <linux/of_pci.h> 28#include <linux/of_platform.h> 29#include <linux/percpu.h> 30#include <linux/slab.h> 31#include <linux/syscore_ops.h> 32 33#include <linux/irqchip.h> 34#include <linux/irqchip/arm-gic-v3.h> 35#include <linux/irqchip/arm-gic-v4.h> 36 37#include <asm/cputype.h> 38#include <asm/exception.h> 39 40#include "irq-gic-common.h" 41 42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 44#define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 45 46#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 47#define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1) 48 49static u32 lpi_id_bits; 50 51/* 52 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 53 * deal with (one configuration byte per interrupt). PENDBASE has to 54 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 55 */ 56#define LPI_NRBITS lpi_id_bits 57#define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 58#define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 59 60#define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 61 62/* 63 * Collection structure - just an ID, and a redistributor address to 64 * ping. We use one per CPU as a bag of interrupts assigned to this 65 * CPU. 66 */ 67struct its_collection { 68 u64 target_address; 69 u16 col_id; 70}; 71 72/* 73 * The ITS_BASER structure - contains memory information, cached 74 * value of BASER register configuration and ITS page size. 75 */ 76struct its_baser { 77 void *base; 78 u64 val; 79 u32 order; 80 u32 psz; 81}; 82 83struct its_device; 84 85/* 86 * The ITS structure - contains most of the infrastructure, with the 87 * top-level MSI domain, the command queue, the collections, and the 88 * list of devices writing to it. 89 * 90 * dev_alloc_lock has to be taken for device allocations, while the 91 * spinlock must be taken to parse data structures such as the device 92 * list. 93 */ 94struct its_node { 95 raw_spinlock_t lock; 96 struct mutex dev_alloc_lock; 97 struct list_head entry; 98 void __iomem *base; 99 void __iomem *sgir_base; 100 phys_addr_t phys_base; 101 struct its_cmd_block *cmd_base; 102 struct its_cmd_block *cmd_write; 103 struct its_baser tables[GITS_BASER_NR_REGS]; 104 struct its_collection *collections; 105 struct fwnode_handle *fwnode_handle; 106 u64 (*get_msi_base)(struct its_device *its_dev); 107 u64 typer; 108 u64 cbaser_save; 109 u32 ctlr_save; 110 u32 mpidr; 111 struct list_head its_device_list; 112 u64 flags; 113 unsigned long list_nr; 114 int numa_node; 115 unsigned int msi_domain_flags; 116 u32 pre_its_base; /* for Socionext Synquacer */ 117 int vlpi_redist_offset; 118}; 119 120#define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 121#define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 122#define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 123 124#define ITS_ITT_ALIGN SZ_256 125 126/* The maximum number of VPEID bits supported by VLPI commands */ 127#define ITS_MAX_VPEID_BITS \ 128 ({ \ 129 int nvpeid = 16; \ 130 if (gic_rdists->has_rvpeid && \ 131 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 132 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 133 GICD_TYPER2_VID); \ 134 \ 135 nvpeid; \ 136 }) 137#define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 138 139/* Convert page order to size in bytes */ 140#define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 141 142struct event_lpi_map { 143 unsigned long *lpi_map; 144 u16 *col_map; 145 irq_hw_number_t lpi_base; 146 int nr_lpis; 147 raw_spinlock_t vlpi_lock; 148 struct its_vm *vm; 149 struct its_vlpi_map *vlpi_maps; 150 int nr_vlpis; 151}; 152 153/* 154 * The ITS view of a device - belongs to an ITS, owns an interrupt 155 * translation table, and a list of interrupts. If it some of its 156 * LPIs are injected into a guest (GICv4), the event_map.vm field 157 * indicates which one. 158 */ 159struct its_device { 160 struct list_head entry; 161 struct its_node *its; 162 struct event_lpi_map event_map; 163 void *itt; 164 u32 nr_ites; 165 u32 device_id; 166 bool shared; 167}; 168 169static struct { 170 raw_spinlock_t lock; 171 struct its_device *dev; 172 struct its_vpe **vpes; 173 int next_victim; 174} vpe_proxy; 175 176struct cpu_lpi_count { 177 atomic_t managed; 178 atomic_t unmanaged; 179}; 180 181static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 182 183static LIST_HEAD(its_nodes); 184static DEFINE_RAW_SPINLOCK(its_lock); 185static struct rdists *gic_rdists; 186static struct irq_domain *its_parent; 187 188static unsigned long its_list_map; 189static u16 vmovp_seq_num; 190static DEFINE_RAW_SPINLOCK(vmovp_lock); 191 192static DEFINE_IDA(its_vpeid_ida); 193 194#define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 195#define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 196#define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 197#define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 198 199/* 200 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 201 * always have vSGIs mapped. 202 */ 203static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 204{ 205 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 206} 207 208static u16 get_its_list(struct its_vm *vm) 209{ 210 struct its_node *its; 211 unsigned long its_list = 0; 212 213 list_for_each_entry(its, &its_nodes, entry) { 214 if (!is_v4(its)) 215 continue; 216 217 if (require_its_list_vmovp(vm, its)) 218 __set_bit(its->list_nr, &its_list); 219 } 220 221 return (u16)its_list; 222} 223 224static inline u32 its_get_event_id(struct irq_data *d) 225{ 226 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 227 return d->hwirq - its_dev->event_map.lpi_base; 228} 229 230static struct its_collection *dev_event_to_col(struct its_device *its_dev, 231 u32 event) 232{ 233 struct its_node *its = its_dev->its; 234 235 return its->collections + its_dev->event_map.col_map[event]; 236} 237 238static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 239 u32 event) 240{ 241 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 242 return NULL; 243 244 return &its_dev->event_map.vlpi_maps[event]; 245} 246 247static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 248{ 249 if (irqd_is_forwarded_to_vcpu(d)) { 250 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 251 u32 event = its_get_event_id(d); 252 253 return dev_event_to_vlpi_map(its_dev, event); 254 } 255 256 return NULL; 257} 258 259static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 260{ 261 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 262 return vpe->col_idx; 263} 264 265static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 266{ 267 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 268} 269 270static struct irq_chip its_vpe_irq_chip; 271 272static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 273{ 274 struct its_vpe *vpe = NULL; 275 int cpu; 276 277 if (d->chip == &its_vpe_irq_chip) { 278 vpe = irq_data_get_irq_chip_data(d); 279 } else { 280 struct its_vlpi_map *map = get_vlpi_map(d); 281 if (map) 282 vpe = map->vpe; 283 } 284 285 if (vpe) { 286 cpu = vpe_to_cpuid_lock(vpe, flags); 287 } else { 288 /* Physical LPIs are already locked via the irq_desc lock */ 289 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 290 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 291 /* Keep GCC quiet... */ 292 *flags = 0; 293 } 294 295 return cpu; 296} 297 298static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 299{ 300 struct its_vpe *vpe = NULL; 301 302 if (d->chip == &its_vpe_irq_chip) { 303 vpe = irq_data_get_irq_chip_data(d); 304 } else { 305 struct its_vlpi_map *map = get_vlpi_map(d); 306 if (map) 307 vpe = map->vpe; 308 } 309 310 if (vpe) 311 vpe_to_cpuid_unlock(vpe, flags); 312} 313 314static struct its_collection *valid_col(struct its_collection *col) 315{ 316 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 317 return NULL; 318 319 return col; 320} 321 322static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 323{ 324 if (valid_col(its->collections + vpe->col_idx)) 325 return vpe; 326 327 return NULL; 328} 329 330/* 331 * ITS command descriptors - parameters to be encoded in a command 332 * block. 333 */ 334struct its_cmd_desc { 335 union { 336 struct { 337 struct its_device *dev; 338 u32 event_id; 339 } its_inv_cmd; 340 341 struct { 342 struct its_device *dev; 343 u32 event_id; 344 } its_clear_cmd; 345 346 struct { 347 struct its_device *dev; 348 u32 event_id; 349 } its_int_cmd; 350 351 struct { 352 struct its_device *dev; 353 int valid; 354 } its_mapd_cmd; 355 356 struct { 357 struct its_collection *col; 358 int valid; 359 } its_mapc_cmd; 360 361 struct { 362 struct its_device *dev; 363 u32 phys_id; 364 u32 event_id; 365 } its_mapti_cmd; 366 367 struct { 368 struct its_device *dev; 369 struct its_collection *col; 370 u32 event_id; 371 } its_movi_cmd; 372 373 struct { 374 struct its_device *dev; 375 u32 event_id; 376 } its_discard_cmd; 377 378 struct { 379 struct its_collection *col; 380 } its_invall_cmd; 381 382 struct { 383 struct its_vpe *vpe; 384 } its_vinvall_cmd; 385 386 struct { 387 struct its_vpe *vpe; 388 struct its_collection *col; 389 bool valid; 390 } its_vmapp_cmd; 391 392 struct { 393 struct its_vpe *vpe; 394 struct its_device *dev; 395 u32 virt_id; 396 u32 event_id; 397 bool db_enabled; 398 } its_vmapti_cmd; 399 400 struct { 401 struct its_vpe *vpe; 402 struct its_device *dev; 403 u32 event_id; 404 bool db_enabled; 405 } its_vmovi_cmd; 406 407 struct { 408 struct its_vpe *vpe; 409 struct its_collection *col; 410 u16 seq_num; 411 u16 its_list; 412 } its_vmovp_cmd; 413 414 struct { 415 struct its_vpe *vpe; 416 } its_invdb_cmd; 417 418 struct { 419 struct its_vpe *vpe; 420 u8 sgi; 421 u8 priority; 422 bool enable; 423 bool group; 424 bool clear; 425 } its_vsgi_cmd; 426 }; 427}; 428 429/* 430 * The ITS command block, which is what the ITS actually parses. 431 */ 432struct its_cmd_block { 433 union { 434 u64 raw_cmd[4]; 435 __le64 raw_cmd_le[4]; 436 }; 437}; 438 439#define ITS_CMD_QUEUE_SZ SZ_64K 440#define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 441 442typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 443 struct its_cmd_block *, 444 struct its_cmd_desc *); 445 446typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 447 struct its_cmd_block *, 448 struct its_cmd_desc *); 449 450static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 451{ 452 u64 mask = GENMASK_ULL(h, l); 453 *raw_cmd &= ~mask; 454 *raw_cmd |= (val << l) & mask; 455} 456 457static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 458{ 459 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 460} 461 462static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 463{ 464 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 465} 466 467static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 468{ 469 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 470} 471 472static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 473{ 474 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 475} 476 477static void its_encode_size(struct its_cmd_block *cmd, u8 size) 478{ 479 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 480} 481 482static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 483{ 484 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 485} 486 487static void its_encode_valid(struct its_cmd_block *cmd, int valid) 488{ 489 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 490} 491 492static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 493{ 494 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 495} 496 497static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 498{ 499 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 500} 501 502static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 503{ 504 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 505} 506 507static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 508{ 509 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 510} 511 512static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 513{ 514 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 515} 516 517static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 518{ 519 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 520} 521 522static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 523{ 524 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 525} 526 527static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 528{ 529 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 530} 531 532static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 533{ 534 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 535} 536 537static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 538{ 539 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 540} 541 542static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 543{ 544 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 545} 546 547static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 548{ 549 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 550} 551 552static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 553{ 554 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 555} 556 557static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 558 u32 vpe_db_lpi) 559{ 560 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 561} 562 563static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 564 u32 vpe_db_lpi) 565{ 566 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 567} 568 569static void its_encode_db(struct its_cmd_block *cmd, bool db) 570{ 571 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 572} 573 574static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 575{ 576 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 577} 578 579static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 580{ 581 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 582} 583 584static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 585{ 586 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 587} 588 589static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 590{ 591 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 592} 593 594static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 595{ 596 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 597} 598 599static inline void its_fixup_cmd(struct its_cmd_block *cmd) 600{ 601 /* Let's fixup BE commands */ 602 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 603 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 604 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 605 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 606} 607 608static struct its_collection *its_build_mapd_cmd(struct its_node *its, 609 struct its_cmd_block *cmd, 610 struct its_cmd_desc *desc) 611{ 612 unsigned long itt_addr; 613 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 614 615 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 616 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 617 618 its_encode_cmd(cmd, GITS_CMD_MAPD); 619 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 620 its_encode_size(cmd, size - 1); 621 its_encode_itt(cmd, itt_addr); 622 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 623 624 its_fixup_cmd(cmd); 625 626 return NULL; 627} 628 629static struct its_collection *its_build_mapc_cmd(struct its_node *its, 630 struct its_cmd_block *cmd, 631 struct its_cmd_desc *desc) 632{ 633 its_encode_cmd(cmd, GITS_CMD_MAPC); 634 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 635 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 636 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 637 638 its_fixup_cmd(cmd); 639 640 return desc->its_mapc_cmd.col; 641} 642 643static struct its_collection *its_build_mapti_cmd(struct its_node *its, 644 struct its_cmd_block *cmd, 645 struct its_cmd_desc *desc) 646{ 647 struct its_collection *col; 648 649 col = dev_event_to_col(desc->its_mapti_cmd.dev, 650 desc->its_mapti_cmd.event_id); 651 652 its_encode_cmd(cmd, GITS_CMD_MAPTI); 653 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 654 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 655 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 656 its_encode_collection(cmd, col->col_id); 657 658 its_fixup_cmd(cmd); 659 660 return valid_col(col); 661} 662 663static struct its_collection *its_build_movi_cmd(struct its_node *its, 664 struct its_cmd_block *cmd, 665 struct its_cmd_desc *desc) 666{ 667 struct its_collection *col; 668 669 col = dev_event_to_col(desc->its_movi_cmd.dev, 670 desc->its_movi_cmd.event_id); 671 672 its_encode_cmd(cmd, GITS_CMD_MOVI); 673 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 674 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 675 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 676 677 its_fixup_cmd(cmd); 678 679 return valid_col(col); 680} 681 682static struct its_collection *its_build_discard_cmd(struct its_node *its, 683 struct its_cmd_block *cmd, 684 struct its_cmd_desc *desc) 685{ 686 struct its_collection *col; 687 688 col = dev_event_to_col(desc->its_discard_cmd.dev, 689 desc->its_discard_cmd.event_id); 690 691 its_encode_cmd(cmd, GITS_CMD_DISCARD); 692 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 693 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 694 695 its_fixup_cmd(cmd); 696 697 return valid_col(col); 698} 699 700static struct its_collection *its_build_inv_cmd(struct its_node *its, 701 struct its_cmd_block *cmd, 702 struct its_cmd_desc *desc) 703{ 704 struct its_collection *col; 705 706 col = dev_event_to_col(desc->its_inv_cmd.dev, 707 desc->its_inv_cmd.event_id); 708 709 its_encode_cmd(cmd, GITS_CMD_INV); 710 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 711 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 712 713 its_fixup_cmd(cmd); 714 715 return valid_col(col); 716} 717 718static struct its_collection *its_build_int_cmd(struct its_node *its, 719 struct its_cmd_block *cmd, 720 struct its_cmd_desc *desc) 721{ 722 struct its_collection *col; 723 724 col = dev_event_to_col(desc->its_int_cmd.dev, 725 desc->its_int_cmd.event_id); 726 727 its_encode_cmd(cmd, GITS_CMD_INT); 728 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 729 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 730 731 its_fixup_cmd(cmd); 732 733 return valid_col(col); 734} 735 736static struct its_collection *its_build_clear_cmd(struct its_node *its, 737 struct its_cmd_block *cmd, 738 struct its_cmd_desc *desc) 739{ 740 struct its_collection *col; 741 742 col = dev_event_to_col(desc->its_clear_cmd.dev, 743 desc->its_clear_cmd.event_id); 744 745 its_encode_cmd(cmd, GITS_CMD_CLEAR); 746 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 747 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 748 749 its_fixup_cmd(cmd); 750 751 return valid_col(col); 752} 753 754static struct its_collection *its_build_invall_cmd(struct its_node *its, 755 struct its_cmd_block *cmd, 756 struct its_cmd_desc *desc) 757{ 758 its_encode_cmd(cmd, GITS_CMD_INVALL); 759 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 760 761 its_fixup_cmd(cmd); 762 763 return desc->its_invall_cmd.col; 764} 765 766static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 767 struct its_cmd_block *cmd, 768 struct its_cmd_desc *desc) 769{ 770 its_encode_cmd(cmd, GITS_CMD_VINVALL); 771 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 772 773 its_fixup_cmd(cmd); 774 775 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 776} 777 778static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 779 struct its_cmd_block *cmd, 780 struct its_cmd_desc *desc) 781{ 782 unsigned long vpt_addr, vconf_addr; 783 u64 target; 784 bool alloc; 785 786 its_encode_cmd(cmd, GITS_CMD_VMAPP); 787 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 788 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 789 790 if (!desc->its_vmapp_cmd.valid) { 791 if (is_v4_1(its)) { 792 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 793 its_encode_alloc(cmd, alloc); 794 } 795 796 goto out; 797 } 798 799 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 800 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 801 802 its_encode_target(cmd, target); 803 its_encode_vpt_addr(cmd, vpt_addr); 804 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 805 806 if (!is_v4_1(its)) 807 goto out; 808 809 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 810 811 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 812 813 its_encode_alloc(cmd, alloc); 814 815 /* We can only signal PTZ when alloc==1. Why do we have two bits? */ 816 its_encode_ptz(cmd, alloc); 817 its_encode_vconf_addr(cmd, vconf_addr); 818 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 819 820out: 821 its_fixup_cmd(cmd); 822 823 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 824} 825 826static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 827 struct its_cmd_block *cmd, 828 struct its_cmd_desc *desc) 829{ 830 u32 db; 831 832 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 833 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 834 else 835 db = 1023; 836 837 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 838 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 839 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 840 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 841 its_encode_db_phys_id(cmd, db); 842 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 843 844 its_fixup_cmd(cmd); 845 846 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 847} 848 849static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 850 struct its_cmd_block *cmd, 851 struct its_cmd_desc *desc) 852{ 853 u32 db; 854 855 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 856 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 857 else 858 db = 1023; 859 860 its_encode_cmd(cmd, GITS_CMD_VMOVI); 861 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 862 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 863 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 864 its_encode_db_phys_id(cmd, db); 865 its_encode_db_valid(cmd, true); 866 867 its_fixup_cmd(cmd); 868 869 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 870} 871 872static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 873 struct its_cmd_block *cmd, 874 struct its_cmd_desc *desc) 875{ 876 u64 target; 877 878 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 879 its_encode_cmd(cmd, GITS_CMD_VMOVP); 880 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 881 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 882 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 883 its_encode_target(cmd, target); 884 885 if (is_v4_1(its)) { 886 its_encode_db(cmd, true); 887 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 888 } 889 890 its_fixup_cmd(cmd); 891 892 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 893} 894 895static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 896 struct its_cmd_block *cmd, 897 struct its_cmd_desc *desc) 898{ 899 struct its_vlpi_map *map; 900 901 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 902 desc->its_inv_cmd.event_id); 903 904 its_encode_cmd(cmd, GITS_CMD_INV); 905 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 906 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 907 908 its_fixup_cmd(cmd); 909 910 return valid_vpe(its, map->vpe); 911} 912 913static struct its_vpe *its_build_vint_cmd(struct its_node *its, 914 struct its_cmd_block *cmd, 915 struct its_cmd_desc *desc) 916{ 917 struct its_vlpi_map *map; 918 919 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 920 desc->its_int_cmd.event_id); 921 922 its_encode_cmd(cmd, GITS_CMD_INT); 923 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 924 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 925 926 its_fixup_cmd(cmd); 927 928 return valid_vpe(its, map->vpe); 929} 930 931static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 932 struct its_cmd_block *cmd, 933 struct its_cmd_desc *desc) 934{ 935 struct its_vlpi_map *map; 936 937 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 938 desc->its_clear_cmd.event_id); 939 940 its_encode_cmd(cmd, GITS_CMD_CLEAR); 941 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 942 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 943 944 its_fixup_cmd(cmd); 945 946 return valid_vpe(its, map->vpe); 947} 948 949static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 950 struct its_cmd_block *cmd, 951 struct its_cmd_desc *desc) 952{ 953 if (WARN_ON(!is_v4_1(its))) 954 return NULL; 955 956 its_encode_cmd(cmd, GITS_CMD_INVDB); 957 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 958 959 its_fixup_cmd(cmd); 960 961 return valid_vpe(its, desc->its_invdb_cmd.vpe); 962} 963 964static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 965 struct its_cmd_block *cmd, 966 struct its_cmd_desc *desc) 967{ 968 if (WARN_ON(!is_v4_1(its))) 969 return NULL; 970 971 its_encode_cmd(cmd, GITS_CMD_VSGI); 972 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 973 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 974 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 975 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 976 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 977 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 978 979 its_fixup_cmd(cmd); 980 981 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 982} 983 984static u64 its_cmd_ptr_to_offset(struct its_node *its, 985 struct its_cmd_block *ptr) 986{ 987 return (ptr - its->cmd_base) * sizeof(*ptr); 988} 989 990static int its_queue_full(struct its_node *its) 991{ 992 int widx; 993 int ridx; 994 995 widx = its->cmd_write - its->cmd_base; 996 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 997 998 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 999 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1000 return 1; 1001 1002 return 0; 1003} 1004 1005static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1006{ 1007 struct its_cmd_block *cmd; 1008 u32 count = 1000000; /* 1s! */ 1009 1010 while (its_queue_full(its)) { 1011 count--; 1012 if (!count) { 1013 pr_err_ratelimited("ITS queue not draining\n"); 1014 return NULL; 1015 } 1016 cpu_relax(); 1017 udelay(1); 1018 } 1019 1020 cmd = its->cmd_write++; 1021 1022 /* Handle queue wrapping */ 1023 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1024 its->cmd_write = its->cmd_base; 1025 1026 /* Clear command */ 1027 cmd->raw_cmd[0] = 0; 1028 cmd->raw_cmd[1] = 0; 1029 cmd->raw_cmd[2] = 0; 1030 cmd->raw_cmd[3] = 0; 1031 1032 return cmd; 1033} 1034 1035static struct its_cmd_block *its_post_commands(struct its_node *its) 1036{ 1037 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1038 1039 writel_relaxed(wr, its->base + GITS_CWRITER); 1040 1041 return its->cmd_write; 1042} 1043 1044static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1045{ 1046 /* 1047 * Make sure the commands written to memory are observable by 1048 * the ITS. 1049 */ 1050 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1051 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1052 else 1053 dsb(ishst); 1054} 1055 1056static int its_wait_for_range_completion(struct its_node *its, 1057 u64 prev_idx, 1058 struct its_cmd_block *to) 1059{ 1060 u64 rd_idx, to_idx, linear_idx; 1061 u32 count = 1000000; /* 1s! */ 1062 1063 /* Linearize to_idx if the command set has wrapped around */ 1064 to_idx = its_cmd_ptr_to_offset(its, to); 1065 if (to_idx < prev_idx) 1066 to_idx += ITS_CMD_QUEUE_SZ; 1067 1068 linear_idx = prev_idx; 1069 1070 while (1) { 1071 s64 delta; 1072 1073 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1074 1075 /* 1076 * Compute the read pointer progress, taking the 1077 * potential wrap-around into account. 1078 */ 1079 delta = rd_idx - prev_idx; 1080 if (rd_idx < prev_idx) 1081 delta += ITS_CMD_QUEUE_SZ; 1082 1083 linear_idx += delta; 1084 if (linear_idx >= to_idx) 1085 break; 1086 1087 count--; 1088 if (!count) { 1089 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1090 to_idx, linear_idx); 1091 return -1; 1092 } 1093 prev_idx = rd_idx; 1094 cpu_relax(); 1095 udelay(1); 1096 } 1097 1098 return 0; 1099} 1100 1101/* Warning, macro hell follows */ 1102#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1103void name(struct its_node *its, \ 1104 buildtype builder, \ 1105 struct its_cmd_desc *desc) \ 1106{ \ 1107 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1108 synctype *sync_obj; \ 1109 unsigned long flags; \ 1110 u64 rd_idx; \ 1111 \ 1112 raw_spin_lock_irqsave(&its->lock, flags); \ 1113 \ 1114 cmd = its_allocate_entry(its); \ 1115 if (!cmd) { /* We're soooooo screewed... */ \ 1116 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1117 return; \ 1118 } \ 1119 sync_obj = builder(its, cmd, desc); \ 1120 its_flush_cmd(its, cmd); \ 1121 \ 1122 if (sync_obj) { \ 1123 sync_cmd = its_allocate_entry(its); \ 1124 if (!sync_cmd) \ 1125 goto post; \ 1126 \ 1127 buildfn(its, sync_cmd, sync_obj); \ 1128 its_flush_cmd(its, sync_cmd); \ 1129 } \ 1130 \ 1131post: \ 1132 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1133 next_cmd = its_post_commands(its); \ 1134 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1135 \ 1136 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1137 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1138} 1139 1140static void its_build_sync_cmd(struct its_node *its, 1141 struct its_cmd_block *sync_cmd, 1142 struct its_collection *sync_col) 1143{ 1144 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1145 its_encode_target(sync_cmd, sync_col->target_address); 1146 1147 its_fixup_cmd(sync_cmd); 1148} 1149 1150static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1151 struct its_collection, its_build_sync_cmd) 1152 1153static void its_build_vsync_cmd(struct its_node *its, 1154 struct its_cmd_block *sync_cmd, 1155 struct its_vpe *sync_vpe) 1156{ 1157 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1158 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1159 1160 its_fixup_cmd(sync_cmd); 1161} 1162 1163static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1164 struct its_vpe, its_build_vsync_cmd) 1165 1166static void its_send_int(struct its_device *dev, u32 event_id) 1167{ 1168 struct its_cmd_desc desc; 1169 1170 desc.its_int_cmd.dev = dev; 1171 desc.its_int_cmd.event_id = event_id; 1172 1173 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1174} 1175 1176static void its_send_clear(struct its_device *dev, u32 event_id) 1177{ 1178 struct its_cmd_desc desc; 1179 1180 desc.its_clear_cmd.dev = dev; 1181 desc.its_clear_cmd.event_id = event_id; 1182 1183 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1184} 1185 1186static void its_send_inv(struct its_device *dev, u32 event_id) 1187{ 1188 struct its_cmd_desc desc; 1189 1190 desc.its_inv_cmd.dev = dev; 1191 desc.its_inv_cmd.event_id = event_id; 1192 1193 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1194} 1195 1196static void its_send_mapd(struct its_device *dev, int valid) 1197{ 1198 struct its_cmd_desc desc; 1199 1200 desc.its_mapd_cmd.dev = dev; 1201 desc.its_mapd_cmd.valid = !!valid; 1202 1203 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1204} 1205 1206static void its_send_mapc(struct its_node *its, struct its_collection *col, 1207 int valid) 1208{ 1209 struct its_cmd_desc desc; 1210 1211 desc.its_mapc_cmd.col = col; 1212 desc.its_mapc_cmd.valid = !!valid; 1213 1214 its_send_single_command(its, its_build_mapc_cmd, &desc); 1215} 1216 1217static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1218{ 1219 struct its_cmd_desc desc; 1220 1221 desc.its_mapti_cmd.dev = dev; 1222 desc.its_mapti_cmd.phys_id = irq_id; 1223 desc.its_mapti_cmd.event_id = id; 1224 1225 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1226} 1227 1228static void its_send_movi(struct its_device *dev, 1229 struct its_collection *col, u32 id) 1230{ 1231 struct its_cmd_desc desc; 1232 1233 desc.its_movi_cmd.dev = dev; 1234 desc.its_movi_cmd.col = col; 1235 desc.its_movi_cmd.event_id = id; 1236 1237 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1238} 1239 1240static void its_send_discard(struct its_device *dev, u32 id) 1241{ 1242 struct its_cmd_desc desc; 1243 1244 desc.its_discard_cmd.dev = dev; 1245 desc.its_discard_cmd.event_id = id; 1246 1247 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1248} 1249 1250static void its_send_invall(struct its_node *its, struct its_collection *col) 1251{ 1252 struct its_cmd_desc desc; 1253 1254 desc.its_invall_cmd.col = col; 1255 1256 its_send_single_command(its, its_build_invall_cmd, &desc); 1257} 1258 1259static void its_send_vmapti(struct its_device *dev, u32 id) 1260{ 1261 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1262 struct its_cmd_desc desc; 1263 1264 desc.its_vmapti_cmd.vpe = map->vpe; 1265 desc.its_vmapti_cmd.dev = dev; 1266 desc.its_vmapti_cmd.virt_id = map->vintid; 1267 desc.its_vmapti_cmd.event_id = id; 1268 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1269 1270 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1271} 1272 1273static void its_send_vmovi(struct its_device *dev, u32 id) 1274{ 1275 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1276 struct its_cmd_desc desc; 1277 1278 desc.its_vmovi_cmd.vpe = map->vpe; 1279 desc.its_vmovi_cmd.dev = dev; 1280 desc.its_vmovi_cmd.event_id = id; 1281 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1282 1283 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1284} 1285 1286static void its_send_vmapp(struct its_node *its, 1287 struct its_vpe *vpe, bool valid) 1288{ 1289 struct its_cmd_desc desc; 1290 1291 desc.its_vmapp_cmd.vpe = vpe; 1292 desc.its_vmapp_cmd.valid = valid; 1293 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1294 1295 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1296} 1297 1298static void its_send_vmovp(struct its_vpe *vpe) 1299{ 1300 struct its_cmd_desc desc = {}; 1301 struct its_node *its; 1302 unsigned long flags; 1303 int col_id = vpe->col_idx; 1304 1305 desc.its_vmovp_cmd.vpe = vpe; 1306 1307 if (!its_list_map) { 1308 its = list_first_entry(&its_nodes, struct its_node, entry); 1309 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1310 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1311 return; 1312 } 1313 1314 /* 1315 * Yet another marvel of the architecture. If using the 1316 * its_list "feature", we need to make sure that all ITSs 1317 * receive all VMOVP commands in the same order. The only way 1318 * to guarantee this is to make vmovp a serialization point. 1319 * 1320 * Wall <-- Head. 1321 */ 1322 raw_spin_lock_irqsave(&vmovp_lock, flags); 1323 1324 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1325 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1326 1327 /* Emit VMOVPs */ 1328 list_for_each_entry(its, &its_nodes, entry) { 1329 if (!is_v4(its)) 1330 continue; 1331 1332 if (!require_its_list_vmovp(vpe->its_vm, its)) 1333 continue; 1334 1335 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1336 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1337 } 1338 1339 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1340} 1341 1342static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1343{ 1344 struct its_cmd_desc desc; 1345 1346 desc.its_vinvall_cmd.vpe = vpe; 1347 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1348} 1349 1350static void its_send_vinv(struct its_device *dev, u32 event_id) 1351{ 1352 struct its_cmd_desc desc; 1353 1354 /* 1355 * There is no real VINV command. This is just a normal INV, 1356 * with a VSYNC instead of a SYNC. 1357 */ 1358 desc.its_inv_cmd.dev = dev; 1359 desc.its_inv_cmd.event_id = event_id; 1360 1361 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1362} 1363 1364static void its_send_vint(struct its_device *dev, u32 event_id) 1365{ 1366 struct its_cmd_desc desc; 1367 1368 /* 1369 * There is no real VINT command. This is just a normal INT, 1370 * with a VSYNC instead of a SYNC. 1371 */ 1372 desc.its_int_cmd.dev = dev; 1373 desc.its_int_cmd.event_id = event_id; 1374 1375 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1376} 1377 1378static void its_send_vclear(struct its_device *dev, u32 event_id) 1379{ 1380 struct its_cmd_desc desc; 1381 1382 /* 1383 * There is no real VCLEAR command. This is just a normal CLEAR, 1384 * with a VSYNC instead of a SYNC. 1385 */ 1386 desc.its_clear_cmd.dev = dev; 1387 desc.its_clear_cmd.event_id = event_id; 1388 1389 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1390} 1391 1392static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1393{ 1394 struct its_cmd_desc desc; 1395 1396 desc.its_invdb_cmd.vpe = vpe; 1397 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1398} 1399 1400/* 1401 * irqchip functions - assumes MSI, mostly. 1402 */ 1403static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1404{ 1405 struct its_vlpi_map *map = get_vlpi_map(d); 1406 irq_hw_number_t hwirq; 1407 void *va; 1408 u8 *cfg; 1409 1410 if (map) { 1411 va = page_address(map->vm->vprop_page); 1412 hwirq = map->vintid; 1413 1414 /* Remember the updated property */ 1415 map->properties &= ~clr; 1416 map->properties |= set | LPI_PROP_GROUP1; 1417 } else { 1418 va = gic_rdists->prop_table_va; 1419 hwirq = d->hwirq; 1420 } 1421 1422 cfg = va + hwirq - 8192; 1423 *cfg &= ~clr; 1424 *cfg |= set | LPI_PROP_GROUP1; 1425 1426 /* 1427 * Make the above write visible to the redistributors. 1428 * And yes, we're flushing exactly: One. Single. Byte. 1429 * Humpf... 1430 */ 1431 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1432 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1433 else 1434 dsb(ishst); 1435} 1436 1437static void wait_for_syncr(void __iomem *rdbase) 1438{ 1439 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1440 cpu_relax(); 1441} 1442 1443static void __direct_lpi_inv(struct irq_data *d, u64 val) 1444{ 1445 void __iomem *rdbase; 1446 unsigned long flags; 1447 int cpu; 1448 1449 /* Target the redistributor this LPI is currently routed to */ 1450 cpu = irq_to_cpuid_lock(d, &flags); 1451 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1452 1453 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1454 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1455 wait_for_syncr(rdbase); 1456 1457 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1458 irq_to_cpuid_unlock(d, flags); 1459} 1460 1461static void direct_lpi_inv(struct irq_data *d) 1462{ 1463 struct its_vlpi_map *map = get_vlpi_map(d); 1464 u64 val; 1465 1466 if (map) { 1467 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1468 1469 WARN_ON(!is_v4_1(its_dev->its)); 1470 1471 val = GICR_INVLPIR_V; 1472 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1473 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1474 } else { 1475 val = d->hwirq; 1476 } 1477 1478 __direct_lpi_inv(d, val); 1479} 1480 1481static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1482{ 1483 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1484 1485 lpi_write_config(d, clr, set); 1486 if (gic_rdists->has_direct_lpi && 1487 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1488 direct_lpi_inv(d); 1489 else if (!irqd_is_forwarded_to_vcpu(d)) 1490 its_send_inv(its_dev, its_get_event_id(d)); 1491 else 1492 its_send_vinv(its_dev, its_get_event_id(d)); 1493} 1494 1495static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1496{ 1497 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1498 u32 event = its_get_event_id(d); 1499 struct its_vlpi_map *map; 1500 1501 /* 1502 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1503 * here. 1504 */ 1505 if (is_v4_1(its_dev->its)) 1506 return; 1507 1508 map = dev_event_to_vlpi_map(its_dev, event); 1509 1510 if (map->db_enabled == enable) 1511 return; 1512 1513 map->db_enabled = enable; 1514 1515 /* 1516 * More fun with the architecture: 1517 * 1518 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1519 * value or to 1023, depending on the enable bit. But that 1520 * would be issuing a mapping for an /existing/ DevID+EventID 1521 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1522 * to the /same/ vPE, using this opportunity to adjust the 1523 * doorbell. Mouahahahaha. We loves it, Precious. 1524 */ 1525 its_send_vmovi(its_dev, event); 1526} 1527 1528static void its_mask_irq(struct irq_data *d) 1529{ 1530 if (irqd_is_forwarded_to_vcpu(d)) 1531 its_vlpi_set_doorbell(d, false); 1532 1533 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1534} 1535 1536static void its_unmask_irq(struct irq_data *d) 1537{ 1538 if (irqd_is_forwarded_to_vcpu(d)) 1539 its_vlpi_set_doorbell(d, true); 1540 1541 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1542} 1543 1544static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1545{ 1546 if (irqd_affinity_is_managed(d)) 1547 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1548 1549 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1550} 1551 1552static void its_inc_lpi_count(struct irq_data *d, int cpu) 1553{ 1554 if (irqd_affinity_is_managed(d)) 1555 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1556 else 1557 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1558} 1559 1560static void its_dec_lpi_count(struct irq_data *d, int cpu) 1561{ 1562 if (irqd_affinity_is_managed(d)) 1563 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1564 else 1565 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1566} 1567 1568static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1569 const struct cpumask *cpu_mask) 1570{ 1571 unsigned int cpu = nr_cpu_ids, tmp; 1572 int count = S32_MAX; 1573 1574 for_each_cpu(tmp, cpu_mask) { 1575 int this_count = its_read_lpi_count(d, tmp); 1576 if (this_count < count) { 1577 cpu = tmp; 1578 count = this_count; 1579 } 1580 } 1581 1582 return cpu; 1583} 1584 1585/* 1586 * As suggested by Thomas Gleixner in: 1587 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1588 */ 1589static int its_select_cpu(struct irq_data *d, 1590 const struct cpumask *aff_mask) 1591{ 1592 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1593 cpumask_var_t tmpmask; 1594 int cpu, node; 1595 1596 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC)) 1597 return -ENOMEM; 1598 1599 node = its_dev->its->numa_node; 1600 1601 if (!irqd_affinity_is_managed(d)) { 1602 /* First try the NUMA node */ 1603 if (node != NUMA_NO_NODE) { 1604 /* 1605 * Try the intersection of the affinity mask and the 1606 * node mask (and the online mask, just to be safe). 1607 */ 1608 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1609 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1610 1611 /* 1612 * Ideally, we would check if the mask is empty, and 1613 * try again on the full node here. 1614 * 1615 * But it turns out that the way ACPI describes the 1616 * affinity for ITSs only deals about memory, and 1617 * not target CPUs, so it cannot describe a single 1618 * ITS placed next to two NUMA nodes. 1619 * 1620 * Instead, just fallback on the online mask. This 1621 * diverges from Thomas' suggestion above. 1622 */ 1623 cpu = cpumask_pick_least_loaded(d, tmpmask); 1624 if (cpu < nr_cpu_ids) 1625 goto out; 1626 1627 /* If we can't cross sockets, give up */ 1628 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1629 goto out; 1630 1631 /* If the above failed, expand the search */ 1632 } 1633 1634 /* Try the intersection of the affinity and online masks */ 1635 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1636 1637 /* If that doesn't fly, the online mask is the last resort */ 1638 if (cpumask_empty(tmpmask)) 1639 cpumask_copy(tmpmask, cpu_online_mask); 1640 1641 cpu = cpumask_pick_least_loaded(d, tmpmask); 1642 } else { 1643 cpumask_copy(tmpmask, aff_mask); 1644 1645 /* If we cannot cross sockets, limit the search to that node */ 1646 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1647 node != NUMA_NO_NODE) 1648 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1649 1650 cpu = cpumask_pick_least_loaded(d, tmpmask); 1651 } 1652out: 1653 free_cpumask_var(tmpmask); 1654 1655 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1656 return cpu; 1657} 1658 1659static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1660 bool force) 1661{ 1662 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1663 struct its_collection *target_col; 1664 u32 id = its_get_event_id(d); 1665 int cpu, prev_cpu; 1666 1667 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1668 if (irqd_is_forwarded_to_vcpu(d)) 1669 return -EINVAL; 1670 1671 prev_cpu = its_dev->event_map.col_map[id]; 1672 its_dec_lpi_count(d, prev_cpu); 1673 1674 if (!force) 1675 cpu = its_select_cpu(d, mask_val); 1676 else 1677 cpu = cpumask_pick_least_loaded(d, mask_val); 1678 1679 if (cpu < 0 || cpu >= nr_cpu_ids) 1680 goto err; 1681 1682 /* don't set the affinity when the target cpu is same as current one */ 1683 if (cpu != prev_cpu) { 1684 target_col = &its_dev->its->collections[cpu]; 1685 its_send_movi(its_dev, target_col, id); 1686 its_dev->event_map.col_map[id] = cpu; 1687 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1688 } 1689 1690 its_inc_lpi_count(d, cpu); 1691 1692 return IRQ_SET_MASK_OK_DONE; 1693 1694err: 1695 its_inc_lpi_count(d, prev_cpu); 1696 return -EINVAL; 1697} 1698 1699static u64 its_irq_get_msi_base(struct its_device *its_dev) 1700{ 1701 struct its_node *its = its_dev->its; 1702 1703 return its->phys_base + GITS_TRANSLATER; 1704} 1705 1706static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1707{ 1708 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1709 struct its_node *its; 1710 u64 addr; 1711 1712 its = its_dev->its; 1713 addr = its->get_msi_base(its_dev); 1714 1715 msg->address_lo = lower_32_bits(addr); 1716 msg->address_hi = upper_32_bits(addr); 1717 msg->data = its_get_event_id(d); 1718 1719 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1720} 1721 1722static int its_irq_set_irqchip_state(struct irq_data *d, 1723 enum irqchip_irq_state which, 1724 bool state) 1725{ 1726 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1727 u32 event = its_get_event_id(d); 1728 1729 if (which != IRQCHIP_STATE_PENDING) 1730 return -EINVAL; 1731 1732 if (irqd_is_forwarded_to_vcpu(d)) { 1733 if (state) 1734 its_send_vint(its_dev, event); 1735 else 1736 its_send_vclear(its_dev, event); 1737 } else { 1738 if (state) 1739 its_send_int(its_dev, event); 1740 else 1741 its_send_clear(its_dev, event); 1742 } 1743 1744 return 0; 1745} 1746 1747static int its_irq_retrigger(struct irq_data *d) 1748{ 1749 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1750} 1751 1752/* 1753 * Two favourable cases: 1754 * 1755 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1756 * for vSGI delivery 1757 * 1758 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1759 * and we're better off mapping all VPEs always 1760 * 1761 * If neither (a) nor (b) is true, then we map vPEs on demand. 1762 * 1763 */ 1764static bool gic_requires_eager_mapping(void) 1765{ 1766 if (!its_list_map || gic_rdists->has_rvpeid) 1767 return true; 1768 1769 return false; 1770} 1771 1772static void its_map_vm(struct its_node *its, struct its_vm *vm) 1773{ 1774 unsigned long flags; 1775 1776 if (gic_requires_eager_mapping()) 1777 return; 1778 1779 raw_spin_lock_irqsave(&vmovp_lock, flags); 1780 1781 /* 1782 * If the VM wasn't mapped yet, iterate over the vpes and get 1783 * them mapped now. 1784 */ 1785 vm->vlpi_count[its->list_nr]++; 1786 1787 if (vm->vlpi_count[its->list_nr] == 1) { 1788 int i; 1789 1790 for (i = 0; i < vm->nr_vpes; i++) { 1791 struct its_vpe *vpe = vm->vpes[i]; 1792 struct irq_data *d = irq_get_irq_data(vpe->irq); 1793 1794 /* Map the VPE to the first possible CPU */ 1795 vpe->col_idx = cpumask_first(cpu_online_mask); 1796 its_send_vmapp(its, vpe, true); 1797 its_send_vinvall(its, vpe); 1798 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1799 } 1800 } 1801 1802 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1803} 1804 1805static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1806{ 1807 unsigned long flags; 1808 1809 /* Not using the ITS list? Everything is always mapped. */ 1810 if (gic_requires_eager_mapping()) 1811 return; 1812 1813 raw_spin_lock_irqsave(&vmovp_lock, flags); 1814 1815 if (!--vm->vlpi_count[its->list_nr]) { 1816 int i; 1817 1818 for (i = 0; i < vm->nr_vpes; i++) 1819 its_send_vmapp(its, vm->vpes[i], false); 1820 } 1821 1822 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1823} 1824 1825static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1826{ 1827 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1828 u32 event = its_get_event_id(d); 1829 int ret = 0; 1830 1831 if (!info->map) 1832 return -EINVAL; 1833 1834 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1835 1836 if (!its_dev->event_map.vm) { 1837 struct its_vlpi_map *maps; 1838 1839 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1840 GFP_ATOMIC); 1841 if (!maps) { 1842 ret = -ENOMEM; 1843 goto out; 1844 } 1845 1846 its_dev->event_map.vm = info->map->vm; 1847 its_dev->event_map.vlpi_maps = maps; 1848 } else if (its_dev->event_map.vm != info->map->vm) { 1849 ret = -EINVAL; 1850 goto out; 1851 } 1852 1853 /* Get our private copy of the mapping information */ 1854 its_dev->event_map.vlpi_maps[event] = *info->map; 1855 1856 if (irqd_is_forwarded_to_vcpu(d)) { 1857 /* Already mapped, move it around */ 1858 its_send_vmovi(its_dev, event); 1859 } else { 1860 /* Ensure all the VPEs are mapped on this ITS */ 1861 its_map_vm(its_dev->its, info->map->vm); 1862 1863 /* 1864 * Flag the interrupt as forwarded so that we can 1865 * start poking the virtual property table. 1866 */ 1867 irqd_set_forwarded_to_vcpu(d); 1868 1869 /* Write out the property to the prop table */ 1870 lpi_write_config(d, 0xff, info->map->properties); 1871 1872 /* Drop the physical mapping */ 1873 its_send_discard(its_dev, event); 1874 1875 /* and install the virtual one */ 1876 its_send_vmapti(its_dev, event); 1877 1878 /* Increment the number of VLPIs */ 1879 its_dev->event_map.nr_vlpis++; 1880 } 1881 1882out: 1883 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1884 return ret; 1885} 1886 1887static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1888{ 1889 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1890 struct its_vlpi_map *map; 1891 int ret = 0; 1892 1893 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1894 1895 map = get_vlpi_map(d); 1896 1897 if (!its_dev->event_map.vm || !map) { 1898 ret = -EINVAL; 1899 goto out; 1900 } 1901 1902 /* Copy our mapping information to the incoming request */ 1903 *info->map = *map; 1904 1905out: 1906 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1907 return ret; 1908} 1909 1910static int its_vlpi_unmap(struct irq_data *d) 1911{ 1912 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1913 u32 event = its_get_event_id(d); 1914 int ret = 0; 1915 1916 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1917 1918 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1919 ret = -EINVAL; 1920 goto out; 1921 } 1922 1923 /* Drop the virtual mapping */ 1924 its_send_discard(its_dev, event); 1925 1926 /* and restore the physical one */ 1927 irqd_clr_forwarded_to_vcpu(d); 1928 its_send_mapti(its_dev, d->hwirq, event); 1929 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1930 LPI_PROP_ENABLED | 1931 LPI_PROP_GROUP1)); 1932 1933 /* Potentially unmap the VM from this ITS */ 1934 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1935 1936 /* 1937 * Drop the refcount and make the device available again if 1938 * this was the last VLPI. 1939 */ 1940 if (!--its_dev->event_map.nr_vlpis) { 1941 its_dev->event_map.vm = NULL; 1942 kfree(its_dev->event_map.vlpi_maps); 1943 } 1944 1945out: 1946 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1947 return ret; 1948} 1949 1950static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1951{ 1952 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1953 1954 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1955 return -EINVAL; 1956 1957 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1958 lpi_update_config(d, 0xff, info->config); 1959 else 1960 lpi_write_config(d, 0xff, info->config); 1961 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1962 1963 return 0; 1964} 1965 1966static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1967{ 1968 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1969 struct its_cmd_info *info = vcpu_info; 1970 1971 /* Need a v4 ITS */ 1972 if (!is_v4(its_dev->its)) 1973 return -EINVAL; 1974 1975 /* Unmap request? */ 1976 if (!info) 1977 return its_vlpi_unmap(d); 1978 1979 switch (info->cmd_type) { 1980 case MAP_VLPI: 1981 return its_vlpi_map(d, info); 1982 1983 case GET_VLPI: 1984 return its_vlpi_get(d, info); 1985 1986 case PROP_UPDATE_VLPI: 1987 case PROP_UPDATE_AND_INV_VLPI: 1988 return its_vlpi_prop_update(d, info); 1989 1990 default: 1991 return -EINVAL; 1992 } 1993} 1994 1995static struct irq_chip its_irq_chip = { 1996 .name = "ITS", 1997 .irq_mask = its_mask_irq, 1998 .irq_unmask = its_unmask_irq, 1999 .irq_eoi = irq_chip_eoi_parent, 2000 .irq_set_affinity = its_set_affinity, 2001 .irq_compose_msi_msg = its_irq_compose_msi_msg, 2002 .irq_set_irqchip_state = its_irq_set_irqchip_state, 2003 .irq_retrigger = its_irq_retrigger, 2004 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 2005}; 2006 2007 2008/* 2009 * How we allocate LPIs: 2010 * 2011 * lpi_range_list contains ranges of LPIs that are to available to 2012 * allocate from. To allocate LPIs, just pick the first range that 2013 * fits the required allocation, and reduce it by the required 2014 * amount. Once empty, remove the range from the list. 2015 * 2016 * To free a range of LPIs, add a free range to the list, sort it and 2017 * merge the result if the new range happens to be adjacent to an 2018 * already free block. 2019 * 2020 * The consequence of the above is that allocation is cost is low, but 2021 * freeing is expensive. We assumes that freeing rarely occurs. 2022 */ 2023#define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2024 2025static DEFINE_MUTEX(lpi_range_lock); 2026static LIST_HEAD(lpi_range_list); 2027 2028struct lpi_range { 2029 struct list_head entry; 2030 u32 base_id; 2031 u32 span; 2032}; 2033 2034static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2035{ 2036 struct lpi_range *range; 2037 2038 range = kmalloc(sizeof(*range), GFP_KERNEL); 2039 if (range) { 2040 range->base_id = base; 2041 range->span = span; 2042 } 2043 2044 return range; 2045} 2046 2047static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2048{ 2049 struct lpi_range *range, *tmp; 2050 int err = -ENOSPC; 2051 2052 mutex_lock(&lpi_range_lock); 2053 2054 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2055 if (range->span >= nr_lpis) { 2056 *base = range->base_id; 2057 range->base_id += nr_lpis; 2058 range->span -= nr_lpis; 2059 2060 if (range->span == 0) { 2061 list_del(&range->entry); 2062 kfree(range); 2063 } 2064 2065 err = 0; 2066 break; 2067 } 2068 } 2069 2070 mutex_unlock(&lpi_range_lock); 2071 2072 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2073 return err; 2074} 2075 2076static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2077{ 2078 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2079 return; 2080 if (a->base_id + a->span != b->base_id) 2081 return; 2082 b->base_id = a->base_id; 2083 b->span += a->span; 2084 list_del(&a->entry); 2085 kfree(a); 2086} 2087 2088static int free_lpi_range(u32 base, u32 nr_lpis) 2089{ 2090 struct lpi_range *new, *old; 2091 2092 new = mk_lpi_range(base, nr_lpis); 2093 if (!new) 2094 return -ENOMEM; 2095 2096 mutex_lock(&lpi_range_lock); 2097 2098 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2099 if (old->base_id < base) 2100 break; 2101 } 2102 /* 2103 * old is the last element with ->base_id smaller than base, 2104 * so new goes right after it. If there are no elements with 2105 * ->base_id smaller than base, &old->entry ends up pointing 2106 * at the head of the list, and inserting new it the start of 2107 * the list is the right thing to do in that case as well. 2108 */ 2109 list_add(&new->entry, &old->entry); 2110 /* 2111 * Now check if we can merge with the preceding and/or 2112 * following ranges. 2113 */ 2114 merge_lpi_ranges(old, new); 2115 merge_lpi_ranges(new, list_next_entry(new, entry)); 2116 2117 mutex_unlock(&lpi_range_lock); 2118 return 0; 2119} 2120 2121static int __init its_lpi_init(u32 id_bits) 2122{ 2123 u32 lpis = (1UL << id_bits) - 8192; 2124 u32 numlpis; 2125 int err; 2126 2127 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2128 2129 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2130 lpis = numlpis; 2131 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2132 lpis); 2133 } 2134 2135 /* 2136 * Initializing the allocator is just the same as freeing the 2137 * full range of LPIs. 2138 */ 2139 err = free_lpi_range(8192, lpis); 2140 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2141 return err; 2142} 2143 2144static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2145{ 2146 unsigned long *bitmap = NULL; 2147 int err = 0; 2148 2149 do { 2150 err = alloc_lpi_range(nr_irqs, base); 2151 if (!err) 2152 break; 2153 2154 nr_irqs /= 2; 2155 } while (nr_irqs > 0); 2156 2157 if (!nr_irqs) 2158 err = -ENOSPC; 2159 2160 if (err) 2161 goto out; 2162 2163 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC); 2164 if (!bitmap) 2165 goto out; 2166 2167 *nr_ids = nr_irqs; 2168 2169out: 2170 if (!bitmap) 2171 *base = *nr_ids = 0; 2172 2173 return bitmap; 2174} 2175 2176static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2177{ 2178 WARN_ON(free_lpi_range(base, nr_ids)); 2179 kfree(bitmap); 2180} 2181 2182static void gic_reset_prop_table(void *va) 2183{ 2184 /* Priority 0xa0, Group-1, disabled */ 2185 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2186 2187 /* Make sure the GIC will observe the written configuration */ 2188 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2189} 2190 2191static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2192{ 2193 struct page *prop_page; 2194 2195 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2196 if (!prop_page) 2197 return NULL; 2198 2199 gic_reset_prop_table(page_address(prop_page)); 2200 2201 return prop_page; 2202} 2203 2204static void its_free_prop_table(struct page *prop_page) 2205{ 2206 free_pages((unsigned long)page_address(prop_page), 2207 get_order(LPI_PROPBASE_SZ)); 2208} 2209 2210static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2211{ 2212 phys_addr_t start, end, addr_end; 2213 u64 i; 2214 2215 /* 2216 * We don't bother checking for a kdump kernel as by 2217 * construction, the LPI tables are out of this kernel's 2218 * memory map. 2219 */ 2220 if (is_kdump_kernel()) 2221 return true; 2222 2223 addr_end = addr + size - 1; 2224 2225 for_each_reserved_mem_range(i, &start, &end) { 2226 if (addr >= start && addr_end <= end) 2227 return true; 2228 } 2229 2230 /* Not found, not a good sign... */ 2231 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2232 &addr, &addr_end); 2233 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2234 return false; 2235} 2236 2237static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2238{ 2239 if (efi_enabled(EFI_CONFIG_TABLES)) 2240 return efi_mem_reserve_persistent(addr, size); 2241 2242 return 0; 2243} 2244 2245static int __init its_setup_lpi_prop_table(void) 2246{ 2247 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2248 u64 val; 2249 2250 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2251 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2252 2253 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2254 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2255 LPI_PROPBASE_SZ, 2256 MEMREMAP_WB); 2257 gic_reset_prop_table(gic_rdists->prop_table_va); 2258 } else { 2259 struct page *page; 2260 2261 lpi_id_bits = min_t(u32, 2262 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2263 ITS_MAX_LPI_NRBITS); 2264 page = its_allocate_prop_table(GFP_NOWAIT); 2265 if (!page) { 2266 pr_err("Failed to allocate PROPBASE\n"); 2267 return -ENOMEM; 2268 } 2269 2270 gic_rdists->prop_table_pa = page_to_phys(page); 2271 gic_rdists->prop_table_va = page_address(page); 2272 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2273 LPI_PROPBASE_SZ)); 2274 } 2275 2276 pr_info("GICv3: using LPI property table @%pa\n", 2277 &gic_rdists->prop_table_pa); 2278 2279 return its_lpi_init(lpi_id_bits); 2280} 2281 2282static const char *its_base_type_string[] = { 2283 [GITS_BASER_TYPE_DEVICE] = "Devices", 2284 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2285 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2286 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2287 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2288 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2289 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2290}; 2291 2292static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2293{ 2294 u32 idx = baser - its->tables; 2295 2296 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2297} 2298 2299static void its_write_baser(struct its_node *its, struct its_baser *baser, 2300 u64 val) 2301{ 2302 u32 idx = baser - its->tables; 2303 2304 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2305 baser->val = its_read_baser(its, baser); 2306} 2307 2308static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2309 u64 cache, u64 shr, u32 order, bool indirect) 2310{ 2311 u64 val = its_read_baser(its, baser); 2312 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2313 u64 type = GITS_BASER_TYPE(val); 2314 u64 baser_phys, tmp; 2315 u32 alloc_pages, psz; 2316 struct page *page; 2317 void *base; 2318 2319 psz = baser->psz; 2320 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2321 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2322 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2323 &its->phys_base, its_base_type_string[type], 2324 alloc_pages, GITS_BASER_PAGES_MAX); 2325 alloc_pages = GITS_BASER_PAGES_MAX; 2326 order = get_order(GITS_BASER_PAGES_MAX * psz); 2327 } 2328 2329 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2330 if (!page) 2331 return -ENOMEM; 2332 2333 base = (void *)page_address(page); 2334 baser_phys = virt_to_phys(base); 2335 2336 /* Check if the physical address of the memory is above 48bits */ 2337 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2338 2339 /* 52bit PA is supported only when PageSize=64K */ 2340 if (psz != SZ_64K) { 2341 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2342 free_pages((unsigned long)base, order); 2343 return -ENXIO; 2344 } 2345 2346 /* Convert 52bit PA to 48bit field */ 2347 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2348 } 2349 2350retry_baser: 2351 val = (baser_phys | 2352 (type << GITS_BASER_TYPE_SHIFT) | 2353 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2354 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2355 cache | 2356 shr | 2357 GITS_BASER_VALID); 2358 2359 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2360 2361 switch (psz) { 2362 case SZ_4K: 2363 val |= GITS_BASER_PAGE_SIZE_4K; 2364 break; 2365 case SZ_16K: 2366 val |= GITS_BASER_PAGE_SIZE_16K; 2367 break; 2368 case SZ_64K: 2369 val |= GITS_BASER_PAGE_SIZE_64K; 2370 break; 2371 } 2372 2373 its_write_baser(its, baser, val); 2374 tmp = baser->val; 2375 2376 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2377 /* 2378 * Shareability didn't stick. Just use 2379 * whatever the read reported, which is likely 2380 * to be the only thing this redistributor 2381 * supports. If that's zero, make it 2382 * non-cacheable as well. 2383 */ 2384 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2385 if (!shr) { 2386 cache = GITS_BASER_nC; 2387 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2388 } 2389 goto retry_baser; 2390 } 2391 2392 if (val != tmp) { 2393 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2394 &its->phys_base, its_base_type_string[type], 2395 val, tmp); 2396 free_pages((unsigned long)base, order); 2397 return -ENXIO; 2398 } 2399 2400 baser->order = order; 2401 baser->base = base; 2402 baser->psz = psz; 2403 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2404 2405 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2406 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2407 its_base_type_string[type], 2408 (unsigned long)virt_to_phys(base), 2409 indirect ? "indirect" : "flat", (int)esz, 2410 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2411 2412 return 0; 2413} 2414 2415static bool its_parse_indirect_baser(struct its_node *its, 2416 struct its_baser *baser, 2417 u32 *order, u32 ids) 2418{ 2419 u64 tmp = its_read_baser(its, baser); 2420 u64 type = GITS_BASER_TYPE(tmp); 2421 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2422 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2423 u32 new_order = *order; 2424 u32 psz = baser->psz; 2425 bool indirect = false; 2426 2427 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2428 if ((esz << ids) > (psz * 2)) { 2429 /* 2430 * Find out whether hw supports a single or two-level table by 2431 * table by reading bit at offset '62' after writing '1' to it. 2432 */ 2433 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2434 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2435 2436 if (indirect) { 2437 /* 2438 * The size of the lvl2 table is equal to ITS page size 2439 * which is 'psz'. For computing lvl1 table size, 2440 * subtract ID bits that sparse lvl2 table from 'ids' 2441 * which is reported by ITS hardware times lvl1 table 2442 * entry size. 2443 */ 2444 ids -= ilog2(psz / (int)esz); 2445 esz = GITS_LVL1_ENTRY_SIZE; 2446 } 2447 } 2448 2449 /* 2450 * Allocate as many entries as required to fit the 2451 * range of device IDs that the ITS can grok... The ID 2452 * space being incredibly sparse, this results in a 2453 * massive waste of memory if two-level device table 2454 * feature is not supported by hardware. 2455 */ 2456 new_order = max_t(u32, get_order(esz << ids), new_order); 2457 if (new_order >= MAX_ORDER) { 2458 new_order = MAX_ORDER - 1; 2459 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2460 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2461 &its->phys_base, its_base_type_string[type], 2462 device_ids(its), ids); 2463 } 2464 2465 *order = new_order; 2466 2467 return indirect; 2468} 2469 2470static u32 compute_common_aff(u64 val) 2471{ 2472 u32 aff, clpiaff; 2473 2474 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2475 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2476 2477 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2478} 2479 2480static u32 compute_its_aff(struct its_node *its) 2481{ 2482 u64 val; 2483 u32 svpet; 2484 2485 /* 2486 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2487 * the resulting affinity. We then use that to see if this match 2488 * our own affinity. 2489 */ 2490 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2491 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2492 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2493 return compute_common_aff(val); 2494} 2495 2496static struct its_node *find_sibling_its(struct its_node *cur_its) 2497{ 2498 struct its_node *its; 2499 u32 aff; 2500 2501 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2502 return NULL; 2503 2504 aff = compute_its_aff(cur_its); 2505 2506 list_for_each_entry(its, &its_nodes, entry) { 2507 u64 baser; 2508 2509 if (!is_v4_1(its) || its == cur_its) 2510 continue; 2511 2512 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2513 continue; 2514 2515 if (aff != compute_its_aff(its)) 2516 continue; 2517 2518 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2519 baser = its->tables[2].val; 2520 if (!(baser & GITS_BASER_VALID)) 2521 continue; 2522 2523 return its; 2524 } 2525 2526 return NULL; 2527} 2528 2529static void its_free_tables(struct its_node *its) 2530{ 2531 int i; 2532 2533 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2534 if (its->tables[i].base) { 2535 free_pages((unsigned long)its->tables[i].base, 2536 its->tables[i].order); 2537 its->tables[i].base = NULL; 2538 } 2539 } 2540} 2541 2542static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2543{ 2544 u64 psz = SZ_64K; 2545 2546 while (psz) { 2547 u64 val, gpsz; 2548 2549 val = its_read_baser(its, baser); 2550 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2551 2552 switch (psz) { 2553 case SZ_64K: 2554 gpsz = GITS_BASER_PAGE_SIZE_64K; 2555 break; 2556 case SZ_16K: 2557 gpsz = GITS_BASER_PAGE_SIZE_16K; 2558 break; 2559 case SZ_4K: 2560 default: 2561 gpsz = GITS_BASER_PAGE_SIZE_4K; 2562 break; 2563 } 2564 2565 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2566 2567 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2568 its_write_baser(its, baser, val); 2569 2570 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2571 break; 2572 2573 switch (psz) { 2574 case SZ_64K: 2575 psz = SZ_16K; 2576 break; 2577 case SZ_16K: 2578 psz = SZ_4K; 2579 break; 2580 case SZ_4K: 2581 default: 2582 return -1; 2583 } 2584 } 2585 2586 baser->psz = psz; 2587 return 0; 2588} 2589 2590static int its_alloc_tables(struct its_node *its) 2591{ 2592 u64 shr = GITS_BASER_InnerShareable; 2593 u64 cache = GITS_BASER_RaWaWb; 2594 int err, i; 2595 2596 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2597 /* erratum 24313: ignore memory access type */ 2598 cache = GITS_BASER_nCnB; 2599 2600 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2601 struct its_baser *baser = its->tables + i; 2602 u64 val = its_read_baser(its, baser); 2603 u64 type = GITS_BASER_TYPE(val); 2604 bool indirect = false; 2605 u32 order; 2606 2607 if (type == GITS_BASER_TYPE_NONE) 2608 continue; 2609 2610 if (its_probe_baser_psz(its, baser)) { 2611 its_free_tables(its); 2612 return -ENXIO; 2613 } 2614 2615 order = get_order(baser->psz); 2616 2617 switch (type) { 2618 case GITS_BASER_TYPE_DEVICE: 2619 indirect = its_parse_indirect_baser(its, baser, &order, 2620 device_ids(its)); 2621 break; 2622 2623 case GITS_BASER_TYPE_VCPU: 2624 if (is_v4_1(its)) { 2625 struct its_node *sibling; 2626 2627 WARN_ON(i != 2); 2628 if ((sibling = find_sibling_its(its))) { 2629 *baser = sibling->tables[2]; 2630 its_write_baser(its, baser, baser->val); 2631 continue; 2632 } 2633 } 2634 2635 indirect = its_parse_indirect_baser(its, baser, &order, 2636 ITS_MAX_VPEID_BITS); 2637 break; 2638 } 2639 2640 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2641 if (err < 0) { 2642 its_free_tables(its); 2643 return err; 2644 } 2645 2646 /* Update settings which will be used for next BASERn */ 2647 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2648 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2649 } 2650 2651 return 0; 2652} 2653 2654static u64 inherit_vpe_l1_table_from_its(void) 2655{ 2656 struct its_node *its; 2657 u64 val; 2658 u32 aff; 2659 2660 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2661 aff = compute_common_aff(val); 2662 2663 list_for_each_entry(its, &its_nodes, entry) { 2664 u64 baser, addr; 2665 2666 if (!is_v4_1(its)) 2667 continue; 2668 2669 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2670 continue; 2671 2672 if (aff != compute_its_aff(its)) 2673 continue; 2674 2675 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2676 baser = its->tables[2].val; 2677 if (!(baser & GITS_BASER_VALID)) 2678 continue; 2679 2680 /* We have a winner! */ 2681 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2682 2683 val = GICR_VPROPBASER_4_1_VALID; 2684 if (baser & GITS_BASER_INDIRECT) 2685 val |= GICR_VPROPBASER_4_1_INDIRECT; 2686 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2687 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2688 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2689 case GIC_PAGE_SIZE_64K: 2690 addr = GITS_BASER_ADDR_48_to_52(baser); 2691 break; 2692 default: 2693 addr = baser & GENMASK_ULL(47, 12); 2694 break; 2695 } 2696 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2697 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2698 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2699 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2700 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2701 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2702 2703 return val; 2704 } 2705 2706 return 0; 2707} 2708 2709static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2710{ 2711 u32 aff; 2712 u64 val; 2713 int cpu; 2714 2715 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2716 aff = compute_common_aff(val); 2717 2718 for_each_possible_cpu(cpu) { 2719 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2720 2721 if (!base || cpu == smp_processor_id()) 2722 continue; 2723 2724 val = gic_read_typer(base + GICR_TYPER); 2725 if (aff != compute_common_aff(val)) 2726 continue; 2727 2728 /* 2729 * At this point, we have a victim. This particular CPU 2730 * has already booted, and has an affinity that matches 2731 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2732 * Make sure we don't write the Z bit in that case. 2733 */ 2734 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2735 val &= ~GICR_VPROPBASER_4_1_Z; 2736 2737 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2738 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2739 2740 return val; 2741 } 2742 2743 return 0; 2744} 2745 2746static bool allocate_vpe_l2_table(int cpu, u32 id) 2747{ 2748 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2749 unsigned int psz, esz, idx, npg, gpsz; 2750 u64 val; 2751 struct page *page; 2752 __le64 *table; 2753 2754 if (!gic_rdists->has_rvpeid) 2755 return true; 2756 2757 /* Skip non-present CPUs */ 2758 if (!base) 2759 return true; 2760 2761 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2762 2763 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2764 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2765 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2766 2767 switch (gpsz) { 2768 default: 2769 WARN_ON(1); 2770 fallthrough; 2771 case GIC_PAGE_SIZE_4K: 2772 psz = SZ_4K; 2773 break; 2774 case GIC_PAGE_SIZE_16K: 2775 psz = SZ_16K; 2776 break; 2777 case GIC_PAGE_SIZE_64K: 2778 psz = SZ_64K; 2779 break; 2780 } 2781 2782 /* Don't allow vpe_id that exceeds single, flat table limit */ 2783 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2784 return (id < (npg * psz / (esz * SZ_8))); 2785 2786 /* Compute 1st level table index & check if that exceeds table limit */ 2787 idx = id >> ilog2(psz / (esz * SZ_8)); 2788 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2789 return false; 2790 2791 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2792 2793 /* Allocate memory for 2nd level table */ 2794 if (!table[idx]) { 2795 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2796 if (!page) 2797 return false; 2798 2799 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2800 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2801 gic_flush_dcache_to_poc(page_address(page), psz); 2802 2803 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2804 2805 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2806 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2807 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2808 2809 /* Ensure updated table contents are visible to RD hardware */ 2810 dsb(sy); 2811 } 2812 2813 return true; 2814} 2815 2816static int allocate_vpe_l1_table(void) 2817{ 2818 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2819 u64 val, gpsz, npg, pa; 2820 unsigned int psz = SZ_64K; 2821 unsigned int np, epp, esz; 2822 struct page *page; 2823 2824 if (!gic_rdists->has_rvpeid) 2825 return 0; 2826 2827 /* 2828 * if VPENDBASER.Valid is set, disable any previously programmed 2829 * VPE by setting PendingLast while clearing Valid. This has the 2830 * effect of making sure no doorbell will be generated and we can 2831 * then safely clear VPROPBASER.Valid. 2832 */ 2833 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2834 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2835 vlpi_base + GICR_VPENDBASER); 2836 2837 /* 2838 * If we can inherit the configuration from another RD, let's do 2839 * so. Otherwise, we have to go through the allocation process. We 2840 * assume that all RDs have the exact same requirements, as 2841 * nothing will work otherwise. 2842 */ 2843 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2844 if (val & GICR_VPROPBASER_4_1_VALID) 2845 goto out; 2846 2847 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2848 if (!gic_data_rdist()->vpe_table_mask) 2849 return -ENOMEM; 2850 2851 val = inherit_vpe_l1_table_from_its(); 2852 if (val & GICR_VPROPBASER_4_1_VALID) 2853 goto out; 2854 2855 /* First probe the page size */ 2856 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2857 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2858 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2859 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2860 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2861 2862 switch (gpsz) { 2863 default: 2864 gpsz = GIC_PAGE_SIZE_4K; 2865 fallthrough; 2866 case GIC_PAGE_SIZE_4K: 2867 psz = SZ_4K; 2868 break; 2869 case GIC_PAGE_SIZE_16K: 2870 psz = SZ_16K; 2871 break; 2872 case GIC_PAGE_SIZE_64K: 2873 psz = SZ_64K; 2874 break; 2875 } 2876 2877 /* 2878 * Start populating the register from scratch, including RO fields 2879 * (which we want to print in debug cases...) 2880 */ 2881 val = 0; 2882 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2883 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2884 2885 /* How many entries per GIC page? */ 2886 esz++; 2887 epp = psz / (esz * SZ_8); 2888 2889 /* 2890 * If we need more than just a single L1 page, flag the table 2891 * as indirect and compute the number of required L1 pages. 2892 */ 2893 if (epp < ITS_MAX_VPEID) { 2894 int nl2; 2895 2896 val |= GICR_VPROPBASER_4_1_INDIRECT; 2897 2898 /* Number of L2 pages required to cover the VPEID space */ 2899 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2900 2901 /* Number of L1 pages to point to the L2 pages */ 2902 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2903 } else { 2904 npg = 1; 2905 } 2906 2907 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2908 2909 /* Right, that's the number of CPU pages we need for L1 */ 2910 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2911 2912 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2913 np, npg, psz, epp, esz); 2914 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2915 if (!page) 2916 return -ENOMEM; 2917 2918 gic_data_rdist()->vpe_l1_base = page_address(page); 2919 pa = virt_to_phys(page_address(page)); 2920 WARN_ON(!IS_ALIGNED(pa, psz)); 2921 2922 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2923 val |= GICR_VPROPBASER_RaWb; 2924 val |= GICR_VPROPBASER_InnerShareable; 2925 val |= GICR_VPROPBASER_4_1_Z; 2926 val |= GICR_VPROPBASER_4_1_VALID; 2927 2928out: 2929 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2930 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2931 2932 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2933 smp_processor_id(), val, 2934 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2935 2936 return 0; 2937} 2938 2939static int its_alloc_collections(struct its_node *its) 2940{ 2941 int i; 2942 2943 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2944 GFP_KERNEL); 2945 if (!its->collections) 2946 return -ENOMEM; 2947 2948 for (i = 0; i < nr_cpu_ids; i++) 2949 its->collections[i].target_address = ~0ULL; 2950 2951 return 0; 2952} 2953 2954static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2955{ 2956 struct page *pend_page; 2957 2958 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2959 get_order(LPI_PENDBASE_SZ)); 2960 if (!pend_page) 2961 return NULL; 2962 2963 /* Make sure the GIC will observe the zero-ed page */ 2964 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2965 2966 return pend_page; 2967} 2968 2969static void its_free_pending_table(struct page *pt) 2970{ 2971 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2972} 2973 2974/* 2975 * Booting with kdump and LPIs enabled is generally fine. Any other 2976 * case is wrong in the absence of firmware/EFI support. 2977 */ 2978static bool enabled_lpis_allowed(void) 2979{ 2980 phys_addr_t addr; 2981 u64 val; 2982 2983 /* Check whether the property table is in a reserved region */ 2984 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2985 addr = val & GENMASK_ULL(51, 12); 2986 2987 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2988} 2989 2990static int __init allocate_lpi_tables(void) 2991{ 2992 u64 val; 2993 int err, cpu; 2994 2995 /* 2996 * If LPIs are enabled while we run this from the boot CPU, 2997 * flag the RD tables as pre-allocated if the stars do align. 2998 */ 2999 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3000 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3001 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3002 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3003 pr_info("GICv3: Using preallocated redistributor tables\n"); 3004 } 3005 3006 err = its_setup_lpi_prop_table(); 3007 if (err) 3008 return err; 3009 3010 /* 3011 * We allocate all the pending tables anyway, as we may have a 3012 * mix of RDs that have had LPIs enabled, and some that 3013 * don't. We'll free the unused ones as each CPU comes online. 3014 */ 3015 for_each_possible_cpu(cpu) { 3016 struct page *pend_page; 3017 3018 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3019 if (!pend_page) { 3020 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3021 return -ENOMEM; 3022 } 3023 3024 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3025 } 3026 3027 return 0; 3028} 3029 3030static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3031{ 3032 u32 count = 1000000; /* 1s! */ 3033 bool clean; 3034 u64 val; 3035 3036 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3037 val &= ~GICR_VPENDBASER_Valid; 3038 val &= ~clr; 3039 val |= set; 3040 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3041 3042 do { 3043 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3044 clean = !(val & GICR_VPENDBASER_Dirty); 3045 if (!clean) { 3046 count--; 3047 cpu_relax(); 3048 udelay(1); 3049 } 3050 } while (!clean && count); 3051 3052 if (unlikely(val & GICR_VPENDBASER_Dirty)) { 3053 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3054 val |= GICR_VPENDBASER_PendingLast; 3055 } 3056 3057 return val; 3058} 3059 3060static void its_cpu_init_lpis(void) 3061{ 3062 void __iomem *rbase = gic_data_rdist_rd_base(); 3063 struct page *pend_page; 3064 phys_addr_t paddr; 3065 u64 val, tmp; 3066 3067 if (gic_data_rdist()->lpi_enabled) 3068 return; 3069 3070 val = readl_relaxed(rbase + GICR_CTLR); 3071 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3072 (val & GICR_CTLR_ENABLE_LPIS)) { 3073 /* 3074 * Check that we get the same property table on all 3075 * RDs. If we don't, this is hopeless. 3076 */ 3077 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3078 paddr &= GENMASK_ULL(51, 12); 3079 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3080 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3081 3082 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3083 paddr &= GENMASK_ULL(51, 16); 3084 3085 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3086 its_free_pending_table(gic_data_rdist()->pend_page); 3087 gic_data_rdist()->pend_page = NULL; 3088 3089 goto out; 3090 } 3091 3092 pend_page = gic_data_rdist()->pend_page; 3093 paddr = page_to_phys(pend_page); 3094 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 3095 3096 /* set PROPBASE */ 3097 val = (gic_rdists->prop_table_pa | 3098 GICR_PROPBASER_InnerShareable | 3099 GICR_PROPBASER_RaWaWb | 3100 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3101 3102 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3103 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3104 3105 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3106 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3107 /* 3108 * The HW reports non-shareable, we must 3109 * remove the cacheability attributes as 3110 * well. 3111 */ 3112 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3113 GICR_PROPBASER_CACHEABILITY_MASK); 3114 val |= GICR_PROPBASER_nC; 3115 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3116 } 3117 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3118 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3119 } 3120 3121 /* set PENDBASE */ 3122 val = (page_to_phys(pend_page) | 3123 GICR_PENDBASER_InnerShareable | 3124 GICR_PENDBASER_RaWaWb); 3125 3126 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3127 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3128 3129 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3130 /* 3131 * The HW reports non-shareable, we must remove the 3132 * cacheability attributes as well. 3133 */ 3134 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3135 GICR_PENDBASER_CACHEABILITY_MASK); 3136 val |= GICR_PENDBASER_nC; 3137 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3138 } 3139 3140 /* Enable LPIs */ 3141 val = readl_relaxed(rbase + GICR_CTLR); 3142 val |= GICR_CTLR_ENABLE_LPIS; 3143 writel_relaxed(val, rbase + GICR_CTLR); 3144 3145 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3146 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3147 3148 /* 3149 * It's possible for CPU to receive VLPIs before it is 3150 * scheduled as a vPE, especially for the first CPU, and the 3151 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3152 * as out of range and dropped by GIC. 3153 * So we initialize IDbits to known value to avoid VLPI drop. 3154 */ 3155 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3156 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3157 smp_processor_id(), val); 3158 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3159 3160 /* 3161 * Also clear Valid bit of GICR_VPENDBASER, in case some 3162 * ancient programming gets left in and has possibility of 3163 * corrupting memory. 3164 */ 3165 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3166 } 3167 3168 if (allocate_vpe_l1_table()) { 3169 /* 3170 * If the allocation has failed, we're in massive trouble. 3171 * Disable direct injection, and pray that no VM was 3172 * already running... 3173 */ 3174 gic_rdists->has_rvpeid = false; 3175 gic_rdists->has_vlpis = false; 3176 } 3177 3178 /* Make sure the GIC has seen the above */ 3179 dsb(sy); 3180out: 3181 gic_data_rdist()->lpi_enabled = true; 3182 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3183 smp_processor_id(), 3184 gic_data_rdist()->pend_page ? "allocated" : "reserved", 3185 &paddr); 3186} 3187 3188static void its_cpu_init_collection(struct its_node *its) 3189{ 3190 int cpu = smp_processor_id(); 3191 u64 target; 3192 3193 /* avoid cross node collections and its mapping */ 3194 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3195 struct device_node *cpu_node; 3196 3197 cpu_node = of_get_cpu_node(cpu, NULL); 3198 if (its->numa_node != NUMA_NO_NODE && 3199 its->numa_node != of_node_to_nid(cpu_node)) 3200 return; 3201 } 3202 3203 /* 3204 * We now have to bind each collection to its target 3205 * redistributor. 3206 */ 3207 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3208 /* 3209 * This ITS wants the physical address of the 3210 * redistributor. 3211 */ 3212 target = gic_data_rdist()->phys_base; 3213 } else { 3214 /* This ITS wants a linear CPU number. */ 3215 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3216 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3217 } 3218 3219 /* Perform collection mapping */ 3220 its->collections[cpu].target_address = target; 3221 its->collections[cpu].col_id = cpu; 3222 3223 its_send_mapc(its, &its->collections[cpu], 1); 3224 its_send_invall(its, &its->collections[cpu]); 3225} 3226 3227static void its_cpu_init_collections(void) 3228{ 3229 struct its_node *its; 3230 3231 raw_spin_lock(&its_lock); 3232 3233 list_for_each_entry(its, &its_nodes, entry) 3234 its_cpu_init_collection(its); 3235 3236 raw_spin_unlock(&its_lock); 3237} 3238 3239static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3240{ 3241 struct its_device *its_dev = NULL, *tmp; 3242 unsigned long flags; 3243 3244 raw_spin_lock_irqsave(&its->lock, flags); 3245 3246 list_for_each_entry(tmp, &its->its_device_list, entry) { 3247 if (tmp->device_id == dev_id) { 3248 its_dev = tmp; 3249 break; 3250 } 3251 } 3252 3253 raw_spin_unlock_irqrestore(&its->lock, flags); 3254 3255 return its_dev; 3256} 3257 3258static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3259{ 3260 int i; 3261 3262 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3263 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3264 return &its->tables[i]; 3265 } 3266 3267 return NULL; 3268} 3269 3270static bool its_alloc_table_entry(struct its_node *its, 3271 struct its_baser *baser, u32 id) 3272{ 3273 struct page *page; 3274 u32 esz, idx; 3275 __le64 *table; 3276 3277 /* Don't allow device id that exceeds single, flat table limit */ 3278 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3279 if (!(baser->val & GITS_BASER_INDIRECT)) 3280 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3281 3282 /* Compute 1st level table index & check if that exceeds table limit */ 3283 idx = id >> ilog2(baser->psz / esz); 3284 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3285 return false; 3286 3287 table = baser->base; 3288 3289 /* Allocate memory for 2nd level table */ 3290 if (!table[idx]) { 3291 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3292 get_order(baser->psz)); 3293 if (!page) 3294 return false; 3295 3296 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3297 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3298 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3299 3300 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3301 3302 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3303 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3304 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3305 3306 /* Ensure updated table contents are visible to ITS hardware */ 3307 dsb(sy); 3308 } 3309 3310 return true; 3311} 3312 3313static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3314{ 3315 struct its_baser *baser; 3316 3317 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3318 3319 /* Don't allow device id that exceeds ITS hardware limit */ 3320 if (!baser) 3321 return (ilog2(dev_id) < device_ids(its)); 3322 3323 return its_alloc_table_entry(its, baser, dev_id); 3324} 3325 3326static bool its_alloc_vpe_table(u32 vpe_id) 3327{ 3328 struct its_node *its; 3329 int cpu; 3330 3331 /* 3332 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3333 * could try and only do it on ITSs corresponding to devices 3334 * that have interrupts targeted at this VPE, but the 3335 * complexity becomes crazy (and you have tons of memory 3336 * anyway, right?). 3337 */ 3338 list_for_each_entry(its, &its_nodes, entry) { 3339 struct its_baser *baser; 3340 3341 if (!is_v4(its)) 3342 continue; 3343 3344 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3345 if (!baser) 3346 return false; 3347 3348 if (!its_alloc_table_entry(its, baser, vpe_id)) 3349 return false; 3350 } 3351 3352 /* Non v4.1? No need to iterate RDs and go back early. */ 3353 if (!gic_rdists->has_rvpeid) 3354 return true; 3355 3356 /* 3357 * Make sure the L2 tables are allocated for all copies of 3358 * the L1 table on *all* v4.1 RDs. 3359 */ 3360 for_each_possible_cpu(cpu) { 3361 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3362 return false; 3363 } 3364 3365 return true; 3366} 3367 3368static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3369 int nvecs, bool alloc_lpis) 3370{ 3371 struct its_device *dev; 3372 unsigned long *lpi_map = NULL; 3373 unsigned long flags; 3374 u16 *col_map = NULL; 3375 void *itt; 3376 int lpi_base; 3377 int nr_lpis; 3378 int nr_ites; 3379 int sz; 3380 3381 if (!its_alloc_device_table(its, dev_id)) 3382 return NULL; 3383 3384 if (WARN_ON(!is_power_of_2(nvecs))) 3385 nvecs = roundup_pow_of_two(nvecs); 3386 3387 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3388 /* 3389 * Even if the device wants a single LPI, the ITT must be 3390 * sized as a power of two (and you need at least one bit...). 3391 */ 3392 nr_ites = max(2, nvecs); 3393 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3394 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3395 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3396 if (alloc_lpis) { 3397 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3398 if (lpi_map) 3399 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3400 GFP_KERNEL); 3401 } else { 3402 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3403 nr_lpis = 0; 3404 lpi_base = 0; 3405 } 3406 3407 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3408 kfree(dev); 3409 kfree(itt); 3410 kfree(lpi_map); 3411 kfree(col_map); 3412 return NULL; 3413 } 3414 3415 gic_flush_dcache_to_poc(itt, sz); 3416 3417 dev->its = its; 3418 dev->itt = itt; 3419 dev->nr_ites = nr_ites; 3420 dev->event_map.lpi_map = lpi_map; 3421 dev->event_map.col_map = col_map; 3422 dev->event_map.lpi_base = lpi_base; 3423 dev->event_map.nr_lpis = nr_lpis; 3424 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3425 dev->device_id = dev_id; 3426 INIT_LIST_HEAD(&dev->entry); 3427 3428 raw_spin_lock_irqsave(&its->lock, flags); 3429 list_add(&dev->entry, &its->its_device_list); 3430 raw_spin_unlock_irqrestore(&its->lock, flags); 3431 3432 /* Map device to its ITT */ 3433 its_send_mapd(dev, 1); 3434 3435 return dev; 3436} 3437 3438static void its_free_device(struct its_device *its_dev) 3439{ 3440 unsigned long flags; 3441 3442 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3443 list_del(&its_dev->entry); 3444 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3445 kfree(its_dev->event_map.col_map); 3446 kfree(its_dev->itt); 3447 kfree(its_dev); 3448} 3449 3450static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3451{ 3452 int idx; 3453 3454 /* Find a free LPI region in lpi_map and allocate them. */ 3455 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3456 dev->event_map.nr_lpis, 3457 get_count_order(nvecs)); 3458 if (idx < 0) 3459 return -ENOSPC; 3460 3461 *hwirq = dev->event_map.lpi_base + idx; 3462 3463 return 0; 3464} 3465 3466static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3467 int nvec, msi_alloc_info_t *info) 3468{ 3469 struct its_node *its; 3470 struct its_device *its_dev; 3471 struct msi_domain_info *msi_info; 3472 u32 dev_id; 3473 int err = 0; 3474 3475 /* 3476 * We ignore "dev" entirely, and rely on the dev_id that has 3477 * been passed via the scratchpad. This limits this domain's 3478 * usefulness to upper layers that definitely know that they 3479 * are built on top of the ITS. 3480 */ 3481 dev_id = info->scratchpad[0].ul; 3482 3483 msi_info = msi_get_domain_info(domain); 3484 its = msi_info->data; 3485 3486 if (!gic_rdists->has_direct_lpi && 3487 vpe_proxy.dev && 3488 vpe_proxy.dev->its == its && 3489 dev_id == vpe_proxy.dev->device_id) { 3490 /* Bad luck. Get yourself a better implementation */ 3491 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3492 dev_id); 3493 return -EINVAL; 3494 } 3495 3496 mutex_lock(&its->dev_alloc_lock); 3497 its_dev = its_find_device(its, dev_id); 3498 if (its_dev) { 3499 /* 3500 * We already have seen this ID, probably through 3501 * another alias (PCI bridge of some sort). No need to 3502 * create the device. 3503 */ 3504 its_dev->shared = true; 3505 pr_debug("Reusing ITT for devID %x\n", dev_id); 3506 goto out; 3507 } 3508 3509 its_dev = its_create_device(its, dev_id, nvec, true); 3510 if (!its_dev) { 3511 err = -ENOMEM; 3512 goto out; 3513 } 3514 3515 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3516out: 3517 mutex_unlock(&its->dev_alloc_lock); 3518 info->scratchpad[0].ptr = its_dev; 3519 return err; 3520} 3521 3522static struct msi_domain_ops its_msi_domain_ops = { 3523 .msi_prepare = its_msi_prepare, 3524}; 3525 3526static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3527 unsigned int virq, 3528 irq_hw_number_t hwirq) 3529{ 3530 struct irq_fwspec fwspec; 3531 3532 if (irq_domain_get_of_node(domain->parent)) { 3533 fwspec.fwnode = domain->parent->fwnode; 3534 fwspec.param_count = 3; 3535 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3536 fwspec.param[1] = hwirq; 3537 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3538 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3539 fwspec.fwnode = domain->parent->fwnode; 3540 fwspec.param_count = 2; 3541 fwspec.param[0] = hwirq; 3542 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3543 } else { 3544 return -EINVAL; 3545 } 3546 3547 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3548} 3549 3550static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3551 unsigned int nr_irqs, void *args) 3552{ 3553 msi_alloc_info_t *info = args; 3554 struct its_device *its_dev = info->scratchpad[0].ptr; 3555 struct its_node *its = its_dev->its; 3556 struct irq_data *irqd; 3557 irq_hw_number_t hwirq; 3558 int err; 3559 int i; 3560 3561 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3562 if (err) 3563 return err; 3564 3565 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3566 if (err) 3567 return err; 3568 3569 for (i = 0; i < nr_irqs; i++) { 3570 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3571 if (err) 3572 return err; 3573 3574 irq_domain_set_hwirq_and_chip(domain, virq + i, 3575 hwirq + i, &its_irq_chip, its_dev); 3576 irqd = irq_get_irq_data(virq + i); 3577 irqd_set_single_target(irqd); 3578 irqd_set_affinity_on_activate(irqd); 3579 pr_debug("ID:%d pID:%d vID:%d\n", 3580 (int)(hwirq + i - its_dev->event_map.lpi_base), 3581 (int)(hwirq + i), virq + i); 3582 } 3583 3584 return 0; 3585} 3586 3587static int its_irq_domain_activate(struct irq_domain *domain, 3588 struct irq_data *d, bool reserve) 3589{ 3590 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3591 u32 event = its_get_event_id(d); 3592 int cpu; 3593 3594 cpu = its_select_cpu(d, cpu_online_mask); 3595 if (cpu < 0 || cpu >= nr_cpu_ids) 3596 return -EINVAL; 3597 3598 its_inc_lpi_count(d, cpu); 3599 its_dev->event_map.col_map[event] = cpu; 3600 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3601 3602 /* Map the GIC IRQ and event to the device */ 3603 its_send_mapti(its_dev, d->hwirq, event); 3604 return 0; 3605} 3606 3607static void its_irq_domain_deactivate(struct irq_domain *domain, 3608 struct irq_data *d) 3609{ 3610 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3611 u32 event = its_get_event_id(d); 3612 3613 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3614 /* Stop the delivery of interrupts */ 3615 its_send_discard(its_dev, event); 3616} 3617 3618static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3619 unsigned int nr_irqs) 3620{ 3621 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3622 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3623 struct its_node *its = its_dev->its; 3624 int i; 3625 3626 bitmap_release_region(its_dev->event_map.lpi_map, 3627 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3628 get_count_order(nr_irqs)); 3629 3630 for (i = 0; i < nr_irqs; i++) { 3631 struct irq_data *data = irq_domain_get_irq_data(domain, 3632 virq + i); 3633 /* Nuke the entry in the domain */ 3634 irq_domain_reset_irq_data(data); 3635 } 3636 3637 mutex_lock(&its->dev_alloc_lock); 3638 3639 /* 3640 * If all interrupts have been freed, start mopping the 3641 * floor. This is conditioned on the device not being shared. 3642 */ 3643 if (!its_dev->shared && 3644 bitmap_empty(its_dev->event_map.lpi_map, 3645 its_dev->event_map.nr_lpis)) { 3646 its_lpi_free(its_dev->event_map.lpi_map, 3647 its_dev->event_map.lpi_base, 3648 its_dev->event_map.nr_lpis); 3649 3650 /* Unmap device/itt */ 3651 its_send_mapd(its_dev, 0); 3652 its_free_device(its_dev); 3653 } 3654 3655 mutex_unlock(&its->dev_alloc_lock); 3656 3657 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3658} 3659 3660static const struct irq_domain_ops its_domain_ops = { 3661 .alloc = its_irq_domain_alloc, 3662 .free = its_irq_domain_free, 3663 .activate = its_irq_domain_activate, 3664 .deactivate = its_irq_domain_deactivate, 3665}; 3666 3667/* 3668 * This is insane. 3669 * 3670 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3671 * likely), the only way to perform an invalidate is to use a fake 3672 * device to issue an INV command, implying that the LPI has first 3673 * been mapped to some event on that device. Since this is not exactly 3674 * cheap, we try to keep that mapping around as long as possible, and 3675 * only issue an UNMAP if we're short on available slots. 3676 * 3677 * Broken by design(tm). 3678 * 3679 * GICv4.1, on the other hand, mandates that we're able to invalidate 3680 * by writing to a MMIO register. It doesn't implement the whole of 3681 * DirectLPI, but that's good enough. And most of the time, we don't 3682 * even have to invalidate anything, as the redistributor can be told 3683 * whether to generate a doorbell or not (we thus leave it enabled, 3684 * always). 3685 */ 3686static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3687{ 3688 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3689 if (gic_rdists->has_rvpeid) 3690 return; 3691 3692 /* Already unmapped? */ 3693 if (vpe->vpe_proxy_event == -1) 3694 return; 3695 3696 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3697 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3698 3699 /* 3700 * We don't track empty slots at all, so let's move the 3701 * next_victim pointer if we can quickly reuse that slot 3702 * instead of nuking an existing entry. Not clear that this is 3703 * always a win though, and this might just generate a ripple 3704 * effect... Let's just hope VPEs don't migrate too often. 3705 */ 3706 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3707 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3708 3709 vpe->vpe_proxy_event = -1; 3710} 3711 3712static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3713{ 3714 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3715 if (gic_rdists->has_rvpeid) 3716 return; 3717 3718 if (!gic_rdists->has_direct_lpi) { 3719 unsigned long flags; 3720 3721 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3722 its_vpe_db_proxy_unmap_locked(vpe); 3723 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3724 } 3725} 3726 3727static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3728{ 3729 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3730 if (gic_rdists->has_rvpeid) 3731 return; 3732 3733 /* Already mapped? */ 3734 if (vpe->vpe_proxy_event != -1) 3735 return; 3736 3737 /* This slot was already allocated. Kick the other VPE out. */ 3738 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3739 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3740 3741 /* Map the new VPE instead */ 3742 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3743 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3744 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3745 3746 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3747 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3748} 3749 3750static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3751{ 3752 unsigned long flags; 3753 struct its_collection *target_col; 3754 3755 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3756 if (gic_rdists->has_rvpeid) 3757 return; 3758 3759 if (gic_rdists->has_direct_lpi) { 3760 void __iomem *rdbase; 3761 3762 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3763 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3764 wait_for_syncr(rdbase); 3765 3766 return; 3767 } 3768 3769 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3770 3771 its_vpe_db_proxy_map_locked(vpe); 3772 3773 target_col = &vpe_proxy.dev->its->collections[to]; 3774 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3775 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3776 3777 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3778} 3779 3780static int its_vpe_set_affinity(struct irq_data *d, 3781 const struct cpumask *mask_val, 3782 bool force) 3783{ 3784 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3785 struct cpumask common, *table_mask; 3786 unsigned long flags; 3787 int from, cpu; 3788 3789 /* 3790 * Changing affinity is mega expensive, so let's be as lazy as 3791 * we can and only do it if we really have to. Also, if mapped 3792 * into the proxy device, we need to move the doorbell 3793 * interrupt to its new location. 3794 * 3795 * Another thing is that changing the affinity of a vPE affects 3796 * *other interrupts* such as all the vLPIs that are routed to 3797 * this vPE. This means that the irq_desc lock is not enough to 3798 * protect us, and that we must ensure nobody samples vpe->col_idx 3799 * during the update, hence the lock below which must also be 3800 * taken on any vLPI handling path that evaluates vpe->col_idx. 3801 */ 3802 from = vpe_to_cpuid_lock(vpe, &flags); 3803 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask; 3804 3805 /* 3806 * If we are offered another CPU in the same GICv4.1 ITS 3807 * affinity, pick this one. Otherwise, any CPU will do. 3808 */ 3809 if (table_mask && cpumask_and(&common, mask_val, table_mask)) 3810 cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common); 3811 else 3812 cpu = cpumask_first(mask_val); 3813 3814 if (from == cpu) 3815 goto out; 3816 3817 vpe->col_idx = cpu; 3818 3819 its_send_vmovp(vpe); 3820 its_vpe_db_proxy_move(vpe, from, cpu); 3821 3822out: 3823 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3824 vpe_to_cpuid_unlock(vpe, flags); 3825 3826 return IRQ_SET_MASK_OK_DONE; 3827} 3828 3829static void its_wait_vpt_parse_complete(void) 3830{ 3831 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3832 u64 val; 3833 3834 if (!gic_rdists->has_vpend_valid_dirty) 3835 return; 3836 3837 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3838 val, 3839 !(val & GICR_VPENDBASER_Dirty), 3840 10, 500)); 3841} 3842 3843static void its_vpe_schedule(struct its_vpe *vpe) 3844{ 3845 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3846 u64 val; 3847 3848 /* Schedule the VPE */ 3849 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3850 GENMASK_ULL(51, 12); 3851 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3852 val |= GICR_VPROPBASER_RaWb; 3853 val |= GICR_VPROPBASER_InnerShareable; 3854 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3855 3856 val = virt_to_phys(page_address(vpe->vpt_page)) & 3857 GENMASK_ULL(51, 16); 3858 val |= GICR_VPENDBASER_RaWaWb; 3859 val |= GICR_VPENDBASER_InnerShareable; 3860 /* 3861 * There is no good way of finding out if the pending table is 3862 * empty as we can race against the doorbell interrupt very 3863 * easily. So in the end, vpe->pending_last is only an 3864 * indication that the vcpu has something pending, not one 3865 * that the pending table is empty. A good implementation 3866 * would be able to read its coarse map pretty quickly anyway, 3867 * making this a tolerable issue. 3868 */ 3869 val |= GICR_VPENDBASER_PendingLast; 3870 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3871 val |= GICR_VPENDBASER_Valid; 3872 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3873 3874 its_wait_vpt_parse_complete(); 3875} 3876 3877static void its_vpe_deschedule(struct its_vpe *vpe) 3878{ 3879 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3880 u64 val; 3881 3882 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3883 3884 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3885 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3886} 3887 3888static void its_vpe_invall(struct its_vpe *vpe) 3889{ 3890 struct its_node *its; 3891 3892 list_for_each_entry(its, &its_nodes, entry) { 3893 if (!is_v4(its)) 3894 continue; 3895 3896 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3897 continue; 3898 3899 /* 3900 * Sending a VINVALL to a single ITS is enough, as all 3901 * we need is to reach the redistributors. 3902 */ 3903 its_send_vinvall(its, vpe); 3904 return; 3905 } 3906} 3907 3908static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3909{ 3910 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3911 struct its_cmd_info *info = vcpu_info; 3912 3913 switch (info->cmd_type) { 3914 case SCHEDULE_VPE: 3915 its_vpe_schedule(vpe); 3916 return 0; 3917 3918 case DESCHEDULE_VPE: 3919 its_vpe_deschedule(vpe); 3920 return 0; 3921 3922 case INVALL_VPE: 3923 its_vpe_invall(vpe); 3924 return 0; 3925 3926 default: 3927 return -EINVAL; 3928 } 3929} 3930 3931static void its_vpe_send_cmd(struct its_vpe *vpe, 3932 void (*cmd)(struct its_device *, u32)) 3933{ 3934 unsigned long flags; 3935 3936 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3937 3938 its_vpe_db_proxy_map_locked(vpe); 3939 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3940 3941 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3942} 3943 3944static void its_vpe_send_inv(struct irq_data *d) 3945{ 3946 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3947 3948 if (gic_rdists->has_direct_lpi) 3949 __direct_lpi_inv(d, d->parent_data->hwirq); 3950 else 3951 its_vpe_send_cmd(vpe, its_send_inv); 3952} 3953 3954static void its_vpe_mask_irq(struct irq_data *d) 3955{ 3956 /* 3957 * We need to unmask the LPI, which is described by the parent 3958 * irq_data. Instead of calling into the parent (which won't 3959 * exactly do the right thing, let's simply use the 3960 * parent_data pointer. Yes, I'm naughty. 3961 */ 3962 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 3963 its_vpe_send_inv(d); 3964} 3965 3966static void its_vpe_unmask_irq(struct irq_data *d) 3967{ 3968 /* Same hack as above... */ 3969 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 3970 its_vpe_send_inv(d); 3971} 3972 3973static int its_vpe_set_irqchip_state(struct irq_data *d, 3974 enum irqchip_irq_state which, 3975 bool state) 3976{ 3977 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3978 3979 if (which != IRQCHIP_STATE_PENDING) 3980 return -EINVAL; 3981 3982 if (gic_rdists->has_direct_lpi) { 3983 void __iomem *rdbase; 3984 3985 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 3986 if (state) { 3987 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 3988 } else { 3989 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3990 wait_for_syncr(rdbase); 3991 } 3992 } else { 3993 if (state) 3994 its_vpe_send_cmd(vpe, its_send_int); 3995 else 3996 its_vpe_send_cmd(vpe, its_send_clear); 3997 } 3998 3999 return 0; 4000} 4001 4002static int its_vpe_retrigger(struct irq_data *d) 4003{ 4004 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4005} 4006 4007static struct irq_chip its_vpe_irq_chip = { 4008 .name = "GICv4-vpe", 4009 .irq_mask = its_vpe_mask_irq, 4010 .irq_unmask = its_vpe_unmask_irq, 4011 .irq_eoi = irq_chip_eoi_parent, 4012 .irq_set_affinity = its_vpe_set_affinity, 4013 .irq_retrigger = its_vpe_retrigger, 4014 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4015 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4016}; 4017 4018static struct its_node *find_4_1_its(void) 4019{ 4020 static struct its_node *its = NULL; 4021 4022 if (!its) { 4023 list_for_each_entry(its, &its_nodes, entry) { 4024 if (is_v4_1(its)) 4025 return its; 4026 } 4027 4028 /* Oops? */ 4029 its = NULL; 4030 } 4031 4032 return its; 4033} 4034 4035static void its_vpe_4_1_send_inv(struct irq_data *d) 4036{ 4037 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4038 struct its_node *its; 4039 4040 /* 4041 * GICv4.1 wants doorbells to be invalidated using the 4042 * INVDB command in order to be broadcast to all RDs. Send 4043 * it to the first valid ITS, and let the HW do its magic. 4044 */ 4045 its = find_4_1_its(); 4046 if (its) 4047 its_send_invdb(its, vpe); 4048} 4049 4050static void its_vpe_4_1_mask_irq(struct irq_data *d) 4051{ 4052 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4053 its_vpe_4_1_send_inv(d); 4054} 4055 4056static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4057{ 4058 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4059 its_vpe_4_1_send_inv(d); 4060} 4061 4062static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4063 struct its_cmd_info *info) 4064{ 4065 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4066 u64 val = 0; 4067 4068 /* Schedule the VPE */ 4069 val |= GICR_VPENDBASER_Valid; 4070 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4071 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4072 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4073 4074 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4075 4076 its_wait_vpt_parse_complete(); 4077} 4078 4079static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4080 struct its_cmd_info *info) 4081{ 4082 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4083 u64 val; 4084 4085 if (info->req_db) { 4086 unsigned long flags; 4087 4088 /* 4089 * vPE is going to block: make the vPE non-resident with 4090 * PendingLast clear and DB set. The GIC guarantees that if 4091 * we read-back PendingLast clear, then a doorbell will be 4092 * delivered when an interrupt comes. 4093 * 4094 * Note the locking to deal with the concurrent update of 4095 * pending_last from the doorbell interrupt handler that can 4096 * run concurrently. 4097 */ 4098 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4099 val = its_clear_vpend_valid(vlpi_base, 4100 GICR_VPENDBASER_PendingLast, 4101 GICR_VPENDBASER_4_1_DB); 4102 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4103 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4104 } else { 4105 /* 4106 * We're not blocking, so just make the vPE non-resident 4107 * with PendingLast set, indicating that we'll be back. 4108 */ 4109 val = its_clear_vpend_valid(vlpi_base, 4110 0, 4111 GICR_VPENDBASER_PendingLast); 4112 vpe->pending_last = true; 4113 } 4114} 4115 4116static void its_vpe_4_1_invall(struct its_vpe *vpe) 4117{ 4118 void __iomem *rdbase; 4119 unsigned long flags; 4120 u64 val; 4121 int cpu; 4122 4123 val = GICR_INVALLR_V; 4124 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4125 4126 /* Target the redistributor this vPE is currently known on */ 4127 cpu = vpe_to_cpuid_lock(vpe, &flags); 4128 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4129 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4130 gic_write_lpir(val, rdbase + GICR_INVALLR); 4131 4132 wait_for_syncr(rdbase); 4133 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4134 vpe_to_cpuid_unlock(vpe, flags); 4135} 4136 4137static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4138{ 4139 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4140 struct its_cmd_info *info = vcpu_info; 4141 4142 switch (info->cmd_type) { 4143 case SCHEDULE_VPE: 4144 its_vpe_4_1_schedule(vpe, info); 4145 return 0; 4146 4147 case DESCHEDULE_VPE: 4148 its_vpe_4_1_deschedule(vpe, info); 4149 return 0; 4150 4151 case INVALL_VPE: 4152 its_vpe_4_1_invall(vpe); 4153 return 0; 4154 4155 default: 4156 return -EINVAL; 4157 } 4158} 4159 4160static struct irq_chip its_vpe_4_1_irq_chip = { 4161 .name = "GICv4.1-vpe", 4162 .irq_mask = its_vpe_4_1_mask_irq, 4163 .irq_unmask = its_vpe_4_1_unmask_irq, 4164 .irq_eoi = irq_chip_eoi_parent, 4165 .irq_set_affinity = its_vpe_set_affinity, 4166 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4167}; 4168 4169static void its_configure_sgi(struct irq_data *d, bool clear) 4170{ 4171 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4172 struct its_cmd_desc desc; 4173 4174 desc.its_vsgi_cmd.vpe = vpe; 4175 desc.its_vsgi_cmd.sgi = d->hwirq; 4176 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4177 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4178 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4179 desc.its_vsgi_cmd.clear = clear; 4180 4181 /* 4182 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4183 * destination VPE is mapped there. Since we map them eagerly at 4184 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4185 */ 4186 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4187} 4188 4189static void its_sgi_mask_irq(struct irq_data *d) 4190{ 4191 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4192 4193 vpe->sgi_config[d->hwirq].enabled = false; 4194 its_configure_sgi(d, false); 4195} 4196 4197static void its_sgi_unmask_irq(struct irq_data *d) 4198{ 4199 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4200 4201 vpe->sgi_config[d->hwirq].enabled = true; 4202 its_configure_sgi(d, false); 4203} 4204 4205static int its_sgi_set_affinity(struct irq_data *d, 4206 const struct cpumask *mask_val, 4207 bool force) 4208{ 4209 /* 4210 * There is no notion of affinity for virtual SGIs, at least 4211 * not on the host (since they can only be targeting a vPE). 4212 * Tell the kernel we've done whatever it asked for. 4213 */ 4214 irq_data_update_effective_affinity(d, mask_val); 4215 return IRQ_SET_MASK_OK; 4216} 4217 4218static int its_sgi_set_irqchip_state(struct irq_data *d, 4219 enum irqchip_irq_state which, 4220 bool state) 4221{ 4222 if (which != IRQCHIP_STATE_PENDING) 4223 return -EINVAL; 4224 4225 if (state) { 4226 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4227 struct its_node *its = find_4_1_its(); 4228 u64 val; 4229 4230 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4231 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4232 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4233 } else { 4234 its_configure_sgi(d, true); 4235 } 4236 4237 return 0; 4238} 4239 4240static int its_sgi_get_irqchip_state(struct irq_data *d, 4241 enum irqchip_irq_state which, bool *val) 4242{ 4243 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4244 void __iomem *base; 4245 unsigned long flags; 4246 u32 count = 1000000; /* 1s! */ 4247 u32 status; 4248 int cpu; 4249 4250 if (which != IRQCHIP_STATE_PENDING) 4251 return -EINVAL; 4252 4253 /* 4254 * Locking galore! We can race against two different events: 4255 * 4256 * - Concurrent vPE affinity change: we must make sure it cannot 4257 * happen, or we'll talk to the wrong redistributor. This is 4258 * identical to what happens with vLPIs. 4259 * 4260 * - Concurrent VSGIPENDR access: As it involves accessing two 4261 * MMIO registers, this must be made atomic one way or another. 4262 */ 4263 cpu = vpe_to_cpuid_lock(vpe, &flags); 4264 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4265 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4266 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4267 do { 4268 status = readl_relaxed(base + GICR_VSGIPENDR); 4269 if (!(status & GICR_VSGIPENDR_BUSY)) 4270 goto out; 4271 4272 count--; 4273 if (!count) { 4274 pr_err_ratelimited("Unable to get SGI status\n"); 4275 goto out; 4276 } 4277 cpu_relax(); 4278 udelay(1); 4279 } while (count); 4280 4281out: 4282 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4283 vpe_to_cpuid_unlock(vpe, flags); 4284 4285 if (!count) 4286 return -ENXIO; 4287 4288 *val = !!(status & (1 << d->hwirq)); 4289 4290 return 0; 4291} 4292 4293static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4294{ 4295 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4296 struct its_cmd_info *info = vcpu_info; 4297 4298 switch (info->cmd_type) { 4299 case PROP_UPDATE_VSGI: 4300 vpe->sgi_config[d->hwirq].priority = info->priority; 4301 vpe->sgi_config[d->hwirq].group = info->group; 4302 its_configure_sgi(d, false); 4303 return 0; 4304 4305 default: 4306 return -EINVAL; 4307 } 4308} 4309 4310static struct irq_chip its_sgi_irq_chip = { 4311 .name = "GICv4.1-sgi", 4312 .irq_mask = its_sgi_mask_irq, 4313 .irq_unmask = its_sgi_unmask_irq, 4314 .irq_set_affinity = its_sgi_set_affinity, 4315 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4316 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4317 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4318}; 4319 4320static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4321 unsigned int virq, unsigned int nr_irqs, 4322 void *args) 4323{ 4324 struct its_vpe *vpe = args; 4325 int i; 4326 4327 /* Yes, we do want 16 SGIs */ 4328 WARN_ON(nr_irqs != 16); 4329 4330 for (i = 0; i < 16; i++) { 4331 vpe->sgi_config[i].priority = 0; 4332 vpe->sgi_config[i].enabled = false; 4333 vpe->sgi_config[i].group = false; 4334 4335 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4336 &its_sgi_irq_chip, vpe); 4337 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4338 } 4339 4340 return 0; 4341} 4342 4343static void its_sgi_irq_domain_free(struct irq_domain *domain, 4344 unsigned int virq, 4345 unsigned int nr_irqs) 4346{ 4347 /* Nothing to do */ 4348} 4349 4350static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4351 struct irq_data *d, bool reserve) 4352{ 4353 /* Write out the initial SGI configuration */ 4354 its_configure_sgi(d, false); 4355 return 0; 4356} 4357 4358static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4359 struct irq_data *d) 4360{ 4361 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4362 4363 /* 4364 * The VSGI command is awkward: 4365 * 4366 * - To change the configuration, CLEAR must be set to false, 4367 * leaving the pending bit unchanged. 4368 * - To clear the pending bit, CLEAR must be set to true, leaving 4369 * the configuration unchanged. 4370 * 4371 * You just can't do both at once, hence the two commands below. 4372 */ 4373 vpe->sgi_config[d->hwirq].enabled = false; 4374 its_configure_sgi(d, false); 4375 its_configure_sgi(d, true); 4376} 4377 4378static const struct irq_domain_ops its_sgi_domain_ops = { 4379 .alloc = its_sgi_irq_domain_alloc, 4380 .free = its_sgi_irq_domain_free, 4381 .activate = its_sgi_irq_domain_activate, 4382 .deactivate = its_sgi_irq_domain_deactivate, 4383}; 4384 4385static int its_vpe_id_alloc(void) 4386{ 4387 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 4388} 4389 4390static void its_vpe_id_free(u16 id) 4391{ 4392 ida_simple_remove(&its_vpeid_ida, id); 4393} 4394 4395static int its_vpe_init(struct its_vpe *vpe) 4396{ 4397 struct page *vpt_page; 4398 int vpe_id; 4399 4400 /* Allocate vpe_id */ 4401 vpe_id = its_vpe_id_alloc(); 4402 if (vpe_id < 0) 4403 return vpe_id; 4404 4405 /* Allocate VPT */ 4406 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4407 if (!vpt_page) { 4408 its_vpe_id_free(vpe_id); 4409 return -ENOMEM; 4410 } 4411 4412 if (!its_alloc_vpe_table(vpe_id)) { 4413 its_vpe_id_free(vpe_id); 4414 its_free_pending_table(vpt_page); 4415 return -ENOMEM; 4416 } 4417 4418 raw_spin_lock_init(&vpe->vpe_lock); 4419 vpe->vpe_id = vpe_id; 4420 vpe->vpt_page = vpt_page; 4421 if (gic_rdists->has_rvpeid) 4422 atomic_set(&vpe->vmapp_count, 0); 4423 else 4424 vpe->vpe_proxy_event = -1; 4425 4426 return 0; 4427} 4428 4429static void its_vpe_teardown(struct its_vpe *vpe) 4430{ 4431 its_vpe_db_proxy_unmap(vpe); 4432 its_vpe_id_free(vpe->vpe_id); 4433 its_free_pending_table(vpe->vpt_page); 4434} 4435 4436static void its_vpe_irq_domain_free(struct irq_domain *domain, 4437 unsigned int virq, 4438 unsigned int nr_irqs) 4439{ 4440 struct its_vm *vm = domain->host_data; 4441 int i; 4442 4443 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4444 4445 for (i = 0; i < nr_irqs; i++) { 4446 struct irq_data *data = irq_domain_get_irq_data(domain, 4447 virq + i); 4448 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4449 4450 BUG_ON(vm != vpe->its_vm); 4451 4452 clear_bit(data->hwirq, vm->db_bitmap); 4453 its_vpe_teardown(vpe); 4454 irq_domain_reset_irq_data(data); 4455 } 4456 4457 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4458 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4459 its_free_prop_table(vm->vprop_page); 4460 } 4461} 4462 4463static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4464 unsigned int nr_irqs, void *args) 4465{ 4466 struct irq_chip *irqchip = &its_vpe_irq_chip; 4467 struct its_vm *vm = args; 4468 unsigned long *bitmap; 4469 struct page *vprop_page; 4470 int base, nr_ids, i, err = 0; 4471 4472 BUG_ON(!vm); 4473 4474 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4475 if (!bitmap) 4476 return -ENOMEM; 4477 4478 if (nr_ids < nr_irqs) { 4479 its_lpi_free(bitmap, base, nr_ids); 4480 return -ENOMEM; 4481 } 4482 4483 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4484 if (!vprop_page) { 4485 its_lpi_free(bitmap, base, nr_ids); 4486 return -ENOMEM; 4487 } 4488 4489 vm->db_bitmap = bitmap; 4490 vm->db_lpi_base = base; 4491 vm->nr_db_lpis = nr_ids; 4492 vm->vprop_page = vprop_page; 4493 4494 if (gic_rdists->has_rvpeid) 4495 irqchip = &its_vpe_4_1_irq_chip; 4496 4497 for (i = 0; i < nr_irqs; i++) { 4498 vm->vpes[i]->vpe_db_lpi = base + i; 4499 err = its_vpe_init(vm->vpes[i]); 4500 if (err) 4501 break; 4502 err = its_irq_gic_domain_alloc(domain, virq + i, 4503 vm->vpes[i]->vpe_db_lpi); 4504 if (err) 4505 break; 4506 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4507 irqchip, vm->vpes[i]); 4508 set_bit(i, bitmap); 4509 } 4510 4511 if (err) 4512 its_vpe_irq_domain_free(domain, virq, i); 4513 4514 return err; 4515} 4516 4517static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4518 struct irq_data *d, bool reserve) 4519{ 4520 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4521 struct its_node *its; 4522 4523 /* 4524 * If we use the list map, we issue VMAPP on demand... Unless 4525 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4526 * so that VSGIs can work. 4527 */ 4528 if (!gic_requires_eager_mapping()) 4529 return 0; 4530 4531 /* Map the VPE to the first possible CPU */ 4532 vpe->col_idx = cpumask_first(cpu_online_mask); 4533 4534 list_for_each_entry(its, &its_nodes, entry) { 4535 if (!is_v4(its)) 4536 continue; 4537 4538 its_send_vmapp(its, vpe, true); 4539 its_send_vinvall(its, vpe); 4540 } 4541 4542 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4543 4544 return 0; 4545} 4546 4547static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4548 struct irq_data *d) 4549{ 4550 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4551 struct its_node *its; 4552 4553 /* 4554 * If we use the list map on GICv4.0, we unmap the VPE once no 4555 * VLPIs are associated with the VM. 4556 */ 4557 if (!gic_requires_eager_mapping()) 4558 return; 4559 4560 list_for_each_entry(its, &its_nodes, entry) { 4561 if (!is_v4(its)) 4562 continue; 4563 4564 its_send_vmapp(its, vpe, false); 4565 } 4566} 4567 4568static const struct irq_domain_ops its_vpe_domain_ops = { 4569 .alloc = its_vpe_irq_domain_alloc, 4570 .free = its_vpe_irq_domain_free, 4571 .activate = its_vpe_irq_domain_activate, 4572 .deactivate = its_vpe_irq_domain_deactivate, 4573}; 4574 4575static int its_force_quiescent(void __iomem *base) 4576{ 4577 u32 count = 1000000; /* 1s */ 4578 u32 val; 4579 4580 val = readl_relaxed(base + GITS_CTLR); 4581 /* 4582 * GIC architecture specification requires the ITS to be both 4583 * disabled and quiescent for writes to GITS_BASER<n> or 4584 * GITS_CBASER to not have UNPREDICTABLE results. 4585 */ 4586 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4587 return 0; 4588 4589 /* Disable the generation of all interrupts to this ITS */ 4590 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4591 writel_relaxed(val, base + GITS_CTLR); 4592 4593 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4594 while (1) { 4595 val = readl_relaxed(base + GITS_CTLR); 4596 if (val & GITS_CTLR_QUIESCENT) 4597 return 0; 4598 4599 count--; 4600 if (!count) 4601 return -EBUSY; 4602 4603 cpu_relax(); 4604 udelay(1); 4605 } 4606} 4607 4608static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4609{ 4610 struct its_node *its = data; 4611 4612 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4613 its->typer &= ~GITS_TYPER_DEVBITS; 4614 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4615 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4616 4617 return true; 4618} 4619 4620static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4621{ 4622 struct its_node *its = data; 4623 4624 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4625 4626 return true; 4627} 4628 4629static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4630{ 4631 struct its_node *its = data; 4632 4633 /* On QDF2400, the size of the ITE is 16Bytes */ 4634 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4635 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4636 4637 return true; 4638} 4639 4640static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4641{ 4642 struct its_node *its = its_dev->its; 4643 4644 /* 4645 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4646 * which maps 32-bit writes targeted at a separate window of 4647 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4648 * with device ID taken from bits [device_id_bits + 1:2] of 4649 * the window offset. 4650 */ 4651 return its->pre_its_base + (its_dev->device_id << 2); 4652} 4653 4654static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4655{ 4656 struct its_node *its = data; 4657 u32 pre_its_window[2]; 4658 u32 ids; 4659 4660 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4661 "socionext,synquacer-pre-its", 4662 pre_its_window, 4663 ARRAY_SIZE(pre_its_window))) { 4664 4665 its->pre_its_base = pre_its_window[0]; 4666 its->get_msi_base = its_irq_get_msi_base_pre_its; 4667 4668 ids = ilog2(pre_its_window[1]) - 2; 4669 if (device_ids(its) > ids) { 4670 its->typer &= ~GITS_TYPER_DEVBITS; 4671 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4672 } 4673 4674 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4675 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; 4676 return true; 4677 } 4678 return false; 4679} 4680 4681static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4682{ 4683 struct its_node *its = data; 4684 4685 /* 4686 * Hip07 insists on using the wrong address for the VLPI 4687 * page. Trick it into doing the right thing... 4688 */ 4689 its->vlpi_redist_offset = SZ_128K; 4690 return true; 4691} 4692 4693static const struct gic_quirk its_quirks[] = { 4694#ifdef CONFIG_CAVIUM_ERRATUM_22375 4695 { 4696 .desc = "ITS: Cavium errata 22375, 24313", 4697 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4698 .mask = 0xffff0fff, 4699 .init = its_enable_quirk_cavium_22375, 4700 }, 4701#endif 4702#ifdef CONFIG_CAVIUM_ERRATUM_23144 4703 { 4704 .desc = "ITS: Cavium erratum 23144", 4705 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4706 .mask = 0xffff0fff, 4707 .init = its_enable_quirk_cavium_23144, 4708 }, 4709#endif 4710#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4711 { 4712 .desc = "ITS: QDF2400 erratum 0065", 4713 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4714 .mask = 0xffffffff, 4715 .init = its_enable_quirk_qdf2400_e0065, 4716 }, 4717#endif 4718#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4719 { 4720 /* 4721 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4722 * implementation, but with a 'pre-ITS' added that requires 4723 * special handling in software. 4724 */ 4725 .desc = "ITS: Socionext Synquacer pre-ITS", 4726 .iidr = 0x0001143b, 4727 .mask = 0xffffffff, 4728 .init = its_enable_quirk_socionext_synquacer, 4729 }, 4730#endif 4731#ifdef CONFIG_HISILICON_ERRATUM_161600802 4732 { 4733 .desc = "ITS: Hip07 erratum 161600802", 4734 .iidr = 0x00000004, 4735 .mask = 0xffffffff, 4736 .init = its_enable_quirk_hip07_161600802, 4737 }, 4738#endif 4739 { 4740 } 4741}; 4742 4743static void its_enable_quirks(struct its_node *its) 4744{ 4745 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4746 4747 gic_enable_quirks(iidr, its_quirks, its); 4748} 4749 4750static int its_save_disable(void) 4751{ 4752 struct its_node *its; 4753 int err = 0; 4754 4755 raw_spin_lock(&its_lock); 4756 list_for_each_entry(its, &its_nodes, entry) { 4757 void __iomem *base; 4758 4759 base = its->base; 4760 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4761 err = its_force_quiescent(base); 4762 if (err) { 4763 pr_err("ITS@%pa: failed to quiesce: %d\n", 4764 &its->phys_base, err); 4765 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4766 goto err; 4767 } 4768 4769 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4770 } 4771 4772err: 4773 if (err) { 4774 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4775 void __iomem *base; 4776 4777 base = its->base; 4778 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4779 } 4780 } 4781 raw_spin_unlock(&its_lock); 4782 4783 return err; 4784} 4785 4786static void its_restore_enable(void) 4787{ 4788 struct its_node *its; 4789 int ret; 4790 4791 raw_spin_lock(&its_lock); 4792 list_for_each_entry(its, &its_nodes, entry) { 4793 void __iomem *base; 4794 int i; 4795 4796 base = its->base; 4797 4798 /* 4799 * Make sure that the ITS is disabled. If it fails to quiesce, 4800 * don't restore it since writing to CBASER or BASER<n> 4801 * registers is undefined according to the GIC v3 ITS 4802 * Specification. 4803 * 4804 * Firmware resuming with the ITS enabled is terminally broken. 4805 */ 4806 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 4807 ret = its_force_quiescent(base); 4808 if (ret) { 4809 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4810 &its->phys_base, ret); 4811 continue; 4812 } 4813 4814 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4815 4816 /* 4817 * Writing CBASER resets CREADR to 0, so make CWRITER and 4818 * cmd_write line up with it. 4819 */ 4820 its->cmd_write = its->cmd_base; 4821 gits_write_cwriter(0, base + GITS_CWRITER); 4822 4823 /* Restore GITS_BASER from the value cache. */ 4824 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4825 struct its_baser *baser = &its->tables[i]; 4826 4827 if (!(baser->val & GITS_BASER_VALID)) 4828 continue; 4829 4830 its_write_baser(its, baser, baser->val); 4831 } 4832 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4833 4834 /* 4835 * Reinit the collection if it's stored in the ITS. This is 4836 * indicated by the col_id being less than the HCC field. 4837 * CID < HCC as specified in the GIC v3 Documentation. 4838 */ 4839 if (its->collections[smp_processor_id()].col_id < 4840 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4841 its_cpu_init_collection(its); 4842 } 4843 raw_spin_unlock(&its_lock); 4844} 4845 4846static struct syscore_ops its_syscore_ops = { 4847 .suspend = its_save_disable, 4848 .resume = its_restore_enable, 4849}; 4850 4851static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 4852{ 4853 struct irq_domain *inner_domain; 4854 struct msi_domain_info *info; 4855 4856 info = kzalloc(sizeof(*info), GFP_KERNEL); 4857 if (!info) 4858 return -ENOMEM; 4859 4860 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 4861 if (!inner_domain) { 4862 kfree(info); 4863 return -ENOMEM; 4864 } 4865 4866 inner_domain->parent = its_parent; 4867 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 4868 inner_domain->flags |= its->msi_domain_flags; 4869 info->ops = &its_msi_domain_ops; 4870 info->data = its; 4871 inner_domain->host_data = info; 4872 4873 return 0; 4874} 4875 4876static int its_init_vpe_domain(void) 4877{ 4878 struct its_node *its; 4879 u32 devid; 4880 int entries; 4881 4882 if (gic_rdists->has_direct_lpi) { 4883 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 4884 return 0; 4885 } 4886 4887 /* Any ITS will do, even if not v4 */ 4888 its = list_first_entry(&its_nodes, struct its_node, entry); 4889 4890 entries = roundup_pow_of_two(nr_cpu_ids); 4891 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 4892 GFP_KERNEL); 4893 if (!vpe_proxy.vpes) { 4894 pr_err("ITS: Can't allocate GICv4 proxy device array\n"); 4895 return -ENOMEM; 4896 } 4897 4898 /* Use the last possible DevID */ 4899 devid = GENMASK(device_ids(its) - 1, 0); 4900 vpe_proxy.dev = its_create_device(its, devid, entries, false); 4901 if (!vpe_proxy.dev) { 4902 kfree(vpe_proxy.vpes); 4903 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 4904 return -ENOMEM; 4905 } 4906 4907 BUG_ON(entries > vpe_proxy.dev->nr_ites); 4908 4909 raw_spin_lock_init(&vpe_proxy.lock); 4910 vpe_proxy.next_victim = 0; 4911 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 4912 devid, vpe_proxy.dev->nr_ites); 4913 4914 return 0; 4915} 4916 4917static int __init its_compute_its_list_map(struct resource *res, 4918 void __iomem *its_base) 4919{ 4920 int its_number; 4921 u32 ctlr; 4922 4923 /* 4924 * This is assumed to be done early enough that we're 4925 * guaranteed to be single-threaded, hence no 4926 * locking. Should this change, we should address 4927 * this. 4928 */ 4929 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 4930 if (its_number >= GICv4_ITS_LIST_MAX) { 4931 pr_err("ITS@%pa: No ITSList entry available!\n", 4932 &res->start); 4933 return -EINVAL; 4934 } 4935 4936 ctlr = readl_relaxed(its_base + GITS_CTLR); 4937 ctlr &= ~GITS_CTLR_ITS_NUMBER; 4938 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 4939 writel_relaxed(ctlr, its_base + GITS_CTLR); 4940 ctlr = readl_relaxed(its_base + GITS_CTLR); 4941 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 4942 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 4943 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 4944 } 4945 4946 if (test_and_set_bit(its_number, &its_list_map)) { 4947 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 4948 &res->start, its_number); 4949 return -EINVAL; 4950 } 4951 4952 return its_number; 4953} 4954 4955static int __init its_probe_one(struct resource *res, 4956 struct fwnode_handle *handle, int numa_node) 4957{ 4958 struct its_node *its; 4959 void __iomem *its_base; 4960 u32 val, ctlr; 4961 u64 baser, tmp, typer; 4962 struct page *page; 4963 int err; 4964 4965 its_base = ioremap(res->start, SZ_64K); 4966 if (!its_base) { 4967 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4968 return -ENOMEM; 4969 } 4970 4971 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4972 if (val != 0x30 && val != 0x40) { 4973 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4974 err = -ENODEV; 4975 goto out_unmap; 4976 } 4977 4978 err = its_force_quiescent(its_base); 4979 if (err) { 4980 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4981 goto out_unmap; 4982 } 4983 4984 pr_info("ITS %pR\n", res); 4985 4986 its = kzalloc(sizeof(*its), GFP_KERNEL); 4987 if (!its) { 4988 err = -ENOMEM; 4989 goto out_unmap; 4990 } 4991 4992 raw_spin_lock_init(&its->lock); 4993 mutex_init(&its->dev_alloc_lock); 4994 INIT_LIST_HEAD(&its->entry); 4995 INIT_LIST_HEAD(&its->its_device_list); 4996 typer = gic_read_typer(its_base + GITS_TYPER); 4997 its->typer = typer; 4998 its->base = its_base; 4999 its->phys_base = res->start; 5000 if (is_v4(its)) { 5001 if (!(typer & GITS_TYPER_VMOVP)) { 5002 err = its_compute_its_list_map(res, its_base); 5003 if (err < 0) 5004 goto out_free_its; 5005 5006 its->list_nr = err; 5007 5008 pr_info("ITS@%pa: Using ITS number %d\n", 5009 &res->start, err); 5010 } else { 5011 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 5012 } 5013 5014 if (is_v4_1(its)) { 5015 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer); 5016 5017 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K); 5018 if (!its->sgir_base) { 5019 err = -ENOMEM; 5020 goto out_free_its; 5021 } 5022 5023 its->mpidr = readl_relaxed(its_base + GITS_MPIDR); 5024 5025 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5026 &res->start, its->mpidr, svpet); 5027 } 5028 } 5029 5030 its->numa_node = numa_node; 5031 5032 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5033 get_order(ITS_CMD_QUEUE_SZ)); 5034 if (!page) { 5035 err = -ENOMEM; 5036 goto out_unmap_sgir; 5037 } 5038 its->cmd_base = (void *)page_address(page); 5039 its->cmd_write = its->cmd_base; 5040 its->fwnode_handle = handle; 5041 its->get_msi_base = its_irq_get_msi_base; 5042 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; 5043 5044 its_enable_quirks(its); 5045 5046 err = its_alloc_tables(its); 5047 if (err) 5048 goto out_free_cmd; 5049 5050 err = its_alloc_collections(its); 5051 if (err) 5052 goto out_free_tables; 5053 5054 baser = (virt_to_phys(its->cmd_base) | 5055 GITS_CBASER_RaWaWb | 5056 GITS_CBASER_InnerShareable | 5057 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5058 GITS_CBASER_VALID); 5059 5060 gits_write_cbaser(baser, its->base + GITS_CBASER); 5061 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5062 5063 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5064 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5065 /* 5066 * The HW reports non-shareable, we must 5067 * remove the cacheability attributes as 5068 * well. 5069 */ 5070 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5071 GITS_CBASER_CACHEABILITY_MASK); 5072 baser |= GITS_CBASER_nC; 5073 gits_write_cbaser(baser, its->base + GITS_CBASER); 5074 } 5075 pr_info("ITS: using cache flushing for cmd queue\n"); 5076 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5077 } 5078 5079 gits_write_cwriter(0, its->base + GITS_CWRITER); 5080 ctlr = readl_relaxed(its->base + GITS_CTLR); 5081 ctlr |= GITS_CTLR_ENABLE; 5082 if (is_v4(its)) 5083 ctlr |= GITS_CTLR_ImDe; 5084 writel_relaxed(ctlr, its->base + GITS_CTLR); 5085 5086 err = its_init_domain(handle, its); 5087 if (err) 5088 goto out_free_tables; 5089 5090 raw_spin_lock(&its_lock); 5091 list_add(&its->entry, &its_nodes); 5092 raw_spin_unlock(&its_lock); 5093 5094 return 0; 5095 5096out_free_tables: 5097 its_free_tables(its); 5098out_free_cmd: 5099 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5100out_unmap_sgir: 5101 if (its->sgir_base) 5102 iounmap(its->sgir_base); 5103out_free_its: 5104 kfree(its); 5105out_unmap: 5106 iounmap(its_base); 5107 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 5108 return err; 5109} 5110 5111static bool gic_rdists_supports_plpis(void) 5112{ 5113 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5114} 5115 5116static int redist_disable_lpis(void) 5117{ 5118 void __iomem *rbase = gic_data_rdist_rd_base(); 5119 u64 timeout = USEC_PER_SEC; 5120 u64 val; 5121 5122 if (!gic_rdists_supports_plpis()) { 5123 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5124 return -ENXIO; 5125 } 5126 5127 val = readl_relaxed(rbase + GICR_CTLR); 5128 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5129 return 0; 5130 5131 /* 5132 * If coming via a CPU hotplug event, we don't need to disable 5133 * LPIs before trying to re-enable them. They are already 5134 * configured and all is well in the world. 5135 * 5136 * If running with preallocated tables, there is nothing to do. 5137 */ 5138 if (gic_data_rdist()->lpi_enabled || 5139 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5140 return 0; 5141 5142 /* 5143 * From that point on, we only try to do some damage control. 5144 */ 5145 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5146 smp_processor_id()); 5147 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5148 5149 /* Disable LPIs */ 5150 val &= ~GICR_CTLR_ENABLE_LPIS; 5151 writel_relaxed(val, rbase + GICR_CTLR); 5152 5153 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5154 dsb(sy); 5155 5156 /* 5157 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5158 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5159 * Error out if we time out waiting for RWP to clear. 5160 */ 5161 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5162 if (!timeout) { 5163 pr_err("CPU%d: Timeout while disabling LPIs\n", 5164 smp_processor_id()); 5165 return -ETIMEDOUT; 5166 } 5167 udelay(1); 5168 timeout--; 5169 } 5170 5171 /* 5172 * After it has been written to 1, it is IMPLEMENTATION 5173 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5174 * cleared to 0. Error out if clearing the bit failed. 5175 */ 5176 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5177 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5178 return -EBUSY; 5179 } 5180 5181 return 0; 5182} 5183 5184int its_cpu_init(void) 5185{ 5186 if (!list_empty(&its_nodes)) { 5187 int ret; 5188 5189 ret = redist_disable_lpis(); 5190 if (ret) 5191 return ret; 5192 5193 its_cpu_init_lpis(); 5194 its_cpu_init_collections(); 5195 } 5196 5197 return 0; 5198} 5199 5200static const struct of_device_id its_device_id[] = { 5201 { .compatible = "arm,gic-v3-its", }, 5202 {}, 5203}; 5204 5205static int __init its_of_probe(struct device_node *node) 5206{ 5207 struct device_node *np; 5208 struct resource res; 5209 5210 for (np = of_find_matching_node(node, its_device_id); np; 5211 np = of_find_matching_node(np, its_device_id)) { 5212 if (!of_device_is_available(np)) 5213 continue; 5214 if (!of_property_read_bool(np, "msi-controller")) { 5215 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5216 np); 5217 continue; 5218 } 5219 5220 if (of_address_to_resource(np, 0, &res)) { 5221 pr_warn("%pOF: no regs?\n", np); 5222 continue; 5223 } 5224 5225 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 5226 } 5227 return 0; 5228} 5229 5230#ifdef CONFIG_ACPI 5231 5232#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5233 5234#ifdef CONFIG_ACPI_NUMA 5235struct its_srat_map { 5236 /* numa node id */ 5237 u32 numa_node; 5238 /* GIC ITS ID */ 5239 u32 its_id; 5240}; 5241 5242static struct its_srat_map *its_srat_maps __initdata; 5243static int its_in_srat __initdata; 5244 5245static int __init acpi_get_its_numa_node(u32 its_id) 5246{ 5247 int i; 5248 5249 for (i = 0; i < its_in_srat; i++) { 5250 if (its_id == its_srat_maps[i].its_id) 5251 return its_srat_maps[i].numa_node; 5252 } 5253 return NUMA_NO_NODE; 5254} 5255 5256static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5257 const unsigned long end) 5258{ 5259 return 0; 5260} 5261 5262static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5263 const unsigned long end) 5264{ 5265 int node; 5266 struct acpi_srat_gic_its_affinity *its_affinity; 5267 5268 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5269 if (!its_affinity) 5270 return -EINVAL; 5271 5272 if (its_affinity->header.length < sizeof(*its_affinity)) { 5273 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5274 its_affinity->header.length); 5275 return -EINVAL; 5276 } 5277 5278 /* 5279 * Note that in theory a new proximity node could be created by this 5280 * entry as it is an SRAT resource allocation structure. 5281 * We do not currently support doing so. 5282 */ 5283 node = pxm_to_node(its_affinity->proximity_domain); 5284 5285 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5286 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5287 return 0; 5288 } 5289 5290 its_srat_maps[its_in_srat].numa_node = node; 5291 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5292 its_in_srat++; 5293 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5294 its_affinity->proximity_domain, its_affinity->its_id, node); 5295 5296 return 0; 5297} 5298 5299static void __init acpi_table_parse_srat_its(void) 5300{ 5301 int count; 5302 5303 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5304 sizeof(struct acpi_table_srat), 5305 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5306 gic_acpi_match_srat_its, 0); 5307 if (count <= 0) 5308 return; 5309 5310 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5311 GFP_KERNEL); 5312 if (!its_srat_maps) { 5313 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); 5314 return; 5315 } 5316 5317 acpi_table_parse_entries(ACPI_SIG_SRAT, 5318 sizeof(struct acpi_table_srat), 5319 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5320 gic_acpi_parse_srat_its, 0); 5321} 5322 5323/* free the its_srat_maps after ITS probing */ 5324static void __init acpi_its_srat_maps_free(void) 5325{ 5326 kfree(its_srat_maps); 5327} 5328#else 5329static void __init acpi_table_parse_srat_its(void) { } 5330static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5331static void __init acpi_its_srat_maps_free(void) { } 5332#endif 5333 5334static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5335 const unsigned long end) 5336{ 5337 struct acpi_madt_generic_translator *its_entry; 5338 struct fwnode_handle *dom_handle; 5339 struct resource res; 5340 int err; 5341 5342 its_entry = (struct acpi_madt_generic_translator *)header; 5343 memset(&res, 0, sizeof(res)); 5344 res.start = its_entry->base_address; 5345 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5346 res.flags = IORESOURCE_MEM; 5347 5348 dom_handle = irq_domain_alloc_fwnode(&res.start); 5349 if (!dom_handle) { 5350 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5351 &res.start); 5352 return -ENOMEM; 5353 } 5354 5355 err = iort_register_domain_token(its_entry->translation_id, res.start, 5356 dom_handle); 5357 if (err) { 5358 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5359 &res.start, its_entry->translation_id); 5360 goto dom_err; 5361 } 5362 5363 err = its_probe_one(&res, dom_handle, 5364 acpi_get_its_numa_node(its_entry->translation_id)); 5365 if (!err) 5366 return 0; 5367 5368 iort_deregister_domain_token(its_entry->translation_id); 5369dom_err: 5370 irq_domain_free_fwnode(dom_handle); 5371 return err; 5372} 5373 5374static void __init its_acpi_probe(void) 5375{ 5376 acpi_table_parse_srat_its(); 5377 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5378 gic_acpi_parse_madt_its, 0); 5379 acpi_its_srat_maps_free(); 5380} 5381#else 5382static void __init its_acpi_probe(void) { } 5383#endif 5384 5385int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5386 struct irq_domain *parent_domain) 5387{ 5388 struct device_node *of_node; 5389 struct its_node *its; 5390 bool has_v4 = false; 5391 bool has_v4_1 = false; 5392 int err; 5393 5394 gic_rdists = rdists; 5395 5396 its_parent = parent_domain; 5397 of_node = to_of_node(handle); 5398 if (of_node) 5399 its_of_probe(of_node); 5400 else 5401 its_acpi_probe(); 5402 5403 if (list_empty(&its_nodes)) { 5404 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5405 return -ENXIO; 5406 } 5407 5408 err = allocate_lpi_tables(); 5409 if (err) 5410 return err; 5411 5412 list_for_each_entry(its, &its_nodes, entry) { 5413 has_v4 |= is_v4(its); 5414 has_v4_1 |= is_v4_1(its); 5415 } 5416 5417 /* Don't bother with inconsistent systems */ 5418 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5419 rdists->has_rvpeid = false; 5420 5421 if (has_v4 & rdists->has_vlpis) { 5422 const struct irq_domain_ops *sgi_ops; 5423 5424 if (has_v4_1) 5425 sgi_ops = &its_sgi_domain_ops; 5426 else 5427 sgi_ops = NULL; 5428 5429 if (its_init_vpe_domain() || 5430 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5431 rdists->has_vlpis = false; 5432 pr_err("ITS: Disabling GICv4 support\n"); 5433 } 5434 } 5435 5436 register_syscore_ops(&its_syscore_ops); 5437 5438 return 0; 5439} 5440