18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * dm355evm_keys.c - support buttons and IR remote on DM355 EVM board
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright (c) 2008 by David Brownell
68c2ecf20Sopenharmony_ci */
78c2ecf20Sopenharmony_ci#include <linux/kernel.h>
88c2ecf20Sopenharmony_ci#include <linux/slab.h>
98c2ecf20Sopenharmony_ci#include <linux/input.h>
108c2ecf20Sopenharmony_ci#include <linux/input/sparse-keymap.h>
118c2ecf20Sopenharmony_ci#include <linux/platform_device.h>
128c2ecf20Sopenharmony_ci#include <linux/interrupt.h>
138c2ecf20Sopenharmony_ci
148c2ecf20Sopenharmony_ci#include <linux/mfd/dm355evm_msp.h>
158c2ecf20Sopenharmony_ci#include <linux/module.h>
168c2ecf20Sopenharmony_ci
178c2ecf20Sopenharmony_ci
188c2ecf20Sopenharmony_ci/*
198c2ecf20Sopenharmony_ci * The MSP430 firmware on the DM355 EVM monitors on-board pushbuttons
208c2ecf20Sopenharmony_ci * and an IR receptor used for the remote control.  When any key is
218c2ecf20Sopenharmony_ci * pressed, or its autorepeat kicks in, an event is sent.  This driver
228c2ecf20Sopenharmony_ci * read those events from the small (32 event) queue and reports them.
238c2ecf20Sopenharmony_ci *
248c2ecf20Sopenharmony_ci * Note that physically there can only be one of these devices.
258c2ecf20Sopenharmony_ci *
268c2ecf20Sopenharmony_ci * This driver was tested with firmware revision A4.
278c2ecf20Sopenharmony_ci */
288c2ecf20Sopenharmony_cistruct dm355evm_keys {
298c2ecf20Sopenharmony_ci	struct input_dev	*input;
308c2ecf20Sopenharmony_ci	struct device		*dev;
318c2ecf20Sopenharmony_ci};
328c2ecf20Sopenharmony_ci
338c2ecf20Sopenharmony_ci/* These initial keycodes can be remapped */
348c2ecf20Sopenharmony_cistatic const struct key_entry dm355evm_keys[] = {
358c2ecf20Sopenharmony_ci	/*
368c2ecf20Sopenharmony_ci	 * Pushbuttons on the EVM board ... note that the labels for these
378c2ecf20Sopenharmony_ci	 * are SW10/SW11/etc on the PC board.  The left/right orientation
388c2ecf20Sopenharmony_ci	 * comes only from the firmware's documentation, and presumes the
398c2ecf20Sopenharmony_ci	 * power connector is immediately in front of you and the IR sensor
408c2ecf20Sopenharmony_ci	 * is to the right.  (That is, rotate the board counter-clockwise
418c2ecf20Sopenharmony_ci	 * by 90 degrees from the SW10/etc and "DM355 EVM" labels.)
428c2ecf20Sopenharmony_ci	 */
438c2ecf20Sopenharmony_ci	{ KE_KEY, 0x00d8, { KEY_OK } },		/* SW12 */
448c2ecf20Sopenharmony_ci	{ KE_KEY, 0x00b8, { KEY_UP } },		/* SW13 */
458c2ecf20Sopenharmony_ci	{ KE_KEY, 0x00e8, { KEY_DOWN } },	/* SW11 */
468c2ecf20Sopenharmony_ci	{ KE_KEY, 0x0078, { KEY_LEFT } },	/* SW14 */
478c2ecf20Sopenharmony_ci	{ KE_KEY, 0x00f0, { KEY_RIGHT } },	/* SW10 */
488c2ecf20Sopenharmony_ci
498c2ecf20Sopenharmony_ci	/*
508c2ecf20Sopenharmony_ci	 * IR buttons ... codes assigned to match the universal remote
518c2ecf20Sopenharmony_ci	 * provided with the EVM (Philips PM4S) using DVD code 0020.
528c2ecf20Sopenharmony_ci	 *
538c2ecf20Sopenharmony_ci	 * These event codes match firmware documentation, but other
548c2ecf20Sopenharmony_ci	 * remote controls could easily send more RC5-encoded events.
558c2ecf20Sopenharmony_ci	 * The PM4S manual was used in several cases to help select
568c2ecf20Sopenharmony_ci	 * a keycode reflecting the intended usage.
578c2ecf20Sopenharmony_ci	 *
588c2ecf20Sopenharmony_ci	 * RC5 codes are 14 bits, with two start bits (0x3 prefix)
598c2ecf20Sopenharmony_ci	 * and a toggle bit (masked out below).
608c2ecf20Sopenharmony_ci	 */
618c2ecf20Sopenharmony_ci	{ KE_KEY, 0x300c, { KEY_POWER } },	/* NOTE: docs omit this */
628c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3000, { KEY_NUMERIC_0 } },
638c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3001, { KEY_NUMERIC_1 } },
648c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3002, { KEY_NUMERIC_2 } },
658c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3003, { KEY_NUMERIC_3 } },
668c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3004, { KEY_NUMERIC_4 } },
678c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3005, { KEY_NUMERIC_5 } },
688c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3006, { KEY_NUMERIC_6 } },
698c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3007, { KEY_NUMERIC_7 } },
708c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3008, { KEY_NUMERIC_8 } },
718c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3009, { KEY_NUMERIC_9 } },
728c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3022, { KEY_ENTER } },
738c2ecf20Sopenharmony_ci	{ KE_KEY, 0x30ec, { KEY_MODE } },	/* "tv/vcr/..." */
748c2ecf20Sopenharmony_ci	{ KE_KEY, 0x300f, { KEY_SELECT } },	/* "info" */
758c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3020, { KEY_CHANNELUP } },	/* "up" */
768c2ecf20Sopenharmony_ci	{ KE_KEY, 0x302e, { KEY_MENU } },	/* "in/out" */
778c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3011, { KEY_VOLUMEDOWN } },	/* "left" */
788c2ecf20Sopenharmony_ci	{ KE_KEY, 0x300d, { KEY_MUTE } },	/* "ok" */
798c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3010, { KEY_VOLUMEUP } },	/* "right" */
808c2ecf20Sopenharmony_ci	{ KE_KEY, 0x301e, { KEY_SUBTITLE } },	/* "cc" */
818c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3021, { KEY_CHANNELDOWN } },/* "down" */
828c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3022, { KEY_PREVIOUS } },
838c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3026, { KEY_SLEEP } },
848c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3172, { KEY_REWIND } },	/* NOTE: docs wrongly say 0x30ca */
858c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3175, { KEY_PLAY } },
868c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3174, { KEY_FASTFORWARD } },
878c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3177, { KEY_RECORD } },
888c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3176, { KEY_STOP } },
898c2ecf20Sopenharmony_ci	{ KE_KEY, 0x3169, { KEY_PAUSE } },
908c2ecf20Sopenharmony_ci};
918c2ecf20Sopenharmony_ci
928c2ecf20Sopenharmony_ci/*
938c2ecf20Sopenharmony_ci * Because we communicate with the MSP430 using I2C, and all I2C calls
948c2ecf20Sopenharmony_ci * in Linux sleep, we use a threaded IRQ handler.  The IRQ itself is
958c2ecf20Sopenharmony_ci * active low, but we go through the GPIO controller so we can trigger
968c2ecf20Sopenharmony_ci * on falling edges and not worry about enabling/disabling the IRQ in
978c2ecf20Sopenharmony_ci * the keypress handling path.
988c2ecf20Sopenharmony_ci */
998c2ecf20Sopenharmony_cistatic irqreturn_t dm355evm_keys_irq(int irq, void *_keys)
1008c2ecf20Sopenharmony_ci{
1018c2ecf20Sopenharmony_ci	static u16 last_event;
1028c2ecf20Sopenharmony_ci	struct dm355evm_keys *keys = _keys;
1038c2ecf20Sopenharmony_ci	const struct key_entry *ke;
1048c2ecf20Sopenharmony_ci	unsigned int keycode;
1058c2ecf20Sopenharmony_ci	int status;
1068c2ecf20Sopenharmony_ci	u16 event;
1078c2ecf20Sopenharmony_ci
1088c2ecf20Sopenharmony_ci	/* For simplicity we ignore INPUT_COUNT and just read
1098c2ecf20Sopenharmony_ci	 * events until we get the "queue empty" indicator.
1108c2ecf20Sopenharmony_ci	 * Reading INPUT_LOW decrements the count.
1118c2ecf20Sopenharmony_ci	 */
1128c2ecf20Sopenharmony_ci	for (;;) {
1138c2ecf20Sopenharmony_ci		status = dm355evm_msp_read(DM355EVM_MSP_INPUT_HIGH);
1148c2ecf20Sopenharmony_ci		if (status < 0) {
1158c2ecf20Sopenharmony_ci			dev_dbg(keys->dev, "input high err %d\n",
1168c2ecf20Sopenharmony_ci					status);
1178c2ecf20Sopenharmony_ci			break;
1188c2ecf20Sopenharmony_ci		}
1198c2ecf20Sopenharmony_ci		event = status << 8;
1208c2ecf20Sopenharmony_ci
1218c2ecf20Sopenharmony_ci		status = dm355evm_msp_read(DM355EVM_MSP_INPUT_LOW);
1228c2ecf20Sopenharmony_ci		if (status < 0) {
1238c2ecf20Sopenharmony_ci			dev_dbg(keys->dev, "input low err %d\n",
1248c2ecf20Sopenharmony_ci					status);
1258c2ecf20Sopenharmony_ci			break;
1268c2ecf20Sopenharmony_ci		}
1278c2ecf20Sopenharmony_ci		event |= status;
1288c2ecf20Sopenharmony_ci		if (event == 0xdead)
1298c2ecf20Sopenharmony_ci			break;
1308c2ecf20Sopenharmony_ci
1318c2ecf20Sopenharmony_ci		/* Press and release a button:  two events, same code.
1328c2ecf20Sopenharmony_ci		 * Press and hold (autorepeat), then release: N events
1338c2ecf20Sopenharmony_ci		 * (N > 2), same code.  For RC5 buttons the toggle bits
1348c2ecf20Sopenharmony_ci		 * distinguish (for example) "1-autorepeat" from "1 1";
1358c2ecf20Sopenharmony_ci		 * but PCB buttons don't support that bit.
1368c2ecf20Sopenharmony_ci		 *
1378c2ecf20Sopenharmony_ci		 * So we must synthesize release events.  We do that by
1388c2ecf20Sopenharmony_ci		 * mapping events to a press/release event pair; then
1398c2ecf20Sopenharmony_ci		 * to avoid adding extra events, skip the second event
1408c2ecf20Sopenharmony_ci		 * of each pair.
1418c2ecf20Sopenharmony_ci		 */
1428c2ecf20Sopenharmony_ci		if (event == last_event) {
1438c2ecf20Sopenharmony_ci			last_event = 0;
1448c2ecf20Sopenharmony_ci			continue;
1458c2ecf20Sopenharmony_ci		}
1468c2ecf20Sopenharmony_ci		last_event = event;
1478c2ecf20Sopenharmony_ci
1488c2ecf20Sopenharmony_ci		/* ignore the RC5 toggle bit */
1498c2ecf20Sopenharmony_ci		event &= ~0x0800;
1508c2ecf20Sopenharmony_ci
1518c2ecf20Sopenharmony_ci		/* find the key, or report it as unknown */
1528c2ecf20Sopenharmony_ci		ke = sparse_keymap_entry_from_scancode(keys->input, event);
1538c2ecf20Sopenharmony_ci		keycode = ke ? ke->keycode : KEY_UNKNOWN;
1548c2ecf20Sopenharmony_ci		dev_dbg(keys->dev,
1558c2ecf20Sopenharmony_ci			"input event 0x%04x--> keycode %d\n",
1568c2ecf20Sopenharmony_ci			event, keycode);
1578c2ecf20Sopenharmony_ci
1588c2ecf20Sopenharmony_ci		/* report press + release */
1598c2ecf20Sopenharmony_ci		input_report_key(keys->input, keycode, 1);
1608c2ecf20Sopenharmony_ci		input_sync(keys->input);
1618c2ecf20Sopenharmony_ci		input_report_key(keys->input, keycode, 0);
1628c2ecf20Sopenharmony_ci		input_sync(keys->input);
1638c2ecf20Sopenharmony_ci	}
1648c2ecf20Sopenharmony_ci
1658c2ecf20Sopenharmony_ci	return IRQ_HANDLED;
1668c2ecf20Sopenharmony_ci}
1678c2ecf20Sopenharmony_ci
1688c2ecf20Sopenharmony_ci/*----------------------------------------------------------------------*/
1698c2ecf20Sopenharmony_ci
1708c2ecf20Sopenharmony_cistatic int dm355evm_keys_probe(struct platform_device *pdev)
1718c2ecf20Sopenharmony_ci{
1728c2ecf20Sopenharmony_ci	struct dm355evm_keys	*keys;
1738c2ecf20Sopenharmony_ci	struct input_dev	*input;
1748c2ecf20Sopenharmony_ci	int			irq;
1758c2ecf20Sopenharmony_ci	int			error;
1768c2ecf20Sopenharmony_ci
1778c2ecf20Sopenharmony_ci	keys = devm_kzalloc(&pdev->dev, sizeof (*keys), GFP_KERNEL);
1788c2ecf20Sopenharmony_ci	if (!keys)
1798c2ecf20Sopenharmony_ci		return -ENOMEM;
1808c2ecf20Sopenharmony_ci
1818c2ecf20Sopenharmony_ci	input = devm_input_allocate_device(&pdev->dev);
1828c2ecf20Sopenharmony_ci	if (!input)
1838c2ecf20Sopenharmony_ci		return -ENOMEM;
1848c2ecf20Sopenharmony_ci
1858c2ecf20Sopenharmony_ci	keys->dev = &pdev->dev;
1868c2ecf20Sopenharmony_ci	keys->input = input;
1878c2ecf20Sopenharmony_ci
1888c2ecf20Sopenharmony_ci	input->name = "DM355 EVM Controls";
1898c2ecf20Sopenharmony_ci	input->phys = "dm355evm/input0";
1908c2ecf20Sopenharmony_ci
1918c2ecf20Sopenharmony_ci	input->id.bustype = BUS_I2C;
1928c2ecf20Sopenharmony_ci	input->id.product = 0x0355;
1938c2ecf20Sopenharmony_ci	input->id.version = dm355evm_msp_read(DM355EVM_MSP_FIRMREV);
1948c2ecf20Sopenharmony_ci
1958c2ecf20Sopenharmony_ci	error = sparse_keymap_setup(input, dm355evm_keys, NULL);
1968c2ecf20Sopenharmony_ci	if (error)
1978c2ecf20Sopenharmony_ci		return error;
1988c2ecf20Sopenharmony_ci
1998c2ecf20Sopenharmony_ci	/* REVISIT:  flush the event queue? */
2008c2ecf20Sopenharmony_ci
2018c2ecf20Sopenharmony_ci	/* set up "threaded IRQ handler" */
2028c2ecf20Sopenharmony_ci	irq = platform_get_irq(pdev, 0);
2038c2ecf20Sopenharmony_ci	if (irq < 0)
2048c2ecf20Sopenharmony_ci		return irq;
2058c2ecf20Sopenharmony_ci
2068c2ecf20Sopenharmony_ci	error = devm_request_threaded_irq(&pdev->dev, irq,
2078c2ecf20Sopenharmony_ci					  NULL, dm355evm_keys_irq,
2088c2ecf20Sopenharmony_ci					  IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
2098c2ecf20Sopenharmony_ci					  dev_name(&pdev->dev), keys);
2108c2ecf20Sopenharmony_ci	if (error)
2118c2ecf20Sopenharmony_ci		return error;
2128c2ecf20Sopenharmony_ci
2138c2ecf20Sopenharmony_ci	/* register */
2148c2ecf20Sopenharmony_ci	error = input_register_device(input);
2158c2ecf20Sopenharmony_ci	if (error)
2168c2ecf20Sopenharmony_ci		return error;
2178c2ecf20Sopenharmony_ci
2188c2ecf20Sopenharmony_ci	return 0;
2198c2ecf20Sopenharmony_ci}
2208c2ecf20Sopenharmony_ci
2218c2ecf20Sopenharmony_ci/* REVISIT:  add suspend/resume when DaVinci supports it.  The IRQ should
2228c2ecf20Sopenharmony_ci * be able to wake up the system.  When device_may_wakeup(&pdev->dev), call
2238c2ecf20Sopenharmony_ci * enable_irq_wake() on suspend, and disable_irq_wake() on resume.
2248c2ecf20Sopenharmony_ci */
2258c2ecf20Sopenharmony_ci
2268c2ecf20Sopenharmony_ci/*
2278c2ecf20Sopenharmony_ci * I2C is used to talk to the MSP430, but this platform device is
2288c2ecf20Sopenharmony_ci * exposed by an MFD driver that manages I2C communications.
2298c2ecf20Sopenharmony_ci */
2308c2ecf20Sopenharmony_cistatic struct platform_driver dm355evm_keys_driver = {
2318c2ecf20Sopenharmony_ci	.probe		= dm355evm_keys_probe,
2328c2ecf20Sopenharmony_ci	.driver		= {
2338c2ecf20Sopenharmony_ci		.name	= "dm355evm_keys",
2348c2ecf20Sopenharmony_ci	},
2358c2ecf20Sopenharmony_ci};
2368c2ecf20Sopenharmony_cimodule_platform_driver(dm355evm_keys_driver);
2378c2ecf20Sopenharmony_ci
2388c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL");
239