xref: /kernel/linux/linux-5.10/drivers/input/input.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
8
9#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/types.h>
13#include <linux/idr.h>
14#include <linux/input/mt.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/random.h>
18#include <linux/major.h>
19#include <linux/proc_fs.h>
20#include <linux/sched.h>
21#include <linux/seq_file.h>
22#include <linux/poll.h>
23#include <linux/device.h>
24#include <linux/mutex.h>
25#include <linux/rcupdate.h>
26#include "input-compat.h"
27#include "input-poller.h"
28
29MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30MODULE_DESCRIPTION("Input core");
31MODULE_LICENSE("GPL");
32
33#define INPUT_MAX_CHAR_DEVICES		1024
34#define INPUT_FIRST_DYNAMIC_DEV		256
35static DEFINE_IDA(input_ida);
36
37static LIST_HEAD(input_dev_list);
38static LIST_HEAD(input_handler_list);
39
40/*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46static DEFINE_MUTEX(input_mutex);
47
48static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49
50static const unsigned int input_max_code[EV_CNT] = {
51	[EV_KEY] = KEY_MAX,
52	[EV_REL] = REL_MAX,
53	[EV_ABS] = ABS_MAX,
54	[EV_MSC] = MSC_MAX,
55	[EV_SW] = SW_MAX,
56	[EV_LED] = LED_MAX,
57	[EV_SND] = SND_MAX,
58	[EV_FF] = FF_MAX,
59};
60
61static inline int is_event_supported(unsigned int code,
62				     unsigned long *bm, unsigned int max)
63{
64	return code <= max && test_bit(code, bm);
65}
66
67static int input_defuzz_abs_event(int value, int old_val, int fuzz)
68{
69	if (fuzz) {
70		if (value > (long)old_val - fuzz / 2 &&
71				value < (long)old_val + fuzz / 2)
72			return old_val;
73
74		if (value > (long)old_val - fuzz &&
75				value < (long)old_val + fuzz)
76			return ((long)old_val * 3 + value) / 4;
77
78		if (value > (long)old_val - fuzz * 2 &&
79				value < (long)old_val + fuzz * 2)
80			return ((long)old_val + value) / 2;
81	}
82
83	return value;
84}
85
86static void input_start_autorepeat(struct input_dev *dev, int code)
87{
88	if (test_bit(EV_REP, dev->evbit) &&
89	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90	    dev->timer.function) {
91		dev->repeat_key = code;
92		mod_timer(&dev->timer,
93			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94	}
95}
96
97static void input_stop_autorepeat(struct input_dev *dev)
98{
99	del_timer(&dev->timer);
100}
101
102/*
103 * Pass event first through all filters and then, if event has not been
104 * filtered out, through all open handles. This function is called with
105 * dev->event_lock held and interrupts disabled.
106 */
107static unsigned int input_to_handler(struct input_handle *handle,
108			struct input_value *vals, unsigned int count)
109{
110	struct input_handler *handler = handle->handler;
111	struct input_value *end = vals;
112	struct input_value *v;
113
114	if (handler->filter) {
115		for (v = vals; v != vals + count; v++) {
116			if (handler->filter(handle, v->type, v->code, v->value))
117				continue;
118			if (end != v)
119				*end = *v;
120			end++;
121		}
122		count = end - vals;
123	}
124
125	if (!count)
126		return 0;
127
128	if (handler->events)
129		handler->events(handle, vals, count);
130	else if (handler->event)
131		for (v = vals; v != vals + count; v++)
132			handler->event(handle, v->type, v->code, v->value);
133
134	return count;
135}
136
137/*
138 * Pass values first through all filters and then, if event has not been
139 * filtered out, through all open handles. This function is called with
140 * dev->event_lock held and interrupts disabled.
141 */
142static void input_pass_values(struct input_dev *dev,
143			      struct input_value *vals, unsigned int count)
144{
145	struct input_handle *handle;
146	struct input_value *v;
147
148	if (!count)
149		return;
150
151	rcu_read_lock();
152
153	handle = rcu_dereference(dev->grab);
154	if (handle) {
155		count = input_to_handler(handle, vals, count);
156	} else {
157		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
158			if (handle->open) {
159				count = input_to_handler(handle, vals, count);
160				if (!count)
161					break;
162			}
163	}
164
165	rcu_read_unlock();
166
167	/* trigger auto repeat for key events */
168	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
169		for (v = vals; v != vals + count; v++) {
170			if (v->type == EV_KEY && v->value != 2) {
171				if (v->value)
172					input_start_autorepeat(dev, v->code);
173				else
174					input_stop_autorepeat(dev);
175			}
176		}
177	}
178}
179
180static void input_pass_event(struct input_dev *dev,
181			     unsigned int type, unsigned int code, int value)
182{
183	struct input_value vals[] = { { type, code, value } };
184
185	input_pass_values(dev, vals, ARRAY_SIZE(vals));
186}
187
188/*
189 * Generate software autorepeat event. Note that we take
190 * dev->event_lock here to avoid racing with input_event
191 * which may cause keys get "stuck".
192 */
193static void input_repeat_key(struct timer_list *t)
194{
195	struct input_dev *dev = from_timer(dev, t, timer);
196	unsigned long flags;
197
198	spin_lock_irqsave(&dev->event_lock, flags);
199
200	if (test_bit(dev->repeat_key, dev->key) &&
201	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
202		struct input_value vals[] =  {
203			{ EV_KEY, dev->repeat_key, 2 },
204			input_value_sync
205		};
206
207		input_set_timestamp(dev, ktime_get());
208		input_pass_values(dev, vals, ARRAY_SIZE(vals));
209
210		if (dev->rep[REP_PERIOD])
211			mod_timer(&dev->timer, jiffies +
212					msecs_to_jiffies(dev->rep[REP_PERIOD]));
213	}
214
215	spin_unlock_irqrestore(&dev->event_lock, flags);
216}
217
218#define INPUT_IGNORE_EVENT	0
219#define INPUT_PASS_TO_HANDLERS	1
220#define INPUT_PASS_TO_DEVICE	2
221#define INPUT_SLOT		4
222#define INPUT_FLUSH		8
223#define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
224
225static int input_handle_abs_event(struct input_dev *dev,
226				  unsigned int code, int *pval)
227{
228	struct input_mt *mt = dev->mt;
229	bool is_mt_event;
230	int *pold;
231
232	if (code == ABS_MT_SLOT) {
233		/*
234		 * "Stage" the event; we'll flush it later, when we
235		 * get actual touch data.
236		 */
237		if (mt && *pval >= 0 && *pval < mt->num_slots)
238			mt->slot = *pval;
239
240		return INPUT_IGNORE_EVENT;
241	}
242
243	is_mt_event = input_is_mt_value(code);
244
245	if (!is_mt_event) {
246		pold = &dev->absinfo[code].value;
247	} else if (mt) {
248		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
249	} else {
250		/*
251		 * Bypass filtering for multi-touch events when
252		 * not employing slots.
253		 */
254		pold = NULL;
255	}
256
257	if (pold) {
258		*pval = input_defuzz_abs_event(*pval, *pold,
259						dev->absinfo[code].fuzz);
260		if (*pold == *pval)
261			return INPUT_IGNORE_EVENT;
262
263		*pold = *pval;
264	}
265
266	/* Flush pending "slot" event */
267	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
268		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
269		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
270	}
271
272	return INPUT_PASS_TO_HANDLERS;
273}
274
275static int input_get_disposition(struct input_dev *dev,
276			  unsigned int type, unsigned int code, int *pval)
277{
278	int disposition = INPUT_IGNORE_EVENT;
279	int value = *pval;
280
281	switch (type) {
282
283	case EV_SYN:
284		switch (code) {
285		case SYN_CONFIG:
286			disposition = INPUT_PASS_TO_ALL;
287			break;
288
289		case SYN_REPORT:
290			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
291			break;
292		case SYN_MT_REPORT:
293			disposition = INPUT_PASS_TO_HANDLERS;
294			break;
295		}
296		break;
297
298	case EV_KEY:
299		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
300
301			/* auto-repeat bypasses state updates */
302			if (value == 2) {
303				disposition = INPUT_PASS_TO_HANDLERS;
304				break;
305			}
306
307			if (!!test_bit(code, dev->key) != !!value) {
308
309				__change_bit(code, dev->key);
310				disposition = INPUT_PASS_TO_HANDLERS;
311			}
312		}
313		break;
314
315	case EV_SW:
316		if (is_event_supported(code, dev->swbit, SW_MAX) &&
317		    !!test_bit(code, dev->sw) != !!value) {
318
319			__change_bit(code, dev->sw);
320			disposition = INPUT_PASS_TO_HANDLERS;
321		}
322		break;
323
324	case EV_ABS:
325		if (is_event_supported(code, dev->absbit, ABS_MAX))
326			disposition = input_handle_abs_event(dev, code, &value);
327
328		break;
329
330	case EV_REL:
331		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
332			disposition = INPUT_PASS_TO_HANDLERS;
333
334		break;
335
336	case EV_MSC:
337		if (is_event_supported(code, dev->mscbit, MSC_MAX))
338			disposition = INPUT_PASS_TO_ALL;
339
340		break;
341
342	case EV_LED:
343		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
344		    !!test_bit(code, dev->led) != !!value) {
345
346			__change_bit(code, dev->led);
347			disposition = INPUT_PASS_TO_ALL;
348		}
349		break;
350
351	case EV_SND:
352		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
353
354			if (!!test_bit(code, dev->snd) != !!value)
355				__change_bit(code, dev->snd);
356			disposition = INPUT_PASS_TO_ALL;
357		}
358		break;
359
360	case EV_REP:
361		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
362			dev->rep[code] = value;
363			disposition = INPUT_PASS_TO_ALL;
364		}
365		break;
366
367	case EV_FF:
368		if (value >= 0)
369			disposition = INPUT_PASS_TO_ALL;
370		break;
371
372	case EV_PWR:
373		disposition = INPUT_PASS_TO_ALL;
374		break;
375	}
376
377	*pval = value;
378	return disposition;
379}
380
381static void input_handle_event(struct input_dev *dev,
382			       unsigned int type, unsigned int code, int value)
383{
384	int disposition = input_get_disposition(dev, type, code, &value);
385
386	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
387		add_input_randomness(type, code, value);
388
389	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
390		dev->event(dev, type, code, value);
391
392	if (!dev->vals)
393		return;
394
395	if (disposition & INPUT_PASS_TO_HANDLERS) {
396		struct input_value *v;
397
398		if (disposition & INPUT_SLOT) {
399			v = &dev->vals[dev->num_vals++];
400			v->type = EV_ABS;
401			v->code = ABS_MT_SLOT;
402			v->value = dev->mt->slot;
403		}
404
405		v = &dev->vals[dev->num_vals++];
406		v->type = type;
407		v->code = code;
408		v->value = value;
409	}
410
411	if (disposition & INPUT_FLUSH) {
412		if (dev->num_vals >= 2)
413			input_pass_values(dev, dev->vals, dev->num_vals);
414		dev->num_vals = 0;
415		/*
416		 * Reset the timestamp on flush so we won't end up
417		 * with a stale one. Note we only need to reset the
418		 * monolithic one as we use its presence when deciding
419		 * whether to generate a synthetic timestamp.
420		 */
421		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
422	} else if (dev->num_vals >= dev->max_vals - 2) {
423		dev->vals[dev->num_vals++] = input_value_sync;
424		input_pass_values(dev, dev->vals, dev->num_vals);
425		dev->num_vals = 0;
426	}
427
428}
429
430/**
431 * input_event() - report new input event
432 * @dev: device that generated the event
433 * @type: type of the event
434 * @code: event code
435 * @value: value of the event
436 *
437 * This function should be used by drivers implementing various input
438 * devices to report input events. See also input_inject_event().
439 *
440 * NOTE: input_event() may be safely used right after input device was
441 * allocated with input_allocate_device(), even before it is registered
442 * with input_register_device(), but the event will not reach any of the
443 * input handlers. Such early invocation of input_event() may be used
444 * to 'seed' initial state of a switch or initial position of absolute
445 * axis, etc.
446 */
447void input_event(struct input_dev *dev,
448		 unsigned int type, unsigned int code, int value)
449{
450	unsigned long flags;
451
452	if (is_event_supported(type, dev->evbit, EV_MAX)) {
453
454		spin_lock_irqsave(&dev->event_lock, flags);
455		input_handle_event(dev, type, code, value);
456		spin_unlock_irqrestore(&dev->event_lock, flags);
457	}
458}
459EXPORT_SYMBOL(input_event);
460
461/**
462 * input_inject_event() - send input event from input handler
463 * @handle: input handle to send event through
464 * @type: type of the event
465 * @code: event code
466 * @value: value of the event
467 *
468 * Similar to input_event() but will ignore event if device is
469 * "grabbed" and handle injecting event is not the one that owns
470 * the device.
471 */
472void input_inject_event(struct input_handle *handle,
473			unsigned int type, unsigned int code, int value)
474{
475	struct input_dev *dev = handle->dev;
476	struct input_handle *grab;
477	unsigned long flags;
478
479	if (is_event_supported(type, dev->evbit, EV_MAX)) {
480		spin_lock_irqsave(&dev->event_lock, flags);
481
482		rcu_read_lock();
483		grab = rcu_dereference(dev->grab);
484		if (!grab || grab == handle)
485			input_handle_event(dev, type, code, value);
486		rcu_read_unlock();
487
488		spin_unlock_irqrestore(&dev->event_lock, flags);
489	}
490}
491EXPORT_SYMBOL(input_inject_event);
492
493/**
494 * input_alloc_absinfo - allocates array of input_absinfo structs
495 * @dev: the input device emitting absolute events
496 *
497 * If the absinfo struct the caller asked for is already allocated, this
498 * functions will not do anything.
499 */
500void input_alloc_absinfo(struct input_dev *dev)
501{
502	if (dev->absinfo)
503		return;
504
505	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
506	if (!dev->absinfo) {
507		dev_err(dev->dev.parent ?: &dev->dev,
508			"%s: unable to allocate memory\n", __func__);
509		/*
510		 * We will handle this allocation failure in
511		 * input_register_device() when we refuse to register input
512		 * device with ABS bits but without absinfo.
513		 */
514	}
515}
516EXPORT_SYMBOL(input_alloc_absinfo);
517
518void input_set_abs_params(struct input_dev *dev, unsigned int axis,
519			  int min, int max, int fuzz, int flat)
520{
521	struct input_absinfo *absinfo;
522
523	input_alloc_absinfo(dev);
524	if (!dev->absinfo)
525		return;
526
527	absinfo = &dev->absinfo[axis];
528	absinfo->minimum = min;
529	absinfo->maximum = max;
530	absinfo->fuzz = fuzz;
531	absinfo->flat = flat;
532
533	__set_bit(EV_ABS, dev->evbit);
534	__set_bit(axis, dev->absbit);
535}
536EXPORT_SYMBOL(input_set_abs_params);
537
538
539/**
540 * input_grab_device - grabs device for exclusive use
541 * @handle: input handle that wants to own the device
542 *
543 * When a device is grabbed by an input handle all events generated by
544 * the device are delivered only to this handle. Also events injected
545 * by other input handles are ignored while device is grabbed.
546 */
547int input_grab_device(struct input_handle *handle)
548{
549	struct input_dev *dev = handle->dev;
550	int retval;
551
552	retval = mutex_lock_interruptible(&dev->mutex);
553	if (retval)
554		return retval;
555
556	if (dev->grab) {
557		retval = -EBUSY;
558		goto out;
559	}
560
561	rcu_assign_pointer(dev->grab, handle);
562
563 out:
564	mutex_unlock(&dev->mutex);
565	return retval;
566}
567EXPORT_SYMBOL(input_grab_device);
568
569static void __input_release_device(struct input_handle *handle)
570{
571	struct input_dev *dev = handle->dev;
572	struct input_handle *grabber;
573
574	grabber = rcu_dereference_protected(dev->grab,
575					    lockdep_is_held(&dev->mutex));
576	if (grabber == handle) {
577		rcu_assign_pointer(dev->grab, NULL);
578		/* Make sure input_pass_event() notices that grab is gone */
579		synchronize_rcu();
580
581		list_for_each_entry(handle, &dev->h_list, d_node)
582			if (handle->open && handle->handler->start)
583				handle->handler->start(handle);
584	}
585}
586
587/**
588 * input_release_device - release previously grabbed device
589 * @handle: input handle that owns the device
590 *
591 * Releases previously grabbed device so that other input handles can
592 * start receiving input events. Upon release all handlers attached
593 * to the device have their start() method called so they have a change
594 * to synchronize device state with the rest of the system.
595 */
596void input_release_device(struct input_handle *handle)
597{
598	struct input_dev *dev = handle->dev;
599
600	mutex_lock(&dev->mutex);
601	__input_release_device(handle);
602	mutex_unlock(&dev->mutex);
603}
604EXPORT_SYMBOL(input_release_device);
605
606/**
607 * input_open_device - open input device
608 * @handle: handle through which device is being accessed
609 *
610 * This function should be called by input handlers when they
611 * want to start receive events from given input device.
612 */
613int input_open_device(struct input_handle *handle)
614{
615	struct input_dev *dev = handle->dev;
616	int retval;
617
618	retval = mutex_lock_interruptible(&dev->mutex);
619	if (retval)
620		return retval;
621
622	if (dev->going_away) {
623		retval = -ENODEV;
624		goto out;
625	}
626
627	handle->open++;
628
629	if (dev->users++) {
630		/*
631		 * Device is already opened, so we can exit immediately and
632		 * report success.
633		 */
634		goto out;
635	}
636
637	if (dev->open) {
638		retval = dev->open(dev);
639		if (retval) {
640			dev->users--;
641			handle->open--;
642			/*
643			 * Make sure we are not delivering any more events
644			 * through this handle
645			 */
646			synchronize_rcu();
647			goto out;
648		}
649	}
650
651	if (dev->poller)
652		input_dev_poller_start(dev->poller);
653
654 out:
655	mutex_unlock(&dev->mutex);
656	return retval;
657}
658EXPORT_SYMBOL(input_open_device);
659
660int input_flush_device(struct input_handle *handle, struct file *file)
661{
662	struct input_dev *dev = handle->dev;
663	int retval;
664
665	retval = mutex_lock_interruptible(&dev->mutex);
666	if (retval)
667		return retval;
668
669	if (dev->flush)
670		retval = dev->flush(dev, file);
671
672	mutex_unlock(&dev->mutex);
673	return retval;
674}
675EXPORT_SYMBOL(input_flush_device);
676
677/**
678 * input_close_device - close input device
679 * @handle: handle through which device is being accessed
680 *
681 * This function should be called by input handlers when they
682 * want to stop receive events from given input device.
683 */
684void input_close_device(struct input_handle *handle)
685{
686	struct input_dev *dev = handle->dev;
687
688	mutex_lock(&dev->mutex);
689
690	__input_release_device(handle);
691
692	if (!--dev->users) {
693		if (dev->poller)
694			input_dev_poller_stop(dev->poller);
695
696		if (dev->close)
697			dev->close(dev);
698	}
699
700	if (!--handle->open) {
701		/*
702		 * synchronize_rcu() makes sure that input_pass_event()
703		 * completed and that no more input events are delivered
704		 * through this handle
705		 */
706		synchronize_rcu();
707	}
708
709	mutex_unlock(&dev->mutex);
710}
711EXPORT_SYMBOL(input_close_device);
712
713/*
714 * Simulate keyup events for all keys that are marked as pressed.
715 * The function must be called with dev->event_lock held.
716 */
717static void input_dev_release_keys(struct input_dev *dev)
718{
719	bool need_sync = false;
720	int code;
721
722	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
723		for_each_set_bit(code, dev->key, KEY_CNT) {
724			input_pass_event(dev, EV_KEY, code, 0);
725			need_sync = true;
726		}
727
728		if (need_sync)
729			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
730
731		memset(dev->key, 0, sizeof(dev->key));
732	}
733}
734
735/*
736 * Prepare device for unregistering
737 */
738static void input_disconnect_device(struct input_dev *dev)
739{
740	struct input_handle *handle;
741
742	/*
743	 * Mark device as going away. Note that we take dev->mutex here
744	 * not to protect access to dev->going_away but rather to ensure
745	 * that there are no threads in the middle of input_open_device()
746	 */
747	mutex_lock(&dev->mutex);
748	dev->going_away = true;
749	mutex_unlock(&dev->mutex);
750
751	spin_lock_irq(&dev->event_lock);
752
753	/*
754	 * Simulate keyup events for all pressed keys so that handlers
755	 * are not left with "stuck" keys. The driver may continue
756	 * generate events even after we done here but they will not
757	 * reach any handlers.
758	 */
759	input_dev_release_keys(dev);
760
761	list_for_each_entry(handle, &dev->h_list, d_node)
762		handle->open = 0;
763
764	spin_unlock_irq(&dev->event_lock);
765}
766
767/**
768 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
769 * @ke: keymap entry containing scancode to be converted.
770 * @scancode: pointer to the location where converted scancode should
771 *	be stored.
772 *
773 * This function is used to convert scancode stored in &struct keymap_entry
774 * into scalar form understood by legacy keymap handling methods. These
775 * methods expect scancodes to be represented as 'unsigned int'.
776 */
777int input_scancode_to_scalar(const struct input_keymap_entry *ke,
778			     unsigned int *scancode)
779{
780	switch (ke->len) {
781	case 1:
782		*scancode = *((u8 *)ke->scancode);
783		break;
784
785	case 2:
786		*scancode = *((u16 *)ke->scancode);
787		break;
788
789	case 4:
790		*scancode = *((u32 *)ke->scancode);
791		break;
792
793	default:
794		return -EINVAL;
795	}
796
797	return 0;
798}
799EXPORT_SYMBOL(input_scancode_to_scalar);
800
801/*
802 * Those routines handle the default case where no [gs]etkeycode() is
803 * defined. In this case, an array indexed by the scancode is used.
804 */
805
806static unsigned int input_fetch_keycode(struct input_dev *dev,
807					unsigned int index)
808{
809	switch (dev->keycodesize) {
810	case 1:
811		return ((u8 *)dev->keycode)[index];
812
813	case 2:
814		return ((u16 *)dev->keycode)[index];
815
816	default:
817		return ((u32 *)dev->keycode)[index];
818	}
819}
820
821static int input_default_getkeycode(struct input_dev *dev,
822				    struct input_keymap_entry *ke)
823{
824	unsigned int index;
825	int error;
826
827	if (!dev->keycodesize)
828		return -EINVAL;
829
830	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
831		index = ke->index;
832	else {
833		error = input_scancode_to_scalar(ke, &index);
834		if (error)
835			return error;
836	}
837
838	if (index >= dev->keycodemax)
839		return -EINVAL;
840
841	ke->keycode = input_fetch_keycode(dev, index);
842	ke->index = index;
843	ke->len = sizeof(index);
844	memcpy(ke->scancode, &index, sizeof(index));
845
846	return 0;
847}
848
849static int input_default_setkeycode(struct input_dev *dev,
850				    const struct input_keymap_entry *ke,
851				    unsigned int *old_keycode)
852{
853	unsigned int index;
854	int error;
855	int i;
856
857	if (!dev->keycodesize)
858		return -EINVAL;
859
860	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
861		index = ke->index;
862	} else {
863		error = input_scancode_to_scalar(ke, &index);
864		if (error)
865			return error;
866	}
867
868	if (index >= dev->keycodemax)
869		return -EINVAL;
870
871	if (dev->keycodesize < sizeof(ke->keycode) &&
872			(ke->keycode >> (dev->keycodesize * 8)))
873		return -EINVAL;
874
875	switch (dev->keycodesize) {
876		case 1: {
877			u8 *k = (u8 *)dev->keycode;
878			*old_keycode = k[index];
879			k[index] = ke->keycode;
880			break;
881		}
882		case 2: {
883			u16 *k = (u16 *)dev->keycode;
884			*old_keycode = k[index];
885			k[index] = ke->keycode;
886			break;
887		}
888		default: {
889			u32 *k = (u32 *)dev->keycode;
890			*old_keycode = k[index];
891			k[index] = ke->keycode;
892			break;
893		}
894	}
895
896	if (*old_keycode <= KEY_MAX) {
897		__clear_bit(*old_keycode, dev->keybit);
898		for (i = 0; i < dev->keycodemax; i++) {
899			if (input_fetch_keycode(dev, i) == *old_keycode) {
900				__set_bit(*old_keycode, dev->keybit);
901				/* Setting the bit twice is useless, so break */
902				break;
903			}
904		}
905	}
906
907	__set_bit(ke->keycode, dev->keybit);
908	return 0;
909}
910
911/**
912 * input_get_keycode - retrieve keycode currently mapped to a given scancode
913 * @dev: input device which keymap is being queried
914 * @ke: keymap entry
915 *
916 * This function should be called by anyone interested in retrieving current
917 * keymap. Presently evdev handlers use it.
918 */
919int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
920{
921	unsigned long flags;
922	int retval;
923
924	spin_lock_irqsave(&dev->event_lock, flags);
925	retval = dev->getkeycode(dev, ke);
926	spin_unlock_irqrestore(&dev->event_lock, flags);
927
928	return retval;
929}
930EXPORT_SYMBOL(input_get_keycode);
931
932/**
933 * input_set_keycode - attribute a keycode to a given scancode
934 * @dev: input device which keymap is being updated
935 * @ke: new keymap entry
936 *
937 * This function should be called by anyone needing to update current
938 * keymap. Presently keyboard and evdev handlers use it.
939 */
940int input_set_keycode(struct input_dev *dev,
941		      const struct input_keymap_entry *ke)
942{
943	unsigned long flags;
944	unsigned int old_keycode;
945	int retval;
946
947	if (ke->keycode > KEY_MAX)
948		return -EINVAL;
949
950	spin_lock_irqsave(&dev->event_lock, flags);
951
952	retval = dev->setkeycode(dev, ke, &old_keycode);
953	if (retval)
954		goto out;
955
956	/* Make sure KEY_RESERVED did not get enabled. */
957	__clear_bit(KEY_RESERVED, dev->keybit);
958
959	/*
960	 * Simulate keyup event if keycode is not present
961	 * in the keymap anymore
962	 */
963	if (old_keycode > KEY_MAX) {
964		dev_warn(dev->dev.parent ?: &dev->dev,
965			 "%s: got too big old keycode %#x\n",
966			 __func__, old_keycode);
967	} else if (test_bit(EV_KEY, dev->evbit) &&
968		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
969		   __test_and_clear_bit(old_keycode, dev->key)) {
970		struct input_value vals[] =  {
971			{ EV_KEY, old_keycode, 0 },
972			input_value_sync
973		};
974
975		input_pass_values(dev, vals, ARRAY_SIZE(vals));
976	}
977
978 out:
979	spin_unlock_irqrestore(&dev->event_lock, flags);
980
981	return retval;
982}
983EXPORT_SYMBOL(input_set_keycode);
984
985bool input_match_device_id(const struct input_dev *dev,
986			   const struct input_device_id *id)
987{
988	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
989		if (id->bustype != dev->id.bustype)
990			return false;
991
992	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
993		if (id->vendor != dev->id.vendor)
994			return false;
995
996	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
997		if (id->product != dev->id.product)
998			return false;
999
1000	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1001		if (id->version != dev->id.version)
1002			return false;
1003
1004	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1005	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1006	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1007	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1008	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1009	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1010	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1011	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1012	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1013	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1014		return false;
1015	}
1016
1017	return true;
1018}
1019EXPORT_SYMBOL(input_match_device_id);
1020
1021static const struct input_device_id *input_match_device(struct input_handler *handler,
1022							struct input_dev *dev)
1023{
1024	const struct input_device_id *id;
1025
1026	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1027		if (input_match_device_id(dev, id) &&
1028		    (!handler->match || handler->match(handler, dev))) {
1029			return id;
1030		}
1031	}
1032
1033	return NULL;
1034}
1035
1036static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1037{
1038	const struct input_device_id *id;
1039	int error;
1040
1041	id = input_match_device(handler, dev);
1042	if (!id)
1043		return -ENODEV;
1044
1045	error = handler->connect(handler, dev, id);
1046	if (error && error != -ENODEV)
1047		pr_err("failed to attach handler %s to device %s, error: %d\n",
1048		       handler->name, kobject_name(&dev->dev.kobj), error);
1049
1050	return error;
1051}
1052
1053#ifdef CONFIG_COMPAT
1054
1055static int input_bits_to_string(char *buf, int buf_size,
1056				unsigned long bits, bool skip_empty)
1057{
1058	int len = 0;
1059
1060	if (in_compat_syscall()) {
1061		u32 dword = bits >> 32;
1062		if (dword || !skip_empty)
1063			len += snprintf(buf, buf_size, "%x ", dword);
1064
1065		dword = bits & 0xffffffffUL;
1066		if (dword || !skip_empty || len)
1067			len += snprintf(buf + len, max(buf_size - len, 0),
1068					"%x", dword);
1069	} else {
1070		if (bits || !skip_empty)
1071			len += snprintf(buf, buf_size, "%lx", bits);
1072	}
1073
1074	return len;
1075}
1076
1077#else /* !CONFIG_COMPAT */
1078
1079static int input_bits_to_string(char *buf, int buf_size,
1080				unsigned long bits, bool skip_empty)
1081{
1082	return bits || !skip_empty ?
1083		snprintf(buf, buf_size, "%lx", bits) : 0;
1084}
1085
1086#endif
1087
1088#ifdef CONFIG_PROC_FS
1089
1090static struct proc_dir_entry *proc_bus_input_dir;
1091static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1092static int input_devices_state;
1093
1094static inline void input_wakeup_procfs_readers(void)
1095{
1096	input_devices_state++;
1097	wake_up(&input_devices_poll_wait);
1098}
1099
1100static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1101{
1102	poll_wait(file, &input_devices_poll_wait, wait);
1103	if (file->f_version != input_devices_state) {
1104		file->f_version = input_devices_state;
1105		return EPOLLIN | EPOLLRDNORM;
1106	}
1107
1108	return 0;
1109}
1110
1111union input_seq_state {
1112	struct {
1113		unsigned short pos;
1114		bool mutex_acquired;
1115	};
1116	void *p;
1117};
1118
1119static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1120{
1121	union input_seq_state *state = (union input_seq_state *)&seq->private;
1122	int error;
1123
1124	/* We need to fit into seq->private pointer */
1125	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1126
1127	error = mutex_lock_interruptible(&input_mutex);
1128	if (error) {
1129		state->mutex_acquired = false;
1130		return ERR_PTR(error);
1131	}
1132
1133	state->mutex_acquired = true;
1134
1135	return seq_list_start(&input_dev_list, *pos);
1136}
1137
1138static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1139{
1140	return seq_list_next(v, &input_dev_list, pos);
1141}
1142
1143static void input_seq_stop(struct seq_file *seq, void *v)
1144{
1145	union input_seq_state *state = (union input_seq_state *)&seq->private;
1146
1147	if (state->mutex_acquired)
1148		mutex_unlock(&input_mutex);
1149}
1150
1151static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1152				   unsigned long *bitmap, int max)
1153{
1154	int i;
1155	bool skip_empty = true;
1156	char buf[18];
1157
1158	seq_printf(seq, "B: %s=", name);
1159
1160	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1161		if (input_bits_to_string(buf, sizeof(buf),
1162					 bitmap[i], skip_empty)) {
1163			skip_empty = false;
1164			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1165		}
1166	}
1167
1168	/*
1169	 * If no output was produced print a single 0.
1170	 */
1171	if (skip_empty)
1172		seq_putc(seq, '0');
1173
1174	seq_putc(seq, '\n');
1175}
1176
1177static int input_devices_seq_show(struct seq_file *seq, void *v)
1178{
1179	struct input_dev *dev = container_of(v, struct input_dev, node);
1180	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1181	struct input_handle *handle;
1182
1183	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1184		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1185
1186	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1187	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1188	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1189	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1190	seq_puts(seq, "H: Handlers=");
1191
1192	list_for_each_entry(handle, &dev->h_list, d_node)
1193		seq_printf(seq, "%s ", handle->name);
1194	seq_putc(seq, '\n');
1195
1196	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1197
1198	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1199	if (test_bit(EV_KEY, dev->evbit))
1200		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1201	if (test_bit(EV_REL, dev->evbit))
1202		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1203	if (test_bit(EV_ABS, dev->evbit))
1204		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1205	if (test_bit(EV_MSC, dev->evbit))
1206		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1207	if (test_bit(EV_LED, dev->evbit))
1208		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1209	if (test_bit(EV_SND, dev->evbit))
1210		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1211	if (test_bit(EV_FF, dev->evbit))
1212		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1213	if (test_bit(EV_SW, dev->evbit))
1214		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1215
1216	seq_putc(seq, '\n');
1217
1218	kfree(path);
1219	return 0;
1220}
1221
1222static const struct seq_operations input_devices_seq_ops = {
1223	.start	= input_devices_seq_start,
1224	.next	= input_devices_seq_next,
1225	.stop	= input_seq_stop,
1226	.show	= input_devices_seq_show,
1227};
1228
1229static int input_proc_devices_open(struct inode *inode, struct file *file)
1230{
1231	return seq_open(file, &input_devices_seq_ops);
1232}
1233
1234static const struct proc_ops input_devices_proc_ops = {
1235	.proc_open	= input_proc_devices_open,
1236	.proc_poll	= input_proc_devices_poll,
1237	.proc_read	= seq_read,
1238	.proc_lseek	= seq_lseek,
1239	.proc_release	= seq_release,
1240};
1241
1242static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1243{
1244	union input_seq_state *state = (union input_seq_state *)&seq->private;
1245	int error;
1246
1247	/* We need to fit into seq->private pointer */
1248	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1249
1250	error = mutex_lock_interruptible(&input_mutex);
1251	if (error) {
1252		state->mutex_acquired = false;
1253		return ERR_PTR(error);
1254	}
1255
1256	state->mutex_acquired = true;
1257	state->pos = *pos;
1258
1259	return seq_list_start(&input_handler_list, *pos);
1260}
1261
1262static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1263{
1264	union input_seq_state *state = (union input_seq_state *)&seq->private;
1265
1266	state->pos = *pos + 1;
1267	return seq_list_next(v, &input_handler_list, pos);
1268}
1269
1270static int input_handlers_seq_show(struct seq_file *seq, void *v)
1271{
1272	struct input_handler *handler = container_of(v, struct input_handler, node);
1273	union input_seq_state *state = (union input_seq_state *)&seq->private;
1274
1275	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1276	if (handler->filter)
1277		seq_puts(seq, " (filter)");
1278	if (handler->legacy_minors)
1279		seq_printf(seq, " Minor=%d", handler->minor);
1280	seq_putc(seq, '\n');
1281
1282	return 0;
1283}
1284
1285static const struct seq_operations input_handlers_seq_ops = {
1286	.start	= input_handlers_seq_start,
1287	.next	= input_handlers_seq_next,
1288	.stop	= input_seq_stop,
1289	.show	= input_handlers_seq_show,
1290};
1291
1292static int input_proc_handlers_open(struct inode *inode, struct file *file)
1293{
1294	return seq_open(file, &input_handlers_seq_ops);
1295}
1296
1297static const struct proc_ops input_handlers_proc_ops = {
1298	.proc_open	= input_proc_handlers_open,
1299	.proc_read	= seq_read,
1300	.proc_lseek	= seq_lseek,
1301	.proc_release	= seq_release,
1302};
1303
1304static int __init input_proc_init(void)
1305{
1306	struct proc_dir_entry *entry;
1307
1308	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1309	if (!proc_bus_input_dir)
1310		return -ENOMEM;
1311
1312	entry = proc_create("devices", 0, proc_bus_input_dir,
1313			    &input_devices_proc_ops);
1314	if (!entry)
1315		goto fail1;
1316
1317	entry = proc_create("handlers", 0, proc_bus_input_dir,
1318			    &input_handlers_proc_ops);
1319	if (!entry)
1320		goto fail2;
1321
1322	return 0;
1323
1324 fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1325 fail1: remove_proc_entry("bus/input", NULL);
1326	return -ENOMEM;
1327}
1328
1329static void input_proc_exit(void)
1330{
1331	remove_proc_entry("devices", proc_bus_input_dir);
1332	remove_proc_entry("handlers", proc_bus_input_dir);
1333	remove_proc_entry("bus/input", NULL);
1334}
1335
1336#else /* !CONFIG_PROC_FS */
1337static inline void input_wakeup_procfs_readers(void) { }
1338static inline int input_proc_init(void) { return 0; }
1339static inline void input_proc_exit(void) { }
1340#endif
1341
1342#define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1343static ssize_t input_dev_show_##name(struct device *dev,		\
1344				     struct device_attribute *attr,	\
1345				     char *buf)				\
1346{									\
1347	struct input_dev *input_dev = to_input_dev(dev);		\
1348									\
1349	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1350			 input_dev->name ? input_dev->name : "");	\
1351}									\
1352static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1353
1354INPUT_DEV_STRING_ATTR_SHOW(name);
1355INPUT_DEV_STRING_ATTR_SHOW(phys);
1356INPUT_DEV_STRING_ATTR_SHOW(uniq);
1357
1358static int input_print_modalias_bits(char *buf, int size,
1359				     char name, unsigned long *bm,
1360				     unsigned int min_bit, unsigned int max_bit)
1361{
1362	int len = 0, i;
1363
1364	len += snprintf(buf, max(size, 0), "%c", name);
1365	for (i = min_bit; i < max_bit; i++)
1366		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1367			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1368	return len;
1369}
1370
1371static int input_print_modalias(char *buf, int size, struct input_dev *id,
1372				int add_cr)
1373{
1374	int len;
1375
1376	len = snprintf(buf, max(size, 0),
1377		       "input:b%04Xv%04Xp%04Xe%04X-",
1378		       id->id.bustype, id->id.vendor,
1379		       id->id.product, id->id.version);
1380
1381	len += input_print_modalias_bits(buf + len, size - len,
1382				'e', id->evbit, 0, EV_MAX);
1383	len += input_print_modalias_bits(buf + len, size - len,
1384				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1385	len += input_print_modalias_bits(buf + len, size - len,
1386				'r', id->relbit, 0, REL_MAX);
1387	len += input_print_modalias_bits(buf + len, size - len,
1388				'a', id->absbit, 0, ABS_MAX);
1389	len += input_print_modalias_bits(buf + len, size - len,
1390				'm', id->mscbit, 0, MSC_MAX);
1391	len += input_print_modalias_bits(buf + len, size - len,
1392				'l', id->ledbit, 0, LED_MAX);
1393	len += input_print_modalias_bits(buf + len, size - len,
1394				's', id->sndbit, 0, SND_MAX);
1395	len += input_print_modalias_bits(buf + len, size - len,
1396				'f', id->ffbit, 0, FF_MAX);
1397	len += input_print_modalias_bits(buf + len, size - len,
1398				'w', id->swbit, 0, SW_MAX);
1399
1400	if (add_cr)
1401		len += snprintf(buf + len, max(size - len, 0), "\n");
1402
1403	return len;
1404}
1405
1406static ssize_t input_dev_show_modalias(struct device *dev,
1407				       struct device_attribute *attr,
1408				       char *buf)
1409{
1410	struct input_dev *id = to_input_dev(dev);
1411	ssize_t len;
1412
1413	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1414
1415	return min_t(int, len, PAGE_SIZE);
1416}
1417static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1418
1419static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1420			      int max, int add_cr);
1421
1422static ssize_t input_dev_show_properties(struct device *dev,
1423					 struct device_attribute *attr,
1424					 char *buf)
1425{
1426	struct input_dev *input_dev = to_input_dev(dev);
1427	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1428				     INPUT_PROP_MAX, true);
1429	return min_t(int, len, PAGE_SIZE);
1430}
1431static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1432
1433static struct attribute *input_dev_attrs[] = {
1434	&dev_attr_name.attr,
1435	&dev_attr_phys.attr,
1436	&dev_attr_uniq.attr,
1437	&dev_attr_modalias.attr,
1438	&dev_attr_properties.attr,
1439	NULL
1440};
1441
1442static const struct attribute_group input_dev_attr_group = {
1443	.attrs	= input_dev_attrs,
1444};
1445
1446#define INPUT_DEV_ID_ATTR(name)						\
1447static ssize_t input_dev_show_id_##name(struct device *dev,		\
1448					struct device_attribute *attr,	\
1449					char *buf)			\
1450{									\
1451	struct input_dev *input_dev = to_input_dev(dev);		\
1452	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1453}									\
1454static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1455
1456INPUT_DEV_ID_ATTR(bustype);
1457INPUT_DEV_ID_ATTR(vendor);
1458INPUT_DEV_ID_ATTR(product);
1459INPUT_DEV_ID_ATTR(version);
1460
1461static struct attribute *input_dev_id_attrs[] = {
1462	&dev_attr_bustype.attr,
1463	&dev_attr_vendor.attr,
1464	&dev_attr_product.attr,
1465	&dev_attr_version.attr,
1466	NULL
1467};
1468
1469static const struct attribute_group input_dev_id_attr_group = {
1470	.name	= "id",
1471	.attrs	= input_dev_id_attrs,
1472};
1473
1474static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1475			      int max, int add_cr)
1476{
1477	int i;
1478	int len = 0;
1479	bool skip_empty = true;
1480
1481	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1482		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1483					    bitmap[i], skip_empty);
1484		if (len) {
1485			skip_empty = false;
1486			if (i > 0)
1487				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1488		}
1489	}
1490
1491	/*
1492	 * If no output was produced print a single 0.
1493	 */
1494	if (len == 0)
1495		len = snprintf(buf, buf_size, "%d", 0);
1496
1497	if (add_cr)
1498		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1499
1500	return len;
1501}
1502
1503#define INPUT_DEV_CAP_ATTR(ev, bm)					\
1504static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1505				       struct device_attribute *attr,	\
1506				       char *buf)			\
1507{									\
1508	struct input_dev *input_dev = to_input_dev(dev);		\
1509	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1510				     input_dev->bm##bit, ev##_MAX,	\
1511				     true);				\
1512	return min_t(int, len, PAGE_SIZE);				\
1513}									\
1514static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1515
1516INPUT_DEV_CAP_ATTR(EV, ev);
1517INPUT_DEV_CAP_ATTR(KEY, key);
1518INPUT_DEV_CAP_ATTR(REL, rel);
1519INPUT_DEV_CAP_ATTR(ABS, abs);
1520INPUT_DEV_CAP_ATTR(MSC, msc);
1521INPUT_DEV_CAP_ATTR(LED, led);
1522INPUT_DEV_CAP_ATTR(SND, snd);
1523INPUT_DEV_CAP_ATTR(FF, ff);
1524INPUT_DEV_CAP_ATTR(SW, sw);
1525
1526static struct attribute *input_dev_caps_attrs[] = {
1527	&dev_attr_ev.attr,
1528	&dev_attr_key.attr,
1529	&dev_attr_rel.attr,
1530	&dev_attr_abs.attr,
1531	&dev_attr_msc.attr,
1532	&dev_attr_led.attr,
1533	&dev_attr_snd.attr,
1534	&dev_attr_ff.attr,
1535	&dev_attr_sw.attr,
1536	NULL
1537};
1538
1539static const struct attribute_group input_dev_caps_attr_group = {
1540	.name	= "capabilities",
1541	.attrs	= input_dev_caps_attrs,
1542};
1543
1544static const struct attribute_group *input_dev_attr_groups[] = {
1545	&input_dev_attr_group,
1546	&input_dev_id_attr_group,
1547	&input_dev_caps_attr_group,
1548	&input_poller_attribute_group,
1549	NULL
1550};
1551
1552static void input_dev_release(struct device *device)
1553{
1554	struct input_dev *dev = to_input_dev(device);
1555
1556	input_ff_destroy(dev);
1557	input_mt_destroy_slots(dev);
1558	kfree(dev->poller);
1559	kfree(dev->absinfo);
1560	kfree(dev->vals);
1561	kfree(dev);
1562
1563	module_put(THIS_MODULE);
1564}
1565
1566/*
1567 * Input uevent interface - loading event handlers based on
1568 * device bitfields.
1569 */
1570static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1571				   const char *name, unsigned long *bitmap, int max)
1572{
1573	int len;
1574
1575	if (add_uevent_var(env, "%s", name))
1576		return -ENOMEM;
1577
1578	len = input_print_bitmap(&env->buf[env->buflen - 1],
1579				 sizeof(env->buf) - env->buflen,
1580				 bitmap, max, false);
1581	if (len >= (sizeof(env->buf) - env->buflen))
1582		return -ENOMEM;
1583
1584	env->buflen += len;
1585	return 0;
1586}
1587
1588static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1589					 struct input_dev *dev)
1590{
1591	int len;
1592
1593	if (add_uevent_var(env, "MODALIAS="))
1594		return -ENOMEM;
1595
1596	len = input_print_modalias(&env->buf[env->buflen - 1],
1597				   sizeof(env->buf) - env->buflen,
1598				   dev, 0);
1599	if (len >= (sizeof(env->buf) - env->buflen))
1600		return -ENOMEM;
1601
1602	env->buflen += len;
1603	return 0;
1604}
1605
1606#define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1607	do {								\
1608		int err = add_uevent_var(env, fmt, val);		\
1609		if (err)						\
1610			return err;					\
1611	} while (0)
1612
1613#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1614	do {								\
1615		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1616		if (err)						\
1617			return err;					\
1618	} while (0)
1619
1620#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1621	do {								\
1622		int err = input_add_uevent_modalias_var(env, dev);	\
1623		if (err)						\
1624			return err;					\
1625	} while (0)
1626
1627static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1628{
1629	struct input_dev *dev = to_input_dev(device);
1630
1631	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1632				dev->id.bustype, dev->id.vendor,
1633				dev->id.product, dev->id.version);
1634	if (dev->name)
1635		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1636	if (dev->phys)
1637		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1638	if (dev->uniq)
1639		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1640
1641	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1642
1643	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1644	if (test_bit(EV_KEY, dev->evbit))
1645		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1646	if (test_bit(EV_REL, dev->evbit))
1647		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1648	if (test_bit(EV_ABS, dev->evbit))
1649		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1650	if (test_bit(EV_MSC, dev->evbit))
1651		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1652	if (test_bit(EV_LED, dev->evbit))
1653		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1654	if (test_bit(EV_SND, dev->evbit))
1655		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1656	if (test_bit(EV_FF, dev->evbit))
1657		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1658	if (test_bit(EV_SW, dev->evbit))
1659		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1660
1661	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1662
1663	return 0;
1664}
1665
1666#define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1667	do {								\
1668		int i;							\
1669		bool active;						\
1670									\
1671		if (!test_bit(EV_##type, dev->evbit))			\
1672			break;						\
1673									\
1674		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1675			active = test_bit(i, dev->bits);		\
1676			if (!active && !on)				\
1677				continue;				\
1678									\
1679			dev->event(dev, EV_##type, i, on ? active : 0);	\
1680		}							\
1681	} while (0)
1682
1683static void input_dev_toggle(struct input_dev *dev, bool activate)
1684{
1685	if (!dev->event)
1686		return;
1687
1688	INPUT_DO_TOGGLE(dev, LED, led, activate);
1689	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1690
1691	if (activate && test_bit(EV_REP, dev->evbit)) {
1692		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1693		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1694	}
1695}
1696
1697/**
1698 * input_reset_device() - reset/restore the state of input device
1699 * @dev: input device whose state needs to be reset
1700 *
1701 * This function tries to reset the state of an opened input device and
1702 * bring internal state and state if the hardware in sync with each other.
1703 * We mark all keys as released, restore LED state, repeat rate, etc.
1704 */
1705void input_reset_device(struct input_dev *dev)
1706{
1707	unsigned long flags;
1708
1709	mutex_lock(&dev->mutex);
1710	spin_lock_irqsave(&dev->event_lock, flags);
1711
1712	input_dev_toggle(dev, true);
1713	input_dev_release_keys(dev);
1714
1715	spin_unlock_irqrestore(&dev->event_lock, flags);
1716	mutex_unlock(&dev->mutex);
1717}
1718EXPORT_SYMBOL(input_reset_device);
1719
1720#ifdef CONFIG_PM_SLEEP
1721static int input_dev_suspend(struct device *dev)
1722{
1723	struct input_dev *input_dev = to_input_dev(dev);
1724
1725	spin_lock_irq(&input_dev->event_lock);
1726
1727	/*
1728	 * Keys that are pressed now are unlikely to be
1729	 * still pressed when we resume.
1730	 */
1731	input_dev_release_keys(input_dev);
1732
1733	/* Turn off LEDs and sounds, if any are active. */
1734	input_dev_toggle(input_dev, false);
1735
1736	spin_unlock_irq(&input_dev->event_lock);
1737
1738	return 0;
1739}
1740
1741static int input_dev_resume(struct device *dev)
1742{
1743	struct input_dev *input_dev = to_input_dev(dev);
1744
1745	spin_lock_irq(&input_dev->event_lock);
1746
1747	/* Restore state of LEDs and sounds, if any were active. */
1748	input_dev_toggle(input_dev, true);
1749
1750	spin_unlock_irq(&input_dev->event_lock);
1751
1752	return 0;
1753}
1754
1755static int input_dev_freeze(struct device *dev)
1756{
1757	struct input_dev *input_dev = to_input_dev(dev);
1758
1759	spin_lock_irq(&input_dev->event_lock);
1760
1761	/*
1762	 * Keys that are pressed now are unlikely to be
1763	 * still pressed when we resume.
1764	 */
1765	input_dev_release_keys(input_dev);
1766
1767	spin_unlock_irq(&input_dev->event_lock);
1768
1769	return 0;
1770}
1771
1772static int input_dev_poweroff(struct device *dev)
1773{
1774	struct input_dev *input_dev = to_input_dev(dev);
1775
1776	spin_lock_irq(&input_dev->event_lock);
1777
1778	/* Turn off LEDs and sounds, if any are active. */
1779	input_dev_toggle(input_dev, false);
1780
1781	spin_unlock_irq(&input_dev->event_lock);
1782
1783	return 0;
1784}
1785
1786static const struct dev_pm_ops input_dev_pm_ops = {
1787	.suspend	= input_dev_suspend,
1788	.resume		= input_dev_resume,
1789	.freeze		= input_dev_freeze,
1790	.poweroff	= input_dev_poweroff,
1791	.restore	= input_dev_resume,
1792};
1793#endif /* CONFIG_PM */
1794
1795static const struct device_type input_dev_type = {
1796	.groups		= input_dev_attr_groups,
1797	.release	= input_dev_release,
1798	.uevent		= input_dev_uevent,
1799#ifdef CONFIG_PM_SLEEP
1800	.pm		= &input_dev_pm_ops,
1801#endif
1802};
1803
1804static char *input_devnode(struct device *dev, umode_t *mode)
1805{
1806	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1807}
1808
1809struct class input_class = {
1810	.name		= "input",
1811	.devnode	= input_devnode,
1812};
1813EXPORT_SYMBOL_GPL(input_class);
1814
1815/**
1816 * input_allocate_device - allocate memory for new input device
1817 *
1818 * Returns prepared struct input_dev or %NULL.
1819 *
1820 * NOTE: Use input_free_device() to free devices that have not been
1821 * registered; input_unregister_device() should be used for already
1822 * registered devices.
1823 */
1824struct input_dev *input_allocate_device(void)
1825{
1826	static atomic_t input_no = ATOMIC_INIT(-1);
1827	struct input_dev *dev;
1828
1829	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1830	if (dev) {
1831		dev->dev.type = &input_dev_type;
1832		dev->dev.class = &input_class;
1833		device_initialize(&dev->dev);
1834		mutex_init(&dev->mutex);
1835		spin_lock_init(&dev->event_lock);
1836		timer_setup(&dev->timer, NULL, 0);
1837		INIT_LIST_HEAD(&dev->h_list);
1838		INIT_LIST_HEAD(&dev->node);
1839
1840		dev_set_name(&dev->dev, "input%lu",
1841			     (unsigned long)atomic_inc_return(&input_no));
1842
1843		__module_get(THIS_MODULE);
1844	}
1845
1846	return dev;
1847}
1848EXPORT_SYMBOL(input_allocate_device);
1849
1850struct input_devres {
1851	struct input_dev *input;
1852};
1853
1854static int devm_input_device_match(struct device *dev, void *res, void *data)
1855{
1856	struct input_devres *devres = res;
1857
1858	return devres->input == data;
1859}
1860
1861static void devm_input_device_release(struct device *dev, void *res)
1862{
1863	struct input_devres *devres = res;
1864	struct input_dev *input = devres->input;
1865
1866	dev_dbg(dev, "%s: dropping reference to %s\n",
1867		__func__, dev_name(&input->dev));
1868	input_put_device(input);
1869}
1870
1871/**
1872 * devm_input_allocate_device - allocate managed input device
1873 * @dev: device owning the input device being created
1874 *
1875 * Returns prepared struct input_dev or %NULL.
1876 *
1877 * Managed input devices do not need to be explicitly unregistered or
1878 * freed as it will be done automatically when owner device unbinds from
1879 * its driver (or binding fails). Once managed input device is allocated,
1880 * it is ready to be set up and registered in the same fashion as regular
1881 * input device. There are no special devm_input_device_[un]register()
1882 * variants, regular ones work with both managed and unmanaged devices,
1883 * should you need them. In most cases however, managed input device need
1884 * not be explicitly unregistered or freed.
1885 *
1886 * NOTE: the owner device is set up as parent of input device and users
1887 * should not override it.
1888 */
1889struct input_dev *devm_input_allocate_device(struct device *dev)
1890{
1891	struct input_dev *input;
1892	struct input_devres *devres;
1893
1894	devres = devres_alloc(devm_input_device_release,
1895			      sizeof(*devres), GFP_KERNEL);
1896	if (!devres)
1897		return NULL;
1898
1899	input = input_allocate_device();
1900	if (!input) {
1901		devres_free(devres);
1902		return NULL;
1903	}
1904
1905	input->dev.parent = dev;
1906	input->devres_managed = true;
1907
1908	devres->input = input;
1909	devres_add(dev, devres);
1910
1911	return input;
1912}
1913EXPORT_SYMBOL(devm_input_allocate_device);
1914
1915/**
1916 * input_free_device - free memory occupied by input_dev structure
1917 * @dev: input device to free
1918 *
1919 * This function should only be used if input_register_device()
1920 * was not called yet or if it failed. Once device was registered
1921 * use input_unregister_device() and memory will be freed once last
1922 * reference to the device is dropped.
1923 *
1924 * Device should be allocated by input_allocate_device().
1925 *
1926 * NOTE: If there are references to the input device then memory
1927 * will not be freed until last reference is dropped.
1928 */
1929void input_free_device(struct input_dev *dev)
1930{
1931	if (dev) {
1932		if (dev->devres_managed)
1933			WARN_ON(devres_destroy(dev->dev.parent,
1934						devm_input_device_release,
1935						devm_input_device_match,
1936						dev));
1937		input_put_device(dev);
1938	}
1939}
1940EXPORT_SYMBOL(input_free_device);
1941
1942/**
1943 * input_set_timestamp - set timestamp for input events
1944 * @dev: input device to set timestamp for
1945 * @timestamp: the time at which the event has occurred
1946 *   in CLOCK_MONOTONIC
1947 *
1948 * This function is intended to provide to the input system a more
1949 * accurate time of when an event actually occurred. The driver should
1950 * call this function as soon as a timestamp is acquired ensuring
1951 * clock conversions in input_set_timestamp are done correctly.
1952 *
1953 * The system entering suspend state between timestamp acquisition and
1954 * calling input_set_timestamp can result in inaccurate conversions.
1955 */
1956void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1957{
1958	dev->timestamp[INPUT_CLK_MONO] = timestamp;
1959	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1960	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1961							   TK_OFFS_BOOT);
1962}
1963EXPORT_SYMBOL(input_set_timestamp);
1964
1965/**
1966 * input_get_timestamp - get timestamp for input events
1967 * @dev: input device to get timestamp from
1968 *
1969 * A valid timestamp is a timestamp of non-zero value.
1970 */
1971ktime_t *input_get_timestamp(struct input_dev *dev)
1972{
1973	const ktime_t invalid_timestamp = ktime_set(0, 0);
1974
1975	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1976		input_set_timestamp(dev, ktime_get());
1977
1978	return dev->timestamp;
1979}
1980EXPORT_SYMBOL(input_get_timestamp);
1981
1982/**
1983 * input_set_capability - mark device as capable of a certain event
1984 * @dev: device that is capable of emitting or accepting event
1985 * @type: type of the event (EV_KEY, EV_REL, etc...)
1986 * @code: event code
1987 *
1988 * In addition to setting up corresponding bit in appropriate capability
1989 * bitmap the function also adjusts dev->evbit.
1990 */
1991void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1992{
1993	if (type < EV_CNT && input_max_code[type] &&
1994	    code > input_max_code[type]) {
1995		pr_err("%s: invalid code %u for type %u\n", __func__, code,
1996		       type);
1997		dump_stack();
1998		return;
1999	}
2000
2001	switch (type) {
2002	case EV_KEY:
2003		__set_bit(code, dev->keybit);
2004		break;
2005
2006	case EV_REL:
2007		__set_bit(code, dev->relbit);
2008		break;
2009
2010	case EV_ABS:
2011		input_alloc_absinfo(dev);
2012		if (!dev->absinfo)
2013			return;
2014
2015		__set_bit(code, dev->absbit);
2016		break;
2017
2018	case EV_MSC:
2019		__set_bit(code, dev->mscbit);
2020		break;
2021
2022	case EV_SW:
2023		__set_bit(code, dev->swbit);
2024		break;
2025
2026	case EV_LED:
2027		__set_bit(code, dev->ledbit);
2028		break;
2029
2030	case EV_SND:
2031		__set_bit(code, dev->sndbit);
2032		break;
2033
2034	case EV_FF:
2035		__set_bit(code, dev->ffbit);
2036		break;
2037
2038	case EV_PWR:
2039		/* do nothing */
2040		break;
2041
2042	default:
2043		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2044		dump_stack();
2045		return;
2046	}
2047
2048	__set_bit(type, dev->evbit);
2049}
2050EXPORT_SYMBOL(input_set_capability);
2051
2052static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2053{
2054	int mt_slots;
2055	int i;
2056	unsigned int events;
2057
2058	if (dev->mt) {
2059		mt_slots = dev->mt->num_slots;
2060	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2061		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2062			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2063		mt_slots = clamp(mt_slots, 2, 32);
2064	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2065		mt_slots = 2;
2066	} else {
2067		mt_slots = 0;
2068	}
2069
2070	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2071
2072	if (test_bit(EV_ABS, dev->evbit))
2073		for_each_set_bit(i, dev->absbit, ABS_CNT)
2074			events += input_is_mt_axis(i) ? mt_slots : 1;
2075
2076	if (test_bit(EV_REL, dev->evbit))
2077		events += bitmap_weight(dev->relbit, REL_CNT);
2078
2079	/* Make room for KEY and MSC events */
2080	events += 7;
2081
2082	return events;
2083}
2084
2085#define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2086	do {								\
2087		if (!test_bit(EV_##type, dev->evbit))			\
2088			memset(dev->bits##bit, 0,			\
2089				sizeof(dev->bits##bit));		\
2090	} while (0)
2091
2092static void input_cleanse_bitmasks(struct input_dev *dev)
2093{
2094	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2095	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2096	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2097	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2098	INPUT_CLEANSE_BITMASK(dev, LED, led);
2099	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2100	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2101	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2102}
2103
2104static void __input_unregister_device(struct input_dev *dev)
2105{
2106	struct input_handle *handle, *next;
2107
2108	input_disconnect_device(dev);
2109
2110	mutex_lock(&input_mutex);
2111
2112	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2113		handle->handler->disconnect(handle);
2114	WARN_ON(!list_empty(&dev->h_list));
2115
2116	del_timer_sync(&dev->timer);
2117	list_del_init(&dev->node);
2118
2119	input_wakeup_procfs_readers();
2120
2121	mutex_unlock(&input_mutex);
2122
2123	device_del(&dev->dev);
2124}
2125
2126static void devm_input_device_unregister(struct device *dev, void *res)
2127{
2128	struct input_devres *devres = res;
2129	struct input_dev *input = devres->input;
2130
2131	dev_dbg(dev, "%s: unregistering device %s\n",
2132		__func__, dev_name(&input->dev));
2133	__input_unregister_device(input);
2134}
2135
2136/**
2137 * input_enable_softrepeat - enable software autorepeat
2138 * @dev: input device
2139 * @delay: repeat delay
2140 * @period: repeat period
2141 *
2142 * Enable software autorepeat on the input device.
2143 */
2144void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2145{
2146	dev->timer.function = input_repeat_key;
2147	dev->rep[REP_DELAY] = delay;
2148	dev->rep[REP_PERIOD] = period;
2149}
2150EXPORT_SYMBOL(input_enable_softrepeat);
2151
2152/**
2153 * input_register_device - register device with input core
2154 * @dev: device to be registered
2155 *
2156 * This function registers device with input core. The device must be
2157 * allocated with input_allocate_device() and all it's capabilities
2158 * set up before registering.
2159 * If function fails the device must be freed with input_free_device().
2160 * Once device has been successfully registered it can be unregistered
2161 * with input_unregister_device(); input_free_device() should not be
2162 * called in this case.
2163 *
2164 * Note that this function is also used to register managed input devices
2165 * (ones allocated with devm_input_allocate_device()). Such managed input
2166 * devices need not be explicitly unregistered or freed, their tear down
2167 * is controlled by the devres infrastructure. It is also worth noting
2168 * that tear down of managed input devices is internally a 2-step process:
2169 * registered managed input device is first unregistered, but stays in
2170 * memory and can still handle input_event() calls (although events will
2171 * not be delivered anywhere). The freeing of managed input device will
2172 * happen later, when devres stack is unwound to the point where device
2173 * allocation was made.
2174 */
2175int input_register_device(struct input_dev *dev)
2176{
2177	struct input_devres *devres = NULL;
2178	struct input_handler *handler;
2179	unsigned int packet_size;
2180	const char *path;
2181	int error;
2182
2183	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2184		dev_err(&dev->dev,
2185			"Absolute device without dev->absinfo, refusing to register\n");
2186		return -EINVAL;
2187	}
2188
2189	if (dev->devres_managed) {
2190		devres = devres_alloc(devm_input_device_unregister,
2191				      sizeof(*devres), GFP_KERNEL);
2192		if (!devres)
2193			return -ENOMEM;
2194
2195		devres->input = dev;
2196	}
2197
2198	/* Every input device generates EV_SYN/SYN_REPORT events. */
2199	__set_bit(EV_SYN, dev->evbit);
2200
2201	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2202	__clear_bit(KEY_RESERVED, dev->keybit);
2203
2204	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2205	input_cleanse_bitmasks(dev);
2206
2207	packet_size = input_estimate_events_per_packet(dev);
2208	if (dev->hint_events_per_packet < packet_size)
2209		dev->hint_events_per_packet = packet_size;
2210
2211	dev->max_vals = dev->hint_events_per_packet + 2;
2212	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2213	if (!dev->vals) {
2214		error = -ENOMEM;
2215		goto err_devres_free;
2216	}
2217
2218	/*
2219	 * If delay and period are pre-set by the driver, then autorepeating
2220	 * is handled by the driver itself and we don't do it in input.c.
2221	 */
2222	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2223		input_enable_softrepeat(dev, 250, 33);
2224
2225	if (!dev->getkeycode)
2226		dev->getkeycode = input_default_getkeycode;
2227
2228	if (!dev->setkeycode)
2229		dev->setkeycode = input_default_setkeycode;
2230
2231	if (dev->poller)
2232		input_dev_poller_finalize(dev->poller);
2233
2234	error = device_add(&dev->dev);
2235	if (error)
2236		goto err_free_vals;
2237
2238	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2239	pr_info("%s as %s\n",
2240		dev->name ? dev->name : "Unspecified device",
2241		path ? path : "N/A");
2242	kfree(path);
2243
2244	error = mutex_lock_interruptible(&input_mutex);
2245	if (error)
2246		goto err_device_del;
2247
2248	list_add_tail(&dev->node, &input_dev_list);
2249
2250	list_for_each_entry(handler, &input_handler_list, node)
2251		input_attach_handler(dev, handler);
2252
2253	input_wakeup_procfs_readers();
2254
2255	mutex_unlock(&input_mutex);
2256
2257	if (dev->devres_managed) {
2258		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2259			__func__, dev_name(&dev->dev));
2260		devres_add(dev->dev.parent, devres);
2261	}
2262	return 0;
2263
2264err_device_del:
2265	device_del(&dev->dev);
2266err_free_vals:
2267	kfree(dev->vals);
2268	dev->vals = NULL;
2269err_devres_free:
2270	devres_free(devres);
2271	return error;
2272}
2273EXPORT_SYMBOL(input_register_device);
2274
2275/**
2276 * input_unregister_device - unregister previously registered device
2277 * @dev: device to be unregistered
2278 *
2279 * This function unregisters an input device. Once device is unregistered
2280 * the caller should not try to access it as it may get freed at any moment.
2281 */
2282void input_unregister_device(struct input_dev *dev)
2283{
2284	if (dev->devres_managed) {
2285		WARN_ON(devres_destroy(dev->dev.parent,
2286					devm_input_device_unregister,
2287					devm_input_device_match,
2288					dev));
2289		__input_unregister_device(dev);
2290		/*
2291		 * We do not do input_put_device() here because it will be done
2292		 * when 2nd devres fires up.
2293		 */
2294	} else {
2295		__input_unregister_device(dev);
2296		input_put_device(dev);
2297	}
2298}
2299EXPORT_SYMBOL(input_unregister_device);
2300
2301/**
2302 * input_register_handler - register a new input handler
2303 * @handler: handler to be registered
2304 *
2305 * This function registers a new input handler (interface) for input
2306 * devices in the system and attaches it to all input devices that
2307 * are compatible with the handler.
2308 */
2309int input_register_handler(struct input_handler *handler)
2310{
2311	struct input_dev *dev;
2312	int error;
2313
2314	error = mutex_lock_interruptible(&input_mutex);
2315	if (error)
2316		return error;
2317
2318	INIT_LIST_HEAD(&handler->h_list);
2319
2320	list_add_tail(&handler->node, &input_handler_list);
2321
2322	list_for_each_entry(dev, &input_dev_list, node)
2323		input_attach_handler(dev, handler);
2324
2325	input_wakeup_procfs_readers();
2326
2327	mutex_unlock(&input_mutex);
2328	return 0;
2329}
2330EXPORT_SYMBOL(input_register_handler);
2331
2332/**
2333 * input_unregister_handler - unregisters an input handler
2334 * @handler: handler to be unregistered
2335 *
2336 * This function disconnects a handler from its input devices and
2337 * removes it from lists of known handlers.
2338 */
2339void input_unregister_handler(struct input_handler *handler)
2340{
2341	struct input_handle *handle, *next;
2342
2343	mutex_lock(&input_mutex);
2344
2345	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2346		handler->disconnect(handle);
2347	WARN_ON(!list_empty(&handler->h_list));
2348
2349	list_del_init(&handler->node);
2350
2351	input_wakeup_procfs_readers();
2352
2353	mutex_unlock(&input_mutex);
2354}
2355EXPORT_SYMBOL(input_unregister_handler);
2356
2357/**
2358 * input_handler_for_each_handle - handle iterator
2359 * @handler: input handler to iterate
2360 * @data: data for the callback
2361 * @fn: function to be called for each handle
2362 *
2363 * Iterate over @bus's list of devices, and call @fn for each, passing
2364 * it @data and stop when @fn returns a non-zero value. The function is
2365 * using RCU to traverse the list and therefore may be using in atomic
2366 * contexts. The @fn callback is invoked from RCU critical section and
2367 * thus must not sleep.
2368 */
2369int input_handler_for_each_handle(struct input_handler *handler, void *data,
2370				  int (*fn)(struct input_handle *, void *))
2371{
2372	struct input_handle *handle;
2373	int retval = 0;
2374
2375	rcu_read_lock();
2376
2377	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2378		retval = fn(handle, data);
2379		if (retval)
2380			break;
2381	}
2382
2383	rcu_read_unlock();
2384
2385	return retval;
2386}
2387EXPORT_SYMBOL(input_handler_for_each_handle);
2388
2389/**
2390 * input_register_handle - register a new input handle
2391 * @handle: handle to register
2392 *
2393 * This function puts a new input handle onto device's
2394 * and handler's lists so that events can flow through
2395 * it once it is opened using input_open_device().
2396 *
2397 * This function is supposed to be called from handler's
2398 * connect() method.
2399 */
2400int input_register_handle(struct input_handle *handle)
2401{
2402	struct input_handler *handler = handle->handler;
2403	struct input_dev *dev = handle->dev;
2404	int error;
2405
2406	/*
2407	 * We take dev->mutex here to prevent race with
2408	 * input_release_device().
2409	 */
2410	error = mutex_lock_interruptible(&dev->mutex);
2411	if (error)
2412		return error;
2413
2414	/*
2415	 * Filters go to the head of the list, normal handlers
2416	 * to the tail.
2417	 */
2418	if (handler->filter)
2419		list_add_rcu(&handle->d_node, &dev->h_list);
2420	else
2421		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2422
2423	mutex_unlock(&dev->mutex);
2424
2425	/*
2426	 * Since we are supposed to be called from ->connect()
2427	 * which is mutually exclusive with ->disconnect()
2428	 * we can't be racing with input_unregister_handle()
2429	 * and so separate lock is not needed here.
2430	 */
2431	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2432
2433	if (handler->start)
2434		handler->start(handle);
2435
2436	return 0;
2437}
2438EXPORT_SYMBOL(input_register_handle);
2439
2440/**
2441 * input_unregister_handle - unregister an input handle
2442 * @handle: handle to unregister
2443 *
2444 * This function removes input handle from device's
2445 * and handler's lists.
2446 *
2447 * This function is supposed to be called from handler's
2448 * disconnect() method.
2449 */
2450void input_unregister_handle(struct input_handle *handle)
2451{
2452	struct input_dev *dev = handle->dev;
2453
2454	list_del_rcu(&handle->h_node);
2455
2456	/*
2457	 * Take dev->mutex to prevent race with input_release_device().
2458	 */
2459	mutex_lock(&dev->mutex);
2460	list_del_rcu(&handle->d_node);
2461	mutex_unlock(&dev->mutex);
2462
2463	synchronize_rcu();
2464}
2465EXPORT_SYMBOL(input_unregister_handle);
2466
2467/**
2468 * input_get_new_minor - allocates a new input minor number
2469 * @legacy_base: beginning or the legacy range to be searched
2470 * @legacy_num: size of legacy range
2471 * @allow_dynamic: whether we can also take ID from the dynamic range
2472 *
2473 * This function allocates a new device minor for from input major namespace.
2474 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2475 * parameters and whether ID can be allocated from dynamic range if there are
2476 * no free IDs in legacy range.
2477 */
2478int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2479			bool allow_dynamic)
2480{
2481	/*
2482	 * This function should be called from input handler's ->connect()
2483	 * methods, which are serialized with input_mutex, so no additional
2484	 * locking is needed here.
2485	 */
2486	if (legacy_base >= 0) {
2487		int minor = ida_simple_get(&input_ida,
2488					   legacy_base,
2489					   legacy_base + legacy_num,
2490					   GFP_KERNEL);
2491		if (minor >= 0 || !allow_dynamic)
2492			return minor;
2493	}
2494
2495	return ida_simple_get(&input_ida,
2496			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2497			      GFP_KERNEL);
2498}
2499EXPORT_SYMBOL(input_get_new_minor);
2500
2501/**
2502 * input_free_minor - release previously allocated minor
2503 * @minor: minor to be released
2504 *
2505 * This function releases previously allocated input minor so that it can be
2506 * reused later.
2507 */
2508void input_free_minor(unsigned int minor)
2509{
2510	ida_simple_remove(&input_ida, minor);
2511}
2512EXPORT_SYMBOL(input_free_minor);
2513
2514static int __init input_init(void)
2515{
2516	int err;
2517
2518	err = class_register(&input_class);
2519	if (err) {
2520		pr_err("unable to register input_dev class\n");
2521		return err;
2522	}
2523
2524	err = input_proc_init();
2525	if (err)
2526		goto fail1;
2527
2528	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2529				     INPUT_MAX_CHAR_DEVICES, "input");
2530	if (err) {
2531		pr_err("unable to register char major %d", INPUT_MAJOR);
2532		goto fail2;
2533	}
2534
2535	return 0;
2536
2537 fail2:	input_proc_exit();
2538 fail1:	class_unregister(&input_class);
2539	return err;
2540}
2541
2542static void __exit input_exit(void)
2543{
2544	input_proc_exit();
2545	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2546				 INPUT_MAX_CHAR_DEVICES);
2547	class_unregister(&input_class);
2548}
2549
2550subsys_initcall(input_init);
2551module_exit(input_exit);
2552