1/*
2 * Copyright(c) 2016 - 2020 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license.  When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 *  - Redistributions of source code must retain the above copyright
25 *    notice, this list of conditions and the following disclaimer.
26 *  - Redistributions in binary form must reproduce the above copyright
27 *    notice, this list of conditions and the following disclaimer in
28 *    the documentation and/or other materials provided with the
29 *    distribution.
30 *  - Neither the name of Intel Corporation nor the names of its
31 *    contributors may be used to endorse or promote products derived
32 *    from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48#include <linux/hash.h>
49#include <linux/bitops.h>
50#include <linux/lockdep.h>
51#include <linux/vmalloc.h>
52#include <linux/slab.h>
53#include <rdma/ib_verbs.h>
54#include <rdma/ib_hdrs.h>
55#include <rdma/opa_addr.h>
56#include <rdma/uverbs_ioctl.h>
57#include "qp.h"
58#include "vt.h"
59#include "trace.h"
60
61#define RVT_RWQ_COUNT_THRESHOLD 16
62
63static void rvt_rc_timeout(struct timer_list *t);
64static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
65			 enum ib_qp_type type);
66
67/*
68 * Convert the AETH RNR timeout code into the number of microseconds.
69 */
70static const u32 ib_rvt_rnr_table[32] = {
71	655360, /* 00: 655.36 */
72	10,     /* 01:    .01 */
73	20,     /* 02     .02 */
74	30,     /* 03:    .03 */
75	40,     /* 04:    .04 */
76	60,     /* 05:    .06 */
77	80,     /* 06:    .08 */
78	120,    /* 07:    .12 */
79	160,    /* 08:    .16 */
80	240,    /* 09:    .24 */
81	320,    /* 0A:    .32 */
82	480,    /* 0B:    .48 */
83	640,    /* 0C:    .64 */
84	960,    /* 0D:    .96 */
85	1280,   /* 0E:   1.28 */
86	1920,   /* 0F:   1.92 */
87	2560,   /* 10:   2.56 */
88	3840,   /* 11:   3.84 */
89	5120,   /* 12:   5.12 */
90	7680,   /* 13:   7.68 */
91	10240,  /* 14:  10.24 */
92	15360,  /* 15:  15.36 */
93	20480,  /* 16:  20.48 */
94	30720,  /* 17:  30.72 */
95	40960,  /* 18:  40.96 */
96	61440,  /* 19:  61.44 */
97	81920,  /* 1A:  81.92 */
98	122880, /* 1B: 122.88 */
99	163840, /* 1C: 163.84 */
100	245760, /* 1D: 245.76 */
101	327680, /* 1E: 327.68 */
102	491520  /* 1F: 491.52 */
103};
104
105/*
106 * Note that it is OK to post send work requests in the SQE and ERR
107 * states; rvt_do_send() will process them and generate error
108 * completions as per IB 1.2 C10-96.
109 */
110const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
111	[IB_QPS_RESET] = 0,
112	[IB_QPS_INIT] = RVT_POST_RECV_OK,
113	[IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
114	[IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
115	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
116	    RVT_PROCESS_NEXT_SEND_OK,
117	[IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
118	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
119	[IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
120	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
121	[IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
122	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
123};
124EXPORT_SYMBOL(ib_rvt_state_ops);
125
126/* platform specific: return the last level cache (llc) size, in KiB */
127static int rvt_wss_llc_size(void)
128{
129	/* assume that the boot CPU value is universal for all CPUs */
130	return boot_cpu_data.x86_cache_size;
131}
132
133/* platform specific: cacheless copy */
134static void cacheless_memcpy(void *dst, void *src, size_t n)
135{
136	/*
137	 * Use the only available X64 cacheless copy.  Add a __user cast
138	 * to quiet sparse.  The src agument is already in the kernel so
139	 * there are no security issues.  The extra fault recovery machinery
140	 * is not invoked.
141	 */
142	__copy_user_nocache(dst, (void __user *)src, n, 0);
143}
144
145void rvt_wss_exit(struct rvt_dev_info *rdi)
146{
147	struct rvt_wss *wss = rdi->wss;
148
149	if (!wss)
150		return;
151
152	/* coded to handle partially initialized and repeat callers */
153	kfree(wss->entries);
154	wss->entries = NULL;
155	kfree(rdi->wss);
156	rdi->wss = NULL;
157}
158
159/**
160 * rvt_wss_init - Init wss data structures
161 *
162 * Return: 0 on success
163 */
164int rvt_wss_init(struct rvt_dev_info *rdi)
165{
166	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
167	unsigned int wss_threshold = rdi->dparms.wss_threshold;
168	unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
169	long llc_size;
170	long llc_bits;
171	long table_size;
172	long table_bits;
173	struct rvt_wss *wss;
174	int node = rdi->dparms.node;
175
176	if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
177		rdi->wss = NULL;
178		return 0;
179	}
180
181	rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
182	if (!rdi->wss)
183		return -ENOMEM;
184	wss = rdi->wss;
185
186	/* check for a valid percent range - default to 80 if none or invalid */
187	if (wss_threshold < 1 || wss_threshold > 100)
188		wss_threshold = 80;
189
190	/* reject a wildly large period */
191	if (wss_clean_period > 1000000)
192		wss_clean_period = 256;
193
194	/* reject a zero period */
195	if (wss_clean_period == 0)
196		wss_clean_period = 1;
197
198	/*
199	 * Calculate the table size - the next power of 2 larger than the
200	 * LLC size.  LLC size is in KiB.
201	 */
202	llc_size = rvt_wss_llc_size() * 1024;
203	table_size = roundup_pow_of_two(llc_size);
204
205	/* one bit per page in rounded up table */
206	llc_bits = llc_size / PAGE_SIZE;
207	table_bits = table_size / PAGE_SIZE;
208	wss->pages_mask = table_bits - 1;
209	wss->num_entries = table_bits / BITS_PER_LONG;
210
211	wss->threshold = (llc_bits * wss_threshold) / 100;
212	if (wss->threshold == 0)
213		wss->threshold = 1;
214
215	wss->clean_period = wss_clean_period;
216	atomic_set(&wss->clean_counter, wss_clean_period);
217
218	wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
219				    GFP_KERNEL, node);
220	if (!wss->entries) {
221		rvt_wss_exit(rdi);
222		return -ENOMEM;
223	}
224
225	return 0;
226}
227
228/*
229 * Advance the clean counter.  When the clean period has expired,
230 * clean an entry.
231 *
232 * This is implemented in atomics to avoid locking.  Because multiple
233 * variables are involved, it can be racy which can lead to slightly
234 * inaccurate information.  Since this is only a heuristic, this is
235 * OK.  Any innaccuracies will clean themselves out as the counter
236 * advances.  That said, it is unlikely the entry clean operation will
237 * race - the next possible racer will not start until the next clean
238 * period.
239 *
240 * The clean counter is implemented as a decrement to zero.  When zero
241 * is reached an entry is cleaned.
242 */
243static void wss_advance_clean_counter(struct rvt_wss *wss)
244{
245	int entry;
246	int weight;
247	unsigned long bits;
248
249	/* become the cleaner if we decrement the counter to zero */
250	if (atomic_dec_and_test(&wss->clean_counter)) {
251		/*
252		 * Set, not add, the clean period.  This avoids an issue
253		 * where the counter could decrement below the clean period.
254		 * Doing a set can result in lost decrements, slowing the
255		 * clean advance.  Since this a heuristic, this possible
256		 * slowdown is OK.
257		 *
258		 * An alternative is to loop, advancing the counter by a
259		 * clean period until the result is > 0. However, this could
260		 * lead to several threads keeping another in the clean loop.
261		 * This could be mitigated by limiting the number of times
262		 * we stay in the loop.
263		 */
264		atomic_set(&wss->clean_counter, wss->clean_period);
265
266		/*
267		 * Uniquely grab the entry to clean and move to next.
268		 * The current entry is always the lower bits of
269		 * wss.clean_entry.  The table size, wss.num_entries,
270		 * is always a power-of-2.
271		 */
272		entry = (atomic_inc_return(&wss->clean_entry) - 1)
273			& (wss->num_entries - 1);
274
275		/* clear the entry and count the bits */
276		bits = xchg(&wss->entries[entry], 0);
277		weight = hweight64((u64)bits);
278		/* only adjust the contended total count if needed */
279		if (weight)
280			atomic_sub(weight, &wss->total_count);
281	}
282}
283
284/*
285 * Insert the given address into the working set array.
286 */
287static void wss_insert(struct rvt_wss *wss, void *address)
288{
289	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
290	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
291	u32 nr = page & (BITS_PER_LONG - 1);
292
293	if (!test_and_set_bit(nr, &wss->entries[entry]))
294		atomic_inc(&wss->total_count);
295
296	wss_advance_clean_counter(wss);
297}
298
299/*
300 * Is the working set larger than the threshold?
301 */
302static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
303{
304	return atomic_read(&wss->total_count) >= wss->threshold;
305}
306
307static void get_map_page(struct rvt_qpn_table *qpt,
308			 struct rvt_qpn_map *map)
309{
310	unsigned long page = get_zeroed_page(GFP_KERNEL);
311
312	/*
313	 * Free the page if someone raced with us installing it.
314	 */
315
316	spin_lock(&qpt->lock);
317	if (map->page)
318		free_page(page);
319	else
320		map->page = (void *)page;
321	spin_unlock(&qpt->lock);
322}
323
324/**
325 * init_qpn_table - initialize the QP number table for a device
326 * @qpt: the QPN table
327 */
328static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
329{
330	u32 offset, i;
331	struct rvt_qpn_map *map;
332	int ret = 0;
333
334	if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
335		return -EINVAL;
336
337	spin_lock_init(&qpt->lock);
338
339	qpt->last = rdi->dparms.qpn_start;
340	qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
341
342	/*
343	 * Drivers may want some QPs beyond what we need for verbs let them use
344	 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
345	 * for those. The reserved range must be *after* the range which verbs
346	 * will pick from.
347	 */
348
349	/* Figure out number of bit maps needed before reserved range */
350	qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
351
352	/* This should always be zero */
353	offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
354
355	/* Starting with the first reserved bit map */
356	map = &qpt->map[qpt->nmaps];
357
358	rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
359		    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
360	for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
361		if (!map->page) {
362			get_map_page(qpt, map);
363			if (!map->page) {
364				ret = -ENOMEM;
365				break;
366			}
367		}
368		set_bit(offset, map->page);
369		offset++;
370		if (offset == RVT_BITS_PER_PAGE) {
371			/* next page */
372			qpt->nmaps++;
373			map++;
374			offset = 0;
375		}
376	}
377	return ret;
378}
379
380/**
381 * free_qpn_table - free the QP number table for a device
382 * @qpt: the QPN table
383 */
384static void free_qpn_table(struct rvt_qpn_table *qpt)
385{
386	int i;
387
388	for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
389		free_page((unsigned long)qpt->map[i].page);
390}
391
392/**
393 * rvt_driver_qp_init - Init driver qp resources
394 * @rdi: rvt dev strucutre
395 *
396 * Return: 0 on success
397 */
398int rvt_driver_qp_init(struct rvt_dev_info *rdi)
399{
400	int i;
401	int ret = -ENOMEM;
402
403	if (!rdi->dparms.qp_table_size)
404		return -EINVAL;
405
406	/*
407	 * If driver is not doing any QP allocation then make sure it is
408	 * providing the necessary QP functions.
409	 */
410	if (!rdi->driver_f.free_all_qps ||
411	    !rdi->driver_f.qp_priv_alloc ||
412	    !rdi->driver_f.qp_priv_free ||
413	    !rdi->driver_f.notify_qp_reset ||
414	    !rdi->driver_f.notify_restart_rc)
415		return -EINVAL;
416
417	/* allocate parent object */
418	rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
419				   rdi->dparms.node);
420	if (!rdi->qp_dev)
421		return -ENOMEM;
422
423	/* allocate hash table */
424	rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
425	rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
426	rdi->qp_dev->qp_table =
427		kmalloc_array_node(rdi->qp_dev->qp_table_size,
428			     sizeof(*rdi->qp_dev->qp_table),
429			     GFP_KERNEL, rdi->dparms.node);
430	if (!rdi->qp_dev->qp_table)
431		goto no_qp_table;
432
433	for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
434		RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
435
436	spin_lock_init(&rdi->qp_dev->qpt_lock);
437
438	/* initialize qpn map */
439	if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
440		goto fail_table;
441
442	spin_lock_init(&rdi->n_qps_lock);
443
444	return 0;
445
446fail_table:
447	kfree(rdi->qp_dev->qp_table);
448	free_qpn_table(&rdi->qp_dev->qpn_table);
449
450no_qp_table:
451	kfree(rdi->qp_dev);
452
453	return ret;
454}
455
456/**
457 * rvt_free_qp_cb - callback function to reset a qp
458 * @qp: the qp to reset
459 * @v: a 64-bit value
460 *
461 * This function resets the qp and removes it from the
462 * qp hash table.
463 */
464static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
465{
466	unsigned int *qp_inuse = (unsigned int *)v;
467	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
468
469	/* Reset the qp and remove it from the qp hash list */
470	rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
471
472	/* Increment the qp_inuse count */
473	(*qp_inuse)++;
474}
475
476/**
477 * rvt_free_all_qps - check for QPs still in use
478 * @rdi: rvt device info structure
479 *
480 * There should not be any QPs still in use.
481 * Free memory for table.
482 * Return the number of QPs still in use.
483 */
484static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
485{
486	unsigned int qp_inuse = 0;
487
488	qp_inuse += rvt_mcast_tree_empty(rdi);
489
490	rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
491
492	return qp_inuse;
493}
494
495/**
496 * rvt_qp_exit - clean up qps on device exit
497 * @rdi: rvt dev structure
498 *
499 * Check for qp leaks and free resources.
500 */
501void rvt_qp_exit(struct rvt_dev_info *rdi)
502{
503	u32 qps_inuse = rvt_free_all_qps(rdi);
504
505	if (qps_inuse)
506		rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
507			   qps_inuse);
508
509	kfree(rdi->qp_dev->qp_table);
510	free_qpn_table(&rdi->qp_dev->qpn_table);
511	kfree(rdi->qp_dev);
512}
513
514static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
515			      struct rvt_qpn_map *map, unsigned off)
516{
517	return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
518}
519
520/**
521 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
522 *	       IB_QPT_SMI/IB_QPT_GSI
523 * @rdi: rvt device info structure
524 * @qpt: queue pair number table pointer
525 * @port_num: IB port number, 1 based, comes from core
526 * @exclude_prefix: prefix of special queue pair number being allocated
527 *
528 * Return: The queue pair number
529 */
530static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
531		     enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
532{
533	u32 i, offset, max_scan, qpn;
534	struct rvt_qpn_map *map;
535	u32 ret;
536	u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
537		RVT_AIP_QPN_MAX : RVT_QPN_MAX;
538
539	if (rdi->driver_f.alloc_qpn)
540		return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
541
542	if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
543		unsigned n;
544
545		ret = type == IB_QPT_GSI;
546		n = 1 << (ret + 2 * (port_num - 1));
547		spin_lock(&qpt->lock);
548		if (qpt->flags & n)
549			ret = -EINVAL;
550		else
551			qpt->flags |= n;
552		spin_unlock(&qpt->lock);
553		goto bail;
554	}
555
556	qpn = qpt->last + qpt->incr;
557	if (qpn >= max_qpn)
558		qpn = qpt->incr | ((qpt->last & 1) ^ 1);
559	/* offset carries bit 0 */
560	offset = qpn & RVT_BITS_PER_PAGE_MASK;
561	map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
562	max_scan = qpt->nmaps - !offset;
563	for (i = 0;;) {
564		if (unlikely(!map->page)) {
565			get_map_page(qpt, map);
566			if (unlikely(!map->page))
567				break;
568		}
569		do {
570			if (!test_and_set_bit(offset, map->page)) {
571				qpt->last = qpn;
572				ret = qpn;
573				goto bail;
574			}
575			offset += qpt->incr;
576			/*
577			 * This qpn might be bogus if offset >= BITS_PER_PAGE.
578			 * That is OK.   It gets re-assigned below
579			 */
580			qpn = mk_qpn(qpt, map, offset);
581		} while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
582		/*
583		 * In order to keep the number of pages allocated to a
584		 * minimum, we scan the all existing pages before increasing
585		 * the size of the bitmap table.
586		 */
587		if (++i > max_scan) {
588			if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
589				break;
590			map = &qpt->map[qpt->nmaps++];
591			/* start at incr with current bit 0 */
592			offset = qpt->incr | (offset & 1);
593		} else if (map < &qpt->map[qpt->nmaps]) {
594			++map;
595			/* start at incr with current bit 0 */
596			offset = qpt->incr | (offset & 1);
597		} else {
598			map = &qpt->map[0];
599			/* wrap to first map page, invert bit 0 */
600			offset = qpt->incr | ((offset & 1) ^ 1);
601		}
602		/* there can be no set bits in low-order QoS bits */
603		WARN_ON(rdi->dparms.qos_shift > 1 &&
604			offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
605		qpn = mk_qpn(qpt, map, offset);
606	}
607
608	ret = -ENOMEM;
609
610bail:
611	return ret;
612}
613
614/**
615 * rvt_clear_mr_refs - Drop help mr refs
616 * @qp: rvt qp data structure
617 * @clr_sends: If shoudl clear send side or not
618 */
619static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
620{
621	unsigned n;
622	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
623
624	if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
625		rvt_put_ss(&qp->s_rdma_read_sge);
626
627	rvt_put_ss(&qp->r_sge);
628
629	if (clr_sends) {
630		while (qp->s_last != qp->s_head) {
631			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
632
633			rvt_put_qp_swqe(qp, wqe);
634			if (++qp->s_last >= qp->s_size)
635				qp->s_last = 0;
636			smp_wmb(); /* see qp_set_savail */
637		}
638		if (qp->s_rdma_mr) {
639			rvt_put_mr(qp->s_rdma_mr);
640			qp->s_rdma_mr = NULL;
641		}
642	}
643
644	for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
645		struct rvt_ack_entry *e = &qp->s_ack_queue[n];
646
647		if (e->rdma_sge.mr) {
648			rvt_put_mr(e->rdma_sge.mr);
649			e->rdma_sge.mr = NULL;
650		}
651	}
652}
653
654/**
655 * rvt_swqe_has_lkey - return true if lkey is used by swqe
656 * @wqe - the send wqe
657 * @lkey - the lkey
658 *
659 * Test the swqe for using lkey
660 */
661static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
662{
663	int i;
664
665	for (i = 0; i < wqe->wr.num_sge; i++) {
666		struct rvt_sge *sge = &wqe->sg_list[i];
667
668		if (rvt_mr_has_lkey(sge->mr, lkey))
669			return true;
670	}
671	return false;
672}
673
674/**
675 * rvt_qp_sends_has_lkey - return true is qp sends use lkey
676 * @qp - the rvt_qp
677 * @lkey - the lkey
678 */
679static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
680{
681	u32 s_last = qp->s_last;
682
683	while (s_last != qp->s_head) {
684		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
685
686		if (rvt_swqe_has_lkey(wqe, lkey))
687			return true;
688
689		if (++s_last >= qp->s_size)
690			s_last = 0;
691	}
692	if (qp->s_rdma_mr)
693		if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
694			return true;
695	return false;
696}
697
698/**
699 * rvt_qp_acks_has_lkey - return true if acks have lkey
700 * @qp - the qp
701 * @lkey - the lkey
702 */
703static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
704{
705	int i;
706	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
707
708	for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
709		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
710
711		if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
712			return true;
713	}
714	return false;
715}
716
717/*
718 * rvt_qp_mr_clean - clean up remote ops for lkey
719 * @qp - the qp
720 * @lkey - the lkey that is being de-registered
721 *
722 * This routine checks if the lkey is being used by
723 * the qp.
724 *
725 * If so, the qp is put into an error state to elminate
726 * any references from the qp.
727 */
728void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
729{
730	bool lastwqe = false;
731
732	if (qp->ibqp.qp_type == IB_QPT_SMI ||
733	    qp->ibqp.qp_type == IB_QPT_GSI)
734		/* avoid special QPs */
735		return;
736	spin_lock_irq(&qp->r_lock);
737	spin_lock(&qp->s_hlock);
738	spin_lock(&qp->s_lock);
739
740	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
741		goto check_lwqe;
742
743	if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
744	    rvt_qp_sends_has_lkey(qp, lkey) ||
745	    rvt_qp_acks_has_lkey(qp, lkey))
746		lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
747check_lwqe:
748	spin_unlock(&qp->s_lock);
749	spin_unlock(&qp->s_hlock);
750	spin_unlock_irq(&qp->r_lock);
751	if (lastwqe) {
752		struct ib_event ev;
753
754		ev.device = qp->ibqp.device;
755		ev.element.qp = &qp->ibqp;
756		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
757		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
758	}
759}
760
761/**
762 * rvt_remove_qp - remove qp form table
763 * @rdi: rvt dev struct
764 * @qp: qp to remove
765 *
766 * Remove the QP from the table so it can't be found asynchronously by
767 * the receive routine.
768 */
769static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
770{
771	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
772	u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
773	unsigned long flags;
774	int removed = 1;
775
776	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
777
778	if (rcu_dereference_protected(rvp->qp[0],
779			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
780		RCU_INIT_POINTER(rvp->qp[0], NULL);
781	} else if (rcu_dereference_protected(rvp->qp[1],
782			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
783		RCU_INIT_POINTER(rvp->qp[1], NULL);
784	} else {
785		struct rvt_qp *q;
786		struct rvt_qp __rcu **qpp;
787
788		removed = 0;
789		qpp = &rdi->qp_dev->qp_table[n];
790		for (; (q = rcu_dereference_protected(*qpp,
791			lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
792			qpp = &q->next) {
793			if (q == qp) {
794				RCU_INIT_POINTER(*qpp,
795				     rcu_dereference_protected(qp->next,
796				     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
797				removed = 1;
798				trace_rvt_qpremove(qp, n);
799				break;
800			}
801		}
802	}
803
804	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
805	if (removed) {
806		synchronize_rcu();
807		rvt_put_qp(qp);
808	}
809}
810
811/**
812 * rvt_alloc_rq - allocate memory for user or kernel buffer
813 * @rq: receive queue data structure
814 * @size: number of request queue entries
815 * @node: The NUMA node
816 * @udata: True if user data is available or not false
817 *
818 * Return: If memory allocation failed, return -ENONEM
819 * This function is used by both shared receive
820 * queues and non-shared receive queues to allocate
821 * memory.
822 */
823int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
824		 struct ib_udata *udata)
825{
826	if (udata) {
827		rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
828		if (!rq->wq)
829			goto bail;
830		/* need kwq with no buffers */
831		rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
832		if (!rq->kwq)
833			goto bail;
834		rq->kwq->curr_wq = rq->wq->wq;
835	} else {
836		/* need kwq with buffers */
837		rq->kwq =
838			vzalloc_node(sizeof(struct rvt_krwq) + size, node);
839		if (!rq->kwq)
840			goto bail;
841		rq->kwq->curr_wq = rq->kwq->wq;
842	}
843
844	spin_lock_init(&rq->kwq->p_lock);
845	spin_lock_init(&rq->kwq->c_lock);
846	return 0;
847bail:
848	rvt_free_rq(rq);
849	return -ENOMEM;
850}
851
852/**
853 * rvt_init_qp - initialize the QP state to the reset state
854 * @qp: the QP to init or reinit
855 * @type: the QP type
856 *
857 * This function is called from both rvt_create_qp() and
858 * rvt_reset_qp().   The difference is that the reset
859 * patch the necessary locks to protect against concurent
860 * access.
861 */
862static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
863			enum ib_qp_type type)
864{
865	qp->remote_qpn = 0;
866	qp->qkey = 0;
867	qp->qp_access_flags = 0;
868	qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
869	qp->s_hdrwords = 0;
870	qp->s_wqe = NULL;
871	qp->s_draining = 0;
872	qp->s_next_psn = 0;
873	qp->s_last_psn = 0;
874	qp->s_sending_psn = 0;
875	qp->s_sending_hpsn = 0;
876	qp->s_psn = 0;
877	qp->r_psn = 0;
878	qp->r_msn = 0;
879	if (type == IB_QPT_RC) {
880		qp->s_state = IB_OPCODE_RC_SEND_LAST;
881		qp->r_state = IB_OPCODE_RC_SEND_LAST;
882	} else {
883		qp->s_state = IB_OPCODE_UC_SEND_LAST;
884		qp->r_state = IB_OPCODE_UC_SEND_LAST;
885	}
886	qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
887	qp->r_nak_state = 0;
888	qp->r_aflags = 0;
889	qp->r_flags = 0;
890	qp->s_head = 0;
891	qp->s_tail = 0;
892	qp->s_cur = 0;
893	qp->s_acked = 0;
894	qp->s_last = 0;
895	qp->s_ssn = 1;
896	qp->s_lsn = 0;
897	qp->s_mig_state = IB_MIG_MIGRATED;
898	qp->r_head_ack_queue = 0;
899	qp->s_tail_ack_queue = 0;
900	qp->s_acked_ack_queue = 0;
901	qp->s_num_rd_atomic = 0;
902	qp->r_sge.num_sge = 0;
903	atomic_set(&qp->s_reserved_used, 0);
904}
905
906/**
907 * _rvt_reset_qp - initialize the QP state to the reset state
908 * @qp: the QP to reset
909 * @type: the QP type
910 *
911 * r_lock, s_hlock, and s_lock are required to be held by the caller
912 */
913static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
914			  enum ib_qp_type type)
915	__must_hold(&qp->s_lock)
916	__must_hold(&qp->s_hlock)
917	__must_hold(&qp->r_lock)
918{
919	lockdep_assert_held(&qp->r_lock);
920	lockdep_assert_held(&qp->s_hlock);
921	lockdep_assert_held(&qp->s_lock);
922	if (qp->state != IB_QPS_RESET) {
923		qp->state = IB_QPS_RESET;
924
925		/* Let drivers flush their waitlist */
926		rdi->driver_f.flush_qp_waiters(qp);
927		rvt_stop_rc_timers(qp);
928		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
929		spin_unlock(&qp->s_lock);
930		spin_unlock(&qp->s_hlock);
931		spin_unlock_irq(&qp->r_lock);
932
933		/* Stop the send queue and the retry timer */
934		rdi->driver_f.stop_send_queue(qp);
935		rvt_del_timers_sync(qp);
936		/* Wait for things to stop */
937		rdi->driver_f.quiesce_qp(qp);
938
939		/* take qp out the hash and wait for it to be unused */
940		rvt_remove_qp(rdi, qp);
941
942		/* grab the lock b/c it was locked at call time */
943		spin_lock_irq(&qp->r_lock);
944		spin_lock(&qp->s_hlock);
945		spin_lock(&qp->s_lock);
946
947		rvt_clear_mr_refs(qp, 1);
948		/*
949		 * Let the driver do any tear down or re-init it needs to for
950		 * a qp that has been reset
951		 */
952		rdi->driver_f.notify_qp_reset(qp);
953	}
954	rvt_init_qp(rdi, qp, type);
955	lockdep_assert_held(&qp->r_lock);
956	lockdep_assert_held(&qp->s_hlock);
957	lockdep_assert_held(&qp->s_lock);
958}
959
960/**
961 * rvt_reset_qp - initialize the QP state to the reset state
962 * @rdi: the device info
963 * @qp: the QP to reset
964 * @type: the QP type
965 *
966 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
967 * before calling _rvt_reset_qp().
968 */
969static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
970			 enum ib_qp_type type)
971{
972	spin_lock_irq(&qp->r_lock);
973	spin_lock(&qp->s_hlock);
974	spin_lock(&qp->s_lock);
975	_rvt_reset_qp(rdi, qp, type);
976	spin_unlock(&qp->s_lock);
977	spin_unlock(&qp->s_hlock);
978	spin_unlock_irq(&qp->r_lock);
979}
980
981/** rvt_free_qpn - Free a qpn from the bit map
982 * @qpt: QP table
983 * @qpn: queue pair number to free
984 */
985static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
986{
987	struct rvt_qpn_map *map;
988
989	if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
990		qpn &= RVT_AIP_QP_SUFFIX;
991
992	map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
993	if (map->page)
994		clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
995}
996
997/**
998 * get_allowed_ops - Given a QP type return the appropriate allowed OP
999 * @type: valid, supported, QP type
1000 */
1001static u8 get_allowed_ops(enum ib_qp_type type)
1002{
1003	return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
1004		IB_OPCODE_UC : IB_OPCODE_UD;
1005}
1006
1007/**
1008 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
1009 * @qp: Valid QP with allowed_ops set
1010 *
1011 * The rvt_swqe data structure being used is a union, so this is
1012 * only valid for UD QPs.
1013 */
1014static void free_ud_wq_attr(struct rvt_qp *qp)
1015{
1016	struct rvt_swqe *wqe;
1017	int i;
1018
1019	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1020		wqe = rvt_get_swqe_ptr(qp, i);
1021		kfree(wqe->ud_wr.attr);
1022		wqe->ud_wr.attr = NULL;
1023	}
1024}
1025
1026/**
1027 * alloc_ud_wq_attr - AH attribute cache for UD QPs
1028 * @qp: Valid QP with allowed_ops set
1029 * @node: Numa node for allocation
1030 *
1031 * The rvt_swqe data structure being used is a union, so this is
1032 * only valid for UD QPs.
1033 */
1034static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1035{
1036	struct rvt_swqe *wqe;
1037	int i;
1038
1039	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1040		wqe = rvt_get_swqe_ptr(qp, i);
1041		wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1042					       GFP_KERNEL, node);
1043		if (!wqe->ud_wr.attr) {
1044			free_ud_wq_attr(qp);
1045			return -ENOMEM;
1046		}
1047	}
1048
1049	return 0;
1050}
1051
1052/**
1053 * rvt_create_qp - create a queue pair for a device
1054 * @ibpd: the protection domain who's device we create the queue pair for
1055 * @init_attr: the attributes of the queue pair
1056 * @udata: user data for libibverbs.so
1057 *
1058 * Queue pair creation is mostly an rvt issue. However, drivers have their own
1059 * unique idea of what queue pair numbers mean. For instance there is a reserved
1060 * range for PSM.
1061 *
1062 * Return: the queue pair on success, otherwise returns an errno.
1063 *
1064 * Called by the ib_create_qp() core verbs function.
1065 */
1066struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
1067			    struct ib_qp_init_attr *init_attr,
1068			    struct ib_udata *udata)
1069{
1070	struct rvt_qp *qp;
1071	int err;
1072	struct rvt_swqe *swq = NULL;
1073	size_t sz;
1074	size_t sg_list_sz;
1075	struct ib_qp *ret = ERR_PTR(-ENOMEM);
1076	struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
1077	void *priv = NULL;
1078	size_t sqsize;
1079	u8 exclude_prefix = 0;
1080
1081	if (!rdi)
1082		return ERR_PTR(-EINVAL);
1083
1084	if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1085	    init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
1086	    (init_attr->create_flags &&
1087	     init_attr->create_flags != IB_QP_CREATE_NETDEV_USE))
1088		return ERR_PTR(-EINVAL);
1089
1090	/* Check receive queue parameters if no SRQ is specified. */
1091	if (!init_attr->srq) {
1092		if (init_attr->cap.max_recv_sge >
1093		    rdi->dparms.props.max_recv_sge ||
1094		    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1095			return ERR_PTR(-EINVAL);
1096
1097		if (init_attr->cap.max_send_sge +
1098		    init_attr->cap.max_send_wr +
1099		    init_attr->cap.max_recv_sge +
1100		    init_attr->cap.max_recv_wr == 0)
1101			return ERR_PTR(-EINVAL);
1102	}
1103	sqsize =
1104		init_attr->cap.max_send_wr + 1 +
1105		rdi->dparms.reserved_operations;
1106	switch (init_attr->qp_type) {
1107	case IB_QPT_SMI:
1108	case IB_QPT_GSI:
1109		if (init_attr->port_num == 0 ||
1110		    init_attr->port_num > ibpd->device->phys_port_cnt)
1111			return ERR_PTR(-EINVAL);
1112		fallthrough;
1113	case IB_QPT_UC:
1114	case IB_QPT_RC:
1115	case IB_QPT_UD:
1116		sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1117		swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1118		if (!swq)
1119			return ERR_PTR(-ENOMEM);
1120
1121		sz = sizeof(*qp);
1122		sg_list_sz = 0;
1123		if (init_attr->srq) {
1124			struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1125
1126			if (srq->rq.max_sge > 1)
1127				sg_list_sz = sizeof(*qp->r_sg_list) *
1128					(srq->rq.max_sge - 1);
1129		} else if (init_attr->cap.max_recv_sge > 1)
1130			sg_list_sz = sizeof(*qp->r_sg_list) *
1131				(init_attr->cap.max_recv_sge - 1);
1132		qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1133				  rdi->dparms.node);
1134		if (!qp)
1135			goto bail_swq;
1136		qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1137
1138		RCU_INIT_POINTER(qp->next, NULL);
1139		if (init_attr->qp_type == IB_QPT_RC) {
1140			qp->s_ack_queue =
1141				kcalloc_node(rvt_max_atomic(rdi),
1142					     sizeof(*qp->s_ack_queue),
1143					     GFP_KERNEL,
1144					     rdi->dparms.node);
1145			if (!qp->s_ack_queue)
1146				goto bail_qp;
1147		}
1148		/* initialize timers needed for rc qp */
1149		timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1150		hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1151			     HRTIMER_MODE_REL);
1152		qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1153
1154		/*
1155		 * Driver needs to set up it's private QP structure and do any
1156		 * initialization that is needed.
1157		 */
1158		priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1159		if (IS_ERR(priv)) {
1160			ret = priv;
1161			goto bail_qp;
1162		}
1163		qp->priv = priv;
1164		qp->timeout_jiffies =
1165			usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1166				1000UL);
1167		if (init_attr->srq) {
1168			sz = 0;
1169		} else {
1170			qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1171			qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1172			sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1173				sizeof(struct rvt_rwqe);
1174			err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1175					   rdi->dparms.node, udata);
1176			if (err) {
1177				ret = ERR_PTR(err);
1178				goto bail_driver_priv;
1179			}
1180		}
1181
1182		/*
1183		 * ib_create_qp() will initialize qp->ibqp
1184		 * except for qp->ibqp.qp_num.
1185		 */
1186		spin_lock_init(&qp->r_lock);
1187		spin_lock_init(&qp->s_hlock);
1188		spin_lock_init(&qp->s_lock);
1189		atomic_set(&qp->refcount, 0);
1190		atomic_set(&qp->local_ops_pending, 0);
1191		init_waitqueue_head(&qp->wait);
1192		INIT_LIST_HEAD(&qp->rspwait);
1193		qp->state = IB_QPS_RESET;
1194		qp->s_wq = swq;
1195		qp->s_size = sqsize;
1196		qp->s_avail = init_attr->cap.max_send_wr;
1197		qp->s_max_sge = init_attr->cap.max_send_sge;
1198		if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1199			qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1200		err = alloc_ud_wq_attr(qp, rdi->dparms.node);
1201		if (err) {
1202			ret = (ERR_PTR(err));
1203			goto bail_rq_rvt;
1204		}
1205
1206		if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1207			exclude_prefix = RVT_AIP_QP_PREFIX;
1208
1209		err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1210				init_attr->qp_type,
1211				init_attr->port_num,
1212				exclude_prefix);
1213		if (err < 0) {
1214			ret = ERR_PTR(err);
1215			goto bail_rq_wq;
1216		}
1217		qp->ibqp.qp_num = err;
1218		if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1219			qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1220		qp->port_num = init_attr->port_num;
1221		rvt_init_qp(rdi, qp, init_attr->qp_type);
1222		if (rdi->driver_f.qp_priv_init) {
1223			err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1224			if (err) {
1225				ret = ERR_PTR(err);
1226				goto bail_rq_wq;
1227			}
1228		}
1229		break;
1230
1231	default:
1232		/* Don't support raw QPs */
1233		return ERR_PTR(-EOPNOTSUPP);
1234	}
1235
1236	init_attr->cap.max_inline_data = 0;
1237
1238	/*
1239	 * Return the address of the RWQ as the offset to mmap.
1240	 * See rvt_mmap() for details.
1241	 */
1242	if (udata && udata->outlen >= sizeof(__u64)) {
1243		if (!qp->r_rq.wq) {
1244			__u64 offset = 0;
1245
1246			err = ib_copy_to_udata(udata, &offset,
1247					       sizeof(offset));
1248			if (err) {
1249				ret = ERR_PTR(err);
1250				goto bail_qpn;
1251			}
1252		} else {
1253			u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1254
1255			qp->ip = rvt_create_mmap_info(rdi, s, udata,
1256						      qp->r_rq.wq);
1257			if (IS_ERR(qp->ip)) {
1258				ret = ERR_CAST(qp->ip);
1259				goto bail_qpn;
1260			}
1261
1262			err = ib_copy_to_udata(udata, &qp->ip->offset,
1263					       sizeof(qp->ip->offset));
1264			if (err) {
1265				ret = ERR_PTR(err);
1266				goto bail_ip;
1267			}
1268		}
1269		qp->pid = current->pid;
1270	}
1271
1272	spin_lock(&rdi->n_qps_lock);
1273	if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1274		spin_unlock(&rdi->n_qps_lock);
1275		ret = ERR_PTR(-ENOMEM);
1276		goto bail_ip;
1277	}
1278
1279	rdi->n_qps_allocated++;
1280	/*
1281	 * Maintain a busy_jiffies variable that will be added to the timeout
1282	 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1283	 * is scaled by the number of rc qps created for the device to reduce
1284	 * the number of timeouts occurring when there is a large number of
1285	 * qps. busy_jiffies is incremented every rc qp scaling interval.
1286	 * The scaling interval is selected based on extensive performance
1287	 * evaluation of targeted workloads.
1288	 */
1289	if (init_attr->qp_type == IB_QPT_RC) {
1290		rdi->n_rc_qps++;
1291		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1292	}
1293	spin_unlock(&rdi->n_qps_lock);
1294
1295	if (qp->ip) {
1296		spin_lock_irq(&rdi->pending_lock);
1297		list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1298		spin_unlock_irq(&rdi->pending_lock);
1299	}
1300
1301	ret = &qp->ibqp;
1302
1303	return ret;
1304
1305bail_ip:
1306	if (qp->ip)
1307		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1308
1309bail_qpn:
1310	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1311
1312bail_rq_wq:
1313	free_ud_wq_attr(qp);
1314
1315bail_rq_rvt:
1316	rvt_free_rq(&qp->r_rq);
1317
1318bail_driver_priv:
1319	rdi->driver_f.qp_priv_free(rdi, qp);
1320
1321bail_qp:
1322	kfree(qp->s_ack_queue);
1323	kfree(qp);
1324
1325bail_swq:
1326	vfree(swq);
1327
1328	return ret;
1329}
1330
1331/**
1332 * rvt_error_qp - put a QP into the error state
1333 * @qp: the QP to put into the error state
1334 * @err: the receive completion error to signal if a RWQE is active
1335 *
1336 * Flushes both send and receive work queues.
1337 *
1338 * Return: true if last WQE event should be generated.
1339 * The QP r_lock and s_lock should be held and interrupts disabled.
1340 * If we are already in error state, just return.
1341 */
1342int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1343{
1344	struct ib_wc wc;
1345	int ret = 0;
1346	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1347
1348	lockdep_assert_held(&qp->r_lock);
1349	lockdep_assert_held(&qp->s_lock);
1350	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1351		goto bail;
1352
1353	qp->state = IB_QPS_ERR;
1354
1355	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1356		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1357		del_timer(&qp->s_timer);
1358	}
1359
1360	if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1361		qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1362
1363	rdi->driver_f.notify_error_qp(qp);
1364
1365	/* Schedule the sending tasklet to drain the send work queue. */
1366	if (READ_ONCE(qp->s_last) != qp->s_head)
1367		rdi->driver_f.schedule_send(qp);
1368
1369	rvt_clear_mr_refs(qp, 0);
1370
1371	memset(&wc, 0, sizeof(wc));
1372	wc.qp = &qp->ibqp;
1373	wc.opcode = IB_WC_RECV;
1374
1375	if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1376		wc.wr_id = qp->r_wr_id;
1377		wc.status = err;
1378		rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1379	}
1380	wc.status = IB_WC_WR_FLUSH_ERR;
1381
1382	if (qp->r_rq.kwq) {
1383		u32 head;
1384		u32 tail;
1385		struct rvt_rwq *wq = NULL;
1386		struct rvt_krwq *kwq = NULL;
1387
1388		spin_lock(&qp->r_rq.kwq->c_lock);
1389		/* qp->ip used to validate if there is a  user buffer mmaped */
1390		if (qp->ip) {
1391			wq = qp->r_rq.wq;
1392			head = RDMA_READ_UAPI_ATOMIC(wq->head);
1393			tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1394		} else {
1395			kwq = qp->r_rq.kwq;
1396			head = kwq->head;
1397			tail = kwq->tail;
1398		}
1399		/* sanity check pointers before trusting them */
1400		if (head >= qp->r_rq.size)
1401			head = 0;
1402		if (tail >= qp->r_rq.size)
1403			tail = 0;
1404		while (tail != head) {
1405			wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1406			if (++tail >= qp->r_rq.size)
1407				tail = 0;
1408			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1409		}
1410		if (qp->ip)
1411			RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1412		else
1413			kwq->tail = tail;
1414		spin_unlock(&qp->r_rq.kwq->c_lock);
1415	} else if (qp->ibqp.event_handler) {
1416		ret = 1;
1417	}
1418
1419bail:
1420	return ret;
1421}
1422EXPORT_SYMBOL(rvt_error_qp);
1423
1424/*
1425 * Put the QP into the hash table.
1426 * The hash table holds a reference to the QP.
1427 */
1428static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1429{
1430	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1431	unsigned long flags;
1432
1433	rvt_get_qp(qp);
1434	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1435
1436	if (qp->ibqp.qp_num <= 1) {
1437		rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1438	} else {
1439		u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1440
1441		qp->next = rdi->qp_dev->qp_table[n];
1442		rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1443		trace_rvt_qpinsert(qp, n);
1444	}
1445
1446	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1447}
1448
1449/**
1450 * rvt_modify_qp - modify the attributes of a queue pair
1451 * @ibqp: the queue pair who's attributes we're modifying
1452 * @attr: the new attributes
1453 * @attr_mask: the mask of attributes to modify
1454 * @udata: user data for libibverbs.so
1455 *
1456 * Return: 0 on success, otherwise returns an errno.
1457 */
1458int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1459		  int attr_mask, struct ib_udata *udata)
1460{
1461	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1462	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1463	enum ib_qp_state cur_state, new_state;
1464	struct ib_event ev;
1465	int lastwqe = 0;
1466	int mig = 0;
1467	int pmtu = 0; /* for gcc warning only */
1468	int opa_ah;
1469
1470	spin_lock_irq(&qp->r_lock);
1471	spin_lock(&qp->s_hlock);
1472	spin_lock(&qp->s_lock);
1473
1474	cur_state = attr_mask & IB_QP_CUR_STATE ?
1475		attr->cur_qp_state : qp->state;
1476	new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1477	opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1478
1479	if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1480				attr_mask))
1481		goto inval;
1482
1483	if (rdi->driver_f.check_modify_qp &&
1484	    rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1485		goto inval;
1486
1487	if (attr_mask & IB_QP_AV) {
1488		if (opa_ah) {
1489			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1490				opa_get_mcast_base(OPA_MCAST_NR))
1491				goto inval;
1492		} else {
1493			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1494				be16_to_cpu(IB_MULTICAST_LID_BASE))
1495				goto inval;
1496		}
1497
1498		if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1499			goto inval;
1500	}
1501
1502	if (attr_mask & IB_QP_ALT_PATH) {
1503		if (opa_ah) {
1504			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1505				opa_get_mcast_base(OPA_MCAST_NR))
1506				goto inval;
1507		} else {
1508			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1509				be16_to_cpu(IB_MULTICAST_LID_BASE))
1510				goto inval;
1511		}
1512
1513		if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1514			goto inval;
1515		if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1516			goto inval;
1517	}
1518
1519	if (attr_mask & IB_QP_PKEY_INDEX)
1520		if (attr->pkey_index >= rvt_get_npkeys(rdi))
1521			goto inval;
1522
1523	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1524		if (attr->min_rnr_timer > 31)
1525			goto inval;
1526
1527	if (attr_mask & IB_QP_PORT)
1528		if (qp->ibqp.qp_type == IB_QPT_SMI ||
1529		    qp->ibqp.qp_type == IB_QPT_GSI ||
1530		    attr->port_num == 0 ||
1531		    attr->port_num > ibqp->device->phys_port_cnt)
1532			goto inval;
1533
1534	if (attr_mask & IB_QP_DEST_QPN)
1535		if (attr->dest_qp_num > RVT_QPN_MASK)
1536			goto inval;
1537
1538	if (attr_mask & IB_QP_RETRY_CNT)
1539		if (attr->retry_cnt > 7)
1540			goto inval;
1541
1542	if (attr_mask & IB_QP_RNR_RETRY)
1543		if (attr->rnr_retry > 7)
1544			goto inval;
1545
1546	/*
1547	 * Don't allow invalid path_mtu values.  OK to set greater
1548	 * than the active mtu (or even the max_cap, if we have tuned
1549	 * that to a small mtu.  We'll set qp->path_mtu
1550	 * to the lesser of requested attribute mtu and active,
1551	 * for packetizing messages.
1552	 * Note that the QP port has to be set in INIT and MTU in RTR.
1553	 */
1554	if (attr_mask & IB_QP_PATH_MTU) {
1555		pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1556		if (pmtu < 0)
1557			goto inval;
1558	}
1559
1560	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1561		if (attr->path_mig_state == IB_MIG_REARM) {
1562			if (qp->s_mig_state == IB_MIG_ARMED)
1563				goto inval;
1564			if (new_state != IB_QPS_RTS)
1565				goto inval;
1566		} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1567			if (qp->s_mig_state == IB_MIG_REARM)
1568				goto inval;
1569			if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1570				goto inval;
1571			if (qp->s_mig_state == IB_MIG_ARMED)
1572				mig = 1;
1573		} else {
1574			goto inval;
1575		}
1576	}
1577
1578	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1579		if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1580			goto inval;
1581
1582	switch (new_state) {
1583	case IB_QPS_RESET:
1584		if (qp->state != IB_QPS_RESET)
1585			_rvt_reset_qp(rdi, qp, ibqp->qp_type);
1586		break;
1587
1588	case IB_QPS_RTR:
1589		/* Allow event to re-trigger if QP set to RTR more than once */
1590		qp->r_flags &= ~RVT_R_COMM_EST;
1591		qp->state = new_state;
1592		break;
1593
1594	case IB_QPS_SQD:
1595		qp->s_draining = qp->s_last != qp->s_cur;
1596		qp->state = new_state;
1597		break;
1598
1599	case IB_QPS_SQE:
1600		if (qp->ibqp.qp_type == IB_QPT_RC)
1601			goto inval;
1602		qp->state = new_state;
1603		break;
1604
1605	case IB_QPS_ERR:
1606		lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1607		break;
1608
1609	default:
1610		qp->state = new_state;
1611		break;
1612	}
1613
1614	if (attr_mask & IB_QP_PKEY_INDEX)
1615		qp->s_pkey_index = attr->pkey_index;
1616
1617	if (attr_mask & IB_QP_PORT)
1618		qp->port_num = attr->port_num;
1619
1620	if (attr_mask & IB_QP_DEST_QPN)
1621		qp->remote_qpn = attr->dest_qp_num;
1622
1623	if (attr_mask & IB_QP_SQ_PSN) {
1624		qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1625		qp->s_psn = qp->s_next_psn;
1626		qp->s_sending_psn = qp->s_next_psn;
1627		qp->s_last_psn = qp->s_next_psn - 1;
1628		qp->s_sending_hpsn = qp->s_last_psn;
1629	}
1630
1631	if (attr_mask & IB_QP_RQ_PSN)
1632		qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1633
1634	if (attr_mask & IB_QP_ACCESS_FLAGS)
1635		qp->qp_access_flags = attr->qp_access_flags;
1636
1637	if (attr_mask & IB_QP_AV) {
1638		rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1639		qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1640		qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1641	}
1642
1643	if (attr_mask & IB_QP_ALT_PATH) {
1644		rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1645		qp->s_alt_pkey_index = attr->alt_pkey_index;
1646	}
1647
1648	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1649		qp->s_mig_state = attr->path_mig_state;
1650		if (mig) {
1651			qp->remote_ah_attr = qp->alt_ah_attr;
1652			qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1653			qp->s_pkey_index = qp->s_alt_pkey_index;
1654		}
1655	}
1656
1657	if (attr_mask & IB_QP_PATH_MTU) {
1658		qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1659		qp->log_pmtu = ilog2(qp->pmtu);
1660	}
1661
1662	if (attr_mask & IB_QP_RETRY_CNT) {
1663		qp->s_retry_cnt = attr->retry_cnt;
1664		qp->s_retry = attr->retry_cnt;
1665	}
1666
1667	if (attr_mask & IB_QP_RNR_RETRY) {
1668		qp->s_rnr_retry_cnt = attr->rnr_retry;
1669		qp->s_rnr_retry = attr->rnr_retry;
1670	}
1671
1672	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1673		qp->r_min_rnr_timer = attr->min_rnr_timer;
1674
1675	if (attr_mask & IB_QP_TIMEOUT) {
1676		qp->timeout = attr->timeout;
1677		qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1678	}
1679
1680	if (attr_mask & IB_QP_QKEY)
1681		qp->qkey = attr->qkey;
1682
1683	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1684		qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1685
1686	if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1687		qp->s_max_rd_atomic = attr->max_rd_atomic;
1688
1689	if (rdi->driver_f.modify_qp)
1690		rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1691
1692	spin_unlock(&qp->s_lock);
1693	spin_unlock(&qp->s_hlock);
1694	spin_unlock_irq(&qp->r_lock);
1695
1696	if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1697		rvt_insert_qp(rdi, qp);
1698
1699	if (lastwqe) {
1700		ev.device = qp->ibqp.device;
1701		ev.element.qp = &qp->ibqp;
1702		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1703		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1704	}
1705	if (mig) {
1706		ev.device = qp->ibqp.device;
1707		ev.element.qp = &qp->ibqp;
1708		ev.event = IB_EVENT_PATH_MIG;
1709		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1710	}
1711	return 0;
1712
1713inval:
1714	spin_unlock(&qp->s_lock);
1715	spin_unlock(&qp->s_hlock);
1716	spin_unlock_irq(&qp->r_lock);
1717	return -EINVAL;
1718}
1719
1720/**
1721 * rvt_destroy_qp - destroy a queue pair
1722 * @ibqp: the queue pair to destroy
1723 *
1724 * Note that this can be called while the QP is actively sending or
1725 * receiving!
1726 *
1727 * Return: 0 on success.
1728 */
1729int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1730{
1731	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1732	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1733
1734	rvt_reset_qp(rdi, qp, ibqp->qp_type);
1735
1736	wait_event(qp->wait, !atomic_read(&qp->refcount));
1737	/* qpn is now available for use again */
1738	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1739
1740	spin_lock(&rdi->n_qps_lock);
1741	rdi->n_qps_allocated--;
1742	if (qp->ibqp.qp_type == IB_QPT_RC) {
1743		rdi->n_rc_qps--;
1744		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1745	}
1746	spin_unlock(&rdi->n_qps_lock);
1747
1748	if (qp->ip)
1749		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1750	kvfree(qp->r_rq.kwq);
1751	rdi->driver_f.qp_priv_free(rdi, qp);
1752	kfree(qp->s_ack_queue);
1753	rdma_destroy_ah_attr(&qp->remote_ah_attr);
1754	rdma_destroy_ah_attr(&qp->alt_ah_attr);
1755	free_ud_wq_attr(qp);
1756	vfree(qp->s_wq);
1757	kfree(qp);
1758	return 0;
1759}
1760
1761/**
1762 * rvt_query_qp - query an ipbq
1763 * @ibqp: IB qp to query
1764 * @attr: attr struct to fill in
1765 * @attr_mask: attr mask ignored
1766 * @init_attr: struct to fill in
1767 *
1768 * Return: always 0
1769 */
1770int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1771		 int attr_mask, struct ib_qp_init_attr *init_attr)
1772{
1773	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1774	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1775
1776	attr->qp_state = qp->state;
1777	attr->cur_qp_state = attr->qp_state;
1778	attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1779	attr->path_mig_state = qp->s_mig_state;
1780	attr->qkey = qp->qkey;
1781	attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1782	attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1783	attr->dest_qp_num = qp->remote_qpn;
1784	attr->qp_access_flags = qp->qp_access_flags;
1785	attr->cap.max_send_wr = qp->s_size - 1 -
1786		rdi->dparms.reserved_operations;
1787	attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1788	attr->cap.max_send_sge = qp->s_max_sge;
1789	attr->cap.max_recv_sge = qp->r_rq.max_sge;
1790	attr->cap.max_inline_data = 0;
1791	attr->ah_attr = qp->remote_ah_attr;
1792	attr->alt_ah_attr = qp->alt_ah_attr;
1793	attr->pkey_index = qp->s_pkey_index;
1794	attr->alt_pkey_index = qp->s_alt_pkey_index;
1795	attr->en_sqd_async_notify = 0;
1796	attr->sq_draining = qp->s_draining;
1797	attr->max_rd_atomic = qp->s_max_rd_atomic;
1798	attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1799	attr->min_rnr_timer = qp->r_min_rnr_timer;
1800	attr->port_num = qp->port_num;
1801	attr->timeout = qp->timeout;
1802	attr->retry_cnt = qp->s_retry_cnt;
1803	attr->rnr_retry = qp->s_rnr_retry_cnt;
1804	attr->alt_port_num =
1805		rdma_ah_get_port_num(&qp->alt_ah_attr);
1806	attr->alt_timeout = qp->alt_timeout;
1807
1808	init_attr->event_handler = qp->ibqp.event_handler;
1809	init_attr->qp_context = qp->ibqp.qp_context;
1810	init_attr->send_cq = qp->ibqp.send_cq;
1811	init_attr->recv_cq = qp->ibqp.recv_cq;
1812	init_attr->srq = qp->ibqp.srq;
1813	init_attr->cap = attr->cap;
1814	if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1815		init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1816	else
1817		init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1818	init_attr->qp_type = qp->ibqp.qp_type;
1819	init_attr->port_num = qp->port_num;
1820	return 0;
1821}
1822
1823/**
1824 * rvt_post_receive - post a receive on a QP
1825 * @ibqp: the QP to post the receive on
1826 * @wr: the WR to post
1827 * @bad_wr: the first bad WR is put here
1828 *
1829 * This may be called from interrupt context.
1830 *
1831 * Return: 0 on success otherwise errno
1832 */
1833int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1834		  const struct ib_recv_wr **bad_wr)
1835{
1836	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1837	struct rvt_krwq *wq = qp->r_rq.kwq;
1838	unsigned long flags;
1839	int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1840				!qp->ibqp.srq;
1841
1842	/* Check that state is OK to post receive. */
1843	if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1844		*bad_wr = wr;
1845		return -EINVAL;
1846	}
1847
1848	for (; wr; wr = wr->next) {
1849		struct rvt_rwqe *wqe;
1850		u32 next;
1851		int i;
1852
1853		if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1854			*bad_wr = wr;
1855			return -EINVAL;
1856		}
1857
1858		spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1859		next = wq->head + 1;
1860		if (next >= qp->r_rq.size)
1861			next = 0;
1862		if (next == READ_ONCE(wq->tail)) {
1863			spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1864			*bad_wr = wr;
1865			return -ENOMEM;
1866		}
1867		if (unlikely(qp_err_flush)) {
1868			struct ib_wc wc;
1869
1870			memset(&wc, 0, sizeof(wc));
1871			wc.qp = &qp->ibqp;
1872			wc.opcode = IB_WC_RECV;
1873			wc.wr_id = wr->wr_id;
1874			wc.status = IB_WC_WR_FLUSH_ERR;
1875			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1876		} else {
1877			wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1878			wqe->wr_id = wr->wr_id;
1879			wqe->num_sge = wr->num_sge;
1880			for (i = 0; i < wr->num_sge; i++) {
1881				wqe->sg_list[i].addr = wr->sg_list[i].addr;
1882				wqe->sg_list[i].length = wr->sg_list[i].length;
1883				wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1884			}
1885			/*
1886			 * Make sure queue entry is written
1887			 * before the head index.
1888			 */
1889			smp_store_release(&wq->head, next);
1890		}
1891		spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1892	}
1893	return 0;
1894}
1895
1896/**
1897 * rvt_qp_valid_operation - validate post send wr request
1898 * @qp - the qp
1899 * @post-parms - the post send table for the driver
1900 * @wr - the work request
1901 *
1902 * The routine validates the operation based on the
1903 * validation table an returns the length of the operation
1904 * which can extend beyond the ib_send_bw.  Operation
1905 * dependent flags key atomic operation validation.
1906 *
1907 * There is an exception for UD qps that validates the pd and
1908 * overrides the length to include the additional UD specific
1909 * length.
1910 *
1911 * Returns a negative error or the length of the work request
1912 * for building the swqe.
1913 */
1914static inline int rvt_qp_valid_operation(
1915	struct rvt_qp *qp,
1916	const struct rvt_operation_params *post_parms,
1917	const struct ib_send_wr *wr)
1918{
1919	int len;
1920
1921	if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1922		return -EINVAL;
1923	if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1924		return -EINVAL;
1925	if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1926	    ibpd_to_rvtpd(qp->ibqp.pd)->user)
1927		return -EINVAL;
1928	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1929	    (wr->num_sge == 0 ||
1930	     wr->sg_list[0].length < sizeof(u64) ||
1931	     wr->sg_list[0].addr & (sizeof(u64) - 1)))
1932		return -EINVAL;
1933	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1934	    !qp->s_max_rd_atomic)
1935		return -EINVAL;
1936	len = post_parms[wr->opcode].length;
1937	/* UD specific */
1938	if (qp->ibqp.qp_type != IB_QPT_UC &&
1939	    qp->ibqp.qp_type != IB_QPT_RC) {
1940		if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1941			return -EINVAL;
1942		len = sizeof(struct ib_ud_wr);
1943	}
1944	return len;
1945}
1946
1947/**
1948 * rvt_qp_is_avail - determine queue capacity
1949 * @qp: the qp
1950 * @rdi: the rdmavt device
1951 * @reserved_op: is reserved operation
1952 *
1953 * This assumes the s_hlock is held but the s_last
1954 * qp variable is uncontrolled.
1955 *
1956 * For non reserved operations, the qp->s_avail
1957 * may be changed.
1958 *
1959 * The return value is zero or a -ENOMEM.
1960 */
1961static inline int rvt_qp_is_avail(
1962	struct rvt_qp *qp,
1963	struct rvt_dev_info *rdi,
1964	bool reserved_op)
1965{
1966	u32 slast;
1967	u32 avail;
1968	u32 reserved_used;
1969
1970	/* see rvt_qp_wqe_unreserve() */
1971	smp_mb__before_atomic();
1972	if (unlikely(reserved_op)) {
1973		/* see rvt_qp_wqe_unreserve() */
1974		reserved_used = atomic_read(&qp->s_reserved_used);
1975		if (reserved_used >= rdi->dparms.reserved_operations)
1976			return -ENOMEM;
1977		return 0;
1978	}
1979	/* non-reserved operations */
1980	if (likely(qp->s_avail))
1981		return 0;
1982	/* See rvt_qp_complete_swqe() */
1983	slast = smp_load_acquire(&qp->s_last);
1984	if (qp->s_head >= slast)
1985		avail = qp->s_size - (qp->s_head - slast);
1986	else
1987		avail = slast - qp->s_head;
1988
1989	reserved_used = atomic_read(&qp->s_reserved_used);
1990	avail =  avail - 1 -
1991		(rdi->dparms.reserved_operations - reserved_used);
1992	/* insure we don't assign a negative s_avail */
1993	if ((s32)avail <= 0)
1994		return -ENOMEM;
1995	qp->s_avail = avail;
1996	if (WARN_ON(qp->s_avail >
1997		    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1998		rvt_pr_err(rdi,
1999			   "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
2000			   qp->ibqp.qp_num, qp->s_size, qp->s_avail,
2001			   qp->s_head, qp->s_tail, qp->s_cur,
2002			   qp->s_acked, qp->s_last);
2003	return 0;
2004}
2005
2006/**
2007 * rvt_post_one_wr - post one RC, UC, or UD send work request
2008 * @qp: the QP to post on
2009 * @wr: the work request to send
2010 */
2011static int rvt_post_one_wr(struct rvt_qp *qp,
2012			   const struct ib_send_wr *wr,
2013			   bool *call_send)
2014{
2015	struct rvt_swqe *wqe;
2016	u32 next;
2017	int i;
2018	int j;
2019	int acc;
2020	struct rvt_lkey_table *rkt;
2021	struct rvt_pd *pd;
2022	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2023	u8 log_pmtu;
2024	int ret;
2025	size_t cplen;
2026	bool reserved_op;
2027	int local_ops_delayed = 0;
2028
2029	BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
2030
2031	/* IB spec says that num_sge == 0 is OK. */
2032	if (unlikely(wr->num_sge > qp->s_max_sge))
2033		return -EINVAL;
2034
2035	ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
2036	if (ret < 0)
2037		return ret;
2038	cplen = ret;
2039
2040	/*
2041	 * Local operations include fast register and local invalidate.
2042	 * Fast register needs to be processed immediately because the
2043	 * registered lkey may be used by following work requests and the
2044	 * lkey needs to be valid at the time those requests are posted.
2045	 * Local invalidate can be processed immediately if fencing is
2046	 * not required and no previous local invalidate ops are pending.
2047	 * Signaled local operations that have been processed immediately
2048	 * need to have requests with "completion only" flags set posted
2049	 * to the send queue in order to generate completions.
2050	 */
2051	if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2052		switch (wr->opcode) {
2053		case IB_WR_REG_MR:
2054			ret = rvt_fast_reg_mr(qp,
2055					      reg_wr(wr)->mr,
2056					      reg_wr(wr)->key,
2057					      reg_wr(wr)->access);
2058			if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2059				return ret;
2060			break;
2061		case IB_WR_LOCAL_INV:
2062			if ((wr->send_flags & IB_SEND_FENCE) ||
2063			    atomic_read(&qp->local_ops_pending)) {
2064				local_ops_delayed = 1;
2065			} else {
2066				ret = rvt_invalidate_rkey(
2067					qp, wr->ex.invalidate_rkey);
2068				if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2069					return ret;
2070			}
2071			break;
2072		default:
2073			return -EINVAL;
2074		}
2075	}
2076
2077	reserved_op = rdi->post_parms[wr->opcode].flags &
2078			RVT_OPERATION_USE_RESERVE;
2079	/* check for avail */
2080	ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2081	if (ret)
2082		return ret;
2083	next = qp->s_head + 1;
2084	if (next >= qp->s_size)
2085		next = 0;
2086
2087	rkt = &rdi->lkey_table;
2088	pd = ibpd_to_rvtpd(qp->ibqp.pd);
2089	wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2090
2091	/* cplen has length from above */
2092	memcpy(&wqe->wr, wr, cplen);
2093
2094	wqe->length = 0;
2095	j = 0;
2096	if (wr->num_sge) {
2097		struct rvt_sge *last_sge = NULL;
2098
2099		acc = wr->opcode >= IB_WR_RDMA_READ ?
2100			IB_ACCESS_LOCAL_WRITE : 0;
2101		for (i = 0; i < wr->num_sge; i++) {
2102			u32 length = wr->sg_list[i].length;
2103
2104			if (length == 0)
2105				continue;
2106			ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2107					  &wr->sg_list[i], acc);
2108			if (unlikely(ret < 0))
2109				goto bail_inval_free;
2110			wqe->length += length;
2111			if (ret)
2112				last_sge = &wqe->sg_list[j];
2113			j += ret;
2114		}
2115		wqe->wr.num_sge = j;
2116	}
2117
2118	/*
2119	 * Calculate and set SWQE PSN values prior to handing it off
2120	 * to the driver's check routine. This give the driver the
2121	 * opportunity to adjust PSN values based on internal checks.
2122	 */
2123	log_pmtu = qp->log_pmtu;
2124	if (qp->allowed_ops == IB_OPCODE_UD) {
2125		struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2126
2127		log_pmtu = ah->log_pmtu;
2128		rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2129	}
2130
2131	if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2132		if (local_ops_delayed)
2133			atomic_inc(&qp->local_ops_pending);
2134		else
2135			wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2136		wqe->ssn = 0;
2137		wqe->psn = 0;
2138		wqe->lpsn = 0;
2139	} else {
2140		wqe->ssn = qp->s_ssn++;
2141		wqe->psn = qp->s_next_psn;
2142		wqe->lpsn = wqe->psn +
2143				(wqe->length ?
2144					((wqe->length - 1) >> log_pmtu) :
2145					0);
2146	}
2147
2148	/* general part of wqe valid - allow for driver checks */
2149	if (rdi->driver_f.setup_wqe) {
2150		ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2151		if (ret < 0)
2152			goto bail_inval_free_ref;
2153	}
2154
2155	if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2156		qp->s_next_psn = wqe->lpsn + 1;
2157
2158	if (unlikely(reserved_op)) {
2159		wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2160		rvt_qp_wqe_reserve(qp, wqe);
2161	} else {
2162		wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2163		qp->s_avail--;
2164	}
2165	trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2166	smp_wmb(); /* see request builders */
2167	qp->s_head = next;
2168
2169	return 0;
2170
2171bail_inval_free_ref:
2172	if (qp->allowed_ops == IB_OPCODE_UD)
2173		rdma_destroy_ah_attr(wqe->ud_wr.attr);
2174bail_inval_free:
2175	/* release mr holds */
2176	while (j) {
2177		struct rvt_sge *sge = &wqe->sg_list[--j];
2178
2179		rvt_put_mr(sge->mr);
2180	}
2181	return ret;
2182}
2183
2184/**
2185 * rvt_post_send - post a send on a QP
2186 * @ibqp: the QP to post the send on
2187 * @wr: the list of work requests to post
2188 * @bad_wr: the first bad WR is put here
2189 *
2190 * This may be called from interrupt context.
2191 *
2192 * Return: 0 on success else errno
2193 */
2194int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2195		  const struct ib_send_wr **bad_wr)
2196{
2197	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2198	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2199	unsigned long flags = 0;
2200	bool call_send;
2201	unsigned nreq = 0;
2202	int err = 0;
2203
2204	spin_lock_irqsave(&qp->s_hlock, flags);
2205
2206	/*
2207	 * Ensure QP state is such that we can send. If not bail out early,
2208	 * there is no need to do this every time we post a send.
2209	 */
2210	if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2211		spin_unlock_irqrestore(&qp->s_hlock, flags);
2212		return -EINVAL;
2213	}
2214
2215	/*
2216	 * If the send queue is empty, and we only have a single WR then just go
2217	 * ahead and kick the send engine into gear. Otherwise we will always
2218	 * just schedule the send to happen later.
2219	 */
2220	call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2221
2222	for (; wr; wr = wr->next) {
2223		err = rvt_post_one_wr(qp, wr, &call_send);
2224		if (unlikely(err)) {
2225			*bad_wr = wr;
2226			goto bail;
2227		}
2228		nreq++;
2229	}
2230bail:
2231	spin_unlock_irqrestore(&qp->s_hlock, flags);
2232	if (nreq) {
2233		/*
2234		 * Only call do_send if there is exactly one packet, and the
2235		 * driver said it was ok.
2236		 */
2237		if (nreq == 1 && call_send)
2238			rdi->driver_f.do_send(qp);
2239		else
2240			rdi->driver_f.schedule_send_no_lock(qp);
2241	}
2242	return err;
2243}
2244
2245/**
2246 * rvt_post_srq_receive - post a receive on a shared receive queue
2247 * @ibsrq: the SRQ to post the receive on
2248 * @wr: the list of work requests to post
2249 * @bad_wr: A pointer to the first WR to cause a problem is put here
2250 *
2251 * This may be called from interrupt context.
2252 *
2253 * Return: 0 on success else errno
2254 */
2255int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2256		      const struct ib_recv_wr **bad_wr)
2257{
2258	struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2259	struct rvt_krwq *wq;
2260	unsigned long flags;
2261
2262	for (; wr; wr = wr->next) {
2263		struct rvt_rwqe *wqe;
2264		u32 next;
2265		int i;
2266
2267		if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2268			*bad_wr = wr;
2269			return -EINVAL;
2270		}
2271
2272		spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2273		wq = srq->rq.kwq;
2274		next = wq->head + 1;
2275		if (next >= srq->rq.size)
2276			next = 0;
2277		if (next == READ_ONCE(wq->tail)) {
2278			spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2279			*bad_wr = wr;
2280			return -ENOMEM;
2281		}
2282
2283		wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2284		wqe->wr_id = wr->wr_id;
2285		wqe->num_sge = wr->num_sge;
2286		for (i = 0; i < wr->num_sge; i++) {
2287			wqe->sg_list[i].addr = wr->sg_list[i].addr;
2288			wqe->sg_list[i].length = wr->sg_list[i].length;
2289			wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2290		}
2291		/* Make sure queue entry is written before the head index. */
2292		smp_store_release(&wq->head, next);
2293		spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2294	}
2295	return 0;
2296}
2297
2298/*
2299 * rvt used the internal kernel struct as part of its ABI, for now make sure
2300 * the kernel struct does not change layout. FIXME: rvt should never cast the
2301 * user struct to a kernel struct.
2302 */
2303static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2304{
2305	BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2306		     offsetof(struct rvt_wqe_sge, addr));
2307	BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2308		     offsetof(struct rvt_wqe_sge, length));
2309	BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2310		     offsetof(struct rvt_wqe_sge, lkey));
2311	return (struct ib_sge *)sge;
2312}
2313
2314/*
2315 * Validate a RWQE and fill in the SGE state.
2316 * Return 1 if OK.
2317 */
2318static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2319{
2320	int i, j, ret;
2321	struct ib_wc wc;
2322	struct rvt_lkey_table *rkt;
2323	struct rvt_pd *pd;
2324	struct rvt_sge_state *ss;
2325	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2326
2327	rkt = &rdi->lkey_table;
2328	pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2329	ss = &qp->r_sge;
2330	ss->sg_list = qp->r_sg_list;
2331	qp->r_len = 0;
2332	for (i = j = 0; i < wqe->num_sge; i++) {
2333		if (wqe->sg_list[i].length == 0)
2334			continue;
2335		/* Check LKEY */
2336		ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2337				  NULL, rvt_cast_sge(&wqe->sg_list[i]),
2338				  IB_ACCESS_LOCAL_WRITE);
2339		if (unlikely(ret <= 0))
2340			goto bad_lkey;
2341		qp->r_len += wqe->sg_list[i].length;
2342		j++;
2343	}
2344	ss->num_sge = j;
2345	ss->total_len = qp->r_len;
2346	return 1;
2347
2348bad_lkey:
2349	while (j) {
2350		struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2351
2352		rvt_put_mr(sge->mr);
2353	}
2354	ss->num_sge = 0;
2355	memset(&wc, 0, sizeof(wc));
2356	wc.wr_id = wqe->wr_id;
2357	wc.status = IB_WC_LOC_PROT_ERR;
2358	wc.opcode = IB_WC_RECV;
2359	wc.qp = &qp->ibqp;
2360	/* Signal solicited completion event. */
2361	rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2362	return 0;
2363}
2364
2365/**
2366 * get_rvt_head - get head indices of the circular buffer
2367 * @rq: data structure for request queue entry
2368 * @ip: the QP
2369 *
2370 * Return - head index value
2371 */
2372static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2373{
2374	u32 head;
2375
2376	if (ip)
2377		head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2378	else
2379		head = rq->kwq->head;
2380
2381	return head;
2382}
2383
2384/**
2385 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2386 * @qp: the QP
2387 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2388 *
2389 * Return -1 if there is a local error, 0 if no RWQE is available,
2390 * otherwise return 1.
2391 *
2392 * Can be called from interrupt level.
2393 */
2394int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2395{
2396	unsigned long flags;
2397	struct rvt_rq *rq;
2398	struct rvt_krwq *kwq = NULL;
2399	struct rvt_rwq *wq;
2400	struct rvt_srq *srq;
2401	struct rvt_rwqe *wqe;
2402	void (*handler)(struct ib_event *, void *);
2403	u32 tail;
2404	u32 head;
2405	int ret;
2406	void *ip = NULL;
2407
2408	if (qp->ibqp.srq) {
2409		srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2410		handler = srq->ibsrq.event_handler;
2411		rq = &srq->rq;
2412		ip = srq->ip;
2413	} else {
2414		srq = NULL;
2415		handler = NULL;
2416		rq = &qp->r_rq;
2417		ip = qp->ip;
2418	}
2419
2420	spin_lock_irqsave(&rq->kwq->c_lock, flags);
2421	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2422		ret = 0;
2423		goto unlock;
2424	}
2425	kwq = rq->kwq;
2426	if (ip) {
2427		wq = rq->wq;
2428		tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2429	} else {
2430		tail = kwq->tail;
2431	}
2432
2433	/* Validate tail before using it since it is user writable. */
2434	if (tail >= rq->size)
2435		tail = 0;
2436
2437	if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2438		head = get_rvt_head(rq, ip);
2439		kwq->count = rvt_get_rq_count(rq, head, tail);
2440	}
2441	if (unlikely(kwq->count == 0)) {
2442		ret = 0;
2443		goto unlock;
2444	}
2445	/* Make sure entry is read after the count is read. */
2446	smp_rmb();
2447	wqe = rvt_get_rwqe_ptr(rq, tail);
2448	/*
2449	 * Even though we update the tail index in memory, the verbs
2450	 * consumer is not supposed to post more entries until a
2451	 * completion is generated.
2452	 */
2453	if (++tail >= rq->size)
2454		tail = 0;
2455	if (ip)
2456		RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2457	else
2458		kwq->tail = tail;
2459	if (!wr_id_only && !init_sge(qp, wqe)) {
2460		ret = -1;
2461		goto unlock;
2462	}
2463	qp->r_wr_id = wqe->wr_id;
2464
2465	kwq->count--;
2466	ret = 1;
2467	set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2468	if (handler) {
2469		/*
2470		 * Validate head pointer value and compute
2471		 * the number of remaining WQEs.
2472		 */
2473		if (kwq->count < srq->limit) {
2474			kwq->count =
2475				rvt_get_rq_count(rq,
2476						 get_rvt_head(rq, ip), tail);
2477			if (kwq->count < srq->limit) {
2478				struct ib_event ev;
2479
2480				srq->limit = 0;
2481				spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2482				ev.device = qp->ibqp.device;
2483				ev.element.srq = qp->ibqp.srq;
2484				ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2485				handler(&ev, srq->ibsrq.srq_context);
2486				goto bail;
2487			}
2488		}
2489	}
2490unlock:
2491	spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2492bail:
2493	return ret;
2494}
2495EXPORT_SYMBOL(rvt_get_rwqe);
2496
2497/**
2498 * qp_comm_est - handle trap with QP established
2499 * @qp: the QP
2500 */
2501void rvt_comm_est(struct rvt_qp *qp)
2502{
2503	qp->r_flags |= RVT_R_COMM_EST;
2504	if (qp->ibqp.event_handler) {
2505		struct ib_event ev;
2506
2507		ev.device = qp->ibqp.device;
2508		ev.element.qp = &qp->ibqp;
2509		ev.event = IB_EVENT_COMM_EST;
2510		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2511	}
2512}
2513EXPORT_SYMBOL(rvt_comm_est);
2514
2515void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2516{
2517	unsigned long flags;
2518	int lastwqe;
2519
2520	spin_lock_irqsave(&qp->s_lock, flags);
2521	lastwqe = rvt_error_qp(qp, err);
2522	spin_unlock_irqrestore(&qp->s_lock, flags);
2523
2524	if (lastwqe) {
2525		struct ib_event ev;
2526
2527		ev.device = qp->ibqp.device;
2528		ev.element.qp = &qp->ibqp;
2529		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2530		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2531	}
2532}
2533EXPORT_SYMBOL(rvt_rc_error);
2534
2535/*
2536 *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2537 *  @index - the index
2538 *  return usec from an index into ib_rvt_rnr_table
2539 */
2540unsigned long rvt_rnr_tbl_to_usec(u32 index)
2541{
2542	return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2543}
2544EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2545
2546static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2547{
2548	return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2549				  IB_AETH_CREDIT_MASK];
2550}
2551
2552/*
2553 *  rvt_add_retry_timer_ext - add/start a retry timer
2554 *  @qp - the QP
2555 *  @shift - timeout shift to wait for multiple packets
2556 *  add a retry timer on the QP
2557 */
2558void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2559{
2560	struct ib_qp *ibqp = &qp->ibqp;
2561	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2562
2563	lockdep_assert_held(&qp->s_lock);
2564	qp->s_flags |= RVT_S_TIMER;
2565       /* 4.096 usec. * (1 << qp->timeout) */
2566	qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2567			      (qp->timeout_jiffies << shift);
2568	add_timer(&qp->s_timer);
2569}
2570EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2571
2572/**
2573 * rvt_add_rnr_timer - add/start an rnr timer on the QP
2574 * @qp: the QP
2575 * @aeth: aeth of RNR timeout, simulated aeth for loopback
2576 */
2577void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2578{
2579	u32 to;
2580
2581	lockdep_assert_held(&qp->s_lock);
2582	qp->s_flags |= RVT_S_WAIT_RNR;
2583	to = rvt_aeth_to_usec(aeth);
2584	trace_rvt_rnrnak_add(qp, to);
2585	hrtimer_start(&qp->s_rnr_timer,
2586		      ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2587}
2588EXPORT_SYMBOL(rvt_add_rnr_timer);
2589
2590/**
2591 * rvt_stop_rc_timers - stop all timers
2592 * @qp: the QP
2593 * stop any pending timers
2594 */
2595void rvt_stop_rc_timers(struct rvt_qp *qp)
2596{
2597	lockdep_assert_held(&qp->s_lock);
2598	/* Remove QP from all timers */
2599	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2600		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2601		del_timer(&qp->s_timer);
2602		hrtimer_try_to_cancel(&qp->s_rnr_timer);
2603	}
2604}
2605EXPORT_SYMBOL(rvt_stop_rc_timers);
2606
2607/**
2608 * rvt_stop_rnr_timer - stop an rnr timer
2609 * @qp - the QP
2610 *
2611 * stop an rnr timer and return if the timer
2612 * had been pending.
2613 */
2614static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2615{
2616	lockdep_assert_held(&qp->s_lock);
2617	/* Remove QP from rnr timer */
2618	if (qp->s_flags & RVT_S_WAIT_RNR) {
2619		qp->s_flags &= ~RVT_S_WAIT_RNR;
2620		trace_rvt_rnrnak_stop(qp, 0);
2621	}
2622}
2623
2624/**
2625 * rvt_del_timers_sync - wait for any timeout routines to exit
2626 * @qp: the QP
2627 */
2628void rvt_del_timers_sync(struct rvt_qp *qp)
2629{
2630	del_timer_sync(&qp->s_timer);
2631	hrtimer_cancel(&qp->s_rnr_timer);
2632}
2633EXPORT_SYMBOL(rvt_del_timers_sync);
2634
2635/*
2636 * This is called from s_timer for missing responses.
2637 */
2638static void rvt_rc_timeout(struct timer_list *t)
2639{
2640	struct rvt_qp *qp = from_timer(qp, t, s_timer);
2641	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2642	unsigned long flags;
2643
2644	spin_lock_irqsave(&qp->r_lock, flags);
2645	spin_lock(&qp->s_lock);
2646	if (qp->s_flags & RVT_S_TIMER) {
2647		struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2648
2649		qp->s_flags &= ~RVT_S_TIMER;
2650		rvp->n_rc_timeouts++;
2651		del_timer(&qp->s_timer);
2652		trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2653		if (rdi->driver_f.notify_restart_rc)
2654			rdi->driver_f.notify_restart_rc(qp,
2655							qp->s_last_psn + 1,
2656							1);
2657		rdi->driver_f.schedule_send(qp);
2658	}
2659	spin_unlock(&qp->s_lock);
2660	spin_unlock_irqrestore(&qp->r_lock, flags);
2661}
2662
2663/*
2664 * This is called from s_timer for RNR timeouts.
2665 */
2666enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2667{
2668	struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2669	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2670	unsigned long flags;
2671
2672	spin_lock_irqsave(&qp->s_lock, flags);
2673	rvt_stop_rnr_timer(qp);
2674	trace_rvt_rnrnak_timeout(qp, 0);
2675	rdi->driver_f.schedule_send(qp);
2676	spin_unlock_irqrestore(&qp->s_lock, flags);
2677	return HRTIMER_NORESTART;
2678}
2679EXPORT_SYMBOL(rvt_rc_rnr_retry);
2680
2681/**
2682 * rvt_qp_iter_init - initial for QP iteration
2683 * @rdi: rvt devinfo
2684 * @v: u64 value
2685 * @cb: user-defined callback
2686 *
2687 * This returns an iterator suitable for iterating QPs
2688 * in the system.
2689 *
2690 * The @cb is a user-defined callback and @v is a 64-bit
2691 * value passed to and relevant for processing in the
2692 * @cb.  An example use case would be to alter QP processing
2693 * based on criteria not part of the rvt_qp.
2694 *
2695 * Use cases that require memory allocation to succeed
2696 * must preallocate appropriately.
2697 *
2698 * Return: a pointer to an rvt_qp_iter or NULL
2699 */
2700struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2701				     u64 v,
2702				     void (*cb)(struct rvt_qp *qp, u64 v))
2703{
2704	struct rvt_qp_iter *i;
2705
2706	i = kzalloc(sizeof(*i), GFP_KERNEL);
2707	if (!i)
2708		return NULL;
2709
2710	i->rdi = rdi;
2711	/* number of special QPs (SMI/GSI) for device */
2712	i->specials = rdi->ibdev.phys_port_cnt * 2;
2713	i->v = v;
2714	i->cb = cb;
2715
2716	return i;
2717}
2718EXPORT_SYMBOL(rvt_qp_iter_init);
2719
2720/**
2721 * rvt_qp_iter_next - return the next QP in iter
2722 * @iter: the iterator
2723 *
2724 * Fine grained QP iterator suitable for use
2725 * with debugfs seq_file mechanisms.
2726 *
2727 * Updates iter->qp with the current QP when the return
2728 * value is 0.
2729 *
2730 * Return: 0 - iter->qp is valid 1 - no more QPs
2731 */
2732int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2733	__must_hold(RCU)
2734{
2735	int n = iter->n;
2736	int ret = 1;
2737	struct rvt_qp *pqp = iter->qp;
2738	struct rvt_qp *qp;
2739	struct rvt_dev_info *rdi = iter->rdi;
2740
2741	/*
2742	 * The approach is to consider the special qps
2743	 * as additional table entries before the
2744	 * real hash table.  Since the qp code sets
2745	 * the qp->next hash link to NULL, this works just fine.
2746	 *
2747	 * iter->specials is 2 * # ports
2748	 *
2749	 * n = 0..iter->specials is the special qp indices
2750	 *
2751	 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2752	 * the potential hash bucket entries
2753	 *
2754	 */
2755	for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2756		if (pqp) {
2757			qp = rcu_dereference(pqp->next);
2758		} else {
2759			if (n < iter->specials) {
2760				struct rvt_ibport *rvp;
2761				int pidx;
2762
2763				pidx = n % rdi->ibdev.phys_port_cnt;
2764				rvp = rdi->ports[pidx];
2765				qp = rcu_dereference(rvp->qp[n & 1]);
2766			} else {
2767				qp = rcu_dereference(
2768					rdi->qp_dev->qp_table[
2769						(n - iter->specials)]);
2770			}
2771		}
2772		pqp = qp;
2773		if (qp) {
2774			iter->qp = qp;
2775			iter->n = n;
2776			return 0;
2777		}
2778	}
2779	return ret;
2780}
2781EXPORT_SYMBOL(rvt_qp_iter_next);
2782
2783/**
2784 * rvt_qp_iter - iterate all QPs
2785 * @rdi: rvt devinfo
2786 * @v: a 64-bit value
2787 * @cb: a callback
2788 *
2789 * This provides a way for iterating all QPs.
2790 *
2791 * The @cb is a user-defined callback and @v is a 64-bit
2792 * value passed to and relevant for processing in the
2793 * cb.  An example use case would be to alter QP processing
2794 * based on criteria not part of the rvt_qp.
2795 *
2796 * The code has an internal iterator to simplify
2797 * non seq_file use cases.
2798 */
2799void rvt_qp_iter(struct rvt_dev_info *rdi,
2800		 u64 v,
2801		 void (*cb)(struct rvt_qp *qp, u64 v))
2802{
2803	int ret;
2804	struct rvt_qp_iter i = {
2805		.rdi = rdi,
2806		.specials = rdi->ibdev.phys_port_cnt * 2,
2807		.v = v,
2808		.cb = cb
2809	};
2810
2811	rcu_read_lock();
2812	do {
2813		ret = rvt_qp_iter_next(&i);
2814		if (!ret) {
2815			rvt_get_qp(i.qp);
2816			rcu_read_unlock();
2817			i.cb(i.qp, i.v);
2818			rcu_read_lock();
2819			rvt_put_qp(i.qp);
2820		}
2821	} while (!ret);
2822	rcu_read_unlock();
2823}
2824EXPORT_SYMBOL(rvt_qp_iter);
2825
2826/*
2827 * This should be called with s_lock and r_lock held.
2828 */
2829void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2830		       enum ib_wc_status status)
2831{
2832	u32 old_last, last;
2833	struct rvt_dev_info *rdi;
2834
2835	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2836		return;
2837	rdi = ib_to_rvt(qp->ibqp.device);
2838
2839	old_last = qp->s_last;
2840	trace_rvt_qp_send_completion(qp, wqe, old_last);
2841	last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2842				    status);
2843	if (qp->s_acked == old_last)
2844		qp->s_acked = last;
2845	if (qp->s_cur == old_last)
2846		qp->s_cur = last;
2847	if (qp->s_tail == old_last)
2848		qp->s_tail = last;
2849	if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2850		qp->s_draining = 0;
2851}
2852EXPORT_SYMBOL(rvt_send_complete);
2853
2854/**
2855 * rvt_copy_sge - copy data to SGE memory
2856 * @qp: associated QP
2857 * @ss: the SGE state
2858 * @data: the data to copy
2859 * @length: the length of the data
2860 * @release: boolean to release MR
2861 * @copy_last: do a separate copy of the last 8 bytes
2862 */
2863void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2864		  void *data, u32 length,
2865		  bool release, bool copy_last)
2866{
2867	struct rvt_sge *sge = &ss->sge;
2868	int i;
2869	bool in_last = false;
2870	bool cacheless_copy = false;
2871	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2872	struct rvt_wss *wss = rdi->wss;
2873	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2874
2875	if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2876		cacheless_copy = length >= PAGE_SIZE;
2877	} else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2878		if (length >= PAGE_SIZE) {
2879			/*
2880			 * NOTE: this *assumes*:
2881			 * o The first vaddr is the dest.
2882			 * o If multiple pages, then vaddr is sequential.
2883			 */
2884			wss_insert(wss, sge->vaddr);
2885			if (length >= (2 * PAGE_SIZE))
2886				wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2887
2888			cacheless_copy = wss_exceeds_threshold(wss);
2889		} else {
2890			wss_advance_clean_counter(wss);
2891		}
2892	}
2893
2894	if (copy_last) {
2895		if (length > 8) {
2896			length -= 8;
2897		} else {
2898			copy_last = false;
2899			in_last = true;
2900		}
2901	}
2902
2903again:
2904	while (length) {
2905		u32 len = rvt_get_sge_length(sge, length);
2906
2907		WARN_ON_ONCE(len == 0);
2908		if (unlikely(in_last)) {
2909			/* enforce byte transfer ordering */
2910			for (i = 0; i < len; i++)
2911				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2912		} else if (cacheless_copy) {
2913			cacheless_memcpy(sge->vaddr, data, len);
2914		} else {
2915			memcpy(sge->vaddr, data, len);
2916		}
2917		rvt_update_sge(ss, len, release);
2918		data += len;
2919		length -= len;
2920	}
2921
2922	if (copy_last) {
2923		copy_last = false;
2924		in_last = true;
2925		length = 8;
2926		goto again;
2927	}
2928}
2929EXPORT_SYMBOL(rvt_copy_sge);
2930
2931static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2932					  struct rvt_qp *sqp)
2933{
2934	rvp->n_pkt_drops++;
2935	/*
2936	 * For RC, the requester would timeout and retry so
2937	 * shortcut the timeouts and just signal too many retries.
2938	 */
2939	return sqp->ibqp.qp_type == IB_QPT_RC ?
2940		IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2941}
2942
2943/**
2944 * ruc_loopback - handle UC and RC loopback requests
2945 * @sqp: the sending QP
2946 *
2947 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2948 * Note that although we are single threaded due to the send engine, we still
2949 * have to protect against post_send().  We don't have to worry about
2950 * receive interrupts since this is a connected protocol and all packets
2951 * will pass through here.
2952 */
2953void rvt_ruc_loopback(struct rvt_qp *sqp)
2954{
2955	struct rvt_ibport *rvp =  NULL;
2956	struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2957	struct rvt_qp *qp;
2958	struct rvt_swqe *wqe;
2959	struct rvt_sge *sge;
2960	unsigned long flags;
2961	struct ib_wc wc;
2962	u64 sdata;
2963	atomic64_t *maddr;
2964	enum ib_wc_status send_status;
2965	bool release;
2966	int ret;
2967	bool copy_last = false;
2968	int local_ops = 0;
2969
2970	rcu_read_lock();
2971	rvp = rdi->ports[sqp->port_num - 1];
2972
2973	/*
2974	 * Note that we check the responder QP state after
2975	 * checking the requester's state.
2976	 */
2977
2978	qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2979			    sqp->remote_qpn);
2980
2981	spin_lock_irqsave(&sqp->s_lock, flags);
2982
2983	/* Return if we are already busy processing a work request. */
2984	if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2985	    !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2986		goto unlock;
2987
2988	sqp->s_flags |= RVT_S_BUSY;
2989
2990again:
2991	if (sqp->s_last == READ_ONCE(sqp->s_head))
2992		goto clr_busy;
2993	wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2994
2995	/* Return if it is not OK to start a new work request. */
2996	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2997		if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2998			goto clr_busy;
2999		/* We are in the error state, flush the work request. */
3000		send_status = IB_WC_WR_FLUSH_ERR;
3001		goto flush_send;
3002	}
3003
3004	/*
3005	 * We can rely on the entry not changing without the s_lock
3006	 * being held until we update s_last.
3007	 * We increment s_cur to indicate s_last is in progress.
3008	 */
3009	if (sqp->s_last == sqp->s_cur) {
3010		if (++sqp->s_cur >= sqp->s_size)
3011			sqp->s_cur = 0;
3012	}
3013	spin_unlock_irqrestore(&sqp->s_lock, flags);
3014
3015	if (!qp) {
3016		send_status = loopback_qp_drop(rvp, sqp);
3017		goto serr_no_r_lock;
3018	}
3019	spin_lock_irqsave(&qp->r_lock, flags);
3020	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
3021	    qp->ibqp.qp_type != sqp->ibqp.qp_type) {
3022		send_status = loopback_qp_drop(rvp, sqp);
3023		goto serr;
3024	}
3025
3026	memset(&wc, 0, sizeof(wc));
3027	send_status = IB_WC_SUCCESS;
3028
3029	release = true;
3030	sqp->s_sge.sge = wqe->sg_list[0];
3031	sqp->s_sge.sg_list = wqe->sg_list + 1;
3032	sqp->s_sge.num_sge = wqe->wr.num_sge;
3033	sqp->s_len = wqe->length;
3034	switch (wqe->wr.opcode) {
3035	case IB_WR_REG_MR:
3036		goto send_comp;
3037
3038	case IB_WR_LOCAL_INV:
3039		if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
3040			if (rvt_invalidate_rkey(sqp,
3041						wqe->wr.ex.invalidate_rkey))
3042				send_status = IB_WC_LOC_PROT_ERR;
3043			local_ops = 1;
3044		}
3045		goto send_comp;
3046
3047	case IB_WR_SEND_WITH_INV:
3048	case IB_WR_SEND_WITH_IMM:
3049	case IB_WR_SEND:
3050		ret = rvt_get_rwqe(qp, false);
3051		if (ret < 0)
3052			goto op_err;
3053		if (!ret)
3054			goto rnr_nak;
3055		if (wqe->length > qp->r_len)
3056			goto inv_err;
3057		switch (wqe->wr.opcode) {
3058		case IB_WR_SEND_WITH_INV:
3059			if (!rvt_invalidate_rkey(qp,
3060						 wqe->wr.ex.invalidate_rkey)) {
3061				wc.wc_flags = IB_WC_WITH_INVALIDATE;
3062				wc.ex.invalidate_rkey =
3063					wqe->wr.ex.invalidate_rkey;
3064			}
3065			break;
3066		case IB_WR_SEND_WITH_IMM:
3067			wc.wc_flags = IB_WC_WITH_IMM;
3068			wc.ex.imm_data = wqe->wr.ex.imm_data;
3069			break;
3070		default:
3071			break;
3072		}
3073		break;
3074
3075	case IB_WR_RDMA_WRITE_WITH_IMM:
3076		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3077			goto inv_err;
3078		wc.wc_flags = IB_WC_WITH_IMM;
3079		wc.ex.imm_data = wqe->wr.ex.imm_data;
3080		ret = rvt_get_rwqe(qp, true);
3081		if (ret < 0)
3082			goto op_err;
3083		if (!ret)
3084			goto rnr_nak;
3085		/* skip copy_last set and qp_access_flags recheck */
3086		goto do_write;
3087	case IB_WR_RDMA_WRITE:
3088		copy_last = rvt_is_user_qp(qp);
3089		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3090			goto inv_err;
3091do_write:
3092		if (wqe->length == 0)
3093			break;
3094		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3095					  wqe->rdma_wr.remote_addr,
3096					  wqe->rdma_wr.rkey,
3097					  IB_ACCESS_REMOTE_WRITE)))
3098			goto acc_err;
3099		qp->r_sge.sg_list = NULL;
3100		qp->r_sge.num_sge = 1;
3101		qp->r_sge.total_len = wqe->length;
3102		break;
3103
3104	case IB_WR_RDMA_READ:
3105		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3106			goto inv_err;
3107		if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3108					  wqe->rdma_wr.remote_addr,
3109					  wqe->rdma_wr.rkey,
3110					  IB_ACCESS_REMOTE_READ)))
3111			goto acc_err;
3112		release = false;
3113		sqp->s_sge.sg_list = NULL;
3114		sqp->s_sge.num_sge = 1;
3115		qp->r_sge.sge = wqe->sg_list[0];
3116		qp->r_sge.sg_list = wqe->sg_list + 1;
3117		qp->r_sge.num_sge = wqe->wr.num_sge;
3118		qp->r_sge.total_len = wqe->length;
3119		break;
3120
3121	case IB_WR_ATOMIC_CMP_AND_SWP:
3122	case IB_WR_ATOMIC_FETCH_AND_ADD:
3123		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3124			goto inv_err;
3125		if (unlikely(wqe->atomic_wr.remote_addr & (sizeof(u64) - 1)))
3126			goto inv_err;
3127		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3128					  wqe->atomic_wr.remote_addr,
3129					  wqe->atomic_wr.rkey,
3130					  IB_ACCESS_REMOTE_ATOMIC)))
3131			goto acc_err;
3132		/* Perform atomic OP and save result. */
3133		maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3134		sdata = wqe->atomic_wr.compare_add;
3135		*(u64 *)sqp->s_sge.sge.vaddr =
3136			(wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3137			(u64)atomic64_add_return(sdata, maddr) - sdata :
3138			(u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3139				      sdata, wqe->atomic_wr.swap);
3140		rvt_put_mr(qp->r_sge.sge.mr);
3141		qp->r_sge.num_sge = 0;
3142		goto send_comp;
3143
3144	default:
3145		send_status = IB_WC_LOC_QP_OP_ERR;
3146		goto serr;
3147	}
3148
3149	sge = &sqp->s_sge.sge;
3150	while (sqp->s_len) {
3151		u32 len = rvt_get_sge_length(sge, sqp->s_len);
3152
3153		WARN_ON_ONCE(len == 0);
3154		rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3155			     len, release, copy_last);
3156		rvt_update_sge(&sqp->s_sge, len, !release);
3157		sqp->s_len -= len;
3158	}
3159	if (release)
3160		rvt_put_ss(&qp->r_sge);
3161
3162	if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3163		goto send_comp;
3164
3165	if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3166		wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3167	else
3168		wc.opcode = IB_WC_RECV;
3169	wc.wr_id = qp->r_wr_id;
3170	wc.status = IB_WC_SUCCESS;
3171	wc.byte_len = wqe->length;
3172	wc.qp = &qp->ibqp;
3173	wc.src_qp = qp->remote_qpn;
3174	wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3175	wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3176	wc.port_num = 1;
3177	/* Signal completion event if the solicited bit is set. */
3178	rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3179
3180send_comp:
3181	spin_unlock_irqrestore(&qp->r_lock, flags);
3182	spin_lock_irqsave(&sqp->s_lock, flags);
3183	rvp->n_loop_pkts++;
3184flush_send:
3185	sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3186	spin_lock(&sqp->r_lock);
3187	rvt_send_complete(sqp, wqe, send_status);
3188	spin_unlock(&sqp->r_lock);
3189	if (local_ops) {
3190		atomic_dec(&sqp->local_ops_pending);
3191		local_ops = 0;
3192	}
3193	goto again;
3194
3195rnr_nak:
3196	/* Handle RNR NAK */
3197	if (qp->ibqp.qp_type == IB_QPT_UC)
3198		goto send_comp;
3199	rvp->n_rnr_naks++;
3200	/*
3201	 * Note: we don't need the s_lock held since the BUSY flag
3202	 * makes this single threaded.
3203	 */
3204	if (sqp->s_rnr_retry == 0) {
3205		send_status = IB_WC_RNR_RETRY_EXC_ERR;
3206		goto serr;
3207	}
3208	if (sqp->s_rnr_retry_cnt < 7)
3209		sqp->s_rnr_retry--;
3210	spin_unlock_irqrestore(&qp->r_lock, flags);
3211	spin_lock_irqsave(&sqp->s_lock, flags);
3212	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3213		goto clr_busy;
3214	rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3215				IB_AETH_CREDIT_SHIFT);
3216	goto clr_busy;
3217
3218op_err:
3219	send_status = IB_WC_REM_OP_ERR;
3220	wc.status = IB_WC_LOC_QP_OP_ERR;
3221	goto err;
3222
3223inv_err:
3224	send_status =
3225		sqp->ibqp.qp_type == IB_QPT_RC ?
3226			IB_WC_REM_INV_REQ_ERR :
3227			IB_WC_SUCCESS;
3228	wc.status = IB_WC_LOC_QP_OP_ERR;
3229	goto err;
3230
3231acc_err:
3232	send_status = IB_WC_REM_ACCESS_ERR;
3233	wc.status = IB_WC_LOC_PROT_ERR;
3234err:
3235	/* responder goes to error state */
3236	rvt_rc_error(qp, wc.status);
3237
3238serr:
3239	spin_unlock_irqrestore(&qp->r_lock, flags);
3240serr_no_r_lock:
3241	spin_lock_irqsave(&sqp->s_lock, flags);
3242	spin_lock(&sqp->r_lock);
3243	rvt_send_complete(sqp, wqe, send_status);
3244	spin_unlock(&sqp->r_lock);
3245	if (sqp->ibqp.qp_type == IB_QPT_RC) {
3246		int lastwqe;
3247
3248		spin_lock(&sqp->r_lock);
3249		lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3250		spin_unlock(&sqp->r_lock);
3251
3252		sqp->s_flags &= ~RVT_S_BUSY;
3253		spin_unlock_irqrestore(&sqp->s_lock, flags);
3254		if (lastwqe) {
3255			struct ib_event ev;
3256
3257			ev.device = sqp->ibqp.device;
3258			ev.element.qp = &sqp->ibqp;
3259			ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3260			sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3261		}
3262		goto done;
3263	}
3264clr_busy:
3265	sqp->s_flags &= ~RVT_S_BUSY;
3266unlock:
3267	spin_unlock_irqrestore(&sqp->s_lock, flags);
3268done:
3269	rcu_read_unlock();
3270}
3271EXPORT_SYMBOL(rvt_ruc_loopback);
3272