1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Interconnect framework core driver
4 *
5 * Copyright (c) 2017-2019, Linaro Ltd.
6 * Author: Georgi Djakov <georgi.djakov@linaro.org>
7 */
8
9#include <linux/debugfs.h>
10#include <linux/device.h>
11#include <linux/idr.h>
12#include <linux/init.h>
13#include <linux/interconnect.h>
14#include <linux/interconnect-provider.h>
15#include <linux/list.h>
16#include <linux/module.h>
17#include <linux/mutex.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20#include <linux/overflow.h>
21
22#include "internal.h"
23
24#define CREATE_TRACE_POINTS
25#include "trace.h"
26
27static DEFINE_IDR(icc_idr);
28static LIST_HEAD(icc_providers);
29static int providers_count;
30static bool synced_state;
31static DEFINE_MUTEX(icc_lock);
32static struct dentry *icc_debugfs_dir;
33
34static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
35{
36	if (!n)
37		return;
38
39	seq_printf(s, "%-42s %12u %12u\n",
40		   n->name, n->avg_bw, n->peak_bw);
41}
42
43static int icc_summary_show(struct seq_file *s, void *data)
44{
45	struct icc_provider *provider;
46
47	seq_puts(s, " node                                  tag          avg         peak\n");
48	seq_puts(s, "--------------------------------------------------------------------\n");
49
50	mutex_lock(&icc_lock);
51
52	list_for_each_entry(provider, &icc_providers, provider_list) {
53		struct icc_node *n;
54
55		list_for_each_entry(n, &provider->nodes, node_list) {
56			struct icc_req *r;
57
58			icc_summary_show_one(s, n);
59			hlist_for_each_entry(r, &n->req_list, req_node) {
60				u32 avg_bw = 0, peak_bw = 0;
61
62				if (!r->dev)
63					continue;
64
65				if (r->enabled) {
66					avg_bw = r->avg_bw;
67					peak_bw = r->peak_bw;
68				}
69
70				seq_printf(s, "  %-27s %12u %12u %12u\n",
71					   dev_name(r->dev), r->tag, avg_bw, peak_bw);
72			}
73		}
74	}
75
76	mutex_unlock(&icc_lock);
77
78	return 0;
79}
80DEFINE_SHOW_ATTRIBUTE(icc_summary);
81
82static void icc_graph_show_link(struct seq_file *s, int level,
83				struct icc_node *n, struct icc_node *m)
84{
85	seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
86		   level == 2 ? "\t\t" : "\t",
87		   n->id, n->name, m->id, m->name);
88}
89
90static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
91{
92	seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
93		   n->id, n->name, n->id, n->name);
94	seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
95	seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
96	seq_puts(s, "\"]\n");
97}
98
99static int icc_graph_show(struct seq_file *s, void *data)
100{
101	struct icc_provider *provider;
102	struct icc_node *n;
103	int cluster_index = 0;
104	int i;
105
106	seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
107	mutex_lock(&icc_lock);
108
109	/* draw providers as cluster subgraphs */
110	cluster_index = 0;
111	list_for_each_entry(provider, &icc_providers, provider_list) {
112		seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
113		if (provider->dev)
114			seq_printf(s, "\t\tlabel = \"%s\"\n",
115				   dev_name(provider->dev));
116
117		/* draw nodes */
118		list_for_each_entry(n, &provider->nodes, node_list)
119			icc_graph_show_node(s, n);
120
121		/* draw internal links */
122		list_for_each_entry(n, &provider->nodes, node_list)
123			for (i = 0; i < n->num_links; ++i)
124				if (n->provider == n->links[i]->provider)
125					icc_graph_show_link(s, 2, n,
126							    n->links[i]);
127
128		seq_puts(s, "\t}\n");
129	}
130
131	/* draw external links */
132	list_for_each_entry(provider, &icc_providers, provider_list)
133		list_for_each_entry(n, &provider->nodes, node_list)
134			for (i = 0; i < n->num_links; ++i)
135				if (n->provider != n->links[i]->provider)
136					icc_graph_show_link(s, 1, n,
137							    n->links[i]);
138
139	mutex_unlock(&icc_lock);
140	seq_puts(s, "}");
141
142	return 0;
143}
144DEFINE_SHOW_ATTRIBUTE(icc_graph);
145
146static struct icc_node *node_find(const int id)
147{
148	return idr_find(&icc_idr, id);
149}
150
151static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
152				  ssize_t num_nodes)
153{
154	struct icc_node *node = dst;
155	struct icc_path *path;
156	int i;
157
158	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
159	if (!path)
160		return ERR_PTR(-ENOMEM);
161
162	path->num_nodes = num_nodes;
163
164	for (i = num_nodes - 1; i >= 0; i--) {
165		node->provider->users++;
166		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
167		path->reqs[i].node = node;
168		path->reqs[i].dev = dev;
169		path->reqs[i].enabled = true;
170		/* reference to previous node was saved during path traversal */
171		node = node->reverse;
172	}
173
174	return path;
175}
176
177static struct icc_path *path_find(struct device *dev, struct icc_node *src,
178				  struct icc_node *dst)
179{
180	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
181	struct icc_node *n, *node = NULL;
182	struct list_head traverse_list;
183	struct list_head edge_list;
184	struct list_head visited_list;
185	size_t i, depth = 1;
186	bool found = false;
187
188	INIT_LIST_HEAD(&traverse_list);
189	INIT_LIST_HEAD(&edge_list);
190	INIT_LIST_HEAD(&visited_list);
191
192	list_add(&src->search_list, &traverse_list);
193	src->reverse = NULL;
194
195	do {
196		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
197			if (node == dst) {
198				found = true;
199				list_splice_init(&edge_list, &visited_list);
200				list_splice_init(&traverse_list, &visited_list);
201				break;
202			}
203			for (i = 0; i < node->num_links; i++) {
204				struct icc_node *tmp = node->links[i];
205
206				if (!tmp) {
207					path = ERR_PTR(-ENOENT);
208					goto out;
209				}
210
211				if (tmp->is_traversed)
212					continue;
213
214				tmp->is_traversed = true;
215				tmp->reverse = node;
216				list_add_tail(&tmp->search_list, &edge_list);
217			}
218		}
219
220		if (found)
221			break;
222
223		list_splice_init(&traverse_list, &visited_list);
224		list_splice_init(&edge_list, &traverse_list);
225
226		/* count the hops including the source */
227		depth++;
228
229	} while (!list_empty(&traverse_list));
230
231out:
232
233	/* reset the traversed state */
234	list_for_each_entry_reverse(n, &visited_list, search_list)
235		n->is_traversed = false;
236
237	if (found)
238		path = path_init(dev, dst, depth);
239
240	return path;
241}
242
243/*
244 * We want the path to honor all bandwidth requests, so the average and peak
245 * bandwidth requirements from each consumer are aggregated at each node.
246 * The aggregation is platform specific, so each platform can customize it by
247 * implementing its own aggregate() function.
248 */
249
250static int aggregate_requests(struct icc_node *node)
251{
252	struct icc_provider *p = node->provider;
253	struct icc_req *r;
254	u32 avg_bw, peak_bw;
255
256	node->avg_bw = 0;
257	node->peak_bw = 0;
258
259	if (p->pre_aggregate)
260		p->pre_aggregate(node);
261
262	hlist_for_each_entry(r, &node->req_list, req_node) {
263		if (r->enabled) {
264			avg_bw = r->avg_bw;
265			peak_bw = r->peak_bw;
266		} else {
267			avg_bw = 0;
268			peak_bw = 0;
269		}
270		p->aggregate(node, r->tag, avg_bw, peak_bw,
271			     &node->avg_bw, &node->peak_bw);
272
273		/* during boot use the initial bandwidth as a floor value */
274		if (!synced_state) {
275			node->avg_bw = max(node->avg_bw, node->init_avg);
276			node->peak_bw = max(node->peak_bw, node->init_peak);
277		}
278	}
279
280	return 0;
281}
282
283static int apply_constraints(struct icc_path *path)
284{
285	struct icc_node *next, *prev = NULL;
286	struct icc_provider *p;
287	int ret = -EINVAL;
288	int i;
289
290	for (i = 0; i < path->num_nodes; i++) {
291		next = path->reqs[i].node;
292		p = next->provider;
293
294		/* both endpoints should be valid master-slave pairs */
295		if (!prev || (p != prev->provider && !p->inter_set)) {
296			prev = next;
297			continue;
298		}
299
300		/* set the constraints */
301		ret = p->set(prev, next);
302		if (ret)
303			goto out;
304
305		prev = next;
306	}
307out:
308	return ret;
309}
310
311int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
312		      u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
313{
314	*agg_avg += avg_bw;
315	*agg_peak = max(*agg_peak, peak_bw);
316
317	return 0;
318}
319EXPORT_SYMBOL_GPL(icc_std_aggregate);
320
321/* of_icc_xlate_onecell() - Translate function using a single index.
322 * @spec: OF phandle args to map into an interconnect node.
323 * @data: private data (pointer to struct icc_onecell_data)
324 *
325 * This is a generic translate function that can be used to model simple
326 * interconnect providers that have one device tree node and provide
327 * multiple interconnect nodes. A single cell is used as an index into
328 * an array of icc nodes specified in the icc_onecell_data struct when
329 * registering the provider.
330 */
331struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
332				      void *data)
333{
334	struct icc_onecell_data *icc_data = data;
335	unsigned int idx = spec->args[0];
336
337	if (idx >= icc_data->num_nodes) {
338		pr_err("%s: invalid index %u\n", __func__, idx);
339		return ERR_PTR(-EINVAL);
340	}
341
342	return icc_data->nodes[idx];
343}
344EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
345
346/**
347 * of_icc_get_from_provider() - Look-up interconnect node
348 * @spec: OF phandle args to use for look-up
349 *
350 * Looks for interconnect provider under the node specified by @spec and if
351 * found, uses xlate function of the provider to map phandle args to node.
352 *
353 * Returns a valid pointer to struct icc_node_data on success or ERR_PTR()
354 * on failure.
355 */
356struct icc_node_data *of_icc_get_from_provider(struct of_phandle_args *spec)
357{
358	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
359	struct icc_node_data *data = NULL;
360	struct icc_provider *provider;
361
362	if (!spec)
363		return ERR_PTR(-EINVAL);
364
365	mutex_lock(&icc_lock);
366	list_for_each_entry(provider, &icc_providers, provider_list) {
367		if (provider->dev->of_node == spec->np) {
368			if (provider->xlate_extended) {
369				data = provider->xlate_extended(spec, provider->data);
370				if (!IS_ERR(data)) {
371					node = data->node;
372					break;
373				}
374			} else {
375				node = provider->xlate(spec, provider->data);
376				if (!IS_ERR(node))
377					break;
378			}
379		}
380	}
381	mutex_unlock(&icc_lock);
382
383	if (!node)
384		return ERR_PTR(-EINVAL);
385
386	if (IS_ERR(node))
387		return ERR_CAST(node);
388
389	if (!data) {
390		data = kzalloc(sizeof(*data), GFP_KERNEL);
391		if (!data)
392			return ERR_PTR(-ENOMEM);
393		data->node = node;
394	}
395
396	return data;
397}
398EXPORT_SYMBOL_GPL(of_icc_get_from_provider);
399
400static void devm_icc_release(struct device *dev, void *res)
401{
402	icc_put(*(struct icc_path **)res);
403}
404
405struct icc_path *devm_of_icc_get(struct device *dev, const char *name)
406{
407	struct icc_path **ptr, *path;
408
409	ptr = devres_alloc(devm_icc_release, sizeof(*ptr), GFP_KERNEL);
410	if (!ptr)
411		return ERR_PTR(-ENOMEM);
412
413	path = of_icc_get(dev, name);
414	if (!IS_ERR(path)) {
415		*ptr = path;
416		devres_add(dev, ptr);
417	} else {
418		devres_free(ptr);
419	}
420
421	return path;
422}
423EXPORT_SYMBOL_GPL(devm_of_icc_get);
424
425/**
426 * of_icc_get_by_index() - get a path handle from a DT node based on index
427 * @dev: device pointer for the consumer device
428 * @idx: interconnect path index
429 *
430 * This function will search for a path between two endpoints and return an
431 * icc_path handle on success. Use icc_put() to release constraints when they
432 * are not needed anymore.
433 * If the interconnect API is disabled, NULL is returned and the consumer
434 * drivers will still build. Drivers are free to handle this specifically,
435 * but they don't have to.
436 *
437 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
438 * when the API is disabled or the "interconnects" DT property is missing.
439 */
440struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
441{
442	struct icc_path *path;
443	struct icc_node_data *src_data, *dst_data;
444	struct device_node *np;
445	struct of_phandle_args src_args, dst_args;
446	int ret;
447
448	if (!dev || !dev->of_node)
449		return ERR_PTR(-ENODEV);
450
451	np = dev->of_node;
452
453	/*
454	 * When the consumer DT node do not have "interconnects" property
455	 * return a NULL path to skip setting constraints.
456	 */
457	if (!of_find_property(np, "interconnects", NULL))
458		return NULL;
459
460	/*
461	 * We use a combination of phandle and specifier for endpoint. For now
462	 * lets support only global ids and extend this in the future if needed
463	 * without breaking DT compatibility.
464	 */
465	ret = of_parse_phandle_with_args(np, "interconnects",
466					 "#interconnect-cells", idx * 2,
467					 &src_args);
468	if (ret)
469		return ERR_PTR(ret);
470
471	of_node_put(src_args.np);
472
473	ret = of_parse_phandle_with_args(np, "interconnects",
474					 "#interconnect-cells", idx * 2 + 1,
475					 &dst_args);
476	if (ret)
477		return ERR_PTR(ret);
478
479	of_node_put(dst_args.np);
480
481	src_data = of_icc_get_from_provider(&src_args);
482
483	if (IS_ERR(src_data)) {
484		dev_err_probe(dev, PTR_ERR(src_data), "error finding src node\n");
485		return ERR_CAST(src_data);
486	}
487
488	dst_data = of_icc_get_from_provider(&dst_args);
489
490	if (IS_ERR(dst_data)) {
491		dev_err_probe(dev, PTR_ERR(dst_data), "error finding dst node\n");
492		kfree(src_data);
493		return ERR_CAST(dst_data);
494	}
495
496	mutex_lock(&icc_lock);
497	path = path_find(dev, src_data->node, dst_data->node);
498	mutex_unlock(&icc_lock);
499	if (IS_ERR(path)) {
500		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
501		goto free_icc_data;
502	}
503
504	if (src_data->tag && src_data->tag == dst_data->tag)
505		icc_set_tag(path, src_data->tag);
506
507	path->name = kasprintf(GFP_KERNEL, "%s-%s",
508			       src_data->node->name, dst_data->node->name);
509	if (!path->name) {
510		kfree(path);
511		path = ERR_PTR(-ENOMEM);
512	}
513
514free_icc_data:
515	kfree(src_data);
516	kfree(dst_data);
517	return path;
518}
519EXPORT_SYMBOL_GPL(of_icc_get_by_index);
520
521/**
522 * of_icc_get() - get a path handle from a DT node based on name
523 * @dev: device pointer for the consumer device
524 * @name: interconnect path name
525 *
526 * This function will search for a path between two endpoints and return an
527 * icc_path handle on success. Use icc_put() to release constraints when they
528 * are not needed anymore.
529 * If the interconnect API is disabled, NULL is returned and the consumer
530 * drivers will still build. Drivers are free to handle this specifically,
531 * but they don't have to.
532 *
533 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
534 * when the API is disabled or the "interconnects" DT property is missing.
535 */
536struct icc_path *of_icc_get(struct device *dev, const char *name)
537{
538	struct device_node *np;
539	int idx = 0;
540
541	if (!dev || !dev->of_node)
542		return ERR_PTR(-ENODEV);
543
544	np = dev->of_node;
545
546	/*
547	 * When the consumer DT node do not have "interconnects" property
548	 * return a NULL path to skip setting constraints.
549	 */
550	if (!of_find_property(np, "interconnects", NULL))
551		return NULL;
552
553	/*
554	 * We use a combination of phandle and specifier for endpoint. For now
555	 * lets support only global ids and extend this in the future if needed
556	 * without breaking DT compatibility.
557	 */
558	if (name) {
559		idx = of_property_match_string(np, "interconnect-names", name);
560		if (idx < 0)
561			return ERR_PTR(idx);
562	}
563
564	return of_icc_get_by_index(dev, idx);
565}
566EXPORT_SYMBOL_GPL(of_icc_get);
567
568/**
569 * icc_set_tag() - set an optional tag on a path
570 * @path: the path we want to tag
571 * @tag: the tag value
572 *
573 * This function allows consumers to append a tag to the requests associated
574 * with a path, so that a different aggregation could be done based on this tag.
575 */
576void icc_set_tag(struct icc_path *path, u32 tag)
577{
578	int i;
579
580	if (!path)
581		return;
582
583	mutex_lock(&icc_lock);
584
585	for (i = 0; i < path->num_nodes; i++)
586		path->reqs[i].tag = tag;
587
588	mutex_unlock(&icc_lock);
589}
590EXPORT_SYMBOL_GPL(icc_set_tag);
591
592/**
593 * icc_get_name() - Get name of the icc path
594 * @path: reference to the path returned by icc_get()
595 *
596 * This function is used by an interconnect consumer to get the name of the icc
597 * path.
598 *
599 * Returns a valid pointer on success, or NULL otherwise.
600 */
601const char *icc_get_name(struct icc_path *path)
602{
603	if (!path)
604		return NULL;
605
606	return path->name;
607}
608EXPORT_SYMBOL_GPL(icc_get_name);
609
610/**
611 * icc_set_bw() - set bandwidth constraints on an interconnect path
612 * @path: reference to the path returned by icc_get()
613 * @avg_bw: average bandwidth in kilobytes per second
614 * @peak_bw: peak bandwidth in kilobytes per second
615 *
616 * This function is used by an interconnect consumer to express its own needs
617 * in terms of bandwidth for a previously requested path between two endpoints.
618 * The requests are aggregated and each node is updated accordingly. The entire
619 * path is locked by a mutex to ensure that the set() is completed.
620 * The @path can be NULL when the "interconnects" DT properties is missing,
621 * which will mean that no constraints will be set.
622 *
623 * Returns 0 on success, or an appropriate error code otherwise.
624 */
625int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
626{
627	struct icc_node *node;
628	u32 old_avg, old_peak;
629	size_t i;
630	int ret;
631
632	if (!path)
633		return 0;
634
635	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
636		return -EINVAL;
637
638	mutex_lock(&icc_lock);
639
640	old_avg = path->reqs[0].avg_bw;
641	old_peak = path->reqs[0].peak_bw;
642
643	for (i = 0; i < path->num_nodes; i++) {
644		node = path->reqs[i].node;
645
646		/* update the consumer request for this path */
647		path->reqs[i].avg_bw = avg_bw;
648		path->reqs[i].peak_bw = peak_bw;
649
650		/* aggregate requests for this node */
651		aggregate_requests(node);
652
653		trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
654	}
655
656	ret = apply_constraints(path);
657	if (ret) {
658		pr_debug("interconnect: error applying constraints (%d)\n",
659			 ret);
660
661		for (i = 0; i < path->num_nodes; i++) {
662			node = path->reqs[i].node;
663			path->reqs[i].avg_bw = old_avg;
664			path->reqs[i].peak_bw = old_peak;
665			aggregate_requests(node);
666		}
667		apply_constraints(path);
668	}
669
670	mutex_unlock(&icc_lock);
671
672	trace_icc_set_bw_end(path, ret);
673
674	return ret;
675}
676EXPORT_SYMBOL_GPL(icc_set_bw);
677
678static int __icc_enable(struct icc_path *path, bool enable)
679{
680	int i;
681
682	if (!path)
683		return 0;
684
685	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
686		return -EINVAL;
687
688	mutex_lock(&icc_lock);
689
690	for (i = 0; i < path->num_nodes; i++)
691		path->reqs[i].enabled = enable;
692
693	mutex_unlock(&icc_lock);
694
695	return icc_set_bw(path, path->reqs[0].avg_bw,
696			  path->reqs[0].peak_bw);
697}
698
699int icc_enable(struct icc_path *path)
700{
701	return __icc_enable(path, true);
702}
703EXPORT_SYMBOL_GPL(icc_enable);
704
705int icc_disable(struct icc_path *path)
706{
707	return __icc_enable(path, false);
708}
709EXPORT_SYMBOL_GPL(icc_disable);
710
711/**
712 * icc_get() - return a handle for path between two endpoints
713 * @dev: the device requesting the path
714 * @src_id: source device port id
715 * @dst_id: destination device port id
716 *
717 * This function will search for a path between two endpoints and return an
718 * icc_path handle on success. Use icc_put() to release
719 * constraints when they are not needed anymore.
720 * If the interconnect API is disabled, NULL is returned and the consumer
721 * drivers will still build. Drivers are free to handle this specifically,
722 * but they don't have to.
723 *
724 * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
725 * interconnect API is disabled.
726 */
727struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
728{
729	struct icc_node *src, *dst;
730	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
731
732	mutex_lock(&icc_lock);
733
734	src = node_find(src_id);
735	if (!src)
736		goto out;
737
738	dst = node_find(dst_id);
739	if (!dst)
740		goto out;
741
742	path = path_find(dev, src, dst);
743	if (IS_ERR(path)) {
744		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
745		goto out;
746	}
747
748	path->name = kasprintf(GFP_KERNEL, "%s-%s", src->name, dst->name);
749	if (!path->name) {
750		kfree(path);
751		path = ERR_PTR(-ENOMEM);
752	}
753out:
754	mutex_unlock(&icc_lock);
755	return path;
756}
757EXPORT_SYMBOL_GPL(icc_get);
758
759/**
760 * icc_put() - release the reference to the icc_path
761 * @path: interconnect path
762 *
763 * Use this function to release the constraints on a path when the path is
764 * no longer needed. The constraints will be re-aggregated.
765 */
766void icc_put(struct icc_path *path)
767{
768	struct icc_node *node;
769	size_t i;
770	int ret;
771
772	if (!path || WARN_ON(IS_ERR(path)))
773		return;
774
775	ret = icc_set_bw(path, 0, 0);
776	if (ret)
777		pr_err("%s: error (%d)\n", __func__, ret);
778
779	mutex_lock(&icc_lock);
780	for (i = 0; i < path->num_nodes; i++) {
781		node = path->reqs[i].node;
782		hlist_del(&path->reqs[i].req_node);
783		if (!WARN_ON(!node->provider->users))
784			node->provider->users--;
785	}
786	mutex_unlock(&icc_lock);
787
788	kfree_const(path->name);
789	kfree(path);
790}
791EXPORT_SYMBOL_GPL(icc_put);
792
793static struct icc_node *icc_node_create_nolock(int id)
794{
795	struct icc_node *node;
796
797	/* check if node already exists */
798	node = node_find(id);
799	if (node)
800		return node;
801
802	node = kzalloc(sizeof(*node), GFP_KERNEL);
803	if (!node)
804		return ERR_PTR(-ENOMEM);
805
806	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
807	if (id < 0) {
808		WARN(1, "%s: couldn't get idr\n", __func__);
809		kfree(node);
810		return ERR_PTR(id);
811	}
812
813	node->id = id;
814
815	return node;
816}
817
818/**
819 * icc_node_create() - create a node
820 * @id: node id
821 *
822 * Return: icc_node pointer on success, or ERR_PTR() on error
823 */
824struct icc_node *icc_node_create(int id)
825{
826	struct icc_node *node;
827
828	mutex_lock(&icc_lock);
829
830	node = icc_node_create_nolock(id);
831
832	mutex_unlock(&icc_lock);
833
834	return node;
835}
836EXPORT_SYMBOL_GPL(icc_node_create);
837
838/**
839 * icc_node_destroy() - destroy a node
840 * @id: node id
841 */
842void icc_node_destroy(int id)
843{
844	struct icc_node *node;
845
846	mutex_lock(&icc_lock);
847
848	node = node_find(id);
849	if (node) {
850		idr_remove(&icc_idr, node->id);
851		WARN_ON(!hlist_empty(&node->req_list));
852	}
853
854	mutex_unlock(&icc_lock);
855
856	if (!node)
857		return;
858
859	kfree(node->links);
860	kfree(node);
861}
862EXPORT_SYMBOL_GPL(icc_node_destroy);
863
864/**
865 * icc_link_create() - create a link between two nodes
866 * @node: source node id
867 * @dst_id: destination node id
868 *
869 * Create a link between two nodes. The nodes might belong to different
870 * interconnect providers and the @dst_id node might not exist (if the
871 * provider driver has not probed yet). So just create the @dst_id node
872 * and when the actual provider driver is probed, the rest of the node
873 * data is filled.
874 *
875 * Return: 0 on success, or an error code otherwise
876 */
877int icc_link_create(struct icc_node *node, const int dst_id)
878{
879	struct icc_node *dst;
880	struct icc_node **new;
881	int ret = 0;
882
883	if (!node->provider)
884		return -EINVAL;
885
886	mutex_lock(&icc_lock);
887
888	dst = node_find(dst_id);
889	if (!dst) {
890		dst = icc_node_create_nolock(dst_id);
891
892		if (IS_ERR(dst)) {
893			ret = PTR_ERR(dst);
894			goto out;
895		}
896	}
897
898	new = krealloc(node->links,
899		       (node->num_links + 1) * sizeof(*node->links),
900		       GFP_KERNEL);
901	if (!new) {
902		ret = -ENOMEM;
903		goto out;
904	}
905
906	node->links = new;
907	node->links[node->num_links++] = dst;
908
909out:
910	mutex_unlock(&icc_lock);
911
912	return ret;
913}
914EXPORT_SYMBOL_GPL(icc_link_create);
915
916/**
917 * icc_link_destroy() - destroy a link between two nodes
918 * @src: pointer to source node
919 * @dst: pointer to destination node
920 *
921 * Return: 0 on success, or an error code otherwise
922 */
923int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
924{
925	struct icc_node **new;
926	size_t slot;
927	int ret = 0;
928
929	if (IS_ERR_OR_NULL(src))
930		return -EINVAL;
931
932	if (IS_ERR_OR_NULL(dst))
933		return -EINVAL;
934
935	mutex_lock(&icc_lock);
936
937	for (slot = 0; slot < src->num_links; slot++)
938		if (src->links[slot] == dst)
939			break;
940
941	if (WARN_ON(slot == src->num_links)) {
942		ret = -ENXIO;
943		goto out;
944	}
945
946	src->links[slot] = src->links[--src->num_links];
947
948	new = krealloc(src->links, src->num_links * sizeof(*src->links),
949		       GFP_KERNEL);
950	if (new)
951		src->links = new;
952	else
953		ret = -ENOMEM;
954
955out:
956	mutex_unlock(&icc_lock);
957
958	return ret;
959}
960EXPORT_SYMBOL_GPL(icc_link_destroy);
961
962/**
963 * icc_node_add() - add interconnect node to interconnect provider
964 * @node: pointer to the interconnect node
965 * @provider: pointer to the interconnect provider
966 */
967void icc_node_add(struct icc_node *node, struct icc_provider *provider)
968{
969	mutex_lock(&icc_lock);
970
971	node->provider = provider;
972	list_add_tail(&node->node_list, &provider->nodes);
973
974	/* get the initial bandwidth values and sync them with hardware */
975	if (provider->get_bw) {
976		provider->get_bw(node, &node->init_avg, &node->init_peak);
977	} else {
978		node->init_avg = INT_MAX;
979		node->init_peak = INT_MAX;
980	}
981	node->avg_bw = node->init_avg;
982	node->peak_bw = node->init_peak;
983
984	if (provider->pre_aggregate)
985		provider->pre_aggregate(node);
986
987	if (provider->aggregate)
988		provider->aggregate(node, 0, node->init_avg, node->init_peak,
989				    &node->avg_bw, &node->peak_bw);
990
991	provider->set(node, node);
992	node->avg_bw = 0;
993	node->peak_bw = 0;
994
995	mutex_unlock(&icc_lock);
996}
997EXPORT_SYMBOL_GPL(icc_node_add);
998
999/**
1000 * icc_node_del() - delete interconnect node from interconnect provider
1001 * @node: pointer to the interconnect node
1002 */
1003void icc_node_del(struct icc_node *node)
1004{
1005	mutex_lock(&icc_lock);
1006
1007	list_del(&node->node_list);
1008
1009	mutex_unlock(&icc_lock);
1010}
1011EXPORT_SYMBOL_GPL(icc_node_del);
1012
1013/**
1014 * icc_nodes_remove() - remove all previously added nodes from provider
1015 * @provider: the interconnect provider we are removing nodes from
1016 *
1017 * Return: 0 on success, or an error code otherwise
1018 */
1019int icc_nodes_remove(struct icc_provider *provider)
1020{
1021	struct icc_node *n, *tmp;
1022
1023	if (WARN_ON(IS_ERR_OR_NULL(provider)))
1024		return -EINVAL;
1025
1026	list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
1027		icc_node_del(n);
1028		icc_node_destroy(n->id);
1029	}
1030
1031	return 0;
1032}
1033EXPORT_SYMBOL_GPL(icc_nodes_remove);
1034
1035/**
1036 * icc_provider_add() - add a new interconnect provider
1037 * @provider: the interconnect provider that will be added into topology
1038 *
1039 * Return: 0 on success, or an error code otherwise
1040 */
1041int icc_provider_add(struct icc_provider *provider)
1042{
1043	if (WARN_ON(!provider->set))
1044		return -EINVAL;
1045	if (WARN_ON(!provider->xlate && !provider->xlate_extended))
1046		return -EINVAL;
1047
1048	mutex_lock(&icc_lock);
1049
1050	INIT_LIST_HEAD(&provider->nodes);
1051	list_add_tail(&provider->provider_list, &icc_providers);
1052
1053	mutex_unlock(&icc_lock);
1054
1055	dev_dbg(provider->dev, "interconnect provider added to topology\n");
1056
1057	return 0;
1058}
1059EXPORT_SYMBOL_GPL(icc_provider_add);
1060
1061/**
1062 * icc_provider_del() - delete previously added interconnect provider
1063 * @provider: the interconnect provider that will be removed from topology
1064 *
1065 * Return: 0 on success, or an error code otherwise
1066 */
1067int icc_provider_del(struct icc_provider *provider)
1068{
1069	mutex_lock(&icc_lock);
1070	if (provider->users) {
1071		pr_warn("interconnect provider still has %d users\n",
1072			provider->users);
1073		mutex_unlock(&icc_lock);
1074		return -EBUSY;
1075	}
1076
1077	if (!list_empty(&provider->nodes)) {
1078		pr_warn("interconnect provider still has nodes\n");
1079		mutex_unlock(&icc_lock);
1080		return -EBUSY;
1081	}
1082
1083	list_del(&provider->provider_list);
1084	mutex_unlock(&icc_lock);
1085
1086	return 0;
1087}
1088EXPORT_SYMBOL_GPL(icc_provider_del);
1089
1090static int of_count_icc_providers(struct device_node *np)
1091{
1092	struct device_node *child;
1093	int count = 0;
1094	const struct of_device_id __maybe_unused ignore_list[] = {
1095		{ .compatible = "qcom,sc7180-ipa-virt" },
1096		{}
1097	};
1098
1099	for_each_available_child_of_node(np, child) {
1100		if (of_property_read_bool(child, "#interconnect-cells") &&
1101		    likely(!of_match_node(ignore_list, child)))
1102			count++;
1103		count += of_count_icc_providers(child);
1104	}
1105
1106	return count;
1107}
1108
1109void icc_sync_state(struct device *dev)
1110{
1111	struct icc_provider *p;
1112	struct icc_node *n;
1113	static int count;
1114
1115	count++;
1116
1117	if (count < providers_count)
1118		return;
1119
1120	mutex_lock(&icc_lock);
1121	synced_state = true;
1122	list_for_each_entry(p, &icc_providers, provider_list) {
1123		dev_dbg(p->dev, "interconnect provider is in synced state\n");
1124		list_for_each_entry(n, &p->nodes, node_list) {
1125			if (n->init_avg || n->init_peak) {
1126				n->init_avg = 0;
1127				n->init_peak = 0;
1128				aggregate_requests(n);
1129				p->set(n, n);
1130			}
1131		}
1132	}
1133	mutex_unlock(&icc_lock);
1134}
1135EXPORT_SYMBOL_GPL(icc_sync_state);
1136
1137static int __init icc_init(void)
1138{
1139	struct device_node *root = of_find_node_by_path("/");
1140
1141	providers_count = of_count_icc_providers(root);
1142	of_node_put(root);
1143
1144	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
1145	debugfs_create_file("interconnect_summary", 0444,
1146			    icc_debugfs_dir, NULL, &icc_summary_fops);
1147	debugfs_create_file("interconnect_graph", 0444,
1148			    icc_debugfs_dir, NULL, &icc_graph_fops);
1149	return 0;
1150}
1151
1152device_initcall(icc_init);
1153
1154MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
1155MODULE_DESCRIPTION("Interconnect Driver Core");
1156MODULE_LICENSE("GPL v2");
1157