1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (c) 2006, Intel Corporation. 4 * 5 * Copyright (C) 2006-2008 Intel Corporation 6 * Author: Ashok Raj <ashok.raj@intel.com> 7 * Author: Shaohua Li <shaohua.li@intel.com> 8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 9 * 10 * This file implements early detection/parsing of Remapping Devices 11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI 12 * tables. 13 * 14 * These routines are used by both DMA-remapping and Interrupt-remapping 15 */ 16 17#define pr_fmt(fmt) "DMAR: " fmt 18 19#include <linux/pci.h> 20#include <linux/dmar.h> 21#include <linux/iova.h> 22#include <linux/intel-iommu.h> 23#include <linux/timer.h> 24#include <linux/irq.h> 25#include <linux/interrupt.h> 26#include <linux/tboot.h> 27#include <linux/dmi.h> 28#include <linux/slab.h> 29#include <linux/iommu.h> 30#include <linux/numa.h> 31#include <linux/limits.h> 32#include <asm/irq_remapping.h> 33#include <asm/iommu_table.h> 34 35#include "../irq_remapping.h" 36 37typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *); 38struct dmar_res_callback { 39 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED]; 40 void *arg[ACPI_DMAR_TYPE_RESERVED]; 41 bool ignore_unhandled; 42 bool print_entry; 43}; 44 45/* 46 * Assumptions: 47 * 1) The hotplug framework guarentees that DMAR unit will be hot-added 48 * before IO devices managed by that unit. 49 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed 50 * after IO devices managed by that unit. 51 * 3) Hotplug events are rare. 52 * 53 * Locking rules for DMA and interrupt remapping related global data structures: 54 * 1) Use dmar_global_lock in process context 55 * 2) Use RCU in interrupt context 56 */ 57DECLARE_RWSEM(dmar_global_lock); 58LIST_HEAD(dmar_drhd_units); 59 60struct acpi_table_header * __initdata dmar_tbl; 61static int dmar_dev_scope_status = 1; 62static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)]; 63 64static int alloc_iommu(struct dmar_drhd_unit *drhd); 65static void free_iommu(struct intel_iommu *iommu); 66 67extern const struct iommu_ops intel_iommu_ops; 68 69static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) 70{ 71 /* 72 * add INCLUDE_ALL at the tail, so scan the list will find it at 73 * the very end. 74 */ 75 if (drhd->include_all) 76 list_add_tail_rcu(&drhd->list, &dmar_drhd_units); 77 else 78 list_add_rcu(&drhd->list, &dmar_drhd_units); 79} 80 81void *dmar_alloc_dev_scope(void *start, void *end, int *cnt) 82{ 83 struct acpi_dmar_device_scope *scope; 84 85 *cnt = 0; 86 while (start < end) { 87 scope = start; 88 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE || 89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || 90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) 91 (*cnt)++; 92 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC && 93 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) { 94 pr_warn("Unsupported device scope\n"); 95 } 96 start += scope->length; 97 } 98 if (*cnt == 0) 99 return NULL; 100 101 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL); 102} 103 104void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt) 105{ 106 int i; 107 struct device *tmp_dev; 108 109 if (*devices && *cnt) { 110 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev) 111 put_device(tmp_dev); 112 kfree(*devices); 113 } 114 115 *devices = NULL; 116 *cnt = 0; 117} 118 119/* Optimize out kzalloc()/kfree() for normal cases */ 120static char dmar_pci_notify_info_buf[64]; 121 122static struct dmar_pci_notify_info * 123dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event) 124{ 125 int level = 0; 126 size_t size; 127 struct pci_dev *tmp; 128 struct dmar_pci_notify_info *info; 129 130 BUG_ON(dev->is_virtfn); 131 132 /* 133 * Ignore devices that have a domain number higher than what can 134 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000 135 */ 136 if (pci_domain_nr(dev->bus) > U16_MAX) 137 return NULL; 138 139 /* Only generate path[] for device addition event */ 140 if (event == BUS_NOTIFY_ADD_DEVICE) 141 for (tmp = dev; tmp; tmp = tmp->bus->self) 142 level++; 143 144 size = struct_size(info, path, level); 145 if (size <= sizeof(dmar_pci_notify_info_buf)) { 146 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf; 147 } else { 148 info = kzalloc(size, GFP_KERNEL); 149 if (!info) { 150 pr_warn("Out of memory when allocating notify_info " 151 "for %s.\n", pci_name(dev)); 152 if (dmar_dev_scope_status == 0) 153 dmar_dev_scope_status = -ENOMEM; 154 return NULL; 155 } 156 } 157 158 info->event = event; 159 info->dev = dev; 160 info->seg = pci_domain_nr(dev->bus); 161 info->level = level; 162 if (event == BUS_NOTIFY_ADD_DEVICE) { 163 for (tmp = dev; tmp; tmp = tmp->bus->self) { 164 level--; 165 info->path[level].bus = tmp->bus->number; 166 info->path[level].device = PCI_SLOT(tmp->devfn); 167 info->path[level].function = PCI_FUNC(tmp->devfn); 168 if (pci_is_root_bus(tmp->bus)) 169 info->bus = tmp->bus->number; 170 } 171 } 172 173 return info; 174} 175 176static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info) 177{ 178 if ((void *)info != dmar_pci_notify_info_buf) 179 kfree(info); 180} 181 182static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus, 183 struct acpi_dmar_pci_path *path, int count) 184{ 185 int i; 186 187 if (info->bus != bus) 188 goto fallback; 189 if (info->level != count) 190 goto fallback; 191 192 for (i = 0; i < count; i++) { 193 if (path[i].device != info->path[i].device || 194 path[i].function != info->path[i].function) 195 goto fallback; 196 } 197 198 return true; 199 200fallback: 201 202 if (count != 1) 203 return false; 204 205 i = info->level - 1; 206 if (bus == info->path[i].bus && 207 path[0].device == info->path[i].device && 208 path[0].function == info->path[i].function) { 209 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n", 210 bus, path[0].device, path[0].function); 211 return true; 212 } 213 214 return false; 215} 216 217/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */ 218int dmar_insert_dev_scope(struct dmar_pci_notify_info *info, 219 void *start, void*end, u16 segment, 220 struct dmar_dev_scope *devices, 221 int devices_cnt) 222{ 223 int i, level; 224 struct device *tmp, *dev = &info->dev->dev; 225 struct acpi_dmar_device_scope *scope; 226 struct acpi_dmar_pci_path *path; 227 228 if (segment != info->seg) 229 return 0; 230 231 for (; start < end; start += scope->length) { 232 scope = start; 233 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 234 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE) 235 continue; 236 237 path = (struct acpi_dmar_pci_path *)(scope + 1); 238 level = (scope->length - sizeof(*scope)) / sizeof(*path); 239 if (!dmar_match_pci_path(info, scope->bus, path, level)) 240 continue; 241 242 /* 243 * We expect devices with endpoint scope to have normal PCI 244 * headers, and devices with bridge scope to have bridge PCI 245 * headers. However PCI NTB devices may be listed in the 246 * DMAR table with bridge scope, even though they have a 247 * normal PCI header. NTB devices are identified by class 248 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch 249 * for this special case. 250 */ 251 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 252 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) || 253 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE && 254 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 255 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) { 256 pr_warn("Device scope type does not match for %s\n", 257 pci_name(info->dev)); 258 return -EINVAL; 259 } 260 261 for_each_dev_scope(devices, devices_cnt, i, tmp) 262 if (tmp == NULL) { 263 devices[i].bus = info->dev->bus->number; 264 devices[i].devfn = info->dev->devfn; 265 rcu_assign_pointer(devices[i].dev, 266 get_device(dev)); 267 return 1; 268 } 269 BUG_ON(i >= devices_cnt); 270 } 271 272 return 0; 273} 274 275int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment, 276 struct dmar_dev_scope *devices, int count) 277{ 278 int index; 279 struct device *tmp; 280 281 if (info->seg != segment) 282 return 0; 283 284 for_each_active_dev_scope(devices, count, index, tmp) 285 if (tmp == &info->dev->dev) { 286 RCU_INIT_POINTER(devices[index].dev, NULL); 287 synchronize_rcu(); 288 put_device(tmp); 289 return 1; 290 } 291 292 return 0; 293} 294 295static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info) 296{ 297 int ret = 0; 298 struct dmar_drhd_unit *dmaru; 299 struct acpi_dmar_hardware_unit *drhd; 300 301 for_each_drhd_unit(dmaru) { 302 if (dmaru->include_all) 303 continue; 304 305 drhd = container_of(dmaru->hdr, 306 struct acpi_dmar_hardware_unit, header); 307 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1), 308 ((void *)drhd) + drhd->header.length, 309 dmaru->segment, 310 dmaru->devices, dmaru->devices_cnt); 311 if (ret) 312 break; 313 } 314 if (ret >= 0) 315 ret = dmar_iommu_notify_scope_dev(info); 316 if (ret < 0 && dmar_dev_scope_status == 0) 317 dmar_dev_scope_status = ret; 318 319 if (ret >= 0) 320 intel_irq_remap_add_device(info); 321 322 return ret; 323} 324 325static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info) 326{ 327 struct dmar_drhd_unit *dmaru; 328 329 for_each_drhd_unit(dmaru) 330 if (dmar_remove_dev_scope(info, dmaru->segment, 331 dmaru->devices, dmaru->devices_cnt)) 332 break; 333 dmar_iommu_notify_scope_dev(info); 334} 335 336static inline void vf_inherit_msi_domain(struct pci_dev *pdev) 337{ 338 struct pci_dev *physfn = pci_physfn(pdev); 339 340 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev)); 341} 342 343static int dmar_pci_bus_notifier(struct notifier_block *nb, 344 unsigned long action, void *data) 345{ 346 struct pci_dev *pdev = to_pci_dev(data); 347 struct dmar_pci_notify_info *info; 348 349 /* Only care about add/remove events for physical functions. 350 * For VFs we actually do the lookup based on the corresponding 351 * PF in device_to_iommu() anyway. */ 352 if (pdev->is_virtfn) { 353 /* 354 * Ensure that the VF device inherits the irq domain of the 355 * PF device. Ideally the device would inherit the domain 356 * from the bus, but DMAR can have multiple units per bus 357 * which makes this impossible. The VF 'bus' could inherit 358 * from the PF device, but that's yet another x86'sism to 359 * inflict on everybody else. 360 */ 361 if (action == BUS_NOTIFY_ADD_DEVICE) 362 vf_inherit_msi_domain(pdev); 363 return NOTIFY_DONE; 364 } 365 366 if (action != BUS_NOTIFY_ADD_DEVICE && 367 action != BUS_NOTIFY_REMOVED_DEVICE) 368 return NOTIFY_DONE; 369 370 info = dmar_alloc_pci_notify_info(pdev, action); 371 if (!info) 372 return NOTIFY_DONE; 373 374 down_write(&dmar_global_lock); 375 if (action == BUS_NOTIFY_ADD_DEVICE) 376 dmar_pci_bus_add_dev(info); 377 else if (action == BUS_NOTIFY_REMOVED_DEVICE) 378 dmar_pci_bus_del_dev(info); 379 up_write(&dmar_global_lock); 380 381 dmar_free_pci_notify_info(info); 382 383 return NOTIFY_OK; 384} 385 386static struct notifier_block dmar_pci_bus_nb = { 387 .notifier_call = dmar_pci_bus_notifier, 388 .priority = 1, 389}; 390 391static struct dmar_drhd_unit * 392dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd) 393{ 394 struct dmar_drhd_unit *dmaru; 395 396 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list, 397 dmar_rcu_check()) 398 if (dmaru->segment == drhd->segment && 399 dmaru->reg_base_addr == drhd->address) 400 return dmaru; 401 402 return NULL; 403} 404 405/* 406 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition 407 * structure which uniquely represent one DMA remapping hardware unit 408 * present in the platform 409 */ 410static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg) 411{ 412 struct acpi_dmar_hardware_unit *drhd; 413 struct dmar_drhd_unit *dmaru; 414 int ret; 415 416 drhd = (struct acpi_dmar_hardware_unit *)header; 417 dmaru = dmar_find_dmaru(drhd); 418 if (dmaru) 419 goto out; 420 421 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL); 422 if (!dmaru) 423 return -ENOMEM; 424 425 /* 426 * If header is allocated from slab by ACPI _DSM method, we need to 427 * copy the content because the memory buffer will be freed on return. 428 */ 429 dmaru->hdr = (void *)(dmaru + 1); 430 memcpy(dmaru->hdr, header, header->length); 431 dmaru->reg_base_addr = drhd->address; 432 dmaru->segment = drhd->segment; 433 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ 434 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1), 435 ((void *)drhd) + drhd->header.length, 436 &dmaru->devices_cnt); 437 if (dmaru->devices_cnt && dmaru->devices == NULL) { 438 kfree(dmaru); 439 return -ENOMEM; 440 } 441 442 ret = alloc_iommu(dmaru); 443 if (ret) { 444 dmar_free_dev_scope(&dmaru->devices, 445 &dmaru->devices_cnt); 446 kfree(dmaru); 447 return ret; 448 } 449 dmar_register_drhd_unit(dmaru); 450 451out: 452 if (arg) 453 (*(int *)arg)++; 454 455 return 0; 456} 457 458static void dmar_free_drhd(struct dmar_drhd_unit *dmaru) 459{ 460 if (dmaru->devices && dmaru->devices_cnt) 461 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt); 462 if (dmaru->iommu) 463 free_iommu(dmaru->iommu); 464 kfree(dmaru); 465} 466 467static int __init dmar_parse_one_andd(struct acpi_dmar_header *header, 468 void *arg) 469{ 470 struct acpi_dmar_andd *andd = (void *)header; 471 472 /* Check for NUL termination within the designated length */ 473 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) { 474 pr_warn(FW_BUG 475 "Your BIOS is broken; ANDD object name is not NUL-terminated\n" 476 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 477 dmi_get_system_info(DMI_BIOS_VENDOR), 478 dmi_get_system_info(DMI_BIOS_VERSION), 479 dmi_get_system_info(DMI_PRODUCT_VERSION)); 480 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 481 return -EINVAL; 482 } 483 pr_info("ANDD device: %x name: %s\n", andd->device_number, 484 andd->device_name); 485 486 return 0; 487} 488 489#ifdef CONFIG_ACPI_NUMA 490static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg) 491{ 492 struct acpi_dmar_rhsa *rhsa; 493 struct dmar_drhd_unit *drhd; 494 495 rhsa = (struct acpi_dmar_rhsa *)header; 496 for_each_drhd_unit(drhd) { 497 if (drhd->reg_base_addr == rhsa->base_address) { 498 int node = pxm_to_node(rhsa->proximity_domain); 499 500 if (node != NUMA_NO_NODE && !node_online(node)) 501 node = NUMA_NO_NODE; 502 drhd->iommu->node = node; 503 return 0; 504 } 505 } 506 pr_warn(FW_BUG 507 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" 508 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 509 rhsa->base_address, 510 dmi_get_system_info(DMI_BIOS_VENDOR), 511 dmi_get_system_info(DMI_BIOS_VERSION), 512 dmi_get_system_info(DMI_PRODUCT_VERSION)); 513 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 514 515 return 0; 516} 517#else 518#define dmar_parse_one_rhsa dmar_res_noop 519#endif 520 521static void 522dmar_table_print_dmar_entry(struct acpi_dmar_header *header) 523{ 524 struct acpi_dmar_hardware_unit *drhd; 525 struct acpi_dmar_reserved_memory *rmrr; 526 struct acpi_dmar_atsr *atsr; 527 struct acpi_dmar_rhsa *rhsa; 528 529 switch (header->type) { 530 case ACPI_DMAR_TYPE_HARDWARE_UNIT: 531 drhd = container_of(header, struct acpi_dmar_hardware_unit, 532 header); 533 pr_info("DRHD base: %#016Lx flags: %#x\n", 534 (unsigned long long)drhd->address, drhd->flags); 535 break; 536 case ACPI_DMAR_TYPE_RESERVED_MEMORY: 537 rmrr = container_of(header, struct acpi_dmar_reserved_memory, 538 header); 539 pr_info("RMRR base: %#016Lx end: %#016Lx\n", 540 (unsigned long long)rmrr->base_address, 541 (unsigned long long)rmrr->end_address); 542 break; 543 case ACPI_DMAR_TYPE_ROOT_ATS: 544 atsr = container_of(header, struct acpi_dmar_atsr, header); 545 pr_info("ATSR flags: %#x\n", atsr->flags); 546 break; 547 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: 548 rhsa = container_of(header, struct acpi_dmar_rhsa, header); 549 pr_info("RHSA base: %#016Lx proximity domain: %#x\n", 550 (unsigned long long)rhsa->base_address, 551 rhsa->proximity_domain); 552 break; 553 case ACPI_DMAR_TYPE_NAMESPACE: 554 /* We don't print this here because we need to sanity-check 555 it first. So print it in dmar_parse_one_andd() instead. */ 556 break; 557 } 558} 559 560/** 561 * dmar_table_detect - checks to see if the platform supports DMAR devices 562 */ 563static int __init dmar_table_detect(void) 564{ 565 acpi_status status = AE_OK; 566 567 /* if we could find DMAR table, then there are DMAR devices */ 568 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl); 569 570 if (ACPI_SUCCESS(status) && !dmar_tbl) { 571 pr_warn("Unable to map DMAR\n"); 572 status = AE_NOT_FOUND; 573 } 574 575 return ACPI_SUCCESS(status) ? 0 : -ENOENT; 576} 577 578static int dmar_walk_remapping_entries(struct acpi_dmar_header *start, 579 size_t len, struct dmar_res_callback *cb) 580{ 581 struct acpi_dmar_header *iter, *next; 582 struct acpi_dmar_header *end = ((void *)start) + len; 583 584 for (iter = start; iter < end; iter = next) { 585 next = (void *)iter + iter->length; 586 if (iter->length == 0) { 587 /* Avoid looping forever on bad ACPI tables */ 588 pr_debug(FW_BUG "Invalid 0-length structure\n"); 589 break; 590 } else if (next > end) { 591 /* Avoid passing table end */ 592 pr_warn(FW_BUG "Record passes table end\n"); 593 return -EINVAL; 594 } 595 596 if (cb->print_entry) 597 dmar_table_print_dmar_entry(iter); 598 599 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) { 600 /* continue for forward compatibility */ 601 pr_debug("Unknown DMAR structure type %d\n", 602 iter->type); 603 } else if (cb->cb[iter->type]) { 604 int ret; 605 606 ret = cb->cb[iter->type](iter, cb->arg[iter->type]); 607 if (ret) 608 return ret; 609 } else if (!cb->ignore_unhandled) { 610 pr_warn("No handler for DMAR structure type %d\n", 611 iter->type); 612 return -EINVAL; 613 } 614 } 615 616 return 0; 617} 618 619static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar, 620 struct dmar_res_callback *cb) 621{ 622 return dmar_walk_remapping_entries((void *)(dmar + 1), 623 dmar->header.length - sizeof(*dmar), cb); 624} 625 626/** 627 * parse_dmar_table - parses the DMA reporting table 628 */ 629static int __init 630parse_dmar_table(void) 631{ 632 struct acpi_table_dmar *dmar; 633 int drhd_count = 0; 634 int ret; 635 struct dmar_res_callback cb = { 636 .print_entry = true, 637 .ignore_unhandled = true, 638 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count, 639 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd, 640 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr, 641 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr, 642 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa, 643 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd, 644 }; 645 646 /* 647 * Do it again, earlier dmar_tbl mapping could be mapped with 648 * fixed map. 649 */ 650 dmar_table_detect(); 651 652 /* 653 * ACPI tables may not be DMA protected by tboot, so use DMAR copy 654 * SINIT saved in SinitMleData in TXT heap (which is DMA protected) 655 */ 656 dmar_tbl = tboot_get_dmar_table(dmar_tbl); 657 658 dmar = (struct acpi_table_dmar *)dmar_tbl; 659 if (!dmar) 660 return -ENODEV; 661 662 if (dmar->width < PAGE_SHIFT - 1) { 663 pr_warn("Invalid DMAR haw\n"); 664 return -EINVAL; 665 } 666 667 pr_info("Host address width %d\n", dmar->width + 1); 668 ret = dmar_walk_dmar_table(dmar, &cb); 669 if (ret == 0 && drhd_count == 0) 670 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n"); 671 672 return ret; 673} 674 675static int dmar_pci_device_match(struct dmar_dev_scope devices[], 676 int cnt, struct pci_dev *dev) 677{ 678 int index; 679 struct device *tmp; 680 681 while (dev) { 682 for_each_active_dev_scope(devices, cnt, index, tmp) 683 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp)) 684 return 1; 685 686 /* Check our parent */ 687 dev = dev->bus->self; 688 } 689 690 return 0; 691} 692 693struct dmar_drhd_unit * 694dmar_find_matched_drhd_unit(struct pci_dev *dev) 695{ 696 struct dmar_drhd_unit *dmaru; 697 struct acpi_dmar_hardware_unit *drhd; 698 699 dev = pci_physfn(dev); 700 701 rcu_read_lock(); 702 for_each_drhd_unit(dmaru) { 703 drhd = container_of(dmaru->hdr, 704 struct acpi_dmar_hardware_unit, 705 header); 706 707 if (dmaru->include_all && 708 drhd->segment == pci_domain_nr(dev->bus)) 709 goto out; 710 711 if (dmar_pci_device_match(dmaru->devices, 712 dmaru->devices_cnt, dev)) 713 goto out; 714 } 715 dmaru = NULL; 716out: 717 rcu_read_unlock(); 718 719 return dmaru; 720} 721 722static void __init dmar_acpi_insert_dev_scope(u8 device_number, 723 struct acpi_device *adev) 724{ 725 struct dmar_drhd_unit *dmaru; 726 struct acpi_dmar_hardware_unit *drhd; 727 struct acpi_dmar_device_scope *scope; 728 struct device *tmp; 729 int i; 730 struct acpi_dmar_pci_path *path; 731 732 for_each_drhd_unit(dmaru) { 733 drhd = container_of(dmaru->hdr, 734 struct acpi_dmar_hardware_unit, 735 header); 736 737 for (scope = (void *)(drhd + 1); 738 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length; 739 scope = ((void *)scope) + scope->length) { 740 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE) 741 continue; 742 if (scope->enumeration_id != device_number) 743 continue; 744 745 path = (void *)(scope + 1); 746 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n", 747 dev_name(&adev->dev), dmaru->reg_base_addr, 748 scope->bus, path->device, path->function); 749 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp) 750 if (tmp == NULL) { 751 dmaru->devices[i].bus = scope->bus; 752 dmaru->devices[i].devfn = PCI_DEVFN(path->device, 753 path->function); 754 rcu_assign_pointer(dmaru->devices[i].dev, 755 get_device(&adev->dev)); 756 return; 757 } 758 BUG_ON(i >= dmaru->devices_cnt); 759 } 760 } 761 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n", 762 device_number, dev_name(&adev->dev)); 763} 764 765static int __init dmar_acpi_dev_scope_init(void) 766{ 767 struct acpi_dmar_andd *andd; 768 769 if (dmar_tbl == NULL) 770 return -ENODEV; 771 772 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar); 773 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length; 774 andd = ((void *)andd) + andd->header.length) { 775 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) { 776 acpi_handle h; 777 struct acpi_device *adev; 778 779 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, 780 andd->device_name, 781 &h))) { 782 pr_err("Failed to find handle for ACPI object %s\n", 783 andd->device_name); 784 continue; 785 } 786 if (acpi_bus_get_device(h, &adev)) { 787 pr_err("Failed to get device for ACPI object %s\n", 788 andd->device_name); 789 continue; 790 } 791 dmar_acpi_insert_dev_scope(andd->device_number, adev); 792 } 793 } 794 return 0; 795} 796 797int __init dmar_dev_scope_init(void) 798{ 799 struct pci_dev *dev = NULL; 800 struct dmar_pci_notify_info *info; 801 802 if (dmar_dev_scope_status != 1) 803 return dmar_dev_scope_status; 804 805 if (list_empty(&dmar_drhd_units)) { 806 dmar_dev_scope_status = -ENODEV; 807 } else { 808 dmar_dev_scope_status = 0; 809 810 dmar_acpi_dev_scope_init(); 811 812 for_each_pci_dev(dev) { 813 if (dev->is_virtfn) 814 continue; 815 816 info = dmar_alloc_pci_notify_info(dev, 817 BUS_NOTIFY_ADD_DEVICE); 818 if (!info) { 819 pci_dev_put(dev); 820 return dmar_dev_scope_status; 821 } else { 822 dmar_pci_bus_add_dev(info); 823 dmar_free_pci_notify_info(info); 824 } 825 } 826 } 827 828 return dmar_dev_scope_status; 829} 830 831void __init dmar_register_bus_notifier(void) 832{ 833 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb); 834} 835 836 837int __init dmar_table_init(void) 838{ 839 static int dmar_table_initialized; 840 int ret; 841 842 if (dmar_table_initialized == 0) { 843 ret = parse_dmar_table(); 844 if (ret < 0) { 845 if (ret != -ENODEV) 846 pr_info("Parse DMAR table failure.\n"); 847 } else if (list_empty(&dmar_drhd_units)) { 848 pr_info("No DMAR devices found\n"); 849 ret = -ENODEV; 850 } 851 852 if (ret < 0) 853 dmar_table_initialized = ret; 854 else 855 dmar_table_initialized = 1; 856 } 857 858 return dmar_table_initialized < 0 ? dmar_table_initialized : 0; 859} 860 861static void warn_invalid_dmar(u64 addr, const char *message) 862{ 863 pr_warn_once(FW_BUG 864 "Your BIOS is broken; DMAR reported at address %llx%s!\n" 865 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 866 addr, message, 867 dmi_get_system_info(DMI_BIOS_VENDOR), 868 dmi_get_system_info(DMI_BIOS_VERSION), 869 dmi_get_system_info(DMI_PRODUCT_VERSION)); 870 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 871} 872 873static int __ref 874dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg) 875{ 876 struct acpi_dmar_hardware_unit *drhd; 877 void __iomem *addr; 878 u64 cap, ecap; 879 880 drhd = (void *)entry; 881 if (!drhd->address) { 882 warn_invalid_dmar(0, ""); 883 return -EINVAL; 884 } 885 886 if (arg) 887 addr = ioremap(drhd->address, VTD_PAGE_SIZE); 888 else 889 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE); 890 if (!addr) { 891 pr_warn("Can't validate DRHD address: %llx\n", drhd->address); 892 return -EINVAL; 893 } 894 895 cap = dmar_readq(addr + DMAR_CAP_REG); 896 ecap = dmar_readq(addr + DMAR_ECAP_REG); 897 898 if (arg) 899 iounmap(addr); 900 else 901 early_iounmap(addr, VTD_PAGE_SIZE); 902 903 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { 904 warn_invalid_dmar(drhd->address, " returns all ones"); 905 return -EINVAL; 906 } 907 908 return 0; 909} 910 911int __init detect_intel_iommu(void) 912{ 913 int ret; 914 struct dmar_res_callback validate_drhd_cb = { 915 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd, 916 .ignore_unhandled = true, 917 }; 918 919 down_write(&dmar_global_lock); 920 ret = dmar_table_detect(); 921 if (!ret) 922 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl, 923 &validate_drhd_cb); 924 if (!ret && !no_iommu && !iommu_detected && 925 (!dmar_disabled || dmar_platform_optin())) { 926 iommu_detected = 1; 927 /* Make sure ACS will be enabled */ 928 pci_request_acs(); 929 } 930 931#ifdef CONFIG_X86 932 if (!ret) { 933 x86_init.iommu.iommu_init = intel_iommu_init; 934 x86_platform.iommu_shutdown = intel_iommu_shutdown; 935 } 936 937#endif 938 939 if (dmar_tbl) { 940 acpi_put_table(dmar_tbl); 941 dmar_tbl = NULL; 942 } 943 up_write(&dmar_global_lock); 944 945 return ret ? ret : 1; 946} 947 948static void unmap_iommu(struct intel_iommu *iommu) 949{ 950 iounmap(iommu->reg); 951 release_mem_region(iommu->reg_phys, iommu->reg_size); 952} 953 954/** 955 * map_iommu: map the iommu's registers 956 * @iommu: the iommu to map 957 * @phys_addr: the physical address of the base resgister 958 * 959 * Memory map the iommu's registers. Start w/ a single page, and 960 * possibly expand if that turns out to be insufficent. 961 */ 962static int map_iommu(struct intel_iommu *iommu, u64 phys_addr) 963{ 964 int map_size, err=0; 965 966 iommu->reg_phys = phys_addr; 967 iommu->reg_size = VTD_PAGE_SIZE; 968 969 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) { 970 pr_err("Can't reserve memory\n"); 971 err = -EBUSY; 972 goto out; 973 } 974 975 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 976 if (!iommu->reg) { 977 pr_err("Can't map the region\n"); 978 err = -ENOMEM; 979 goto release; 980 } 981 982 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); 983 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); 984 985 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { 986 err = -EINVAL; 987 warn_invalid_dmar(phys_addr, " returns all ones"); 988 goto unmap; 989 } 990 if (ecap_vcs(iommu->ecap)) 991 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG); 992 993 /* the registers might be more than one page */ 994 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), 995 cap_max_fault_reg_offset(iommu->cap)); 996 map_size = VTD_PAGE_ALIGN(map_size); 997 if (map_size > iommu->reg_size) { 998 iounmap(iommu->reg); 999 release_mem_region(iommu->reg_phys, iommu->reg_size); 1000 iommu->reg_size = map_size; 1001 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, 1002 iommu->name)) { 1003 pr_err("Can't reserve memory\n"); 1004 err = -EBUSY; 1005 goto out; 1006 } 1007 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 1008 if (!iommu->reg) { 1009 pr_err("Can't map the region\n"); 1010 err = -ENOMEM; 1011 goto release; 1012 } 1013 } 1014 err = 0; 1015 goto out; 1016 1017unmap: 1018 iounmap(iommu->reg); 1019release: 1020 release_mem_region(iommu->reg_phys, iommu->reg_size); 1021out: 1022 return err; 1023} 1024 1025static int dmar_alloc_seq_id(struct intel_iommu *iommu) 1026{ 1027 iommu->seq_id = find_first_zero_bit(dmar_seq_ids, 1028 DMAR_UNITS_SUPPORTED); 1029 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) { 1030 iommu->seq_id = -1; 1031 } else { 1032 set_bit(iommu->seq_id, dmar_seq_ids); 1033 sprintf(iommu->name, "dmar%d", iommu->seq_id); 1034 } 1035 1036 return iommu->seq_id; 1037} 1038 1039static void dmar_free_seq_id(struct intel_iommu *iommu) 1040{ 1041 if (iommu->seq_id >= 0) { 1042 clear_bit(iommu->seq_id, dmar_seq_ids); 1043 iommu->seq_id = -1; 1044 } 1045} 1046 1047static int alloc_iommu(struct dmar_drhd_unit *drhd) 1048{ 1049 struct intel_iommu *iommu; 1050 u32 ver, sts; 1051 int agaw = -1; 1052 int msagaw = -1; 1053 int err; 1054 1055 if (!drhd->reg_base_addr) { 1056 warn_invalid_dmar(0, ""); 1057 return -EINVAL; 1058 } 1059 1060 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); 1061 if (!iommu) 1062 return -ENOMEM; 1063 1064 if (dmar_alloc_seq_id(iommu) < 0) { 1065 pr_err("Failed to allocate seq_id\n"); 1066 err = -ENOSPC; 1067 goto error; 1068 } 1069 1070 err = map_iommu(iommu, drhd->reg_base_addr); 1071 if (err) { 1072 pr_err("Failed to map %s\n", iommu->name); 1073 goto error_free_seq_id; 1074 } 1075 1076 err = -EINVAL; 1077 if (cap_sagaw(iommu->cap) == 0) { 1078 pr_info("%s: No supported address widths. Not attempting DMA translation.\n", 1079 iommu->name); 1080 drhd->ignored = 1; 1081 } 1082 1083 if (!drhd->ignored) { 1084 agaw = iommu_calculate_agaw(iommu); 1085 if (agaw < 0) { 1086 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n", 1087 iommu->seq_id); 1088 drhd->ignored = 1; 1089 } 1090 } 1091 if (!drhd->ignored) { 1092 msagaw = iommu_calculate_max_sagaw(iommu); 1093 if (msagaw < 0) { 1094 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n", 1095 iommu->seq_id); 1096 drhd->ignored = 1; 1097 agaw = -1; 1098 } 1099 } 1100 iommu->agaw = agaw; 1101 iommu->msagaw = msagaw; 1102 iommu->segment = drhd->segment; 1103 1104 iommu->node = NUMA_NO_NODE; 1105 1106 ver = readl(iommu->reg + DMAR_VER_REG); 1107 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n", 1108 iommu->name, 1109 (unsigned long long)drhd->reg_base_addr, 1110 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), 1111 (unsigned long long)iommu->cap, 1112 (unsigned long long)iommu->ecap); 1113 1114 /* Reflect status in gcmd */ 1115 sts = readl(iommu->reg + DMAR_GSTS_REG); 1116 if (sts & DMA_GSTS_IRES) 1117 iommu->gcmd |= DMA_GCMD_IRE; 1118 if (sts & DMA_GSTS_TES) 1119 iommu->gcmd |= DMA_GCMD_TE; 1120 if (sts & DMA_GSTS_QIES) 1121 iommu->gcmd |= DMA_GCMD_QIE; 1122 1123 raw_spin_lock_init(&iommu->register_lock); 1124 1125 /* 1126 * This is only for hotplug; at boot time intel_iommu_enabled won't 1127 * be set yet. When intel_iommu_init() runs, it registers the units 1128 * present at boot time, then sets intel_iommu_enabled. 1129 */ 1130 if (intel_iommu_enabled && !drhd->ignored) { 1131 err = iommu_device_sysfs_add(&iommu->iommu, NULL, 1132 intel_iommu_groups, 1133 "%s", iommu->name); 1134 if (err) 1135 goto err_unmap; 1136 1137 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops); 1138 1139 err = iommu_device_register(&iommu->iommu); 1140 if (err) 1141 goto err_sysfs; 1142 } 1143 1144 drhd->iommu = iommu; 1145 iommu->drhd = drhd; 1146 1147 return 0; 1148 1149err_sysfs: 1150 iommu_device_sysfs_remove(&iommu->iommu); 1151err_unmap: 1152 unmap_iommu(iommu); 1153error_free_seq_id: 1154 dmar_free_seq_id(iommu); 1155error: 1156 kfree(iommu); 1157 return err; 1158} 1159 1160static void free_iommu(struct intel_iommu *iommu) 1161{ 1162 if (intel_iommu_enabled && !iommu->drhd->ignored) { 1163 iommu_device_unregister(&iommu->iommu); 1164 iommu_device_sysfs_remove(&iommu->iommu); 1165 } 1166 1167 if (iommu->irq) { 1168 if (iommu->pr_irq) { 1169 free_irq(iommu->pr_irq, iommu); 1170 dmar_free_hwirq(iommu->pr_irq); 1171 iommu->pr_irq = 0; 1172 } 1173 free_irq(iommu->irq, iommu); 1174 dmar_free_hwirq(iommu->irq); 1175 iommu->irq = 0; 1176 } 1177 1178 if (iommu->qi) { 1179 free_page((unsigned long)iommu->qi->desc); 1180 kfree(iommu->qi->desc_status); 1181 kfree(iommu->qi); 1182 } 1183 1184 if (iommu->reg) 1185 unmap_iommu(iommu); 1186 1187 dmar_free_seq_id(iommu); 1188 kfree(iommu); 1189} 1190 1191/* 1192 * Reclaim all the submitted descriptors which have completed its work. 1193 */ 1194static inline void reclaim_free_desc(struct q_inval *qi) 1195{ 1196 while (qi->desc_status[qi->free_tail] == QI_DONE || 1197 qi->desc_status[qi->free_tail] == QI_ABORT) { 1198 qi->desc_status[qi->free_tail] = QI_FREE; 1199 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; 1200 qi->free_cnt++; 1201 } 1202} 1203 1204static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index) 1205{ 1206 u32 fault; 1207 int head, tail; 1208 struct q_inval *qi = iommu->qi; 1209 int shift = qi_shift(iommu); 1210 1211 if (qi->desc_status[wait_index] == QI_ABORT) 1212 return -EAGAIN; 1213 1214 fault = readl(iommu->reg + DMAR_FSTS_REG); 1215 1216 /* 1217 * If IQE happens, the head points to the descriptor associated 1218 * with the error. No new descriptors are fetched until the IQE 1219 * is cleared. 1220 */ 1221 if (fault & DMA_FSTS_IQE) { 1222 head = readl(iommu->reg + DMAR_IQH_REG); 1223 if ((head >> shift) == index) { 1224 struct qi_desc *desc = qi->desc + head; 1225 1226 /* 1227 * desc->qw2 and desc->qw3 are either reserved or 1228 * used by software as private data. We won't print 1229 * out these two qw's for security consideration. 1230 */ 1231 pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n", 1232 (unsigned long long)desc->qw0, 1233 (unsigned long long)desc->qw1); 1234 memcpy(desc, qi->desc + (wait_index << shift), 1235 1 << shift); 1236 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); 1237 return -EINVAL; 1238 } 1239 } 1240 1241 /* 1242 * If ITE happens, all pending wait_desc commands are aborted. 1243 * No new descriptors are fetched until the ITE is cleared. 1244 */ 1245 if (fault & DMA_FSTS_ITE) { 1246 head = readl(iommu->reg + DMAR_IQH_REG); 1247 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1248 head |= 1; 1249 tail = readl(iommu->reg + DMAR_IQT_REG); 1250 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1251 1252 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG); 1253 1254 do { 1255 if (qi->desc_status[head] == QI_IN_USE) 1256 qi->desc_status[head] = QI_ABORT; 1257 head = (head - 2 + QI_LENGTH) % QI_LENGTH; 1258 } while (head != tail); 1259 1260 if (qi->desc_status[wait_index] == QI_ABORT) 1261 return -EAGAIN; 1262 } 1263 1264 if (fault & DMA_FSTS_ICE) 1265 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG); 1266 1267 return 0; 1268} 1269 1270/* 1271 * Function to submit invalidation descriptors of all types to the queued 1272 * invalidation interface(QI). Multiple descriptors can be submitted at a 1273 * time, a wait descriptor will be appended to each submission to ensure 1274 * hardware has completed the invalidation before return. Wait descriptors 1275 * can be part of the submission but it will not be polled for completion. 1276 */ 1277int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc, 1278 unsigned int count, unsigned long options) 1279{ 1280 struct q_inval *qi = iommu->qi; 1281 struct qi_desc wait_desc; 1282 int wait_index, index; 1283 unsigned long flags; 1284 int offset, shift; 1285 int rc, i; 1286 1287 if (!qi) 1288 return 0; 1289 1290restart: 1291 rc = 0; 1292 1293 raw_spin_lock_irqsave(&qi->q_lock, flags); 1294 /* 1295 * Check if we have enough empty slots in the queue to submit, 1296 * the calculation is based on: 1297 * # of desc + 1 wait desc + 1 space between head and tail 1298 */ 1299 while (qi->free_cnt < count + 2) { 1300 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1301 cpu_relax(); 1302 raw_spin_lock_irqsave(&qi->q_lock, flags); 1303 } 1304 1305 index = qi->free_head; 1306 wait_index = (index + count) % QI_LENGTH; 1307 shift = qi_shift(iommu); 1308 1309 for (i = 0; i < count; i++) { 1310 offset = ((index + i) % QI_LENGTH) << shift; 1311 memcpy(qi->desc + offset, &desc[i], 1 << shift); 1312 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE; 1313 } 1314 qi->desc_status[wait_index] = QI_IN_USE; 1315 1316 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) | 1317 QI_IWD_STATUS_WRITE | QI_IWD_TYPE; 1318 if (options & QI_OPT_WAIT_DRAIN) 1319 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN; 1320 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]); 1321 wait_desc.qw2 = 0; 1322 wait_desc.qw3 = 0; 1323 1324 offset = wait_index << shift; 1325 memcpy(qi->desc + offset, &wait_desc, 1 << shift); 1326 1327 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH; 1328 qi->free_cnt -= count + 1; 1329 1330 /* 1331 * update the HW tail register indicating the presence of 1332 * new descriptors. 1333 */ 1334 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG); 1335 1336 while (qi->desc_status[wait_index] != QI_DONE) { 1337 /* 1338 * We will leave the interrupts disabled, to prevent interrupt 1339 * context to queue another cmd while a cmd is already submitted 1340 * and waiting for completion on this cpu. This is to avoid 1341 * a deadlock where the interrupt context can wait indefinitely 1342 * for free slots in the queue. 1343 */ 1344 rc = qi_check_fault(iommu, index, wait_index); 1345 if (rc) 1346 break; 1347 1348 raw_spin_unlock(&qi->q_lock); 1349 cpu_relax(); 1350 raw_spin_lock(&qi->q_lock); 1351 } 1352 1353 for (i = 0; i < count; i++) 1354 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE; 1355 1356 reclaim_free_desc(qi); 1357 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1358 1359 if (rc == -EAGAIN) 1360 goto restart; 1361 1362 return rc; 1363} 1364 1365/* 1366 * Flush the global interrupt entry cache. 1367 */ 1368void qi_global_iec(struct intel_iommu *iommu) 1369{ 1370 struct qi_desc desc; 1371 1372 desc.qw0 = QI_IEC_TYPE; 1373 desc.qw1 = 0; 1374 desc.qw2 = 0; 1375 desc.qw3 = 0; 1376 1377 /* should never fail */ 1378 qi_submit_sync(iommu, &desc, 1, 0); 1379} 1380 1381void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, 1382 u64 type) 1383{ 1384 struct qi_desc desc; 1385 1386 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) 1387 | QI_CC_GRAN(type) | QI_CC_TYPE; 1388 desc.qw1 = 0; 1389 desc.qw2 = 0; 1390 desc.qw3 = 0; 1391 1392 qi_submit_sync(iommu, &desc, 1, 0); 1393} 1394 1395void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, 1396 unsigned int size_order, u64 type) 1397{ 1398 u8 dw = 0, dr = 0; 1399 1400 struct qi_desc desc; 1401 int ih = 0; 1402 1403 if (cap_write_drain(iommu->cap)) 1404 dw = 1; 1405 1406 if (cap_read_drain(iommu->cap)) 1407 dr = 1; 1408 1409 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) 1410 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; 1411 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) 1412 | QI_IOTLB_AM(size_order); 1413 desc.qw2 = 0; 1414 desc.qw3 = 0; 1415 1416 qi_submit_sync(iommu, &desc, 1, 0); 1417} 1418 1419void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1420 u16 qdep, u64 addr, unsigned mask) 1421{ 1422 struct qi_desc desc; 1423 1424 if (mask) { 1425 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1; 1426 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE; 1427 } else 1428 desc.qw1 = QI_DEV_IOTLB_ADDR(addr); 1429 1430 if (qdep >= QI_DEV_IOTLB_MAX_INVS) 1431 qdep = 0; 1432 1433 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) | 1434 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid); 1435 desc.qw2 = 0; 1436 desc.qw3 = 0; 1437 1438 qi_submit_sync(iommu, &desc, 1, 0); 1439} 1440 1441/* PASID-based IOTLB invalidation */ 1442void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr, 1443 unsigned long npages, bool ih) 1444{ 1445 struct qi_desc desc = {.qw2 = 0, .qw3 = 0}; 1446 1447 /* 1448 * npages == -1 means a PASID-selective invalidation, otherwise, 1449 * a positive value for Page-selective-within-PASID invalidation. 1450 * 0 is not a valid input. 1451 */ 1452 if (WARN_ON(!npages)) { 1453 pr_err("Invalid input npages = %ld\n", npages); 1454 return; 1455 } 1456 1457 if (npages == -1) { 1458 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1459 QI_EIOTLB_DID(did) | 1460 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | 1461 QI_EIOTLB_TYPE; 1462 desc.qw1 = 0; 1463 } else { 1464 int mask = ilog2(__roundup_pow_of_two(npages)); 1465 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask)); 1466 1467 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align))) 1468 addr = ALIGN_DOWN(addr, align); 1469 1470 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1471 QI_EIOTLB_DID(did) | 1472 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | 1473 QI_EIOTLB_TYPE; 1474 desc.qw1 = QI_EIOTLB_ADDR(addr) | 1475 QI_EIOTLB_IH(ih) | 1476 QI_EIOTLB_AM(mask); 1477 } 1478 1479 qi_submit_sync(iommu, &desc, 1, 0); 1480} 1481 1482/* PASID-based device IOTLB Invalidate */ 1483void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1484 u32 pasid, u16 qdep, u64 addr, unsigned int size_order) 1485{ 1486 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1); 1487 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1488 1489 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | 1490 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | 1491 QI_DEV_IOTLB_PFSID(pfsid); 1492 1493 /* 1494 * If S bit is 0, we only flush a single page. If S bit is set, 1495 * The least significant zero bit indicates the invalidation address 1496 * range. VT-d spec 6.5.2.6. 1497 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB. 1498 * size order = 0 is PAGE_SIZE 4KB 1499 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in 1500 * ECAP. 1501 */ 1502 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order)) 1503 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n", 1504 addr, size_order); 1505 1506 /* Take page address */ 1507 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr); 1508 1509 if (size_order) { 1510 /* 1511 * Existing 0s in address below size_order may be the least 1512 * significant bit, we must set them to 1s to avoid having 1513 * smaller size than desired. 1514 */ 1515 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1, 1516 VTD_PAGE_SHIFT); 1517 /* Clear size_order bit to indicate size */ 1518 desc.qw1 &= ~mask; 1519 /* Set the S bit to indicate flushing more than 1 page */ 1520 desc.qw1 |= QI_DEV_EIOTLB_SIZE; 1521 } 1522 1523 qi_submit_sync(iommu, &desc, 1, 0); 1524} 1525 1526void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, 1527 u64 granu, u32 pasid) 1528{ 1529 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1530 1531 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) | 1532 QI_PC_GRAN(granu) | QI_PC_TYPE; 1533 qi_submit_sync(iommu, &desc, 1, 0); 1534} 1535 1536/* 1537 * Disable Queued Invalidation interface. 1538 */ 1539void dmar_disable_qi(struct intel_iommu *iommu) 1540{ 1541 unsigned long flags; 1542 u32 sts; 1543 cycles_t start_time = get_cycles(); 1544 1545 if (!ecap_qis(iommu->ecap)) 1546 return; 1547 1548 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1549 1550 sts = readl(iommu->reg + DMAR_GSTS_REG); 1551 if (!(sts & DMA_GSTS_QIES)) 1552 goto end; 1553 1554 /* 1555 * Give a chance to HW to complete the pending invalidation requests. 1556 */ 1557 while ((readl(iommu->reg + DMAR_IQT_REG) != 1558 readl(iommu->reg + DMAR_IQH_REG)) && 1559 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) 1560 cpu_relax(); 1561 1562 iommu->gcmd &= ~DMA_GCMD_QIE; 1563 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1564 1565 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, 1566 !(sts & DMA_GSTS_QIES), sts); 1567end: 1568 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1569} 1570 1571/* 1572 * Enable queued invalidation. 1573 */ 1574static void __dmar_enable_qi(struct intel_iommu *iommu) 1575{ 1576 u32 sts; 1577 unsigned long flags; 1578 struct q_inval *qi = iommu->qi; 1579 u64 val = virt_to_phys(qi->desc); 1580 1581 qi->free_head = qi->free_tail = 0; 1582 qi->free_cnt = QI_LENGTH; 1583 1584 /* 1585 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability 1586 * is present. 1587 */ 1588 if (ecap_smts(iommu->ecap)) 1589 val |= (1 << 11) | 1; 1590 1591 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1592 1593 /* write zero to the tail reg */ 1594 writel(0, iommu->reg + DMAR_IQT_REG); 1595 1596 dmar_writeq(iommu->reg + DMAR_IQA_REG, val); 1597 1598 iommu->gcmd |= DMA_GCMD_QIE; 1599 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1600 1601 /* Make sure hardware complete it */ 1602 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); 1603 1604 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1605} 1606 1607/* 1608 * Enable Queued Invalidation interface. This is a must to support 1609 * interrupt-remapping. Also used by DMA-remapping, which replaces 1610 * register based IOTLB invalidation. 1611 */ 1612int dmar_enable_qi(struct intel_iommu *iommu) 1613{ 1614 struct q_inval *qi; 1615 struct page *desc_page; 1616 1617 if (!ecap_qis(iommu->ecap)) 1618 return -ENOENT; 1619 1620 /* 1621 * queued invalidation is already setup and enabled. 1622 */ 1623 if (iommu->qi) 1624 return 0; 1625 1626 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); 1627 if (!iommu->qi) 1628 return -ENOMEM; 1629 1630 qi = iommu->qi; 1631 1632 /* 1633 * Need two pages to accommodate 256 descriptors of 256 bits each 1634 * if the remapping hardware supports scalable mode translation. 1635 */ 1636 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 1637 !!ecap_smts(iommu->ecap)); 1638 if (!desc_page) { 1639 kfree(qi); 1640 iommu->qi = NULL; 1641 return -ENOMEM; 1642 } 1643 1644 qi->desc = page_address(desc_page); 1645 1646 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC); 1647 if (!qi->desc_status) { 1648 free_page((unsigned long) qi->desc); 1649 kfree(qi); 1650 iommu->qi = NULL; 1651 return -ENOMEM; 1652 } 1653 1654 raw_spin_lock_init(&qi->q_lock); 1655 1656 __dmar_enable_qi(iommu); 1657 1658 return 0; 1659} 1660 1661/* iommu interrupt handling. Most stuff are MSI-like. */ 1662 1663enum faulttype { 1664 DMA_REMAP, 1665 INTR_REMAP, 1666 UNKNOWN, 1667}; 1668 1669static const char *dma_remap_fault_reasons[] = 1670{ 1671 "Software", 1672 "Present bit in root entry is clear", 1673 "Present bit in context entry is clear", 1674 "Invalid context entry", 1675 "Access beyond MGAW", 1676 "PTE Write access is not set", 1677 "PTE Read access is not set", 1678 "Next page table ptr is invalid", 1679 "Root table address invalid", 1680 "Context table ptr is invalid", 1681 "non-zero reserved fields in RTP", 1682 "non-zero reserved fields in CTP", 1683 "non-zero reserved fields in PTE", 1684 "PCE for translation request specifies blocking", 1685}; 1686 1687static const char * const dma_remap_sm_fault_reasons[] = { 1688 "SM: Invalid Root Table Address", 1689 "SM: TTM 0 for request with PASID", 1690 "SM: TTM 0 for page group request", 1691 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */ 1692 "SM: Error attempting to access Root Entry", 1693 "SM: Present bit in Root Entry is clear", 1694 "SM: Non-zero reserved field set in Root Entry", 1695 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */ 1696 "SM: Error attempting to access Context Entry", 1697 "SM: Present bit in Context Entry is clear", 1698 "SM: Non-zero reserved field set in the Context Entry", 1699 "SM: Invalid Context Entry", 1700 "SM: DTE field in Context Entry is clear", 1701 "SM: PASID Enable field in Context Entry is clear", 1702 "SM: PASID is larger than the max in Context Entry", 1703 "SM: PRE field in Context-Entry is clear", 1704 "SM: RID_PASID field error in Context-Entry", 1705 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */ 1706 "SM: Error attempting to access the PASID Directory Entry", 1707 "SM: Present bit in Directory Entry is clear", 1708 "SM: Non-zero reserved field set in PASID Directory Entry", 1709 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */ 1710 "SM: Error attempting to access PASID Table Entry", 1711 "SM: Present bit in PASID Table Entry is clear", 1712 "SM: Non-zero reserved field set in PASID Table Entry", 1713 "SM: Invalid Scalable-Mode PASID Table Entry", 1714 "SM: ERE field is clear in PASID Table Entry", 1715 "SM: SRE field is clear in PASID Table Entry", 1716 "Unknown", "Unknown",/* 0x5E-0x5F */ 1717 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */ 1718 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */ 1719 "SM: Error attempting to access first-level paging entry", 1720 "SM: Present bit in first-level paging entry is clear", 1721 "SM: Non-zero reserved field set in first-level paging entry", 1722 "SM: Error attempting to access FL-PML4 entry", 1723 "SM: First-level entry address beyond MGAW in Nested translation", 1724 "SM: Read permission error in FL-PML4 entry in Nested translation", 1725 "SM: Read permission error in first-level paging entry in Nested translation", 1726 "SM: Write permission error in first-level paging entry in Nested translation", 1727 "SM: Error attempting to access second-level paging entry", 1728 "SM: Read/Write permission error in second-level paging entry", 1729 "SM: Non-zero reserved field set in second-level paging entry", 1730 "SM: Invalid second-level page table pointer", 1731 "SM: A/D bit update needed in second-level entry when set up in no snoop", 1732 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */ 1733 "SM: Address in first-level translation is not canonical", 1734 "SM: U/S set 0 for first-level translation with user privilege", 1735 "SM: No execute permission for request with PASID and ER=1", 1736 "SM: Address beyond the DMA hardware max", 1737 "SM: Second-level entry address beyond the max", 1738 "SM: No write permission for Write/AtomicOp request", 1739 "SM: No read permission for Read/AtomicOp request", 1740 "SM: Invalid address-interrupt address", 1741 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */ 1742 "SM: A/D bit update needed in first-level entry when set up in no snoop", 1743}; 1744 1745static const char *irq_remap_fault_reasons[] = 1746{ 1747 "Detected reserved fields in the decoded interrupt-remapped request", 1748 "Interrupt index exceeded the interrupt-remapping table size", 1749 "Present field in the IRTE entry is clear", 1750 "Error accessing interrupt-remapping table pointed by IRTA_REG", 1751 "Detected reserved fields in the IRTE entry", 1752 "Blocked a compatibility format interrupt request", 1753 "Blocked an interrupt request due to source-id verification failure", 1754}; 1755 1756static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) 1757{ 1758 if (fault_reason >= 0x20 && (fault_reason - 0x20 < 1759 ARRAY_SIZE(irq_remap_fault_reasons))) { 1760 *fault_type = INTR_REMAP; 1761 return irq_remap_fault_reasons[fault_reason - 0x20]; 1762 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 < 1763 ARRAY_SIZE(dma_remap_sm_fault_reasons))) { 1764 *fault_type = DMA_REMAP; 1765 return dma_remap_sm_fault_reasons[fault_reason - 0x30]; 1766 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { 1767 *fault_type = DMA_REMAP; 1768 return dma_remap_fault_reasons[fault_reason]; 1769 } else { 1770 *fault_type = UNKNOWN; 1771 return "Unknown"; 1772 } 1773} 1774 1775 1776static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq) 1777{ 1778 if (iommu->irq == irq) 1779 return DMAR_FECTL_REG; 1780 else if (iommu->pr_irq == irq) 1781 return DMAR_PECTL_REG; 1782 else 1783 BUG(); 1784} 1785 1786void dmar_msi_unmask(struct irq_data *data) 1787{ 1788 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1789 int reg = dmar_msi_reg(iommu, data->irq); 1790 unsigned long flag; 1791 1792 /* unmask it */ 1793 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1794 writel(0, iommu->reg + reg); 1795 /* Read a reg to force flush the post write */ 1796 readl(iommu->reg + reg); 1797 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1798} 1799 1800void dmar_msi_mask(struct irq_data *data) 1801{ 1802 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1803 int reg = dmar_msi_reg(iommu, data->irq); 1804 unsigned long flag; 1805 1806 /* mask it */ 1807 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1808 writel(DMA_FECTL_IM, iommu->reg + reg); 1809 /* Read a reg to force flush the post write */ 1810 readl(iommu->reg + reg); 1811 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1812} 1813 1814void dmar_msi_write(int irq, struct msi_msg *msg) 1815{ 1816 struct intel_iommu *iommu = irq_get_handler_data(irq); 1817 int reg = dmar_msi_reg(iommu, irq); 1818 unsigned long flag; 1819 1820 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1821 writel(msg->data, iommu->reg + reg + 4); 1822 writel(msg->address_lo, iommu->reg + reg + 8); 1823 writel(msg->address_hi, iommu->reg + reg + 12); 1824 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1825} 1826 1827void dmar_msi_read(int irq, struct msi_msg *msg) 1828{ 1829 struct intel_iommu *iommu = irq_get_handler_data(irq); 1830 int reg = dmar_msi_reg(iommu, irq); 1831 unsigned long flag; 1832 1833 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1834 msg->data = readl(iommu->reg + reg + 4); 1835 msg->address_lo = readl(iommu->reg + reg + 8); 1836 msg->address_hi = readl(iommu->reg + reg + 12); 1837 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1838} 1839 1840static int dmar_fault_do_one(struct intel_iommu *iommu, int type, 1841 u8 fault_reason, u32 pasid, u16 source_id, 1842 unsigned long long addr) 1843{ 1844 const char *reason; 1845 int fault_type; 1846 1847 reason = dmar_get_fault_reason(fault_reason, &fault_type); 1848 1849 if (fault_type == INTR_REMAP) 1850 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n", 1851 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1852 PCI_FUNC(source_id & 0xFF), addr >> 48, 1853 fault_reason, reason); 1854 else 1855 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n", 1856 type ? "DMA Read" : "DMA Write", 1857 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1858 PCI_FUNC(source_id & 0xFF), pasid, addr, 1859 fault_reason, reason); 1860 return 0; 1861} 1862 1863#define PRIMARY_FAULT_REG_LEN (16) 1864irqreturn_t dmar_fault(int irq, void *dev_id) 1865{ 1866 struct intel_iommu *iommu = dev_id; 1867 int reg, fault_index; 1868 u32 fault_status; 1869 unsigned long flag; 1870 static DEFINE_RATELIMIT_STATE(rs, 1871 DEFAULT_RATELIMIT_INTERVAL, 1872 DEFAULT_RATELIMIT_BURST); 1873 1874 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1875 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1876 if (fault_status && __ratelimit(&rs)) 1877 pr_err("DRHD: handling fault status reg %x\n", fault_status); 1878 1879 /* TBD: ignore advanced fault log currently */ 1880 if (!(fault_status & DMA_FSTS_PPF)) 1881 goto unlock_exit; 1882 1883 fault_index = dma_fsts_fault_record_index(fault_status); 1884 reg = cap_fault_reg_offset(iommu->cap); 1885 while (1) { 1886 /* Disable printing, simply clear the fault when ratelimited */ 1887 bool ratelimited = !__ratelimit(&rs); 1888 u8 fault_reason; 1889 u16 source_id; 1890 u64 guest_addr; 1891 u32 pasid; 1892 int type; 1893 u32 data; 1894 bool pasid_present; 1895 1896 /* highest 32 bits */ 1897 data = readl(iommu->reg + reg + 1898 fault_index * PRIMARY_FAULT_REG_LEN + 12); 1899 if (!(data & DMA_FRCD_F)) 1900 break; 1901 1902 if (!ratelimited) { 1903 fault_reason = dma_frcd_fault_reason(data); 1904 type = dma_frcd_type(data); 1905 1906 pasid = dma_frcd_pasid_value(data); 1907 data = readl(iommu->reg + reg + 1908 fault_index * PRIMARY_FAULT_REG_LEN + 8); 1909 source_id = dma_frcd_source_id(data); 1910 1911 pasid_present = dma_frcd_pasid_present(data); 1912 guest_addr = dmar_readq(iommu->reg + reg + 1913 fault_index * PRIMARY_FAULT_REG_LEN); 1914 guest_addr = dma_frcd_page_addr(guest_addr); 1915 } 1916 1917 /* clear the fault */ 1918 writel(DMA_FRCD_F, iommu->reg + reg + 1919 fault_index * PRIMARY_FAULT_REG_LEN + 12); 1920 1921 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1922 1923 if (!ratelimited) 1924 /* Using pasid -1 if pasid is not present */ 1925 dmar_fault_do_one(iommu, type, fault_reason, 1926 pasid_present ? pasid : -1, 1927 source_id, guest_addr); 1928 1929 fault_index++; 1930 if (fault_index >= cap_num_fault_regs(iommu->cap)) 1931 fault_index = 0; 1932 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1933 } 1934 1935 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO, 1936 iommu->reg + DMAR_FSTS_REG); 1937 1938unlock_exit: 1939 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1940 return IRQ_HANDLED; 1941} 1942 1943int dmar_set_interrupt(struct intel_iommu *iommu) 1944{ 1945 int irq, ret; 1946 1947 /* 1948 * Check if the fault interrupt is already initialized. 1949 */ 1950 if (iommu->irq) 1951 return 0; 1952 1953 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu); 1954 if (irq > 0) { 1955 iommu->irq = irq; 1956 } else { 1957 pr_err("No free IRQ vectors\n"); 1958 return -EINVAL; 1959 } 1960 1961 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu); 1962 if (ret) 1963 pr_err("Can't request irq\n"); 1964 return ret; 1965} 1966 1967int __init enable_drhd_fault_handling(void) 1968{ 1969 struct dmar_drhd_unit *drhd; 1970 struct intel_iommu *iommu; 1971 1972 /* 1973 * Enable fault control interrupt. 1974 */ 1975 for_each_iommu(iommu, drhd) { 1976 u32 fault_status; 1977 int ret = dmar_set_interrupt(iommu); 1978 1979 if (ret) { 1980 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n", 1981 (unsigned long long)drhd->reg_base_addr, ret); 1982 return -1; 1983 } 1984 1985 /* 1986 * Clear any previous faults. 1987 */ 1988 dmar_fault(iommu->irq, iommu); 1989 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1990 writel(fault_status, iommu->reg + DMAR_FSTS_REG); 1991 } 1992 1993 return 0; 1994} 1995 1996/* 1997 * Re-enable Queued Invalidation interface. 1998 */ 1999int dmar_reenable_qi(struct intel_iommu *iommu) 2000{ 2001 if (!ecap_qis(iommu->ecap)) 2002 return -ENOENT; 2003 2004 if (!iommu->qi) 2005 return -ENOENT; 2006 2007 /* 2008 * First disable queued invalidation. 2009 */ 2010 dmar_disable_qi(iommu); 2011 /* 2012 * Then enable queued invalidation again. Since there is no pending 2013 * invalidation requests now, it's safe to re-enable queued 2014 * invalidation. 2015 */ 2016 __dmar_enable_qi(iommu); 2017 2018 return 0; 2019} 2020 2021/* 2022 * Check interrupt remapping support in DMAR table description. 2023 */ 2024int __init dmar_ir_support(void) 2025{ 2026 struct acpi_table_dmar *dmar; 2027 dmar = (struct acpi_table_dmar *)dmar_tbl; 2028 if (!dmar) 2029 return 0; 2030 return dmar->flags & 0x1; 2031} 2032 2033/* Check whether DMAR units are in use */ 2034static inline bool dmar_in_use(void) 2035{ 2036 return irq_remapping_enabled || intel_iommu_enabled; 2037} 2038 2039static int __init dmar_free_unused_resources(void) 2040{ 2041 struct dmar_drhd_unit *dmaru, *dmaru_n; 2042 2043 if (dmar_in_use()) 2044 return 0; 2045 2046 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units)) 2047 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb); 2048 2049 down_write(&dmar_global_lock); 2050 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) { 2051 list_del(&dmaru->list); 2052 dmar_free_drhd(dmaru); 2053 } 2054 up_write(&dmar_global_lock); 2055 2056 return 0; 2057} 2058 2059late_initcall(dmar_free_unused_resources); 2060IOMMU_INIT_POST(detect_intel_iommu); 2061 2062/* 2063 * DMAR Hotplug Support 2064 * For more details, please refer to Intel(R) Virtualization Technology 2065 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8 2066 * "Remapping Hardware Unit Hot Plug". 2067 */ 2068static guid_t dmar_hp_guid = 2069 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B, 2070 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF); 2071 2072/* 2073 * Currently there's only one revision and BIOS will not check the revision id, 2074 * so use 0 for safety. 2075 */ 2076#define DMAR_DSM_REV_ID 0 2077#define DMAR_DSM_FUNC_DRHD 1 2078#define DMAR_DSM_FUNC_ATSR 2 2079#define DMAR_DSM_FUNC_RHSA 3 2080 2081static inline bool dmar_detect_dsm(acpi_handle handle, int func) 2082{ 2083 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func); 2084} 2085 2086static int dmar_walk_dsm_resource(acpi_handle handle, int func, 2087 dmar_res_handler_t handler, void *arg) 2088{ 2089 int ret = -ENODEV; 2090 union acpi_object *obj; 2091 struct acpi_dmar_header *start; 2092 struct dmar_res_callback callback; 2093 static int res_type[] = { 2094 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT, 2095 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS, 2096 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY, 2097 }; 2098 2099 if (!dmar_detect_dsm(handle, func)) 2100 return 0; 2101 2102 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 2103 func, NULL, ACPI_TYPE_BUFFER); 2104 if (!obj) 2105 return -ENODEV; 2106 2107 memset(&callback, 0, sizeof(callback)); 2108 callback.cb[res_type[func]] = handler; 2109 callback.arg[res_type[func]] = arg; 2110 start = (struct acpi_dmar_header *)obj->buffer.pointer; 2111 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback); 2112 2113 ACPI_FREE(obj); 2114 2115 return ret; 2116} 2117 2118static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg) 2119{ 2120 int ret; 2121 struct dmar_drhd_unit *dmaru; 2122 2123 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2124 if (!dmaru) 2125 return -ENODEV; 2126 2127 ret = dmar_ir_hotplug(dmaru, true); 2128 if (ret == 0) 2129 ret = dmar_iommu_hotplug(dmaru, true); 2130 2131 return ret; 2132} 2133 2134static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg) 2135{ 2136 int i, ret; 2137 struct device *dev; 2138 struct dmar_drhd_unit *dmaru; 2139 2140 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2141 if (!dmaru) 2142 return 0; 2143 2144 /* 2145 * All PCI devices managed by this unit should have been destroyed. 2146 */ 2147 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) { 2148 for_each_active_dev_scope(dmaru->devices, 2149 dmaru->devices_cnt, i, dev) 2150 return -EBUSY; 2151 } 2152 2153 ret = dmar_ir_hotplug(dmaru, false); 2154 if (ret == 0) 2155 ret = dmar_iommu_hotplug(dmaru, false); 2156 2157 return ret; 2158} 2159 2160static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg) 2161{ 2162 struct dmar_drhd_unit *dmaru; 2163 2164 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2165 if (dmaru) { 2166 list_del_rcu(&dmaru->list); 2167 synchronize_rcu(); 2168 dmar_free_drhd(dmaru); 2169 } 2170 2171 return 0; 2172} 2173 2174static int dmar_hotplug_insert(acpi_handle handle) 2175{ 2176 int ret; 2177 int drhd_count = 0; 2178 2179 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2180 &dmar_validate_one_drhd, (void *)1); 2181 if (ret) 2182 goto out; 2183 2184 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2185 &dmar_parse_one_drhd, (void *)&drhd_count); 2186 if (ret == 0 && drhd_count == 0) { 2187 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n"); 2188 goto out; 2189 } else if (ret) { 2190 goto release_drhd; 2191 } 2192 2193 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA, 2194 &dmar_parse_one_rhsa, NULL); 2195 if (ret) 2196 goto release_drhd; 2197 2198 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2199 &dmar_parse_one_atsr, NULL); 2200 if (ret) 2201 goto release_atsr; 2202 2203 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2204 &dmar_hp_add_drhd, NULL); 2205 if (!ret) 2206 return 0; 2207 2208 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2209 &dmar_hp_remove_drhd, NULL); 2210release_atsr: 2211 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2212 &dmar_release_one_atsr, NULL); 2213release_drhd: 2214 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2215 &dmar_hp_release_drhd, NULL); 2216out: 2217 return ret; 2218} 2219 2220static int dmar_hotplug_remove(acpi_handle handle) 2221{ 2222 int ret; 2223 2224 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2225 &dmar_check_one_atsr, NULL); 2226 if (ret) 2227 return ret; 2228 2229 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2230 &dmar_hp_remove_drhd, NULL); 2231 if (ret == 0) { 2232 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2233 &dmar_release_one_atsr, NULL)); 2234 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2235 &dmar_hp_release_drhd, NULL)); 2236 } else { 2237 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2238 &dmar_hp_add_drhd, NULL); 2239 } 2240 2241 return ret; 2242} 2243 2244static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl, 2245 void *context, void **retval) 2246{ 2247 acpi_handle *phdl = retval; 2248 2249 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2250 *phdl = handle; 2251 return AE_CTRL_TERMINATE; 2252 } 2253 2254 return AE_OK; 2255} 2256 2257static int dmar_device_hotplug(acpi_handle handle, bool insert) 2258{ 2259 int ret; 2260 acpi_handle tmp = NULL; 2261 acpi_status status; 2262 2263 if (!dmar_in_use()) 2264 return 0; 2265 2266 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2267 tmp = handle; 2268 } else { 2269 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2270 ACPI_UINT32_MAX, 2271 dmar_get_dsm_handle, 2272 NULL, NULL, &tmp); 2273 if (ACPI_FAILURE(status)) { 2274 pr_warn("Failed to locate _DSM method.\n"); 2275 return -ENXIO; 2276 } 2277 } 2278 if (tmp == NULL) 2279 return 0; 2280 2281 down_write(&dmar_global_lock); 2282 if (insert) 2283 ret = dmar_hotplug_insert(tmp); 2284 else 2285 ret = dmar_hotplug_remove(tmp); 2286 up_write(&dmar_global_lock); 2287 2288 return ret; 2289} 2290 2291int dmar_device_add(acpi_handle handle) 2292{ 2293 return dmar_device_hotplug(handle, true); 2294} 2295 2296int dmar_device_remove(acpi_handle handle) 2297{ 2298 return dmar_device_hotplug(handle, false); 2299} 2300 2301/* 2302 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table 2303 * 2304 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in 2305 * the ACPI DMAR table. This means that the platform boot firmware has made 2306 * sure no device can issue DMA outside of RMRR regions. 2307 */ 2308bool dmar_platform_optin(void) 2309{ 2310 struct acpi_table_dmar *dmar; 2311 acpi_status status; 2312 bool ret; 2313 2314 status = acpi_get_table(ACPI_SIG_DMAR, 0, 2315 (struct acpi_table_header **)&dmar); 2316 if (ACPI_FAILURE(status)) 2317 return false; 2318 2319 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN); 2320 acpi_put_table((struct acpi_table_header *)dmar); 2321 2322 return ret; 2323} 2324EXPORT_SYMBOL_GPL(dmar_platform_optin); 2325