1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPU-agnostic ARM page table allocator.
4 *
5 * ARMv7 Short-descriptor format, supporting
6 * - Basic memory attributes
7 * - Simplified access permissions (AP[2:1] model)
8 * - Backwards-compatible TEX remap
9 * - Large pages/supersections (if indicated by the caller)
10 *
11 * Not supporting:
12 * - Legacy access permissions (AP[2:0] model)
13 *
14 * Almost certainly never supporting:
15 * - PXN
16 * - Domains
17 *
18 * Copyright (C) 2014-2015 ARM Limited
19 * Copyright (c) 2014-2015 MediaTek Inc.
20 */
21
22#define pr_fmt(fmt)	"arm-v7s io-pgtable: " fmt
23
24#include <linux/atomic.h>
25#include <linux/dma-mapping.h>
26#include <linux/gfp.h>
27#include <linux/io-pgtable.h>
28#include <linux/iommu.h>
29#include <linux/kernel.h>
30#include <linux/kmemleak.h>
31#include <linux/sizes.h>
32#include <linux/slab.h>
33#include <linux/spinlock.h>
34#include <linux/types.h>
35
36#include <asm/barrier.h>
37
38/* Struct accessors */
39#define io_pgtable_to_data(x)						\
40	container_of((x), struct arm_v7s_io_pgtable, iop)
41
42#define io_pgtable_ops_to_data(x)					\
43	io_pgtable_to_data(io_pgtable_ops_to_pgtable(x))
44
45/*
46 * We have 32 bits total; 12 bits resolved at level 1, 8 bits at level 2,
47 * and 12 bits in a page. With some carefully-chosen coefficients we can
48 * hide the ugly inconsistencies behind these macros and at least let the
49 * rest of the code pretend to be somewhat sane.
50 */
51#define ARM_V7S_ADDR_BITS		32
52#define _ARM_V7S_LVL_BITS(lvl)		(16 - (lvl) * 4)
53#define ARM_V7S_LVL_SHIFT(lvl)		(ARM_V7S_ADDR_BITS - (4 + 8 * (lvl)))
54#define ARM_V7S_TABLE_SHIFT		10
55
56#define ARM_V7S_PTES_PER_LVL(lvl)	(1 << _ARM_V7S_LVL_BITS(lvl))
57#define ARM_V7S_TABLE_SIZE(lvl)						\
58	(ARM_V7S_PTES_PER_LVL(lvl) * sizeof(arm_v7s_iopte))
59
60#define ARM_V7S_BLOCK_SIZE(lvl)		(1UL << ARM_V7S_LVL_SHIFT(lvl))
61#define ARM_V7S_LVL_MASK(lvl)		((u32)(~0U << ARM_V7S_LVL_SHIFT(lvl)))
62#define ARM_V7S_TABLE_MASK		((u32)(~0U << ARM_V7S_TABLE_SHIFT))
63#define _ARM_V7S_IDX_MASK(lvl)		(ARM_V7S_PTES_PER_LVL(lvl) - 1)
64#define ARM_V7S_LVL_IDX(addr, lvl)	({				\
65	int _l = lvl;							\
66	((u32)(addr) >> ARM_V7S_LVL_SHIFT(_l)) & _ARM_V7S_IDX_MASK(_l); \
67})
68
69/*
70 * Large page/supersection entries are effectively a block of 16 page/section
71 * entries, along the lines of the LPAE contiguous hint, but all with the
72 * same output address. For want of a better common name we'll call them
73 * "contiguous" versions of their respective page/section entries here, but
74 * noting the distinction (WRT to TLB maintenance) that they represent *one*
75 * entry repeated 16 times, not 16 separate entries (as in the LPAE case).
76 */
77#define ARM_V7S_CONT_PAGES		16
78
79/* PTE type bits: these are all mixed up with XN/PXN bits in most cases */
80#define ARM_V7S_PTE_TYPE_TABLE		0x1
81#define ARM_V7S_PTE_TYPE_PAGE		0x2
82#define ARM_V7S_PTE_TYPE_CONT_PAGE	0x1
83
84#define ARM_V7S_PTE_IS_VALID(pte)	(((pte) & 0x3) != 0)
85#define ARM_V7S_PTE_IS_TABLE(pte, lvl) \
86	((lvl) == 1 && (((pte) & 0x3) == ARM_V7S_PTE_TYPE_TABLE))
87
88/* Page table bits */
89#define ARM_V7S_ATTR_XN(lvl)		BIT(4 * (2 - (lvl)))
90#define ARM_V7S_ATTR_B			BIT(2)
91#define ARM_V7S_ATTR_C			BIT(3)
92#define ARM_V7S_ATTR_NS_TABLE		BIT(3)
93#define ARM_V7S_ATTR_NS_SECTION		BIT(19)
94
95#define ARM_V7S_CONT_SECTION		BIT(18)
96#define ARM_V7S_CONT_PAGE_XN_SHIFT	15
97
98/*
99 * The attribute bits are consistently ordered*, but occupy bits [17:10] of
100 * a level 1 PTE vs. bits [11:4] at level 2. Thus we define the individual
101 * fields relative to that 8-bit block, plus a total shift relative to the PTE.
102 */
103#define ARM_V7S_ATTR_SHIFT(lvl)		(16 - (lvl) * 6)
104
105#define ARM_V7S_ATTR_MASK		0xff
106#define ARM_V7S_ATTR_AP0		BIT(0)
107#define ARM_V7S_ATTR_AP1		BIT(1)
108#define ARM_V7S_ATTR_AP2		BIT(5)
109#define ARM_V7S_ATTR_S			BIT(6)
110#define ARM_V7S_ATTR_NG			BIT(7)
111#define ARM_V7S_TEX_SHIFT		2
112#define ARM_V7S_TEX_MASK		0x7
113#define ARM_V7S_ATTR_TEX(val)		(((val) & ARM_V7S_TEX_MASK) << ARM_V7S_TEX_SHIFT)
114
115/* MediaTek extend the two bits for PA 32bit/33bit */
116#define ARM_V7S_ATTR_MTK_PA_BIT32	BIT(9)
117#define ARM_V7S_ATTR_MTK_PA_BIT33	BIT(4)
118
119/* *well, except for TEX on level 2 large pages, of course :( */
120#define ARM_V7S_CONT_PAGE_TEX_SHIFT	6
121#define ARM_V7S_CONT_PAGE_TEX_MASK	(ARM_V7S_TEX_MASK << ARM_V7S_CONT_PAGE_TEX_SHIFT)
122
123/* Simplified access permissions */
124#define ARM_V7S_PTE_AF			ARM_V7S_ATTR_AP0
125#define ARM_V7S_PTE_AP_UNPRIV		ARM_V7S_ATTR_AP1
126#define ARM_V7S_PTE_AP_RDONLY		ARM_V7S_ATTR_AP2
127
128/* Register bits */
129#define ARM_V7S_RGN_NC			0
130#define ARM_V7S_RGN_WBWA		1
131#define ARM_V7S_RGN_WT			2
132#define ARM_V7S_RGN_WB			3
133
134#define ARM_V7S_PRRR_TYPE_DEVICE	1
135#define ARM_V7S_PRRR_TYPE_NORMAL	2
136#define ARM_V7S_PRRR_TR(n, type)	(((type) & 0x3) << ((n) * 2))
137#define ARM_V7S_PRRR_DS0		BIT(16)
138#define ARM_V7S_PRRR_DS1		BIT(17)
139#define ARM_V7S_PRRR_NS0		BIT(18)
140#define ARM_V7S_PRRR_NS1		BIT(19)
141#define ARM_V7S_PRRR_NOS(n)		BIT((n) + 24)
142
143#define ARM_V7S_NMRR_IR(n, attr)	(((attr) & 0x3) << ((n) * 2))
144#define ARM_V7S_NMRR_OR(n, attr)	(((attr) & 0x3) << ((n) * 2 + 16))
145
146#define ARM_V7S_TTBR_S			BIT(1)
147#define ARM_V7S_TTBR_NOS		BIT(5)
148#define ARM_V7S_TTBR_ORGN_ATTR(attr)	(((attr) & 0x3) << 3)
149#define ARM_V7S_TTBR_IRGN_ATTR(attr)					\
150	((((attr) & 0x1) << 6) | (((attr) & 0x2) >> 1))
151
152#ifdef CONFIG_ZONE_DMA32
153#define ARM_V7S_TABLE_GFP_DMA GFP_DMA32
154#define ARM_V7S_TABLE_SLAB_FLAGS SLAB_CACHE_DMA32
155#else
156#define ARM_V7S_TABLE_GFP_DMA GFP_DMA
157#define ARM_V7S_TABLE_SLAB_FLAGS SLAB_CACHE_DMA
158#endif
159
160typedef u32 arm_v7s_iopte;
161
162static bool selftest_running;
163
164struct arm_v7s_io_pgtable {
165	struct io_pgtable	iop;
166
167	arm_v7s_iopte		*pgd;
168	struct kmem_cache	*l2_tables;
169	spinlock_t		split_lock;
170};
171
172static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl);
173
174static dma_addr_t __arm_v7s_dma_addr(void *pages)
175{
176	return (dma_addr_t)virt_to_phys(pages);
177}
178
179static bool arm_v7s_is_mtk_enabled(struct io_pgtable_cfg *cfg)
180{
181	return IS_ENABLED(CONFIG_PHYS_ADDR_T_64BIT) &&
182		(cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_EXT);
183}
184
185static arm_v7s_iopte paddr_to_iopte(phys_addr_t paddr, int lvl,
186				    struct io_pgtable_cfg *cfg)
187{
188	arm_v7s_iopte pte = paddr & ARM_V7S_LVL_MASK(lvl);
189
190	if (!arm_v7s_is_mtk_enabled(cfg))
191		return pte;
192
193	if (paddr & BIT_ULL(32))
194		pte |= ARM_V7S_ATTR_MTK_PA_BIT32;
195	if (paddr & BIT_ULL(33))
196		pte |= ARM_V7S_ATTR_MTK_PA_BIT33;
197	return pte;
198}
199
200static phys_addr_t iopte_to_paddr(arm_v7s_iopte pte, int lvl,
201				  struct io_pgtable_cfg *cfg)
202{
203	arm_v7s_iopte mask;
204	phys_addr_t paddr;
205
206	if (ARM_V7S_PTE_IS_TABLE(pte, lvl))
207		mask = ARM_V7S_TABLE_MASK;
208	else if (arm_v7s_pte_is_cont(pte, lvl))
209		mask = ARM_V7S_LVL_MASK(lvl) * ARM_V7S_CONT_PAGES;
210	else
211		mask = ARM_V7S_LVL_MASK(lvl);
212
213	paddr = pte & mask;
214	if (!arm_v7s_is_mtk_enabled(cfg))
215		return paddr;
216
217	if (pte & ARM_V7S_ATTR_MTK_PA_BIT32)
218		paddr |= BIT_ULL(32);
219	if (pte & ARM_V7S_ATTR_MTK_PA_BIT33)
220		paddr |= BIT_ULL(33);
221	return paddr;
222}
223
224static arm_v7s_iopte *iopte_deref(arm_v7s_iopte pte, int lvl,
225				  struct arm_v7s_io_pgtable *data)
226{
227	return phys_to_virt(iopte_to_paddr(pte, lvl, &data->iop.cfg));
228}
229
230static void *__arm_v7s_alloc_table(int lvl, gfp_t gfp,
231				   struct arm_v7s_io_pgtable *data)
232{
233	struct io_pgtable_cfg *cfg = &data->iop.cfg;
234	struct device *dev = cfg->iommu_dev;
235	phys_addr_t phys;
236	dma_addr_t dma;
237	size_t size = ARM_V7S_TABLE_SIZE(lvl);
238	void *table = NULL;
239
240	if (lvl == 1)
241		table = (void *)__get_free_pages(
242			__GFP_ZERO | ARM_V7S_TABLE_GFP_DMA, get_order(size));
243	else if (lvl == 2)
244		table = kmem_cache_zalloc(data->l2_tables, gfp);
245
246	if (!table)
247		return NULL;
248
249	phys = virt_to_phys(table);
250	if (phys != (arm_v7s_iopte)phys) {
251		/* Doesn't fit in PTE */
252		dev_err(dev, "Page table does not fit in PTE: %pa", &phys);
253		goto out_free;
254	}
255	if (!cfg->coherent_walk) {
256		dma = dma_map_single(dev, table, size, DMA_TO_DEVICE);
257		if (dma_mapping_error(dev, dma))
258			goto out_free;
259		/*
260		 * We depend on the IOMMU being able to work with any physical
261		 * address directly, so if the DMA layer suggests otherwise by
262		 * translating or truncating them, that bodes very badly...
263		 */
264		if (dma != phys)
265			goto out_unmap;
266	}
267	if (lvl == 2)
268		kmemleak_ignore(table);
269	return table;
270
271out_unmap:
272	dev_err(dev, "Cannot accommodate DMA translation for IOMMU page tables\n");
273	dma_unmap_single(dev, dma, size, DMA_TO_DEVICE);
274out_free:
275	if (lvl == 1)
276		free_pages((unsigned long)table, get_order(size));
277	else
278		kmem_cache_free(data->l2_tables, table);
279	return NULL;
280}
281
282static void __arm_v7s_free_table(void *table, int lvl,
283				 struct arm_v7s_io_pgtable *data)
284{
285	struct io_pgtable_cfg *cfg = &data->iop.cfg;
286	struct device *dev = cfg->iommu_dev;
287	size_t size = ARM_V7S_TABLE_SIZE(lvl);
288
289	if (!cfg->coherent_walk)
290		dma_unmap_single(dev, __arm_v7s_dma_addr(table), size,
291				 DMA_TO_DEVICE);
292	if (lvl == 1)
293		free_pages((unsigned long)table, get_order(size));
294	else
295		kmem_cache_free(data->l2_tables, table);
296}
297
298static void __arm_v7s_pte_sync(arm_v7s_iopte *ptep, int num_entries,
299			       struct io_pgtable_cfg *cfg)
300{
301	if (cfg->coherent_walk)
302		return;
303
304	dma_sync_single_for_device(cfg->iommu_dev, __arm_v7s_dma_addr(ptep),
305				   num_entries * sizeof(*ptep), DMA_TO_DEVICE);
306}
307static void __arm_v7s_set_pte(arm_v7s_iopte *ptep, arm_v7s_iopte pte,
308			      int num_entries, struct io_pgtable_cfg *cfg)
309{
310	int i;
311
312	for (i = 0; i < num_entries; i++)
313		ptep[i] = pte;
314
315	__arm_v7s_pte_sync(ptep, num_entries, cfg);
316}
317
318static arm_v7s_iopte arm_v7s_prot_to_pte(int prot, int lvl,
319					 struct io_pgtable_cfg *cfg)
320{
321	bool ap = !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS);
322	arm_v7s_iopte pte = ARM_V7S_ATTR_NG | ARM_V7S_ATTR_S;
323
324	if (!(prot & IOMMU_MMIO))
325		pte |= ARM_V7S_ATTR_TEX(1);
326	if (ap) {
327		pte |= ARM_V7S_PTE_AF;
328		if (!(prot & IOMMU_PRIV))
329			pte |= ARM_V7S_PTE_AP_UNPRIV;
330		if (!(prot & IOMMU_WRITE))
331			pte |= ARM_V7S_PTE_AP_RDONLY;
332	}
333	pte <<= ARM_V7S_ATTR_SHIFT(lvl);
334
335	if ((prot & IOMMU_NOEXEC) && ap)
336		pte |= ARM_V7S_ATTR_XN(lvl);
337	if (prot & IOMMU_MMIO)
338		pte |= ARM_V7S_ATTR_B;
339	else if (prot & IOMMU_CACHE)
340		pte |= ARM_V7S_ATTR_B | ARM_V7S_ATTR_C;
341
342	pte |= ARM_V7S_PTE_TYPE_PAGE;
343	if (lvl == 1 && (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS))
344		pte |= ARM_V7S_ATTR_NS_SECTION;
345
346	return pte;
347}
348
349static int arm_v7s_pte_to_prot(arm_v7s_iopte pte, int lvl)
350{
351	int prot = IOMMU_READ;
352	arm_v7s_iopte attr = pte >> ARM_V7S_ATTR_SHIFT(lvl);
353
354	if (!(attr & ARM_V7S_PTE_AP_RDONLY))
355		prot |= IOMMU_WRITE;
356	if (!(attr & ARM_V7S_PTE_AP_UNPRIV))
357		prot |= IOMMU_PRIV;
358	if ((attr & (ARM_V7S_TEX_MASK << ARM_V7S_TEX_SHIFT)) == 0)
359		prot |= IOMMU_MMIO;
360	else if (pte & ARM_V7S_ATTR_C)
361		prot |= IOMMU_CACHE;
362	if (pte & ARM_V7S_ATTR_XN(lvl))
363		prot |= IOMMU_NOEXEC;
364
365	return prot;
366}
367
368static arm_v7s_iopte arm_v7s_pte_to_cont(arm_v7s_iopte pte, int lvl)
369{
370	if (lvl == 1) {
371		pte |= ARM_V7S_CONT_SECTION;
372	} else if (lvl == 2) {
373		arm_v7s_iopte xn = pte & ARM_V7S_ATTR_XN(lvl);
374		arm_v7s_iopte tex = pte & ARM_V7S_CONT_PAGE_TEX_MASK;
375
376		pte ^= xn | tex | ARM_V7S_PTE_TYPE_PAGE;
377		pte |= (xn << ARM_V7S_CONT_PAGE_XN_SHIFT) |
378		       (tex << ARM_V7S_CONT_PAGE_TEX_SHIFT) |
379		       ARM_V7S_PTE_TYPE_CONT_PAGE;
380	}
381	return pte;
382}
383
384static arm_v7s_iopte arm_v7s_cont_to_pte(arm_v7s_iopte pte, int lvl)
385{
386	if (lvl == 1) {
387		pte &= ~ARM_V7S_CONT_SECTION;
388	} else if (lvl == 2) {
389		arm_v7s_iopte xn = pte & BIT(ARM_V7S_CONT_PAGE_XN_SHIFT);
390		arm_v7s_iopte tex = pte & (ARM_V7S_CONT_PAGE_TEX_MASK <<
391					   ARM_V7S_CONT_PAGE_TEX_SHIFT);
392
393		pte ^= xn | tex | ARM_V7S_PTE_TYPE_CONT_PAGE;
394		pte |= (xn >> ARM_V7S_CONT_PAGE_XN_SHIFT) |
395		       (tex >> ARM_V7S_CONT_PAGE_TEX_SHIFT) |
396		       ARM_V7S_PTE_TYPE_PAGE;
397	}
398	return pte;
399}
400
401static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl)
402{
403	if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte, lvl))
404		return pte & ARM_V7S_CONT_SECTION;
405	else if (lvl == 2)
406		return !(pte & ARM_V7S_PTE_TYPE_PAGE);
407	return false;
408}
409
410static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *,
411			      struct iommu_iotlb_gather *, unsigned long,
412			      size_t, int, arm_v7s_iopte *);
413
414static int arm_v7s_init_pte(struct arm_v7s_io_pgtable *data,
415			    unsigned long iova, phys_addr_t paddr, int prot,
416			    int lvl, int num_entries, arm_v7s_iopte *ptep)
417{
418	struct io_pgtable_cfg *cfg = &data->iop.cfg;
419	arm_v7s_iopte pte;
420	int i;
421
422	for (i = 0; i < num_entries; i++)
423		if (ARM_V7S_PTE_IS_TABLE(ptep[i], lvl)) {
424			/*
425			 * We need to unmap and free the old table before
426			 * overwriting it with a block entry.
427			 */
428			arm_v7s_iopte *tblp;
429			size_t sz = ARM_V7S_BLOCK_SIZE(lvl);
430
431			tblp = ptep - ARM_V7S_LVL_IDX(iova, lvl);
432			if (WARN_ON(__arm_v7s_unmap(data, NULL, iova + i * sz,
433						    sz, lvl, tblp) != sz))
434				return -EINVAL;
435		} else if (ptep[i]) {
436			/* We require an unmap first */
437			WARN_ON(!selftest_running);
438			return -EEXIST;
439		}
440
441	pte = arm_v7s_prot_to_pte(prot, lvl, cfg);
442	if (num_entries > 1)
443		pte = arm_v7s_pte_to_cont(pte, lvl);
444
445	pte |= paddr_to_iopte(paddr, lvl, cfg);
446
447	__arm_v7s_set_pte(ptep, pte, num_entries, cfg);
448	return 0;
449}
450
451static arm_v7s_iopte arm_v7s_install_table(arm_v7s_iopte *table,
452					   arm_v7s_iopte *ptep,
453					   arm_v7s_iopte curr,
454					   struct io_pgtable_cfg *cfg)
455{
456	arm_v7s_iopte old, new;
457
458	new = virt_to_phys(table) | ARM_V7S_PTE_TYPE_TABLE;
459	if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS)
460		new |= ARM_V7S_ATTR_NS_TABLE;
461
462	/*
463	 * Ensure the table itself is visible before its PTE can be.
464	 * Whilst we could get away with cmpxchg64_release below, this
465	 * doesn't have any ordering semantics when !CONFIG_SMP.
466	 */
467	dma_wmb();
468
469	old = cmpxchg_relaxed(ptep, curr, new);
470	__arm_v7s_pte_sync(ptep, 1, cfg);
471
472	return old;
473}
474
475static int __arm_v7s_map(struct arm_v7s_io_pgtable *data, unsigned long iova,
476			 phys_addr_t paddr, size_t size, int prot,
477			 int lvl, arm_v7s_iopte *ptep, gfp_t gfp)
478{
479	struct io_pgtable_cfg *cfg = &data->iop.cfg;
480	arm_v7s_iopte pte, *cptep;
481	int num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
482
483	/* Find our entry at the current level */
484	ptep += ARM_V7S_LVL_IDX(iova, lvl);
485
486	/* If we can install a leaf entry at this level, then do so */
487	if (num_entries)
488		return arm_v7s_init_pte(data, iova, paddr, prot,
489					lvl, num_entries, ptep);
490
491	/* We can't allocate tables at the final level */
492	if (WARN_ON(lvl == 2))
493		return -EINVAL;
494
495	/* Grab a pointer to the next level */
496	pte = READ_ONCE(*ptep);
497	if (!pte) {
498		cptep = __arm_v7s_alloc_table(lvl + 1, gfp, data);
499		if (!cptep)
500			return -ENOMEM;
501
502		pte = arm_v7s_install_table(cptep, ptep, 0, cfg);
503		if (pte)
504			__arm_v7s_free_table(cptep, lvl + 1, data);
505	} else {
506		/* We've no easy way of knowing if it's synced yet, so... */
507		__arm_v7s_pte_sync(ptep, 1, cfg);
508	}
509
510	if (ARM_V7S_PTE_IS_TABLE(pte, lvl)) {
511		cptep = iopte_deref(pte, lvl, data);
512	} else if (pte) {
513		/* We require an unmap first */
514		WARN_ON(!selftest_running);
515		return -EEXIST;
516	}
517
518	/* Rinse, repeat */
519	return __arm_v7s_map(data, iova, paddr, size, prot, lvl + 1, cptep, gfp);
520}
521
522static int arm_v7s_map(struct io_pgtable_ops *ops, unsigned long iova,
523			phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
524{
525	struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
526	struct io_pgtable *iop = &data->iop;
527	int ret;
528
529	/* If no access, then nothing to do */
530	if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
531		return 0;
532
533	if (WARN_ON(iova >= (1ULL << data->iop.cfg.ias) ||
534		    paddr >= (1ULL << data->iop.cfg.oas)))
535		return -ERANGE;
536
537	ret = __arm_v7s_map(data, iova, paddr, size, prot, 1, data->pgd, gfp);
538	/*
539	 * Synchronise all PTE updates for the new mapping before there's
540	 * a chance for anything to kick off a table walk for the new iova.
541	 */
542	if (iop->cfg.quirks & IO_PGTABLE_QUIRK_TLBI_ON_MAP) {
543		io_pgtable_tlb_flush_walk(iop, iova, size,
544					  ARM_V7S_BLOCK_SIZE(2));
545	} else {
546		wmb();
547	}
548
549	return ret;
550}
551
552static void arm_v7s_free_pgtable(struct io_pgtable *iop)
553{
554	struct arm_v7s_io_pgtable *data = io_pgtable_to_data(iop);
555	int i;
556
557	for (i = 0; i < ARM_V7S_PTES_PER_LVL(1); i++) {
558		arm_v7s_iopte pte = data->pgd[i];
559
560		if (ARM_V7S_PTE_IS_TABLE(pte, 1))
561			__arm_v7s_free_table(iopte_deref(pte, 1, data),
562					     2, data);
563	}
564	__arm_v7s_free_table(data->pgd, 1, data);
565	kmem_cache_destroy(data->l2_tables);
566	kfree(data);
567}
568
569static arm_v7s_iopte arm_v7s_split_cont(struct arm_v7s_io_pgtable *data,
570					unsigned long iova, int idx, int lvl,
571					arm_v7s_iopte *ptep)
572{
573	struct io_pgtable *iop = &data->iop;
574	arm_v7s_iopte pte;
575	size_t size = ARM_V7S_BLOCK_SIZE(lvl);
576	int i;
577
578	/* Check that we didn't lose a race to get the lock */
579	pte = *ptep;
580	if (!arm_v7s_pte_is_cont(pte, lvl))
581		return pte;
582
583	ptep -= idx & (ARM_V7S_CONT_PAGES - 1);
584	pte = arm_v7s_cont_to_pte(pte, lvl);
585	for (i = 0; i < ARM_V7S_CONT_PAGES; i++)
586		ptep[i] = pte + i * size;
587
588	__arm_v7s_pte_sync(ptep, ARM_V7S_CONT_PAGES, &iop->cfg);
589
590	size *= ARM_V7S_CONT_PAGES;
591	io_pgtable_tlb_flush_leaf(iop, iova, size, size);
592	return pte;
593}
594
595static size_t arm_v7s_split_blk_unmap(struct arm_v7s_io_pgtable *data,
596				      struct iommu_iotlb_gather *gather,
597				      unsigned long iova, size_t size,
598				      arm_v7s_iopte blk_pte,
599				      arm_v7s_iopte *ptep)
600{
601	struct io_pgtable_cfg *cfg = &data->iop.cfg;
602	arm_v7s_iopte pte, *tablep;
603	int i, unmap_idx, num_entries, num_ptes;
604
605	tablep = __arm_v7s_alloc_table(2, GFP_ATOMIC, data);
606	if (!tablep)
607		return 0; /* Bytes unmapped */
608
609	num_ptes = ARM_V7S_PTES_PER_LVL(2);
610	num_entries = size >> ARM_V7S_LVL_SHIFT(2);
611	unmap_idx = ARM_V7S_LVL_IDX(iova, 2);
612
613	pte = arm_v7s_prot_to_pte(arm_v7s_pte_to_prot(blk_pte, 1), 2, cfg);
614	if (num_entries > 1)
615		pte = arm_v7s_pte_to_cont(pte, 2);
616
617	for (i = 0; i < num_ptes; i += num_entries, pte += size) {
618		/* Unmap! */
619		if (i == unmap_idx)
620			continue;
621
622		__arm_v7s_set_pte(&tablep[i], pte, num_entries, cfg);
623	}
624
625	pte = arm_v7s_install_table(tablep, ptep, blk_pte, cfg);
626	if (pte != blk_pte) {
627		__arm_v7s_free_table(tablep, 2, data);
628
629		if (!ARM_V7S_PTE_IS_TABLE(pte, 1))
630			return 0;
631
632		tablep = iopte_deref(pte, 1, data);
633		return __arm_v7s_unmap(data, gather, iova, size, 2, tablep);
634	}
635
636	io_pgtable_tlb_add_page(&data->iop, gather, iova, size);
637	return size;
638}
639
640static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *data,
641			      struct iommu_iotlb_gather *gather,
642			      unsigned long iova, size_t size, int lvl,
643			      arm_v7s_iopte *ptep)
644{
645	arm_v7s_iopte pte[ARM_V7S_CONT_PAGES];
646	struct io_pgtable *iop = &data->iop;
647	int idx, i = 0, num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
648
649	/* Something went horribly wrong and we ran out of page table */
650	if (WARN_ON(lvl > 2))
651		return 0;
652
653	idx = ARM_V7S_LVL_IDX(iova, lvl);
654	ptep += idx;
655	do {
656		pte[i] = READ_ONCE(ptep[i]);
657		if (WARN_ON(!ARM_V7S_PTE_IS_VALID(pte[i])))
658			return 0;
659	} while (++i < num_entries);
660
661	/*
662	 * If we've hit a contiguous 'large page' entry at this level, it
663	 * needs splitting first, unless we're unmapping the whole lot.
664	 *
665	 * For splitting, we can't rewrite 16 PTEs atomically, and since we
666	 * can't necessarily assume TEX remap we don't have a software bit to
667	 * mark live entries being split. In practice (i.e. DMA API code), we
668	 * will never be splitting large pages anyway, so just wrap this edge
669	 * case in a lock for the sake of correctness and be done with it.
670	 */
671	if (num_entries <= 1 && arm_v7s_pte_is_cont(pte[0], lvl)) {
672		unsigned long flags;
673
674		spin_lock_irqsave(&data->split_lock, flags);
675		pte[0] = arm_v7s_split_cont(data, iova, idx, lvl, ptep);
676		spin_unlock_irqrestore(&data->split_lock, flags);
677	}
678
679	/* If the size matches this level, we're in the right place */
680	if (num_entries) {
681		size_t blk_size = ARM_V7S_BLOCK_SIZE(lvl);
682
683		__arm_v7s_set_pte(ptep, 0, num_entries, &iop->cfg);
684
685		for (i = 0; i < num_entries; i++) {
686			if (ARM_V7S_PTE_IS_TABLE(pte[i], lvl)) {
687				/* Also flush any partial walks */
688				io_pgtable_tlb_flush_walk(iop, iova, blk_size,
689						ARM_V7S_BLOCK_SIZE(lvl + 1));
690				ptep = iopte_deref(pte[i], lvl, data);
691				__arm_v7s_free_table(ptep, lvl + 1, data);
692			} else if (iop->cfg.quirks & IO_PGTABLE_QUIRK_NON_STRICT) {
693				/*
694				 * Order the PTE update against queueing the IOVA, to
695				 * guarantee that a flush callback from a different CPU
696				 * has observed it before the TLBIALL can be issued.
697				 */
698				smp_wmb();
699			} else {
700				io_pgtable_tlb_add_page(iop, gather, iova, blk_size);
701			}
702			iova += blk_size;
703		}
704		return size;
705	} else if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte[0], lvl)) {
706		/*
707		 * Insert a table at the next level to map the old region,
708		 * minus the part we want to unmap
709		 */
710		return arm_v7s_split_blk_unmap(data, gather, iova, size, pte[0],
711					       ptep);
712	}
713
714	/* Keep on walkin' */
715	ptep = iopte_deref(pte[0], lvl, data);
716	return __arm_v7s_unmap(data, gather, iova, size, lvl + 1, ptep);
717}
718
719static size_t arm_v7s_unmap(struct io_pgtable_ops *ops, unsigned long iova,
720			    size_t size, struct iommu_iotlb_gather *gather)
721{
722	struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
723
724	if (WARN_ON(upper_32_bits(iova)))
725		return 0;
726
727	return __arm_v7s_unmap(data, gather, iova, size, 1, data->pgd);
728}
729
730static phys_addr_t arm_v7s_iova_to_phys(struct io_pgtable_ops *ops,
731					unsigned long iova)
732{
733	struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
734	arm_v7s_iopte *ptep = data->pgd, pte;
735	int lvl = 0;
736	u32 mask;
737
738	do {
739		ptep += ARM_V7S_LVL_IDX(iova, ++lvl);
740		pte = READ_ONCE(*ptep);
741		ptep = iopte_deref(pte, lvl, data);
742	} while (ARM_V7S_PTE_IS_TABLE(pte, lvl));
743
744	if (!ARM_V7S_PTE_IS_VALID(pte))
745		return 0;
746
747	mask = ARM_V7S_LVL_MASK(lvl);
748	if (arm_v7s_pte_is_cont(pte, lvl))
749		mask *= ARM_V7S_CONT_PAGES;
750	return iopte_to_paddr(pte, lvl, &data->iop.cfg) | (iova & ~mask);
751}
752
753static struct io_pgtable *arm_v7s_alloc_pgtable(struct io_pgtable_cfg *cfg,
754						void *cookie)
755{
756	struct arm_v7s_io_pgtable *data;
757
758	if (cfg->ias > ARM_V7S_ADDR_BITS)
759		return NULL;
760
761	if (cfg->oas > (arm_v7s_is_mtk_enabled(cfg) ? 34 : ARM_V7S_ADDR_BITS))
762		return NULL;
763
764	if (cfg->quirks & ~(IO_PGTABLE_QUIRK_ARM_NS |
765			    IO_PGTABLE_QUIRK_NO_PERMS |
766			    IO_PGTABLE_QUIRK_TLBI_ON_MAP |
767			    IO_PGTABLE_QUIRK_ARM_MTK_EXT |
768			    IO_PGTABLE_QUIRK_NON_STRICT))
769		return NULL;
770
771	/* If ARM_MTK_4GB is enabled, the NO_PERMS is also expected. */
772	if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_EXT &&
773	    !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS))
774			return NULL;
775
776	data = kmalloc(sizeof(*data), GFP_KERNEL);
777	if (!data)
778		return NULL;
779
780	spin_lock_init(&data->split_lock);
781	data->l2_tables = kmem_cache_create("io-pgtable_armv7s_l2",
782					    ARM_V7S_TABLE_SIZE(2),
783					    ARM_V7S_TABLE_SIZE(2),
784					    ARM_V7S_TABLE_SLAB_FLAGS, NULL);
785	if (!data->l2_tables)
786		goto out_free_data;
787
788	data->iop.ops = (struct io_pgtable_ops) {
789		.map		= arm_v7s_map,
790		.unmap		= arm_v7s_unmap,
791		.iova_to_phys	= arm_v7s_iova_to_phys,
792	};
793
794	/* We have to do this early for __arm_v7s_alloc_table to work... */
795	data->iop.cfg = *cfg;
796
797	/*
798	 * Unless the IOMMU driver indicates supersection support by
799	 * having SZ_16M set in the initial bitmap, they won't be used.
800	 */
801	cfg->pgsize_bitmap &= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
802
803	/* TCR: T0SZ=0, EAE=0 (if applicable) */
804	cfg->arm_v7s_cfg.tcr = 0;
805
806	/*
807	 * TEX remap: the indices used map to the closest equivalent types
808	 * under the non-TEX-remap interpretation of those attribute bits,
809	 * excepting various implementation-defined aspects of shareability.
810	 */
811	cfg->arm_v7s_cfg.prrr = ARM_V7S_PRRR_TR(1, ARM_V7S_PRRR_TYPE_DEVICE) |
812				ARM_V7S_PRRR_TR(4, ARM_V7S_PRRR_TYPE_NORMAL) |
813				ARM_V7S_PRRR_TR(7, ARM_V7S_PRRR_TYPE_NORMAL) |
814				ARM_V7S_PRRR_DS0 | ARM_V7S_PRRR_DS1 |
815				ARM_V7S_PRRR_NS1 | ARM_V7S_PRRR_NOS(7);
816	cfg->arm_v7s_cfg.nmrr = ARM_V7S_NMRR_IR(7, ARM_V7S_RGN_WBWA) |
817				ARM_V7S_NMRR_OR(7, ARM_V7S_RGN_WBWA);
818
819	/* Looking good; allocate a pgd */
820	data->pgd = __arm_v7s_alloc_table(1, GFP_KERNEL, data);
821	if (!data->pgd)
822		goto out_free_data;
823
824	/* Ensure the empty pgd is visible before any actual TTBR write */
825	wmb();
826
827	/* TTBR */
828	cfg->arm_v7s_cfg.ttbr = virt_to_phys(data->pgd) | ARM_V7S_TTBR_S |
829				(cfg->coherent_walk ? (ARM_V7S_TTBR_NOS |
830				 ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_WBWA) |
831				 ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_WBWA)) :
832				(ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_NC) |
833				 ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_NC)));
834	return &data->iop;
835
836out_free_data:
837	kmem_cache_destroy(data->l2_tables);
838	kfree(data);
839	return NULL;
840}
841
842struct io_pgtable_init_fns io_pgtable_arm_v7s_init_fns = {
843	.alloc	= arm_v7s_alloc_pgtable,
844	.free	= arm_v7s_free_pgtable,
845};
846
847#ifdef CONFIG_IOMMU_IO_PGTABLE_ARMV7S_SELFTEST
848
849static struct io_pgtable_cfg *cfg_cookie __initdata;
850
851static void __init dummy_tlb_flush_all(void *cookie)
852{
853	WARN_ON(cookie != cfg_cookie);
854}
855
856static void __init dummy_tlb_flush(unsigned long iova, size_t size,
857				   size_t granule, void *cookie)
858{
859	WARN_ON(cookie != cfg_cookie);
860	WARN_ON(!(size & cfg_cookie->pgsize_bitmap));
861}
862
863static void __init dummy_tlb_add_page(struct iommu_iotlb_gather *gather,
864				      unsigned long iova, size_t granule,
865				      void *cookie)
866{
867	dummy_tlb_flush(iova, granule, granule, cookie);
868}
869
870static const struct iommu_flush_ops dummy_tlb_ops __initconst = {
871	.tlb_flush_all	= dummy_tlb_flush_all,
872	.tlb_flush_walk	= dummy_tlb_flush,
873	.tlb_flush_leaf	= dummy_tlb_flush,
874	.tlb_add_page	= dummy_tlb_add_page,
875};
876
877#define __FAIL(ops)	({				\
878		WARN(1, "selftest: test failed\n");	\
879		selftest_running = false;		\
880		-EFAULT;				\
881})
882
883static int __init arm_v7s_do_selftests(void)
884{
885	struct io_pgtable_ops *ops;
886	struct io_pgtable_cfg cfg = {
887		.tlb = &dummy_tlb_ops,
888		.oas = 32,
889		.ias = 32,
890		.coherent_walk = true,
891		.quirks = IO_PGTABLE_QUIRK_ARM_NS,
892		.pgsize_bitmap = SZ_4K | SZ_64K | SZ_1M | SZ_16M,
893	};
894	unsigned int iova, size, iova_start;
895	unsigned int i, loopnr = 0;
896
897	selftest_running = true;
898
899	cfg_cookie = &cfg;
900
901	ops = alloc_io_pgtable_ops(ARM_V7S, &cfg, &cfg);
902	if (!ops) {
903		pr_err("selftest: failed to allocate io pgtable ops\n");
904		return -EINVAL;
905	}
906
907	/*
908	 * Initial sanity checks.
909	 * Empty page tables shouldn't provide any translations.
910	 */
911	if (ops->iova_to_phys(ops, 42))
912		return __FAIL(ops);
913
914	if (ops->iova_to_phys(ops, SZ_1G + 42))
915		return __FAIL(ops);
916
917	if (ops->iova_to_phys(ops, SZ_2G + 42))
918		return __FAIL(ops);
919
920	/*
921	 * Distinct mappings of different granule sizes.
922	 */
923	iova = 0;
924	for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
925		size = 1UL << i;
926		if (ops->map(ops, iova, iova, size, IOMMU_READ |
927						    IOMMU_WRITE |
928						    IOMMU_NOEXEC |
929						    IOMMU_CACHE, GFP_KERNEL))
930			return __FAIL(ops);
931
932		/* Overlapping mappings */
933		if (!ops->map(ops, iova, iova + size, size,
934			      IOMMU_READ | IOMMU_NOEXEC, GFP_KERNEL))
935			return __FAIL(ops);
936
937		if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
938			return __FAIL(ops);
939
940		iova += SZ_16M;
941		loopnr++;
942	}
943
944	/* Partial unmap */
945	i = 1;
946	size = 1UL << __ffs(cfg.pgsize_bitmap);
947	while (i < loopnr) {
948		iova_start = i * SZ_16M;
949		if (ops->unmap(ops, iova_start + size, size, NULL) != size)
950			return __FAIL(ops);
951
952		/* Remap of partial unmap */
953		if (ops->map(ops, iova_start + size, size, size, IOMMU_READ, GFP_KERNEL))
954			return __FAIL(ops);
955
956		if (ops->iova_to_phys(ops, iova_start + size + 42)
957		    != (size + 42))
958			return __FAIL(ops);
959		i++;
960	}
961
962	/* Full unmap */
963	iova = 0;
964	for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
965		size = 1UL << i;
966
967		if (ops->unmap(ops, iova, size, NULL) != size)
968			return __FAIL(ops);
969
970		if (ops->iova_to_phys(ops, iova + 42))
971			return __FAIL(ops);
972
973		/* Remap full block */
974		if (ops->map(ops, iova, iova, size, IOMMU_WRITE, GFP_KERNEL))
975			return __FAIL(ops);
976
977		if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
978			return __FAIL(ops);
979
980		iova += SZ_16M;
981	}
982
983	free_io_pgtable_ops(ops);
984
985	selftest_running = false;
986
987	pr_info("self test ok\n");
988	return 0;
989}
990subsys_initcall(arm_v7s_do_selftests);
991#endif
992