18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * drivers/i2c/chips/lm8323.c
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright (C) 2007-2009 Nokia Corporation
68c2ecf20Sopenharmony_ci *
78c2ecf20Sopenharmony_ci * Written by Daniel Stone <daniel.stone@nokia.com>
88c2ecf20Sopenharmony_ci *            Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
98c2ecf20Sopenharmony_ci *
108c2ecf20Sopenharmony_ci * Updated by Felipe Balbi <felipe.balbi@nokia.com>
118c2ecf20Sopenharmony_ci */
128c2ecf20Sopenharmony_ci
138c2ecf20Sopenharmony_ci#include <linux/module.h>
148c2ecf20Sopenharmony_ci#include <linux/i2c.h>
158c2ecf20Sopenharmony_ci#include <linux/interrupt.h>
168c2ecf20Sopenharmony_ci#include <linux/sched.h>
178c2ecf20Sopenharmony_ci#include <linux/mutex.h>
188c2ecf20Sopenharmony_ci#include <linux/delay.h>
198c2ecf20Sopenharmony_ci#include <linux/input.h>
208c2ecf20Sopenharmony_ci#include <linux/leds.h>
218c2ecf20Sopenharmony_ci#include <linux/platform_data/lm8323.h>
228c2ecf20Sopenharmony_ci#include <linux/pm.h>
238c2ecf20Sopenharmony_ci#include <linux/slab.h>
248c2ecf20Sopenharmony_ci
258c2ecf20Sopenharmony_ci/* Commands to send to the chip. */
268c2ecf20Sopenharmony_ci#define LM8323_CMD_READ_ID		0x80 /* Read chip ID. */
278c2ecf20Sopenharmony_ci#define LM8323_CMD_WRITE_CFG		0x81 /* Set configuration item. */
288c2ecf20Sopenharmony_ci#define LM8323_CMD_READ_INT		0x82 /* Get interrupt status. */
298c2ecf20Sopenharmony_ci#define LM8323_CMD_RESET		0x83 /* Reset, same as external one */
308c2ecf20Sopenharmony_ci#define LM8323_CMD_WRITE_PORT_SEL	0x85 /* Set GPIO in/out. */
318c2ecf20Sopenharmony_ci#define LM8323_CMD_WRITE_PORT_STATE	0x86 /* Set GPIO pullup. */
328c2ecf20Sopenharmony_ci#define LM8323_CMD_READ_PORT_SEL	0x87 /* Get GPIO in/out. */
338c2ecf20Sopenharmony_ci#define LM8323_CMD_READ_PORT_STATE	0x88 /* Get GPIO pullup. */
348c2ecf20Sopenharmony_ci#define LM8323_CMD_READ_FIFO		0x89 /* Read byte from FIFO. */
358c2ecf20Sopenharmony_ci#define LM8323_CMD_RPT_READ_FIFO	0x8a /* Read FIFO (no increment). */
368c2ecf20Sopenharmony_ci#define LM8323_CMD_SET_ACTIVE		0x8b /* Set active time. */
378c2ecf20Sopenharmony_ci#define LM8323_CMD_READ_ERR		0x8c /* Get error status. */
388c2ecf20Sopenharmony_ci#define LM8323_CMD_READ_ROTATOR		0x8e /* Read rotator status. */
398c2ecf20Sopenharmony_ci#define LM8323_CMD_SET_DEBOUNCE		0x8f /* Set debouncing time. */
408c2ecf20Sopenharmony_ci#define LM8323_CMD_SET_KEY_SIZE		0x90 /* Set keypad size. */
418c2ecf20Sopenharmony_ci#define LM8323_CMD_READ_KEY_SIZE	0x91 /* Get keypad size. */
428c2ecf20Sopenharmony_ci#define LM8323_CMD_READ_CFG		0x92 /* Get configuration item. */
438c2ecf20Sopenharmony_ci#define LM8323_CMD_WRITE_CLOCK		0x93 /* Set clock config. */
448c2ecf20Sopenharmony_ci#define LM8323_CMD_READ_CLOCK		0x94 /* Get clock config. */
458c2ecf20Sopenharmony_ci#define LM8323_CMD_PWM_WRITE		0x95 /* Write PWM script. */
468c2ecf20Sopenharmony_ci#define LM8323_CMD_START_PWM		0x96 /* Start PWM engine. */
478c2ecf20Sopenharmony_ci#define LM8323_CMD_STOP_PWM		0x97 /* Stop PWM engine. */
488c2ecf20Sopenharmony_ci
498c2ecf20Sopenharmony_ci/* Interrupt status. */
508c2ecf20Sopenharmony_ci#define INT_KEYPAD			0x01 /* Key event. */
518c2ecf20Sopenharmony_ci#define INT_ROTATOR			0x02 /* Rotator event. */
528c2ecf20Sopenharmony_ci#define INT_ERROR			0x08 /* Error: use CMD_READ_ERR. */
538c2ecf20Sopenharmony_ci#define INT_NOINIT			0x10 /* Lost configuration. */
548c2ecf20Sopenharmony_ci#define INT_PWM1			0x20 /* PWM1 stopped. */
558c2ecf20Sopenharmony_ci#define INT_PWM2			0x40 /* PWM2 stopped. */
568c2ecf20Sopenharmony_ci#define INT_PWM3			0x80 /* PWM3 stopped. */
578c2ecf20Sopenharmony_ci
588c2ecf20Sopenharmony_ci/* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
598c2ecf20Sopenharmony_ci#define ERR_BADPAR			0x01 /* Bad parameter. */
608c2ecf20Sopenharmony_ci#define ERR_CMDUNK			0x02 /* Unknown command. */
618c2ecf20Sopenharmony_ci#define ERR_KEYOVR			0x04 /* Too many keys pressed. */
628c2ecf20Sopenharmony_ci#define ERR_FIFOOVER			0x40 /* FIFO overflow. */
638c2ecf20Sopenharmony_ci
648c2ecf20Sopenharmony_ci/* Configuration keys (CMD_{WRITE,READ}_CFG). */
658c2ecf20Sopenharmony_ci#define CFG_MUX1SEL			0x01 /* Select MUX1_OUT input. */
668c2ecf20Sopenharmony_ci#define CFG_MUX1EN			0x02 /* Enable MUX1_OUT. */
678c2ecf20Sopenharmony_ci#define CFG_MUX2SEL			0x04 /* Select MUX2_OUT input. */
688c2ecf20Sopenharmony_ci#define CFG_MUX2EN			0x08 /* Enable MUX2_OUT. */
698c2ecf20Sopenharmony_ci#define CFG_PSIZE			0x20 /* Package size (must be 0). */
708c2ecf20Sopenharmony_ci#define CFG_ROTEN			0x40 /* Enable rotator. */
718c2ecf20Sopenharmony_ci
728c2ecf20Sopenharmony_ci/* Clock settings (CMD_{WRITE,READ}_CLOCK). */
738c2ecf20Sopenharmony_ci#define CLK_RCPWM_INTERNAL		0x00
748c2ecf20Sopenharmony_ci#define CLK_RCPWM_EXTERNAL		0x03
758c2ecf20Sopenharmony_ci#define CLK_SLOWCLKEN			0x08 /* Enable 32.768kHz clock. */
768c2ecf20Sopenharmony_ci#define CLK_SLOWCLKOUT			0x40 /* Enable slow pulse output. */
778c2ecf20Sopenharmony_ci
788c2ecf20Sopenharmony_ci/* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
798c2ecf20Sopenharmony_ci#define LM8323_I2C_ADDR00		(0x84 >> 1)	/* 1000 010x */
808c2ecf20Sopenharmony_ci#define LM8323_I2C_ADDR01		(0x86 >> 1)	/* 1000 011x */
818c2ecf20Sopenharmony_ci#define LM8323_I2C_ADDR10		(0x88 >> 1)	/* 1000 100x */
828c2ecf20Sopenharmony_ci#define LM8323_I2C_ADDR11		(0x8A >> 1)	/* 1000 101x */
838c2ecf20Sopenharmony_ci
848c2ecf20Sopenharmony_ci/* Key event fifo length */
858c2ecf20Sopenharmony_ci#define LM8323_FIFO_LEN			15
868c2ecf20Sopenharmony_ci
878c2ecf20Sopenharmony_ci/* Commands for PWM engine; feed in with PWM_WRITE. */
888c2ecf20Sopenharmony_ci/* Load ramp counter from duty cycle field (range 0 - 0xff). */
898c2ecf20Sopenharmony_ci#define PWM_SET(v)			(0x4000 | ((v) & 0xff))
908c2ecf20Sopenharmony_ci/* Go to start of script. */
918c2ecf20Sopenharmony_ci#define PWM_GOTOSTART			0x0000
928c2ecf20Sopenharmony_ci/*
938c2ecf20Sopenharmony_ci * Stop engine (generates interrupt).  If reset is 1, clear the program
948c2ecf20Sopenharmony_ci * counter, else leave it.
958c2ecf20Sopenharmony_ci */
968c2ecf20Sopenharmony_ci#define PWM_END(reset)			(0xc000 | (!!(reset) << 11))
978c2ecf20Sopenharmony_ci/*
988c2ecf20Sopenharmony_ci * Ramp.  If s is 1, divide clock by 512, else divide clock by 16.
998c2ecf20Sopenharmony_ci * Take t clock scales (up to 63) per step, for n steps (up to 126).
1008c2ecf20Sopenharmony_ci * If u is set, ramp up, else ramp down.
1018c2ecf20Sopenharmony_ci */
1028c2ecf20Sopenharmony_ci#define PWM_RAMP(s, t, n, u)		((!!(s) << 14) | ((t) & 0x3f) << 8 | \
1038c2ecf20Sopenharmony_ci					 ((n) & 0x7f) | ((u) ? 0 : 0x80))
1048c2ecf20Sopenharmony_ci/*
1058c2ecf20Sopenharmony_ci * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
1068c2ecf20Sopenharmony_ci * If cnt is zero, execute until PWM_END is encountered.
1078c2ecf20Sopenharmony_ci */
1088c2ecf20Sopenharmony_ci#define PWM_LOOP(cnt, pos)		(0xa000 | (((cnt) & 0x3f) << 7) | \
1098c2ecf20Sopenharmony_ci					 ((pos) & 0x3f))
1108c2ecf20Sopenharmony_ci/*
1118c2ecf20Sopenharmony_ci * Wait for trigger.  Argument is a mask of channels, shifted by the channel
1128c2ecf20Sopenharmony_ci * number, e.g. 0xa for channels 3 and 1.  Note that channels are numbered
1138c2ecf20Sopenharmony_ci * from 1, not 0.
1148c2ecf20Sopenharmony_ci */
1158c2ecf20Sopenharmony_ci#define PWM_WAIT_TRIG(chans)		(0xe000 | (((chans) & 0x7) << 6))
1168c2ecf20Sopenharmony_ci/* Send trigger.  Argument is same as PWM_WAIT_TRIG. */
1178c2ecf20Sopenharmony_ci#define PWM_SEND_TRIG(chans)		(0xe000 | ((chans) & 0x7))
1188c2ecf20Sopenharmony_ci
1198c2ecf20Sopenharmony_cistruct lm8323_pwm {
1208c2ecf20Sopenharmony_ci	int			id;
1218c2ecf20Sopenharmony_ci	int			fade_time;
1228c2ecf20Sopenharmony_ci	int			brightness;
1238c2ecf20Sopenharmony_ci	int			desired_brightness;
1248c2ecf20Sopenharmony_ci	bool			enabled;
1258c2ecf20Sopenharmony_ci	bool			running;
1268c2ecf20Sopenharmony_ci	/* pwm lock */
1278c2ecf20Sopenharmony_ci	struct mutex		lock;
1288c2ecf20Sopenharmony_ci	struct work_struct	work;
1298c2ecf20Sopenharmony_ci	struct led_classdev	cdev;
1308c2ecf20Sopenharmony_ci	struct lm8323_chip	*chip;
1318c2ecf20Sopenharmony_ci};
1328c2ecf20Sopenharmony_ci
1338c2ecf20Sopenharmony_cistruct lm8323_chip {
1348c2ecf20Sopenharmony_ci	/* device lock */
1358c2ecf20Sopenharmony_ci	struct mutex		lock;
1368c2ecf20Sopenharmony_ci	struct i2c_client	*client;
1378c2ecf20Sopenharmony_ci	struct input_dev	*idev;
1388c2ecf20Sopenharmony_ci	bool			kp_enabled;
1398c2ecf20Sopenharmony_ci	bool			pm_suspend;
1408c2ecf20Sopenharmony_ci	unsigned		keys_down;
1418c2ecf20Sopenharmony_ci	char			phys[32];
1428c2ecf20Sopenharmony_ci	unsigned short		keymap[LM8323_KEYMAP_SIZE];
1438c2ecf20Sopenharmony_ci	int			size_x;
1448c2ecf20Sopenharmony_ci	int			size_y;
1458c2ecf20Sopenharmony_ci	int			debounce_time;
1468c2ecf20Sopenharmony_ci	int			active_time;
1478c2ecf20Sopenharmony_ci	struct lm8323_pwm	pwm[LM8323_NUM_PWMS];
1488c2ecf20Sopenharmony_ci};
1498c2ecf20Sopenharmony_ci
1508c2ecf20Sopenharmony_ci#define client_to_lm8323(c)	container_of(c, struct lm8323_chip, client)
1518c2ecf20Sopenharmony_ci#define dev_to_lm8323(d)	container_of(d, struct lm8323_chip, client->dev)
1528c2ecf20Sopenharmony_ci#define cdev_to_pwm(c)		container_of(c, struct lm8323_pwm, cdev)
1538c2ecf20Sopenharmony_ci#define work_to_pwm(w)		container_of(w, struct lm8323_pwm, work)
1548c2ecf20Sopenharmony_ci
1558c2ecf20Sopenharmony_ci#define LM8323_MAX_DATA 8
1568c2ecf20Sopenharmony_ci
1578c2ecf20Sopenharmony_ci/*
1588c2ecf20Sopenharmony_ci * To write, we just access the chip's address in write mode, and dump the
1598c2ecf20Sopenharmony_ci * command and data out on the bus.  The command byte and data are taken as
1608c2ecf20Sopenharmony_ci * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
1618c2ecf20Sopenharmony_ci */
1628c2ecf20Sopenharmony_cistatic int lm8323_write(struct lm8323_chip *lm, int len, ...)
1638c2ecf20Sopenharmony_ci{
1648c2ecf20Sopenharmony_ci	int ret, i;
1658c2ecf20Sopenharmony_ci	va_list ap;
1668c2ecf20Sopenharmony_ci	u8 data[LM8323_MAX_DATA];
1678c2ecf20Sopenharmony_ci
1688c2ecf20Sopenharmony_ci	va_start(ap, len);
1698c2ecf20Sopenharmony_ci
1708c2ecf20Sopenharmony_ci	if (unlikely(len > LM8323_MAX_DATA)) {
1718c2ecf20Sopenharmony_ci		dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
1728c2ecf20Sopenharmony_ci		va_end(ap);
1738c2ecf20Sopenharmony_ci		return 0;
1748c2ecf20Sopenharmony_ci	}
1758c2ecf20Sopenharmony_ci
1768c2ecf20Sopenharmony_ci	for (i = 0; i < len; i++)
1778c2ecf20Sopenharmony_ci		data[i] = va_arg(ap, int);
1788c2ecf20Sopenharmony_ci
1798c2ecf20Sopenharmony_ci	va_end(ap);
1808c2ecf20Sopenharmony_ci
1818c2ecf20Sopenharmony_ci	/*
1828c2ecf20Sopenharmony_ci	 * If the host is asleep while we send the data, we can get a NACK
1838c2ecf20Sopenharmony_ci	 * back while it wakes up, so try again, once.
1848c2ecf20Sopenharmony_ci	 */
1858c2ecf20Sopenharmony_ci	ret = i2c_master_send(lm->client, data, len);
1868c2ecf20Sopenharmony_ci	if (unlikely(ret == -EREMOTEIO))
1878c2ecf20Sopenharmony_ci		ret = i2c_master_send(lm->client, data, len);
1888c2ecf20Sopenharmony_ci	if (unlikely(ret != len))
1898c2ecf20Sopenharmony_ci		dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
1908c2ecf20Sopenharmony_ci			len, ret);
1918c2ecf20Sopenharmony_ci
1928c2ecf20Sopenharmony_ci	return ret;
1938c2ecf20Sopenharmony_ci}
1948c2ecf20Sopenharmony_ci
1958c2ecf20Sopenharmony_ci/*
1968c2ecf20Sopenharmony_ci * To read, we first send the command byte to the chip and end the transaction,
1978c2ecf20Sopenharmony_ci * then access the chip in read mode, at which point it will send the data.
1988c2ecf20Sopenharmony_ci */
1998c2ecf20Sopenharmony_cistatic int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
2008c2ecf20Sopenharmony_ci{
2018c2ecf20Sopenharmony_ci	int ret;
2028c2ecf20Sopenharmony_ci
2038c2ecf20Sopenharmony_ci	/*
2048c2ecf20Sopenharmony_ci	 * If the host is asleep while we send the byte, we can get a NACK
2058c2ecf20Sopenharmony_ci	 * back while it wakes up, so try again, once.
2068c2ecf20Sopenharmony_ci	 */
2078c2ecf20Sopenharmony_ci	ret = i2c_master_send(lm->client, &cmd, 1);
2088c2ecf20Sopenharmony_ci	if (unlikely(ret == -EREMOTEIO))
2098c2ecf20Sopenharmony_ci		ret = i2c_master_send(lm->client, &cmd, 1);
2108c2ecf20Sopenharmony_ci	if (unlikely(ret != 1)) {
2118c2ecf20Sopenharmony_ci		dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
2128c2ecf20Sopenharmony_ci			cmd);
2138c2ecf20Sopenharmony_ci		return 0;
2148c2ecf20Sopenharmony_ci	}
2158c2ecf20Sopenharmony_ci
2168c2ecf20Sopenharmony_ci	ret = i2c_master_recv(lm->client, buf, len);
2178c2ecf20Sopenharmony_ci	if (unlikely(ret != len))
2188c2ecf20Sopenharmony_ci		dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
2198c2ecf20Sopenharmony_ci			len, ret);
2208c2ecf20Sopenharmony_ci
2218c2ecf20Sopenharmony_ci	return ret;
2228c2ecf20Sopenharmony_ci}
2238c2ecf20Sopenharmony_ci
2248c2ecf20Sopenharmony_ci/*
2258c2ecf20Sopenharmony_ci * Set the chip active time (idle time before it enters halt).
2268c2ecf20Sopenharmony_ci */
2278c2ecf20Sopenharmony_cistatic void lm8323_set_active_time(struct lm8323_chip *lm, int time)
2288c2ecf20Sopenharmony_ci{
2298c2ecf20Sopenharmony_ci	lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
2308c2ecf20Sopenharmony_ci}
2318c2ecf20Sopenharmony_ci
2328c2ecf20Sopenharmony_ci/*
2338c2ecf20Sopenharmony_ci * The signals are AT-style: the low 7 bits are the keycode, and the top
2348c2ecf20Sopenharmony_ci * bit indicates the state (1 for down, 0 for up).
2358c2ecf20Sopenharmony_ci */
2368c2ecf20Sopenharmony_cistatic inline u8 lm8323_whichkey(u8 event)
2378c2ecf20Sopenharmony_ci{
2388c2ecf20Sopenharmony_ci	return event & 0x7f;
2398c2ecf20Sopenharmony_ci}
2408c2ecf20Sopenharmony_ci
2418c2ecf20Sopenharmony_cistatic inline int lm8323_ispress(u8 event)
2428c2ecf20Sopenharmony_ci{
2438c2ecf20Sopenharmony_ci	return (event & 0x80) ? 1 : 0;
2448c2ecf20Sopenharmony_ci}
2458c2ecf20Sopenharmony_ci
2468c2ecf20Sopenharmony_cistatic void process_keys(struct lm8323_chip *lm)
2478c2ecf20Sopenharmony_ci{
2488c2ecf20Sopenharmony_ci	u8 event;
2498c2ecf20Sopenharmony_ci	u8 key_fifo[LM8323_FIFO_LEN + 1];
2508c2ecf20Sopenharmony_ci	int old_keys_down = lm->keys_down;
2518c2ecf20Sopenharmony_ci	int ret;
2528c2ecf20Sopenharmony_ci	int i = 0;
2538c2ecf20Sopenharmony_ci
2548c2ecf20Sopenharmony_ci	/*
2558c2ecf20Sopenharmony_ci	 * Read all key events from the FIFO at once. Next READ_FIFO clears the
2568c2ecf20Sopenharmony_ci	 * FIFO even if we didn't read all events previously.
2578c2ecf20Sopenharmony_ci	 */
2588c2ecf20Sopenharmony_ci	ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
2598c2ecf20Sopenharmony_ci
2608c2ecf20Sopenharmony_ci	if (ret < 0) {
2618c2ecf20Sopenharmony_ci		dev_err(&lm->client->dev, "Failed reading fifo \n");
2628c2ecf20Sopenharmony_ci		return;
2638c2ecf20Sopenharmony_ci	}
2648c2ecf20Sopenharmony_ci	key_fifo[ret] = 0;
2658c2ecf20Sopenharmony_ci
2668c2ecf20Sopenharmony_ci	while ((event = key_fifo[i++])) {
2678c2ecf20Sopenharmony_ci		u8 key = lm8323_whichkey(event);
2688c2ecf20Sopenharmony_ci		int isdown = lm8323_ispress(event);
2698c2ecf20Sopenharmony_ci		unsigned short keycode = lm->keymap[key];
2708c2ecf20Sopenharmony_ci
2718c2ecf20Sopenharmony_ci		dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
2728c2ecf20Sopenharmony_ci			 key, isdown ? "down" : "up");
2738c2ecf20Sopenharmony_ci
2748c2ecf20Sopenharmony_ci		if (lm->kp_enabled) {
2758c2ecf20Sopenharmony_ci			input_event(lm->idev, EV_MSC, MSC_SCAN, key);
2768c2ecf20Sopenharmony_ci			input_report_key(lm->idev, keycode, isdown);
2778c2ecf20Sopenharmony_ci			input_sync(lm->idev);
2788c2ecf20Sopenharmony_ci		}
2798c2ecf20Sopenharmony_ci
2808c2ecf20Sopenharmony_ci		if (isdown)
2818c2ecf20Sopenharmony_ci			lm->keys_down++;
2828c2ecf20Sopenharmony_ci		else
2838c2ecf20Sopenharmony_ci			lm->keys_down--;
2848c2ecf20Sopenharmony_ci	}
2858c2ecf20Sopenharmony_ci
2868c2ecf20Sopenharmony_ci	/*
2878c2ecf20Sopenharmony_ci	 * Errata: We need to ensure that the chip never enters halt mode
2888c2ecf20Sopenharmony_ci	 * during a keypress, so set active time to 0.  When it's released,
2898c2ecf20Sopenharmony_ci	 * we can enter halt again, so set the active time back to normal.
2908c2ecf20Sopenharmony_ci	 */
2918c2ecf20Sopenharmony_ci	if (!old_keys_down && lm->keys_down)
2928c2ecf20Sopenharmony_ci		lm8323_set_active_time(lm, 0);
2938c2ecf20Sopenharmony_ci	if (old_keys_down && !lm->keys_down)
2948c2ecf20Sopenharmony_ci		lm8323_set_active_time(lm, lm->active_time);
2958c2ecf20Sopenharmony_ci}
2968c2ecf20Sopenharmony_ci
2978c2ecf20Sopenharmony_cistatic void lm8323_process_error(struct lm8323_chip *lm)
2988c2ecf20Sopenharmony_ci{
2998c2ecf20Sopenharmony_ci	u8 error;
3008c2ecf20Sopenharmony_ci
3018c2ecf20Sopenharmony_ci	if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
3028c2ecf20Sopenharmony_ci		if (error & ERR_FIFOOVER)
3038c2ecf20Sopenharmony_ci			dev_vdbg(&lm->client->dev, "fifo overflow!\n");
3048c2ecf20Sopenharmony_ci		if (error & ERR_KEYOVR)
3058c2ecf20Sopenharmony_ci			dev_vdbg(&lm->client->dev,
3068c2ecf20Sopenharmony_ci					"more than two keys pressed\n");
3078c2ecf20Sopenharmony_ci		if (error & ERR_CMDUNK)
3088c2ecf20Sopenharmony_ci			dev_vdbg(&lm->client->dev,
3098c2ecf20Sopenharmony_ci					"unknown command submitted\n");
3108c2ecf20Sopenharmony_ci		if (error & ERR_BADPAR)
3118c2ecf20Sopenharmony_ci			dev_vdbg(&lm->client->dev, "bad command parameter\n");
3128c2ecf20Sopenharmony_ci	}
3138c2ecf20Sopenharmony_ci}
3148c2ecf20Sopenharmony_ci
3158c2ecf20Sopenharmony_cistatic void lm8323_reset(struct lm8323_chip *lm)
3168c2ecf20Sopenharmony_ci{
3178c2ecf20Sopenharmony_ci	/* The docs say we must pass 0xAA as the data byte. */
3188c2ecf20Sopenharmony_ci	lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
3198c2ecf20Sopenharmony_ci}
3208c2ecf20Sopenharmony_ci
3218c2ecf20Sopenharmony_cistatic int lm8323_configure(struct lm8323_chip *lm)
3228c2ecf20Sopenharmony_ci{
3238c2ecf20Sopenharmony_ci	int keysize = (lm->size_x << 4) | lm->size_y;
3248c2ecf20Sopenharmony_ci	int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
3258c2ecf20Sopenharmony_ci	int debounce = lm->debounce_time >> 2;
3268c2ecf20Sopenharmony_ci	int active = lm->active_time >> 2;
3278c2ecf20Sopenharmony_ci
3288c2ecf20Sopenharmony_ci	/*
3298c2ecf20Sopenharmony_ci	 * Active time must be greater than the debounce time: if it's
3308c2ecf20Sopenharmony_ci	 * a close-run thing, give ourselves a 12ms buffer.
3318c2ecf20Sopenharmony_ci	 */
3328c2ecf20Sopenharmony_ci	if (debounce >= active)
3338c2ecf20Sopenharmony_ci		active = debounce + 3;
3348c2ecf20Sopenharmony_ci
3358c2ecf20Sopenharmony_ci	lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
3368c2ecf20Sopenharmony_ci	lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
3378c2ecf20Sopenharmony_ci	lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
3388c2ecf20Sopenharmony_ci	lm8323_set_active_time(lm, lm->active_time);
3398c2ecf20Sopenharmony_ci	lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
3408c2ecf20Sopenharmony_ci	lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
3418c2ecf20Sopenharmony_ci	lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
3428c2ecf20Sopenharmony_ci
3438c2ecf20Sopenharmony_ci	/*
3448c2ecf20Sopenharmony_ci	 * Not much we can do about errors at this point, so just hope
3458c2ecf20Sopenharmony_ci	 * for the best.
3468c2ecf20Sopenharmony_ci	 */
3478c2ecf20Sopenharmony_ci
3488c2ecf20Sopenharmony_ci	return 0;
3498c2ecf20Sopenharmony_ci}
3508c2ecf20Sopenharmony_ci
3518c2ecf20Sopenharmony_cistatic void pwm_done(struct lm8323_pwm *pwm)
3528c2ecf20Sopenharmony_ci{
3538c2ecf20Sopenharmony_ci	mutex_lock(&pwm->lock);
3548c2ecf20Sopenharmony_ci	pwm->running = false;
3558c2ecf20Sopenharmony_ci	if (pwm->desired_brightness != pwm->brightness)
3568c2ecf20Sopenharmony_ci		schedule_work(&pwm->work);
3578c2ecf20Sopenharmony_ci	mutex_unlock(&pwm->lock);
3588c2ecf20Sopenharmony_ci}
3598c2ecf20Sopenharmony_ci
3608c2ecf20Sopenharmony_ci/*
3618c2ecf20Sopenharmony_ci * Bottom half: handle the interrupt by posting key events, or dealing with
3628c2ecf20Sopenharmony_ci * errors appropriately.
3638c2ecf20Sopenharmony_ci */
3648c2ecf20Sopenharmony_cistatic irqreturn_t lm8323_irq(int irq, void *_lm)
3658c2ecf20Sopenharmony_ci{
3668c2ecf20Sopenharmony_ci	struct lm8323_chip *lm = _lm;
3678c2ecf20Sopenharmony_ci	u8 ints;
3688c2ecf20Sopenharmony_ci	int i;
3698c2ecf20Sopenharmony_ci
3708c2ecf20Sopenharmony_ci	mutex_lock(&lm->lock);
3718c2ecf20Sopenharmony_ci
3728c2ecf20Sopenharmony_ci	while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
3738c2ecf20Sopenharmony_ci		if (likely(ints & INT_KEYPAD))
3748c2ecf20Sopenharmony_ci			process_keys(lm);
3758c2ecf20Sopenharmony_ci		if (ints & INT_ROTATOR) {
3768c2ecf20Sopenharmony_ci			/* We don't currently support the rotator. */
3778c2ecf20Sopenharmony_ci			dev_vdbg(&lm->client->dev, "rotator fired\n");
3788c2ecf20Sopenharmony_ci		}
3798c2ecf20Sopenharmony_ci		if (ints & INT_ERROR) {
3808c2ecf20Sopenharmony_ci			dev_vdbg(&lm->client->dev, "error!\n");
3818c2ecf20Sopenharmony_ci			lm8323_process_error(lm);
3828c2ecf20Sopenharmony_ci		}
3838c2ecf20Sopenharmony_ci		if (ints & INT_NOINIT) {
3848c2ecf20Sopenharmony_ci			dev_err(&lm->client->dev, "chip lost config; "
3858c2ecf20Sopenharmony_ci						  "reinitialising\n");
3868c2ecf20Sopenharmony_ci			lm8323_configure(lm);
3878c2ecf20Sopenharmony_ci		}
3888c2ecf20Sopenharmony_ci		for (i = 0; i < LM8323_NUM_PWMS; i++) {
3898c2ecf20Sopenharmony_ci			if (ints & (INT_PWM1 << i)) {
3908c2ecf20Sopenharmony_ci				dev_vdbg(&lm->client->dev,
3918c2ecf20Sopenharmony_ci					 "pwm%d engine completed\n", i);
3928c2ecf20Sopenharmony_ci				pwm_done(&lm->pwm[i]);
3938c2ecf20Sopenharmony_ci			}
3948c2ecf20Sopenharmony_ci		}
3958c2ecf20Sopenharmony_ci	}
3968c2ecf20Sopenharmony_ci
3978c2ecf20Sopenharmony_ci	mutex_unlock(&lm->lock);
3988c2ecf20Sopenharmony_ci
3998c2ecf20Sopenharmony_ci	return IRQ_HANDLED;
4008c2ecf20Sopenharmony_ci}
4018c2ecf20Sopenharmony_ci
4028c2ecf20Sopenharmony_ci/*
4038c2ecf20Sopenharmony_ci * Read the chip ID.
4048c2ecf20Sopenharmony_ci */
4058c2ecf20Sopenharmony_cistatic int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
4068c2ecf20Sopenharmony_ci{
4078c2ecf20Sopenharmony_ci	int bytes;
4088c2ecf20Sopenharmony_ci
4098c2ecf20Sopenharmony_ci	bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
4108c2ecf20Sopenharmony_ci	if (unlikely(bytes != 2))
4118c2ecf20Sopenharmony_ci		return -EIO;
4128c2ecf20Sopenharmony_ci
4138c2ecf20Sopenharmony_ci	return 0;
4148c2ecf20Sopenharmony_ci}
4158c2ecf20Sopenharmony_ci
4168c2ecf20Sopenharmony_cistatic void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
4178c2ecf20Sopenharmony_ci{
4188c2ecf20Sopenharmony_ci	lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
4198c2ecf20Sopenharmony_ci		     (cmd & 0xff00) >> 8, cmd & 0x00ff);
4208c2ecf20Sopenharmony_ci}
4218c2ecf20Sopenharmony_ci
4228c2ecf20Sopenharmony_ci/*
4238c2ecf20Sopenharmony_ci * Write a script into a given PWM engine, concluding with PWM_END.
4248c2ecf20Sopenharmony_ci * If 'kill' is nonzero, the engine will be shut down at the end
4258c2ecf20Sopenharmony_ci * of the script, producing a zero output. Otherwise the engine
4268c2ecf20Sopenharmony_ci * will be kept running at the final PWM level indefinitely.
4278c2ecf20Sopenharmony_ci */
4288c2ecf20Sopenharmony_cistatic void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
4298c2ecf20Sopenharmony_ci			     int len, const u16 *cmds)
4308c2ecf20Sopenharmony_ci{
4318c2ecf20Sopenharmony_ci	int i;
4328c2ecf20Sopenharmony_ci
4338c2ecf20Sopenharmony_ci	for (i = 0; i < len; i++)
4348c2ecf20Sopenharmony_ci		lm8323_write_pwm_one(pwm, i, cmds[i]);
4358c2ecf20Sopenharmony_ci
4368c2ecf20Sopenharmony_ci	lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
4378c2ecf20Sopenharmony_ci	lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id);
4388c2ecf20Sopenharmony_ci	pwm->running = true;
4398c2ecf20Sopenharmony_ci}
4408c2ecf20Sopenharmony_ci
4418c2ecf20Sopenharmony_cistatic void lm8323_pwm_work(struct work_struct *work)
4428c2ecf20Sopenharmony_ci{
4438c2ecf20Sopenharmony_ci	struct lm8323_pwm *pwm = work_to_pwm(work);
4448c2ecf20Sopenharmony_ci	int div512, perstep, steps, hz, up, kill;
4458c2ecf20Sopenharmony_ci	u16 pwm_cmds[3];
4468c2ecf20Sopenharmony_ci	int num_cmds = 0;
4478c2ecf20Sopenharmony_ci
4488c2ecf20Sopenharmony_ci	mutex_lock(&pwm->lock);
4498c2ecf20Sopenharmony_ci
4508c2ecf20Sopenharmony_ci	/*
4518c2ecf20Sopenharmony_ci	 * Do nothing if we're already at the requested level,
4528c2ecf20Sopenharmony_ci	 * or previous setting is not yet complete. In the latter
4538c2ecf20Sopenharmony_ci	 * case we will be called again when the previous PWM script
4548c2ecf20Sopenharmony_ci	 * finishes.
4558c2ecf20Sopenharmony_ci	 */
4568c2ecf20Sopenharmony_ci	if (pwm->running || pwm->desired_brightness == pwm->brightness)
4578c2ecf20Sopenharmony_ci		goto out;
4588c2ecf20Sopenharmony_ci
4598c2ecf20Sopenharmony_ci	kill = (pwm->desired_brightness == 0);
4608c2ecf20Sopenharmony_ci	up = (pwm->desired_brightness > pwm->brightness);
4618c2ecf20Sopenharmony_ci	steps = abs(pwm->desired_brightness - pwm->brightness);
4628c2ecf20Sopenharmony_ci
4638c2ecf20Sopenharmony_ci	/*
4648c2ecf20Sopenharmony_ci	 * Convert time (in ms) into a divisor (512 or 16 on a refclk of
4658c2ecf20Sopenharmony_ci	 * 32768Hz), and number of ticks per step.
4668c2ecf20Sopenharmony_ci	 */
4678c2ecf20Sopenharmony_ci	if ((pwm->fade_time / steps) > (32768 / 512)) {
4688c2ecf20Sopenharmony_ci		div512 = 1;
4698c2ecf20Sopenharmony_ci		hz = 32768 / 512;
4708c2ecf20Sopenharmony_ci	} else {
4718c2ecf20Sopenharmony_ci		div512 = 0;
4728c2ecf20Sopenharmony_ci		hz = 32768 / 16;
4738c2ecf20Sopenharmony_ci	}
4748c2ecf20Sopenharmony_ci
4758c2ecf20Sopenharmony_ci	perstep = (hz * pwm->fade_time) / (steps * 1000);
4768c2ecf20Sopenharmony_ci
4778c2ecf20Sopenharmony_ci	if (perstep == 0)
4788c2ecf20Sopenharmony_ci		perstep = 1;
4798c2ecf20Sopenharmony_ci	else if (perstep > 63)
4808c2ecf20Sopenharmony_ci		perstep = 63;
4818c2ecf20Sopenharmony_ci
4828c2ecf20Sopenharmony_ci	while (steps) {
4838c2ecf20Sopenharmony_ci		int s;
4848c2ecf20Sopenharmony_ci
4858c2ecf20Sopenharmony_ci		s = min(126, steps);
4868c2ecf20Sopenharmony_ci		pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
4878c2ecf20Sopenharmony_ci		steps -= s;
4888c2ecf20Sopenharmony_ci	}
4898c2ecf20Sopenharmony_ci
4908c2ecf20Sopenharmony_ci	lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
4918c2ecf20Sopenharmony_ci	pwm->brightness = pwm->desired_brightness;
4928c2ecf20Sopenharmony_ci
4938c2ecf20Sopenharmony_ci out:
4948c2ecf20Sopenharmony_ci	mutex_unlock(&pwm->lock);
4958c2ecf20Sopenharmony_ci}
4968c2ecf20Sopenharmony_ci
4978c2ecf20Sopenharmony_cistatic void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
4988c2ecf20Sopenharmony_ci				      enum led_brightness brightness)
4998c2ecf20Sopenharmony_ci{
5008c2ecf20Sopenharmony_ci	struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
5018c2ecf20Sopenharmony_ci	struct lm8323_chip *lm = pwm->chip;
5028c2ecf20Sopenharmony_ci
5038c2ecf20Sopenharmony_ci	mutex_lock(&pwm->lock);
5048c2ecf20Sopenharmony_ci	pwm->desired_brightness = brightness;
5058c2ecf20Sopenharmony_ci	mutex_unlock(&pwm->lock);
5068c2ecf20Sopenharmony_ci
5078c2ecf20Sopenharmony_ci	if (in_interrupt()) {
5088c2ecf20Sopenharmony_ci		schedule_work(&pwm->work);
5098c2ecf20Sopenharmony_ci	} else {
5108c2ecf20Sopenharmony_ci		/*
5118c2ecf20Sopenharmony_ci		 * Schedule PWM work as usual unless we are going into suspend
5128c2ecf20Sopenharmony_ci		 */
5138c2ecf20Sopenharmony_ci		mutex_lock(&lm->lock);
5148c2ecf20Sopenharmony_ci		if (likely(!lm->pm_suspend))
5158c2ecf20Sopenharmony_ci			schedule_work(&pwm->work);
5168c2ecf20Sopenharmony_ci		else
5178c2ecf20Sopenharmony_ci			lm8323_pwm_work(&pwm->work);
5188c2ecf20Sopenharmony_ci		mutex_unlock(&lm->lock);
5198c2ecf20Sopenharmony_ci	}
5208c2ecf20Sopenharmony_ci}
5218c2ecf20Sopenharmony_ci
5228c2ecf20Sopenharmony_cistatic ssize_t lm8323_pwm_show_time(struct device *dev,
5238c2ecf20Sopenharmony_ci		struct device_attribute *attr, char *buf)
5248c2ecf20Sopenharmony_ci{
5258c2ecf20Sopenharmony_ci	struct led_classdev *led_cdev = dev_get_drvdata(dev);
5268c2ecf20Sopenharmony_ci	struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
5278c2ecf20Sopenharmony_ci
5288c2ecf20Sopenharmony_ci	return sprintf(buf, "%d\n", pwm->fade_time);
5298c2ecf20Sopenharmony_ci}
5308c2ecf20Sopenharmony_ci
5318c2ecf20Sopenharmony_cistatic ssize_t lm8323_pwm_store_time(struct device *dev,
5328c2ecf20Sopenharmony_ci		struct device_attribute *attr, const char *buf, size_t len)
5338c2ecf20Sopenharmony_ci{
5348c2ecf20Sopenharmony_ci	struct led_classdev *led_cdev = dev_get_drvdata(dev);
5358c2ecf20Sopenharmony_ci	struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
5368c2ecf20Sopenharmony_ci	int ret, time;
5378c2ecf20Sopenharmony_ci
5388c2ecf20Sopenharmony_ci	ret = kstrtoint(buf, 10, &time);
5398c2ecf20Sopenharmony_ci	/* Numbers only, please. */
5408c2ecf20Sopenharmony_ci	if (ret)
5418c2ecf20Sopenharmony_ci		return ret;
5428c2ecf20Sopenharmony_ci
5438c2ecf20Sopenharmony_ci	pwm->fade_time = time;
5448c2ecf20Sopenharmony_ci
5458c2ecf20Sopenharmony_ci	return strlen(buf);
5468c2ecf20Sopenharmony_ci}
5478c2ecf20Sopenharmony_cistatic DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
5488c2ecf20Sopenharmony_ci
5498c2ecf20Sopenharmony_cistatic struct attribute *lm8323_pwm_attrs[] = {
5508c2ecf20Sopenharmony_ci	&dev_attr_time.attr,
5518c2ecf20Sopenharmony_ci	NULL
5528c2ecf20Sopenharmony_ci};
5538c2ecf20Sopenharmony_ciATTRIBUTE_GROUPS(lm8323_pwm);
5548c2ecf20Sopenharmony_ci
5558c2ecf20Sopenharmony_cistatic int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
5568c2ecf20Sopenharmony_ci		    const char *name)
5578c2ecf20Sopenharmony_ci{
5588c2ecf20Sopenharmony_ci	struct lm8323_pwm *pwm;
5598c2ecf20Sopenharmony_ci
5608c2ecf20Sopenharmony_ci	BUG_ON(id > 3);
5618c2ecf20Sopenharmony_ci
5628c2ecf20Sopenharmony_ci	pwm = &lm->pwm[id - 1];
5638c2ecf20Sopenharmony_ci
5648c2ecf20Sopenharmony_ci	pwm->id = id;
5658c2ecf20Sopenharmony_ci	pwm->fade_time = 0;
5668c2ecf20Sopenharmony_ci	pwm->brightness = 0;
5678c2ecf20Sopenharmony_ci	pwm->desired_brightness = 0;
5688c2ecf20Sopenharmony_ci	pwm->running = false;
5698c2ecf20Sopenharmony_ci	pwm->enabled = false;
5708c2ecf20Sopenharmony_ci	INIT_WORK(&pwm->work, lm8323_pwm_work);
5718c2ecf20Sopenharmony_ci	mutex_init(&pwm->lock);
5728c2ecf20Sopenharmony_ci	pwm->chip = lm;
5738c2ecf20Sopenharmony_ci
5748c2ecf20Sopenharmony_ci	if (name) {
5758c2ecf20Sopenharmony_ci		pwm->cdev.name = name;
5768c2ecf20Sopenharmony_ci		pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
5778c2ecf20Sopenharmony_ci		pwm->cdev.groups = lm8323_pwm_groups;
5788c2ecf20Sopenharmony_ci		if (led_classdev_register(dev, &pwm->cdev) < 0) {
5798c2ecf20Sopenharmony_ci			dev_err(dev, "couldn't register PWM %d\n", id);
5808c2ecf20Sopenharmony_ci			return -1;
5818c2ecf20Sopenharmony_ci		}
5828c2ecf20Sopenharmony_ci		pwm->enabled = true;
5838c2ecf20Sopenharmony_ci	}
5848c2ecf20Sopenharmony_ci
5858c2ecf20Sopenharmony_ci	return 0;
5868c2ecf20Sopenharmony_ci}
5878c2ecf20Sopenharmony_ci
5888c2ecf20Sopenharmony_cistatic struct i2c_driver lm8323_i2c_driver;
5898c2ecf20Sopenharmony_ci
5908c2ecf20Sopenharmony_cistatic ssize_t lm8323_show_disable(struct device *dev,
5918c2ecf20Sopenharmony_ci				   struct device_attribute *attr, char *buf)
5928c2ecf20Sopenharmony_ci{
5938c2ecf20Sopenharmony_ci	struct lm8323_chip *lm = dev_get_drvdata(dev);
5948c2ecf20Sopenharmony_ci
5958c2ecf20Sopenharmony_ci	return sprintf(buf, "%u\n", !lm->kp_enabled);
5968c2ecf20Sopenharmony_ci}
5978c2ecf20Sopenharmony_ci
5988c2ecf20Sopenharmony_cistatic ssize_t lm8323_set_disable(struct device *dev,
5998c2ecf20Sopenharmony_ci				  struct device_attribute *attr,
6008c2ecf20Sopenharmony_ci				  const char *buf, size_t count)
6018c2ecf20Sopenharmony_ci{
6028c2ecf20Sopenharmony_ci	struct lm8323_chip *lm = dev_get_drvdata(dev);
6038c2ecf20Sopenharmony_ci	int ret;
6048c2ecf20Sopenharmony_ci	unsigned int i;
6058c2ecf20Sopenharmony_ci
6068c2ecf20Sopenharmony_ci	ret = kstrtouint(buf, 10, &i);
6078c2ecf20Sopenharmony_ci	if (ret)
6088c2ecf20Sopenharmony_ci		return ret;
6098c2ecf20Sopenharmony_ci
6108c2ecf20Sopenharmony_ci	mutex_lock(&lm->lock);
6118c2ecf20Sopenharmony_ci	lm->kp_enabled = !i;
6128c2ecf20Sopenharmony_ci	mutex_unlock(&lm->lock);
6138c2ecf20Sopenharmony_ci
6148c2ecf20Sopenharmony_ci	return count;
6158c2ecf20Sopenharmony_ci}
6168c2ecf20Sopenharmony_cistatic DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
6178c2ecf20Sopenharmony_ci
6188c2ecf20Sopenharmony_cistatic int lm8323_probe(struct i2c_client *client,
6198c2ecf20Sopenharmony_ci				  const struct i2c_device_id *id)
6208c2ecf20Sopenharmony_ci{
6218c2ecf20Sopenharmony_ci	struct lm8323_platform_data *pdata = dev_get_platdata(&client->dev);
6228c2ecf20Sopenharmony_ci	struct input_dev *idev;
6238c2ecf20Sopenharmony_ci	struct lm8323_chip *lm;
6248c2ecf20Sopenharmony_ci	int pwm;
6258c2ecf20Sopenharmony_ci	int i, err;
6268c2ecf20Sopenharmony_ci	unsigned long tmo;
6278c2ecf20Sopenharmony_ci	u8 data[2];
6288c2ecf20Sopenharmony_ci
6298c2ecf20Sopenharmony_ci	if (!pdata || !pdata->size_x || !pdata->size_y) {
6308c2ecf20Sopenharmony_ci		dev_err(&client->dev, "missing platform_data\n");
6318c2ecf20Sopenharmony_ci		return -EINVAL;
6328c2ecf20Sopenharmony_ci	}
6338c2ecf20Sopenharmony_ci
6348c2ecf20Sopenharmony_ci	if (pdata->size_x > 8) {
6358c2ecf20Sopenharmony_ci		dev_err(&client->dev, "invalid x size %d specified\n",
6368c2ecf20Sopenharmony_ci			pdata->size_x);
6378c2ecf20Sopenharmony_ci		return -EINVAL;
6388c2ecf20Sopenharmony_ci	}
6398c2ecf20Sopenharmony_ci
6408c2ecf20Sopenharmony_ci	if (pdata->size_y > 12) {
6418c2ecf20Sopenharmony_ci		dev_err(&client->dev, "invalid y size %d specified\n",
6428c2ecf20Sopenharmony_ci			pdata->size_y);
6438c2ecf20Sopenharmony_ci		return -EINVAL;
6448c2ecf20Sopenharmony_ci	}
6458c2ecf20Sopenharmony_ci
6468c2ecf20Sopenharmony_ci	lm = kzalloc(sizeof *lm, GFP_KERNEL);
6478c2ecf20Sopenharmony_ci	idev = input_allocate_device();
6488c2ecf20Sopenharmony_ci	if (!lm || !idev) {
6498c2ecf20Sopenharmony_ci		err = -ENOMEM;
6508c2ecf20Sopenharmony_ci		goto fail1;
6518c2ecf20Sopenharmony_ci	}
6528c2ecf20Sopenharmony_ci
6538c2ecf20Sopenharmony_ci	lm->client = client;
6548c2ecf20Sopenharmony_ci	lm->idev = idev;
6558c2ecf20Sopenharmony_ci	mutex_init(&lm->lock);
6568c2ecf20Sopenharmony_ci
6578c2ecf20Sopenharmony_ci	lm->size_x = pdata->size_x;
6588c2ecf20Sopenharmony_ci	lm->size_y = pdata->size_y;
6598c2ecf20Sopenharmony_ci	dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
6608c2ecf20Sopenharmony_ci		 lm->size_x, lm->size_y);
6618c2ecf20Sopenharmony_ci
6628c2ecf20Sopenharmony_ci	lm->debounce_time = pdata->debounce_time;
6638c2ecf20Sopenharmony_ci	lm->active_time = pdata->active_time;
6648c2ecf20Sopenharmony_ci
6658c2ecf20Sopenharmony_ci	lm8323_reset(lm);
6668c2ecf20Sopenharmony_ci
6678c2ecf20Sopenharmony_ci	/* Nothing's set up to service the IRQ yet, so just spin for max.
6688c2ecf20Sopenharmony_ci	 * 100ms until we can configure. */
6698c2ecf20Sopenharmony_ci	tmo = jiffies + msecs_to_jiffies(100);
6708c2ecf20Sopenharmony_ci	while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
6718c2ecf20Sopenharmony_ci		if (data[0] & INT_NOINIT)
6728c2ecf20Sopenharmony_ci			break;
6738c2ecf20Sopenharmony_ci
6748c2ecf20Sopenharmony_ci		if (time_after(jiffies, tmo)) {
6758c2ecf20Sopenharmony_ci			dev_err(&client->dev,
6768c2ecf20Sopenharmony_ci				"timeout waiting for initialisation\n");
6778c2ecf20Sopenharmony_ci			break;
6788c2ecf20Sopenharmony_ci		}
6798c2ecf20Sopenharmony_ci
6808c2ecf20Sopenharmony_ci		msleep(1);
6818c2ecf20Sopenharmony_ci	}
6828c2ecf20Sopenharmony_ci
6838c2ecf20Sopenharmony_ci	lm8323_configure(lm);
6848c2ecf20Sopenharmony_ci
6858c2ecf20Sopenharmony_ci	/* If a true probe check the device */
6868c2ecf20Sopenharmony_ci	if (lm8323_read_id(lm, data) != 0) {
6878c2ecf20Sopenharmony_ci		dev_err(&client->dev, "device not found\n");
6888c2ecf20Sopenharmony_ci		err = -ENODEV;
6898c2ecf20Sopenharmony_ci		goto fail1;
6908c2ecf20Sopenharmony_ci	}
6918c2ecf20Sopenharmony_ci
6928c2ecf20Sopenharmony_ci	for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) {
6938c2ecf20Sopenharmony_ci		err = init_pwm(lm, pwm + 1, &client->dev,
6948c2ecf20Sopenharmony_ci			       pdata->pwm_names[pwm]);
6958c2ecf20Sopenharmony_ci		if (err < 0)
6968c2ecf20Sopenharmony_ci			goto fail2;
6978c2ecf20Sopenharmony_ci	}
6988c2ecf20Sopenharmony_ci
6998c2ecf20Sopenharmony_ci	lm->kp_enabled = true;
7008c2ecf20Sopenharmony_ci	err = device_create_file(&client->dev, &dev_attr_disable_kp);
7018c2ecf20Sopenharmony_ci	if (err < 0)
7028c2ecf20Sopenharmony_ci		goto fail2;
7038c2ecf20Sopenharmony_ci
7048c2ecf20Sopenharmony_ci	idev->name = pdata->name ? : "LM8323 keypad";
7058c2ecf20Sopenharmony_ci	snprintf(lm->phys, sizeof(lm->phys),
7068c2ecf20Sopenharmony_ci		 "%s/input-kp", dev_name(&client->dev));
7078c2ecf20Sopenharmony_ci	idev->phys = lm->phys;
7088c2ecf20Sopenharmony_ci
7098c2ecf20Sopenharmony_ci	idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
7108c2ecf20Sopenharmony_ci	__set_bit(MSC_SCAN, idev->mscbit);
7118c2ecf20Sopenharmony_ci	for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
7128c2ecf20Sopenharmony_ci		__set_bit(pdata->keymap[i], idev->keybit);
7138c2ecf20Sopenharmony_ci		lm->keymap[i] = pdata->keymap[i];
7148c2ecf20Sopenharmony_ci	}
7158c2ecf20Sopenharmony_ci	__clear_bit(KEY_RESERVED, idev->keybit);
7168c2ecf20Sopenharmony_ci
7178c2ecf20Sopenharmony_ci	if (pdata->repeat)
7188c2ecf20Sopenharmony_ci		__set_bit(EV_REP, idev->evbit);
7198c2ecf20Sopenharmony_ci
7208c2ecf20Sopenharmony_ci	err = input_register_device(idev);
7218c2ecf20Sopenharmony_ci	if (err) {
7228c2ecf20Sopenharmony_ci		dev_dbg(&client->dev, "error registering input device\n");
7238c2ecf20Sopenharmony_ci		goto fail3;
7248c2ecf20Sopenharmony_ci	}
7258c2ecf20Sopenharmony_ci
7268c2ecf20Sopenharmony_ci	err = request_threaded_irq(client->irq, NULL, lm8323_irq,
7278c2ecf20Sopenharmony_ci			  IRQF_TRIGGER_LOW|IRQF_ONESHOT, "lm8323", lm);
7288c2ecf20Sopenharmony_ci	if (err) {
7298c2ecf20Sopenharmony_ci		dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
7308c2ecf20Sopenharmony_ci		goto fail4;
7318c2ecf20Sopenharmony_ci	}
7328c2ecf20Sopenharmony_ci
7338c2ecf20Sopenharmony_ci	i2c_set_clientdata(client, lm);
7348c2ecf20Sopenharmony_ci
7358c2ecf20Sopenharmony_ci	device_init_wakeup(&client->dev, 1);
7368c2ecf20Sopenharmony_ci	enable_irq_wake(client->irq);
7378c2ecf20Sopenharmony_ci
7388c2ecf20Sopenharmony_ci	return 0;
7398c2ecf20Sopenharmony_ci
7408c2ecf20Sopenharmony_cifail4:
7418c2ecf20Sopenharmony_ci	input_unregister_device(idev);
7428c2ecf20Sopenharmony_ci	idev = NULL;
7438c2ecf20Sopenharmony_cifail3:
7448c2ecf20Sopenharmony_ci	device_remove_file(&client->dev, &dev_attr_disable_kp);
7458c2ecf20Sopenharmony_cifail2:
7468c2ecf20Sopenharmony_ci	while (--pwm >= 0)
7478c2ecf20Sopenharmony_ci		if (lm->pwm[pwm].enabled)
7488c2ecf20Sopenharmony_ci			led_classdev_unregister(&lm->pwm[pwm].cdev);
7498c2ecf20Sopenharmony_cifail1:
7508c2ecf20Sopenharmony_ci	input_free_device(idev);
7518c2ecf20Sopenharmony_ci	kfree(lm);
7528c2ecf20Sopenharmony_ci	return err;
7538c2ecf20Sopenharmony_ci}
7548c2ecf20Sopenharmony_ci
7558c2ecf20Sopenharmony_cistatic int lm8323_remove(struct i2c_client *client)
7568c2ecf20Sopenharmony_ci{
7578c2ecf20Sopenharmony_ci	struct lm8323_chip *lm = i2c_get_clientdata(client);
7588c2ecf20Sopenharmony_ci	int i;
7598c2ecf20Sopenharmony_ci
7608c2ecf20Sopenharmony_ci	disable_irq_wake(client->irq);
7618c2ecf20Sopenharmony_ci	free_irq(client->irq, lm);
7628c2ecf20Sopenharmony_ci
7638c2ecf20Sopenharmony_ci	input_unregister_device(lm->idev);
7648c2ecf20Sopenharmony_ci
7658c2ecf20Sopenharmony_ci	device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
7668c2ecf20Sopenharmony_ci
7678c2ecf20Sopenharmony_ci	for (i = 0; i < 3; i++)
7688c2ecf20Sopenharmony_ci		if (lm->pwm[i].enabled)
7698c2ecf20Sopenharmony_ci			led_classdev_unregister(&lm->pwm[i].cdev);
7708c2ecf20Sopenharmony_ci
7718c2ecf20Sopenharmony_ci	kfree(lm);
7728c2ecf20Sopenharmony_ci
7738c2ecf20Sopenharmony_ci	return 0;
7748c2ecf20Sopenharmony_ci}
7758c2ecf20Sopenharmony_ci
7768c2ecf20Sopenharmony_ci#ifdef CONFIG_PM_SLEEP
7778c2ecf20Sopenharmony_ci/*
7788c2ecf20Sopenharmony_ci * We don't need to explicitly suspend the chip, as it already switches off
7798c2ecf20Sopenharmony_ci * when there's no activity.
7808c2ecf20Sopenharmony_ci */
7818c2ecf20Sopenharmony_cistatic int lm8323_suspend(struct device *dev)
7828c2ecf20Sopenharmony_ci{
7838c2ecf20Sopenharmony_ci	struct i2c_client *client = to_i2c_client(dev);
7848c2ecf20Sopenharmony_ci	struct lm8323_chip *lm = i2c_get_clientdata(client);
7858c2ecf20Sopenharmony_ci	int i;
7868c2ecf20Sopenharmony_ci
7878c2ecf20Sopenharmony_ci	irq_set_irq_wake(client->irq, 0);
7888c2ecf20Sopenharmony_ci	disable_irq(client->irq);
7898c2ecf20Sopenharmony_ci
7908c2ecf20Sopenharmony_ci	mutex_lock(&lm->lock);
7918c2ecf20Sopenharmony_ci	lm->pm_suspend = true;
7928c2ecf20Sopenharmony_ci	mutex_unlock(&lm->lock);
7938c2ecf20Sopenharmony_ci
7948c2ecf20Sopenharmony_ci	for (i = 0; i < 3; i++)
7958c2ecf20Sopenharmony_ci		if (lm->pwm[i].enabled)
7968c2ecf20Sopenharmony_ci			led_classdev_suspend(&lm->pwm[i].cdev);
7978c2ecf20Sopenharmony_ci
7988c2ecf20Sopenharmony_ci	return 0;
7998c2ecf20Sopenharmony_ci}
8008c2ecf20Sopenharmony_ci
8018c2ecf20Sopenharmony_cistatic int lm8323_resume(struct device *dev)
8028c2ecf20Sopenharmony_ci{
8038c2ecf20Sopenharmony_ci	struct i2c_client *client = to_i2c_client(dev);
8048c2ecf20Sopenharmony_ci	struct lm8323_chip *lm = i2c_get_clientdata(client);
8058c2ecf20Sopenharmony_ci	int i;
8068c2ecf20Sopenharmony_ci
8078c2ecf20Sopenharmony_ci	mutex_lock(&lm->lock);
8088c2ecf20Sopenharmony_ci	lm->pm_suspend = false;
8098c2ecf20Sopenharmony_ci	mutex_unlock(&lm->lock);
8108c2ecf20Sopenharmony_ci
8118c2ecf20Sopenharmony_ci	for (i = 0; i < 3; i++)
8128c2ecf20Sopenharmony_ci		if (lm->pwm[i].enabled)
8138c2ecf20Sopenharmony_ci			led_classdev_resume(&lm->pwm[i].cdev);
8148c2ecf20Sopenharmony_ci
8158c2ecf20Sopenharmony_ci	enable_irq(client->irq);
8168c2ecf20Sopenharmony_ci	irq_set_irq_wake(client->irq, 1);
8178c2ecf20Sopenharmony_ci
8188c2ecf20Sopenharmony_ci	return 0;
8198c2ecf20Sopenharmony_ci}
8208c2ecf20Sopenharmony_ci#endif
8218c2ecf20Sopenharmony_ci
8228c2ecf20Sopenharmony_cistatic SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume);
8238c2ecf20Sopenharmony_ci
8248c2ecf20Sopenharmony_cistatic const struct i2c_device_id lm8323_id[] = {
8258c2ecf20Sopenharmony_ci	{ "lm8323", 0 },
8268c2ecf20Sopenharmony_ci	{ }
8278c2ecf20Sopenharmony_ci};
8288c2ecf20Sopenharmony_ci
8298c2ecf20Sopenharmony_cistatic struct i2c_driver lm8323_i2c_driver = {
8308c2ecf20Sopenharmony_ci	.driver = {
8318c2ecf20Sopenharmony_ci		.name	= "lm8323",
8328c2ecf20Sopenharmony_ci		.pm	= &lm8323_pm_ops,
8338c2ecf20Sopenharmony_ci	},
8348c2ecf20Sopenharmony_ci	.probe		= lm8323_probe,
8358c2ecf20Sopenharmony_ci	.remove		= lm8323_remove,
8368c2ecf20Sopenharmony_ci	.id_table	= lm8323_id,
8378c2ecf20Sopenharmony_ci};
8388c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(i2c, lm8323_id);
8398c2ecf20Sopenharmony_ci
8408c2ecf20Sopenharmony_cimodule_i2c_driver(lm8323_i2c_driver);
8418c2ecf20Sopenharmony_ci
8428c2ecf20Sopenharmony_ciMODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
8438c2ecf20Sopenharmony_ciMODULE_AUTHOR("Daniel Stone");
8448c2ecf20Sopenharmony_ciMODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
8458c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("LM8323 keypad driver");
8468c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL");
8478c2ecf20Sopenharmony_ci
848