1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2011-2016 Synaptics Incorporated
4 * Copyright (c) 2011 Unixphere
5 *
6 * This driver provides the core support for a single RMI4-based device.
7 *
8 * The RMI4 specification can be found here (URL split for line length):
9 *
10 * http://www.synaptics.com/sites/default/files/
11 *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
12 */
13
14#include <linux/bitmap.h>
15#include <linux/delay.h>
16#include <linux/fs.h>
17#include <linux/irq.h>
18#include <linux/pm.h>
19#include <linux/slab.h>
20#include <linux/of.h>
21#include <linux/irqdomain.h>
22#include <uapi/linux/input.h>
23#include <linux/rmi.h>
24#include "rmi_bus.h"
25#include "rmi_driver.h"
26
27#define HAS_NONSTANDARD_PDT_MASK 0x40
28#define RMI4_MAX_PAGE 0xff
29#define RMI4_PAGE_SIZE 0x100
30#define RMI4_PAGE_MASK 0xFF00
31
32#define RMI_DEVICE_RESET_CMD	0x01
33#define DEFAULT_RESET_DELAY_MS	100
34
35void rmi_free_function_list(struct rmi_device *rmi_dev)
36{
37	struct rmi_function *fn, *tmp;
38	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
39
40	rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
41
42	/* Doing it in the reverse order so F01 will be removed last */
43	list_for_each_entry_safe_reverse(fn, tmp,
44					 &data->function_list, node) {
45		list_del(&fn->node);
46		rmi_unregister_function(fn);
47	}
48
49	devm_kfree(&rmi_dev->dev, data->irq_memory);
50	data->irq_memory = NULL;
51	data->irq_status = NULL;
52	data->fn_irq_bits = NULL;
53	data->current_irq_mask = NULL;
54	data->new_irq_mask = NULL;
55
56	data->f01_container = NULL;
57	data->f34_container = NULL;
58}
59
60static int reset_one_function(struct rmi_function *fn)
61{
62	struct rmi_function_handler *fh;
63	int retval = 0;
64
65	if (!fn || !fn->dev.driver)
66		return 0;
67
68	fh = to_rmi_function_handler(fn->dev.driver);
69	if (fh->reset) {
70		retval = fh->reset(fn);
71		if (retval < 0)
72			dev_err(&fn->dev, "Reset failed with code %d.\n",
73				retval);
74	}
75
76	return retval;
77}
78
79static int configure_one_function(struct rmi_function *fn)
80{
81	struct rmi_function_handler *fh;
82	int retval = 0;
83
84	if (!fn || !fn->dev.driver)
85		return 0;
86
87	fh = to_rmi_function_handler(fn->dev.driver);
88	if (fh->config) {
89		retval = fh->config(fn);
90		if (retval < 0)
91			dev_err(&fn->dev, "Config failed with code %d.\n",
92				retval);
93	}
94
95	return retval;
96}
97
98static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
99{
100	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
101	struct rmi_function *entry;
102	int retval;
103
104	list_for_each_entry(entry, &data->function_list, node) {
105		retval = reset_one_function(entry);
106		if (retval < 0)
107			return retval;
108	}
109
110	return 0;
111}
112
113static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
114{
115	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
116	struct rmi_function *entry;
117	int retval;
118
119	list_for_each_entry(entry, &data->function_list, node) {
120		retval = configure_one_function(entry);
121		if (retval < 0)
122			return retval;
123	}
124
125	return 0;
126}
127
128static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
129{
130	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
131	struct device *dev = &rmi_dev->dev;
132	int i;
133	int error;
134
135	if (!data)
136		return 0;
137
138	if (!data->attn_data.data) {
139		error = rmi_read_block(rmi_dev,
140				data->f01_container->fd.data_base_addr + 1,
141				data->irq_status, data->num_of_irq_regs);
142		if (error < 0) {
143			dev_err(dev, "Failed to read irqs, code=%d\n", error);
144			return error;
145		}
146	}
147
148	mutex_lock(&data->irq_mutex);
149	bitmap_and(data->irq_status, data->irq_status, data->fn_irq_bits,
150	       data->irq_count);
151	/*
152	 * At this point, irq_status has all bits that are set in the
153	 * interrupt status register and are enabled.
154	 */
155	mutex_unlock(&data->irq_mutex);
156
157	for_each_set_bit(i, data->irq_status, data->irq_count)
158		handle_nested_irq(irq_find_mapping(data->irqdomain, i));
159
160	if (data->input)
161		input_sync(data->input);
162
163	return 0;
164}
165
166void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
167		       void *data, size_t size)
168{
169	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
170	struct rmi4_attn_data attn_data;
171	void *fifo_data;
172
173	if (!drvdata->enabled)
174		return;
175
176	fifo_data = kmemdup(data, size, GFP_ATOMIC);
177	if (!fifo_data)
178		return;
179
180	attn_data.irq_status = irq_status;
181	attn_data.size = size;
182	attn_data.data = fifo_data;
183
184	kfifo_put(&drvdata->attn_fifo, attn_data);
185}
186EXPORT_SYMBOL_GPL(rmi_set_attn_data);
187
188static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
189{
190	struct rmi_device *rmi_dev = dev_id;
191	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
192	struct rmi4_attn_data attn_data = {0};
193	int ret, count;
194
195	count = kfifo_get(&drvdata->attn_fifo, &attn_data);
196	if (count) {
197		*(drvdata->irq_status) = attn_data.irq_status;
198		drvdata->attn_data = attn_data;
199	}
200
201	ret = rmi_process_interrupt_requests(rmi_dev);
202	if (ret)
203		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
204			"Failed to process interrupt request: %d\n", ret);
205
206	if (count) {
207		kfree(attn_data.data);
208		drvdata->attn_data.data = NULL;
209	}
210
211	if (!kfifo_is_empty(&drvdata->attn_fifo))
212		return rmi_irq_fn(irq, dev_id);
213
214	return IRQ_HANDLED;
215}
216
217static int rmi_irq_init(struct rmi_device *rmi_dev)
218{
219	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
220	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
221	int irq_flags = irq_get_trigger_type(pdata->irq);
222	int ret;
223
224	if (!irq_flags)
225		irq_flags = IRQF_TRIGGER_LOW;
226
227	ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
228					rmi_irq_fn, irq_flags | IRQF_ONESHOT,
229					dev_driver_string(rmi_dev->xport->dev),
230					rmi_dev);
231	if (ret < 0) {
232		dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
233			pdata->irq);
234
235		return ret;
236	}
237
238	data->enabled = true;
239
240	return 0;
241}
242
243struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
244{
245	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
246	struct rmi_function *entry;
247
248	list_for_each_entry(entry, &data->function_list, node) {
249		if (entry->fd.function_number == number)
250			return entry;
251	}
252
253	return NULL;
254}
255
256static int suspend_one_function(struct rmi_function *fn)
257{
258	struct rmi_function_handler *fh;
259	int retval = 0;
260
261	if (!fn || !fn->dev.driver)
262		return 0;
263
264	fh = to_rmi_function_handler(fn->dev.driver);
265	if (fh->suspend) {
266		retval = fh->suspend(fn);
267		if (retval < 0)
268			dev_err(&fn->dev, "Suspend failed with code %d.\n",
269				retval);
270	}
271
272	return retval;
273}
274
275static int rmi_suspend_functions(struct rmi_device *rmi_dev)
276{
277	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
278	struct rmi_function *entry;
279	int retval;
280
281	list_for_each_entry(entry, &data->function_list, node) {
282		retval = suspend_one_function(entry);
283		if (retval < 0)
284			return retval;
285	}
286
287	return 0;
288}
289
290static int resume_one_function(struct rmi_function *fn)
291{
292	struct rmi_function_handler *fh;
293	int retval = 0;
294
295	if (!fn || !fn->dev.driver)
296		return 0;
297
298	fh = to_rmi_function_handler(fn->dev.driver);
299	if (fh->resume) {
300		retval = fh->resume(fn);
301		if (retval < 0)
302			dev_err(&fn->dev, "Resume failed with code %d.\n",
303				retval);
304	}
305
306	return retval;
307}
308
309static int rmi_resume_functions(struct rmi_device *rmi_dev)
310{
311	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
312	struct rmi_function *entry;
313	int retval;
314
315	list_for_each_entry(entry, &data->function_list, node) {
316		retval = resume_one_function(entry);
317		if (retval < 0)
318			return retval;
319	}
320
321	return 0;
322}
323
324int rmi_enable_sensor(struct rmi_device *rmi_dev)
325{
326	int retval = 0;
327
328	retval = rmi_driver_process_config_requests(rmi_dev);
329	if (retval < 0)
330		return retval;
331
332	return rmi_process_interrupt_requests(rmi_dev);
333}
334
335/**
336 * rmi_driver_set_input_params - set input device id and other data.
337 *
338 * @rmi_dev: Pointer to an RMI device
339 * @input: Pointer to input device
340 *
341 */
342static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
343				struct input_dev *input)
344{
345	input->name = SYNAPTICS_INPUT_DEVICE_NAME;
346	input->id.vendor  = SYNAPTICS_VENDOR_ID;
347	input->id.bustype = BUS_RMI;
348	return 0;
349}
350
351static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
352				struct input_dev *input)
353{
354	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
355	const char *device_name = rmi_f01_get_product_ID(data->f01_container);
356	char *name;
357
358	name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
359			      "Synaptics %s", device_name);
360	if (!name)
361		return;
362
363	input->name = name;
364}
365
366static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
367				   unsigned long *mask)
368{
369	int error = 0;
370	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
371	struct device *dev = &rmi_dev->dev;
372
373	mutex_lock(&data->irq_mutex);
374	bitmap_or(data->new_irq_mask,
375		  data->current_irq_mask, mask, data->irq_count);
376
377	error = rmi_write_block(rmi_dev,
378			data->f01_container->fd.control_base_addr + 1,
379			data->new_irq_mask, data->num_of_irq_regs);
380	if (error < 0) {
381		dev_err(dev, "%s: Failed to change enabled interrupts!",
382							__func__);
383		goto error_unlock;
384	}
385	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
386		    data->num_of_irq_regs);
387
388	bitmap_or(data->fn_irq_bits, data->fn_irq_bits, mask, data->irq_count);
389
390error_unlock:
391	mutex_unlock(&data->irq_mutex);
392	return error;
393}
394
395static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
396				     unsigned long *mask)
397{
398	int error = 0;
399	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
400	struct device *dev = &rmi_dev->dev;
401
402	mutex_lock(&data->irq_mutex);
403	bitmap_andnot(data->fn_irq_bits,
404		      data->fn_irq_bits, mask, data->irq_count);
405	bitmap_andnot(data->new_irq_mask,
406		  data->current_irq_mask, mask, data->irq_count);
407
408	error = rmi_write_block(rmi_dev,
409			data->f01_container->fd.control_base_addr + 1,
410			data->new_irq_mask, data->num_of_irq_regs);
411	if (error < 0) {
412		dev_err(dev, "%s: Failed to change enabled interrupts!",
413							__func__);
414		goto error_unlock;
415	}
416	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
417		    data->num_of_irq_regs);
418
419error_unlock:
420	mutex_unlock(&data->irq_mutex);
421	return error;
422}
423
424static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
425{
426	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
427	int error;
428
429	/*
430	 * Can get called before the driver is fully ready to deal with
431	 * this situation.
432	 */
433	if (!data || !data->f01_container) {
434		dev_warn(&rmi_dev->dev,
435			 "Not ready to handle reset yet!\n");
436		return 0;
437	}
438
439	error = rmi_read_block(rmi_dev,
440			       data->f01_container->fd.control_base_addr + 1,
441			       data->current_irq_mask, data->num_of_irq_regs);
442	if (error < 0) {
443		dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
444			__func__);
445		return error;
446	}
447
448	error = rmi_driver_process_reset_requests(rmi_dev);
449	if (error < 0)
450		return error;
451
452	error = rmi_driver_process_config_requests(rmi_dev);
453	if (error < 0)
454		return error;
455
456	return 0;
457}
458
459static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
460			      struct pdt_entry *entry, u16 pdt_address)
461{
462	u8 buf[RMI_PDT_ENTRY_SIZE];
463	int error;
464
465	error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
466	if (error) {
467		dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
468				pdt_address, error);
469		return error;
470	}
471
472	entry->page_start = pdt_address & RMI4_PAGE_MASK;
473	entry->query_base_addr = buf[0];
474	entry->command_base_addr = buf[1];
475	entry->control_base_addr = buf[2];
476	entry->data_base_addr = buf[3];
477	entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
478	entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
479	entry->function_number = buf[5];
480
481	return 0;
482}
483
484static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
485				      struct rmi_function_descriptor *fd)
486{
487	fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
488	fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
489	fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
490	fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
491	fd->function_number = pdt->function_number;
492	fd->interrupt_source_count = pdt->interrupt_source_count;
493	fd->function_version = pdt->function_version;
494}
495
496#define RMI_SCAN_CONTINUE	0
497#define RMI_SCAN_DONE		1
498
499static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
500			     int page,
501			     int *empty_pages,
502			     void *ctx,
503			     int (*callback)(struct rmi_device *rmi_dev,
504					     void *ctx,
505					     const struct pdt_entry *entry))
506{
507	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
508	struct pdt_entry pdt_entry;
509	u16 page_start = RMI4_PAGE_SIZE * page;
510	u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
511	u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
512	u16 addr;
513	int error;
514	int retval;
515
516	for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
517		error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
518		if (error)
519			return error;
520
521		if (RMI4_END_OF_PDT(pdt_entry.function_number))
522			break;
523
524		retval = callback(rmi_dev, ctx, &pdt_entry);
525		if (retval != RMI_SCAN_CONTINUE)
526			return retval;
527	}
528
529	/*
530	 * Count number of empty PDT pages. If a gap of two pages
531	 * or more is found, stop scanning.
532	 */
533	if (addr == pdt_start)
534		++*empty_pages;
535	else
536		*empty_pages = 0;
537
538	return (data->bootloader_mode || *empty_pages >= 2) ?
539					RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
540}
541
542int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
543		 int (*callback)(struct rmi_device *rmi_dev,
544		 void *ctx, const struct pdt_entry *entry))
545{
546	int page;
547	int empty_pages = 0;
548	int retval = RMI_SCAN_DONE;
549
550	for (page = 0; page <= RMI4_MAX_PAGE; page++) {
551		retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
552					   ctx, callback);
553		if (retval != RMI_SCAN_CONTINUE)
554			break;
555	}
556
557	return retval < 0 ? retval : 0;
558}
559
560int rmi_read_register_desc(struct rmi_device *d, u16 addr,
561				struct rmi_register_descriptor *rdesc)
562{
563	int ret;
564	u8 size_presence_reg;
565	u8 buf[35];
566	int presense_offset = 1;
567	u8 *struct_buf;
568	int reg;
569	int offset = 0;
570	int map_offset = 0;
571	int i;
572	int b;
573
574	/*
575	 * The first register of the register descriptor is the size of
576	 * the register descriptor's presense register.
577	 */
578	ret = rmi_read(d, addr, &size_presence_reg);
579	if (ret)
580		return ret;
581	++addr;
582
583	if (size_presence_reg < 0 || size_presence_reg > 35)
584		return -EIO;
585
586	memset(buf, 0, sizeof(buf));
587
588	/*
589	 * The presence register contains the size of the register structure
590	 * and a bitmap which identified which packet registers are present
591	 * for this particular register type (ie query, control, or data).
592	 */
593	ret = rmi_read_block(d, addr, buf, size_presence_reg);
594	if (ret)
595		return ret;
596	++addr;
597
598	if (buf[0] == 0) {
599		presense_offset = 3;
600		rdesc->struct_size = buf[1] | (buf[2] << 8);
601	} else {
602		rdesc->struct_size = buf[0];
603	}
604
605	for (i = presense_offset; i < size_presence_reg; i++) {
606		for (b = 0; b < 8; b++) {
607			if (buf[i] & (0x1 << b))
608				bitmap_set(rdesc->presense_map, map_offset, 1);
609			++map_offset;
610		}
611	}
612
613	rdesc->num_registers = bitmap_weight(rdesc->presense_map,
614						RMI_REG_DESC_PRESENSE_BITS);
615
616	rdesc->registers = devm_kcalloc(&d->dev,
617					rdesc->num_registers,
618					sizeof(struct rmi_register_desc_item),
619					GFP_KERNEL);
620	if (!rdesc->registers)
621		return -ENOMEM;
622
623	/*
624	 * Allocate a temporary buffer to hold the register structure.
625	 * I'm not using devm_kzalloc here since it will not be retained
626	 * after exiting this function
627	 */
628	struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
629	if (!struct_buf)
630		return -ENOMEM;
631
632	/*
633	 * The register structure contains information about every packet
634	 * register of this type. This includes the size of the packet
635	 * register and a bitmap of all subpackets contained in the packet
636	 * register.
637	 */
638	ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
639	if (ret)
640		goto free_struct_buff;
641
642	reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
643	for (i = 0; i < rdesc->num_registers; i++) {
644		struct rmi_register_desc_item *item = &rdesc->registers[i];
645		int reg_size = struct_buf[offset];
646
647		++offset;
648		if (reg_size == 0) {
649			reg_size = struct_buf[offset] |
650					(struct_buf[offset + 1] << 8);
651			offset += 2;
652		}
653
654		if (reg_size == 0) {
655			reg_size = struct_buf[offset] |
656					(struct_buf[offset + 1] << 8) |
657					(struct_buf[offset + 2] << 16) |
658					(struct_buf[offset + 3] << 24);
659			offset += 4;
660		}
661
662		item->reg = reg;
663		item->reg_size = reg_size;
664
665		map_offset = 0;
666
667		do {
668			for (b = 0; b < 7; b++) {
669				if (struct_buf[offset] & (0x1 << b))
670					bitmap_set(item->subpacket_map,
671						map_offset, 1);
672				++map_offset;
673			}
674		} while (struct_buf[offset++] & 0x80);
675
676		item->num_subpackets = bitmap_weight(item->subpacket_map,
677						RMI_REG_DESC_SUBPACKET_BITS);
678
679		rmi_dbg(RMI_DEBUG_CORE, &d->dev,
680			"%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
681			item->reg, item->reg_size, item->num_subpackets);
682
683		reg = find_next_bit(rdesc->presense_map,
684				RMI_REG_DESC_PRESENSE_BITS, reg + 1);
685	}
686
687free_struct_buff:
688	kfree(struct_buf);
689	return ret;
690}
691
692const struct rmi_register_desc_item *rmi_get_register_desc_item(
693				struct rmi_register_descriptor *rdesc, u16 reg)
694{
695	const struct rmi_register_desc_item *item;
696	int i;
697
698	for (i = 0; i < rdesc->num_registers; i++) {
699		item = &rdesc->registers[i];
700		if (item->reg == reg)
701			return item;
702	}
703
704	return NULL;
705}
706
707size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
708{
709	const struct rmi_register_desc_item *item;
710	int i;
711	size_t size = 0;
712
713	for (i = 0; i < rdesc->num_registers; i++) {
714		item = &rdesc->registers[i];
715		size += item->reg_size;
716	}
717	return size;
718}
719
720/* Compute the register offset relative to the base address */
721int rmi_register_desc_calc_reg_offset(
722		struct rmi_register_descriptor *rdesc, u16 reg)
723{
724	const struct rmi_register_desc_item *item;
725	int offset = 0;
726	int i;
727
728	for (i = 0; i < rdesc->num_registers; i++) {
729		item = &rdesc->registers[i];
730		if (item->reg == reg)
731			return offset;
732		++offset;
733	}
734	return -1;
735}
736
737bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
738	u8 subpacket)
739{
740	return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
741				subpacket) == subpacket;
742}
743
744static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
745				     const struct pdt_entry *pdt)
746{
747	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
748	int ret;
749	u8 status;
750
751	if (pdt->function_number == 0x34 && pdt->function_version > 1) {
752		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
753		if (ret) {
754			dev_err(&rmi_dev->dev,
755				"Failed to read F34 status: %d.\n", ret);
756			return ret;
757		}
758
759		if (status & BIT(7))
760			data->bootloader_mode = true;
761	} else if (pdt->function_number == 0x01) {
762		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
763		if (ret) {
764			dev_err(&rmi_dev->dev,
765				"Failed to read F01 status: %d.\n", ret);
766			return ret;
767		}
768
769		if (status & BIT(6))
770			data->bootloader_mode = true;
771	}
772
773	return 0;
774}
775
776static int rmi_count_irqs(struct rmi_device *rmi_dev,
777			 void *ctx, const struct pdt_entry *pdt)
778{
779	int *irq_count = ctx;
780	int ret;
781
782	*irq_count += pdt->interrupt_source_count;
783
784	ret = rmi_check_bootloader_mode(rmi_dev, pdt);
785	if (ret < 0)
786		return ret;
787
788	return RMI_SCAN_CONTINUE;
789}
790
791int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
792		      const struct pdt_entry *pdt)
793{
794	int error;
795
796	if (pdt->function_number == 0x01) {
797		u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
798		u8 cmd_buf = RMI_DEVICE_RESET_CMD;
799		const struct rmi_device_platform_data *pdata =
800				rmi_get_platform_data(rmi_dev);
801
802		if (rmi_dev->xport->ops->reset) {
803			error = rmi_dev->xport->ops->reset(rmi_dev->xport,
804								cmd_addr);
805			if (error)
806				return error;
807
808			return RMI_SCAN_DONE;
809		}
810
811		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
812		error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
813		if (error) {
814			dev_err(&rmi_dev->dev,
815				"Initial reset failed. Code = %d.\n", error);
816			return error;
817		}
818
819		mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
820
821		return RMI_SCAN_DONE;
822	}
823
824	/* F01 should always be on page 0. If we don't find it there, fail. */
825	return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
826}
827
828static int rmi_create_function(struct rmi_device *rmi_dev,
829			       void *ctx, const struct pdt_entry *pdt)
830{
831	struct device *dev = &rmi_dev->dev;
832	struct rmi_driver_data *data = dev_get_drvdata(dev);
833	int *current_irq_count = ctx;
834	struct rmi_function *fn;
835	int i;
836	int error;
837
838	rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
839			pdt->function_number);
840
841	fn = kzalloc(sizeof(struct rmi_function) +
842			BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
843		     GFP_KERNEL);
844	if (!fn) {
845		dev_err(dev, "Failed to allocate memory for F%02X\n",
846			pdt->function_number);
847		return -ENOMEM;
848	}
849
850	INIT_LIST_HEAD(&fn->node);
851	rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
852
853	fn->rmi_dev = rmi_dev;
854
855	fn->num_of_irqs = pdt->interrupt_source_count;
856	fn->irq_pos = *current_irq_count;
857	*current_irq_count += fn->num_of_irqs;
858
859	for (i = 0; i < fn->num_of_irqs; i++)
860		set_bit(fn->irq_pos + i, fn->irq_mask);
861
862	error = rmi_register_function(fn);
863	if (error)
864		return error;
865
866	if (pdt->function_number == 0x01)
867		data->f01_container = fn;
868	else if (pdt->function_number == 0x34)
869		data->f34_container = fn;
870
871	list_add_tail(&fn->node, &data->function_list);
872
873	return RMI_SCAN_CONTINUE;
874}
875
876void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
877{
878	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
879	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
880	int irq = pdata->irq;
881	int irq_flags;
882	int retval;
883
884	mutex_lock(&data->enabled_mutex);
885
886	if (data->enabled)
887		goto out;
888
889	enable_irq(irq);
890	data->enabled = true;
891	if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
892		retval = disable_irq_wake(irq);
893		if (retval)
894			dev_warn(&rmi_dev->dev,
895				 "Failed to disable irq for wake: %d\n",
896				 retval);
897	}
898
899	/*
900	 * Call rmi_process_interrupt_requests() after enabling irq,
901	 * otherwise we may lose interrupt on edge-triggered systems.
902	 */
903	irq_flags = irq_get_trigger_type(pdata->irq);
904	if (irq_flags & IRQ_TYPE_EDGE_BOTH)
905		rmi_process_interrupt_requests(rmi_dev);
906
907out:
908	mutex_unlock(&data->enabled_mutex);
909}
910
911void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
912{
913	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
914	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
915	struct rmi4_attn_data attn_data = {0};
916	int irq = pdata->irq;
917	int retval, count;
918
919	mutex_lock(&data->enabled_mutex);
920
921	if (!data->enabled)
922		goto out;
923
924	data->enabled = false;
925	disable_irq(irq);
926	if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
927		retval = enable_irq_wake(irq);
928		if (retval)
929			dev_warn(&rmi_dev->dev,
930				 "Failed to enable irq for wake: %d\n",
931				 retval);
932	}
933
934	/* make sure the fifo is clean */
935	while (!kfifo_is_empty(&data->attn_fifo)) {
936		count = kfifo_get(&data->attn_fifo, &attn_data);
937		if (count)
938			kfree(attn_data.data);
939	}
940
941out:
942	mutex_unlock(&data->enabled_mutex);
943}
944
945int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
946{
947	int retval;
948
949	retval = rmi_suspend_functions(rmi_dev);
950	if (retval)
951		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
952			retval);
953
954	rmi_disable_irq(rmi_dev, enable_wake);
955	return retval;
956}
957EXPORT_SYMBOL_GPL(rmi_driver_suspend);
958
959int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
960{
961	int retval;
962
963	rmi_enable_irq(rmi_dev, clear_wake);
964
965	retval = rmi_resume_functions(rmi_dev);
966	if (retval)
967		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
968			retval);
969
970	return retval;
971}
972EXPORT_SYMBOL_GPL(rmi_driver_resume);
973
974static int rmi_driver_remove(struct device *dev)
975{
976	struct rmi_device *rmi_dev = to_rmi_device(dev);
977	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
978
979	rmi_disable_irq(rmi_dev, false);
980
981	irq_domain_remove(data->irqdomain);
982	data->irqdomain = NULL;
983
984	rmi_f34_remove_sysfs(rmi_dev);
985	rmi_free_function_list(rmi_dev);
986
987	return 0;
988}
989
990#ifdef CONFIG_OF
991static int rmi_driver_of_probe(struct device *dev,
992				struct rmi_device_platform_data *pdata)
993{
994	int retval;
995
996	retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
997					"syna,reset-delay-ms", 1);
998	if (retval)
999		return retval;
1000
1001	return 0;
1002}
1003#else
1004static inline int rmi_driver_of_probe(struct device *dev,
1005					struct rmi_device_platform_data *pdata)
1006{
1007	return -ENODEV;
1008}
1009#endif
1010
1011int rmi_probe_interrupts(struct rmi_driver_data *data)
1012{
1013	struct rmi_device *rmi_dev = data->rmi_dev;
1014	struct device *dev = &rmi_dev->dev;
1015	struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode;
1016	int irq_count = 0;
1017	size_t size;
1018	int retval;
1019
1020	/*
1021	 * We need to count the IRQs and allocate their storage before scanning
1022	 * the PDT and creating the function entries, because adding a new
1023	 * function can trigger events that result in the IRQ related storage
1024	 * being accessed.
1025	 */
1026	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1027	data->bootloader_mode = false;
1028
1029	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1030	if (retval < 0) {
1031		dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1032		return retval;
1033	}
1034
1035	if (data->bootloader_mode)
1036		dev_warn(dev, "Device in bootloader mode.\n");
1037
1038	/* Allocate and register a linear revmap irq_domain */
1039	data->irqdomain = irq_domain_create_linear(fwnode, irq_count,
1040						   &irq_domain_simple_ops,
1041						   data);
1042	if (!data->irqdomain) {
1043		dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n");
1044		return -ENOMEM;
1045	}
1046
1047	data->irq_count = irq_count;
1048	data->num_of_irq_regs = (data->irq_count + 7) / 8;
1049
1050	size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1051	data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
1052	if (!data->irq_memory) {
1053		dev_err(dev, "Failed to allocate memory for irq masks.\n");
1054		return -ENOMEM;
1055	}
1056
1057	data->irq_status	= data->irq_memory + size * 0;
1058	data->fn_irq_bits	= data->irq_memory + size * 1;
1059	data->current_irq_mask	= data->irq_memory + size * 2;
1060	data->new_irq_mask	= data->irq_memory + size * 3;
1061
1062	return retval;
1063}
1064
1065int rmi_init_functions(struct rmi_driver_data *data)
1066{
1067	struct rmi_device *rmi_dev = data->rmi_dev;
1068	struct device *dev = &rmi_dev->dev;
1069	int irq_count = 0;
1070	int retval;
1071
1072	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1073	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1074	if (retval < 0) {
1075		dev_err(dev, "Function creation failed with code %d.\n",
1076			retval);
1077		goto err_destroy_functions;
1078	}
1079
1080	if (!data->f01_container) {
1081		dev_err(dev, "Missing F01 container!\n");
1082		retval = -EINVAL;
1083		goto err_destroy_functions;
1084	}
1085
1086	retval = rmi_read_block(rmi_dev,
1087				data->f01_container->fd.control_base_addr + 1,
1088				data->current_irq_mask, data->num_of_irq_regs);
1089	if (retval < 0) {
1090		dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1091			__func__);
1092		goto err_destroy_functions;
1093	}
1094
1095	return 0;
1096
1097err_destroy_functions:
1098	rmi_free_function_list(rmi_dev);
1099	return retval;
1100}
1101
1102static int rmi_driver_probe(struct device *dev)
1103{
1104	struct rmi_driver *rmi_driver;
1105	struct rmi_driver_data *data;
1106	struct rmi_device_platform_data *pdata;
1107	struct rmi_device *rmi_dev;
1108	int retval;
1109
1110	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1111			__func__);
1112
1113	if (!rmi_is_physical_device(dev)) {
1114		rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1115		return -ENODEV;
1116	}
1117
1118	rmi_dev = to_rmi_device(dev);
1119	rmi_driver = to_rmi_driver(dev->driver);
1120	rmi_dev->driver = rmi_driver;
1121
1122	pdata = rmi_get_platform_data(rmi_dev);
1123
1124	if (rmi_dev->xport->dev->of_node) {
1125		retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1126		if (retval)
1127			return retval;
1128	}
1129
1130	data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1131	if (!data)
1132		return -ENOMEM;
1133
1134	INIT_LIST_HEAD(&data->function_list);
1135	data->rmi_dev = rmi_dev;
1136	dev_set_drvdata(&rmi_dev->dev, data);
1137
1138	/*
1139	 * Right before a warm boot, the sensor might be in some unusual state,
1140	 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1141	 * or configuration update.  In order to clear the sensor to a known
1142	 * state and/or apply any updates, we issue a initial reset to clear any
1143	 * previous settings and force it into normal operation.
1144	 *
1145	 * We have to do this before actually building the PDT because
1146	 * the reflash updates (if any) might cause various registers to move
1147	 * around.
1148	 *
1149	 * For a number of reasons, this initial reset may fail to return
1150	 * within the specified time, but we'll still be able to bring up the
1151	 * driver normally after that failure.  This occurs most commonly in
1152	 * a cold boot situation (where then firmware takes longer to come up
1153	 * than from a warm boot) and the reset_delay_ms in the platform data
1154	 * has been set too short to accommodate that.  Since the sensor will
1155	 * eventually come up and be usable, we don't want to just fail here
1156	 * and leave the customer's device unusable.  So we warn them, and
1157	 * continue processing.
1158	 */
1159	retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1160	if (retval < 0)
1161		dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1162
1163	retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1164	if (retval < 0) {
1165		/*
1166		 * we'll print out a warning and continue since
1167		 * failure to get the PDT properties is not a cause to fail
1168		 */
1169		dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1170			 PDT_PROPERTIES_LOCATION, retval);
1171	}
1172
1173	mutex_init(&data->irq_mutex);
1174	mutex_init(&data->enabled_mutex);
1175
1176	retval = rmi_probe_interrupts(data);
1177	if (retval)
1178		goto err;
1179
1180	if (rmi_dev->xport->input) {
1181		/*
1182		 * The transport driver already has an input device.
1183		 * In some cases it is preferable to reuse the transport
1184		 * devices input device instead of creating a new one here.
1185		 * One example is some HID touchpads report "pass-through"
1186		 * button events are not reported by rmi registers.
1187		 */
1188		data->input = rmi_dev->xport->input;
1189	} else {
1190		data->input = devm_input_allocate_device(dev);
1191		if (!data->input) {
1192			dev_err(dev, "%s: Failed to allocate input device.\n",
1193				__func__);
1194			retval = -ENOMEM;
1195			goto err;
1196		}
1197		rmi_driver_set_input_params(rmi_dev, data->input);
1198		data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1199						"%s/input0", dev_name(dev));
1200	}
1201
1202	retval = rmi_init_functions(data);
1203	if (retval)
1204		goto err;
1205
1206	retval = rmi_f34_create_sysfs(rmi_dev);
1207	if (retval)
1208		goto err;
1209
1210	if (data->input) {
1211		rmi_driver_set_input_name(rmi_dev, data->input);
1212		if (!rmi_dev->xport->input) {
1213			retval = input_register_device(data->input);
1214			if (retval) {
1215				dev_err(dev, "%s: Failed to register input device.\n",
1216					__func__);
1217				goto err_destroy_functions;
1218			}
1219		}
1220	}
1221
1222	retval = rmi_irq_init(rmi_dev);
1223	if (retval < 0)
1224		goto err_destroy_functions;
1225
1226	if (data->f01_container->dev.driver) {
1227		/* Driver already bound, so enable ATTN now. */
1228		retval = rmi_enable_sensor(rmi_dev);
1229		if (retval)
1230			goto err_disable_irq;
1231	}
1232
1233	return 0;
1234
1235err_disable_irq:
1236	rmi_disable_irq(rmi_dev, false);
1237err_destroy_functions:
1238	rmi_free_function_list(rmi_dev);
1239err:
1240	return retval;
1241}
1242
1243static struct rmi_driver rmi_physical_driver = {
1244	.driver = {
1245		.owner	= THIS_MODULE,
1246		.name	= "rmi4_physical",
1247		.bus	= &rmi_bus_type,
1248		.probe = rmi_driver_probe,
1249		.remove = rmi_driver_remove,
1250	},
1251	.reset_handler = rmi_driver_reset_handler,
1252	.clear_irq_bits = rmi_driver_clear_irq_bits,
1253	.set_irq_bits = rmi_driver_set_irq_bits,
1254	.set_input_params = rmi_driver_set_input_params,
1255};
1256
1257bool rmi_is_physical_driver(struct device_driver *drv)
1258{
1259	return drv == &rmi_physical_driver.driver;
1260}
1261
1262int __init rmi_register_physical_driver(void)
1263{
1264	int error;
1265
1266	error = driver_register(&rmi_physical_driver.driver);
1267	if (error) {
1268		pr_err("%s: driver register failed, code=%d.\n", __func__,
1269		       error);
1270		return error;
1271	}
1272
1273	return 0;
1274}
1275
1276void __exit rmi_unregister_physical_driver(void)
1277{
1278	driver_unregister(&rmi_physical_driver.driver);
1279}
1280