1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * RDMA Transport Layer
4 *
5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8 */
9
10#undef pr_fmt
11#define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12
13#include <linux/module.h>
14#include <linux/rculist.h>
15#include <linux/random.h>
16
17#include "rtrs-clt.h"
18#include "rtrs-log.h"
19
20#define RTRS_CONNECT_TIMEOUT_MS 30000
21/*
22 * Wait a bit before trying to reconnect after a failure
23 * in order to give server time to finish clean up which
24 * leads to "false positives" failed reconnect attempts
25 */
26#define RTRS_RECONNECT_BACKOFF 1000
27/*
28 * Wait for additional random time between 0 and 8 seconds
29 * before starting to reconnect to avoid clients reconnecting
30 * all at once in case of a major network outage
31 */
32#define RTRS_RECONNECT_SEED 8
33
34#define FIRST_CONN 0x01
35
36MODULE_DESCRIPTION("RDMA Transport Client");
37MODULE_LICENSE("GPL");
38
39static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
40static struct rtrs_rdma_dev_pd dev_pd = {
41	.ops = &dev_pd_ops
42};
43
44static struct workqueue_struct *rtrs_wq;
45static struct class *rtrs_clt_dev_class;
46
47static inline bool rtrs_clt_is_connected(const struct rtrs_clt *clt)
48{
49	struct rtrs_clt_sess *sess;
50	bool connected = false;
51
52	rcu_read_lock();
53	list_for_each_entry_rcu(sess, &clt->paths_list, s.entry)
54		connected |= READ_ONCE(sess->state) == RTRS_CLT_CONNECTED;
55	rcu_read_unlock();
56
57	return connected;
58}
59
60static struct rtrs_permit *
61__rtrs_get_permit(struct rtrs_clt *clt, enum rtrs_clt_con_type con_type)
62{
63	size_t max_depth = clt->queue_depth;
64	struct rtrs_permit *permit;
65	int bit;
66
67	/*
68	 * Adapted from null_blk get_tag(). Callers from different cpus may
69	 * grab the same bit, since find_first_zero_bit is not atomic.
70	 * But then the test_and_set_bit_lock will fail for all the
71	 * callers but one, so that they will loop again.
72	 * This way an explicit spinlock is not required.
73	 */
74	do {
75		bit = find_first_zero_bit(clt->permits_map, max_depth);
76		if (unlikely(bit >= max_depth))
77			return NULL;
78	} while (unlikely(test_and_set_bit_lock(bit, clt->permits_map)));
79
80	permit = get_permit(clt, bit);
81	WARN_ON(permit->mem_id != bit);
82	permit->cpu_id = raw_smp_processor_id();
83	permit->con_type = con_type;
84
85	return permit;
86}
87
88static inline void __rtrs_put_permit(struct rtrs_clt *clt,
89				      struct rtrs_permit *permit)
90{
91	clear_bit_unlock(permit->mem_id, clt->permits_map);
92}
93
94/**
95 * rtrs_clt_get_permit() - allocates permit for future RDMA operation
96 * @clt:	Current session
97 * @con_type:	Type of connection to use with the permit
98 * @can_wait:	Wait type
99 *
100 * Description:
101 *    Allocates permit for the following RDMA operation.  Permit is used
102 *    to preallocate all resources and to propagate memory pressure
103 *    up earlier.
104 *
105 * Context:
106 *    Can sleep if @wait == RTRS_TAG_WAIT
107 */
108struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt *clt,
109					  enum rtrs_clt_con_type con_type,
110					  int can_wait)
111{
112	struct rtrs_permit *permit;
113	DEFINE_WAIT(wait);
114
115	permit = __rtrs_get_permit(clt, con_type);
116	if (likely(permit) || !can_wait)
117		return permit;
118
119	do {
120		prepare_to_wait(&clt->permits_wait, &wait,
121				TASK_UNINTERRUPTIBLE);
122		permit = __rtrs_get_permit(clt, con_type);
123		if (likely(permit))
124			break;
125
126		io_schedule();
127	} while (1);
128
129	finish_wait(&clt->permits_wait, &wait);
130
131	return permit;
132}
133EXPORT_SYMBOL(rtrs_clt_get_permit);
134
135/**
136 * rtrs_clt_put_permit() - puts allocated permit
137 * @clt:	Current session
138 * @permit:	Permit to be freed
139 *
140 * Context:
141 *    Does not matter
142 */
143void rtrs_clt_put_permit(struct rtrs_clt *clt, struct rtrs_permit *permit)
144{
145	if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
146		return;
147
148	__rtrs_put_permit(clt, permit);
149
150	/*
151	 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
152	 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
153	 * it must have added itself to &clt->permits_wait before
154	 * __rtrs_put_permit() finished.
155	 * Hence it is safe to guard wake_up() with a waitqueue_active() test.
156	 */
157	if (waitqueue_active(&clt->permits_wait))
158		wake_up(&clt->permits_wait);
159}
160EXPORT_SYMBOL(rtrs_clt_put_permit);
161
162void *rtrs_permit_to_pdu(struct rtrs_permit *permit)
163{
164	return permit + 1;
165}
166EXPORT_SYMBOL(rtrs_permit_to_pdu);
167
168/**
169 * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
170 * @sess: client session pointer
171 * @permit: permit for the allocation of the RDMA buffer
172 * Note:
173 *     IO connection starts from 1.
174 *     0 connection is for user messages.
175 */
176static
177struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_sess *sess,
178					    struct rtrs_permit *permit)
179{
180	int id = 0;
181
182	if (likely(permit->con_type == RTRS_IO_CON))
183		id = (permit->cpu_id % (sess->s.con_num - 1)) + 1;
184
185	return to_clt_con(sess->s.con[id]);
186}
187
188/**
189 * __rtrs_clt_change_state() - change the session state through session state
190 * machine.
191 *
192 * @sess: client session to change the state of.
193 * @new_state: state to change to.
194 *
195 * returns true if successful, false if the requested state can not be set.
196 *
197 * Locks:
198 * state_wq lock must be hold.
199 */
200static bool __rtrs_clt_change_state(struct rtrs_clt_sess *sess,
201				     enum rtrs_clt_state new_state)
202{
203	enum rtrs_clt_state old_state;
204	bool changed = false;
205
206	lockdep_assert_held(&sess->state_wq.lock);
207
208	old_state = sess->state;
209	switch (new_state) {
210	case RTRS_CLT_CONNECTING:
211		switch (old_state) {
212		case RTRS_CLT_RECONNECTING:
213			changed = true;
214			fallthrough;
215		default:
216			break;
217		}
218		break;
219	case RTRS_CLT_RECONNECTING:
220		switch (old_state) {
221		case RTRS_CLT_CONNECTED:
222		case RTRS_CLT_CONNECTING_ERR:
223		case RTRS_CLT_CLOSED:
224			changed = true;
225			fallthrough;
226		default:
227			break;
228		}
229		break;
230	case RTRS_CLT_CONNECTED:
231		switch (old_state) {
232		case RTRS_CLT_CONNECTING:
233			changed = true;
234			fallthrough;
235		default:
236			break;
237		}
238		break;
239	case RTRS_CLT_CONNECTING_ERR:
240		switch (old_state) {
241		case RTRS_CLT_CONNECTING:
242			changed = true;
243			fallthrough;
244		default:
245			break;
246		}
247		break;
248	case RTRS_CLT_CLOSING:
249		switch (old_state) {
250		case RTRS_CLT_CONNECTING:
251		case RTRS_CLT_CONNECTING_ERR:
252		case RTRS_CLT_RECONNECTING:
253		case RTRS_CLT_CONNECTED:
254			changed = true;
255			fallthrough;
256		default:
257			break;
258		}
259		break;
260	case RTRS_CLT_CLOSED:
261		switch (old_state) {
262		case RTRS_CLT_CLOSING:
263			changed = true;
264			fallthrough;
265		default:
266			break;
267		}
268		break;
269	case RTRS_CLT_DEAD:
270		switch (old_state) {
271		case RTRS_CLT_CLOSED:
272			changed = true;
273			fallthrough;
274		default:
275			break;
276		}
277		break;
278	default:
279		break;
280	}
281	if (changed) {
282		sess->state = new_state;
283		wake_up_locked(&sess->state_wq);
284	}
285
286	return changed;
287}
288
289static bool rtrs_clt_change_state_from_to(struct rtrs_clt_sess *sess,
290					   enum rtrs_clt_state old_state,
291					   enum rtrs_clt_state new_state)
292{
293	bool changed = false;
294
295	spin_lock_irq(&sess->state_wq.lock);
296	if (sess->state == old_state)
297		changed = __rtrs_clt_change_state(sess, new_state);
298	spin_unlock_irq(&sess->state_wq.lock);
299
300	return changed;
301}
302
303static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
304{
305	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
306
307	if (rtrs_clt_change_state_from_to(sess,
308					   RTRS_CLT_CONNECTED,
309					   RTRS_CLT_RECONNECTING)) {
310		struct rtrs_clt *clt = sess->clt;
311		unsigned int delay_ms;
312
313		/*
314		 * Normal scenario, reconnect if we were successfully connected
315		 */
316		delay_ms = clt->reconnect_delay_sec * 1000;
317		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
318				   msecs_to_jiffies(delay_ms +
319						    prandom_u32() % RTRS_RECONNECT_SEED));
320	} else {
321		/*
322		 * Error can happen just on establishing new connection,
323		 * so notify waiter with error state, waiter is responsible
324		 * for cleaning the rest and reconnect if needed.
325		 */
326		rtrs_clt_change_state_from_to(sess,
327					       RTRS_CLT_CONNECTING,
328					       RTRS_CLT_CONNECTING_ERR);
329	}
330}
331
332static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
333{
334	struct rtrs_clt_con *con = cq->cq_context;
335
336	if (unlikely(wc->status != IB_WC_SUCCESS)) {
337		rtrs_err(con->c.sess, "Failed IB_WR_REG_MR: %s\n",
338			  ib_wc_status_msg(wc->status));
339		rtrs_rdma_error_recovery(con);
340	}
341}
342
343static struct ib_cqe fast_reg_cqe = {
344	.done = rtrs_clt_fast_reg_done
345};
346
347static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
348			      bool notify, bool can_wait);
349
350static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
351{
352	struct rtrs_clt_io_req *req =
353		container_of(wc->wr_cqe, typeof(*req), inv_cqe);
354	struct rtrs_clt_con *con = cq->cq_context;
355
356	if (unlikely(wc->status != IB_WC_SUCCESS)) {
357		rtrs_err(con->c.sess, "Failed IB_WR_LOCAL_INV: %s\n",
358			  ib_wc_status_msg(wc->status));
359		rtrs_rdma_error_recovery(con);
360	}
361	req->need_inv = false;
362	if (likely(req->need_inv_comp))
363		complete(&req->inv_comp);
364	else
365		/* Complete request from INV callback */
366		complete_rdma_req(req, req->inv_errno, true, false);
367}
368
369static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
370{
371	struct rtrs_clt_con *con = req->con;
372	struct ib_send_wr wr = {
373		.opcode		    = IB_WR_LOCAL_INV,
374		.wr_cqe		    = &req->inv_cqe,
375		.send_flags	    = IB_SEND_SIGNALED,
376		.ex.invalidate_rkey = req->mr->rkey,
377	};
378	req->inv_cqe.done = rtrs_clt_inv_rkey_done;
379
380	return ib_post_send(con->c.qp, &wr, NULL);
381}
382
383static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
384			      bool notify, bool can_wait)
385{
386	struct rtrs_clt_con *con = req->con;
387	struct rtrs_clt_sess *sess;
388	int err;
389
390	if (!req->in_use)
391		return;
392	if (WARN_ON(!req->con))
393		return;
394	sess = to_clt_sess(con->c.sess);
395
396	if (req->sg_cnt) {
397		if (unlikely(req->dir == DMA_FROM_DEVICE && req->need_inv)) {
398			/*
399			 * We are here to invalidate read requests
400			 * ourselves.  In normal scenario server should
401			 * send INV for all read requests, but
402			 * we are here, thus two things could happen:
403			 *
404			 *    1.  this is failover, when errno != 0
405			 *        and can_wait == 1,
406			 *
407			 *    2.  something totally bad happened and
408			 *        server forgot to send INV, so we
409			 *        should do that ourselves.
410			 */
411
412			if (likely(can_wait)) {
413				req->need_inv_comp = true;
414			} else {
415				/* This should be IO path, so always notify */
416				WARN_ON(!notify);
417				/* Save errno for INV callback */
418				req->inv_errno = errno;
419			}
420
421			err = rtrs_inv_rkey(req);
422			if (unlikely(err)) {
423				rtrs_err(con->c.sess, "Send INV WR key=%#x: %d\n",
424					  req->mr->rkey, err);
425			} else if (likely(can_wait)) {
426				wait_for_completion(&req->inv_comp);
427			} else {
428				/*
429				 * Something went wrong, so request will be
430				 * completed from INV callback.
431				 */
432				WARN_ON_ONCE(1);
433
434				return;
435			}
436		}
437		ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
438				req->sg_cnt, req->dir);
439	}
440	if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
441		atomic_dec(&sess->stats->inflight);
442
443	req->in_use = false;
444	req->con = NULL;
445
446	if (notify)
447		req->conf(req->priv, errno);
448}
449
450static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
451				struct rtrs_clt_io_req *req,
452				struct rtrs_rbuf *rbuf, u32 off,
453				u32 imm, struct ib_send_wr *wr)
454{
455	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
456	enum ib_send_flags flags;
457	struct ib_sge sge;
458
459	if (unlikely(!req->sg_size)) {
460		rtrs_wrn(con->c.sess,
461			 "Doing RDMA Write failed, no data supplied\n");
462		return -EINVAL;
463	}
464
465	/* user data and user message in the first list element */
466	sge.addr   = req->iu->dma_addr;
467	sge.length = req->sg_size;
468	sge.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
469
470	/*
471	 * From time to time we have to post signalled sends,
472	 * or send queue will fill up and only QP reset can help.
473	 */
474	flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
475			0 : IB_SEND_SIGNALED;
476
477	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
478				      req->sg_size, DMA_TO_DEVICE);
479
480	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
481					    rbuf->rkey, rbuf->addr + off,
482					    imm, flags, wr);
483}
484
485static void process_io_rsp(struct rtrs_clt_sess *sess, u32 msg_id,
486			   s16 errno, bool w_inval)
487{
488	struct rtrs_clt_io_req *req;
489
490	if (WARN_ON(msg_id >= sess->queue_depth))
491		return;
492
493	req = &sess->reqs[msg_id];
494	/* Drop need_inv if server responded with send with invalidation */
495	req->need_inv &= !w_inval;
496	complete_rdma_req(req, errno, true, false);
497}
498
499static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
500{
501	struct rtrs_iu *iu;
502	int err;
503	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
504
505	WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0);
506	iu = container_of(wc->wr_cqe, struct rtrs_iu,
507			  cqe);
508	err = rtrs_iu_post_recv(&con->c, iu);
509	if (unlikely(err)) {
510		rtrs_err(con->c.sess, "post iu failed %d\n", err);
511		rtrs_rdma_error_recovery(con);
512	}
513}
514
515static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
516{
517	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
518	struct rtrs_msg_rkey_rsp *msg;
519	u32 imm_type, imm_payload;
520	bool w_inval = false;
521	struct rtrs_iu *iu;
522	u32 buf_id;
523	int err;
524
525	WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0);
526
527	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
528
529	if (unlikely(wc->byte_len < sizeof(*msg))) {
530		rtrs_err(con->c.sess, "rkey response is malformed: size %d\n",
531			  wc->byte_len);
532		goto out;
533	}
534	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
535				   iu->size, DMA_FROM_DEVICE);
536	msg = iu->buf;
537	if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP)) {
538		rtrs_err(sess->clt, "rkey response is malformed: type %d\n",
539			  le16_to_cpu(msg->type));
540		goto out;
541	}
542	buf_id = le16_to_cpu(msg->buf_id);
543	if (WARN_ON(buf_id >= sess->queue_depth))
544		goto out;
545
546	rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
547	if (likely(imm_type == RTRS_IO_RSP_IMM ||
548		   imm_type == RTRS_IO_RSP_W_INV_IMM)) {
549		u32 msg_id;
550
551		w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
552		rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
553
554		if (WARN_ON(buf_id != msg_id))
555			goto out;
556		sess->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
557		process_io_rsp(sess, msg_id, err, w_inval);
558	}
559	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, iu->dma_addr,
560				      iu->size, DMA_FROM_DEVICE);
561	return rtrs_clt_recv_done(con, wc);
562out:
563	rtrs_rdma_error_recovery(con);
564}
565
566static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
567
568static struct ib_cqe io_comp_cqe = {
569	.done = rtrs_clt_rdma_done
570};
571
572/*
573 * Post x2 empty WRs: first is for this RDMA with IMM,
574 * second is for RECV with INV, which happened earlier.
575 */
576static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
577{
578	struct ib_recv_wr wr_arr[2], *wr;
579	int i;
580
581	memset(wr_arr, 0, sizeof(wr_arr));
582	for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
583		wr = &wr_arr[i];
584		wr->wr_cqe  = cqe;
585		if (i)
586			/* Chain backwards */
587			wr->next = &wr_arr[i - 1];
588	}
589
590	return ib_post_recv(con->qp, wr, NULL);
591}
592
593static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
594{
595	struct rtrs_clt_con *con = cq->cq_context;
596	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
597	u32 imm_type, imm_payload;
598	bool w_inval = false;
599	int err;
600
601	if (unlikely(wc->status != IB_WC_SUCCESS)) {
602		if (wc->status != IB_WC_WR_FLUSH_ERR) {
603			rtrs_err(sess->clt, "RDMA failed: %s\n",
604				  ib_wc_status_msg(wc->status));
605			rtrs_rdma_error_recovery(con);
606		}
607		return;
608	}
609	rtrs_clt_update_wc_stats(con);
610
611	switch (wc->opcode) {
612	case IB_WC_RECV_RDMA_WITH_IMM:
613		/*
614		 * post_recv() RDMA write completions of IO reqs (read/write)
615		 * and hb
616		 */
617		if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
618			return;
619		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
620			       &imm_type, &imm_payload);
621		if (likely(imm_type == RTRS_IO_RSP_IMM ||
622			   imm_type == RTRS_IO_RSP_W_INV_IMM)) {
623			u32 msg_id;
624
625			w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
626			rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
627
628			process_io_rsp(sess, msg_id, err, w_inval);
629		} else if (imm_type == RTRS_HB_MSG_IMM) {
630			WARN_ON(con->c.cid);
631			rtrs_send_hb_ack(&sess->s);
632			if (sess->flags & RTRS_MSG_NEW_RKEY_F)
633				return  rtrs_clt_recv_done(con, wc);
634		} else if (imm_type == RTRS_HB_ACK_IMM) {
635			WARN_ON(con->c.cid);
636			sess->s.hb_missed_cnt = 0;
637			if (sess->flags & RTRS_MSG_NEW_RKEY_F)
638				return  rtrs_clt_recv_done(con, wc);
639		} else {
640			rtrs_wrn(con->c.sess, "Unknown IMM type %u\n",
641				  imm_type);
642		}
643		if (w_inval)
644			/*
645			 * Post x2 empty WRs: first is for this RDMA with IMM,
646			 * second is for RECV with INV, which happened earlier.
647			 */
648			err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
649		else
650			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
651		if (unlikely(err)) {
652			rtrs_err(con->c.sess, "rtrs_post_recv_empty(): %d\n",
653				  err);
654			rtrs_rdma_error_recovery(con);
655			break;
656		}
657		break;
658	case IB_WC_RECV:
659		/*
660		 * Key invalidations from server side
661		 */
662		WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
663			  wc->wc_flags & IB_WC_WITH_IMM));
664		WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
665		if (sess->flags & RTRS_MSG_NEW_RKEY_F) {
666			if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
667				return  rtrs_clt_recv_done(con, wc);
668
669			return  rtrs_clt_rkey_rsp_done(con, wc);
670		}
671		break;
672	case IB_WC_RDMA_WRITE:
673		/*
674		 * post_send() RDMA write completions of IO reqs (read/write)
675		 */
676		break;
677
678	default:
679		rtrs_wrn(sess->clt, "Unexpected WC type: %d\n", wc->opcode);
680		return;
681	}
682}
683
684static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
685{
686	int err, i;
687	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
688
689	for (i = 0; i < q_size; i++) {
690		if (sess->flags & RTRS_MSG_NEW_RKEY_F) {
691			struct rtrs_iu *iu = &con->rsp_ius[i];
692
693			err = rtrs_iu_post_recv(&con->c, iu);
694		} else {
695			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
696		}
697		if (unlikely(err))
698			return err;
699	}
700
701	return 0;
702}
703
704static int post_recv_sess(struct rtrs_clt_sess *sess)
705{
706	size_t q_size = 0;
707	int err, cid;
708
709	for (cid = 0; cid < sess->s.con_num; cid++) {
710		if (cid == 0)
711			q_size = SERVICE_CON_QUEUE_DEPTH;
712		else
713			q_size = sess->queue_depth;
714
715		/*
716		 * x2 for RDMA read responses + FR key invalidations,
717		 * RDMA writes do not require any FR registrations.
718		 */
719		q_size *= 2;
720
721		err = post_recv_io(to_clt_con(sess->s.con[cid]), q_size);
722		if (unlikely(err)) {
723			rtrs_err(sess->clt, "post_recv_io(), err: %d\n", err);
724			return err;
725		}
726	}
727
728	return 0;
729}
730
731struct path_it {
732	int i;
733	struct list_head skip_list;
734	struct rtrs_clt *clt;
735	struct rtrs_clt_sess *(*next_path)(struct path_it *it);
736};
737
738/**
739 * list_next_or_null_rr_rcu - get next list element in round-robin fashion.
740 * @head:	the head for the list.
741 * @ptr:        the list head to take the next element from.
742 * @type:       the type of the struct this is embedded in.
743 * @memb:       the name of the list_head within the struct.
744 *
745 * Next element returned in round-robin fashion, i.e. head will be skipped,
746 * but if list is observed as empty, NULL will be returned.
747 *
748 * This primitive may safely run concurrently with the _rcu list-mutation
749 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
750 */
751#define list_next_or_null_rr_rcu(head, ptr, type, memb) \
752({ \
753	list_next_or_null_rcu(head, ptr, type, memb) ?: \
754		list_next_or_null_rcu(head, READ_ONCE((ptr)->next), \
755				      type, memb); \
756})
757
758/**
759 * get_next_path_rr() - Returns path in round-robin fashion.
760 * @it:	the path pointer
761 *
762 * Related to @MP_POLICY_RR
763 *
764 * Locks:
765 *    rcu_read_lock() must be hold.
766 */
767static struct rtrs_clt_sess *get_next_path_rr(struct path_it *it)
768{
769	struct rtrs_clt_sess __rcu **ppcpu_path;
770	struct rtrs_clt_sess *path;
771	struct rtrs_clt *clt;
772
773	clt = it->clt;
774
775	/*
776	 * Here we use two RCU objects: @paths_list and @pcpu_path
777	 * pointer.  See rtrs_clt_remove_path_from_arr() for details
778	 * how that is handled.
779	 */
780
781	ppcpu_path = this_cpu_ptr(clt->pcpu_path);
782	path = rcu_dereference(*ppcpu_path);
783	if (unlikely(!path))
784		path = list_first_or_null_rcu(&clt->paths_list,
785					      typeof(*path), s.entry);
786	else
787		path = list_next_or_null_rr_rcu(&clt->paths_list,
788						&path->s.entry,
789						typeof(*path),
790						s.entry);
791	rcu_assign_pointer(*ppcpu_path, path);
792
793	return path;
794}
795
796/**
797 * get_next_path_min_inflight() - Returns path with minimal inflight count.
798 * @it:	the path pointer
799 *
800 * Related to @MP_POLICY_MIN_INFLIGHT
801 *
802 * Locks:
803 *    rcu_read_lock() must be hold.
804 */
805static struct rtrs_clt_sess *get_next_path_min_inflight(struct path_it *it)
806{
807	struct rtrs_clt_sess *min_path = NULL;
808	struct rtrs_clt *clt = it->clt;
809	struct rtrs_clt_sess *sess;
810	int min_inflight = INT_MAX;
811	int inflight;
812
813	list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) {
814		if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED))
815			continue;
816
817		if (unlikely(!list_empty(raw_cpu_ptr(sess->mp_skip_entry))))
818			continue;
819
820		inflight = atomic_read(&sess->stats->inflight);
821
822		if (inflight < min_inflight) {
823			min_inflight = inflight;
824			min_path = sess;
825		}
826	}
827
828	/*
829	 * add the path to the skip list, so that next time we can get
830	 * a different one
831	 */
832	if (min_path)
833		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
834
835	return min_path;
836}
837
838static inline void path_it_init(struct path_it *it, struct rtrs_clt *clt)
839{
840	INIT_LIST_HEAD(&it->skip_list);
841	it->clt = clt;
842	it->i = 0;
843
844	if (clt->mp_policy == MP_POLICY_RR)
845		it->next_path = get_next_path_rr;
846	else
847		it->next_path = get_next_path_min_inflight;
848}
849
850static inline void path_it_deinit(struct path_it *it)
851{
852	struct list_head *skip, *tmp;
853	/*
854	 * The skip_list is used only for the MIN_INFLIGHT policy.
855	 * We need to remove paths from it, so that next IO can insert
856	 * paths (->mp_skip_entry) into a skip_list again.
857	 */
858	list_for_each_safe(skip, tmp, &it->skip_list)
859		list_del_init(skip);
860}
861
862/**
863 * rtrs_clt_init_req() Initialize an rtrs_clt_io_req holding information
864 * about an inflight IO.
865 * The user buffer holding user control message (not data) is copied into
866 * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
867 * also hold the control message of rtrs.
868 * @req: an io request holding information about IO.
869 * @sess: client session
870 * @conf: conformation callback function to notify upper layer.
871 * @permit: permit for allocation of RDMA remote buffer
872 * @priv: private pointer
873 * @vec: kernel vector containing control message
874 * @usr_len: length of the user message
875 * @sg: scater list for IO data
876 * @sg_cnt: number of scater list entries
877 * @data_len: length of the IO data
878 * @dir: direction of the IO.
879 */
880static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
881			      struct rtrs_clt_sess *sess,
882			      void (*conf)(void *priv, int errno),
883			      struct rtrs_permit *permit, void *priv,
884			      const struct kvec *vec, size_t usr_len,
885			      struct scatterlist *sg, size_t sg_cnt,
886			      size_t data_len, int dir)
887{
888	struct iov_iter iter;
889	size_t len;
890
891	req->permit = permit;
892	req->in_use = true;
893	req->usr_len = usr_len;
894	req->data_len = data_len;
895	req->sglist = sg;
896	req->sg_cnt = sg_cnt;
897	req->priv = priv;
898	req->dir = dir;
899	req->con = rtrs_permit_to_clt_con(sess, permit);
900	req->conf = conf;
901	req->need_inv = false;
902	req->need_inv_comp = false;
903	req->inv_errno = 0;
904
905	iov_iter_kvec(&iter, WRITE, vec, 1, usr_len);
906	len = _copy_from_iter(req->iu->buf, usr_len, &iter);
907	WARN_ON(len != usr_len);
908
909	reinit_completion(&req->inv_comp);
910}
911
912static struct rtrs_clt_io_req *
913rtrs_clt_get_req(struct rtrs_clt_sess *sess,
914		 void (*conf)(void *priv, int errno),
915		 struct rtrs_permit *permit, void *priv,
916		 const struct kvec *vec, size_t usr_len,
917		 struct scatterlist *sg, size_t sg_cnt,
918		 size_t data_len, int dir)
919{
920	struct rtrs_clt_io_req *req;
921
922	req = &sess->reqs[permit->mem_id];
923	rtrs_clt_init_req(req, sess, conf, permit, priv, vec, usr_len,
924			   sg, sg_cnt, data_len, dir);
925	return req;
926}
927
928static struct rtrs_clt_io_req *
929rtrs_clt_get_copy_req(struct rtrs_clt_sess *alive_sess,
930		       struct rtrs_clt_io_req *fail_req)
931{
932	struct rtrs_clt_io_req *req;
933	struct kvec vec = {
934		.iov_base = fail_req->iu->buf,
935		.iov_len  = fail_req->usr_len
936	};
937
938	req = &alive_sess->reqs[fail_req->permit->mem_id];
939	rtrs_clt_init_req(req, alive_sess, fail_req->conf, fail_req->permit,
940			   fail_req->priv, &vec, fail_req->usr_len,
941			   fail_req->sglist, fail_req->sg_cnt,
942			   fail_req->data_len, fail_req->dir);
943	return req;
944}
945
946static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
947				    struct rtrs_clt_io_req *req,
948				    struct rtrs_rbuf *rbuf,
949				    u32 size, u32 imm)
950{
951	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
952	struct ib_sge *sge = req->sge;
953	enum ib_send_flags flags;
954	struct scatterlist *sg;
955	size_t num_sge;
956	int i;
957
958	for_each_sg(req->sglist, sg, req->sg_cnt, i) {
959		sge[i].addr   = sg_dma_address(sg);
960		sge[i].length = sg_dma_len(sg);
961		sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;
962	}
963	sge[i].addr   = req->iu->dma_addr;
964	sge[i].length = size;
965	sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;
966
967	num_sge = 1 + req->sg_cnt;
968
969	/*
970	 * From time to time we have to post signalled sends,
971	 * or send queue will fill up and only QP reset can help.
972	 */
973	flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
974			0 : IB_SEND_SIGNALED;
975
976	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
977				      size, DMA_TO_DEVICE);
978
979	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
980					    rbuf->rkey, rbuf->addr, imm,
981					    flags, NULL);
982}
983
984static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
985{
986	struct rtrs_clt_con *con = req->con;
987	struct rtrs_sess *s = con->c.sess;
988	struct rtrs_clt_sess *sess = to_clt_sess(s);
989	struct rtrs_msg_rdma_write *msg;
990
991	struct rtrs_rbuf *rbuf;
992	int ret, count = 0;
993	u32 imm, buf_id;
994
995	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
996
997	if (unlikely(tsize > sess->chunk_size)) {
998		rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
999			  tsize, sess->chunk_size);
1000		return -EMSGSIZE;
1001	}
1002	if (req->sg_cnt) {
1003		count = ib_dma_map_sg(sess->s.dev->ib_dev, req->sglist,
1004				      req->sg_cnt, req->dir);
1005		if (unlikely(!count)) {
1006			rtrs_wrn(s, "Write request failed, map failed\n");
1007			return -EINVAL;
1008		}
1009	}
1010	/* put rtrs msg after sg and user message */
1011	msg = req->iu->buf + req->usr_len;
1012	msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1013	msg->usr_len = cpu_to_le16(req->usr_len);
1014
1015	/* rtrs message on server side will be after user data and message */
1016	imm = req->permit->mem_off + req->data_len + req->usr_len;
1017	imm = rtrs_to_io_req_imm(imm);
1018	buf_id = req->permit->mem_id;
1019	req->sg_size = tsize;
1020	rbuf = &sess->rbufs[buf_id];
1021
1022	/*
1023	 * Update stats now, after request is successfully sent it is not
1024	 * safe anymore to touch it.
1025	 */
1026	rtrs_clt_update_all_stats(req, WRITE);
1027
1028	ret = rtrs_post_rdma_write_sg(req->con, req, rbuf,
1029				       req->usr_len + sizeof(*msg),
1030				       imm);
1031	if (unlikely(ret)) {
1032		rtrs_err(s, "Write request failed: %d\n", ret);
1033		if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1034			atomic_dec(&sess->stats->inflight);
1035		if (req->sg_cnt)
1036			ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
1037					req->sg_cnt, req->dir);
1038	}
1039
1040	return ret;
1041}
1042
1043static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1044{
1045	int nr;
1046
1047	/* Align the MR to a 4K page size to match the block virt boundary */
1048	nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1049	if (nr < 0)
1050		return nr;
1051	if (unlikely(nr < req->sg_cnt))
1052		return -EINVAL;
1053	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1054
1055	return nr;
1056}
1057
1058static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1059{
1060	struct rtrs_clt_con *con = req->con;
1061	struct rtrs_sess *s = con->c.sess;
1062	struct rtrs_clt_sess *sess = to_clt_sess(s);
1063	struct rtrs_msg_rdma_read *msg;
1064	struct rtrs_ib_dev *dev;
1065
1066	struct ib_reg_wr rwr;
1067	struct ib_send_wr *wr = NULL;
1068
1069	int ret, count = 0;
1070	u32 imm, buf_id;
1071
1072	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1073
1074	s = &sess->s;
1075	dev = sess->s.dev;
1076
1077	if (unlikely(tsize > sess->chunk_size)) {
1078		rtrs_wrn(s,
1079			  "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1080			  tsize, sess->chunk_size);
1081		return -EMSGSIZE;
1082	}
1083
1084	if (req->sg_cnt) {
1085		count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1086				      req->dir);
1087		if (unlikely(!count)) {
1088			rtrs_wrn(s,
1089				  "Read request failed, dma map failed\n");
1090			return -EINVAL;
1091		}
1092	}
1093	/* put our message into req->buf after user message*/
1094	msg = req->iu->buf + req->usr_len;
1095	msg->type = cpu_to_le16(RTRS_MSG_READ);
1096	msg->usr_len = cpu_to_le16(req->usr_len);
1097
1098	if (count) {
1099		ret = rtrs_map_sg_fr(req, count);
1100		if (ret < 0) {
1101			rtrs_err_rl(s,
1102				     "Read request failed, failed to map  fast reg. data, err: %d\n",
1103				     ret);
1104			ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1105					req->dir);
1106			return ret;
1107		}
1108		rwr = (struct ib_reg_wr) {
1109			.wr.opcode = IB_WR_REG_MR,
1110			.wr.wr_cqe = &fast_reg_cqe,
1111			.mr = req->mr,
1112			.key = req->mr->rkey,
1113			.access = (IB_ACCESS_LOCAL_WRITE |
1114				   IB_ACCESS_REMOTE_WRITE),
1115		};
1116		wr = &rwr.wr;
1117
1118		msg->sg_cnt = cpu_to_le16(1);
1119		msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1120
1121		msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1122		msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1123		msg->desc[0].len = cpu_to_le32(req->mr->length);
1124
1125		/* Further invalidation is required */
1126		req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
1127
1128	} else {
1129		msg->sg_cnt = 0;
1130		msg->flags = 0;
1131	}
1132	/*
1133	 * rtrs message will be after the space reserved for disk data and
1134	 * user message
1135	 */
1136	imm = req->permit->mem_off + req->data_len + req->usr_len;
1137	imm = rtrs_to_io_req_imm(imm);
1138	buf_id = req->permit->mem_id;
1139
1140	req->sg_size  = sizeof(*msg);
1141	req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1142	req->sg_size += req->usr_len;
1143
1144	/*
1145	 * Update stats now, after request is successfully sent it is not
1146	 * safe anymore to touch it.
1147	 */
1148	rtrs_clt_update_all_stats(req, READ);
1149
1150	ret = rtrs_post_send_rdma(req->con, req, &sess->rbufs[buf_id],
1151				   req->data_len, imm, wr);
1152	if (unlikely(ret)) {
1153		rtrs_err(s, "Read request failed: %d\n", ret);
1154		if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1155			atomic_dec(&sess->stats->inflight);
1156		req->need_inv = false;
1157		if (req->sg_cnt)
1158			ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1159					req->sg_cnt, req->dir);
1160	}
1161
1162	return ret;
1163}
1164
1165/**
1166 * rtrs_clt_failover_req() Try to find an active path for a failed request
1167 * @clt: clt context
1168 * @fail_req: a failed io request.
1169 */
1170static int rtrs_clt_failover_req(struct rtrs_clt *clt,
1171				 struct rtrs_clt_io_req *fail_req)
1172{
1173	struct rtrs_clt_sess *alive_sess;
1174	struct rtrs_clt_io_req *req;
1175	int err = -ECONNABORTED;
1176	struct path_it it;
1177
1178	rcu_read_lock();
1179	for (path_it_init(&it, clt);
1180	     (alive_sess = it.next_path(&it)) && it.i < it.clt->paths_num;
1181	     it.i++) {
1182		if (unlikely(READ_ONCE(alive_sess->state) !=
1183			     RTRS_CLT_CONNECTED))
1184			continue;
1185		req = rtrs_clt_get_copy_req(alive_sess, fail_req);
1186		if (req->dir == DMA_TO_DEVICE)
1187			err = rtrs_clt_write_req(req);
1188		else
1189			err = rtrs_clt_read_req(req);
1190		if (unlikely(err)) {
1191			req->in_use = false;
1192			continue;
1193		}
1194		/* Success path */
1195		rtrs_clt_inc_failover_cnt(alive_sess->stats);
1196		break;
1197	}
1198	path_it_deinit(&it);
1199	rcu_read_unlock();
1200
1201	return err;
1202}
1203
1204static void fail_all_outstanding_reqs(struct rtrs_clt_sess *sess)
1205{
1206	struct rtrs_clt *clt = sess->clt;
1207	struct rtrs_clt_io_req *req;
1208	int i, err;
1209
1210	if (!sess->reqs)
1211		return;
1212	for (i = 0; i < sess->queue_depth; ++i) {
1213		req = &sess->reqs[i];
1214		if (!req->in_use)
1215			continue;
1216
1217		/*
1218		 * Safely (without notification) complete failed request.
1219		 * After completion this request is still useble and can
1220		 * be failovered to another path.
1221		 */
1222		complete_rdma_req(req, -ECONNABORTED, false, true);
1223
1224		err = rtrs_clt_failover_req(clt, req);
1225		if (unlikely(err))
1226			/* Failover failed, notify anyway */
1227			req->conf(req->priv, err);
1228	}
1229}
1230
1231static void free_sess_reqs(struct rtrs_clt_sess *sess)
1232{
1233	struct rtrs_clt_io_req *req;
1234	int i;
1235
1236	if (!sess->reqs)
1237		return;
1238	for (i = 0; i < sess->queue_depth; ++i) {
1239		req = &sess->reqs[i];
1240		if (req->mr)
1241			ib_dereg_mr(req->mr);
1242		kfree(req->sge);
1243		rtrs_iu_free(req->iu, sess->s.dev->ib_dev, 1);
1244	}
1245	kfree(sess->reqs);
1246	sess->reqs = NULL;
1247}
1248
1249static int alloc_sess_reqs(struct rtrs_clt_sess *sess)
1250{
1251	struct rtrs_clt_io_req *req;
1252	struct rtrs_clt *clt = sess->clt;
1253	int i, err = -ENOMEM;
1254
1255	sess->reqs = kcalloc(sess->queue_depth, sizeof(*sess->reqs),
1256			     GFP_KERNEL);
1257	if (!sess->reqs)
1258		return -ENOMEM;
1259
1260	for (i = 0; i < sess->queue_depth; ++i) {
1261		req = &sess->reqs[i];
1262		req->iu = rtrs_iu_alloc(1, sess->max_hdr_size, GFP_KERNEL,
1263					 sess->s.dev->ib_dev,
1264					 DMA_TO_DEVICE,
1265					 rtrs_clt_rdma_done);
1266		if (!req->iu)
1267			goto out;
1268
1269		req->sge = kmalloc_array(clt->max_segments + 1,
1270					 sizeof(*req->sge), GFP_KERNEL);
1271		if (!req->sge)
1272			goto out;
1273
1274		req->mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
1275				      sess->max_pages_per_mr);
1276		if (IS_ERR(req->mr)) {
1277			err = PTR_ERR(req->mr);
1278			req->mr = NULL;
1279			pr_err("Failed to alloc sess->max_pages_per_mr %d\n",
1280			       sess->max_pages_per_mr);
1281			goto out;
1282		}
1283
1284		init_completion(&req->inv_comp);
1285	}
1286
1287	return 0;
1288
1289out:
1290	free_sess_reqs(sess);
1291
1292	return err;
1293}
1294
1295static int alloc_permits(struct rtrs_clt *clt)
1296{
1297	unsigned int chunk_bits;
1298	int err, i;
1299
1300	clt->permits_map = kcalloc(BITS_TO_LONGS(clt->queue_depth),
1301				   sizeof(long), GFP_KERNEL);
1302	if (!clt->permits_map) {
1303		err = -ENOMEM;
1304		goto out_err;
1305	}
1306	clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1307	if (!clt->permits) {
1308		err = -ENOMEM;
1309		goto err_map;
1310	}
1311	chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1312	for (i = 0; i < clt->queue_depth; i++) {
1313		struct rtrs_permit *permit;
1314
1315		permit = get_permit(clt, i);
1316		permit->mem_id = i;
1317		permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1318	}
1319
1320	return 0;
1321
1322err_map:
1323	kfree(clt->permits_map);
1324	clt->permits_map = NULL;
1325out_err:
1326	return err;
1327}
1328
1329static void free_permits(struct rtrs_clt *clt)
1330{
1331	if (clt->permits_map) {
1332		size_t sz = clt->queue_depth;
1333
1334		wait_event(clt->permits_wait,
1335			   find_first_bit(clt->permits_map, sz) >= sz);
1336	}
1337	kfree(clt->permits_map);
1338	clt->permits_map = NULL;
1339	kfree(clt->permits);
1340	clt->permits = NULL;
1341}
1342
1343static void query_fast_reg_mode(struct rtrs_clt_sess *sess)
1344{
1345	struct ib_device *ib_dev;
1346	u64 max_pages_per_mr;
1347	int mr_page_shift;
1348
1349	ib_dev = sess->s.dev->ib_dev;
1350
1351	/*
1352	 * Use the smallest page size supported by the HCA, down to a
1353	 * minimum of 4096 bytes. We're unlikely to build large sglists
1354	 * out of smaller entries.
1355	 */
1356	mr_page_shift      = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1357	max_pages_per_mr   = ib_dev->attrs.max_mr_size;
1358	do_div(max_pages_per_mr, (1ull << mr_page_shift));
1359	sess->max_pages_per_mr =
1360		min3(sess->max_pages_per_mr, (u32)max_pages_per_mr,
1361		     ib_dev->attrs.max_fast_reg_page_list_len);
1362	sess->max_send_sge = ib_dev->attrs.max_send_sge;
1363}
1364
1365static bool rtrs_clt_change_state_get_old(struct rtrs_clt_sess *sess,
1366					   enum rtrs_clt_state new_state,
1367					   enum rtrs_clt_state *old_state)
1368{
1369	bool changed;
1370
1371	spin_lock_irq(&sess->state_wq.lock);
1372	*old_state = sess->state;
1373	changed = __rtrs_clt_change_state(sess, new_state);
1374	spin_unlock_irq(&sess->state_wq.lock);
1375
1376	return changed;
1377}
1378
1379static bool rtrs_clt_change_state(struct rtrs_clt_sess *sess,
1380				   enum rtrs_clt_state new_state)
1381{
1382	enum rtrs_clt_state old_state;
1383
1384	return rtrs_clt_change_state_get_old(sess, new_state, &old_state);
1385}
1386
1387static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1388{
1389	struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
1390
1391	rtrs_rdma_error_recovery(con);
1392}
1393
1394static void rtrs_clt_init_hb(struct rtrs_clt_sess *sess)
1395{
1396	rtrs_init_hb(&sess->s, &io_comp_cqe,
1397		      RTRS_HB_INTERVAL_MS,
1398		      RTRS_HB_MISSED_MAX,
1399		      rtrs_clt_hb_err_handler,
1400		      rtrs_wq);
1401}
1402
1403static void rtrs_clt_start_hb(struct rtrs_clt_sess *sess)
1404{
1405	rtrs_start_hb(&sess->s);
1406}
1407
1408static void rtrs_clt_stop_hb(struct rtrs_clt_sess *sess)
1409{
1410	rtrs_stop_hb(&sess->s);
1411}
1412
1413static void rtrs_clt_reconnect_work(struct work_struct *work);
1414static void rtrs_clt_close_work(struct work_struct *work);
1415
1416static struct rtrs_clt_sess *alloc_sess(struct rtrs_clt *clt,
1417					 const struct rtrs_addr *path,
1418					 size_t con_num, u16 max_segments,
1419					 size_t max_segment_size)
1420{
1421	struct rtrs_clt_sess *sess;
1422	int err = -ENOMEM;
1423	int cpu;
1424
1425	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
1426	if (!sess)
1427		goto err;
1428
1429	/* Extra connection for user messages */
1430	con_num += 1;
1431
1432	sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
1433	if (!sess->s.con)
1434		goto err_free_sess;
1435
1436	sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
1437	if (!sess->stats)
1438		goto err_free_con;
1439
1440	mutex_init(&sess->init_mutex);
1441	uuid_gen(&sess->s.uuid);
1442	memcpy(&sess->s.dst_addr, path->dst,
1443	       rdma_addr_size((struct sockaddr *)path->dst));
1444
1445	/*
1446	 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1447	 * checks the sa_family to be non-zero. If user passed src_addr=NULL
1448	 * the sess->src_addr will contain only zeros, which is then fine.
1449	 */
1450	if (path->src)
1451		memcpy(&sess->s.src_addr, path->src,
1452		       rdma_addr_size((struct sockaddr *)path->src));
1453	strlcpy(sess->s.sessname, clt->sessname, sizeof(sess->s.sessname));
1454	sess->s.con_num = con_num;
1455	sess->clt = clt;
1456	sess->max_pages_per_mr = max_segments * max_segment_size >> 12;
1457	init_waitqueue_head(&sess->state_wq);
1458	sess->state = RTRS_CLT_CONNECTING;
1459	atomic_set(&sess->connected_cnt, 0);
1460	INIT_WORK(&sess->close_work, rtrs_clt_close_work);
1461	INIT_DELAYED_WORK(&sess->reconnect_dwork, rtrs_clt_reconnect_work);
1462	rtrs_clt_init_hb(sess);
1463
1464	sess->mp_skip_entry = alloc_percpu(typeof(*sess->mp_skip_entry));
1465	if (!sess->mp_skip_entry)
1466		goto err_free_stats;
1467
1468	for_each_possible_cpu(cpu)
1469		INIT_LIST_HEAD(per_cpu_ptr(sess->mp_skip_entry, cpu));
1470
1471	err = rtrs_clt_init_stats(sess->stats);
1472	if (err)
1473		goto err_free_percpu;
1474
1475	return sess;
1476
1477err_free_percpu:
1478	free_percpu(sess->mp_skip_entry);
1479err_free_stats:
1480	kfree(sess->stats);
1481err_free_con:
1482	kfree(sess->s.con);
1483err_free_sess:
1484	kfree(sess);
1485err:
1486	return ERR_PTR(err);
1487}
1488
1489void free_sess(struct rtrs_clt_sess *sess)
1490{
1491	free_percpu(sess->mp_skip_entry);
1492	mutex_destroy(&sess->init_mutex);
1493	kfree(sess->s.con);
1494	kfree(sess->rbufs);
1495	kfree(sess);
1496}
1497
1498static int create_con(struct rtrs_clt_sess *sess, unsigned int cid)
1499{
1500	struct rtrs_clt_con *con;
1501
1502	con = kzalloc(sizeof(*con), GFP_KERNEL);
1503	if (!con)
1504		return -ENOMEM;
1505
1506	/* Map first two connections to the first CPU */
1507	con->cpu  = (cid ? cid - 1 : 0) % nr_cpu_ids;
1508	con->c.cid = cid;
1509	con->c.sess = &sess->s;
1510	atomic_set(&con->io_cnt, 0);
1511
1512	sess->s.con[cid] = &con->c;
1513
1514	return 0;
1515}
1516
1517static void destroy_con(struct rtrs_clt_con *con)
1518{
1519	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1520
1521	sess->s.con[con->c.cid] = NULL;
1522	kfree(con);
1523}
1524
1525static int create_con_cq_qp(struct rtrs_clt_con *con)
1526{
1527	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1528	u32 max_send_wr, max_recv_wr, cq_size;
1529	int err, cq_vector;
1530	struct rtrs_msg_rkey_rsp *rsp;
1531
1532	/*
1533	 * This function can fail, but still destroy_con_cq_qp() should
1534	 * be called, this is because create_con_cq_qp() is called on cm
1535	 * event path, thus caller/waiter never knows: have we failed before
1536	 * create_con_cq_qp() or after.  To solve this dilemma without
1537	 * creating any additional flags just allow destroy_con_cq_qp() be
1538	 * called many times.
1539	 */
1540
1541	if (con->c.cid == 0) {
1542		/*
1543		 * One completion for each receive and two for each send
1544		 * (send request + registration)
1545		 * + 2 for drain and heartbeat
1546		 * in case qp gets into error state
1547		 */
1548		max_send_wr = SERVICE_CON_QUEUE_DEPTH * 2 + 2;
1549		max_recv_wr = SERVICE_CON_QUEUE_DEPTH * 2 + 2;
1550		/* We must be the first here */
1551		if (WARN_ON(sess->s.dev))
1552			return -EINVAL;
1553
1554		/*
1555		 * The whole session uses device from user connection.
1556		 * Be careful not to close user connection before ib dev
1557		 * is gracefully put.
1558		 */
1559		sess->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1560						       &dev_pd);
1561		if (!sess->s.dev) {
1562			rtrs_wrn(sess->clt,
1563				  "rtrs_ib_dev_find_get_or_add(): no memory\n");
1564			return -ENOMEM;
1565		}
1566		sess->s.dev_ref = 1;
1567		query_fast_reg_mode(sess);
1568	} else {
1569		/*
1570		 * Here we assume that session members are correctly set.
1571		 * This is always true if user connection (cid == 0) is
1572		 * established first.
1573		 */
1574		if (WARN_ON(!sess->s.dev))
1575			return -EINVAL;
1576		if (WARN_ON(!sess->queue_depth))
1577			return -EINVAL;
1578
1579		/* Shared between connections */
1580		sess->s.dev_ref++;
1581		max_send_wr =
1582			min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
1583			      /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1584			      sess->queue_depth * 3 + 1);
1585		max_recv_wr =
1586			min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
1587			      sess->queue_depth * 3 + 1);
1588	}
1589	/* alloc iu to recv new rkey reply when server reports flags set */
1590	if (sess->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1591		con->rsp_ius = rtrs_iu_alloc(max_recv_wr, sizeof(*rsp),
1592					      GFP_KERNEL, sess->s.dev->ib_dev,
1593					      DMA_FROM_DEVICE,
1594					      rtrs_clt_rdma_done);
1595		if (!con->rsp_ius)
1596			return -ENOMEM;
1597		con->queue_size = max_recv_wr;
1598	}
1599	cq_size = max_send_wr + max_recv_wr;
1600	cq_vector = con->cpu % sess->s.dev->ib_dev->num_comp_vectors;
1601	err = rtrs_cq_qp_create(&sess->s, &con->c, sess->max_send_sge,
1602				 cq_vector, cq_size, max_send_wr,
1603				 max_recv_wr, IB_POLL_SOFTIRQ);
1604	/*
1605	 * In case of error we do not bother to clean previous allocations,
1606	 * since destroy_con_cq_qp() must be called.
1607	 */
1608	return err;
1609}
1610
1611static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1612{
1613	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1614
1615	/*
1616	 * Be careful here: destroy_con_cq_qp() can be called even
1617	 * create_con_cq_qp() failed, see comments there.
1618	 */
1619
1620	rtrs_cq_qp_destroy(&con->c);
1621	if (con->rsp_ius) {
1622		rtrs_iu_free(con->rsp_ius, sess->s.dev->ib_dev, con->queue_size);
1623		con->rsp_ius = NULL;
1624		con->queue_size = 0;
1625	}
1626	if (sess->s.dev_ref && !--sess->s.dev_ref) {
1627		rtrs_ib_dev_put(sess->s.dev);
1628		sess->s.dev = NULL;
1629	}
1630}
1631
1632static void stop_cm(struct rtrs_clt_con *con)
1633{
1634	rdma_disconnect(con->c.cm_id);
1635	if (con->c.qp)
1636		ib_drain_qp(con->c.qp);
1637}
1638
1639static void destroy_cm(struct rtrs_clt_con *con)
1640{
1641	rdma_destroy_id(con->c.cm_id);
1642	con->c.cm_id = NULL;
1643}
1644
1645static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1646{
1647	struct rtrs_sess *s = con->c.sess;
1648	int err;
1649
1650	err = create_con_cq_qp(con);
1651	if (err) {
1652		rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1653		return err;
1654	}
1655	err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1656	if (err)
1657		rtrs_err(s, "Resolving route failed, err: %d\n", err);
1658
1659	return err;
1660}
1661
1662static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1663{
1664	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1665	struct rtrs_clt *clt = sess->clt;
1666	struct rtrs_msg_conn_req msg;
1667	struct rdma_conn_param param;
1668
1669	int err;
1670
1671	param = (struct rdma_conn_param) {
1672		.retry_count = 7,
1673		.rnr_retry_count = 7,
1674		.private_data = &msg,
1675		.private_data_len = sizeof(msg),
1676	};
1677
1678	msg = (struct rtrs_msg_conn_req) {
1679		.magic = cpu_to_le16(RTRS_MAGIC),
1680		.version = cpu_to_le16(RTRS_PROTO_VER),
1681		.cid = cpu_to_le16(con->c.cid),
1682		.cid_num = cpu_to_le16(sess->s.con_num),
1683		.recon_cnt = cpu_to_le16(sess->s.recon_cnt),
1684	};
1685	msg.first_conn = sess->for_new_clt ? FIRST_CONN : 0;
1686	uuid_copy(&msg.sess_uuid, &sess->s.uuid);
1687	uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1688
1689	err = rdma_connect_locked(con->c.cm_id, &param);
1690	if (err)
1691		rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1692
1693	return err;
1694}
1695
1696static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1697				       struct rdma_cm_event *ev)
1698{
1699	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1700	struct rtrs_clt *clt = sess->clt;
1701	const struct rtrs_msg_conn_rsp *msg;
1702	u16 version, queue_depth;
1703	int errno;
1704	u8 len;
1705
1706	msg = ev->param.conn.private_data;
1707	len = ev->param.conn.private_data_len;
1708	if (len < sizeof(*msg)) {
1709		rtrs_err(clt, "Invalid RTRS connection response\n");
1710		return -ECONNRESET;
1711	}
1712	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1713		rtrs_err(clt, "Invalid RTRS magic\n");
1714		return -ECONNRESET;
1715	}
1716	version = le16_to_cpu(msg->version);
1717	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1718		rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1719			  version >> 8, RTRS_PROTO_VER_MAJOR);
1720		return -ECONNRESET;
1721	}
1722	errno = le16_to_cpu(msg->errno);
1723	if (errno) {
1724		rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1725			  errno);
1726		return -ECONNRESET;
1727	}
1728	if (con->c.cid == 0) {
1729		queue_depth = le16_to_cpu(msg->queue_depth);
1730
1731		if (sess->queue_depth > 0 && queue_depth != sess->queue_depth) {
1732			rtrs_err(clt, "Error: queue depth changed\n");
1733
1734			/*
1735			 * Stop any more reconnection attempts
1736			 */
1737			sess->reconnect_attempts = -1;
1738			rtrs_err(clt,
1739				"Disabling auto-reconnect. Trigger a manual reconnect after issue is resolved\n");
1740			return -ECONNRESET;
1741		}
1742
1743		if (!sess->rbufs) {
1744			kfree(sess->rbufs);
1745			sess->rbufs = kcalloc(queue_depth, sizeof(*sess->rbufs),
1746					      GFP_KERNEL);
1747			if (!sess->rbufs)
1748				return -ENOMEM;
1749		}
1750		sess->queue_depth = queue_depth;
1751		sess->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1752		sess->max_io_size = le32_to_cpu(msg->max_io_size);
1753		sess->flags = le32_to_cpu(msg->flags);
1754		sess->chunk_size = sess->max_io_size + sess->max_hdr_size;
1755
1756		/*
1757		 * Global IO size is always a minimum.
1758		 * If while a reconnection server sends us a value a bit
1759		 * higher - client does not care and uses cached minimum.
1760		 *
1761		 * Since we can have several sessions (paths) restablishing
1762		 * connections in parallel, use lock.
1763		 */
1764		mutex_lock(&clt->paths_mutex);
1765		clt->queue_depth = sess->queue_depth;
1766		clt->max_io_size = min_not_zero(sess->max_io_size,
1767						clt->max_io_size);
1768		mutex_unlock(&clt->paths_mutex);
1769
1770		/*
1771		 * Cache the hca_port and hca_name for sysfs
1772		 */
1773		sess->hca_port = con->c.cm_id->port_num;
1774		scnprintf(sess->hca_name, sizeof(sess->hca_name),
1775			  sess->s.dev->ib_dev->name);
1776		sess->s.src_addr = con->c.cm_id->route.addr.src_addr;
1777		/* set for_new_clt, to allow future reconnect on any path */
1778		sess->for_new_clt = 1;
1779	}
1780
1781	return 0;
1782}
1783
1784static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1785{
1786	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1787
1788	atomic_inc(&sess->connected_cnt);
1789	con->cm_err = 1;
1790}
1791
1792static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1793				    struct rdma_cm_event *ev)
1794{
1795	struct rtrs_sess *s = con->c.sess;
1796	const struct rtrs_msg_conn_rsp *msg;
1797	const char *rej_msg;
1798	int status, errno;
1799	u8 data_len;
1800
1801	status = ev->status;
1802	rej_msg = rdma_reject_msg(con->c.cm_id, status);
1803	msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1804
1805	if (msg && data_len >= sizeof(*msg)) {
1806		errno = (int16_t)le16_to_cpu(msg->errno);
1807		if (errno == -EBUSY)
1808			rtrs_err(s,
1809				  "Previous session is still exists on the server, please reconnect later\n");
1810		else
1811			rtrs_err(s,
1812				  "Connect rejected: status %d (%s), rtrs errno %d\n",
1813				  status, rej_msg, errno);
1814	} else {
1815		rtrs_err(s,
1816			  "Connect rejected but with malformed message: status %d (%s)\n",
1817			  status, rej_msg);
1818	}
1819
1820	return -ECONNRESET;
1821}
1822
1823static void rtrs_clt_close_conns(struct rtrs_clt_sess *sess, bool wait)
1824{
1825	if (rtrs_clt_change_state(sess, RTRS_CLT_CLOSING))
1826		queue_work(rtrs_wq, &sess->close_work);
1827	if (wait)
1828		flush_work(&sess->close_work);
1829}
1830
1831static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1832{
1833	if (con->cm_err == 1) {
1834		struct rtrs_clt_sess *sess;
1835
1836		sess = to_clt_sess(con->c.sess);
1837		if (atomic_dec_and_test(&sess->connected_cnt))
1838
1839			wake_up(&sess->state_wq);
1840	}
1841	con->cm_err = cm_err;
1842}
1843
1844static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1845				     struct rdma_cm_event *ev)
1846{
1847	struct rtrs_clt_con *con = cm_id->context;
1848	struct rtrs_sess *s = con->c.sess;
1849	struct rtrs_clt_sess *sess = to_clt_sess(s);
1850	int cm_err = 0;
1851
1852	switch (ev->event) {
1853	case RDMA_CM_EVENT_ADDR_RESOLVED:
1854		cm_err = rtrs_rdma_addr_resolved(con);
1855		break;
1856	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1857		cm_err = rtrs_rdma_route_resolved(con);
1858		break;
1859	case RDMA_CM_EVENT_ESTABLISHED:
1860		cm_err = rtrs_rdma_conn_established(con, ev);
1861		if (likely(!cm_err)) {
1862			/*
1863			 * Report success and wake up. Here we abuse state_wq,
1864			 * i.e. wake up without state change, but we set cm_err.
1865			 */
1866			flag_success_on_conn(con);
1867			wake_up(&sess->state_wq);
1868			return 0;
1869		}
1870		break;
1871	case RDMA_CM_EVENT_REJECTED:
1872		cm_err = rtrs_rdma_conn_rejected(con, ev);
1873		break;
1874	case RDMA_CM_EVENT_CONNECT_ERROR:
1875	case RDMA_CM_EVENT_UNREACHABLE:
1876		rtrs_wrn(s, "CM error event %d\n", ev->event);
1877		cm_err = -ECONNRESET;
1878		break;
1879	case RDMA_CM_EVENT_ADDR_ERROR:
1880	case RDMA_CM_EVENT_ROUTE_ERROR:
1881		cm_err = -EHOSTUNREACH;
1882		break;
1883	case RDMA_CM_EVENT_DISCONNECTED:
1884	case RDMA_CM_EVENT_ADDR_CHANGE:
1885	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1886		cm_err = -ECONNRESET;
1887		break;
1888	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1889		/*
1890		 * Device removal is a special case.  Queue close and return 0.
1891		 */
1892		rtrs_clt_close_conns(sess, false);
1893		return 0;
1894	default:
1895		rtrs_err(s, "Unexpected RDMA CM event (%d)\n", ev->event);
1896		cm_err = -ECONNRESET;
1897		break;
1898	}
1899
1900	if (cm_err) {
1901		/*
1902		 * cm error makes sense only on connection establishing,
1903		 * in other cases we rely on normal procedure of reconnecting.
1904		 */
1905		flag_error_on_conn(con, cm_err);
1906		rtrs_rdma_error_recovery(con);
1907	}
1908
1909	return 0;
1910}
1911
1912static int create_cm(struct rtrs_clt_con *con)
1913{
1914	struct rtrs_sess *s = con->c.sess;
1915	struct rtrs_clt_sess *sess = to_clt_sess(s);
1916	struct rdma_cm_id *cm_id;
1917	int err;
1918
1919	cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
1920			       sess->s.dst_addr.ss_family == AF_IB ?
1921			       RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
1922	if (IS_ERR(cm_id)) {
1923		err = PTR_ERR(cm_id);
1924		rtrs_err(s, "Failed to create CM ID, err: %d\n", err);
1925
1926		return err;
1927	}
1928	con->c.cm_id = cm_id;
1929	con->cm_err = 0;
1930	/* allow the port to be reused */
1931	err = rdma_set_reuseaddr(cm_id, 1);
1932	if (err != 0) {
1933		rtrs_err(s, "Set address reuse failed, err: %d\n", err);
1934		goto destroy_cm;
1935	}
1936	err = rdma_resolve_addr(cm_id, (struct sockaddr *)&sess->s.src_addr,
1937				(struct sockaddr *)&sess->s.dst_addr,
1938				RTRS_CONNECT_TIMEOUT_MS);
1939	if (err) {
1940		rtrs_err(s, "Failed to resolve address, err: %d\n", err);
1941		goto destroy_cm;
1942	}
1943	/*
1944	 * Combine connection status and session events. This is needed
1945	 * for waiting two possible cases: cm_err has something meaningful
1946	 * or session state was really changed to error by device removal.
1947	 */
1948	err = wait_event_interruptible_timeout(
1949			sess->state_wq,
1950			con->cm_err || sess->state != RTRS_CLT_CONNECTING,
1951			msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
1952	if (err == 0 || err == -ERESTARTSYS) {
1953		if (err == 0)
1954			err = -ETIMEDOUT;
1955		/* Timedout or interrupted */
1956		goto errr;
1957	}
1958	if (con->cm_err < 0) {
1959		err = con->cm_err;
1960		goto errr;
1961	}
1962	if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTING) {
1963		/* Device removal */
1964		err = -ECONNABORTED;
1965		goto errr;
1966	}
1967
1968	return 0;
1969
1970errr:
1971	stop_cm(con);
1972	/* Is safe to call destroy if cq_qp is not inited */
1973	destroy_con_cq_qp(con);
1974destroy_cm:
1975	destroy_cm(con);
1976
1977	return err;
1978}
1979
1980static void rtrs_clt_sess_up(struct rtrs_clt_sess *sess)
1981{
1982	struct rtrs_clt *clt = sess->clt;
1983	int up;
1984
1985	/*
1986	 * We can fire RECONNECTED event only when all paths were
1987	 * connected on rtrs_clt_open(), then each was disconnected
1988	 * and the first one connected again.  That's why this nasty
1989	 * game with counter value.
1990	 */
1991
1992	mutex_lock(&clt->paths_ev_mutex);
1993	up = ++clt->paths_up;
1994	/*
1995	 * Here it is safe to access paths num directly since up counter
1996	 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
1997	 * in progress, thus paths removals are impossible.
1998	 */
1999	if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
2000		clt->paths_up = clt->paths_num;
2001	else if (up == 1)
2002		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
2003	mutex_unlock(&clt->paths_ev_mutex);
2004
2005	/* Mark session as established */
2006	sess->established = true;
2007	sess->reconnect_attempts = 0;
2008	sess->stats->reconnects.successful_cnt++;
2009}
2010
2011static void rtrs_clt_sess_down(struct rtrs_clt_sess *sess)
2012{
2013	struct rtrs_clt *clt = sess->clt;
2014
2015	if (!sess->established)
2016		return;
2017
2018	sess->established = false;
2019	mutex_lock(&clt->paths_ev_mutex);
2020	WARN_ON(!clt->paths_up);
2021	if (--clt->paths_up == 0)
2022		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
2023	mutex_unlock(&clt->paths_ev_mutex);
2024}
2025
2026static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_sess *sess)
2027{
2028	struct rtrs_clt_con *con;
2029	unsigned int cid;
2030
2031	WARN_ON(READ_ONCE(sess->state) == RTRS_CLT_CONNECTED);
2032
2033	/*
2034	 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2035	 * exactly in between.  Start destroying after it finishes.
2036	 */
2037	mutex_lock(&sess->init_mutex);
2038	mutex_unlock(&sess->init_mutex);
2039
2040	/*
2041	 * All IO paths must observe !CONNECTED state before we
2042	 * free everything.
2043	 */
2044	synchronize_rcu();
2045
2046	rtrs_clt_stop_hb(sess);
2047
2048	/*
2049	 * The order it utterly crucial: firstly disconnect and complete all
2050	 * rdma requests with error (thus set in_use=false for requests),
2051	 * then fail outstanding requests checking in_use for each, and
2052	 * eventually notify upper layer about session disconnection.
2053	 */
2054
2055	for (cid = 0; cid < sess->s.con_num; cid++) {
2056		if (!sess->s.con[cid])
2057			break;
2058		con = to_clt_con(sess->s.con[cid]);
2059		stop_cm(con);
2060	}
2061	fail_all_outstanding_reqs(sess);
2062	free_sess_reqs(sess);
2063	rtrs_clt_sess_down(sess);
2064
2065	/*
2066	 * Wait for graceful shutdown, namely when peer side invokes
2067	 * rdma_disconnect(). 'connected_cnt' is decremented only on
2068	 * CM events, thus if other side had crashed and hb has detected
2069	 * something is wrong, here we will stuck for exactly timeout ms,
2070	 * since CM does not fire anything.  That is fine, we are not in
2071	 * hurry.
2072	 */
2073	wait_event_timeout(sess->state_wq, !atomic_read(&sess->connected_cnt),
2074			   msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2075
2076	for (cid = 0; cid < sess->s.con_num; cid++) {
2077		if (!sess->s.con[cid])
2078			break;
2079		con = to_clt_con(sess->s.con[cid]);
2080		destroy_con_cq_qp(con);
2081		destroy_cm(con);
2082		destroy_con(con);
2083	}
2084}
2085
2086static inline bool xchg_sessions(struct rtrs_clt_sess __rcu **rcu_ppcpu_path,
2087				 struct rtrs_clt_sess *sess,
2088				 struct rtrs_clt_sess *next)
2089{
2090	struct rtrs_clt_sess **ppcpu_path;
2091
2092	/* Call cmpxchg() without sparse warnings */
2093	ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path;
2094	return sess == cmpxchg(ppcpu_path, sess, next);
2095}
2096
2097static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_sess *sess)
2098{
2099	struct rtrs_clt *clt = sess->clt;
2100	struct rtrs_clt_sess *next;
2101	bool wait_for_grace = false;
2102	int cpu;
2103
2104	mutex_lock(&clt->paths_mutex);
2105	list_del_rcu(&sess->s.entry);
2106
2107	/* Make sure everybody observes path removal. */
2108	synchronize_rcu();
2109
2110	/*
2111	 * At this point nobody sees @sess in the list, but still we have
2112	 * dangling pointer @pcpu_path which _can_ point to @sess.  Since
2113	 * nobody can observe @sess in the list, we guarantee that IO path
2114	 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2115	 * to @sess, but can never again become @sess.
2116	 */
2117
2118	/*
2119	 * Decrement paths number only after grace period, because
2120	 * caller of do_each_path() must firstly observe list without
2121	 * path and only then decremented paths number.
2122	 *
2123	 * Otherwise there can be the following situation:
2124	 *    o Two paths exist and IO is coming.
2125	 *    o One path is removed:
2126	 *      CPU#0                          CPU#1
2127	 *      do_each_path():                rtrs_clt_remove_path_from_arr():
2128	 *          path = get_next_path()
2129	 *          ^^^                            list_del_rcu(path)
2130	 *          [!CONNECTED path]              clt->paths_num--
2131	 *                                              ^^^^^^^^^
2132	 *          load clt->paths_num                 from 2 to 1
2133	 *                    ^^^^^^^^^
2134	 *                    sees 1
2135	 *
2136	 *      path is observed as !CONNECTED, but do_each_path() loop
2137	 *      ends, because expression i < clt->paths_num is false.
2138	 */
2139	clt->paths_num--;
2140
2141	/*
2142	 * Get @next connection from current @sess which is going to be
2143	 * removed.  If @sess is the last element, then @next is NULL.
2144	 */
2145	rcu_read_lock();
2146	next = list_next_or_null_rr_rcu(&clt->paths_list, &sess->s.entry,
2147					typeof(*next), s.entry);
2148	rcu_read_unlock();
2149
2150	/*
2151	 * @pcpu paths can still point to the path which is going to be
2152	 * removed, so change the pointer manually.
2153	 */
2154	for_each_possible_cpu(cpu) {
2155		struct rtrs_clt_sess __rcu **ppcpu_path;
2156
2157		ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2158		if (rcu_dereference_protected(*ppcpu_path,
2159			lockdep_is_held(&clt->paths_mutex)) != sess)
2160			/*
2161			 * synchronize_rcu() was called just after deleting
2162			 * entry from the list, thus IO code path cannot
2163			 * change pointer back to the pointer which is going
2164			 * to be removed, we are safe here.
2165			 */
2166			continue;
2167
2168		/*
2169		 * We race with IO code path, which also changes pointer,
2170		 * thus we have to be careful not to overwrite it.
2171		 */
2172		if (xchg_sessions(ppcpu_path, sess, next))
2173			/*
2174			 * @ppcpu_path was successfully replaced with @next,
2175			 * that means that someone could also pick up the
2176			 * @sess and dereferencing it right now, so wait for
2177			 * a grace period is required.
2178			 */
2179			wait_for_grace = true;
2180	}
2181	if (wait_for_grace)
2182		synchronize_rcu();
2183
2184	mutex_unlock(&clt->paths_mutex);
2185}
2186
2187static void rtrs_clt_add_path_to_arr(struct rtrs_clt_sess *sess,
2188				      struct rtrs_addr *addr)
2189{
2190	struct rtrs_clt *clt = sess->clt;
2191
2192	mutex_lock(&clt->paths_mutex);
2193	clt->paths_num++;
2194
2195	list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2196	mutex_unlock(&clt->paths_mutex);
2197}
2198
2199static void rtrs_clt_close_work(struct work_struct *work)
2200{
2201	struct rtrs_clt_sess *sess;
2202
2203	sess = container_of(work, struct rtrs_clt_sess, close_work);
2204
2205	cancel_delayed_work_sync(&sess->reconnect_dwork);
2206	rtrs_clt_stop_and_destroy_conns(sess);
2207	rtrs_clt_change_state(sess, RTRS_CLT_CLOSED);
2208}
2209
2210static int init_conns(struct rtrs_clt_sess *sess)
2211{
2212	unsigned int cid;
2213	int err;
2214
2215	/*
2216	 * On every new session connections increase reconnect counter
2217	 * to avoid clashes with previous sessions not yet closed
2218	 * sessions on a server side.
2219	 */
2220	sess->s.recon_cnt++;
2221
2222	/* Establish all RDMA connections  */
2223	for (cid = 0; cid < sess->s.con_num; cid++) {
2224		err = create_con(sess, cid);
2225		if (err)
2226			goto destroy;
2227
2228		err = create_cm(to_clt_con(sess->s.con[cid]));
2229		if (err) {
2230			destroy_con(to_clt_con(sess->s.con[cid]));
2231			goto destroy;
2232		}
2233	}
2234	err = alloc_sess_reqs(sess);
2235	if (err)
2236		goto destroy;
2237
2238	rtrs_clt_start_hb(sess);
2239
2240	return 0;
2241
2242destroy:
2243	while (cid--) {
2244		struct rtrs_clt_con *con = to_clt_con(sess->s.con[cid]);
2245
2246		stop_cm(con);
2247		destroy_con_cq_qp(con);
2248		destroy_cm(con);
2249		destroy_con(con);
2250	}
2251	/*
2252	 * If we've never taken async path and got an error, say,
2253	 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2254	 * manually to keep reconnecting.
2255	 */
2256	rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
2257
2258	return err;
2259}
2260
2261static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2262{
2263	struct rtrs_clt_con *con = cq->cq_context;
2264	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2265	struct rtrs_iu *iu;
2266
2267	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2268	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2269
2270	if (unlikely(wc->status != IB_WC_SUCCESS)) {
2271		rtrs_err(sess->clt, "Sess info request send failed: %s\n",
2272			  ib_wc_status_msg(wc->status));
2273		rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
2274		return;
2275	}
2276
2277	rtrs_clt_update_wc_stats(con);
2278}
2279
2280static int process_info_rsp(struct rtrs_clt_sess *sess,
2281			    const struct rtrs_msg_info_rsp *msg)
2282{
2283	unsigned int sg_cnt, total_len;
2284	int i, sgi;
2285
2286	sg_cnt = le16_to_cpu(msg->sg_cnt);
2287	if (unlikely(!sg_cnt))
2288		return -EINVAL;
2289	/*
2290	 * Check if IB immediate data size is enough to hold the mem_id and
2291	 * the offset inside the memory chunk.
2292	 */
2293	if (unlikely((ilog2(sg_cnt - 1) + 1) +
2294		     (ilog2(sess->chunk_size - 1) + 1) >
2295		     MAX_IMM_PAYL_BITS)) {
2296		rtrs_err(sess->clt,
2297			  "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2298			  MAX_IMM_PAYL_BITS, sg_cnt, sess->chunk_size);
2299		return -EINVAL;
2300	}
2301	if (unlikely(!sg_cnt || (sess->queue_depth % sg_cnt))) {
2302		rtrs_err(sess->clt, "Incorrect sg_cnt %d, is not multiple\n",
2303			  sg_cnt);
2304		return -EINVAL;
2305	}
2306	total_len = 0;
2307	for (sgi = 0, i = 0; sgi < sg_cnt && i < sess->queue_depth; sgi++) {
2308		const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2309		u32 len, rkey;
2310		u64 addr;
2311
2312		addr = le64_to_cpu(desc->addr);
2313		rkey = le32_to_cpu(desc->key);
2314		len  = le32_to_cpu(desc->len);
2315
2316		total_len += len;
2317
2318		if (unlikely(!len || (len % sess->chunk_size))) {
2319			rtrs_err(sess->clt, "Incorrect [%d].len %d\n", sgi,
2320				  len);
2321			return -EINVAL;
2322		}
2323		for ( ; len && i < sess->queue_depth; i++) {
2324			sess->rbufs[i].addr = addr;
2325			sess->rbufs[i].rkey = rkey;
2326
2327			len  -= sess->chunk_size;
2328			addr += sess->chunk_size;
2329		}
2330	}
2331	/* Sanity check */
2332	if (unlikely(sgi != sg_cnt || i != sess->queue_depth)) {
2333		rtrs_err(sess->clt, "Incorrect sg vector, not fully mapped\n");
2334		return -EINVAL;
2335	}
2336	if (unlikely(total_len != sess->chunk_size * sess->queue_depth)) {
2337		rtrs_err(sess->clt, "Incorrect total_len %d\n", total_len);
2338		return -EINVAL;
2339	}
2340
2341	return 0;
2342}
2343
2344static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2345{
2346	struct rtrs_clt_con *con = cq->cq_context;
2347	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2348	struct rtrs_msg_info_rsp *msg;
2349	enum rtrs_clt_state state;
2350	struct rtrs_iu *iu;
2351	size_t rx_sz;
2352	int err;
2353
2354	state = RTRS_CLT_CONNECTING_ERR;
2355
2356	WARN_ON(con->c.cid);
2357	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2358	if (unlikely(wc->status != IB_WC_SUCCESS)) {
2359		rtrs_err(sess->clt, "Sess info response recv failed: %s\n",
2360			  ib_wc_status_msg(wc->status));
2361		goto out;
2362	}
2363	WARN_ON(wc->opcode != IB_WC_RECV);
2364
2365	if (unlikely(wc->byte_len < sizeof(*msg))) {
2366		rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2367			  wc->byte_len);
2368		goto out;
2369	}
2370	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
2371				   iu->size, DMA_FROM_DEVICE);
2372	msg = iu->buf;
2373	if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP)) {
2374		rtrs_err(sess->clt, "Sess info response is malformed: type %d\n",
2375			  le16_to_cpu(msg->type));
2376		goto out;
2377	}
2378	rx_sz  = sizeof(*msg);
2379	rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2380	if (unlikely(wc->byte_len < rx_sz)) {
2381		rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2382			  wc->byte_len);
2383		goto out;
2384	}
2385	err = process_info_rsp(sess, msg);
2386	if (unlikely(err))
2387		goto out;
2388
2389	err = post_recv_sess(sess);
2390	if (unlikely(err))
2391		goto out;
2392
2393	state = RTRS_CLT_CONNECTED;
2394
2395out:
2396	rtrs_clt_update_wc_stats(con);
2397	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2398	rtrs_clt_change_state(sess, state);
2399}
2400
2401static int rtrs_send_sess_info(struct rtrs_clt_sess *sess)
2402{
2403	struct rtrs_clt_con *usr_con = to_clt_con(sess->s.con[0]);
2404	struct rtrs_msg_info_req *msg;
2405	struct rtrs_iu *tx_iu, *rx_iu;
2406	size_t rx_sz;
2407	int err;
2408
2409	rx_sz  = sizeof(struct rtrs_msg_info_rsp);
2410	rx_sz += sizeof(u64) * MAX_SESS_QUEUE_DEPTH;
2411
2412	tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2413			       sess->s.dev->ib_dev, DMA_TO_DEVICE,
2414			       rtrs_clt_info_req_done);
2415	rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
2416			       DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2417	if (unlikely(!tx_iu || !rx_iu)) {
2418		err = -ENOMEM;
2419		goto out;
2420	}
2421	/* Prepare for getting info response */
2422	err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2423	if (unlikely(err)) {
2424		rtrs_err(sess->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2425		goto out;
2426	}
2427	rx_iu = NULL;
2428
2429	msg = tx_iu->buf;
2430	msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2431	memcpy(msg->sessname, sess->s.sessname, sizeof(msg->sessname));
2432
2433	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
2434				      tx_iu->size, DMA_TO_DEVICE);
2435
2436	/* Send info request */
2437	err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2438	if (unlikely(err)) {
2439		rtrs_err(sess->clt, "rtrs_iu_post_send(), err: %d\n", err);
2440		goto out;
2441	}
2442	tx_iu = NULL;
2443
2444	/* Wait for state change */
2445	wait_event_interruptible_timeout(sess->state_wq,
2446					 sess->state != RTRS_CLT_CONNECTING,
2447					 msecs_to_jiffies(
2448						 RTRS_CONNECT_TIMEOUT_MS));
2449	if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)) {
2450		if (READ_ONCE(sess->state) == RTRS_CLT_CONNECTING_ERR)
2451			err = -ECONNRESET;
2452		else
2453			err = -ETIMEDOUT;
2454		goto out;
2455	}
2456
2457out:
2458	if (tx_iu)
2459		rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1);
2460	if (rx_iu)
2461		rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1);
2462	if (unlikely(err))
2463		/* If we've never taken async path because of malloc problems */
2464		rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
2465
2466	return err;
2467}
2468
2469/**
2470 * init_sess() - establishes all session connections and does handshake
2471 * @sess: client session.
2472 * In case of error full close or reconnect procedure should be taken,
2473 * because reconnect or close async works can be started.
2474 */
2475static int init_sess(struct rtrs_clt_sess *sess)
2476{
2477	int err;
2478
2479	mutex_lock(&sess->init_mutex);
2480	err = init_conns(sess);
2481	if (err) {
2482		rtrs_err(sess->clt, "init_conns(), err: %d\n", err);
2483		goto out;
2484	}
2485	err = rtrs_send_sess_info(sess);
2486	if (err) {
2487		rtrs_err(sess->clt, "rtrs_send_sess_info(), err: %d\n", err);
2488		goto out;
2489	}
2490	rtrs_clt_sess_up(sess);
2491out:
2492	mutex_unlock(&sess->init_mutex);
2493
2494	return err;
2495}
2496
2497static void rtrs_clt_reconnect_work(struct work_struct *work)
2498{
2499	struct rtrs_clt_sess *sess;
2500	struct rtrs_clt *clt;
2501	unsigned int delay_ms;
2502	int err;
2503
2504	sess = container_of(to_delayed_work(work), struct rtrs_clt_sess,
2505			    reconnect_dwork);
2506	clt = sess->clt;
2507
2508	if (READ_ONCE(sess->state) != RTRS_CLT_RECONNECTING)
2509		return;
2510
2511	if (sess->reconnect_attempts >= clt->max_reconnect_attempts) {
2512		/* Close a session completely if max attempts is reached */
2513		rtrs_clt_close_conns(sess, false);
2514		return;
2515	}
2516	sess->reconnect_attempts++;
2517
2518	/* Stop everything */
2519	rtrs_clt_stop_and_destroy_conns(sess);
2520	msleep(RTRS_RECONNECT_BACKOFF);
2521	if (rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING)) {
2522		err = init_sess(sess);
2523		if (err)
2524			goto reconnect_again;
2525	}
2526
2527	return;
2528
2529reconnect_again:
2530	if (rtrs_clt_change_state(sess, RTRS_CLT_RECONNECTING)) {
2531		sess->stats->reconnects.fail_cnt++;
2532		delay_ms = clt->reconnect_delay_sec * 1000;
2533		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
2534				   msecs_to_jiffies(delay_ms +
2535						    prandom_u32() %
2536						    RTRS_RECONNECT_SEED));
2537	}
2538}
2539
2540static void rtrs_clt_dev_release(struct device *dev)
2541{
2542	struct rtrs_clt *clt = container_of(dev, struct rtrs_clt, dev);
2543
2544	mutex_destroy(&clt->paths_ev_mutex);
2545	mutex_destroy(&clt->paths_mutex);
2546	kfree(clt);
2547}
2548
2549static struct rtrs_clt *alloc_clt(const char *sessname, size_t paths_num,
2550				  u16 port, size_t pdu_sz, void *priv,
2551				  void	(*link_ev)(void *priv,
2552						   enum rtrs_clt_link_ev ev),
2553				  unsigned int max_segments,
2554				  size_t max_segment_size,
2555				  unsigned int reconnect_delay_sec,
2556				  unsigned int max_reconnect_attempts)
2557{
2558	struct rtrs_clt *clt;
2559	int err;
2560
2561	if (!paths_num || paths_num > MAX_PATHS_NUM)
2562		return ERR_PTR(-EINVAL);
2563
2564	if (strlen(sessname) >= sizeof(clt->sessname))
2565		return ERR_PTR(-EINVAL);
2566
2567	clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2568	if (!clt)
2569		return ERR_PTR(-ENOMEM);
2570
2571	clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2572	if (!clt->pcpu_path) {
2573		kfree(clt);
2574		return ERR_PTR(-ENOMEM);
2575	}
2576
2577	clt->dev.class = rtrs_clt_dev_class;
2578	clt->dev.release = rtrs_clt_dev_release;
2579	uuid_gen(&clt->paths_uuid);
2580	INIT_LIST_HEAD_RCU(&clt->paths_list);
2581	clt->paths_num = paths_num;
2582	clt->paths_up = MAX_PATHS_NUM;
2583	clt->port = port;
2584	clt->pdu_sz = pdu_sz;
2585	clt->max_segments = max_segments;
2586	clt->max_segment_size = max_segment_size;
2587	clt->reconnect_delay_sec = reconnect_delay_sec;
2588	clt->max_reconnect_attempts = max_reconnect_attempts;
2589	clt->priv = priv;
2590	clt->link_ev = link_ev;
2591	clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2592	strlcpy(clt->sessname, sessname, sizeof(clt->sessname));
2593	init_waitqueue_head(&clt->permits_wait);
2594	mutex_init(&clt->paths_ev_mutex);
2595	mutex_init(&clt->paths_mutex);
2596	device_initialize(&clt->dev);
2597
2598	err = dev_set_name(&clt->dev, "%s", sessname);
2599	if (err)
2600		goto err_put;
2601
2602	/*
2603	 * Suppress user space notification until
2604	 * sysfs files are created
2605	 */
2606	dev_set_uevent_suppress(&clt->dev, true);
2607	err = device_add(&clt->dev);
2608	if (err)
2609		goto err_put;
2610
2611	clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2612	if (!clt->kobj_paths) {
2613		err = -ENOMEM;
2614		goto err_del;
2615	}
2616	err = rtrs_clt_create_sysfs_root_files(clt);
2617	if (err) {
2618		kobject_del(clt->kobj_paths);
2619		kobject_put(clt->kobj_paths);
2620		goto err_del;
2621	}
2622	dev_set_uevent_suppress(&clt->dev, false);
2623	kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2624
2625	return clt;
2626err_del:
2627	device_del(&clt->dev);
2628err_put:
2629	free_percpu(clt->pcpu_path);
2630	put_device(&clt->dev);
2631	return ERR_PTR(err);
2632}
2633
2634static void free_clt(struct rtrs_clt *clt)
2635{
2636	free_percpu(clt->pcpu_path);
2637
2638	/*
2639	 * release callback will free clt and destroy mutexes in last put
2640	 */
2641	device_unregister(&clt->dev);
2642}
2643
2644/**
2645 * rtrs_clt_open() - Open a session to an RTRS server
2646 * @ops: holds the link event callback and the private pointer.
2647 * @sessname: name of the session
2648 * @paths: Paths to be established defined by their src and dst addresses
2649 * @paths_num: Number of elements in the @paths array
2650 * @port: port to be used by the RTRS session
2651 * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2652 * @reconnect_delay_sec: time between reconnect tries
2653 * @max_segments: Max. number of segments per IO request
2654 * @max_segment_size: Max. size of one segment
2655 * @max_reconnect_attempts: Number of times to reconnect on error before giving
2656 *			    up, 0 for * disabled, -1 for forever
2657 *
2658 * Starts session establishment with the rtrs_server. The function can block
2659 * up to ~2000ms before it returns.
2660 *
2661 * Return a valid pointer on success otherwise PTR_ERR.
2662 */
2663struct rtrs_clt *rtrs_clt_open(struct rtrs_clt_ops *ops,
2664				 const char *sessname,
2665				 const struct rtrs_addr *paths,
2666				 size_t paths_num, u16 port,
2667				 size_t pdu_sz, u8 reconnect_delay_sec,
2668				 u16 max_segments,
2669				 size_t max_segment_size,
2670				 s16 max_reconnect_attempts)
2671{
2672	struct rtrs_clt_sess *sess, *tmp;
2673	struct rtrs_clt *clt;
2674	int err, i;
2675
2676	clt = alloc_clt(sessname, paths_num, port, pdu_sz, ops->priv,
2677			ops->link_ev,
2678			max_segments, max_segment_size, reconnect_delay_sec,
2679			max_reconnect_attempts);
2680	if (IS_ERR(clt)) {
2681		err = PTR_ERR(clt);
2682		goto out;
2683	}
2684	for (i = 0; i < paths_num; i++) {
2685		struct rtrs_clt_sess *sess;
2686
2687		sess = alloc_sess(clt, &paths[i], nr_cpu_ids,
2688				  max_segments, max_segment_size);
2689		if (IS_ERR(sess)) {
2690			err = PTR_ERR(sess);
2691			goto close_all_sess;
2692		}
2693		if (!i)
2694			sess->for_new_clt = 1;
2695		list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2696
2697		err = init_sess(sess);
2698		if (err) {
2699			list_del_rcu(&sess->s.entry);
2700			rtrs_clt_close_conns(sess, true);
2701			free_percpu(sess->stats->pcpu_stats);
2702			kfree(sess->stats);
2703			free_sess(sess);
2704			goto close_all_sess;
2705		}
2706
2707		err = rtrs_clt_create_sess_files(sess);
2708		if (err) {
2709			list_del_rcu(&sess->s.entry);
2710			rtrs_clt_close_conns(sess, true);
2711			free_percpu(sess->stats->pcpu_stats);
2712			kfree(sess->stats);
2713			free_sess(sess);
2714			goto close_all_sess;
2715		}
2716	}
2717	err = alloc_permits(clt);
2718	if (err)
2719		goto close_all_sess;
2720
2721	return clt;
2722
2723close_all_sess:
2724	list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2725		rtrs_clt_destroy_sess_files(sess, NULL);
2726		rtrs_clt_close_conns(sess, true);
2727		kobject_put(&sess->kobj);
2728	}
2729	rtrs_clt_destroy_sysfs_root_files(clt);
2730	rtrs_clt_destroy_sysfs_root_folders(clt);
2731	free_clt(clt);
2732
2733out:
2734	return ERR_PTR(err);
2735}
2736EXPORT_SYMBOL(rtrs_clt_open);
2737
2738/**
2739 * rtrs_clt_close() - Close a session
2740 * @clt: Session handle. Session is freed upon return.
2741 */
2742void rtrs_clt_close(struct rtrs_clt *clt)
2743{
2744	struct rtrs_clt_sess *sess, *tmp;
2745
2746	/* Firstly forbid sysfs access */
2747	rtrs_clt_destroy_sysfs_root_files(clt);
2748	rtrs_clt_destroy_sysfs_root_folders(clt);
2749
2750	/* Now it is safe to iterate over all paths without locks */
2751	list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2752		rtrs_clt_close_conns(sess, true);
2753		rtrs_clt_destroy_sess_files(sess, NULL);
2754		kobject_put(&sess->kobj);
2755	}
2756	free_permits(clt);
2757	free_clt(clt);
2758}
2759EXPORT_SYMBOL(rtrs_clt_close);
2760
2761int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_sess *sess)
2762{
2763	enum rtrs_clt_state old_state;
2764	int err = -EBUSY;
2765	bool changed;
2766
2767	changed = rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING,
2768						 &old_state);
2769	if (changed) {
2770		sess->reconnect_attempts = 0;
2771		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 0);
2772	}
2773	if (changed || old_state == RTRS_CLT_RECONNECTING) {
2774		/*
2775		 * flush_delayed_work() queues pending work for immediate
2776		 * execution, so do the flush if we have queued something
2777		 * right now or work is pending.
2778		 */
2779		flush_delayed_work(&sess->reconnect_dwork);
2780		err = (READ_ONCE(sess->state) ==
2781		       RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2782	}
2783
2784	return err;
2785}
2786
2787int rtrs_clt_disconnect_from_sysfs(struct rtrs_clt_sess *sess)
2788{
2789	rtrs_clt_close_conns(sess, true);
2790
2791	return 0;
2792}
2793
2794int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_sess *sess,
2795				     const struct attribute *sysfs_self)
2796{
2797	enum rtrs_clt_state old_state;
2798	bool changed;
2799
2800	/*
2801	 * Continue stopping path till state was changed to DEAD or
2802	 * state was observed as DEAD:
2803	 * 1. State was changed to DEAD - we were fast and nobody
2804	 *    invoked rtrs_clt_reconnect(), which can again start
2805	 *    reconnecting.
2806	 * 2. State was observed as DEAD - we have someone in parallel
2807	 *    removing the path.
2808	 */
2809	do {
2810		rtrs_clt_close_conns(sess, true);
2811		changed = rtrs_clt_change_state_get_old(sess,
2812							RTRS_CLT_DEAD,
2813							&old_state);
2814	} while (!changed && old_state != RTRS_CLT_DEAD);
2815
2816	if (likely(changed)) {
2817		rtrs_clt_remove_path_from_arr(sess);
2818		rtrs_clt_destroy_sess_files(sess, sysfs_self);
2819		kobject_put(&sess->kobj);
2820	}
2821
2822	return 0;
2823}
2824
2825void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt *clt, int value)
2826{
2827	clt->max_reconnect_attempts = (unsigned int)value;
2828}
2829
2830int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt *clt)
2831{
2832	return (int)clt->max_reconnect_attempts;
2833}
2834
2835/**
2836 * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2837 *
2838 * @dir:	READ/WRITE
2839 * @ops:	callback function to be called as confirmation, and the pointer.
2840 * @clt:	Session
2841 * @permit:	Preallocated permit
2842 * @vec:	Message that is sent to server together with the request.
2843 *		Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2844 *		Since the msg is copied internally it can be allocated on stack.
2845 * @nr:		Number of elements in @vec.
2846 * @data_len:	length of data sent to/from server
2847 * @sg:		Pages to be sent/received to/from server.
2848 * @sg_cnt:	Number of elements in the @sg
2849 *
2850 * Return:
2851 * 0:		Success
2852 * <0:		Error
2853 *
2854 * On dir=READ rtrs client will request a data transfer from Server to client.
2855 * The data that the server will respond with will be stored in @sg when
2856 * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2857 * On dir=WRITE rtrs client will rdma write data in sg to server side.
2858 */
2859int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2860		     struct rtrs_clt *clt, struct rtrs_permit *permit,
2861		      const struct kvec *vec, size_t nr, size_t data_len,
2862		      struct scatterlist *sg, unsigned int sg_cnt)
2863{
2864	struct rtrs_clt_io_req *req;
2865	struct rtrs_clt_sess *sess;
2866
2867	enum dma_data_direction dma_dir;
2868	int err = -ECONNABORTED, i;
2869	size_t usr_len, hdr_len;
2870	struct path_it it;
2871
2872	/* Get kvec length */
2873	for (i = 0, usr_len = 0; i < nr; i++)
2874		usr_len += vec[i].iov_len;
2875
2876	if (dir == READ) {
2877		hdr_len = sizeof(struct rtrs_msg_rdma_read) +
2878			  sg_cnt * sizeof(struct rtrs_sg_desc);
2879		dma_dir = DMA_FROM_DEVICE;
2880	} else {
2881		hdr_len = sizeof(struct rtrs_msg_rdma_write);
2882		dma_dir = DMA_TO_DEVICE;
2883	}
2884
2885	rcu_read_lock();
2886	for (path_it_init(&it, clt);
2887	     (sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
2888		if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED))
2889			continue;
2890
2891		if (unlikely(usr_len + hdr_len > sess->max_hdr_size)) {
2892			rtrs_wrn_rl(sess->clt,
2893				     "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
2894				     dir == READ ? "Read" : "Write",
2895				     usr_len, hdr_len, sess->max_hdr_size);
2896			err = -EMSGSIZE;
2897			break;
2898		}
2899		req = rtrs_clt_get_req(sess, ops->conf_fn, permit, ops->priv,
2900				       vec, usr_len, sg, sg_cnt, data_len,
2901				       dma_dir);
2902		if (dir == READ)
2903			err = rtrs_clt_read_req(req);
2904		else
2905			err = rtrs_clt_write_req(req);
2906		if (unlikely(err)) {
2907			req->in_use = false;
2908			continue;
2909		}
2910		/* Success path */
2911		break;
2912	}
2913	path_it_deinit(&it);
2914	rcu_read_unlock();
2915
2916	return err;
2917}
2918EXPORT_SYMBOL(rtrs_clt_request);
2919
2920/**
2921 * rtrs_clt_query() - queries RTRS session attributes
2922 *@clt: session pointer
2923 *@attr: query results for session attributes.
2924 * Returns:
2925 *    0 on success
2926 *    -ECOMM		no connection to the server
2927 */
2928int rtrs_clt_query(struct rtrs_clt *clt, struct rtrs_attrs *attr)
2929{
2930	if (!rtrs_clt_is_connected(clt))
2931		return -ECOMM;
2932
2933	attr->queue_depth      = clt->queue_depth;
2934	attr->max_io_size      = clt->max_io_size;
2935	attr->sess_kobj	       = &clt->dev.kobj;
2936	strlcpy(attr->sessname, clt->sessname, sizeof(attr->sessname));
2937
2938	return 0;
2939}
2940EXPORT_SYMBOL(rtrs_clt_query);
2941
2942int rtrs_clt_create_path_from_sysfs(struct rtrs_clt *clt,
2943				     struct rtrs_addr *addr)
2944{
2945	struct rtrs_clt_sess *sess;
2946	int err;
2947
2948	sess = alloc_sess(clt, addr, nr_cpu_ids, clt->max_segments,
2949			  clt->max_segment_size);
2950	if (IS_ERR(sess))
2951		return PTR_ERR(sess);
2952
2953	/*
2954	 * It is totally safe to add path in CONNECTING state: coming
2955	 * IO will never grab it.  Also it is very important to add
2956	 * path before init, since init fires LINK_CONNECTED event.
2957	 */
2958	rtrs_clt_add_path_to_arr(sess, addr);
2959
2960	err = init_sess(sess);
2961	if (err)
2962		goto close_sess;
2963
2964	err = rtrs_clt_create_sess_files(sess);
2965	if (err)
2966		goto close_sess;
2967
2968	return 0;
2969
2970close_sess:
2971	rtrs_clt_remove_path_from_arr(sess);
2972	rtrs_clt_close_conns(sess, true);
2973	free_percpu(sess->stats->pcpu_stats);
2974	kfree(sess->stats);
2975	free_sess(sess);
2976
2977	return err;
2978}
2979
2980static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
2981{
2982	if (!(dev->ib_dev->attrs.device_cap_flags &
2983	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
2984		pr_err("Memory registrations not supported.\n");
2985		return -ENOTSUPP;
2986	}
2987
2988	return 0;
2989}
2990
2991static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
2992	.init = rtrs_clt_ib_dev_init
2993};
2994
2995static int __init rtrs_client_init(void)
2996{
2997	rtrs_rdma_dev_pd_init(0, &dev_pd);
2998
2999	rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client");
3000	if (IS_ERR(rtrs_clt_dev_class)) {
3001		pr_err("Failed to create rtrs-client dev class\n");
3002		return PTR_ERR(rtrs_clt_dev_class);
3003	}
3004	rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
3005	if (!rtrs_wq) {
3006		class_destroy(rtrs_clt_dev_class);
3007		return -ENOMEM;
3008	}
3009
3010	return 0;
3011}
3012
3013static void __exit rtrs_client_exit(void)
3014{
3015	destroy_workqueue(rtrs_wq);
3016	class_destroy(rtrs_clt_dev_class);
3017	rtrs_rdma_dev_pd_deinit(&dev_pd);
3018}
3019
3020module_init(rtrs_client_init);
3021module_exit(rtrs_client_exit);
3022