1/*
2 * Copyright(c) 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license.  When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 *  - Redistributions of source code must retain the above copyright
25 *    notice, this list of conditions and the following disclaimer.
26 *  - Redistributions in binary form must reproduce the above copyright
27 *    notice, this list of conditions and the following disclaimer in
28 *    the documentation and/or other materials provided with the
29 *    distribution.
30 *  - Neither the name of Intel Corporation nor the names of its
31 *    contributors may be used to endorse or promote products derived
32 *    from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48#include <linux/slab.h>
49#include <linux/vmalloc.h>
50#include <rdma/ib_umem.h>
51#include <rdma/rdma_vt.h>
52#include "vt.h"
53#include "mr.h"
54#include "trace.h"
55
56/**
57 * rvt_driver_mr_init - Init MR resources per driver
58 * @rdi: rvt dev struct
59 *
60 * Do any intilization needed when a driver registers with rdmavt.
61 *
62 * Return: 0 on success or errno on failure
63 */
64int rvt_driver_mr_init(struct rvt_dev_info *rdi)
65{
66	unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
67	unsigned lk_tab_size;
68	int i;
69
70	/*
71	 * The top hfi1_lkey_table_size bits are used to index the
72	 * table.  The lower 8 bits can be owned by the user (copied from
73	 * the LKEY).  The remaining bits act as a generation number or tag.
74	 */
75	if (!lkey_table_size)
76		return -EINVAL;
77
78	spin_lock_init(&rdi->lkey_table.lock);
79
80	/* ensure generation is at least 4 bits */
81	if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
82		rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
83			    lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
84		rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
85		lkey_table_size = rdi->dparms.lkey_table_size;
86	}
87	rdi->lkey_table.max = 1 << lkey_table_size;
88	rdi->lkey_table.shift = 32 - lkey_table_size;
89	lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
90	rdi->lkey_table.table = (struct rvt_mregion __rcu **)
91			       vmalloc_node(lk_tab_size, rdi->dparms.node);
92	if (!rdi->lkey_table.table)
93		return -ENOMEM;
94
95	RCU_INIT_POINTER(rdi->dma_mr, NULL);
96	for (i = 0; i < rdi->lkey_table.max; i++)
97		RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
98
99	rdi->dparms.props.max_mr = rdi->lkey_table.max;
100	return 0;
101}
102
103/**
104 *rvt_mr_exit: clean up MR
105 *@rdi: rvt dev structure
106 *
107 * called when drivers have unregistered or perhaps failed to register with us
108 */
109void rvt_mr_exit(struct rvt_dev_info *rdi)
110{
111	if (rdi->dma_mr)
112		rvt_pr_err(rdi, "DMA MR not null!\n");
113
114	vfree(rdi->lkey_table.table);
115}
116
117static void rvt_deinit_mregion(struct rvt_mregion *mr)
118{
119	int i = mr->mapsz;
120
121	mr->mapsz = 0;
122	while (i)
123		kfree(mr->map[--i]);
124	percpu_ref_exit(&mr->refcount);
125}
126
127static void __rvt_mregion_complete(struct percpu_ref *ref)
128{
129	struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
130					      refcount);
131
132	complete(&mr->comp);
133}
134
135static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
136			    int count, unsigned int percpu_flags)
137{
138	int m, i = 0;
139	struct rvt_dev_info *dev = ib_to_rvt(pd->device);
140
141	mr->mapsz = 0;
142	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
143	for (; i < m; i++) {
144		mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
145					  dev->dparms.node);
146		if (!mr->map[i])
147			goto bail;
148		mr->mapsz++;
149	}
150	init_completion(&mr->comp);
151	/* count returning the ptr to user */
152	if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
153			    percpu_flags, GFP_KERNEL))
154		goto bail;
155
156	atomic_set(&mr->lkey_invalid, 0);
157	mr->pd = pd;
158	mr->max_segs = count;
159	return 0;
160bail:
161	rvt_deinit_mregion(mr);
162	return -ENOMEM;
163}
164
165/**
166 * rvt_alloc_lkey - allocate an lkey
167 * @mr: memory region that this lkey protects
168 * @dma_region: 0->normal key, 1->restricted DMA key
169 *
170 * Returns 0 if successful, otherwise returns -errno.
171 *
172 * Increments mr reference count as required.
173 *
174 * Sets the lkey field mr for non-dma regions.
175 *
176 */
177static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
178{
179	unsigned long flags;
180	u32 r;
181	u32 n;
182	int ret = 0;
183	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
184	struct rvt_lkey_table *rkt = &dev->lkey_table;
185
186	rvt_get_mr(mr);
187	spin_lock_irqsave(&rkt->lock, flags);
188
189	/* special case for dma_mr lkey == 0 */
190	if (dma_region) {
191		struct rvt_mregion *tmr;
192
193		tmr = rcu_access_pointer(dev->dma_mr);
194		if (!tmr) {
195			mr->lkey_published = 1;
196			/* Insure published written first */
197			rcu_assign_pointer(dev->dma_mr, mr);
198			rvt_get_mr(mr);
199		}
200		goto success;
201	}
202
203	/* Find the next available LKEY */
204	r = rkt->next;
205	n = r;
206	for (;;) {
207		if (!rcu_access_pointer(rkt->table[r]))
208			break;
209		r = (r + 1) & (rkt->max - 1);
210		if (r == n)
211			goto bail;
212	}
213	rkt->next = (r + 1) & (rkt->max - 1);
214	/*
215	 * Make sure lkey is never zero which is reserved to indicate an
216	 * unrestricted LKEY.
217	 */
218	rkt->gen++;
219	/*
220	 * bits are capped to ensure enough bits for generation number
221	 */
222	mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
223		((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
224		 << 8);
225	if (mr->lkey == 0) {
226		mr->lkey |= 1 << 8;
227		rkt->gen++;
228	}
229	mr->lkey_published = 1;
230	/* Insure published written first */
231	rcu_assign_pointer(rkt->table[r], mr);
232success:
233	spin_unlock_irqrestore(&rkt->lock, flags);
234out:
235	return ret;
236bail:
237	rvt_put_mr(mr);
238	spin_unlock_irqrestore(&rkt->lock, flags);
239	ret = -ENOMEM;
240	goto out;
241}
242
243/**
244 * rvt_free_lkey - free an lkey
245 * @mr: mr to free from tables
246 */
247static void rvt_free_lkey(struct rvt_mregion *mr)
248{
249	unsigned long flags;
250	u32 lkey = mr->lkey;
251	u32 r;
252	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
253	struct rvt_lkey_table *rkt = &dev->lkey_table;
254	int freed = 0;
255
256	spin_lock_irqsave(&rkt->lock, flags);
257	if (!lkey) {
258		if (mr->lkey_published) {
259			mr->lkey_published = 0;
260			/* insure published is written before pointer */
261			rcu_assign_pointer(dev->dma_mr, NULL);
262			rvt_put_mr(mr);
263		}
264	} else {
265		if (!mr->lkey_published)
266			goto out;
267		r = lkey >> (32 - dev->dparms.lkey_table_size);
268		mr->lkey_published = 0;
269		/* insure published is written before pointer */
270		rcu_assign_pointer(rkt->table[r], NULL);
271	}
272	freed++;
273out:
274	spin_unlock_irqrestore(&rkt->lock, flags);
275	if (freed)
276		percpu_ref_kill(&mr->refcount);
277}
278
279static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
280{
281	struct rvt_mr *mr;
282	int rval = -ENOMEM;
283	int m;
284
285	/* Allocate struct plus pointers to first level page tables. */
286	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
287	mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
288	if (!mr)
289		goto bail;
290
291	rval = rvt_init_mregion(&mr->mr, pd, count, 0);
292	if (rval)
293		goto bail;
294	/*
295	 * ib_reg_phys_mr() will initialize mr->ibmr except for
296	 * lkey and rkey.
297	 */
298	rval = rvt_alloc_lkey(&mr->mr, 0);
299	if (rval)
300		goto bail_mregion;
301	mr->ibmr.lkey = mr->mr.lkey;
302	mr->ibmr.rkey = mr->mr.lkey;
303done:
304	return mr;
305
306bail_mregion:
307	rvt_deinit_mregion(&mr->mr);
308bail:
309	kfree(mr);
310	mr = ERR_PTR(rval);
311	goto done;
312}
313
314static void __rvt_free_mr(struct rvt_mr *mr)
315{
316	rvt_free_lkey(&mr->mr);
317	rvt_deinit_mregion(&mr->mr);
318	kfree(mr);
319}
320
321/**
322 * rvt_get_dma_mr - get a DMA memory region
323 * @pd: protection domain for this memory region
324 * @acc: access flags
325 *
326 * Return: the memory region on success, otherwise returns an errno.
327 */
328struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
329{
330	struct rvt_mr *mr;
331	struct ib_mr *ret;
332	int rval;
333
334	if (ibpd_to_rvtpd(pd)->user)
335		return ERR_PTR(-EPERM);
336
337	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
338	if (!mr) {
339		ret = ERR_PTR(-ENOMEM);
340		goto bail;
341	}
342
343	rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
344	if (rval) {
345		ret = ERR_PTR(rval);
346		goto bail;
347	}
348
349	rval = rvt_alloc_lkey(&mr->mr, 1);
350	if (rval) {
351		ret = ERR_PTR(rval);
352		goto bail_mregion;
353	}
354
355	mr->mr.access_flags = acc;
356	ret = &mr->ibmr;
357done:
358	return ret;
359
360bail_mregion:
361	rvt_deinit_mregion(&mr->mr);
362bail:
363	kfree(mr);
364	goto done;
365}
366
367/**
368 * rvt_reg_user_mr - register a userspace memory region
369 * @pd: protection domain for this memory region
370 * @start: starting userspace address
371 * @length: length of region to register
372 * @mr_access_flags: access flags for this memory region
373 * @udata: unused by the driver
374 *
375 * Return: the memory region on success, otherwise returns an errno.
376 */
377struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
378			      u64 virt_addr, int mr_access_flags,
379			      struct ib_udata *udata)
380{
381	struct rvt_mr *mr;
382	struct ib_umem *umem;
383	struct sg_page_iter sg_iter;
384	int n, m;
385	struct ib_mr *ret;
386
387	if (length == 0)
388		return ERR_PTR(-EINVAL);
389
390	umem = ib_umem_get(pd->device, start, length, mr_access_flags);
391	if (IS_ERR(umem))
392		return (void *)umem;
393
394	n = ib_umem_num_pages(umem);
395
396	mr = __rvt_alloc_mr(n, pd);
397	if (IS_ERR(mr)) {
398		ret = (struct ib_mr *)mr;
399		goto bail_umem;
400	}
401
402	mr->mr.user_base = start;
403	mr->mr.iova = virt_addr;
404	mr->mr.length = length;
405	mr->mr.offset = ib_umem_offset(umem);
406	mr->mr.access_flags = mr_access_flags;
407	mr->umem = umem;
408
409	mr->mr.page_shift = PAGE_SHIFT;
410	m = 0;
411	n = 0;
412	for_each_sg_page (umem->sg_head.sgl, &sg_iter, umem->nmap, 0) {
413		void *vaddr;
414
415		vaddr = page_address(sg_page_iter_page(&sg_iter));
416		if (!vaddr) {
417			ret = ERR_PTR(-EINVAL);
418			goto bail_inval;
419		}
420		mr->mr.map[m]->segs[n].vaddr = vaddr;
421		mr->mr.map[m]->segs[n].length = PAGE_SIZE;
422		trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, PAGE_SIZE);
423		if (++n == RVT_SEGSZ) {
424			m++;
425			n = 0;
426		}
427	}
428	return &mr->ibmr;
429
430bail_inval:
431	__rvt_free_mr(mr);
432
433bail_umem:
434	ib_umem_release(umem);
435
436	return ret;
437}
438
439/**
440 * rvt_dereg_clean_qp_cb - callback from iterator
441 * @qp - the qp
442 * @v - the mregion (as u64)
443 *
444 * This routine fields the callback for all QPs and
445 * for QPs in the same PD as the MR will call the
446 * rvt_qp_mr_clean() to potentially cleanup references.
447 */
448static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
449{
450	struct rvt_mregion *mr = (struct rvt_mregion *)v;
451
452	/* skip PDs that are not ours */
453	if (mr->pd != qp->ibqp.pd)
454		return;
455	rvt_qp_mr_clean(qp, mr->lkey);
456}
457
458/**
459 * rvt_dereg_clean_qps - find QPs for reference cleanup
460 * @mr - the MR that is being deregistered
461 *
462 * This routine iterates RC QPs looking for references
463 * to the lkey noted in mr.
464 */
465static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
466{
467	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
468
469	rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
470}
471
472/**
473 * rvt_check_refs - check references
474 * @mr - the megion
475 * @t - the caller identification
476 *
477 * This routine checks MRs holding a reference during
478 * when being de-registered.
479 *
480 * If the count is non-zero, the code calls a clean routine then
481 * waits for the timeout for the count to zero.
482 */
483static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
484{
485	unsigned long timeout;
486	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
487
488	if (mr->lkey) {
489		/* avoid dma mr */
490		rvt_dereg_clean_qps(mr);
491		/* @mr was indexed on rcu protected @lkey_table */
492		synchronize_rcu();
493	}
494
495	timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
496	if (!timeout) {
497		rvt_pr_err(rdi,
498			   "%s timeout mr %p pd %p lkey %x refcount %ld\n",
499			   t, mr, mr->pd, mr->lkey,
500			   atomic_long_read(&mr->refcount.data->count));
501		rvt_get_mr(mr);
502		return -EBUSY;
503	}
504	return 0;
505}
506
507/**
508 * rvt_mr_has_lkey - is MR
509 * @mr - the mregion
510 * @lkey - the lkey
511 */
512bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
513{
514	return mr && lkey == mr->lkey;
515}
516
517/**
518 * rvt_ss_has_lkey - is mr in sge tests
519 * @ss - the sge state
520 * @lkey
521 *
522 * This code tests for an MR in the indicated
523 * sge state.
524 */
525bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
526{
527	int i;
528	bool rval = false;
529
530	if (!ss->num_sge)
531		return rval;
532	/* first one */
533	rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
534	/* any others */
535	for (i = 0; !rval && i < ss->num_sge - 1; i++)
536		rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
537	return rval;
538}
539
540/**
541 * rvt_dereg_mr - unregister and free a memory region
542 * @ibmr: the memory region to free
543 *
544 *
545 * Note that this is called to free MRs created by rvt_get_dma_mr()
546 * or rvt_reg_user_mr().
547 *
548 * Returns 0 on success.
549 */
550int rvt_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
551{
552	struct rvt_mr *mr = to_imr(ibmr);
553	int ret;
554
555	rvt_free_lkey(&mr->mr);
556
557	rvt_put_mr(&mr->mr); /* will set completion if last */
558	ret = rvt_check_refs(&mr->mr, __func__);
559	if (ret)
560		goto out;
561	rvt_deinit_mregion(&mr->mr);
562	ib_umem_release(mr->umem);
563	kfree(mr);
564out:
565	return ret;
566}
567
568/**
569 * rvt_alloc_mr - Allocate a memory region usable with the
570 * @pd: protection domain for this memory region
571 * @mr_type: mem region type
572 * @max_num_sg: Max number of segments allowed
573 *
574 * Return: the memory region on success, otherwise return an errno.
575 */
576struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
577			   u32 max_num_sg)
578{
579	struct rvt_mr *mr;
580
581	if (mr_type != IB_MR_TYPE_MEM_REG)
582		return ERR_PTR(-EINVAL);
583
584	mr = __rvt_alloc_mr(max_num_sg, pd);
585	if (IS_ERR(mr))
586		return (struct ib_mr *)mr;
587
588	return &mr->ibmr;
589}
590
591/**
592 * rvt_set_page - page assignment function called by ib_sg_to_pages
593 * @ibmr: memory region
594 * @addr: dma address of mapped page
595 *
596 * Return: 0 on success
597 */
598static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
599{
600	struct rvt_mr *mr = to_imr(ibmr);
601	u32 ps = 1 << mr->mr.page_shift;
602	u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
603	int m, n;
604
605	if (unlikely(mapped_segs == mr->mr.max_segs))
606		return -ENOMEM;
607
608	m = mapped_segs / RVT_SEGSZ;
609	n = mapped_segs % RVT_SEGSZ;
610	mr->mr.map[m]->segs[n].vaddr = (void *)addr;
611	mr->mr.map[m]->segs[n].length = ps;
612	mr->mr.length += ps;
613	trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
614
615	return 0;
616}
617
618/**
619 * rvt_map_mr_sg - map sg list and set it the memory region
620 * @ibmr: memory region
621 * @sg: dma mapped scatterlist
622 * @sg_nents: number of entries in sg
623 * @sg_offset: offset in bytes into sg
624 *
625 * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages.
626 *
627 * Return: number of sg elements mapped to the memory region
628 */
629int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
630		  int sg_nents, unsigned int *sg_offset)
631{
632	struct rvt_mr *mr = to_imr(ibmr);
633	int ret;
634
635	mr->mr.length = 0;
636	mr->mr.page_shift = PAGE_SHIFT;
637	ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page);
638	mr->mr.user_base = ibmr->iova;
639	mr->mr.iova = ibmr->iova;
640	mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr;
641	mr->mr.length = (size_t)ibmr->length;
642	trace_rvt_map_mr_sg(ibmr, sg_nents, sg_offset);
643	return ret;
644}
645
646/**
647 * rvt_fast_reg_mr - fast register physical MR
648 * @qp: the queue pair where the work request comes from
649 * @ibmr: the memory region to be registered
650 * @key: updated key for this memory region
651 * @access: access flags for this memory region
652 *
653 * Returns 0 on success.
654 */
655int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
656		    int access)
657{
658	struct rvt_mr *mr = to_imr(ibmr);
659
660	if (qp->ibqp.pd != mr->mr.pd)
661		return -EACCES;
662
663	/* not applicable to dma MR or user MR */
664	if (!mr->mr.lkey || mr->umem)
665		return -EINVAL;
666
667	if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
668		return -EINVAL;
669
670	ibmr->lkey = key;
671	ibmr->rkey = key;
672	mr->mr.lkey = key;
673	mr->mr.access_flags = access;
674	mr->mr.iova = ibmr->iova;
675	atomic_set(&mr->mr.lkey_invalid, 0);
676
677	return 0;
678}
679EXPORT_SYMBOL(rvt_fast_reg_mr);
680
681/**
682 * rvt_invalidate_rkey - invalidate an MR rkey
683 * @qp: queue pair associated with the invalidate op
684 * @rkey: rkey to invalidate
685 *
686 * Returns 0 on success.
687 */
688int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
689{
690	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
691	struct rvt_lkey_table *rkt = &dev->lkey_table;
692	struct rvt_mregion *mr;
693
694	if (rkey == 0)
695		return -EINVAL;
696
697	rcu_read_lock();
698	mr = rcu_dereference(
699		rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
700	if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
701		goto bail;
702
703	atomic_set(&mr->lkey_invalid, 1);
704	rcu_read_unlock();
705	return 0;
706
707bail:
708	rcu_read_unlock();
709	return -EINVAL;
710}
711EXPORT_SYMBOL(rvt_invalidate_rkey);
712
713/**
714 * rvt_sge_adjacent - is isge compressible
715 * @last_sge: last outgoing SGE written
716 * @sge: SGE to check
717 *
718 * If adjacent will update last_sge to add length.
719 *
720 * Return: true if isge is adjacent to last sge
721 */
722static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
723				    struct ib_sge *sge)
724{
725	if (last_sge && sge->lkey == last_sge->mr->lkey &&
726	    ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
727		if (sge->lkey) {
728			if (unlikely((sge->addr - last_sge->mr->user_base +
729			      sge->length > last_sge->mr->length)))
730				return false; /* overrun, caller will catch */
731		} else {
732			last_sge->length += sge->length;
733		}
734		last_sge->sge_length += sge->length;
735		trace_rvt_sge_adjacent(last_sge, sge);
736		return true;
737	}
738	return false;
739}
740
741/**
742 * rvt_lkey_ok - check IB SGE for validity and initialize
743 * @rkt: table containing lkey to check SGE against
744 * @pd: protection domain
745 * @isge: outgoing internal SGE
746 * @last_sge: last outgoing SGE written
747 * @sge: SGE to check
748 * @acc: access flags
749 *
750 * Check the IB SGE for validity and initialize our internal version
751 * of it.
752 *
753 * Increments the reference count when a new sge is stored.
754 *
755 * Return: 0 if compressed, 1 if added , otherwise returns -errno.
756 */
757int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
758		struct rvt_sge *isge, struct rvt_sge *last_sge,
759		struct ib_sge *sge, int acc)
760{
761	struct rvt_mregion *mr;
762	unsigned n, m;
763	size_t off;
764
765	/*
766	 * We use LKEY == zero for kernel virtual addresses
767	 * (see rvt_get_dma_mr()).
768	 */
769	if (sge->lkey == 0) {
770		struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
771
772		if (pd->user)
773			return -EINVAL;
774		if (rvt_sge_adjacent(last_sge, sge))
775			return 0;
776		rcu_read_lock();
777		mr = rcu_dereference(dev->dma_mr);
778		if (!mr)
779			goto bail;
780		rvt_get_mr(mr);
781		rcu_read_unlock();
782
783		isge->mr = mr;
784		isge->vaddr = (void *)sge->addr;
785		isge->length = sge->length;
786		isge->sge_length = sge->length;
787		isge->m = 0;
788		isge->n = 0;
789		goto ok;
790	}
791	if (rvt_sge_adjacent(last_sge, sge))
792		return 0;
793	rcu_read_lock();
794	mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
795	if (!mr)
796		goto bail;
797	rvt_get_mr(mr);
798	if (!READ_ONCE(mr->lkey_published))
799		goto bail_unref;
800
801	if (unlikely(atomic_read(&mr->lkey_invalid) ||
802		     mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
803		goto bail_unref;
804
805	off = sge->addr - mr->user_base;
806	if (unlikely(sge->addr < mr->user_base ||
807		     off + sge->length > mr->length ||
808		     (mr->access_flags & acc) != acc))
809		goto bail_unref;
810	rcu_read_unlock();
811
812	off += mr->offset;
813	if (mr->page_shift) {
814		/*
815		 * page sizes are uniform power of 2 so no loop is necessary
816		 * entries_spanned_by_off is the number of times the loop below
817		 * would have executed.
818		*/
819		size_t entries_spanned_by_off;
820
821		entries_spanned_by_off = off >> mr->page_shift;
822		off -= (entries_spanned_by_off << mr->page_shift);
823		m = entries_spanned_by_off / RVT_SEGSZ;
824		n = entries_spanned_by_off % RVT_SEGSZ;
825	} else {
826		m = 0;
827		n = 0;
828		while (off >= mr->map[m]->segs[n].length) {
829			off -= mr->map[m]->segs[n].length;
830			n++;
831			if (n >= RVT_SEGSZ) {
832				m++;
833				n = 0;
834			}
835		}
836	}
837	isge->mr = mr;
838	isge->vaddr = mr->map[m]->segs[n].vaddr + off;
839	isge->length = mr->map[m]->segs[n].length - off;
840	isge->sge_length = sge->length;
841	isge->m = m;
842	isge->n = n;
843ok:
844	trace_rvt_sge_new(isge, sge);
845	return 1;
846bail_unref:
847	rvt_put_mr(mr);
848bail:
849	rcu_read_unlock();
850	return -EINVAL;
851}
852EXPORT_SYMBOL(rvt_lkey_ok);
853
854/**
855 * rvt_rkey_ok - check the IB virtual address, length, and RKEY
856 * @qp: qp for validation
857 * @sge: SGE state
858 * @len: length of data
859 * @vaddr: virtual address to place data
860 * @rkey: rkey to check
861 * @acc: access flags
862 *
863 * Return: 1 if successful, otherwise 0.
864 *
865 * increments the reference count upon success
866 */
867int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
868		u32 len, u64 vaddr, u32 rkey, int acc)
869{
870	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
871	struct rvt_lkey_table *rkt = &dev->lkey_table;
872	struct rvt_mregion *mr;
873	unsigned n, m;
874	size_t off;
875
876	/*
877	 * We use RKEY == zero for kernel virtual addresses
878	 * (see rvt_get_dma_mr()).
879	 */
880	rcu_read_lock();
881	if (rkey == 0) {
882		struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
883		struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
884
885		if (pd->user)
886			goto bail;
887		mr = rcu_dereference(rdi->dma_mr);
888		if (!mr)
889			goto bail;
890		rvt_get_mr(mr);
891		rcu_read_unlock();
892
893		sge->mr = mr;
894		sge->vaddr = (void *)vaddr;
895		sge->length = len;
896		sge->sge_length = len;
897		sge->m = 0;
898		sge->n = 0;
899		goto ok;
900	}
901
902	mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
903	if (!mr)
904		goto bail;
905	rvt_get_mr(mr);
906	/* insure mr read is before test */
907	if (!READ_ONCE(mr->lkey_published))
908		goto bail_unref;
909	if (unlikely(atomic_read(&mr->lkey_invalid) ||
910		     mr->lkey != rkey || qp->ibqp.pd != mr->pd))
911		goto bail_unref;
912
913	off = vaddr - mr->iova;
914	if (unlikely(vaddr < mr->iova || off + len > mr->length ||
915		     (mr->access_flags & acc) == 0))
916		goto bail_unref;
917	rcu_read_unlock();
918
919	off += mr->offset;
920	if (mr->page_shift) {
921		/*
922		 * page sizes are uniform power of 2 so no loop is necessary
923		 * entries_spanned_by_off is the number of times the loop below
924		 * would have executed.
925		*/
926		size_t entries_spanned_by_off;
927
928		entries_spanned_by_off = off >> mr->page_shift;
929		off -= (entries_spanned_by_off << mr->page_shift);
930		m = entries_spanned_by_off / RVT_SEGSZ;
931		n = entries_spanned_by_off % RVT_SEGSZ;
932	} else {
933		m = 0;
934		n = 0;
935		while (off >= mr->map[m]->segs[n].length) {
936			off -= mr->map[m]->segs[n].length;
937			n++;
938			if (n >= RVT_SEGSZ) {
939				m++;
940				n = 0;
941			}
942		}
943	}
944	sge->mr = mr;
945	sge->vaddr = mr->map[m]->segs[n].vaddr + off;
946	sge->length = mr->map[m]->segs[n].length - off;
947	sge->sge_length = len;
948	sge->m = m;
949	sge->n = n;
950ok:
951	return 1;
952bail_unref:
953	rvt_put_mr(mr);
954bail:
955	rcu_read_unlock();
956	return 0;
957}
958EXPORT_SYMBOL(rvt_rkey_ok);
959