1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2/*
3 * Copyright(c) 2018 - 2020 Intel Corporation.
4 *
5 */
6
7#include "hfi.h"
8#include "qp.h"
9#include "rc.h"
10#include "verbs.h"
11#include "tid_rdma.h"
12#include "exp_rcv.h"
13#include "trace.h"
14
15/**
16 * DOC: TID RDMA READ protocol
17 *
18 * This is an end-to-end protocol at the hfi1 level between two nodes that
19 * improves performance by avoiding data copy on the requester side. It
20 * converts a qualified RDMA READ request into a TID RDMA READ request on
21 * the requester side and thereafter handles the request and response
22 * differently. To be qualified, the RDMA READ request should meet the
23 * following:
24 * -- The total data length should be greater than 256K;
25 * -- The total data length should be a multiple of 4K page size;
26 * -- Each local scatter-gather entry should be 4K page aligned;
27 * -- Each local scatter-gather entry should be a multiple of 4K page size;
28 */
29
30#define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
31#define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
32#define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
33#define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
34#define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
35#define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)
36
37/* Maximum number of packets within a flow generation. */
38#define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)
39
40#define GENERATION_MASK 0xFFFFF
41
42static u32 mask_generation(u32 a)
43{
44	return a & GENERATION_MASK;
45}
46
47/* Reserved generation value to set to unused flows for kernel contexts */
48#define KERN_GENERATION_RESERVED mask_generation(U32_MAX)
49
50/*
51 * J_KEY for kernel contexts when TID RDMA is used.
52 * See generate_jkey() in hfi.h for more information.
53 */
54#define TID_RDMA_JKEY                   32
55#define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
56#define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)
57
58/* Maximum number of segments in flight per QP request. */
59#define TID_RDMA_MAX_READ_SEGS_PER_REQ  6
60#define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
61#define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
62			TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
63#define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)
64
65#define MAX_EXPECTED_PAGES     (MAX_EXPECTED_BUFFER / PAGE_SIZE)
66
67#define TID_RDMA_DESTQP_FLOW_SHIFT      11
68#define TID_RDMA_DESTQP_FLOW_MASK       0x1f
69
70#define TID_OPFN_QP_CTXT_MASK 0xff
71#define TID_OPFN_QP_CTXT_SHIFT 56
72#define TID_OPFN_QP_KDETH_MASK 0xff
73#define TID_OPFN_QP_KDETH_SHIFT 48
74#define TID_OPFN_MAX_LEN_MASK 0x7ff
75#define TID_OPFN_MAX_LEN_SHIFT 37
76#define TID_OPFN_TIMEOUT_MASK 0x1f
77#define TID_OPFN_TIMEOUT_SHIFT 32
78#define TID_OPFN_RESERVED_MASK 0x3f
79#define TID_OPFN_RESERVED_SHIFT 26
80#define TID_OPFN_URG_MASK 0x1
81#define TID_OPFN_URG_SHIFT 25
82#define TID_OPFN_VER_MASK 0x7
83#define TID_OPFN_VER_SHIFT 22
84#define TID_OPFN_JKEY_MASK 0x3f
85#define TID_OPFN_JKEY_SHIFT 16
86#define TID_OPFN_MAX_READ_MASK 0x3f
87#define TID_OPFN_MAX_READ_SHIFT 10
88#define TID_OPFN_MAX_WRITE_MASK 0x3f
89#define TID_OPFN_MAX_WRITE_SHIFT 4
90
91/*
92 * OPFN TID layout
93 *
94 * 63               47               31               15
95 * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
96 * 3210987654321098 7654321098765432 1098765432109876 5432109876543210
97 * N - the context Number
98 * K - the Kdeth_qp
99 * M - Max_len
100 * T - Timeout
101 * D - reserveD
102 * V - version
103 * U - Urg capable
104 * J - Jkey
105 * R - max_Read
106 * W - max_Write
107 * C - Capcode
108 */
109
110static void tid_rdma_trigger_resume(struct work_struct *work);
111static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
112static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
113					 gfp_t gfp);
114static void hfi1_init_trdma_req(struct rvt_qp *qp,
115				struct tid_rdma_request *req);
116static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx);
117static void hfi1_tid_timeout(struct timer_list *t);
118static void hfi1_add_tid_reap_timer(struct rvt_qp *qp);
119static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp);
120static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp);
121static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp);
122static void hfi1_tid_retry_timeout(struct timer_list *t);
123static int make_tid_rdma_ack(struct rvt_qp *qp,
124			     struct ib_other_headers *ohdr,
125			     struct hfi1_pkt_state *ps);
126static void hfi1_do_tid_send(struct rvt_qp *qp);
127static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx);
128static void tid_rdma_rcv_err(struct hfi1_packet *packet,
129			     struct ib_other_headers *ohdr,
130			     struct rvt_qp *qp, u32 psn, int diff, bool fecn);
131static void update_r_next_psn_fecn(struct hfi1_packet *packet,
132				   struct hfi1_qp_priv *priv,
133				   struct hfi1_ctxtdata *rcd,
134				   struct tid_rdma_flow *flow,
135				   bool fecn);
136
137static void validate_r_tid_ack(struct hfi1_qp_priv *priv)
138{
139	if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
140		priv->r_tid_ack = priv->r_tid_tail;
141}
142
143static void tid_rdma_schedule_ack(struct rvt_qp *qp)
144{
145	struct hfi1_qp_priv *priv = qp->priv;
146
147	priv->s_flags |= RVT_S_ACK_PENDING;
148	hfi1_schedule_tid_send(qp);
149}
150
151static void tid_rdma_trigger_ack(struct rvt_qp *qp)
152{
153	validate_r_tid_ack(qp->priv);
154	tid_rdma_schedule_ack(qp);
155}
156
157static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
158{
159	return
160		(((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
161			TID_OPFN_QP_CTXT_SHIFT) |
162		((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
163			TID_OPFN_QP_KDETH_SHIFT) |
164		(((u64)((p->max_len >> PAGE_SHIFT) - 1) &
165			TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
166		(((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
167			TID_OPFN_TIMEOUT_SHIFT) |
168		(((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
169		(((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
170		(((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
171			TID_OPFN_MAX_READ_SHIFT) |
172		(((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
173			TID_OPFN_MAX_WRITE_SHIFT);
174}
175
176static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
177{
178	p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
179		TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
180	p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
181	p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
182		TID_OPFN_MAX_WRITE_MASK;
183	p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
184		TID_OPFN_MAX_READ_MASK;
185	p->qp =
186		((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
187			<< 16) |
188		((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
189	p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
190	p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
191}
192
193void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
194{
195	struct hfi1_qp_priv *priv = qp->priv;
196
197	p->qp = (RVT_KDETH_QP_PREFIX << 16) | priv->rcd->ctxt;
198	p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
199	p->jkey = priv->rcd->jkey;
200	p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
201	p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
202	p->timeout = qp->timeout;
203	p->urg = is_urg_masked(priv->rcd);
204}
205
206bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
207{
208	struct hfi1_qp_priv *priv = qp->priv;
209
210	*data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
211	return true;
212}
213
214bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
215{
216	struct hfi1_qp_priv *priv = qp->priv;
217	struct tid_rdma_params *remote, *old;
218	bool ret = true;
219
220	old = rcu_dereference_protected(priv->tid_rdma.remote,
221					lockdep_is_held(&priv->opfn.lock));
222	data &= ~0xfULL;
223	/*
224	 * If data passed in is zero, return true so as not to continue the
225	 * negotiation process
226	 */
227	if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
228		goto null;
229	/*
230	 * If kzalloc fails, return false. This will result in:
231	 * * at the requester a new OPFN request being generated to retry
232	 *   the negotiation
233	 * * at the responder, 0 being returned to the requester so as to
234	 *   disable TID RDMA at both the requester and the responder
235	 */
236	remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
237	if (!remote) {
238		ret = false;
239		goto null;
240	}
241
242	tid_rdma_opfn_decode(remote, data);
243	priv->tid_timer_timeout_jiffies =
244		usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
245				   1000UL) << 3) * 7);
246	trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
247	trace_hfi1_opfn_param(qp, 1, remote);
248	rcu_assign_pointer(priv->tid_rdma.remote, remote);
249	/*
250	 * A TID RDMA READ request's segment size is not equal to
251	 * remote->max_len only when the request's data length is smaller
252	 * than remote->max_len. In that case, there will be only one segment.
253	 * Therefore, when priv->pkts_ps is used to calculate req->cur_seg
254	 * during retry, it will lead to req->cur_seg = 0, which is exactly
255	 * what is expected.
256	 */
257	priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
258	priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
259	goto free;
260null:
261	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
262	priv->timeout_shift = 0;
263free:
264	if (old)
265		kfree_rcu(old, rcu_head);
266	return ret;
267}
268
269bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
270{
271	bool ret;
272
273	ret = tid_rdma_conn_reply(qp, *data);
274	*data = 0;
275	/*
276	 * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
277	 * TID RDMA could not be enabled. This will result in TID RDMA being
278	 * disabled at the requester too.
279	 */
280	if (ret)
281		(void)tid_rdma_conn_req(qp, data);
282	return ret;
283}
284
285void tid_rdma_conn_error(struct rvt_qp *qp)
286{
287	struct hfi1_qp_priv *priv = qp->priv;
288	struct tid_rdma_params *old;
289
290	old = rcu_dereference_protected(priv->tid_rdma.remote,
291					lockdep_is_held(&priv->opfn.lock));
292	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
293	if (old)
294		kfree_rcu(old, rcu_head);
295}
296
297/* This is called at context initialization time */
298int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
299{
300	if (reinit)
301		return 0;
302
303	BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
304	BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
305	rcd->jkey = TID_RDMA_JKEY;
306	hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
307	return hfi1_alloc_ctxt_rcv_groups(rcd);
308}
309
310/**
311 * qp_to_rcd - determine the receive context used by a qp
312 * @qp - the qp
313 *
314 * This routine returns the receive context associated
315 * with a a qp's qpn.
316 *
317 * Returns the context.
318 */
319static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
320				       struct rvt_qp *qp)
321{
322	struct hfi1_ibdev *verbs_dev = container_of(rdi,
323						    struct hfi1_ibdev,
324						    rdi);
325	struct hfi1_devdata *dd = container_of(verbs_dev,
326					       struct hfi1_devdata,
327					       verbs_dev);
328	unsigned int ctxt;
329
330	if (qp->ibqp.qp_num == 0)
331		ctxt = 0;
332	else
333		ctxt = hfi1_get_qp_map(dd, qp->ibqp.qp_num >> dd->qos_shift);
334	return dd->rcd[ctxt];
335}
336
337int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
338		      struct ib_qp_init_attr *init_attr)
339{
340	struct hfi1_qp_priv *qpriv = qp->priv;
341	int i, ret;
342
343	qpriv->rcd = qp_to_rcd(rdi, qp);
344
345	spin_lock_init(&qpriv->opfn.lock);
346	INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
347	INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
348	qpriv->flow_state.psn = 0;
349	qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
350	qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
351	qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
352	qpriv->s_state = TID_OP(WRITE_RESP);
353	qpriv->s_tid_cur = HFI1_QP_WQE_INVALID;
354	qpriv->s_tid_head = HFI1_QP_WQE_INVALID;
355	qpriv->s_tid_tail = HFI1_QP_WQE_INVALID;
356	qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
357	qpriv->r_tid_head = HFI1_QP_WQE_INVALID;
358	qpriv->r_tid_tail = HFI1_QP_WQE_INVALID;
359	qpriv->r_tid_ack = HFI1_QP_WQE_INVALID;
360	qpriv->r_tid_alloc = HFI1_QP_WQE_INVALID;
361	atomic_set(&qpriv->n_requests, 0);
362	atomic_set(&qpriv->n_tid_requests, 0);
363	timer_setup(&qpriv->s_tid_timer, hfi1_tid_timeout, 0);
364	timer_setup(&qpriv->s_tid_retry_timer, hfi1_tid_retry_timeout, 0);
365	INIT_LIST_HEAD(&qpriv->tid_wait);
366
367	if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
368		struct hfi1_devdata *dd = qpriv->rcd->dd;
369
370		qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
371						sizeof(*qpriv->pages),
372					    GFP_KERNEL, dd->node);
373		if (!qpriv->pages)
374			return -ENOMEM;
375		for (i = 0; i < qp->s_size; i++) {
376			struct hfi1_swqe_priv *priv;
377			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
378
379			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
380					    dd->node);
381			if (!priv)
382				return -ENOMEM;
383
384			hfi1_init_trdma_req(qp, &priv->tid_req);
385			priv->tid_req.e.swqe = wqe;
386			wqe->priv = priv;
387		}
388		for (i = 0; i < rvt_max_atomic(rdi); i++) {
389			struct hfi1_ack_priv *priv;
390
391			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
392					    dd->node);
393			if (!priv)
394				return -ENOMEM;
395
396			hfi1_init_trdma_req(qp, &priv->tid_req);
397			priv->tid_req.e.ack = &qp->s_ack_queue[i];
398
399			ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
400							    GFP_KERNEL);
401			if (ret) {
402				kfree(priv);
403				return ret;
404			}
405			qp->s_ack_queue[i].priv = priv;
406		}
407	}
408
409	return 0;
410}
411
412void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
413{
414	struct hfi1_qp_priv *qpriv = qp->priv;
415	struct rvt_swqe *wqe;
416	u32 i;
417
418	if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
419		for (i = 0; i < qp->s_size; i++) {
420			wqe = rvt_get_swqe_ptr(qp, i);
421			kfree(wqe->priv);
422			wqe->priv = NULL;
423		}
424		for (i = 0; i < rvt_max_atomic(rdi); i++) {
425			struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;
426
427			if (priv)
428				hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
429			kfree(priv);
430			qp->s_ack_queue[i].priv = NULL;
431		}
432		cancel_work_sync(&qpriv->opfn.opfn_work);
433		kfree(qpriv->pages);
434		qpriv->pages = NULL;
435	}
436}
437
438/* Flow and tid waiter functions */
439/**
440 * DOC: lock ordering
441 *
442 * There are two locks involved with the queuing
443 * routines: the qp s_lock and the exp_lock.
444 *
445 * Since the tid space allocation is called from
446 * the send engine, the qp s_lock is already held.
447 *
448 * The allocation routines will get the exp_lock.
449 *
450 * The first_qp() call is provided to allow the head of
451 * the rcd wait queue to be fetched under the exp_lock and
452 * followed by a drop of the exp_lock.
453 *
454 * Any qp in the wait list will have the qp reference count held
455 * to hold the qp in memory.
456 */
457
458/*
459 * return head of rcd wait list
460 *
461 * Must hold the exp_lock.
462 *
463 * Get a reference to the QP to hold the QP in memory.
464 *
465 * The caller must release the reference when the local
466 * is no longer being used.
467 */
468static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
469			       struct tid_queue *queue)
470	__must_hold(&rcd->exp_lock)
471{
472	struct hfi1_qp_priv *priv;
473
474	lockdep_assert_held(&rcd->exp_lock);
475	priv = list_first_entry_or_null(&queue->queue_head,
476					struct hfi1_qp_priv,
477					tid_wait);
478	if (!priv)
479		return NULL;
480	rvt_get_qp(priv->owner);
481	return priv->owner;
482}
483
484/**
485 * kernel_tid_waiters - determine rcd wait
486 * @rcd: the receive context
487 * @qp: the head of the qp being processed
488 *
489 * This routine will return false IFF
490 * the list is NULL or the head of the
491 * list is the indicated qp.
492 *
493 * Must hold the qp s_lock and the exp_lock.
494 *
495 * Return:
496 * false if either of the conditions below are satisfied:
497 * 1. The list is empty or
498 * 2. The indicated qp is at the head of the list and the
499 *    HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
500 * true is returned otherwise.
501 */
502static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
503			       struct tid_queue *queue, struct rvt_qp *qp)
504	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
505{
506	struct rvt_qp *fqp;
507	bool ret = true;
508
509	lockdep_assert_held(&qp->s_lock);
510	lockdep_assert_held(&rcd->exp_lock);
511	fqp = first_qp(rcd, queue);
512	if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
513		ret = false;
514	rvt_put_qp(fqp);
515	return ret;
516}
517
518/**
519 * dequeue_tid_waiter - dequeue the qp from the list
520 * @qp - the qp to remove the wait list
521 *
522 * This routine removes the indicated qp from the
523 * wait list if it is there.
524 *
525 * This should be done after the hardware flow and
526 * tid array resources have been allocated.
527 *
528 * Must hold the qp s_lock and the rcd exp_lock.
529 *
530 * It assumes the s_lock to protect the s_flags
531 * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
532 */
533static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
534			       struct tid_queue *queue, struct rvt_qp *qp)
535	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
536{
537	struct hfi1_qp_priv *priv = qp->priv;
538
539	lockdep_assert_held(&qp->s_lock);
540	lockdep_assert_held(&rcd->exp_lock);
541	if (list_empty(&priv->tid_wait))
542		return;
543	list_del_init(&priv->tid_wait);
544	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
545	queue->dequeue++;
546	rvt_put_qp(qp);
547}
548
549/**
550 * queue_qp_for_tid_wait - suspend QP on tid space
551 * @rcd: the receive context
552 * @qp: the qp
553 *
554 * The qp is inserted at the tail of the rcd
555 * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
556 *
557 * Must hold the qp s_lock and the exp_lock.
558 */
559static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
560				  struct tid_queue *queue, struct rvt_qp *qp)
561	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
562{
563	struct hfi1_qp_priv *priv = qp->priv;
564
565	lockdep_assert_held(&qp->s_lock);
566	lockdep_assert_held(&rcd->exp_lock);
567	if (list_empty(&priv->tid_wait)) {
568		qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
569		list_add_tail(&priv->tid_wait, &queue->queue_head);
570		priv->tid_enqueue = ++queue->enqueue;
571		rcd->dd->verbs_dev.n_tidwait++;
572		trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
573		rvt_get_qp(qp);
574	}
575}
576
577/**
578 * __trigger_tid_waiter - trigger tid waiter
579 * @qp: the qp
580 *
581 * This is a private entrance to schedule the qp
582 * assuming the caller is holding the qp->s_lock.
583 */
584static void __trigger_tid_waiter(struct rvt_qp *qp)
585	__must_hold(&qp->s_lock)
586{
587	lockdep_assert_held(&qp->s_lock);
588	if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
589		return;
590	trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
591	hfi1_schedule_send(qp);
592}
593
594/**
595 * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
596 * @qp - the qp
597 *
598 * trigger a schedule or a waiting qp in a deadlock
599 * safe manner.  The qp reference is held prior
600 * to this call via first_qp().
601 *
602 * If the qp trigger was already scheduled (!rval)
603 * the the reference is dropped, otherwise the resume
604 * or the destroy cancel will dispatch the reference.
605 */
606static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
607{
608	struct hfi1_qp_priv *priv;
609	struct hfi1_ibport *ibp;
610	struct hfi1_pportdata *ppd;
611	struct hfi1_devdata *dd;
612	bool rval;
613
614	if (!qp)
615		return;
616
617	priv = qp->priv;
618	ibp = to_iport(qp->ibqp.device, qp->port_num);
619	ppd = ppd_from_ibp(ibp);
620	dd = dd_from_ibdev(qp->ibqp.device);
621
622	rval = queue_work_on(priv->s_sde ?
623			     priv->s_sde->cpu :
624			     cpumask_first(cpumask_of_node(dd->node)),
625			     ppd->hfi1_wq,
626			     &priv->tid_rdma.trigger_work);
627	if (!rval)
628		rvt_put_qp(qp);
629}
630
631/**
632 * tid_rdma_trigger_resume - field a trigger work request
633 * @work - the work item
634 *
635 * Complete the off qp trigger processing by directly
636 * calling the progress routine.
637 */
638static void tid_rdma_trigger_resume(struct work_struct *work)
639{
640	struct tid_rdma_qp_params *tr;
641	struct hfi1_qp_priv *priv;
642	struct rvt_qp *qp;
643
644	tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
645	priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
646	qp = priv->owner;
647	spin_lock_irq(&qp->s_lock);
648	if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
649		spin_unlock_irq(&qp->s_lock);
650		hfi1_do_send(priv->owner, true);
651	} else {
652		spin_unlock_irq(&qp->s_lock);
653	}
654	rvt_put_qp(qp);
655}
656
657/**
658 * tid_rdma_flush_wait - unwind any tid space wait
659 *
660 * This is called when resetting a qp to
661 * allow a destroy or reset to get rid
662 * of any tid space linkage and reference counts.
663 */
664static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
665	__must_hold(&qp->s_lock)
666{
667	struct hfi1_qp_priv *priv;
668
669	if (!qp)
670		return;
671	lockdep_assert_held(&qp->s_lock);
672	priv = qp->priv;
673	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
674	spin_lock(&priv->rcd->exp_lock);
675	if (!list_empty(&priv->tid_wait)) {
676		list_del_init(&priv->tid_wait);
677		qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
678		queue->dequeue++;
679		rvt_put_qp(qp);
680	}
681	spin_unlock(&priv->rcd->exp_lock);
682}
683
684void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
685	__must_hold(&qp->s_lock)
686{
687	struct hfi1_qp_priv *priv = qp->priv;
688
689	_tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
690	_tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
691}
692
693/* Flow functions */
694/**
695 * kern_reserve_flow - allocate a hardware flow
696 * @rcd - the context to use for allocation
697 * @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
698 *         signify "don't care".
699 *
700 * Use a bit mask based allocation to reserve a hardware
701 * flow for use in receiving KDETH data packets. If a preferred flow is
702 * specified the function will attempt to reserve that flow again, if
703 * available.
704 *
705 * The exp_lock must be held.
706 *
707 * Return:
708 * On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
709 * On failure: -EAGAIN
710 */
711static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
712	__must_hold(&rcd->exp_lock)
713{
714	int nr;
715
716	/* Attempt to reserve the preferred flow index */
717	if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
718	    !test_and_set_bit(last, &rcd->flow_mask))
719		return last;
720
721	nr = ffz(rcd->flow_mask);
722	BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
723		     (sizeof(rcd->flow_mask) * BITS_PER_BYTE));
724	if (nr > (RXE_NUM_TID_FLOWS - 1))
725		return -EAGAIN;
726	set_bit(nr, &rcd->flow_mask);
727	return nr;
728}
729
730static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
731			     u32 flow_idx)
732{
733	u64 reg;
734
735	reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
736		RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
737		RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
738		RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
739		RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
740		RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;
741
742	if (generation != KERN_GENERATION_RESERVED)
743		reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;
744
745	write_uctxt_csr(rcd->dd, rcd->ctxt,
746			RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
747}
748
749static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
750	__must_hold(&rcd->exp_lock)
751{
752	u32 generation = rcd->flows[flow_idx].generation;
753
754	kern_set_hw_flow(rcd, generation, flow_idx);
755	return generation;
756}
757
758static u32 kern_flow_generation_next(u32 gen)
759{
760	u32 generation = mask_generation(gen + 1);
761
762	if (generation == KERN_GENERATION_RESERVED)
763		generation = mask_generation(generation + 1);
764	return generation;
765}
766
767static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
768	__must_hold(&rcd->exp_lock)
769{
770	rcd->flows[flow_idx].generation =
771		kern_flow_generation_next(rcd->flows[flow_idx].generation);
772	kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
773}
774
775int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
776{
777	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
778	struct tid_flow_state *fs = &qpriv->flow_state;
779	struct rvt_qp *fqp;
780	unsigned long flags;
781	int ret = 0;
782
783	/* The QP already has an allocated flow */
784	if (fs->index != RXE_NUM_TID_FLOWS)
785		return ret;
786
787	spin_lock_irqsave(&rcd->exp_lock, flags);
788	if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
789		goto queue;
790
791	ret = kern_reserve_flow(rcd, fs->last_index);
792	if (ret < 0)
793		goto queue;
794	fs->index = ret;
795	fs->last_index = fs->index;
796
797	/* Generation received in a RESYNC overrides default flow generation */
798	if (fs->generation != KERN_GENERATION_RESERVED)
799		rcd->flows[fs->index].generation = fs->generation;
800	fs->generation = kern_setup_hw_flow(rcd, fs->index);
801	fs->psn = 0;
802	dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
803	/* get head before dropping lock */
804	fqp = first_qp(rcd, &rcd->flow_queue);
805	spin_unlock_irqrestore(&rcd->exp_lock, flags);
806
807	tid_rdma_schedule_tid_wakeup(fqp);
808	return 0;
809queue:
810	queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
811	spin_unlock_irqrestore(&rcd->exp_lock, flags);
812	return -EAGAIN;
813}
814
815void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
816{
817	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
818	struct tid_flow_state *fs = &qpriv->flow_state;
819	struct rvt_qp *fqp;
820	unsigned long flags;
821
822	if (fs->index >= RXE_NUM_TID_FLOWS)
823		return;
824	spin_lock_irqsave(&rcd->exp_lock, flags);
825	kern_clear_hw_flow(rcd, fs->index);
826	clear_bit(fs->index, &rcd->flow_mask);
827	fs->index = RXE_NUM_TID_FLOWS;
828	fs->psn = 0;
829	fs->generation = KERN_GENERATION_RESERVED;
830
831	/* get head before dropping lock */
832	fqp = first_qp(rcd, &rcd->flow_queue);
833	spin_unlock_irqrestore(&rcd->exp_lock, flags);
834
835	if (fqp == qp) {
836		__trigger_tid_waiter(fqp);
837		rvt_put_qp(fqp);
838	} else {
839		tid_rdma_schedule_tid_wakeup(fqp);
840	}
841}
842
843void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
844{
845	int i;
846
847	for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
848		rcd->flows[i].generation = mask_generation(prandom_u32());
849		kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
850	}
851}
852
853/* TID allocation functions */
854static u8 trdma_pset_order(struct tid_rdma_pageset *s)
855{
856	u8 count = s->count;
857
858	return ilog2(count) + 1;
859}
860
861/**
862 * tid_rdma_find_phys_blocks_4k - get groups base on mr info
863 * @npages - number of pages
864 * @pages - pointer to an array of page structs
865 * @list - page set array to return
866 *
867 * This routine returns the number of groups associated with
868 * the current sge information.  This implementation is based
869 * on the expected receive find_phys_blocks() adjusted to
870 * use the MR information vs. the pfn.
871 *
872 * Return:
873 * the number of RcvArray entries
874 */
875static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
876					struct page **pages,
877					u32 npages,
878					struct tid_rdma_pageset *list)
879{
880	u32 pagecount, pageidx, setcount = 0, i;
881	void *vaddr, *this_vaddr;
882
883	if (!npages)
884		return 0;
885
886	/*
887	 * Look for sets of physically contiguous pages in the user buffer.
888	 * This will allow us to optimize Expected RcvArray entry usage by
889	 * using the bigger supported sizes.
890	 */
891	vaddr = page_address(pages[0]);
892	trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr);
893	for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
894		this_vaddr = i < npages ? page_address(pages[i]) : NULL;
895		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0,
896					 this_vaddr);
897		/*
898		 * If the vaddr's are not sequential, pages are not physically
899		 * contiguous.
900		 */
901		if (this_vaddr != (vaddr + PAGE_SIZE)) {
902			/*
903			 * At this point we have to loop over the set of
904			 * physically contiguous pages and break them down it
905			 * sizes supported by the HW.
906			 * There are two main constraints:
907			 *     1. The max buffer size is MAX_EXPECTED_BUFFER.
908			 *        If the total set size is bigger than that
909			 *        program only a MAX_EXPECTED_BUFFER chunk.
910			 *     2. The buffer size has to be a power of two. If
911			 *        it is not, round down to the closes power of
912			 *        2 and program that size.
913			 */
914			while (pagecount) {
915				int maxpages = pagecount;
916				u32 bufsize = pagecount * PAGE_SIZE;
917
918				if (bufsize > MAX_EXPECTED_BUFFER)
919					maxpages =
920						MAX_EXPECTED_BUFFER >>
921						PAGE_SHIFT;
922				else if (!is_power_of_2(bufsize))
923					maxpages =
924						rounddown_pow_of_two(bufsize) >>
925						PAGE_SHIFT;
926
927				list[setcount].idx = pageidx;
928				list[setcount].count = maxpages;
929				trace_hfi1_tid_pageset(flow->req->qp, setcount,
930						       list[setcount].idx,
931						       list[setcount].count);
932				pagecount -= maxpages;
933				pageidx += maxpages;
934				setcount++;
935			}
936			pageidx = i;
937			pagecount = 1;
938			vaddr = this_vaddr;
939		} else {
940			vaddr += PAGE_SIZE;
941			pagecount++;
942		}
943	}
944	/* insure we always return an even number of sets */
945	if (setcount & 1)
946		list[setcount++].count = 0;
947	return setcount;
948}
949
950/**
951 * tid_flush_pages - dump out pages into pagesets
952 * @list - list of pagesets
953 * @idx - pointer to current page index
954 * @pages - number of pages to dump
955 * @sets - current number of pagesset
956 *
957 * This routine flushes out accumuated pages.
958 *
959 * To insure an even number of sets the
960 * code may add a filler.
961 *
962 * This can happen with when pages is not
963 * a power of 2 or pages is a power of 2
964 * less than the maximum pages.
965 *
966 * Return:
967 * The new number of sets
968 */
969
970static u32 tid_flush_pages(struct tid_rdma_pageset *list,
971			   u32 *idx, u32 pages, u32 sets)
972{
973	while (pages) {
974		u32 maxpages = pages;
975
976		if (maxpages > MAX_EXPECTED_PAGES)
977			maxpages = MAX_EXPECTED_PAGES;
978		else if (!is_power_of_2(maxpages))
979			maxpages = rounddown_pow_of_two(maxpages);
980		list[sets].idx = *idx;
981		list[sets++].count = maxpages;
982		*idx += maxpages;
983		pages -= maxpages;
984	}
985	/* might need a filler */
986	if (sets & 1)
987		list[sets++].count = 0;
988	return sets;
989}
990
991/**
992 * tid_rdma_find_phys_blocks_8k - get groups base on mr info
993 * @pages - pointer to an array of page structs
994 * @npages - number of pages
995 * @list - page set array to return
996 *
997 * This routine parses an array of pages to compute pagesets
998 * in an 8k compatible way.
999 *
1000 * pages are tested two at a time, i, i + 1 for contiguous
1001 * pages and i - 1 and i contiguous pages.
1002 *
1003 * If any condition is false, any accumlated pages are flushed and
1004 * v0,v1 are emitted as separate PAGE_SIZE pagesets
1005 *
1006 * Otherwise, the current 8k is totaled for a future flush.
1007 *
1008 * Return:
1009 * The number of pagesets
1010 * list set with the returned number of pagesets
1011 *
1012 */
1013static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
1014					struct page **pages,
1015					u32 npages,
1016					struct tid_rdma_pageset *list)
1017{
1018	u32 idx, sets = 0, i;
1019	u32 pagecnt = 0;
1020	void *v0, *v1, *vm1;
1021
1022	if (!npages)
1023		return 0;
1024	for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
1025		/* get a new v0 */
1026		v0 = page_address(pages[i]);
1027		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0);
1028		v1 = i + 1 < npages ?
1029				page_address(pages[i + 1]) : NULL;
1030		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1);
1031		/* compare i, i + 1 vaddr */
1032		if (v1 != (v0 + PAGE_SIZE)) {
1033			/* flush out pages */
1034			sets = tid_flush_pages(list, &idx, pagecnt, sets);
1035			/* output v0,v1 as two pagesets */
1036			list[sets].idx = idx++;
1037			list[sets++].count = 1;
1038			if (v1) {
1039				list[sets].count = 1;
1040				list[sets++].idx = idx++;
1041			} else {
1042				list[sets++].count = 0;
1043			}
1044			vm1 = NULL;
1045			pagecnt = 0;
1046			continue;
1047		}
1048		/* i,i+1 consecutive, look at i-1,i */
1049		if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
1050			/* flush out pages */
1051			sets = tid_flush_pages(list, &idx, pagecnt, sets);
1052			pagecnt = 0;
1053		}
1054		/* pages will always be a multiple of 8k */
1055		pagecnt += 2;
1056		/* save i-1 */
1057		vm1 = v1;
1058		/* move to next pair */
1059	}
1060	/* dump residual pages at end */
1061	sets = tid_flush_pages(list, &idx, npages - idx, sets);
1062	/* by design cannot be odd sets */
1063	WARN_ON(sets & 1);
1064	return sets;
1065}
1066
1067/**
1068 * Find pages for one segment of a sge array represented by @ss. The function
1069 * does not check the sge, the sge must have been checked for alignment with a
1070 * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
1071 * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
1072 * copy maintained in @ss->sge, the original sge is not modified.
1073 *
1074 * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
1075 * releasing the MR reference count at the same time. Otherwise, we'll "leak"
1076 * references to the MR. This difference requires that we keep track of progress
1077 * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
1078 * structure.
1079 */
1080static u32 kern_find_pages(struct tid_rdma_flow *flow,
1081			   struct page **pages,
1082			   struct rvt_sge_state *ss, bool *last)
1083{
1084	struct tid_rdma_request *req = flow->req;
1085	struct rvt_sge *sge = &ss->sge;
1086	u32 length = flow->req->seg_len;
1087	u32 len = PAGE_SIZE;
1088	u32 i = 0;
1089
1090	while (length && req->isge < ss->num_sge) {
1091		pages[i++] = virt_to_page(sge->vaddr);
1092
1093		sge->vaddr += len;
1094		sge->length -= len;
1095		sge->sge_length -= len;
1096		if (!sge->sge_length) {
1097			if (++req->isge < ss->num_sge)
1098				*sge = ss->sg_list[req->isge - 1];
1099		} else if (sge->length == 0 && sge->mr->lkey) {
1100			if (++sge->n >= RVT_SEGSZ) {
1101				++sge->m;
1102				sge->n = 0;
1103			}
1104			sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
1105			sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
1106		}
1107		length -= len;
1108	}
1109
1110	flow->length = flow->req->seg_len - length;
1111	*last = req->isge == ss->num_sge ? false : true;
1112	return i;
1113}
1114
1115static void dma_unmap_flow(struct tid_rdma_flow *flow)
1116{
1117	struct hfi1_devdata *dd;
1118	int i;
1119	struct tid_rdma_pageset *pset;
1120
1121	dd = flow->req->rcd->dd;
1122	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1123			i++, pset++) {
1124		if (pset->count && pset->addr) {
1125			dma_unmap_page(&dd->pcidev->dev,
1126				       pset->addr,
1127				       PAGE_SIZE * pset->count,
1128				       DMA_FROM_DEVICE);
1129			pset->mapped = 0;
1130		}
1131	}
1132}
1133
1134static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
1135{
1136	int i;
1137	struct hfi1_devdata *dd = flow->req->rcd->dd;
1138	struct tid_rdma_pageset *pset;
1139
1140	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1141			i++, pset++) {
1142		if (pset->count) {
1143			pset->addr = dma_map_page(&dd->pcidev->dev,
1144						  pages[pset->idx],
1145						  0,
1146						  PAGE_SIZE * pset->count,
1147						  DMA_FROM_DEVICE);
1148
1149			if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
1150				dma_unmap_flow(flow);
1151				return -ENOMEM;
1152			}
1153			pset->mapped = 1;
1154		}
1155	}
1156	return 0;
1157}
1158
1159static inline bool dma_mapped(struct tid_rdma_flow *flow)
1160{
1161	return !!flow->pagesets[0].mapped;
1162}
1163
1164/*
1165 * Get pages pointers and identify contiguous physical memory chunks for a
1166 * segment. All segments are of length flow->req->seg_len.
1167 */
1168static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
1169				struct page **pages,
1170				struct rvt_sge_state *ss, bool *last)
1171{
1172	u8 npages;
1173
1174	/* Reuse previously computed pagesets, if any */
1175	if (flow->npagesets) {
1176		trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head,
1177					  flow);
1178		if (!dma_mapped(flow))
1179			return dma_map_flow(flow, pages);
1180		return 0;
1181	}
1182
1183	npages = kern_find_pages(flow, pages, ss, last);
1184
1185	if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
1186		flow->npagesets =
1187			tid_rdma_find_phys_blocks_4k(flow, pages, npages,
1188						     flow->pagesets);
1189	else
1190		flow->npagesets =
1191			tid_rdma_find_phys_blocks_8k(flow, pages, npages,
1192						     flow->pagesets);
1193
1194	return dma_map_flow(flow, pages);
1195}
1196
1197static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
1198				     struct hfi1_ctxtdata *rcd, char *s,
1199				     struct tid_group *grp, u8 cnt)
1200{
1201	struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];
1202
1203	WARN_ON_ONCE(flow->tnode_cnt >=
1204		     (TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
1205	if (WARN_ON_ONCE(cnt & 1))
1206		dd_dev_err(rcd->dd,
1207			   "unexpected odd allocation cnt %u map 0x%x used %u",
1208			   cnt, grp->map, grp->used);
1209
1210	node->grp = grp;
1211	node->map = grp->map;
1212	node->cnt = cnt;
1213	trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1,
1214				grp->base, grp->map, grp->used, cnt);
1215}
1216
1217/*
1218 * Try to allocate pageset_count TID's from TID groups for a context
1219 *
1220 * This function allocates TID's without moving groups between lists or
1221 * modifying grp->map. This is done as follows, being cogizant of the lists
1222 * between which the TID groups will move:
1223 * 1. First allocate complete groups of 8 TID's since this is more efficient,
1224 *    these groups will move from group->full without affecting used
1225 * 2. If more TID's are needed allocate from used (will move from used->full or
1226 *    stay in used)
1227 * 3. If we still don't have the required number of TID's go back and look again
1228 *    at a complete group (will move from group->used)
1229 */
1230static int kern_alloc_tids(struct tid_rdma_flow *flow)
1231{
1232	struct hfi1_ctxtdata *rcd = flow->req->rcd;
1233	struct hfi1_devdata *dd = rcd->dd;
1234	u32 ngroups, pageidx = 0;
1235	struct tid_group *group = NULL, *used;
1236	u8 use;
1237
1238	flow->tnode_cnt = 0;
1239	ngroups = flow->npagesets / dd->rcv_entries.group_size;
1240	if (!ngroups)
1241		goto used_list;
1242
1243	/* First look at complete groups */
1244	list_for_each_entry(group,  &rcd->tid_group_list.list, list) {
1245		kern_add_tid_node(flow, rcd, "complete groups", group,
1246				  group->size);
1247
1248		pageidx += group->size;
1249		if (!--ngroups)
1250			break;
1251	}
1252
1253	if (pageidx >= flow->npagesets)
1254		goto ok;
1255
1256used_list:
1257	/* Now look at partially used groups */
1258	list_for_each_entry(used, &rcd->tid_used_list.list, list) {
1259		use = min_t(u32, flow->npagesets - pageidx,
1260			    used->size - used->used);
1261		kern_add_tid_node(flow, rcd, "used groups", used, use);
1262
1263		pageidx += use;
1264		if (pageidx >= flow->npagesets)
1265			goto ok;
1266	}
1267
1268	/*
1269	 * Look again at a complete group, continuing from where we left.
1270	 * However, if we are at the head, we have reached the end of the
1271	 * complete groups list from the first loop above
1272	 */
1273	if (group && &group->list == &rcd->tid_group_list.list)
1274		goto bail_eagain;
1275	group = list_prepare_entry(group, &rcd->tid_group_list.list,
1276				   list);
1277	if (list_is_last(&group->list, &rcd->tid_group_list.list))
1278		goto bail_eagain;
1279	group = list_next_entry(group, list);
1280	use = min_t(u32, flow->npagesets - pageidx, group->size);
1281	kern_add_tid_node(flow, rcd, "complete continue", group, use);
1282	pageidx += use;
1283	if (pageidx >= flow->npagesets)
1284		goto ok;
1285bail_eagain:
1286	trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ",
1287				  (u64)flow->npagesets);
1288	return -EAGAIN;
1289ok:
1290	return 0;
1291}
1292
1293static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
1294				   u32 *pset_idx)
1295{
1296	struct hfi1_ctxtdata *rcd = flow->req->rcd;
1297	struct hfi1_devdata *dd = rcd->dd;
1298	struct kern_tid_node *node = &flow->tnode[grp_num];
1299	struct tid_group *grp = node->grp;
1300	struct tid_rdma_pageset *pset;
1301	u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
1302	u32 rcventry, npages = 0, pair = 0, tidctrl;
1303	u8 i, cnt = 0;
1304
1305	for (i = 0; i < grp->size; i++) {
1306		rcventry = grp->base + i;
1307
1308		if (node->map & BIT(i) || cnt >= node->cnt) {
1309			rcv_array_wc_fill(dd, rcventry);
1310			continue;
1311		}
1312		pset = &flow->pagesets[(*pset_idx)++];
1313		if (pset->count) {
1314			hfi1_put_tid(dd, rcventry, PT_EXPECTED,
1315				     pset->addr, trdma_pset_order(pset));
1316		} else {
1317			hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1318		}
1319		npages += pset->count;
1320
1321		rcventry -= rcd->expected_base;
1322		tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
1323		/*
1324		 * A single TID entry will be used to use a rcvarr pair (with
1325		 * tidctrl 0x3), if ALL these are true (a) the bit pos is even
1326		 * (b) the group map shows current and the next bits as free
1327		 * indicating two consecutive rcvarry entries are available (c)
1328		 * we actually need 2 more entries
1329		 */
1330		pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
1331			node->cnt >= cnt + 2;
1332		if (!pair) {
1333			if (!pset->count)
1334				tidctrl = 0x1;
1335			flow->tid_entry[flow->tidcnt++] =
1336				EXP_TID_SET(IDX, rcventry >> 1) |
1337				EXP_TID_SET(CTRL, tidctrl) |
1338				EXP_TID_SET(LEN, npages);
1339			trace_hfi1_tid_entry_alloc(/* entry */
1340			   flow->req->qp, flow->tidcnt - 1,
1341			   flow->tid_entry[flow->tidcnt - 1]);
1342
1343			/* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
1344			flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
1345			npages = 0;
1346		}
1347
1348		if (grp->used == grp->size - 1)
1349			tid_group_move(grp, &rcd->tid_used_list,
1350				       &rcd->tid_full_list);
1351		else if (!grp->used)
1352			tid_group_move(grp, &rcd->tid_group_list,
1353				       &rcd->tid_used_list);
1354
1355		grp->used++;
1356		grp->map |= BIT(i);
1357		cnt++;
1358	}
1359}
1360
1361static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
1362{
1363	struct hfi1_ctxtdata *rcd = flow->req->rcd;
1364	struct hfi1_devdata *dd = rcd->dd;
1365	struct kern_tid_node *node = &flow->tnode[grp_num];
1366	struct tid_group *grp = node->grp;
1367	u32 rcventry;
1368	u8 i, cnt = 0;
1369
1370	for (i = 0; i < grp->size; i++) {
1371		rcventry = grp->base + i;
1372
1373		if (node->map & BIT(i) || cnt >= node->cnt) {
1374			rcv_array_wc_fill(dd, rcventry);
1375			continue;
1376		}
1377
1378		hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1379
1380		grp->used--;
1381		grp->map &= ~BIT(i);
1382		cnt++;
1383
1384		if (grp->used == grp->size - 1)
1385			tid_group_move(grp, &rcd->tid_full_list,
1386				       &rcd->tid_used_list);
1387		else if (!grp->used)
1388			tid_group_move(grp, &rcd->tid_used_list,
1389				       &rcd->tid_group_list);
1390	}
1391	if (WARN_ON_ONCE(cnt & 1)) {
1392		struct hfi1_ctxtdata *rcd = flow->req->rcd;
1393		struct hfi1_devdata *dd = rcd->dd;
1394
1395		dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
1396			   cnt, grp->map, grp->used);
1397	}
1398}
1399
1400static void kern_program_rcvarray(struct tid_rdma_flow *flow)
1401{
1402	u32 pset_idx = 0;
1403	int i;
1404
1405	flow->npkts = 0;
1406	flow->tidcnt = 0;
1407	for (i = 0; i < flow->tnode_cnt; i++)
1408		kern_program_rcv_group(flow, i, &pset_idx);
1409	trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow);
1410}
1411
1412/**
1413 * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
1414 * TID RDMA request
1415 *
1416 * @req: TID RDMA request for which the segment/flow is being set up
1417 * @ss: sge state, maintains state across successive segments of a sge
1418 * @last: set to true after the last sge segment has been processed
1419 *
1420 * This function
1421 * (1) finds a free flow entry in the flow circular buffer
1422 * (2) finds pages and continuous physical chunks constituing one segment
1423 *     of an sge
1424 * (3) allocates TID group entries for those chunks
1425 * (4) programs rcvarray entries in the hardware corresponding to those
1426 *     TID's
1427 * (5) computes a tidarray with formatted TID entries which can be sent
1428 *     to the sender
1429 * (6) Reserves and programs HW flows.
1430 * (7) It also manages queing the QP when TID/flow resources are not
1431 *     available.
1432 *
1433 * @req points to struct tid_rdma_request of which the segments are a part. The
1434 * function uses qp, rcd and seg_len members of @req. In the absence of errors,
1435 * req->flow_idx is the index of the flow which has been prepared in this
1436 * invocation of function call. With flow = &req->flows[req->flow_idx],
1437 * flow->tid_entry contains the TID array which the sender can use for TID RDMA
1438 * sends and flow->npkts contains number of packets required to send the
1439 * segment.
1440 *
1441 * hfi1_check_sge_align should be called prior to calling this function and if
1442 * it signals error TID RDMA cannot be used for this sge and this function
1443 * should not be called.
1444 *
1445 * For the queuing, caller must hold the flow->req->qp s_lock from the send
1446 * engine and the function will procure the exp_lock.
1447 *
1448 * Return:
1449 * The function returns -EAGAIN if sufficient number of TID/flow resources to
1450 * map the segment could not be allocated. In this case the function should be
1451 * called again with previous arguments to retry the TID allocation. There are
1452 * no other error returns. The function returns 0 on success.
1453 */
1454int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
1455			    struct rvt_sge_state *ss, bool *last)
1456	__must_hold(&req->qp->s_lock)
1457{
1458	struct tid_rdma_flow *flow = &req->flows[req->setup_head];
1459	struct hfi1_ctxtdata *rcd = req->rcd;
1460	struct hfi1_qp_priv *qpriv = req->qp->priv;
1461	unsigned long flags;
1462	struct rvt_qp *fqp;
1463	u16 clear_tail = req->clear_tail;
1464
1465	lockdep_assert_held(&req->qp->s_lock);
1466	/*
1467	 * We return error if either (a) we don't have space in the flow
1468	 * circular buffer, or (b) we already have max entries in the buffer.
1469	 * Max entries depend on the type of request we are processing and the
1470	 * negotiated TID RDMA parameters.
1471	 */
1472	if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
1473	    CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
1474	    req->n_flows)
1475		return -EINVAL;
1476
1477	/*
1478	 * Get pages, identify contiguous physical memory chunks for the segment
1479	 * If we can not determine a DMA address mapping we will treat it just
1480	 * like if we ran out of space above.
1481	 */
1482	if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
1483		hfi1_wait_kmem(flow->req->qp);
1484		return -ENOMEM;
1485	}
1486
1487	spin_lock_irqsave(&rcd->exp_lock, flags);
1488	if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
1489		goto queue;
1490
1491	/*
1492	 * At this point we know the number of pagesets and hence the number of
1493	 * TID's to map the segment. Allocate the TID's from the TID groups. If
1494	 * we cannot allocate the required number we exit and try again later
1495	 */
1496	if (kern_alloc_tids(flow))
1497		goto queue;
1498	/*
1499	 * Finally program the TID entries with the pagesets, compute the
1500	 * tidarray and enable the HW flow
1501	 */
1502	kern_program_rcvarray(flow);
1503
1504	/*
1505	 * Setup the flow state with relevant information.
1506	 * This information is used for tracking the sequence of data packets
1507	 * for the segment.
1508	 * The flow is setup here as this is the most accurate time and place
1509	 * to do so. Doing at a later time runs the risk of the flow data in
1510	 * qpriv getting out of sync.
1511	 */
1512	memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
1513	flow->idx = qpriv->flow_state.index;
1514	flow->flow_state.generation = qpriv->flow_state.generation;
1515	flow->flow_state.spsn = qpriv->flow_state.psn;
1516	flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
1517	flow->flow_state.r_next_psn =
1518		full_flow_psn(flow, flow->flow_state.spsn);
1519	qpriv->flow_state.psn += flow->npkts;
1520
1521	dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
1522	/* get head before dropping lock */
1523	fqp = first_qp(rcd, &rcd->rarr_queue);
1524	spin_unlock_irqrestore(&rcd->exp_lock, flags);
1525	tid_rdma_schedule_tid_wakeup(fqp);
1526
1527	req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1528	return 0;
1529queue:
1530	queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
1531	spin_unlock_irqrestore(&rcd->exp_lock, flags);
1532	return -EAGAIN;
1533}
1534
1535static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
1536{
1537	flow->npagesets = 0;
1538}
1539
1540/*
1541 * This function is called after one segment has been successfully sent to
1542 * release the flow and TID HW/SW resources for that segment. The segments for a
1543 * TID RDMA request are setup and cleared in FIFO order which is managed using a
1544 * circular buffer.
1545 */
1546int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
1547	__must_hold(&req->qp->s_lock)
1548{
1549	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
1550	struct hfi1_ctxtdata *rcd = req->rcd;
1551	unsigned long flags;
1552	int i;
1553	struct rvt_qp *fqp;
1554
1555	lockdep_assert_held(&req->qp->s_lock);
1556	/* Exit if we have nothing in the flow circular buffer */
1557	if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
1558		return -EINVAL;
1559
1560	spin_lock_irqsave(&rcd->exp_lock, flags);
1561
1562	for (i = 0; i < flow->tnode_cnt; i++)
1563		kern_unprogram_rcv_group(flow, i);
1564	/* To prevent double unprogramming */
1565	flow->tnode_cnt = 0;
1566	/* get head before dropping lock */
1567	fqp = first_qp(rcd, &rcd->rarr_queue);
1568	spin_unlock_irqrestore(&rcd->exp_lock, flags);
1569
1570	dma_unmap_flow(flow);
1571
1572	hfi1_tid_rdma_reset_flow(flow);
1573	req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);
1574
1575	if (fqp == req->qp) {
1576		__trigger_tid_waiter(fqp);
1577		rvt_put_qp(fqp);
1578	} else {
1579		tid_rdma_schedule_tid_wakeup(fqp);
1580	}
1581
1582	return 0;
1583}
1584
1585/*
1586 * This function is called to release all the tid entries for
1587 * a request.
1588 */
1589void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
1590	__must_hold(&req->qp->s_lock)
1591{
1592	/* Use memory barrier for proper ordering */
1593	while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
1594		if (hfi1_kern_exp_rcv_clear(req))
1595			break;
1596	}
1597}
1598
1599/**
1600 * hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
1601 * @req - the tid rdma request to be cleaned
1602 */
1603static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
1604{
1605	kfree(req->flows);
1606	req->flows = NULL;
1607}
1608
1609/**
1610 * __trdma_clean_swqe - clean up for large sized QPs
1611 * @qp: the queue patch
1612 * @wqe: the send wqe
1613 */
1614void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
1615{
1616	struct hfi1_swqe_priv *p = wqe->priv;
1617
1618	hfi1_kern_exp_rcv_free_flows(&p->tid_req);
1619}
1620
1621/*
1622 * This can be called at QP create time or in the data path.
1623 */
1624static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
1625					 gfp_t gfp)
1626{
1627	struct tid_rdma_flow *flows;
1628	int i;
1629
1630	if (likely(req->flows))
1631		return 0;
1632	flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
1633			     req->rcd->numa_id);
1634	if (!flows)
1635		return -ENOMEM;
1636	/* mini init */
1637	for (i = 0; i < MAX_FLOWS; i++) {
1638		flows[i].req = req;
1639		flows[i].npagesets = 0;
1640		flows[i].pagesets[0].mapped =  0;
1641		flows[i].resync_npkts = 0;
1642	}
1643	req->flows = flows;
1644	return 0;
1645}
1646
1647static void hfi1_init_trdma_req(struct rvt_qp *qp,
1648				struct tid_rdma_request *req)
1649{
1650	struct hfi1_qp_priv *qpriv = qp->priv;
1651
1652	/*
1653	 * Initialize various TID RDMA request variables.
1654	 * These variables are "static", which is why they
1655	 * can be pre-initialized here before the WRs has
1656	 * even been submitted.
1657	 * However, non-NULL values for these variables do not
1658	 * imply that this WQE has been enabled for TID RDMA.
1659	 * Drivers should check the WQE's opcode to determine
1660	 * if a request is a TID RDMA one or not.
1661	 */
1662	req->qp = qp;
1663	req->rcd = qpriv->rcd;
1664}
1665
1666u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
1667			    void *context, int vl, int mode, u64 data)
1668{
1669	struct hfi1_devdata *dd = context;
1670
1671	return dd->verbs_dev.n_tidwait;
1672}
1673
1674static struct tid_rdma_flow *find_flow_ib(struct tid_rdma_request *req,
1675					  u32 psn, u16 *fidx)
1676{
1677	u16 head, tail;
1678	struct tid_rdma_flow *flow;
1679
1680	head = req->setup_head;
1681	tail = req->clear_tail;
1682	for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
1683	     tail = CIRC_NEXT(tail, MAX_FLOWS)) {
1684		flow = &req->flows[tail];
1685		if (cmp_psn(psn, flow->flow_state.ib_spsn) >= 0 &&
1686		    cmp_psn(psn, flow->flow_state.ib_lpsn) <= 0) {
1687			if (fidx)
1688				*fidx = tail;
1689			return flow;
1690		}
1691	}
1692	return NULL;
1693}
1694
1695/* TID RDMA READ functions */
1696u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
1697				    struct ib_other_headers *ohdr, u32 *bth1,
1698				    u32 *bth2, u32 *len)
1699{
1700	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1701	struct tid_rdma_flow *flow = &req->flows[req->flow_idx];
1702	struct rvt_qp *qp = req->qp;
1703	struct hfi1_qp_priv *qpriv = qp->priv;
1704	struct hfi1_swqe_priv *wpriv = wqe->priv;
1705	struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req;
1706	struct tid_rdma_params *remote;
1707	u32 req_len = 0;
1708	void *req_addr = NULL;
1709
1710	/* This is the IB psn used to send the request */
1711	*bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt);
1712	trace_hfi1_tid_flow_build_read_pkt(qp, req->flow_idx, flow);
1713
1714	/* TID Entries for TID RDMA READ payload */
1715	req_addr = &flow->tid_entry[flow->tid_idx];
1716	req_len = sizeof(*flow->tid_entry) *
1717			(flow->tidcnt - flow->tid_idx);
1718
1719	memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req));
1720	wpriv->ss.sge.vaddr = req_addr;
1721	wpriv->ss.sge.sge_length = req_len;
1722	wpriv->ss.sge.length = wpriv->ss.sge.sge_length;
1723	/*
1724	 * We can safely zero these out. Since the first SGE covers the
1725	 * entire packet, nothing else should even look at the MR.
1726	 */
1727	wpriv->ss.sge.mr = NULL;
1728	wpriv->ss.sge.m = 0;
1729	wpriv->ss.sge.n = 0;
1730
1731	wpriv->ss.sg_list = NULL;
1732	wpriv->ss.total_len = wpriv->ss.sge.sge_length;
1733	wpriv->ss.num_sge = 1;
1734
1735	/* Construct the TID RDMA READ REQ packet header */
1736	rcu_read_lock();
1737	remote = rcu_dereference(qpriv->tid_rdma.remote);
1738
1739	KDETH_RESET(rreq->kdeth0, KVER, 0x1);
1740	KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey);
1741	rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr +
1742			   req->cur_seg * req->seg_len + flow->sent);
1743	rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey);
1744	rreq->reth.length = cpu_to_be32(*len);
1745	rreq->tid_flow_psn =
1746		cpu_to_be32((flow->flow_state.generation <<
1747			     HFI1_KDETH_BTH_SEQ_SHIFT) |
1748			    ((flow->flow_state.spsn + flow->pkt) &
1749			     HFI1_KDETH_BTH_SEQ_MASK));
1750	rreq->tid_flow_qp =
1751		cpu_to_be32(qpriv->tid_rdma.local.qp |
1752			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
1753			     TID_RDMA_DESTQP_FLOW_SHIFT) |
1754			    qpriv->rcd->ctxt);
1755	rreq->verbs_qp = cpu_to_be32(qp->remote_qpn);
1756	*bth1 &= ~RVT_QPN_MASK;
1757	*bth1 |= remote->qp;
1758	*bth2 |= IB_BTH_REQ_ACK;
1759	rcu_read_unlock();
1760
1761	/* We are done with this segment */
1762	flow->sent += *len;
1763	req->cur_seg++;
1764	qp->s_state = TID_OP(READ_REQ);
1765	req->ack_pending++;
1766	req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1);
1767	qpriv->pending_tid_r_segs++;
1768	qp->s_num_rd_atomic++;
1769
1770	/* Set the TID RDMA READ request payload size */
1771	*len = req_len;
1772
1773	return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32);
1774}
1775
1776/*
1777 * @len: contains the data length to read upon entry and the read request
1778 *       payload length upon exit.
1779 */
1780u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
1781				 struct ib_other_headers *ohdr, u32 *bth1,
1782				 u32 *bth2, u32 *len)
1783	__must_hold(&qp->s_lock)
1784{
1785	struct hfi1_qp_priv *qpriv = qp->priv;
1786	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1787	struct tid_rdma_flow *flow = NULL;
1788	u32 hdwords = 0;
1789	bool last;
1790	bool retry = true;
1791	u32 npkts = rvt_div_round_up_mtu(qp, *len);
1792
1793	trace_hfi1_tid_req_build_read_req(qp, 0, wqe->wr.opcode, wqe->psn,
1794					  wqe->lpsn, req);
1795	/*
1796	 * Check sync conditions. Make sure that there are no pending
1797	 * segments before freeing the flow.
1798	 */
1799sync_check:
1800	if (req->state == TID_REQUEST_SYNC) {
1801		if (qpriv->pending_tid_r_segs)
1802			goto done;
1803
1804		hfi1_kern_clear_hw_flow(req->rcd, qp);
1805		qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
1806		req->state = TID_REQUEST_ACTIVE;
1807	}
1808
1809	/*
1810	 * If the request for this segment is resent, the tid resources should
1811	 * have been allocated before. In this case, req->flow_idx should
1812	 * fall behind req->setup_head.
1813	 */
1814	if (req->flow_idx == req->setup_head) {
1815		retry = false;
1816		if (req->state == TID_REQUEST_RESEND) {
1817			/*
1818			 * This is the first new segment for a request whose
1819			 * earlier segments have been re-sent. We need to
1820			 * set up the sge pointer correctly.
1821			 */
1822			restart_sge(&qp->s_sge, wqe, req->s_next_psn,
1823				    qp->pmtu);
1824			req->isge = 0;
1825			req->state = TID_REQUEST_ACTIVE;
1826		}
1827
1828		/*
1829		 * Check sync. The last PSN of each generation is reserved for
1830		 * RESYNC.
1831		 */
1832		if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) {
1833			req->state = TID_REQUEST_SYNC;
1834			goto sync_check;
1835		}
1836
1837		/* Allocate the flow if not yet */
1838		if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp))
1839			goto done;
1840
1841		/*
1842		 * The following call will advance req->setup_head after
1843		 * allocating the tid entries.
1844		 */
1845		if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) {
1846			req->state = TID_REQUEST_QUEUED;
1847
1848			/*
1849			 * We don't have resources for this segment. The QP has
1850			 * already been queued.
1851			 */
1852			goto done;
1853		}
1854	}
1855
1856	/* req->flow_idx should only be one slot behind req->setup_head */
1857	flow = &req->flows[req->flow_idx];
1858	flow->pkt = 0;
1859	flow->tid_idx = 0;
1860	flow->sent = 0;
1861	if (!retry) {
1862		/* Set the first and last IB PSN for the flow in use.*/
1863		flow->flow_state.ib_spsn = req->s_next_psn;
1864		flow->flow_state.ib_lpsn =
1865			flow->flow_state.ib_spsn + flow->npkts - 1;
1866	}
1867
1868	/* Calculate the next segment start psn.*/
1869	req->s_next_psn += flow->npkts;
1870
1871	/* Build the packet header */
1872	hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len);
1873done:
1874	return hdwords;
1875}
1876
1877/*
1878 * Validate and accept the TID RDMA READ request parameters.
1879 * Return 0 if the request is accepted successfully;
1880 * Return 1 otherwise.
1881 */
1882static int tid_rdma_rcv_read_request(struct rvt_qp *qp,
1883				     struct rvt_ack_entry *e,
1884				     struct hfi1_packet *packet,
1885				     struct ib_other_headers *ohdr,
1886				     u32 bth0, u32 psn, u64 vaddr, u32 len)
1887{
1888	struct hfi1_qp_priv *qpriv = qp->priv;
1889	struct tid_rdma_request *req;
1890	struct tid_rdma_flow *flow;
1891	u32 flow_psn, i, tidlen = 0, pktlen, tlen;
1892
1893	req = ack_to_tid_req(e);
1894
1895	/* Validate the payload first */
1896	flow = &req->flows[req->setup_head];
1897
1898	/* payload length = packet length - (header length + ICRC length) */
1899	pktlen = packet->tlen - (packet->hlen + 4);
1900	if (pktlen > sizeof(flow->tid_entry))
1901		return 1;
1902	memcpy(flow->tid_entry, packet->ebuf, pktlen);
1903	flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
1904
1905	/*
1906	 * Walk the TID_ENTRY list to make sure we have enough space for a
1907	 * complete segment. Also calculate the number of required packets.
1908	 */
1909	flow->npkts = rvt_div_round_up_mtu(qp, len);
1910	for (i = 0; i < flow->tidcnt; i++) {
1911		trace_hfi1_tid_entry_rcv_read_req(qp, i,
1912						  flow->tid_entry[i]);
1913		tlen = EXP_TID_GET(flow->tid_entry[i], LEN);
1914		if (!tlen)
1915			return 1;
1916
1917		/*
1918		 * For tid pair (tidctr == 3), the buffer size of the pair
1919		 * should be the sum of the buffer size described by each
1920		 * tid entry. However, only the first entry needs to be
1921		 * specified in the request (see WFR HAS Section 8.5.7.1).
1922		 */
1923		tidlen += tlen;
1924	}
1925	if (tidlen * PAGE_SIZE < len)
1926		return 1;
1927
1928	/* Empty the flow array */
1929	req->clear_tail = req->setup_head;
1930	flow->pkt = 0;
1931	flow->tid_idx = 0;
1932	flow->tid_offset = 0;
1933	flow->sent = 0;
1934	flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp);
1935	flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
1936		    TID_RDMA_DESTQP_FLOW_MASK;
1937	flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn));
1938	flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
1939	flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
1940	flow->length = len;
1941
1942	flow->flow_state.lpsn = flow->flow_state.spsn +
1943		flow->npkts - 1;
1944	flow->flow_state.ib_spsn = psn;
1945	flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1;
1946
1947	trace_hfi1_tid_flow_rcv_read_req(qp, req->setup_head, flow);
1948	/* Set the initial flow index to the current flow. */
1949	req->flow_idx = req->setup_head;
1950
1951	/* advance circular buffer head */
1952	req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1953
1954	/*
1955	 * Compute last PSN for request.
1956	 */
1957	e->opcode = (bth0 >> 24) & 0xff;
1958	e->psn = psn;
1959	e->lpsn = psn + flow->npkts - 1;
1960	e->sent = 0;
1961
1962	req->n_flows = qpriv->tid_rdma.local.max_read;
1963	req->state = TID_REQUEST_ACTIVE;
1964	req->cur_seg = 0;
1965	req->comp_seg = 0;
1966	req->ack_seg = 0;
1967	req->isge = 0;
1968	req->seg_len = qpriv->tid_rdma.local.max_len;
1969	req->total_len = len;
1970	req->total_segs = 1;
1971	req->r_flow_psn = e->psn;
1972
1973	trace_hfi1_tid_req_rcv_read_req(qp, 0, e->opcode, e->psn, e->lpsn,
1974					req);
1975	return 0;
1976}
1977
1978static int tid_rdma_rcv_error(struct hfi1_packet *packet,
1979			      struct ib_other_headers *ohdr,
1980			      struct rvt_qp *qp, u32 psn, int diff)
1981{
1982	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
1983	struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd;
1984	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
1985	struct hfi1_qp_priv *qpriv = qp->priv;
1986	struct rvt_ack_entry *e;
1987	struct tid_rdma_request *req;
1988	unsigned long flags;
1989	u8 prev;
1990	bool old_req;
1991
1992	trace_hfi1_rsp_tid_rcv_error(qp, psn);
1993	trace_hfi1_tid_rdma_rcv_err(qp, 0, psn, diff);
1994	if (diff > 0) {
1995		/* sequence error */
1996		if (!qp->r_nak_state) {
1997			ibp->rvp.n_rc_seqnak++;
1998			qp->r_nak_state = IB_NAK_PSN_ERROR;
1999			qp->r_ack_psn = qp->r_psn;
2000			rc_defered_ack(rcd, qp);
2001		}
2002		goto done;
2003	}
2004
2005	ibp->rvp.n_rc_dupreq++;
2006
2007	spin_lock_irqsave(&qp->s_lock, flags);
2008	e = find_prev_entry(qp, psn, &prev, NULL, &old_req);
2009	if (!e || (e->opcode != TID_OP(READ_REQ) &&
2010		   e->opcode != TID_OP(WRITE_REQ)))
2011		goto unlock;
2012
2013	req = ack_to_tid_req(e);
2014	req->r_flow_psn = psn;
2015	trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, e->lpsn, req);
2016	if (e->opcode == TID_OP(READ_REQ)) {
2017		struct ib_reth *reth;
2018		u32 len;
2019		u32 rkey;
2020		u64 vaddr;
2021		int ok;
2022		u32 bth0;
2023
2024		reth = &ohdr->u.tid_rdma.r_req.reth;
2025		/*
2026		 * The requester always restarts from the start of the original
2027		 * request.
2028		 */
2029		len = be32_to_cpu(reth->length);
2030		if (psn != e->psn || len != req->total_len)
2031			goto unlock;
2032
2033		release_rdma_sge_mr(e);
2034
2035		rkey = be32_to_cpu(reth->rkey);
2036		vaddr = get_ib_reth_vaddr(reth);
2037
2038		qp->r_len = len;
2039		ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
2040				 IB_ACCESS_REMOTE_READ);
2041		if (unlikely(!ok))
2042			goto unlock;
2043
2044		/*
2045		 * If all the response packets for the current request have
2046		 * been sent out and this request is complete (old_request
2047		 * == false) and the TID flow may be unusable (the
2048		 * req->clear_tail is advanced). However, when an earlier
2049		 * request is received, this request will not be complete any
2050		 * more (qp->s_tail_ack_queue is moved back, see below).
2051		 * Consequently, we need to update the TID flow info everytime
2052		 * a duplicate request is received.
2053		 */
2054		bth0 = be32_to_cpu(ohdr->bth[0]);
2055		if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn,
2056					      vaddr, len))
2057			goto unlock;
2058
2059		/*
2060		 * True if the request is already scheduled (between
2061		 * qp->s_tail_ack_queue and qp->r_head_ack_queue);
2062		 */
2063		if (old_req)
2064			goto unlock;
2065	} else {
2066		struct flow_state *fstate;
2067		bool schedule = false;
2068		u8 i;
2069
2070		if (req->state == TID_REQUEST_RESEND) {
2071			req->state = TID_REQUEST_RESEND_ACTIVE;
2072		} else if (req->state == TID_REQUEST_INIT_RESEND) {
2073			req->state = TID_REQUEST_INIT;
2074			schedule = true;
2075		}
2076
2077		/*
2078		 * True if the request is already scheduled (between
2079		 * qp->s_tail_ack_queue and qp->r_head_ack_queue).
2080		 * Also, don't change requests, which are at the SYNC
2081		 * point and haven't generated any responses yet.
2082		 * There is nothing to retransmit for them yet.
2083		 */
2084		if (old_req || req->state == TID_REQUEST_INIT ||
2085		    (req->state == TID_REQUEST_SYNC && !req->cur_seg)) {
2086			for (i = prev + 1; ; i++) {
2087				if (i > rvt_size_atomic(&dev->rdi))
2088					i = 0;
2089				if (i == qp->r_head_ack_queue)
2090					break;
2091				e = &qp->s_ack_queue[i];
2092				req = ack_to_tid_req(e);
2093				if (e->opcode == TID_OP(WRITE_REQ) &&
2094				    req->state == TID_REQUEST_INIT)
2095					req->state = TID_REQUEST_INIT_RESEND;
2096			}
2097			/*
2098			 * If the state of the request has been changed,
2099			 * the first leg needs to get scheduled in order to
2100			 * pick up the change. Otherwise, normal response
2101			 * processing should take care of it.
2102			 */
2103			if (!schedule)
2104				goto unlock;
2105		}
2106
2107		/*
2108		 * If there is no more allocated segment, just schedule the qp
2109		 * without changing any state.
2110		 */
2111		if (req->clear_tail == req->setup_head)
2112			goto schedule;
2113		/*
2114		 * If this request has sent responses for segments, which have
2115		 * not received data yet (flow_idx != clear_tail), the flow_idx
2116		 * pointer needs to be adjusted so the same responses can be
2117		 * re-sent.
2118		 */
2119		if (CIRC_CNT(req->flow_idx, req->clear_tail, MAX_FLOWS)) {
2120			fstate = &req->flows[req->clear_tail].flow_state;
2121			qpriv->pending_tid_w_segs -=
2122				CIRC_CNT(req->flow_idx, req->clear_tail,
2123					 MAX_FLOWS);
2124			req->flow_idx =
2125				CIRC_ADD(req->clear_tail,
2126					 delta_psn(psn, fstate->resp_ib_psn),
2127					 MAX_FLOWS);
2128			qpriv->pending_tid_w_segs +=
2129				delta_psn(psn, fstate->resp_ib_psn);
2130			/*
2131			 * When flow_idx == setup_head, we've gotten a duplicate
2132			 * request for a segment, which has not been allocated
2133			 * yet. In that case, don't adjust this request.
2134			 * However, we still want to go through the loop below
2135			 * to adjust all subsequent requests.
2136			 */
2137			if (CIRC_CNT(req->setup_head, req->flow_idx,
2138				     MAX_FLOWS)) {
2139				req->cur_seg = delta_psn(psn, e->psn);
2140				req->state = TID_REQUEST_RESEND_ACTIVE;
2141			}
2142		}
2143
2144		for (i = prev + 1; ; i++) {
2145			/*
2146			 * Look at everything up to and including
2147			 * s_tail_ack_queue
2148			 */
2149			if (i > rvt_size_atomic(&dev->rdi))
2150				i = 0;
2151			if (i == qp->r_head_ack_queue)
2152				break;
2153			e = &qp->s_ack_queue[i];
2154			req = ack_to_tid_req(e);
2155			trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn,
2156						   e->lpsn, req);
2157			if (e->opcode != TID_OP(WRITE_REQ) ||
2158			    req->cur_seg == req->comp_seg ||
2159			    req->state == TID_REQUEST_INIT ||
2160			    req->state == TID_REQUEST_INIT_RESEND) {
2161				if (req->state == TID_REQUEST_INIT)
2162					req->state = TID_REQUEST_INIT_RESEND;
2163				continue;
2164			}
2165			qpriv->pending_tid_w_segs -=
2166				CIRC_CNT(req->flow_idx,
2167					 req->clear_tail,
2168					 MAX_FLOWS);
2169			req->flow_idx = req->clear_tail;
2170			req->state = TID_REQUEST_RESEND;
2171			req->cur_seg = req->comp_seg;
2172		}
2173		qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
2174	}
2175	/* Re-process old requests.*/
2176	if (qp->s_acked_ack_queue == qp->s_tail_ack_queue)
2177		qp->s_acked_ack_queue = prev;
2178	qp->s_tail_ack_queue = prev;
2179	/*
2180	 * Since the qp->s_tail_ack_queue is modified, the
2181	 * qp->s_ack_state must be changed to re-initialize
2182	 * qp->s_ack_rdma_sge; Otherwise, we will end up in
2183	 * wrong memory region.
2184	 */
2185	qp->s_ack_state = OP(ACKNOWLEDGE);
2186schedule:
2187	/*
2188	 * It's possible to receive a retry psn that is earlier than an RNRNAK
2189	 * psn. In this case, the rnrnak state should be cleared.
2190	 */
2191	if (qpriv->rnr_nak_state) {
2192		qp->s_nak_state = 0;
2193		qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
2194		qp->r_psn = e->lpsn + 1;
2195		hfi1_tid_write_alloc_resources(qp, true);
2196	}
2197
2198	qp->r_state = e->opcode;
2199	qp->r_nak_state = 0;
2200	qp->s_flags |= RVT_S_RESP_PENDING;
2201	hfi1_schedule_send(qp);
2202unlock:
2203	spin_unlock_irqrestore(&qp->s_lock, flags);
2204done:
2205	return 1;
2206}
2207
2208void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet)
2209{
2210	/* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/
2211
2212	/*
2213	 * 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
2214	 *    (see hfi1_rc_rcv())
2215	 * 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue)
2216	 *     - Setup struct tid_rdma_req with request info
2217	 *     - Initialize struct tid_rdma_flow info;
2218	 *     - Copy TID entries;
2219	 * 3. Set the qp->s_ack_state.
2220	 * 4. Set RVT_S_RESP_PENDING in s_flags.
2221	 * 5. Kick the send engine (hfi1_schedule_send())
2222	 */
2223	struct hfi1_ctxtdata *rcd = packet->rcd;
2224	struct rvt_qp *qp = packet->qp;
2225	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
2226	struct ib_other_headers *ohdr = packet->ohdr;
2227	struct rvt_ack_entry *e;
2228	unsigned long flags;
2229	struct ib_reth *reth;
2230	struct hfi1_qp_priv *qpriv = qp->priv;
2231	u32 bth0, psn, len, rkey;
2232	bool fecn;
2233	u8 next;
2234	u64 vaddr;
2235	int diff;
2236	u8 nack_state = IB_NAK_INVALID_REQUEST;
2237
2238	bth0 = be32_to_cpu(ohdr->bth[0]);
2239	if (hfi1_ruc_check_hdr(ibp, packet))
2240		return;
2241
2242	fecn = process_ecn(qp, packet);
2243	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2244	trace_hfi1_rsp_rcv_tid_read_req(qp, psn);
2245
2246	if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
2247		rvt_comm_est(qp);
2248
2249	if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
2250		goto nack_inv;
2251
2252	reth = &ohdr->u.tid_rdma.r_req.reth;
2253	vaddr = be64_to_cpu(reth->vaddr);
2254	len = be32_to_cpu(reth->length);
2255	/* The length needs to be in multiples of PAGE_SIZE */
2256	if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len)
2257		goto nack_inv;
2258
2259	diff = delta_psn(psn, qp->r_psn);
2260	if (unlikely(diff)) {
2261		tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
2262		return;
2263	}
2264
2265	/* We've verified the request, insert it into the ack queue. */
2266	next = qp->r_head_ack_queue + 1;
2267	if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
2268		next = 0;
2269	spin_lock_irqsave(&qp->s_lock, flags);
2270	if (unlikely(next == qp->s_tail_ack_queue)) {
2271		if (!qp->s_ack_queue[next].sent) {
2272			nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
2273			goto nack_inv_unlock;
2274		}
2275		update_ack_queue(qp, next);
2276	}
2277	e = &qp->s_ack_queue[qp->r_head_ack_queue];
2278	release_rdma_sge_mr(e);
2279
2280	rkey = be32_to_cpu(reth->rkey);
2281	qp->r_len = len;
2282
2283	if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
2284				  rkey, IB_ACCESS_REMOTE_READ)))
2285		goto nack_acc;
2286
2287	/* Accept the request parameters */
2288	if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr,
2289				      len))
2290		goto nack_inv_unlock;
2291
2292	qp->r_state = e->opcode;
2293	qp->r_nak_state = 0;
2294	/*
2295	 * We need to increment the MSN here instead of when we
2296	 * finish sending the result since a duplicate request would
2297	 * increment it more than once.
2298	 */
2299	qp->r_msn++;
2300	qp->r_psn += e->lpsn - e->psn + 1;
2301
2302	qp->r_head_ack_queue = next;
2303
2304	/*
2305	 * For all requests other than TID WRITE which are added to the ack
2306	 * queue, qpriv->r_tid_alloc follows qp->r_head_ack_queue. It is ok to
2307	 * do this because of interlocks between these and TID WRITE
2308	 * requests. The same change has also been made in hfi1_rc_rcv().
2309	 */
2310	qpriv->r_tid_alloc = qp->r_head_ack_queue;
2311
2312	/* Schedule the send tasklet. */
2313	qp->s_flags |= RVT_S_RESP_PENDING;
2314	if (fecn)
2315		qp->s_flags |= RVT_S_ECN;
2316	hfi1_schedule_send(qp);
2317
2318	spin_unlock_irqrestore(&qp->s_lock, flags);
2319	return;
2320
2321nack_inv_unlock:
2322	spin_unlock_irqrestore(&qp->s_lock, flags);
2323nack_inv:
2324	rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
2325	qp->r_nak_state = nack_state;
2326	qp->r_ack_psn = qp->r_psn;
2327	/* Queue NAK for later */
2328	rc_defered_ack(rcd, qp);
2329	return;
2330nack_acc:
2331	spin_unlock_irqrestore(&qp->s_lock, flags);
2332	rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
2333	qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
2334	qp->r_ack_psn = qp->r_psn;
2335}
2336
2337u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
2338				  struct ib_other_headers *ohdr, u32 *bth0,
2339				  u32 *bth1, u32 *bth2, u32 *len, bool *last)
2340{
2341	struct hfi1_ack_priv *epriv = e->priv;
2342	struct tid_rdma_request *req = &epriv->tid_req;
2343	struct hfi1_qp_priv *qpriv = qp->priv;
2344	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
2345	u32 tidentry = flow->tid_entry[flow->tid_idx];
2346	u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
2347	struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp;
2348	u32 next_offset, om = KDETH_OM_LARGE;
2349	bool last_pkt;
2350	u32 hdwords = 0;
2351	struct tid_rdma_params *remote;
2352
2353	*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
2354	flow->sent += *len;
2355	next_offset = flow->tid_offset + *len;
2356	last_pkt = (flow->sent >= flow->length);
2357
2358	trace_hfi1_tid_entry_build_read_resp(qp, flow->tid_idx, tidentry);
2359	trace_hfi1_tid_flow_build_read_resp(qp, req->clear_tail, flow);
2360
2361	rcu_read_lock();
2362	remote = rcu_dereference(qpriv->tid_rdma.remote);
2363	if (!remote) {
2364		rcu_read_unlock();
2365		goto done;
2366	}
2367	KDETH_RESET(resp->kdeth0, KVER, 0x1);
2368	KDETH_SET(resp->kdeth0, SH, !last_pkt);
2369	KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg));
2370	KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
2371	KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
2372	KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE);
2373	KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om);
2374	KDETH_RESET(resp->kdeth1, JKEY, remote->jkey);
2375	resp->verbs_qp = cpu_to_be32(qp->remote_qpn);
2376	rcu_read_unlock();
2377
2378	resp->aeth = rvt_compute_aeth(qp);
2379	resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn +
2380					       flow->pkt));
2381
2382	*bth0 = TID_OP(READ_RESP) << 24;
2383	*bth1 = flow->tid_qpn;
2384	*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
2385			  HFI1_KDETH_BTH_SEQ_MASK) |
2386			 (flow->flow_state.generation <<
2387			  HFI1_KDETH_BTH_SEQ_SHIFT));
2388	*last = last_pkt;
2389	if (last_pkt)
2390		/* Advance to next flow */
2391		req->clear_tail = (req->clear_tail + 1) &
2392				  (MAX_FLOWS - 1);
2393
2394	if (next_offset >= tidlen) {
2395		flow->tid_offset = 0;
2396		flow->tid_idx++;
2397	} else {
2398		flow->tid_offset = next_offset;
2399	}
2400
2401	hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32);
2402
2403done:
2404	return hdwords;
2405}
2406
2407static inline struct tid_rdma_request *
2408find_tid_request(struct rvt_qp *qp, u32 psn, enum ib_wr_opcode opcode)
2409	__must_hold(&qp->s_lock)
2410{
2411	struct rvt_swqe *wqe;
2412	struct tid_rdma_request *req = NULL;
2413	u32 i, end;
2414
2415	end = qp->s_cur + 1;
2416	if (end == qp->s_size)
2417		end = 0;
2418	for (i = qp->s_acked; i != end;) {
2419		wqe = rvt_get_swqe_ptr(qp, i);
2420		if (cmp_psn(psn, wqe->psn) >= 0 &&
2421		    cmp_psn(psn, wqe->lpsn) <= 0) {
2422			if (wqe->wr.opcode == opcode)
2423				req = wqe_to_tid_req(wqe);
2424			break;
2425		}
2426		if (++i == qp->s_size)
2427			i = 0;
2428	}
2429
2430	return req;
2431}
2432
2433void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet)
2434{
2435	/* HANDLER FOR TID RDMA READ RESPONSE packet (Requestor side */
2436
2437	/*
2438	 * 1. Find matching SWQE
2439	 * 2. Check that the entire segment has been read.
2440	 * 3. Remove HFI1_S_WAIT_TID_RESP from s_flags.
2441	 * 4. Free the TID flow resources.
2442	 * 5. Kick the send engine (hfi1_schedule_send())
2443	 */
2444	struct ib_other_headers *ohdr = packet->ohdr;
2445	struct rvt_qp *qp = packet->qp;
2446	struct hfi1_qp_priv *priv = qp->priv;
2447	struct hfi1_ctxtdata *rcd = packet->rcd;
2448	struct tid_rdma_request *req;
2449	struct tid_rdma_flow *flow;
2450	u32 opcode, aeth;
2451	bool fecn;
2452	unsigned long flags;
2453	u32 kpsn, ipsn;
2454
2455	trace_hfi1_sender_rcv_tid_read_resp(qp);
2456	fecn = process_ecn(qp, packet);
2457	kpsn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2458	aeth = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.aeth);
2459	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2460
2461	spin_lock_irqsave(&qp->s_lock, flags);
2462	ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
2463	req = find_tid_request(qp, ipsn, IB_WR_TID_RDMA_READ);
2464	if (unlikely(!req))
2465		goto ack_op_err;
2466
2467	flow = &req->flows[req->clear_tail];
2468	/* When header suppression is disabled */
2469	if (cmp_psn(ipsn, flow->flow_state.ib_lpsn)) {
2470		update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
2471
2472		if (cmp_psn(kpsn, flow->flow_state.r_next_psn))
2473			goto ack_done;
2474		flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2475		/*
2476		 * Copy the payload to destination buffer if this packet is
2477		 * delivered as an eager packet due to RSM rule and FECN.
2478		 * The RSM rule selects FECN bit in BTH and SH bit in
2479		 * KDETH header and therefore will not match the last
2480		 * packet of each segment that has SH bit cleared.
2481		 */
2482		if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
2483			struct rvt_sge_state ss;
2484			u32 len;
2485			u32 tlen = packet->tlen;
2486			u16 hdrsize = packet->hlen;
2487			u8 pad = packet->pad;
2488			u8 extra_bytes = pad + packet->extra_byte +
2489				(SIZE_OF_CRC << 2);
2490			u32 pmtu = qp->pmtu;
2491
2492			if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
2493				goto ack_op_err;
2494			len = restart_sge(&ss, req->e.swqe, ipsn, pmtu);
2495			if (unlikely(len < pmtu))
2496				goto ack_op_err;
2497			rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
2498				     false);
2499			/* Raise the sw sequence check flag for next packet */
2500			priv->s_flags |= HFI1_R_TID_SW_PSN;
2501		}
2502
2503		goto ack_done;
2504	}
2505	flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2506	req->ack_pending--;
2507	priv->pending_tid_r_segs--;
2508	qp->s_num_rd_atomic--;
2509	if ((qp->s_flags & RVT_S_WAIT_FENCE) &&
2510	    !qp->s_num_rd_atomic) {
2511		qp->s_flags &= ~(RVT_S_WAIT_FENCE |
2512				 RVT_S_WAIT_ACK);
2513		hfi1_schedule_send(qp);
2514	}
2515	if (qp->s_flags & RVT_S_WAIT_RDMAR) {
2516		qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK);
2517		hfi1_schedule_send(qp);
2518	}
2519
2520	trace_hfi1_ack(qp, ipsn);
2521	trace_hfi1_tid_req_rcv_read_resp(qp, 0, req->e.swqe->wr.opcode,
2522					 req->e.swqe->psn, req->e.swqe->lpsn,
2523					 req);
2524	trace_hfi1_tid_flow_rcv_read_resp(qp, req->clear_tail, flow);
2525
2526	/* Release the tid resources */
2527	hfi1_kern_exp_rcv_clear(req);
2528
2529	if (!do_rc_ack(qp, aeth, ipsn, opcode, 0, rcd))
2530		goto ack_done;
2531
2532	/* If not done yet, build next read request */
2533	if (++req->comp_seg >= req->total_segs) {
2534		priv->tid_r_comp++;
2535		req->state = TID_REQUEST_COMPLETE;
2536	}
2537
2538	/*
2539	 * Clear the hw flow under two conditions:
2540	 * 1. This request is a sync point and it is complete;
2541	 * 2. Current request is completed and there are no more requests.
2542	 */
2543	if ((req->state == TID_REQUEST_SYNC &&
2544	     req->comp_seg == req->cur_seg) ||
2545	    priv->tid_r_comp == priv->tid_r_reqs) {
2546		hfi1_kern_clear_hw_flow(priv->rcd, qp);
2547		priv->s_flags &= ~HFI1_R_TID_SW_PSN;
2548		if (req->state == TID_REQUEST_SYNC)
2549			req->state = TID_REQUEST_ACTIVE;
2550	}
2551
2552	hfi1_schedule_send(qp);
2553	goto ack_done;
2554
2555ack_op_err:
2556	/*
2557	 * The test indicates that the send engine has finished its cleanup
2558	 * after sending the request and it's now safe to put the QP into error
2559	 * state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail
2560	 * == qp->s_head), it would be unsafe to complete the wqe pointed by
2561	 * qp->s_acked here. Putting the qp into error state will safely flush
2562	 * all remaining requests.
2563	 */
2564	if (qp->s_last == qp->s_acked)
2565		rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
2566
2567ack_done:
2568	spin_unlock_irqrestore(&qp->s_lock, flags);
2569}
2570
2571void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp)
2572	__must_hold(&qp->s_lock)
2573{
2574	u32 n = qp->s_acked;
2575	struct rvt_swqe *wqe;
2576	struct tid_rdma_request *req;
2577	struct hfi1_qp_priv *priv = qp->priv;
2578
2579	lockdep_assert_held(&qp->s_lock);
2580	/* Free any TID entries */
2581	while (n != qp->s_tail) {
2582		wqe = rvt_get_swqe_ptr(qp, n);
2583		if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2584			req = wqe_to_tid_req(wqe);
2585			hfi1_kern_exp_rcv_clear_all(req);
2586		}
2587
2588		if (++n == qp->s_size)
2589			n = 0;
2590	}
2591	/* Free flow */
2592	hfi1_kern_clear_hw_flow(priv->rcd, qp);
2593}
2594
2595static bool tid_rdma_tid_err(struct hfi1_packet *packet, u8 rcv_type)
2596{
2597	struct rvt_qp *qp = packet->qp;
2598
2599	if (rcv_type >= RHF_RCV_TYPE_IB)
2600		goto done;
2601
2602	spin_lock(&qp->s_lock);
2603
2604	/*
2605	 * We've ran out of space in the eager buffer.
2606	 * Eagerly received KDETH packets which require space in the
2607	 * Eager buffer (packet that have payload) are TID RDMA WRITE
2608	 * response packets. In this case, we have to re-transmit the
2609	 * TID RDMA WRITE request.
2610	 */
2611	if (rcv_type == RHF_RCV_TYPE_EAGER) {
2612		hfi1_restart_rc(qp, qp->s_last_psn + 1, 1);
2613		hfi1_schedule_send(qp);
2614	}
2615
2616	/* Since no payload is delivered, just drop the packet */
2617	spin_unlock(&qp->s_lock);
2618done:
2619	return true;
2620}
2621
2622static void restart_tid_rdma_read_req(struct hfi1_ctxtdata *rcd,
2623				      struct rvt_qp *qp, struct rvt_swqe *wqe)
2624{
2625	struct tid_rdma_request *req;
2626	struct tid_rdma_flow *flow;
2627
2628	/* Start from the right segment */
2629	qp->r_flags |= RVT_R_RDMAR_SEQ;
2630	req = wqe_to_tid_req(wqe);
2631	flow = &req->flows[req->clear_tail];
2632	hfi1_restart_rc(qp, flow->flow_state.ib_spsn, 0);
2633	if (list_empty(&qp->rspwait)) {
2634		qp->r_flags |= RVT_R_RSP_SEND;
2635		rvt_get_qp(qp);
2636		list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
2637	}
2638}
2639
2640/*
2641 * Handle the KDETH eflags for TID RDMA READ response.
2642 *
2643 * Return true if the last packet for a segment has been received and it is
2644 * time to process the response normally; otherwise, return true.
2645 *
2646 * The caller must hold the packet->qp->r_lock and the rcu_read_lock.
2647 */
2648static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2649				     struct hfi1_packet *packet, u8 rcv_type,
2650				     u8 rte, u32 psn, u32 ibpsn)
2651	__must_hold(&packet->qp->r_lock) __must_hold(RCU)
2652{
2653	struct hfi1_pportdata *ppd = rcd->ppd;
2654	struct hfi1_devdata *dd = ppd->dd;
2655	struct hfi1_ibport *ibp;
2656	struct rvt_swqe *wqe;
2657	struct tid_rdma_request *req;
2658	struct tid_rdma_flow *flow;
2659	u32 ack_psn;
2660	struct rvt_qp *qp = packet->qp;
2661	struct hfi1_qp_priv *priv = qp->priv;
2662	bool ret = true;
2663	int diff = 0;
2664	u32 fpsn;
2665
2666	lockdep_assert_held(&qp->r_lock);
2667	trace_hfi1_rsp_read_kdeth_eflags(qp, ibpsn);
2668	trace_hfi1_sender_read_kdeth_eflags(qp);
2669	trace_hfi1_tid_read_sender_kdeth_eflags(qp, 0);
2670	spin_lock(&qp->s_lock);
2671	/* If the psn is out of valid range, drop the packet */
2672	if (cmp_psn(ibpsn, qp->s_last_psn) < 0 ||
2673	    cmp_psn(ibpsn, qp->s_psn) > 0)
2674		goto s_unlock;
2675
2676	/*
2677	 * Note that NAKs implicitly ACK outstanding SEND and RDMA write
2678	 * requests and implicitly NAK RDMA read and atomic requests issued
2679	 * before the NAK'ed request.
2680	 */
2681	ack_psn = ibpsn - 1;
2682	wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
2683	ibp = to_iport(qp->ibqp.device, qp->port_num);
2684
2685	/* Complete WQEs that the PSN finishes. */
2686	while ((int)delta_psn(ack_psn, wqe->lpsn) >= 0) {
2687		/*
2688		 * If this request is a RDMA read or atomic, and the NACK is
2689		 * for a later operation, this NACK NAKs the RDMA read or
2690		 * atomic.
2691		 */
2692		if (wqe->wr.opcode == IB_WR_RDMA_READ ||
2693		    wqe->wr.opcode == IB_WR_TID_RDMA_READ ||
2694		    wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
2695		    wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
2696			/* Retry this request. */
2697			if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) {
2698				qp->r_flags |= RVT_R_RDMAR_SEQ;
2699				if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2700					restart_tid_rdma_read_req(rcd, qp,
2701								  wqe);
2702				} else {
2703					hfi1_restart_rc(qp, qp->s_last_psn + 1,
2704							0);
2705					if (list_empty(&qp->rspwait)) {
2706						qp->r_flags |= RVT_R_RSP_SEND;
2707						rvt_get_qp(qp);
2708						list_add_tail(/* wait */
2709						   &qp->rspwait,
2710						   &rcd->qp_wait_list);
2711					}
2712				}
2713			}
2714			/*
2715			 * No need to process the NAK since we are
2716			 * restarting an earlier request.
2717			 */
2718			break;
2719		}
2720
2721		wqe = do_rc_completion(qp, wqe, ibp);
2722		if (qp->s_acked == qp->s_tail)
2723			goto s_unlock;
2724	}
2725
2726	if (qp->s_acked == qp->s_tail)
2727		goto s_unlock;
2728
2729	/* Handle the eflags for the request */
2730	if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
2731		goto s_unlock;
2732
2733	req = wqe_to_tid_req(wqe);
2734	trace_hfi1_tid_req_read_kdeth_eflags(qp, 0, wqe->wr.opcode, wqe->psn,
2735					     wqe->lpsn, req);
2736	switch (rcv_type) {
2737	case RHF_RCV_TYPE_EXPECTED:
2738		switch (rte) {
2739		case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2740			/*
2741			 * On the first occurrence of a Flow Sequence error,
2742			 * the flag TID_FLOW_SW_PSN is set.
2743			 *
2744			 * After that, the flow is *not* reprogrammed and the
2745			 * protocol falls back to SW PSN checking. This is done
2746			 * to prevent continuous Flow Sequence errors for any
2747			 * packets that could be still in the fabric.
2748			 */
2749			flow = &req->flows[req->clear_tail];
2750			trace_hfi1_tid_flow_read_kdeth_eflags(qp,
2751							      req->clear_tail,
2752							      flow);
2753			if (priv->s_flags & HFI1_R_TID_SW_PSN) {
2754				diff = cmp_psn(psn,
2755					       flow->flow_state.r_next_psn);
2756				if (diff > 0) {
2757					/* Drop the packet.*/
2758					goto s_unlock;
2759				} else if (diff < 0) {
2760					/*
2761					 * If a response packet for a restarted
2762					 * request has come back, reset the
2763					 * restart flag.
2764					 */
2765					if (qp->r_flags & RVT_R_RDMAR_SEQ)
2766						qp->r_flags &=
2767							~RVT_R_RDMAR_SEQ;
2768
2769					/* Drop the packet.*/
2770					goto s_unlock;
2771				}
2772
2773				/*
2774				 * If SW PSN verification is successful and
2775				 * this is the last packet in the segment, tell
2776				 * the caller to process it as a normal packet.
2777				 */
2778				fpsn = full_flow_psn(flow,
2779						     flow->flow_state.lpsn);
2780				if (cmp_psn(fpsn, psn) == 0) {
2781					ret = false;
2782					if (qp->r_flags & RVT_R_RDMAR_SEQ)
2783						qp->r_flags &=
2784							~RVT_R_RDMAR_SEQ;
2785				}
2786				flow->flow_state.r_next_psn =
2787					mask_psn(psn + 1);
2788			} else {
2789				u32 last_psn;
2790
2791				last_psn = read_r_next_psn(dd, rcd->ctxt,
2792							   flow->idx);
2793				flow->flow_state.r_next_psn = last_psn;
2794				priv->s_flags |= HFI1_R_TID_SW_PSN;
2795				/*
2796				 * If no request has been restarted yet,
2797				 * restart the current one.
2798				 */
2799				if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
2800					restart_tid_rdma_read_req(rcd, qp,
2801								  wqe);
2802			}
2803
2804			break;
2805
2806		case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2807			/*
2808			 * Since the TID flow is able to ride through
2809			 * generation mismatch, drop this stale packet.
2810			 */
2811			break;
2812
2813		default:
2814			break;
2815		}
2816		break;
2817
2818	case RHF_RCV_TYPE_ERROR:
2819		switch (rte) {
2820		case RHF_RTE_ERROR_OP_CODE_ERR:
2821		case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
2822		case RHF_RTE_ERROR_KHDR_HCRC_ERR:
2823		case RHF_RTE_ERROR_KHDR_KVER_ERR:
2824		case RHF_RTE_ERROR_CONTEXT_ERR:
2825		case RHF_RTE_ERROR_KHDR_TID_ERR:
2826		default:
2827			break;
2828		}
2829	default:
2830		break;
2831	}
2832s_unlock:
2833	spin_unlock(&qp->s_lock);
2834	return ret;
2835}
2836
2837bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2838			      struct hfi1_pportdata *ppd,
2839			      struct hfi1_packet *packet)
2840{
2841	struct hfi1_ibport *ibp = &ppd->ibport_data;
2842	struct hfi1_devdata *dd = ppd->dd;
2843	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
2844	u8 rcv_type = rhf_rcv_type(packet->rhf);
2845	u8 rte = rhf_rcv_type_err(packet->rhf);
2846	struct ib_header *hdr = packet->hdr;
2847	struct ib_other_headers *ohdr = NULL;
2848	int lnh = be16_to_cpu(hdr->lrh[0]) & 3;
2849	u16 lid  = be16_to_cpu(hdr->lrh[1]);
2850	u8 opcode;
2851	u32 qp_num, psn, ibpsn;
2852	struct rvt_qp *qp;
2853	struct hfi1_qp_priv *qpriv;
2854	unsigned long flags;
2855	bool ret = true;
2856	struct rvt_ack_entry *e;
2857	struct tid_rdma_request *req;
2858	struct tid_rdma_flow *flow;
2859	int diff = 0;
2860
2861	trace_hfi1_msg_handle_kdeth_eflags(NULL, "Kdeth error: rhf ",
2862					   packet->rhf);
2863	if (packet->rhf & RHF_ICRC_ERR)
2864		return ret;
2865
2866	packet->ohdr = &hdr->u.oth;
2867	ohdr = packet->ohdr;
2868	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
2869
2870	/* Get the destination QP number. */
2871	qp_num = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_qp) &
2872		RVT_QPN_MASK;
2873	if (lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))
2874		goto drop;
2875
2876	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2877	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2878
2879	rcu_read_lock();
2880	qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
2881	if (!qp)
2882		goto rcu_unlock;
2883
2884	packet->qp = qp;
2885
2886	/* Check for valid receive state. */
2887	spin_lock_irqsave(&qp->r_lock, flags);
2888	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2889		ibp->rvp.n_pkt_drops++;
2890		goto r_unlock;
2891	}
2892
2893	if (packet->rhf & RHF_TID_ERR) {
2894		/* For TIDERR and RC QPs preemptively schedule a NAK */
2895		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
2896
2897		/* Sanity check packet */
2898		if (tlen < 24)
2899			goto r_unlock;
2900
2901		/*
2902		 * Check for GRH. We should never get packets with GRH in this
2903		 * path.
2904		 */
2905		if (lnh == HFI1_LRH_GRH)
2906			goto r_unlock;
2907
2908		if (tid_rdma_tid_err(packet, rcv_type))
2909			goto r_unlock;
2910	}
2911
2912	/* handle TID RDMA READ */
2913	if (opcode == TID_OP(READ_RESP)) {
2914		ibpsn = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn);
2915		ibpsn = mask_psn(ibpsn);
2916		ret = handle_read_kdeth_eflags(rcd, packet, rcv_type, rte, psn,
2917					       ibpsn);
2918		goto r_unlock;
2919	}
2920
2921	/*
2922	 * qp->s_tail_ack_queue points to the rvt_ack_entry currently being
2923	 * processed. These a completed sequentially so we can be sure that
2924	 * the pointer will not change until the entire request has completed.
2925	 */
2926	spin_lock(&qp->s_lock);
2927	qpriv = qp->priv;
2928	if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID ||
2929	    qpriv->r_tid_tail == qpriv->r_tid_head)
2930		goto unlock;
2931	e = &qp->s_ack_queue[qpriv->r_tid_tail];
2932	if (e->opcode != TID_OP(WRITE_REQ))
2933		goto unlock;
2934	req = ack_to_tid_req(e);
2935	if (req->comp_seg == req->cur_seg)
2936		goto unlock;
2937	flow = &req->flows[req->clear_tail];
2938	trace_hfi1_eflags_err_write(qp, rcv_type, rte, psn);
2939	trace_hfi1_rsp_handle_kdeth_eflags(qp, psn);
2940	trace_hfi1_tid_write_rsp_handle_kdeth_eflags(qp);
2941	trace_hfi1_tid_req_handle_kdeth_eflags(qp, 0, e->opcode, e->psn,
2942					       e->lpsn, req);
2943	trace_hfi1_tid_flow_handle_kdeth_eflags(qp, req->clear_tail, flow);
2944
2945	switch (rcv_type) {
2946	case RHF_RCV_TYPE_EXPECTED:
2947		switch (rte) {
2948		case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2949			if (!(qpriv->s_flags & HFI1_R_TID_SW_PSN)) {
2950				qpriv->s_flags |= HFI1_R_TID_SW_PSN;
2951				flow->flow_state.r_next_psn =
2952					read_r_next_psn(dd, rcd->ctxt,
2953							flow->idx);
2954				qpriv->r_next_psn_kdeth =
2955					flow->flow_state.r_next_psn;
2956				goto nak_psn;
2957			} else {
2958				/*
2959				 * If the received PSN does not match the next
2960				 * expected PSN, NAK the packet.
2961				 * However, only do that if we know that the a
2962				 * NAK has already been sent. Otherwise, this
2963				 * mismatch could be due to packets that were
2964				 * already in flight.
2965				 */
2966				diff = cmp_psn(psn,
2967					       flow->flow_state.r_next_psn);
2968				if (diff > 0)
2969					goto nak_psn;
2970				else if (diff < 0)
2971					break;
2972
2973				qpriv->s_nak_state = 0;
2974				/*
2975				 * If SW PSN verification is successful and this
2976				 * is the last packet in the segment, tell the
2977				 * caller to process it as a normal packet.
2978				 */
2979				if (psn == full_flow_psn(flow,
2980							 flow->flow_state.lpsn))
2981					ret = false;
2982				flow->flow_state.r_next_psn =
2983					mask_psn(psn + 1);
2984				qpriv->r_next_psn_kdeth =
2985					flow->flow_state.r_next_psn;
2986			}
2987			break;
2988
2989		case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2990			goto nak_psn;
2991
2992		default:
2993			break;
2994		}
2995		break;
2996
2997	case RHF_RCV_TYPE_ERROR:
2998		switch (rte) {
2999		case RHF_RTE_ERROR_OP_CODE_ERR:
3000		case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
3001		case RHF_RTE_ERROR_KHDR_HCRC_ERR:
3002		case RHF_RTE_ERROR_KHDR_KVER_ERR:
3003		case RHF_RTE_ERROR_CONTEXT_ERR:
3004		case RHF_RTE_ERROR_KHDR_TID_ERR:
3005		default:
3006			break;
3007		}
3008	default:
3009		break;
3010	}
3011
3012unlock:
3013	spin_unlock(&qp->s_lock);
3014r_unlock:
3015	spin_unlock_irqrestore(&qp->r_lock, flags);
3016rcu_unlock:
3017	rcu_read_unlock();
3018drop:
3019	return ret;
3020nak_psn:
3021	ibp->rvp.n_rc_seqnak++;
3022	if (!qpriv->s_nak_state) {
3023		qpriv->s_nak_state = IB_NAK_PSN_ERROR;
3024		/* We are NAK'ing the next expected PSN */
3025		qpriv->s_nak_psn = mask_psn(flow->flow_state.r_next_psn);
3026		tid_rdma_trigger_ack(qp);
3027	}
3028	goto unlock;
3029}
3030
3031/*
3032 * "Rewind" the TID request information.
3033 * This means that we reset the state back to ACTIVE,
3034 * find the proper flow, set the flow index to that flow,
3035 * and reset the flow information.
3036 */
3037void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3038			       u32 *bth2)
3039{
3040	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3041	struct tid_rdma_flow *flow;
3042	struct hfi1_qp_priv *qpriv = qp->priv;
3043	int diff, delta_pkts;
3044	u32 tididx = 0, i;
3045	u16 fidx;
3046
3047	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3048		*bth2 = mask_psn(qp->s_psn);
3049		flow = find_flow_ib(req, *bth2, &fidx);
3050		if (!flow) {
3051			trace_hfi1_msg_tid_restart_req(/* msg */
3052			   qp, "!!!!!! Could not find flow to restart: bth2 ",
3053			   (u64)*bth2);
3054			trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode,
3055						       wqe->psn, wqe->lpsn,
3056						       req);
3057			return;
3058		}
3059	} else {
3060		fidx = req->acked_tail;
3061		flow = &req->flows[fidx];
3062		*bth2 = mask_psn(req->r_ack_psn);
3063	}
3064
3065	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3066		delta_pkts = delta_psn(*bth2, flow->flow_state.ib_spsn);
3067	else
3068		delta_pkts = delta_psn(*bth2,
3069				       full_flow_psn(flow,
3070						     flow->flow_state.spsn));
3071
3072	trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3073	diff = delta_pkts + flow->resync_npkts;
3074
3075	flow->sent = 0;
3076	flow->pkt = 0;
3077	flow->tid_idx = 0;
3078	flow->tid_offset = 0;
3079	if (diff) {
3080		for (tididx = 0; tididx < flow->tidcnt; tididx++) {
3081			u32 tidentry = flow->tid_entry[tididx], tidlen,
3082				tidnpkts, npkts;
3083
3084			flow->tid_offset = 0;
3085			tidlen = EXP_TID_GET(tidentry, LEN) * PAGE_SIZE;
3086			tidnpkts = rvt_div_round_up_mtu(qp, tidlen);
3087			npkts = min_t(u32, diff, tidnpkts);
3088			flow->pkt += npkts;
3089			flow->sent += (npkts == tidnpkts ? tidlen :
3090				       npkts * qp->pmtu);
3091			flow->tid_offset += npkts * qp->pmtu;
3092			diff -= npkts;
3093			if (!diff)
3094				break;
3095		}
3096	}
3097	if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3098		rvt_skip_sge(&qpriv->tid_ss, (req->cur_seg * req->seg_len) +
3099			     flow->sent, 0);
3100		/*
3101		 * Packet PSN is based on flow_state.spsn + flow->pkt. However,
3102		 * during a RESYNC, the generation is incremented and the
3103		 * sequence is reset to 0. Since we've adjusted the npkts in the
3104		 * flow and the SGE has been sufficiently advanced, we have to
3105		 * adjust flow->pkt in order to calculate the correct PSN.
3106		 */
3107		flow->pkt -= flow->resync_npkts;
3108	}
3109
3110	if (flow->tid_offset ==
3111	    EXP_TID_GET(flow->tid_entry[tididx], LEN) * PAGE_SIZE) {
3112		tididx++;
3113		flow->tid_offset = 0;
3114	}
3115	flow->tid_idx = tididx;
3116	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3117		/* Move flow_idx to correct index */
3118		req->flow_idx = fidx;
3119	else
3120		req->clear_tail = fidx;
3121
3122	trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3123	trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, wqe->psn,
3124				       wqe->lpsn, req);
3125	req->state = TID_REQUEST_ACTIVE;
3126	if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3127		/* Reset all the flows that we are going to resend */
3128		fidx = CIRC_NEXT(fidx, MAX_FLOWS);
3129		i = qpriv->s_tid_tail;
3130		do {
3131			for (; CIRC_CNT(req->setup_head, fidx, MAX_FLOWS);
3132			      fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
3133				req->flows[fidx].sent = 0;
3134				req->flows[fidx].pkt = 0;
3135				req->flows[fidx].tid_idx = 0;
3136				req->flows[fidx].tid_offset = 0;
3137				req->flows[fidx].resync_npkts = 0;
3138			}
3139			if (i == qpriv->s_tid_cur)
3140				break;
3141			do {
3142				i = (++i == qp->s_size ? 0 : i);
3143				wqe = rvt_get_swqe_ptr(qp, i);
3144			} while (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE);
3145			req = wqe_to_tid_req(wqe);
3146			req->cur_seg = req->ack_seg;
3147			fidx = req->acked_tail;
3148			/* Pull req->clear_tail back */
3149			req->clear_tail = fidx;
3150		} while (1);
3151	}
3152}
3153
3154void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp)
3155{
3156	int i, ret;
3157	struct hfi1_qp_priv *qpriv = qp->priv;
3158	struct tid_flow_state *fs;
3159
3160	if (qp->ibqp.qp_type != IB_QPT_RC || !HFI1_CAP_IS_KSET(TID_RDMA))
3161		return;
3162
3163	/*
3164	 * First, clear the flow to help prevent any delayed packets from
3165	 * being delivered.
3166	 */
3167	fs = &qpriv->flow_state;
3168	if (fs->index != RXE_NUM_TID_FLOWS)
3169		hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
3170
3171	for (i = qp->s_acked; i != qp->s_head;) {
3172		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
3173
3174		if (++i == qp->s_size)
3175			i = 0;
3176		/* Free only locally allocated TID entries */
3177		if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
3178			continue;
3179		do {
3180			struct hfi1_swqe_priv *priv = wqe->priv;
3181
3182			ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3183		} while (!ret);
3184	}
3185	for (i = qp->s_acked_ack_queue; i != qp->r_head_ack_queue;) {
3186		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
3187
3188		if (++i == rvt_max_atomic(ib_to_rvt(qp->ibqp.device)))
3189			i = 0;
3190		/* Free only locally allocated TID entries */
3191		if (e->opcode != TID_OP(WRITE_REQ))
3192			continue;
3193		do {
3194			struct hfi1_ack_priv *priv = e->priv;
3195
3196			ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3197		} while (!ret);
3198	}
3199}
3200
3201bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe)
3202{
3203	struct rvt_swqe *prev;
3204	struct hfi1_qp_priv *priv = qp->priv;
3205	u32 s_prev;
3206	struct tid_rdma_request *req;
3207
3208	s_prev = (qp->s_cur == 0 ? qp->s_size : qp->s_cur) - 1;
3209	prev = rvt_get_swqe_ptr(qp, s_prev);
3210
3211	switch (wqe->wr.opcode) {
3212	case IB_WR_SEND:
3213	case IB_WR_SEND_WITH_IMM:
3214	case IB_WR_SEND_WITH_INV:
3215	case IB_WR_ATOMIC_CMP_AND_SWP:
3216	case IB_WR_ATOMIC_FETCH_AND_ADD:
3217	case IB_WR_RDMA_WRITE:
3218	case IB_WR_RDMA_WRITE_WITH_IMM:
3219		switch (prev->wr.opcode) {
3220		case IB_WR_TID_RDMA_WRITE:
3221			req = wqe_to_tid_req(prev);
3222			if (req->ack_seg != req->total_segs)
3223				goto interlock;
3224		default:
3225			break;
3226		}
3227		break;
3228	case IB_WR_RDMA_READ:
3229		if (prev->wr.opcode != IB_WR_TID_RDMA_WRITE)
3230			break;
3231		fallthrough;
3232	case IB_WR_TID_RDMA_READ:
3233		switch (prev->wr.opcode) {
3234		case IB_WR_RDMA_READ:
3235			if (qp->s_acked != qp->s_cur)
3236				goto interlock;
3237			break;
3238		case IB_WR_TID_RDMA_WRITE:
3239			req = wqe_to_tid_req(prev);
3240			if (req->ack_seg != req->total_segs)
3241				goto interlock;
3242		default:
3243			break;
3244		}
3245	default:
3246		break;
3247	}
3248	return false;
3249
3250interlock:
3251	priv->s_flags |= HFI1_S_TID_WAIT_INTERLCK;
3252	return true;
3253}
3254
3255/* Does @sge meet the alignment requirements for tid rdma? */
3256static inline bool hfi1_check_sge_align(struct rvt_qp *qp,
3257					struct rvt_sge *sge, int num_sge)
3258{
3259	int i;
3260
3261	for (i = 0; i < num_sge; i++, sge++) {
3262		trace_hfi1_sge_check_align(qp, i, sge);
3263		if ((u64)sge->vaddr & ~PAGE_MASK ||
3264		    sge->sge_length & ~PAGE_MASK)
3265			return false;
3266	}
3267	return true;
3268}
3269
3270void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
3271{
3272	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
3273	struct hfi1_swqe_priv *priv = wqe->priv;
3274	struct tid_rdma_params *remote;
3275	enum ib_wr_opcode new_opcode;
3276	bool do_tid_rdma = false;
3277	struct hfi1_pportdata *ppd = qpriv->rcd->ppd;
3278
3279	if ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ppd->lmc) - 1)) ==
3280				ppd->lid)
3281		return;
3282	if (qpriv->hdr_type != HFI1_PKT_TYPE_9B)
3283		return;
3284
3285	rcu_read_lock();
3286	remote = rcu_dereference(qpriv->tid_rdma.remote);
3287	/*
3288	 * If TID RDMA is disabled by the negotiation, don't
3289	 * use it.
3290	 */
3291	if (!remote)
3292		goto exit;
3293
3294	if (wqe->wr.opcode == IB_WR_RDMA_READ) {
3295		if (hfi1_check_sge_align(qp, &wqe->sg_list[0],
3296					 wqe->wr.num_sge)) {
3297			new_opcode = IB_WR_TID_RDMA_READ;
3298			do_tid_rdma = true;
3299		}
3300	} else if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
3301		/*
3302		 * TID RDMA is enabled for this RDMA WRITE request iff:
3303		 *   1. The remote address is page-aligned,
3304		 *   2. The length is larger than the minimum segment size,
3305		 *   3. The length is page-multiple.
3306		 */
3307		if (!(wqe->rdma_wr.remote_addr & ~PAGE_MASK) &&
3308		    !(wqe->length & ~PAGE_MASK)) {
3309			new_opcode = IB_WR_TID_RDMA_WRITE;
3310			do_tid_rdma = true;
3311		}
3312	}
3313
3314	if (do_tid_rdma) {
3315		if (hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, GFP_ATOMIC))
3316			goto exit;
3317		wqe->wr.opcode = new_opcode;
3318		priv->tid_req.seg_len =
3319			min_t(u32, remote->max_len, wqe->length);
3320		priv->tid_req.total_segs =
3321			DIV_ROUND_UP(wqe->length, priv->tid_req.seg_len);
3322		/* Compute the last PSN of the request */
3323		wqe->lpsn = wqe->psn;
3324		if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3325			priv->tid_req.n_flows = remote->max_read;
3326			qpriv->tid_r_reqs++;
3327			wqe->lpsn += rvt_div_round_up_mtu(qp, wqe->length) - 1;
3328		} else {
3329			wqe->lpsn += priv->tid_req.total_segs - 1;
3330			atomic_inc(&qpriv->n_requests);
3331		}
3332
3333		priv->tid_req.cur_seg = 0;
3334		priv->tid_req.comp_seg = 0;
3335		priv->tid_req.ack_seg = 0;
3336		priv->tid_req.state = TID_REQUEST_INACTIVE;
3337		/*
3338		 * Reset acked_tail.
3339		 * TID RDMA READ does not have ACKs so it does not
3340		 * update the pointer. We have to reset it so TID RDMA
3341		 * WRITE does not get confused.
3342		 */
3343		priv->tid_req.acked_tail = priv->tid_req.setup_head;
3344		trace_hfi1_tid_req_setup_tid_wqe(qp, 1, wqe->wr.opcode,
3345						 wqe->psn, wqe->lpsn,
3346						 &priv->tid_req);
3347	}
3348exit:
3349	rcu_read_unlock();
3350}
3351
3352/* TID RDMA WRITE functions */
3353
3354u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3355				  struct ib_other_headers *ohdr,
3356				  u32 *bth1, u32 *bth2, u32 *len)
3357{
3358	struct hfi1_qp_priv *qpriv = qp->priv;
3359	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3360	struct tid_rdma_params *remote;
3361
3362	rcu_read_lock();
3363	remote = rcu_dereference(qpriv->tid_rdma.remote);
3364	/*
3365	 * Set the number of flow to be used based on negotiated
3366	 * parameters.
3367	 */
3368	req->n_flows = remote->max_write;
3369	req->state = TID_REQUEST_ACTIVE;
3370
3371	KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth0, KVER, 0x1);
3372	KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth1, JKEY, remote->jkey);
3373	ohdr->u.tid_rdma.w_req.reth.vaddr =
3374		cpu_to_be64(wqe->rdma_wr.remote_addr + (wqe->length - *len));
3375	ohdr->u.tid_rdma.w_req.reth.rkey =
3376		cpu_to_be32(wqe->rdma_wr.rkey);
3377	ohdr->u.tid_rdma.w_req.reth.length = cpu_to_be32(*len);
3378	ohdr->u.tid_rdma.w_req.verbs_qp = cpu_to_be32(qp->remote_qpn);
3379	*bth1 &= ~RVT_QPN_MASK;
3380	*bth1 |= remote->qp;
3381	qp->s_state = TID_OP(WRITE_REQ);
3382	qp->s_flags |= HFI1_S_WAIT_TID_RESP;
3383	*bth2 |= IB_BTH_REQ_ACK;
3384	*len = 0;
3385
3386	rcu_read_unlock();
3387	return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32);
3388}
3389
3390static u32 hfi1_compute_tid_rdma_flow_wt(struct rvt_qp *qp)
3391{
3392	/*
3393	 * Heuristic for computing the RNR timeout when waiting on the flow
3394	 * queue. Rather than a computationaly expensive exact estimate of when
3395	 * a flow will be available, we assume that if a QP is at position N in
3396	 * the flow queue it has to wait approximately (N + 1) * (number of
3397	 * segments between two sync points). The rationale for this is that
3398	 * flows are released and recycled at each sync point.
3399	 */
3400	return (MAX_TID_FLOW_PSN * qp->pmtu) >> TID_RDMA_SEGMENT_SHIFT;
3401}
3402
3403static u32 position_in_queue(struct hfi1_qp_priv *qpriv,
3404			     struct tid_queue *queue)
3405{
3406	return qpriv->tid_enqueue - queue->dequeue;
3407}
3408
3409/*
3410 * @qp: points to rvt_qp context.
3411 * @to_seg: desired RNR timeout in segments.
3412 * Return: index of the next highest timeout in the ib_hfi1_rnr_table[]
3413 */
3414static u32 hfi1_compute_tid_rnr_timeout(struct rvt_qp *qp, u32 to_seg)
3415{
3416	struct hfi1_qp_priv *qpriv = qp->priv;
3417	u64 timeout;
3418	u32 bytes_per_us;
3419	u8 i;
3420
3421	bytes_per_us = active_egress_rate(qpriv->rcd->ppd) / 8;
3422	timeout = (to_seg * TID_RDMA_MAX_SEGMENT_SIZE) / bytes_per_us;
3423	/*
3424	 * Find the next highest value in the RNR table to the required
3425	 * timeout. This gives the responder some padding.
3426	 */
3427	for (i = 1; i <= IB_AETH_CREDIT_MASK; i++)
3428		if (rvt_rnr_tbl_to_usec(i) >= timeout)
3429			return i;
3430	return 0;
3431}
3432
3433/**
3434 * Central place for resource allocation at TID write responder,
3435 * is called from write_req and write_data interrupt handlers as
3436 * well as the send thread when a queued QP is scheduled for
3437 * resource allocation.
3438 *
3439 * Iterates over (a) segments of a request and then (b) queued requests
3440 * themselves to allocate resources for up to local->max_write
3441 * segments across multiple requests. Stop allocating when we
3442 * hit a sync point, resume allocating after data packets at
3443 * sync point have been received.
3444 *
3445 * Resource allocation and sending of responses is decoupled. The
3446 * request/segment which are being allocated and sent are as follows.
3447 * Resources are allocated for:
3448 *     [request: qpriv->r_tid_alloc, segment: req->alloc_seg]
3449 * The send thread sends:
3450 *     [request: qp->s_tail_ack_queue, segment:req->cur_seg]
3451 */
3452static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx)
3453{
3454	struct tid_rdma_request *req;
3455	struct hfi1_qp_priv *qpriv = qp->priv;
3456	struct hfi1_ctxtdata *rcd = qpriv->rcd;
3457	struct tid_rdma_params *local = &qpriv->tid_rdma.local;
3458	struct rvt_ack_entry *e;
3459	u32 npkts, to_seg;
3460	bool last;
3461	int ret = 0;
3462
3463	lockdep_assert_held(&qp->s_lock);
3464
3465	while (1) {
3466		trace_hfi1_rsp_tid_write_alloc_res(qp, 0);
3467		trace_hfi1_tid_write_rsp_alloc_res(qp);
3468		/*
3469		 * Don't allocate more segments if a RNR NAK has already been
3470		 * scheduled to avoid messing up qp->r_psn: the RNR NAK will
3471		 * be sent only when all allocated segments have been sent.
3472		 * However, if more segments are allocated before that, TID RDMA
3473		 * WRITE RESP packets will be sent out for these new segments
3474		 * before the RNR NAK packet. When the requester receives the
3475		 * RNR NAK packet, it will restart with qp->s_last_psn + 1,
3476		 * which does not match qp->r_psn and will be dropped.
3477		 * Consequently, the requester will exhaust its retries and
3478		 * put the qp into error state.
3479		 */
3480		if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND)
3481			break;
3482
3483		/* No requests left to process */
3484		if (qpriv->r_tid_alloc == qpriv->r_tid_head) {
3485			/* If all data has been received, clear the flow */
3486			if (qpriv->flow_state.index < RXE_NUM_TID_FLOWS &&
3487			    !qpriv->alloc_w_segs) {
3488				hfi1_kern_clear_hw_flow(rcd, qp);
3489				qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3490			}
3491			break;
3492		}
3493
3494		e = &qp->s_ack_queue[qpriv->r_tid_alloc];
3495		if (e->opcode != TID_OP(WRITE_REQ))
3496			goto next_req;
3497		req = ack_to_tid_req(e);
3498		trace_hfi1_tid_req_write_alloc_res(qp, 0, e->opcode, e->psn,
3499						   e->lpsn, req);
3500		/* Finished allocating for all segments of this request */
3501		if (req->alloc_seg >= req->total_segs)
3502			goto next_req;
3503
3504		/* Can allocate only a maximum of local->max_write for a QP */
3505		if (qpriv->alloc_w_segs >= local->max_write)
3506			break;
3507
3508		/* Don't allocate at a sync point with data packets pending */
3509		if (qpriv->sync_pt && qpriv->alloc_w_segs)
3510			break;
3511
3512		/* All data received at the sync point, continue */
3513		if (qpriv->sync_pt && !qpriv->alloc_w_segs) {
3514			hfi1_kern_clear_hw_flow(rcd, qp);
3515			qpriv->sync_pt = false;
3516			qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3517		}
3518
3519		/* Allocate flow if we don't have one */
3520		if (qpriv->flow_state.index >= RXE_NUM_TID_FLOWS) {
3521			ret = hfi1_kern_setup_hw_flow(qpriv->rcd, qp);
3522			if (ret) {
3523				to_seg = hfi1_compute_tid_rdma_flow_wt(qp) *
3524					position_in_queue(qpriv,
3525							  &rcd->flow_queue);
3526				break;
3527			}
3528		}
3529
3530		npkts = rvt_div_round_up_mtu(qp, req->seg_len);
3531
3532		/*
3533		 * We are at a sync point if we run out of KDETH PSN space.
3534		 * Last PSN of every generation is reserved for RESYNC.
3535		 */
3536		if (qpriv->flow_state.psn + npkts > MAX_TID_FLOW_PSN - 1) {
3537			qpriv->sync_pt = true;
3538			break;
3539		}
3540
3541		/*
3542		 * If overtaking req->acked_tail, send an RNR NAK. Because the
3543		 * QP is not queued in this case, and the issue can only be
3544		 * caused by a delay in scheduling the second leg which we
3545		 * cannot estimate, we use a rather arbitrary RNR timeout of
3546		 * (MAX_FLOWS / 2) segments
3547		 */
3548		if (!CIRC_SPACE(req->setup_head, req->acked_tail,
3549				MAX_FLOWS)) {
3550			ret = -EAGAIN;
3551			to_seg = MAX_FLOWS >> 1;
3552			tid_rdma_trigger_ack(qp);
3553			break;
3554		}
3555
3556		/* Try to allocate rcv array / TID entries */
3557		ret = hfi1_kern_exp_rcv_setup(req, &req->ss, &last);
3558		if (ret == -EAGAIN)
3559			to_seg = position_in_queue(qpriv, &rcd->rarr_queue);
3560		if (ret)
3561			break;
3562
3563		qpriv->alloc_w_segs++;
3564		req->alloc_seg++;
3565		continue;
3566next_req:
3567		/* Begin processing the next request */
3568		if (++qpriv->r_tid_alloc >
3569		    rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3570			qpriv->r_tid_alloc = 0;
3571	}
3572
3573	/*
3574	 * Schedule an RNR NAK to be sent if (a) flow or rcv array allocation
3575	 * has failed (b) we are called from the rcv handler interrupt context
3576	 * (c) an RNR NAK has not already been scheduled
3577	 */
3578	if (ret == -EAGAIN && intr_ctx && !qp->r_nak_state)
3579		goto send_rnr_nak;
3580
3581	return;
3582
3583send_rnr_nak:
3584	lockdep_assert_held(&qp->r_lock);
3585
3586	/* Set r_nak_state to prevent unrelated events from generating NAK's */
3587	qp->r_nak_state = hfi1_compute_tid_rnr_timeout(qp, to_seg) | IB_RNR_NAK;
3588
3589	/* Pull back r_psn to the segment being RNR NAK'd */
3590	qp->r_psn = e->psn + req->alloc_seg;
3591	qp->r_ack_psn = qp->r_psn;
3592	/*
3593	 * Pull back r_head_ack_queue to the ack entry following the request
3594	 * being RNR NAK'd. This allows resources to be allocated to the request
3595	 * if the queued QP is scheduled.
3596	 */
3597	qp->r_head_ack_queue = qpriv->r_tid_alloc + 1;
3598	if (qp->r_head_ack_queue > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3599		qp->r_head_ack_queue = 0;
3600	qpriv->r_tid_head = qp->r_head_ack_queue;
3601	/*
3602	 * These send side fields are used in make_rc_ack(). They are set in
3603	 * hfi1_send_rc_ack() but must be set here before dropping qp->s_lock
3604	 * for consistency
3605	 */
3606	qp->s_nak_state = qp->r_nak_state;
3607	qp->s_ack_psn = qp->r_ack_psn;
3608	/*
3609	 * Clear the ACK PENDING flag to prevent unwanted ACK because we
3610	 * have modified qp->s_ack_psn here.
3611	 */
3612	qp->s_flags &= ~(RVT_S_ACK_PENDING);
3613
3614	trace_hfi1_rsp_tid_write_alloc_res(qp, qp->r_psn);
3615	/*
3616	 * qpriv->rnr_nak_state is used to determine when the scheduled RNR NAK
3617	 * has actually been sent. qp->s_flags RVT_S_ACK_PENDING bit cannot be
3618	 * used for this because qp->s_lock is dropped before calling
3619	 * hfi1_send_rc_ack() leading to inconsistency between the receive
3620	 * interrupt handlers and the send thread in make_rc_ack()
3621	 */
3622	qpriv->rnr_nak_state = TID_RNR_NAK_SEND;
3623
3624	/*
3625	 * Schedule RNR NAK to be sent. RNR NAK's are scheduled from the receive
3626	 * interrupt handlers but will be sent from the send engine behind any
3627	 * previous responses that may have been scheduled
3628	 */
3629	rc_defered_ack(rcd, qp);
3630}
3631
3632void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet)
3633{
3634	/* HANDLER FOR TID RDMA WRITE REQUEST packet (Responder side)*/
3635
3636	/*
3637	 * 1. Verify TID RDMA WRITE REQ as per IB_OPCODE_RC_RDMA_WRITE_FIRST
3638	 *    (see hfi1_rc_rcv())
3639	 *     - Don't allow 0-length requests.
3640	 * 2. Put TID RDMA WRITE REQ into the response queueu (s_ack_queue)
3641	 *     - Setup struct tid_rdma_req with request info
3642	 *     - Prepare struct tid_rdma_flow array?
3643	 * 3. Set the qp->s_ack_state as state diagram in design doc.
3644	 * 4. Set RVT_S_RESP_PENDING in s_flags.
3645	 * 5. Kick the send engine (hfi1_schedule_send())
3646	 */
3647	struct hfi1_ctxtdata *rcd = packet->rcd;
3648	struct rvt_qp *qp = packet->qp;
3649	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
3650	struct ib_other_headers *ohdr = packet->ohdr;
3651	struct rvt_ack_entry *e;
3652	unsigned long flags;
3653	struct ib_reth *reth;
3654	struct hfi1_qp_priv *qpriv = qp->priv;
3655	struct tid_rdma_request *req;
3656	u32 bth0, psn, len, rkey, num_segs;
3657	bool fecn;
3658	u8 next;
3659	u64 vaddr;
3660	int diff;
3661
3662	bth0 = be32_to_cpu(ohdr->bth[0]);
3663	if (hfi1_ruc_check_hdr(ibp, packet))
3664		return;
3665
3666	fecn = process_ecn(qp, packet);
3667	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
3668	trace_hfi1_rsp_rcv_tid_write_req(qp, psn);
3669
3670	if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
3671		rvt_comm_est(qp);
3672
3673	if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3674		goto nack_inv;
3675
3676	reth = &ohdr->u.tid_rdma.w_req.reth;
3677	vaddr = be64_to_cpu(reth->vaddr);
3678	len = be32_to_cpu(reth->length);
3679
3680	num_segs = DIV_ROUND_UP(len, qpriv->tid_rdma.local.max_len);
3681	diff = delta_psn(psn, qp->r_psn);
3682	if (unlikely(diff)) {
3683		tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
3684		return;
3685	}
3686
3687	/*
3688	 * The resent request which was previously RNR NAK'd is inserted at the
3689	 * location of the original request, which is one entry behind
3690	 * r_head_ack_queue
3691	 */
3692	if (qpriv->rnr_nak_state)
3693		qp->r_head_ack_queue = qp->r_head_ack_queue ?
3694			qp->r_head_ack_queue - 1 :
3695			rvt_size_atomic(ib_to_rvt(qp->ibqp.device));
3696
3697	/* We've verified the request, insert it into the ack queue. */
3698	next = qp->r_head_ack_queue + 1;
3699	if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3700		next = 0;
3701	spin_lock_irqsave(&qp->s_lock, flags);
3702	if (unlikely(next == qp->s_acked_ack_queue)) {
3703		if (!qp->s_ack_queue[next].sent)
3704			goto nack_inv_unlock;
3705		update_ack_queue(qp, next);
3706	}
3707	e = &qp->s_ack_queue[qp->r_head_ack_queue];
3708	req = ack_to_tid_req(e);
3709
3710	/* Bring previously RNR NAK'd request back to life */
3711	if (qpriv->rnr_nak_state) {
3712		qp->r_nak_state = 0;
3713		qp->s_nak_state = 0;
3714		qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
3715		qp->r_psn = e->lpsn + 1;
3716		req->state = TID_REQUEST_INIT;
3717		goto update_head;
3718	}
3719
3720	release_rdma_sge_mr(e);
3721
3722	/* The length needs to be in multiples of PAGE_SIZE */
3723	if (!len || len & ~PAGE_MASK)
3724		goto nack_inv_unlock;
3725
3726	rkey = be32_to_cpu(reth->rkey);
3727	qp->r_len = len;
3728
3729	if (e->opcode == TID_OP(WRITE_REQ) &&
3730	    (req->setup_head != req->clear_tail ||
3731	     req->clear_tail != req->acked_tail))
3732		goto nack_inv_unlock;
3733
3734	if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
3735				  rkey, IB_ACCESS_REMOTE_WRITE)))
3736		goto nack_acc;
3737
3738	qp->r_psn += num_segs - 1;
3739
3740	e->opcode = (bth0 >> 24) & 0xff;
3741	e->psn = psn;
3742	e->lpsn = qp->r_psn;
3743	e->sent = 0;
3744
3745	req->n_flows = min_t(u16, num_segs, qpriv->tid_rdma.local.max_write);
3746	req->state = TID_REQUEST_INIT;
3747	req->cur_seg = 0;
3748	req->comp_seg = 0;
3749	req->ack_seg = 0;
3750	req->alloc_seg = 0;
3751	req->isge = 0;
3752	req->seg_len = qpriv->tid_rdma.local.max_len;
3753	req->total_len = len;
3754	req->total_segs = num_segs;
3755	req->r_flow_psn = e->psn;
3756	req->ss.sge = e->rdma_sge;
3757	req->ss.num_sge = 1;
3758
3759	req->flow_idx = req->setup_head;
3760	req->clear_tail = req->setup_head;
3761	req->acked_tail = req->setup_head;
3762
3763	qp->r_state = e->opcode;
3764	qp->r_nak_state = 0;
3765	/*
3766	 * We need to increment the MSN here instead of when we
3767	 * finish sending the result since a duplicate request would
3768	 * increment it more than once.
3769	 */
3770	qp->r_msn++;
3771	qp->r_psn++;
3772
3773	trace_hfi1_tid_req_rcv_write_req(qp, 0, e->opcode, e->psn, e->lpsn,
3774					 req);
3775
3776	if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID) {
3777		qpriv->r_tid_tail = qp->r_head_ack_queue;
3778	} else if (qpriv->r_tid_tail == qpriv->r_tid_head) {
3779		struct tid_rdma_request *ptr;
3780
3781		e = &qp->s_ack_queue[qpriv->r_tid_tail];
3782		ptr = ack_to_tid_req(e);
3783
3784		if (e->opcode != TID_OP(WRITE_REQ) ||
3785		    ptr->comp_seg == ptr->total_segs) {
3786			if (qpriv->r_tid_tail == qpriv->r_tid_ack)
3787				qpriv->r_tid_ack = qp->r_head_ack_queue;
3788			qpriv->r_tid_tail = qp->r_head_ack_queue;
3789		}
3790	}
3791update_head:
3792	qp->r_head_ack_queue = next;
3793	qpriv->r_tid_head = qp->r_head_ack_queue;
3794
3795	hfi1_tid_write_alloc_resources(qp, true);
3796	trace_hfi1_tid_write_rsp_rcv_req(qp);
3797
3798	/* Schedule the send tasklet. */
3799	qp->s_flags |= RVT_S_RESP_PENDING;
3800	if (fecn)
3801		qp->s_flags |= RVT_S_ECN;
3802	hfi1_schedule_send(qp);
3803
3804	spin_unlock_irqrestore(&qp->s_lock, flags);
3805	return;
3806
3807nack_inv_unlock:
3808	spin_unlock_irqrestore(&qp->s_lock, flags);
3809nack_inv:
3810	rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
3811	qp->r_nak_state = IB_NAK_INVALID_REQUEST;
3812	qp->r_ack_psn = qp->r_psn;
3813	/* Queue NAK for later */
3814	rc_defered_ack(rcd, qp);
3815	return;
3816nack_acc:
3817	spin_unlock_irqrestore(&qp->s_lock, flags);
3818	rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
3819	qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
3820	qp->r_ack_psn = qp->r_psn;
3821}
3822
3823u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
3824				   struct ib_other_headers *ohdr, u32 *bth1,
3825				   u32 bth2, u32 *len,
3826				   struct rvt_sge_state **ss)
3827{
3828	struct hfi1_ack_priv *epriv = e->priv;
3829	struct tid_rdma_request *req = &epriv->tid_req;
3830	struct hfi1_qp_priv *qpriv = qp->priv;
3831	struct tid_rdma_flow *flow = NULL;
3832	u32 resp_len = 0, hdwords = 0;
3833	void *resp_addr = NULL;
3834	struct tid_rdma_params *remote;
3835
3836	trace_hfi1_tid_req_build_write_resp(qp, 0, e->opcode, e->psn, e->lpsn,
3837					    req);
3838	trace_hfi1_tid_write_rsp_build_resp(qp);
3839	trace_hfi1_rsp_build_tid_write_resp(qp, bth2);
3840	flow = &req->flows[req->flow_idx];
3841	switch (req->state) {
3842	default:
3843		/*
3844		 * Try to allocate resources here in case QP was queued and was
3845		 * later scheduled when resources became available
3846		 */
3847		hfi1_tid_write_alloc_resources(qp, false);
3848
3849		/* We've already sent everything which is ready */
3850		if (req->cur_seg >= req->alloc_seg)
3851			goto done;
3852
3853		/*
3854		 * Resources can be assigned but responses cannot be sent in
3855		 * rnr_nak state, till the resent request is received
3856		 */
3857		if (qpriv->rnr_nak_state == TID_RNR_NAK_SENT)
3858			goto done;
3859
3860		req->state = TID_REQUEST_ACTIVE;
3861		trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3862		req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3863		hfi1_add_tid_reap_timer(qp);
3864		break;
3865
3866	case TID_REQUEST_RESEND_ACTIVE:
3867	case TID_REQUEST_RESEND:
3868		trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3869		req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3870		if (!CIRC_CNT(req->setup_head, req->flow_idx, MAX_FLOWS))
3871			req->state = TID_REQUEST_ACTIVE;
3872
3873		hfi1_mod_tid_reap_timer(qp);
3874		break;
3875	}
3876	flow->flow_state.resp_ib_psn = bth2;
3877	resp_addr = (void *)flow->tid_entry;
3878	resp_len = sizeof(*flow->tid_entry) * flow->tidcnt;
3879	req->cur_seg++;
3880
3881	memset(&ohdr->u.tid_rdma.w_rsp, 0, sizeof(ohdr->u.tid_rdma.w_rsp));
3882	epriv->ss.sge.vaddr = resp_addr;
3883	epriv->ss.sge.sge_length = resp_len;
3884	epriv->ss.sge.length = epriv->ss.sge.sge_length;
3885	/*
3886	 * We can safely zero these out. Since the first SGE covers the
3887	 * entire packet, nothing else should even look at the MR.
3888	 */
3889	epriv->ss.sge.mr = NULL;
3890	epriv->ss.sge.m = 0;
3891	epriv->ss.sge.n = 0;
3892
3893	epriv->ss.sg_list = NULL;
3894	epriv->ss.total_len = epriv->ss.sge.sge_length;
3895	epriv->ss.num_sge = 1;
3896
3897	*ss = &epriv->ss;
3898	*len = epriv->ss.total_len;
3899
3900	/* Construct the TID RDMA WRITE RESP packet header */
3901	rcu_read_lock();
3902	remote = rcu_dereference(qpriv->tid_rdma.remote);
3903
3904	KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth0, KVER, 0x1);
3905	KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth1, JKEY, remote->jkey);
3906	ohdr->u.tid_rdma.w_rsp.aeth = rvt_compute_aeth(qp);
3907	ohdr->u.tid_rdma.w_rsp.tid_flow_psn =
3908		cpu_to_be32((flow->flow_state.generation <<
3909			     HFI1_KDETH_BTH_SEQ_SHIFT) |
3910			    (flow->flow_state.spsn &
3911			     HFI1_KDETH_BTH_SEQ_MASK));
3912	ohdr->u.tid_rdma.w_rsp.tid_flow_qp =
3913		cpu_to_be32(qpriv->tid_rdma.local.qp |
3914			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
3915			     TID_RDMA_DESTQP_FLOW_SHIFT) |
3916			    qpriv->rcd->ctxt);
3917	ohdr->u.tid_rdma.w_rsp.verbs_qp = cpu_to_be32(qp->remote_qpn);
3918	*bth1 = remote->qp;
3919	rcu_read_unlock();
3920	hdwords = sizeof(ohdr->u.tid_rdma.w_rsp) / sizeof(u32);
3921	qpriv->pending_tid_w_segs++;
3922done:
3923	return hdwords;
3924}
3925
3926static void hfi1_add_tid_reap_timer(struct rvt_qp *qp)
3927{
3928	struct hfi1_qp_priv *qpriv = qp->priv;
3929
3930	lockdep_assert_held(&qp->s_lock);
3931	if (!(qpriv->s_flags & HFI1_R_TID_RSC_TIMER)) {
3932		qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3933		qpriv->s_tid_timer.expires = jiffies +
3934			qpriv->tid_timer_timeout_jiffies;
3935		add_timer(&qpriv->s_tid_timer);
3936	}
3937}
3938
3939static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp)
3940{
3941	struct hfi1_qp_priv *qpriv = qp->priv;
3942
3943	lockdep_assert_held(&qp->s_lock);
3944	qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3945	mod_timer(&qpriv->s_tid_timer, jiffies +
3946		  qpriv->tid_timer_timeout_jiffies);
3947}
3948
3949static int hfi1_stop_tid_reap_timer(struct rvt_qp *qp)
3950{
3951	struct hfi1_qp_priv *qpriv = qp->priv;
3952	int rval = 0;
3953
3954	lockdep_assert_held(&qp->s_lock);
3955	if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3956		rval = del_timer(&qpriv->s_tid_timer);
3957		qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3958	}
3959	return rval;
3960}
3961
3962void hfi1_del_tid_reap_timer(struct rvt_qp *qp)
3963{
3964	struct hfi1_qp_priv *qpriv = qp->priv;
3965
3966	del_timer_sync(&qpriv->s_tid_timer);
3967	qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3968}
3969
3970static void hfi1_tid_timeout(struct timer_list *t)
3971{
3972	struct hfi1_qp_priv *qpriv = from_timer(qpriv, t, s_tid_timer);
3973	struct rvt_qp *qp = qpriv->owner;
3974	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
3975	unsigned long flags;
3976	u32 i;
3977
3978	spin_lock_irqsave(&qp->r_lock, flags);
3979	spin_lock(&qp->s_lock);
3980	if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3981		dd_dev_warn(dd_from_ibdev(qp->ibqp.device), "[QP%u] %s %d\n",
3982			    qp->ibqp.qp_num, __func__, __LINE__);
3983		trace_hfi1_msg_tid_timeout(/* msg */
3984			qp, "resource timeout = ",
3985			(u64)qpriv->tid_timer_timeout_jiffies);
3986		hfi1_stop_tid_reap_timer(qp);
3987		/*
3988		 * Go though the entire ack queue and clear any outstanding
3989		 * HW flow and RcvArray resources.
3990		 */
3991		hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
3992		for (i = 0; i < rvt_max_atomic(rdi); i++) {
3993			struct tid_rdma_request *req =
3994				ack_to_tid_req(&qp->s_ack_queue[i]);
3995
3996			hfi1_kern_exp_rcv_clear_all(req);
3997		}
3998		spin_unlock(&qp->s_lock);
3999		if (qp->ibqp.event_handler) {
4000			struct ib_event ev;
4001
4002			ev.device = qp->ibqp.device;
4003			ev.element.qp = &qp->ibqp;
4004			ev.event = IB_EVENT_QP_FATAL;
4005			qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
4006		}
4007		rvt_rc_error(qp, IB_WC_RESP_TIMEOUT_ERR);
4008		goto unlock_r_lock;
4009	}
4010	spin_unlock(&qp->s_lock);
4011unlock_r_lock:
4012	spin_unlock_irqrestore(&qp->r_lock, flags);
4013}
4014
4015void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet)
4016{
4017	/* HANDLER FOR TID RDMA WRITE RESPONSE packet (Requestor side */
4018
4019	/*
4020	 * 1. Find matching SWQE
4021	 * 2. Check that TIDENTRY array has enough space for a complete
4022	 *    segment. If not, put QP in error state.
4023	 * 3. Save response data in struct tid_rdma_req and struct tid_rdma_flow
4024	 * 4. Remove HFI1_S_WAIT_TID_RESP from s_flags.
4025	 * 5. Set qp->s_state
4026	 * 6. Kick the send engine (hfi1_schedule_send())
4027	 */
4028	struct ib_other_headers *ohdr = packet->ohdr;
4029	struct rvt_qp *qp = packet->qp;
4030	struct hfi1_qp_priv *qpriv = qp->priv;
4031	struct hfi1_ctxtdata *rcd = packet->rcd;
4032	struct rvt_swqe *wqe;
4033	struct tid_rdma_request *req;
4034	struct tid_rdma_flow *flow;
4035	enum ib_wc_status status;
4036	u32 opcode, aeth, psn, flow_psn, i, tidlen = 0, pktlen;
4037	bool fecn;
4038	unsigned long flags;
4039
4040	fecn = process_ecn(qp, packet);
4041	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4042	aeth = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.aeth);
4043	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4044
4045	spin_lock_irqsave(&qp->s_lock, flags);
4046
4047	/* Ignore invalid responses */
4048	if (cmp_psn(psn, qp->s_next_psn) >= 0)
4049		goto ack_done;
4050
4051	/* Ignore duplicate responses. */
4052	if (unlikely(cmp_psn(psn, qp->s_last_psn) <= 0))
4053		goto ack_done;
4054
4055	if (unlikely(qp->s_acked == qp->s_tail))
4056		goto ack_done;
4057
4058	/*
4059	 * If we are waiting for a particular packet sequence number
4060	 * due to a request being resent, check for it. Otherwise,
4061	 * ensure that we haven't missed anything.
4062	 */
4063	if (qp->r_flags & RVT_R_RDMAR_SEQ) {
4064		if (cmp_psn(psn, qp->s_last_psn + 1) != 0)
4065			goto ack_done;
4066		qp->r_flags &= ~RVT_R_RDMAR_SEQ;
4067	}
4068
4069	wqe = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur);
4070	if (unlikely(wqe->wr.opcode != IB_WR_TID_RDMA_WRITE))
4071		goto ack_op_err;
4072
4073	req = wqe_to_tid_req(wqe);
4074	/*
4075	 * If we've lost ACKs and our acked_tail pointer is too far
4076	 * behind, don't overwrite segments. Just drop the packet and
4077	 * let the reliability protocol take care of it.
4078	 */
4079	if (!CIRC_SPACE(req->setup_head, req->acked_tail, MAX_FLOWS))
4080		goto ack_done;
4081
4082	/*
4083	 * The call to do_rc_ack() should be last in the chain of
4084	 * packet checks because it will end up updating the QP state.
4085	 * Therefore, anything that would prevent the packet from
4086	 * being accepted as a successful response should be prior
4087	 * to it.
4088	 */
4089	if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd))
4090		goto ack_done;
4091
4092	trace_hfi1_ack(qp, psn);
4093
4094	flow = &req->flows[req->setup_head];
4095	flow->pkt = 0;
4096	flow->tid_idx = 0;
4097	flow->tid_offset = 0;
4098	flow->sent = 0;
4099	flow->resync_npkts = 0;
4100	flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_qp);
4101	flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
4102		TID_RDMA_DESTQP_FLOW_MASK;
4103	flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_psn));
4104	flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4105	flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
4106	flow->flow_state.resp_ib_psn = psn;
4107	flow->length = min_t(u32, req->seg_len,
4108			     (wqe->length - (req->comp_seg * req->seg_len)));
4109
4110	flow->npkts = rvt_div_round_up_mtu(qp, flow->length);
4111	flow->flow_state.lpsn = flow->flow_state.spsn +
4112		flow->npkts - 1;
4113	/* payload length = packet length - (header length + ICRC length) */
4114	pktlen = packet->tlen - (packet->hlen + 4);
4115	if (pktlen > sizeof(flow->tid_entry)) {
4116		status = IB_WC_LOC_LEN_ERR;
4117		goto ack_err;
4118	}
4119	memcpy(flow->tid_entry, packet->ebuf, pktlen);
4120	flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
4121	trace_hfi1_tid_flow_rcv_write_resp(qp, req->setup_head, flow);
4122
4123	req->comp_seg++;
4124	trace_hfi1_tid_write_sender_rcv_resp(qp, 0);
4125	/*
4126	 * Walk the TID_ENTRY list to make sure we have enough space for a
4127	 * complete segment.
4128	 */
4129	for (i = 0; i < flow->tidcnt; i++) {
4130		trace_hfi1_tid_entry_rcv_write_resp(/* entry */
4131			qp, i, flow->tid_entry[i]);
4132		if (!EXP_TID_GET(flow->tid_entry[i], LEN)) {
4133			status = IB_WC_LOC_LEN_ERR;
4134			goto ack_err;
4135		}
4136		tidlen += EXP_TID_GET(flow->tid_entry[i], LEN);
4137	}
4138	if (tidlen * PAGE_SIZE < flow->length) {
4139		status = IB_WC_LOC_LEN_ERR;
4140		goto ack_err;
4141	}
4142
4143	trace_hfi1_tid_req_rcv_write_resp(qp, 0, wqe->wr.opcode, wqe->psn,
4144					  wqe->lpsn, req);
4145	/*
4146	 * If this is the first response for this request, set the initial
4147	 * flow index to the current flow.
4148	 */
4149	if (!cmp_psn(psn, wqe->psn)) {
4150		req->r_last_acked = mask_psn(wqe->psn - 1);
4151		/* Set acked flow index to head index */
4152		req->acked_tail = req->setup_head;
4153	}
4154
4155	/* advance circular buffer head */
4156	req->setup_head = CIRC_NEXT(req->setup_head, MAX_FLOWS);
4157	req->state = TID_REQUEST_ACTIVE;
4158
4159	/*
4160	 * If all responses for this TID RDMA WRITE request have been received
4161	 * advance the pointer to the next one.
4162	 * Since TID RDMA requests could be mixed in with regular IB requests,
4163	 * they might not appear sequentially in the queue. Therefore, the
4164	 * next request needs to be "found".
4165	 */
4166	if (qpriv->s_tid_cur != qpriv->s_tid_head &&
4167	    req->comp_seg == req->total_segs) {
4168		for (i = qpriv->s_tid_cur + 1; ; i++) {
4169			if (i == qp->s_size)
4170				i = 0;
4171			wqe = rvt_get_swqe_ptr(qp, i);
4172			if (i == qpriv->s_tid_head)
4173				break;
4174			if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
4175				break;
4176		}
4177		qpriv->s_tid_cur = i;
4178	}
4179	qp->s_flags &= ~HFI1_S_WAIT_TID_RESP;
4180	hfi1_schedule_tid_send(qp);
4181	goto ack_done;
4182
4183ack_op_err:
4184	status = IB_WC_LOC_QP_OP_ERR;
4185ack_err:
4186	rvt_error_qp(qp, status);
4187ack_done:
4188	if (fecn)
4189		qp->s_flags |= RVT_S_ECN;
4190	spin_unlock_irqrestore(&qp->s_lock, flags);
4191}
4192
4193bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
4194				struct ib_other_headers *ohdr,
4195				u32 *bth1, u32 *bth2, u32 *len)
4196{
4197	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4198	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
4199	struct tid_rdma_params *remote;
4200	struct rvt_qp *qp = req->qp;
4201	struct hfi1_qp_priv *qpriv = qp->priv;
4202	u32 tidentry = flow->tid_entry[flow->tid_idx];
4203	u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
4204	struct tid_rdma_write_data *wd = &ohdr->u.tid_rdma.w_data;
4205	u32 next_offset, om = KDETH_OM_LARGE;
4206	bool last_pkt;
4207
4208	if (!tidlen) {
4209		hfi1_trdma_send_complete(qp, wqe, IB_WC_REM_INV_RD_REQ_ERR);
4210		rvt_error_qp(qp, IB_WC_REM_INV_RD_REQ_ERR);
4211	}
4212
4213	*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
4214	flow->sent += *len;
4215	next_offset = flow->tid_offset + *len;
4216	last_pkt = (flow->tid_idx == (flow->tidcnt - 1) &&
4217		    next_offset >= tidlen) || (flow->sent >= flow->length);
4218	trace_hfi1_tid_entry_build_write_data(qp, flow->tid_idx, tidentry);
4219	trace_hfi1_tid_flow_build_write_data(qp, req->clear_tail, flow);
4220
4221	rcu_read_lock();
4222	remote = rcu_dereference(qpriv->tid_rdma.remote);
4223	KDETH_RESET(wd->kdeth0, KVER, 0x1);
4224	KDETH_SET(wd->kdeth0, SH, !last_pkt);
4225	KDETH_SET(wd->kdeth0, INTR, !!(!last_pkt && remote->urg));
4226	KDETH_SET(wd->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
4227	KDETH_SET(wd->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
4228	KDETH_SET(wd->kdeth0, OM, om == KDETH_OM_LARGE);
4229	KDETH_SET(wd->kdeth0, OFFSET, flow->tid_offset / om);
4230	KDETH_RESET(wd->kdeth1, JKEY, remote->jkey);
4231	wd->verbs_qp = cpu_to_be32(qp->remote_qpn);
4232	rcu_read_unlock();
4233
4234	*bth1 = flow->tid_qpn;
4235	*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
4236			 HFI1_KDETH_BTH_SEQ_MASK) |
4237			 (flow->flow_state.generation <<
4238			  HFI1_KDETH_BTH_SEQ_SHIFT));
4239	if (last_pkt) {
4240		/* PSNs are zero-based, so +1 to count number of packets */
4241		if (flow->flow_state.lpsn + 1 +
4242		    rvt_div_round_up_mtu(qp, req->seg_len) >
4243		    MAX_TID_FLOW_PSN)
4244			req->state = TID_REQUEST_SYNC;
4245		*bth2 |= IB_BTH_REQ_ACK;
4246	}
4247
4248	if (next_offset >= tidlen) {
4249		flow->tid_offset = 0;
4250		flow->tid_idx++;
4251	} else {
4252		flow->tid_offset = next_offset;
4253	}
4254	return last_pkt;
4255}
4256
4257void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet)
4258{
4259	struct rvt_qp *qp = packet->qp;
4260	struct hfi1_qp_priv *priv = qp->priv;
4261	struct hfi1_ctxtdata *rcd = priv->rcd;
4262	struct ib_other_headers *ohdr = packet->ohdr;
4263	struct rvt_ack_entry *e;
4264	struct tid_rdma_request *req;
4265	struct tid_rdma_flow *flow;
4266	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4267	unsigned long flags;
4268	u32 psn, next;
4269	u8 opcode;
4270	bool fecn;
4271
4272	fecn = process_ecn(qp, packet);
4273	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4274	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4275
4276	/*
4277	 * All error handling should be done by now. If we are here, the packet
4278	 * is either good or been accepted by the error handler.
4279	 */
4280	spin_lock_irqsave(&qp->s_lock, flags);
4281	e = &qp->s_ack_queue[priv->r_tid_tail];
4282	req = ack_to_tid_req(e);
4283	flow = &req->flows[req->clear_tail];
4284	if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.lpsn))) {
4285		update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
4286
4287		if (cmp_psn(psn, flow->flow_state.r_next_psn))
4288			goto send_nak;
4289
4290		flow->flow_state.r_next_psn = mask_psn(psn + 1);
4291		/*
4292		 * Copy the payload to destination buffer if this packet is
4293		 * delivered as an eager packet due to RSM rule and FECN.
4294		 * The RSM rule selects FECN bit in BTH and SH bit in
4295		 * KDETH header and therefore will not match the last
4296		 * packet of each segment that has SH bit cleared.
4297		 */
4298		if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
4299			struct rvt_sge_state ss;
4300			u32 len;
4301			u32 tlen = packet->tlen;
4302			u16 hdrsize = packet->hlen;
4303			u8 pad = packet->pad;
4304			u8 extra_bytes = pad + packet->extra_byte +
4305				(SIZE_OF_CRC << 2);
4306			u32 pmtu = qp->pmtu;
4307
4308			if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
4309				goto send_nak;
4310			len = req->comp_seg * req->seg_len;
4311			len += delta_psn(psn,
4312				full_flow_psn(flow, flow->flow_state.spsn)) *
4313				pmtu;
4314			if (unlikely(req->total_len - len < pmtu))
4315				goto send_nak;
4316
4317			/*
4318			 * The e->rdma_sge field is set when TID RDMA WRITE REQ
4319			 * is first received and is never modified thereafter.
4320			 */
4321			ss.sge = e->rdma_sge;
4322			ss.sg_list = NULL;
4323			ss.num_sge = 1;
4324			ss.total_len = req->total_len;
4325			rvt_skip_sge(&ss, len, false);
4326			rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
4327				     false);
4328			/* Raise the sw sequence check flag for next packet */
4329			priv->r_next_psn_kdeth = mask_psn(psn + 1);
4330			priv->s_flags |= HFI1_R_TID_SW_PSN;
4331		}
4332		goto exit;
4333	}
4334	flow->flow_state.r_next_psn = mask_psn(psn + 1);
4335	hfi1_kern_exp_rcv_clear(req);
4336	priv->alloc_w_segs--;
4337	rcd->flows[flow->idx].psn = psn & HFI1_KDETH_BTH_SEQ_MASK;
4338	req->comp_seg++;
4339	priv->s_nak_state = 0;
4340
4341	/*
4342	 * Release the flow if one of the following conditions has been met:
4343	 *  - The request has reached a sync point AND all outstanding
4344	 *    segments have been completed, or
4345	 *  - The entire request is complete and there are no more requests
4346	 *    (of any kind) in the queue.
4347	 */
4348	trace_hfi1_rsp_rcv_tid_write_data(qp, psn);
4349	trace_hfi1_tid_req_rcv_write_data(qp, 0, e->opcode, e->psn, e->lpsn,
4350					  req);
4351	trace_hfi1_tid_write_rsp_rcv_data(qp);
4352	validate_r_tid_ack(priv);
4353
4354	if (opcode == TID_OP(WRITE_DATA_LAST)) {
4355		release_rdma_sge_mr(e);
4356		for (next = priv->r_tid_tail + 1; ; next++) {
4357			if (next > rvt_size_atomic(&dev->rdi))
4358				next = 0;
4359			if (next == priv->r_tid_head)
4360				break;
4361			e = &qp->s_ack_queue[next];
4362			if (e->opcode == TID_OP(WRITE_REQ))
4363				break;
4364		}
4365		priv->r_tid_tail = next;
4366		if (++qp->s_acked_ack_queue > rvt_size_atomic(&dev->rdi))
4367			qp->s_acked_ack_queue = 0;
4368	}
4369
4370	hfi1_tid_write_alloc_resources(qp, true);
4371
4372	/*
4373	 * If we need to generate more responses, schedule the
4374	 * send engine.
4375	 */
4376	if (req->cur_seg < req->total_segs ||
4377	    qp->s_tail_ack_queue != qp->r_head_ack_queue) {
4378		qp->s_flags |= RVT_S_RESP_PENDING;
4379		hfi1_schedule_send(qp);
4380	}
4381
4382	priv->pending_tid_w_segs--;
4383	if (priv->s_flags & HFI1_R_TID_RSC_TIMER) {
4384		if (priv->pending_tid_w_segs)
4385			hfi1_mod_tid_reap_timer(req->qp);
4386		else
4387			hfi1_stop_tid_reap_timer(req->qp);
4388	}
4389
4390done:
4391	tid_rdma_schedule_ack(qp);
4392exit:
4393	priv->r_next_psn_kdeth = flow->flow_state.r_next_psn;
4394	if (fecn)
4395		qp->s_flags |= RVT_S_ECN;
4396	spin_unlock_irqrestore(&qp->s_lock, flags);
4397	return;
4398
4399send_nak:
4400	if (!priv->s_nak_state) {
4401		priv->s_nak_state = IB_NAK_PSN_ERROR;
4402		priv->s_nak_psn = flow->flow_state.r_next_psn;
4403		tid_rdma_trigger_ack(qp);
4404	}
4405	goto done;
4406}
4407
4408static bool hfi1_tid_rdma_is_resync_psn(u32 psn)
4409{
4410	return (bool)((psn & HFI1_KDETH_BTH_SEQ_MASK) ==
4411		      HFI1_KDETH_BTH_SEQ_MASK);
4412}
4413
4414u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e,
4415				  struct ib_other_headers *ohdr, u16 iflow,
4416				  u32 *bth1, u32 *bth2)
4417{
4418	struct hfi1_qp_priv *qpriv = qp->priv;
4419	struct tid_flow_state *fs = &qpriv->flow_state;
4420	struct tid_rdma_request *req = ack_to_tid_req(e);
4421	struct tid_rdma_flow *flow = &req->flows[iflow];
4422	struct tid_rdma_params *remote;
4423
4424	rcu_read_lock();
4425	remote = rcu_dereference(qpriv->tid_rdma.remote);
4426	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4427	ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4428	*bth1 = remote->qp;
4429	rcu_read_unlock();
4430
4431	if (qpriv->resync) {
4432		*bth2 = mask_psn((fs->generation <<
4433				  HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4434		ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4435	} else if (qpriv->s_nak_state) {
4436		*bth2 = mask_psn(qpriv->s_nak_psn);
4437		ohdr->u.tid_rdma.ack.aeth =
4438			cpu_to_be32((qp->r_msn & IB_MSN_MASK) |
4439				    (qpriv->s_nak_state <<
4440				     IB_AETH_CREDIT_SHIFT));
4441	} else {
4442		*bth2 = full_flow_psn(flow, flow->flow_state.lpsn);
4443		ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4444	}
4445	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4446	ohdr->u.tid_rdma.ack.tid_flow_qp =
4447		cpu_to_be32(qpriv->tid_rdma.local.qp |
4448			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
4449			     TID_RDMA_DESTQP_FLOW_SHIFT) |
4450			    qpriv->rcd->ctxt);
4451
4452	ohdr->u.tid_rdma.ack.tid_flow_psn = 0;
4453	ohdr->u.tid_rdma.ack.verbs_psn =
4454		cpu_to_be32(flow->flow_state.resp_ib_psn);
4455
4456	if (qpriv->resync) {
4457		/*
4458		 * If the PSN before the current expect KDETH PSN is the
4459		 * RESYNC PSN, then we never received a good TID RDMA WRITE
4460		 * DATA packet after a previous RESYNC.
4461		 * In this case, the next expected KDETH PSN stays the same.
4462		 */
4463		if (hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1)) {
4464			ohdr->u.tid_rdma.ack.tid_flow_psn =
4465				cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4466		} else {
4467			/*
4468			 * Because the KDETH PSNs jump during a RESYNC, it's
4469			 * not possible to infer (or compute) the previous value
4470			 * of r_next_psn_kdeth in the case of back-to-back
4471			 * RESYNC packets. Therefore, we save it.
4472			 */
4473			qpriv->r_next_psn_kdeth_save =
4474				qpriv->r_next_psn_kdeth - 1;
4475			ohdr->u.tid_rdma.ack.tid_flow_psn =
4476				cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4477			qpriv->r_next_psn_kdeth = mask_psn(*bth2 + 1);
4478		}
4479		qpriv->resync = false;
4480	}
4481
4482	return sizeof(ohdr->u.tid_rdma.ack) / sizeof(u32);
4483}
4484
4485void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet)
4486{
4487	struct ib_other_headers *ohdr = packet->ohdr;
4488	struct rvt_qp *qp = packet->qp;
4489	struct hfi1_qp_priv *qpriv = qp->priv;
4490	struct rvt_swqe *wqe;
4491	struct tid_rdma_request *req;
4492	struct tid_rdma_flow *flow;
4493	u32 aeth, psn, req_psn, ack_psn, flpsn, resync_psn, ack_kpsn;
4494	unsigned long flags;
4495	u16 fidx;
4496
4497	trace_hfi1_tid_write_sender_rcv_tid_ack(qp, 0);
4498	process_ecn(qp, packet);
4499	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4500	aeth = be32_to_cpu(ohdr->u.tid_rdma.ack.aeth);
4501	req_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.verbs_psn));
4502	resync_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.tid_flow_psn));
4503
4504	spin_lock_irqsave(&qp->s_lock, flags);
4505	trace_hfi1_rcv_tid_ack(qp, aeth, psn, req_psn, resync_psn);
4506
4507	/* If we are waiting for an ACK to RESYNC, drop any other packets */
4508	if ((qp->s_flags & HFI1_S_WAIT_HALT) &&
4509	    cmp_psn(psn, qpriv->s_resync_psn))
4510		goto ack_op_err;
4511
4512	ack_psn = req_psn;
4513	if (hfi1_tid_rdma_is_resync_psn(psn))
4514		ack_kpsn = resync_psn;
4515	else
4516		ack_kpsn = psn;
4517	if (aeth >> 29) {
4518		ack_psn--;
4519		ack_kpsn--;
4520	}
4521
4522	if (unlikely(qp->s_acked == qp->s_tail))
4523		goto ack_op_err;
4524
4525	wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4526
4527	if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4528		goto ack_op_err;
4529
4530	req = wqe_to_tid_req(wqe);
4531	trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4532				       wqe->lpsn, req);
4533	flow = &req->flows[req->acked_tail];
4534	trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4535
4536	/* Drop stale ACK/NAK */
4537	if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.spsn)) < 0 ||
4538	    cmp_psn(req_psn, flow->flow_state.resp_ib_psn) < 0)
4539		goto ack_op_err;
4540
4541	while (cmp_psn(ack_kpsn,
4542		       full_flow_psn(flow, flow->flow_state.lpsn)) >= 0 &&
4543	       req->ack_seg < req->cur_seg) {
4544		req->ack_seg++;
4545		/* advance acked segment pointer */
4546		req->acked_tail = CIRC_NEXT(req->acked_tail, MAX_FLOWS);
4547		req->r_last_acked = flow->flow_state.resp_ib_psn;
4548		trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4549					       wqe->lpsn, req);
4550		if (req->ack_seg == req->total_segs) {
4551			req->state = TID_REQUEST_COMPLETE;
4552			wqe = do_rc_completion(qp, wqe,
4553					       to_iport(qp->ibqp.device,
4554							qp->port_num));
4555			trace_hfi1_sender_rcv_tid_ack(qp);
4556			atomic_dec(&qpriv->n_tid_requests);
4557			if (qp->s_acked == qp->s_tail)
4558				break;
4559			if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4560				break;
4561			req = wqe_to_tid_req(wqe);
4562		}
4563		flow = &req->flows[req->acked_tail];
4564		trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4565	}
4566
4567	trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4568				       wqe->lpsn, req);
4569	switch (aeth >> 29) {
4570	case 0:         /* ACK */
4571		if (qpriv->s_flags & RVT_S_WAIT_ACK)
4572			qpriv->s_flags &= ~RVT_S_WAIT_ACK;
4573		if (!hfi1_tid_rdma_is_resync_psn(psn)) {
4574			/* Check if there is any pending TID ACK */
4575			if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE &&
4576			    req->ack_seg < req->cur_seg)
4577				hfi1_mod_tid_retry_timer(qp);
4578			else
4579				hfi1_stop_tid_retry_timer(qp);
4580			hfi1_schedule_send(qp);
4581		} else {
4582			u32 spsn, fpsn, last_acked, generation;
4583			struct tid_rdma_request *rptr;
4584
4585			/* ACK(RESYNC) */
4586			hfi1_stop_tid_retry_timer(qp);
4587			/* Allow new requests (see hfi1_make_tid_rdma_pkt) */
4588			qp->s_flags &= ~HFI1_S_WAIT_HALT;
4589			/*
4590			 * Clear RVT_S_SEND_ONE flag in case that the TID RDMA
4591			 * ACK is received after the TID retry timer is fired
4592			 * again. In this case, do not send any more TID
4593			 * RESYNC request or wait for any more TID ACK packet.
4594			 */
4595			qpriv->s_flags &= ~RVT_S_SEND_ONE;
4596			hfi1_schedule_send(qp);
4597
4598			if ((qp->s_acked == qpriv->s_tid_tail &&
4599			     req->ack_seg == req->total_segs) ||
4600			    qp->s_acked == qp->s_tail) {
4601				qpriv->s_state = TID_OP(WRITE_DATA_LAST);
4602				goto done;
4603			}
4604
4605			if (req->ack_seg == req->comp_seg) {
4606				qpriv->s_state = TID_OP(WRITE_DATA);
4607				goto done;
4608			}
4609
4610			/*
4611			 * The PSN to start with is the next PSN after the
4612			 * RESYNC PSN.
4613			 */
4614			psn = mask_psn(psn + 1);
4615			generation = psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4616			spsn = 0;
4617
4618			/*
4619			 * Update to the correct WQE when we get an ACK(RESYNC)
4620			 * in the middle of a request.
4621			 */
4622			if (delta_psn(ack_psn, wqe->lpsn))
4623				wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4624			req = wqe_to_tid_req(wqe);
4625			flow = &req->flows[req->acked_tail];
4626			/*
4627			 * RESYNC re-numbers the PSN ranges of all remaining
4628			 * segments. Also, PSN's start from 0 in the middle of a
4629			 * segment and the first segment size is less than the
4630			 * default number of packets. flow->resync_npkts is used
4631			 * to track the number of packets from the start of the
4632			 * real segment to the point of 0 PSN after the RESYNC
4633			 * in order to later correctly rewind the SGE.
4634			 */
4635			fpsn = full_flow_psn(flow, flow->flow_state.spsn);
4636			req->r_ack_psn = psn;
4637			/*
4638			 * If resync_psn points to the last flow PSN for a
4639			 * segment and the new segment (likely from a new
4640			 * request) starts with a new generation number, we
4641			 * need to adjust resync_psn accordingly.
4642			 */
4643			if (flow->flow_state.generation !=
4644			    (resync_psn >> HFI1_KDETH_BTH_SEQ_SHIFT))
4645				resync_psn = mask_psn(fpsn - 1);
4646			flow->resync_npkts +=
4647				delta_psn(mask_psn(resync_psn + 1), fpsn);
4648			/*
4649			 * Renumber all packet sequence number ranges
4650			 * based on the new generation.
4651			 */
4652			last_acked = qp->s_acked;
4653			rptr = req;
4654			while (1) {
4655				/* start from last acked segment */
4656				for (fidx = rptr->acked_tail;
4657				     CIRC_CNT(rptr->setup_head, fidx,
4658					      MAX_FLOWS);
4659				     fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
4660					u32 lpsn;
4661					u32 gen;
4662
4663					flow = &rptr->flows[fidx];
4664					gen = flow->flow_state.generation;
4665					if (WARN_ON(gen == generation &&
4666						    flow->flow_state.spsn !=
4667						     spsn))
4668						continue;
4669					lpsn = flow->flow_state.lpsn;
4670					lpsn = full_flow_psn(flow, lpsn);
4671					flow->npkts =
4672						delta_psn(lpsn,
4673							  mask_psn(resync_psn)
4674							  );
4675					flow->flow_state.generation =
4676						generation;
4677					flow->flow_state.spsn = spsn;
4678					flow->flow_state.lpsn =
4679						flow->flow_state.spsn +
4680						flow->npkts - 1;
4681					flow->pkt = 0;
4682					spsn += flow->npkts;
4683					resync_psn += flow->npkts;
4684					trace_hfi1_tid_flow_rcv_tid_ack(qp,
4685									fidx,
4686									flow);
4687				}
4688				if (++last_acked == qpriv->s_tid_cur + 1)
4689					break;
4690				if (last_acked == qp->s_size)
4691					last_acked = 0;
4692				wqe = rvt_get_swqe_ptr(qp, last_acked);
4693				rptr = wqe_to_tid_req(wqe);
4694			}
4695			req->cur_seg = req->ack_seg;
4696			qpriv->s_tid_tail = qp->s_acked;
4697			qpriv->s_state = TID_OP(WRITE_REQ);
4698			hfi1_schedule_tid_send(qp);
4699		}
4700done:
4701		qpriv->s_retry = qp->s_retry_cnt;
4702		break;
4703
4704	case 3:         /* NAK */
4705		hfi1_stop_tid_retry_timer(qp);
4706		switch ((aeth >> IB_AETH_CREDIT_SHIFT) &
4707			IB_AETH_CREDIT_MASK) {
4708		case 0: /* PSN sequence error */
4709			if (!req->flows)
4710				break;
4711			flow = &req->flows[req->acked_tail];
4712			flpsn = full_flow_psn(flow, flow->flow_state.lpsn);
4713			if (cmp_psn(psn, flpsn) > 0)
4714				break;
4715			trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail,
4716							flow);
4717			req->r_ack_psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4718			req->cur_seg = req->ack_seg;
4719			qpriv->s_tid_tail = qp->s_acked;
4720			qpriv->s_state = TID_OP(WRITE_REQ);
4721			qpriv->s_retry = qp->s_retry_cnt;
4722			hfi1_schedule_tid_send(qp);
4723			break;
4724
4725		default:
4726			break;
4727		}
4728		break;
4729
4730	default:
4731		break;
4732	}
4733
4734ack_op_err:
4735	spin_unlock_irqrestore(&qp->s_lock, flags);
4736}
4737
4738void hfi1_add_tid_retry_timer(struct rvt_qp *qp)
4739{
4740	struct hfi1_qp_priv *priv = qp->priv;
4741	struct ib_qp *ibqp = &qp->ibqp;
4742	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4743
4744	lockdep_assert_held(&qp->s_lock);
4745	if (!(priv->s_flags & HFI1_S_TID_RETRY_TIMER)) {
4746		priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4747		priv->s_tid_retry_timer.expires = jiffies +
4748			priv->tid_retry_timeout_jiffies + rdi->busy_jiffies;
4749		add_timer(&priv->s_tid_retry_timer);
4750	}
4751}
4752
4753static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp)
4754{
4755	struct hfi1_qp_priv *priv = qp->priv;
4756	struct ib_qp *ibqp = &qp->ibqp;
4757	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4758
4759	lockdep_assert_held(&qp->s_lock);
4760	priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4761	mod_timer(&priv->s_tid_retry_timer, jiffies +
4762		  priv->tid_retry_timeout_jiffies + rdi->busy_jiffies);
4763}
4764
4765static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp)
4766{
4767	struct hfi1_qp_priv *priv = qp->priv;
4768	int rval = 0;
4769
4770	lockdep_assert_held(&qp->s_lock);
4771	if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4772		rval = del_timer(&priv->s_tid_retry_timer);
4773		priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4774	}
4775	return rval;
4776}
4777
4778void hfi1_del_tid_retry_timer(struct rvt_qp *qp)
4779{
4780	struct hfi1_qp_priv *priv = qp->priv;
4781
4782	del_timer_sync(&priv->s_tid_retry_timer);
4783	priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4784}
4785
4786static void hfi1_tid_retry_timeout(struct timer_list *t)
4787{
4788	struct hfi1_qp_priv *priv = from_timer(priv, t, s_tid_retry_timer);
4789	struct rvt_qp *qp = priv->owner;
4790	struct rvt_swqe *wqe;
4791	unsigned long flags;
4792	struct tid_rdma_request *req;
4793
4794	spin_lock_irqsave(&qp->r_lock, flags);
4795	spin_lock(&qp->s_lock);
4796	trace_hfi1_tid_write_sender_retry_timeout(qp, 0);
4797	if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4798		hfi1_stop_tid_retry_timer(qp);
4799		if (!priv->s_retry) {
4800			trace_hfi1_msg_tid_retry_timeout(/* msg */
4801				qp,
4802				"Exhausted retries. Tid retry timeout = ",
4803				(u64)priv->tid_retry_timeout_jiffies);
4804
4805			wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4806			hfi1_trdma_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR);
4807			rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
4808		} else {
4809			wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4810			req = wqe_to_tid_req(wqe);
4811			trace_hfi1_tid_req_tid_retry_timeout(/* req */
4812			   qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req);
4813
4814			priv->s_flags &= ~RVT_S_WAIT_ACK;
4815			/* Only send one packet (the RESYNC) */
4816			priv->s_flags |= RVT_S_SEND_ONE;
4817			/*
4818			 * No additional request shall be made by this QP until
4819			 * the RESYNC has been complete.
4820			 */
4821			qp->s_flags |= HFI1_S_WAIT_HALT;
4822			priv->s_state = TID_OP(RESYNC);
4823			priv->s_retry--;
4824			hfi1_schedule_tid_send(qp);
4825		}
4826	}
4827	spin_unlock(&qp->s_lock);
4828	spin_unlock_irqrestore(&qp->r_lock, flags);
4829}
4830
4831u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe,
4832			       struct ib_other_headers *ohdr, u32 *bth1,
4833			       u32 *bth2, u16 fidx)
4834{
4835	struct hfi1_qp_priv *qpriv = qp->priv;
4836	struct tid_rdma_params *remote;
4837	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4838	struct tid_rdma_flow *flow = &req->flows[fidx];
4839	u32 generation;
4840
4841	rcu_read_lock();
4842	remote = rcu_dereference(qpriv->tid_rdma.remote);
4843	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4844	ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4845	*bth1 = remote->qp;
4846	rcu_read_unlock();
4847
4848	generation = kern_flow_generation_next(flow->flow_state.generation);
4849	*bth2 = mask_psn((generation << HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4850	qpriv->s_resync_psn = *bth2;
4851	*bth2 |= IB_BTH_REQ_ACK;
4852	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4853
4854	return sizeof(ohdr->u.tid_rdma.resync) / sizeof(u32);
4855}
4856
4857void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet)
4858{
4859	struct ib_other_headers *ohdr = packet->ohdr;
4860	struct rvt_qp *qp = packet->qp;
4861	struct hfi1_qp_priv *qpriv = qp->priv;
4862	struct hfi1_ctxtdata *rcd = qpriv->rcd;
4863	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4864	struct rvt_ack_entry *e;
4865	struct tid_rdma_request *req;
4866	struct tid_rdma_flow *flow;
4867	struct tid_flow_state *fs = &qpriv->flow_state;
4868	u32 psn, generation, idx, gen_next;
4869	bool fecn;
4870	unsigned long flags;
4871
4872	fecn = process_ecn(qp, packet);
4873	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4874
4875	generation = mask_psn(psn + 1) >> HFI1_KDETH_BTH_SEQ_SHIFT;
4876	spin_lock_irqsave(&qp->s_lock, flags);
4877
4878	gen_next = (fs->generation == KERN_GENERATION_RESERVED) ?
4879		generation : kern_flow_generation_next(fs->generation);
4880	/*
4881	 * RESYNC packet contains the "next" generation and can only be
4882	 * from the current or previous generations
4883	 */
4884	if (generation != mask_generation(gen_next - 1) &&
4885	    generation != gen_next)
4886		goto bail;
4887	/* Already processing a resync */
4888	if (qpriv->resync)
4889		goto bail;
4890
4891	spin_lock(&rcd->exp_lock);
4892	if (fs->index >= RXE_NUM_TID_FLOWS) {
4893		/*
4894		 * If we don't have a flow, save the generation so it can be
4895		 * applied when a new flow is allocated
4896		 */
4897		fs->generation = generation;
4898	} else {
4899		/* Reprogram the QP flow with new generation */
4900		rcd->flows[fs->index].generation = generation;
4901		fs->generation = kern_setup_hw_flow(rcd, fs->index);
4902	}
4903	fs->psn = 0;
4904	/*
4905	 * Disable SW PSN checking since a RESYNC is equivalent to a
4906	 * sync point and the flow has/will be reprogrammed
4907	 */
4908	qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
4909	trace_hfi1_tid_write_rsp_rcv_resync(qp);
4910
4911	/*
4912	 * Reset all TID flow information with the new generation.
4913	 * This is done for all requests and segments after the
4914	 * last received segment
4915	 */
4916	for (idx = qpriv->r_tid_tail; ; idx++) {
4917		u16 flow_idx;
4918
4919		if (idx > rvt_size_atomic(&dev->rdi))
4920			idx = 0;
4921		e = &qp->s_ack_queue[idx];
4922		if (e->opcode == TID_OP(WRITE_REQ)) {
4923			req = ack_to_tid_req(e);
4924			trace_hfi1_tid_req_rcv_resync(qp, 0, e->opcode, e->psn,
4925						      e->lpsn, req);
4926
4927			/* start from last unacked segment */
4928			for (flow_idx = req->clear_tail;
4929			     CIRC_CNT(req->setup_head, flow_idx,
4930				      MAX_FLOWS);
4931			     flow_idx = CIRC_NEXT(flow_idx, MAX_FLOWS)) {
4932				u32 lpsn;
4933				u32 next;
4934
4935				flow = &req->flows[flow_idx];
4936				lpsn = full_flow_psn(flow,
4937						     flow->flow_state.lpsn);
4938				next = flow->flow_state.r_next_psn;
4939				flow->npkts = delta_psn(lpsn, next - 1);
4940				flow->flow_state.generation = fs->generation;
4941				flow->flow_state.spsn = fs->psn;
4942				flow->flow_state.lpsn =
4943					flow->flow_state.spsn + flow->npkts - 1;
4944				flow->flow_state.r_next_psn =
4945					full_flow_psn(flow,
4946						      flow->flow_state.spsn);
4947				fs->psn += flow->npkts;
4948				trace_hfi1_tid_flow_rcv_resync(qp, flow_idx,
4949							       flow);
4950			}
4951		}
4952		if (idx == qp->s_tail_ack_queue)
4953			break;
4954	}
4955
4956	spin_unlock(&rcd->exp_lock);
4957	qpriv->resync = true;
4958	/* RESYNC request always gets a TID RDMA ACK. */
4959	qpriv->s_nak_state = 0;
4960	tid_rdma_trigger_ack(qp);
4961bail:
4962	if (fecn)
4963		qp->s_flags |= RVT_S_ECN;
4964	spin_unlock_irqrestore(&qp->s_lock, flags);
4965}
4966
4967/*
4968 * Call this function when the last TID RDMA WRITE DATA packet for a request
4969 * is built.
4970 */
4971static void update_tid_tail(struct rvt_qp *qp)
4972	__must_hold(&qp->s_lock)
4973{
4974	struct hfi1_qp_priv *priv = qp->priv;
4975	u32 i;
4976	struct rvt_swqe *wqe;
4977
4978	lockdep_assert_held(&qp->s_lock);
4979	/* Can't move beyond s_tid_cur */
4980	if (priv->s_tid_tail == priv->s_tid_cur)
4981		return;
4982	for (i = priv->s_tid_tail + 1; ; i++) {
4983		if (i == qp->s_size)
4984			i = 0;
4985
4986		if (i == priv->s_tid_cur)
4987			break;
4988		wqe = rvt_get_swqe_ptr(qp, i);
4989		if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
4990			break;
4991	}
4992	priv->s_tid_tail = i;
4993	priv->s_state = TID_OP(WRITE_RESP);
4994}
4995
4996int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
4997	__must_hold(&qp->s_lock)
4998{
4999	struct hfi1_qp_priv *priv = qp->priv;
5000	struct rvt_swqe *wqe;
5001	u32 bth1 = 0, bth2 = 0, hwords = 5, len, middle = 0;
5002	struct ib_other_headers *ohdr;
5003	struct rvt_sge_state *ss = &qp->s_sge;
5004	struct rvt_ack_entry *e = &qp->s_ack_queue[qp->s_tail_ack_queue];
5005	struct tid_rdma_request *req = ack_to_tid_req(e);
5006	bool last = false;
5007	u8 opcode = TID_OP(WRITE_DATA);
5008
5009	lockdep_assert_held(&qp->s_lock);
5010	trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5011	/*
5012	 * Prioritize the sending of the requests and responses over the
5013	 * sending of the TID RDMA data packets.
5014	 */
5015	if (((atomic_read(&priv->n_tid_requests) < HFI1_TID_RDMA_WRITE_CNT) &&
5016	     atomic_read(&priv->n_requests) &&
5017	     !(qp->s_flags & (RVT_S_BUSY | RVT_S_WAIT_ACK |
5018			     HFI1_S_ANY_WAIT_IO))) ||
5019	    (e->opcode == TID_OP(WRITE_REQ) && req->cur_seg < req->alloc_seg &&
5020	     !(qp->s_flags & (RVT_S_BUSY | HFI1_S_ANY_WAIT_IO)))) {
5021		struct iowait_work *iowork;
5022
5023		iowork = iowait_get_ib_work(&priv->s_iowait);
5024		ps->s_txreq = get_waiting_verbs_txreq(iowork);
5025		if (ps->s_txreq || hfi1_make_rc_req(qp, ps)) {
5026			priv->s_flags |= HFI1_S_TID_BUSY_SET;
5027			return 1;
5028		}
5029	}
5030
5031	ps->s_txreq = get_txreq(ps->dev, qp);
5032	if (!ps->s_txreq)
5033		goto bail_no_tx;
5034
5035	ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth;
5036
5037	if ((priv->s_flags & RVT_S_ACK_PENDING) &&
5038	    make_tid_rdma_ack(qp, ohdr, ps))
5039		return 1;
5040
5041	/*
5042	 * Bail out if we can't send data.
5043	 * Be reminded that this check must been done after the call to
5044	 * make_tid_rdma_ack() because the responding QP could be in
5045	 * RTR state where it can send TID RDMA ACK, not TID RDMA WRITE DATA.
5046	 */
5047	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK))
5048		goto bail;
5049
5050	if (priv->s_flags & RVT_S_WAIT_ACK)
5051		goto bail;
5052
5053	/* Check whether there is anything to do. */
5054	if (priv->s_tid_tail == HFI1_QP_WQE_INVALID)
5055		goto bail;
5056	wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5057	req = wqe_to_tid_req(wqe);
5058	trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, wqe->psn,
5059					wqe->lpsn, req);
5060	switch (priv->s_state) {
5061	case TID_OP(WRITE_REQ):
5062	case TID_OP(WRITE_RESP):
5063		priv->tid_ss.sge = wqe->sg_list[0];
5064		priv->tid_ss.sg_list = wqe->sg_list + 1;
5065		priv->tid_ss.num_sge = wqe->wr.num_sge;
5066		priv->tid_ss.total_len = wqe->length;
5067
5068		if (priv->s_state == TID_OP(WRITE_REQ))
5069			hfi1_tid_rdma_restart_req(qp, wqe, &bth2);
5070		priv->s_state = TID_OP(WRITE_DATA);
5071		fallthrough;
5072
5073	case TID_OP(WRITE_DATA):
5074		/*
5075		 * 1. Check whether TID RDMA WRITE RESP available.
5076		 * 2. If no:
5077		 *    2.1 If have more segments and no TID RDMA WRITE RESP,
5078		 *        set HFI1_S_WAIT_TID_RESP
5079		 *    2.2 Return indicating no progress made.
5080		 * 3. If yes:
5081		 *    3.1 Build TID RDMA WRITE DATA packet.
5082		 *    3.2 If last packet in segment:
5083		 *        3.2.1 Change KDETH header bits
5084		 *        3.2.2 Advance RESP pointers.
5085		 *    3.3 Return indicating progress made.
5086		 */
5087		trace_hfi1_sender_make_tid_pkt(qp);
5088		trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5089		wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5090		req = wqe_to_tid_req(wqe);
5091		len = wqe->length;
5092
5093		if (!req->comp_seg || req->cur_seg == req->comp_seg)
5094			goto bail;
5095
5096		trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode,
5097						wqe->psn, wqe->lpsn, req);
5098		last = hfi1_build_tid_rdma_packet(wqe, ohdr, &bth1, &bth2,
5099						  &len);
5100
5101		if (last) {
5102			/* move pointer to next flow */
5103			req->clear_tail = CIRC_NEXT(req->clear_tail,
5104						    MAX_FLOWS);
5105			if (++req->cur_seg < req->total_segs) {
5106				if (!CIRC_CNT(req->setup_head, req->clear_tail,
5107					      MAX_FLOWS))
5108					qp->s_flags |= HFI1_S_WAIT_TID_RESP;
5109			} else {
5110				priv->s_state = TID_OP(WRITE_DATA_LAST);
5111				opcode = TID_OP(WRITE_DATA_LAST);
5112
5113				/* Advance the s_tid_tail now */
5114				update_tid_tail(qp);
5115			}
5116		}
5117		hwords += sizeof(ohdr->u.tid_rdma.w_data) / sizeof(u32);
5118		ss = &priv->tid_ss;
5119		break;
5120
5121	case TID_OP(RESYNC):
5122		trace_hfi1_sender_make_tid_pkt(qp);
5123		/* Use generation from the most recently received response */
5124		wqe = rvt_get_swqe_ptr(qp, priv->s_tid_cur);
5125		req = wqe_to_tid_req(wqe);
5126		/* If no responses for this WQE look at the previous one */
5127		if (!req->comp_seg) {
5128			wqe = rvt_get_swqe_ptr(qp,
5129					       (!priv->s_tid_cur ? qp->s_size :
5130						priv->s_tid_cur) - 1);
5131			req = wqe_to_tid_req(wqe);
5132		}
5133		hwords += hfi1_build_tid_rdma_resync(qp, wqe, ohdr, &bth1,
5134						     &bth2,
5135						     CIRC_PREV(req->setup_head,
5136							       MAX_FLOWS));
5137		ss = NULL;
5138		len = 0;
5139		opcode = TID_OP(RESYNC);
5140		break;
5141
5142	default:
5143		goto bail;
5144	}
5145	if (priv->s_flags & RVT_S_SEND_ONE) {
5146		priv->s_flags &= ~RVT_S_SEND_ONE;
5147		priv->s_flags |= RVT_S_WAIT_ACK;
5148		bth2 |= IB_BTH_REQ_ACK;
5149	}
5150	qp->s_len -= len;
5151	ps->s_txreq->hdr_dwords = hwords;
5152	ps->s_txreq->sde = priv->s_sde;
5153	ps->s_txreq->ss = ss;
5154	ps->s_txreq->s_cur_size = len;
5155	hfi1_make_ruc_header(qp, ohdr, (opcode << 24), bth1, bth2,
5156			     middle, ps);
5157	return 1;
5158bail:
5159	hfi1_put_txreq(ps->s_txreq);
5160bail_no_tx:
5161	ps->s_txreq = NULL;
5162	priv->s_flags &= ~RVT_S_BUSY;
5163	/*
5164	 * If we didn't get a txreq, the QP will be woken up later to try
5165	 * again, set the flags to the the wake up which work item to wake
5166	 * up.
5167	 * (A better algorithm should be found to do this and generalize the
5168	 * sleep/wakeup flags.)
5169	 */
5170	iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5171	return 0;
5172}
5173
5174static int make_tid_rdma_ack(struct rvt_qp *qp,
5175			     struct ib_other_headers *ohdr,
5176			     struct hfi1_pkt_state *ps)
5177{
5178	struct rvt_ack_entry *e;
5179	struct hfi1_qp_priv *qpriv = qp->priv;
5180	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5181	u32 hwords, next;
5182	u32 len = 0;
5183	u32 bth1 = 0, bth2 = 0;
5184	int middle = 0;
5185	u16 flow;
5186	struct tid_rdma_request *req, *nreq;
5187
5188	trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5189	/* Don't send an ACK if we aren't supposed to. */
5190	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
5191		goto bail;
5192
5193	/* header size in 32-bit words LRH+BTH = (8+12)/4. */
5194	hwords = 5;
5195
5196	e = &qp->s_ack_queue[qpriv->r_tid_ack];
5197	req = ack_to_tid_req(e);
5198	/*
5199	 * In the RESYNC case, we are exactly one segment past the
5200	 * previously sent ack or at the previously sent NAK. So to send
5201	 * the resync ack, we go back one segment (which might be part of
5202	 * the previous request) and let the do-while loop execute again.
5203	 * The advantage of executing the do-while loop is that any data
5204	 * received after the previous ack is automatically acked in the
5205	 * RESYNC ack. It turns out that for the do-while loop we only need
5206	 * to pull back qpriv->r_tid_ack, not the segment
5207	 * indices/counters. The scheme works even if the previous request
5208	 * was not a TID WRITE request.
5209	 */
5210	if (qpriv->resync) {
5211		if (!req->ack_seg || req->ack_seg == req->total_segs)
5212			qpriv->r_tid_ack = !qpriv->r_tid_ack ?
5213				rvt_size_atomic(&dev->rdi) :
5214				qpriv->r_tid_ack - 1;
5215		e = &qp->s_ack_queue[qpriv->r_tid_ack];
5216		req = ack_to_tid_req(e);
5217	}
5218
5219	trace_hfi1_rsp_make_tid_ack(qp, e->psn);
5220	trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5221					req);
5222	/*
5223	 * If we've sent all the ACKs that we can, we are done
5224	 * until we get more segments...
5225	 */
5226	if (!qpriv->s_nak_state && !qpriv->resync &&
5227	    req->ack_seg == req->comp_seg)
5228		goto bail;
5229
5230	do {
5231		/*
5232		 * To deal with coalesced ACKs, the acked_tail pointer
5233		 * into the flow array is used. The distance between it
5234		 * and the clear_tail is the number of flows that are
5235		 * being ACK'ed.
5236		 */
5237		req->ack_seg +=
5238			/* Get up-to-date value */
5239			CIRC_CNT(req->clear_tail, req->acked_tail,
5240				 MAX_FLOWS);
5241		/* Advance acked index */
5242		req->acked_tail = req->clear_tail;
5243
5244		/*
5245		 * req->clear_tail points to the segment currently being
5246		 * received. So, when sending an ACK, the previous
5247		 * segment is being ACK'ed.
5248		 */
5249		flow = CIRC_PREV(req->acked_tail, MAX_FLOWS);
5250		if (req->ack_seg != req->total_segs)
5251			break;
5252		req->state = TID_REQUEST_COMPLETE;
5253
5254		next = qpriv->r_tid_ack + 1;
5255		if (next > rvt_size_atomic(&dev->rdi))
5256			next = 0;
5257		qpriv->r_tid_ack = next;
5258		if (qp->s_ack_queue[next].opcode != TID_OP(WRITE_REQ))
5259			break;
5260		nreq = ack_to_tid_req(&qp->s_ack_queue[next]);
5261		if (!nreq->comp_seg || nreq->ack_seg == nreq->comp_seg)
5262			break;
5263
5264		/* Move to the next ack entry now */
5265		e = &qp->s_ack_queue[qpriv->r_tid_ack];
5266		req = ack_to_tid_req(e);
5267	} while (1);
5268
5269	/*
5270	 * At this point qpriv->r_tid_ack == qpriv->r_tid_tail but e and
5271	 * req could be pointing at the previous ack queue entry
5272	 */
5273	if (qpriv->s_nak_state ||
5274	    (qpriv->resync &&
5275	     !hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1) &&
5276	     (cmp_psn(qpriv->r_next_psn_kdeth - 1,
5277		      full_flow_psn(&req->flows[flow],
5278				    req->flows[flow].flow_state.lpsn)) > 0))) {
5279		/*
5280		 * A NAK will implicitly acknowledge all previous TID RDMA
5281		 * requests. Therefore, we NAK with the req->acked_tail
5282		 * segment for the request at qpriv->r_tid_ack (same at
5283		 * this point as the req->clear_tail segment for the
5284		 * qpriv->r_tid_tail request)
5285		 */
5286		e = &qp->s_ack_queue[qpriv->r_tid_ack];
5287		req = ack_to_tid_req(e);
5288		flow = req->acked_tail;
5289	} else if (req->ack_seg == req->total_segs &&
5290		   qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK)
5291		qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
5292
5293	trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5294	trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5295					req);
5296	hwords += hfi1_build_tid_rdma_write_ack(qp, e, ohdr, flow, &bth1,
5297						&bth2);
5298	len = 0;
5299	qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5300	ps->s_txreq->hdr_dwords = hwords;
5301	ps->s_txreq->sde = qpriv->s_sde;
5302	ps->s_txreq->s_cur_size = len;
5303	ps->s_txreq->ss = NULL;
5304	hfi1_make_ruc_header(qp, ohdr, (TID_OP(ACK) << 24), bth1, bth2, middle,
5305			     ps);
5306	ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP;
5307	return 1;
5308bail:
5309	/*
5310	 * Ensure s_rdma_ack_cnt changes are committed prior to resetting
5311	 * RVT_S_RESP_PENDING
5312	 */
5313	smp_wmb();
5314	qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5315	return 0;
5316}
5317
5318static int hfi1_send_tid_ok(struct rvt_qp *qp)
5319{
5320	struct hfi1_qp_priv *priv = qp->priv;
5321
5322	return !(priv->s_flags & RVT_S_BUSY ||
5323		 qp->s_flags & HFI1_S_ANY_WAIT_IO) &&
5324		(verbs_txreq_queued(iowait_get_tid_work(&priv->s_iowait)) ||
5325		 (priv->s_flags & RVT_S_RESP_PENDING) ||
5326		 !(qp->s_flags & HFI1_S_ANY_TID_WAIT_SEND));
5327}
5328
5329void _hfi1_do_tid_send(struct work_struct *work)
5330{
5331	struct iowait_work *w = container_of(work, struct iowait_work, iowork);
5332	struct rvt_qp *qp = iowait_to_qp(w->iow);
5333
5334	hfi1_do_tid_send(qp);
5335}
5336
5337static void hfi1_do_tid_send(struct rvt_qp *qp)
5338{
5339	struct hfi1_pkt_state ps;
5340	struct hfi1_qp_priv *priv = qp->priv;
5341
5342	ps.dev = to_idev(qp->ibqp.device);
5343	ps.ibp = to_iport(qp->ibqp.device, qp->port_num);
5344	ps.ppd = ppd_from_ibp(ps.ibp);
5345	ps.wait = iowait_get_tid_work(&priv->s_iowait);
5346	ps.in_thread = false;
5347	ps.timeout_int = qp->timeout_jiffies / 8;
5348
5349	trace_hfi1_rc_do_tid_send(qp, false);
5350	spin_lock_irqsave(&qp->s_lock, ps.flags);
5351
5352	/* Return if we are already busy processing a work request. */
5353	if (!hfi1_send_tid_ok(qp)) {
5354		if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5355			iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5356		spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5357		return;
5358	}
5359
5360	priv->s_flags |= RVT_S_BUSY;
5361
5362	ps.timeout = jiffies + ps.timeout_int;
5363	ps.cpu = priv->s_sde ? priv->s_sde->cpu :
5364		cpumask_first(cpumask_of_node(ps.ppd->dd->node));
5365	ps.pkts_sent = false;
5366
5367	/* insure a pre-built packet is handled  */
5368	ps.s_txreq = get_waiting_verbs_txreq(ps.wait);
5369	do {
5370		/* Check for a constructed packet to be sent. */
5371		if (ps.s_txreq) {
5372			if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5373				qp->s_flags |= RVT_S_BUSY;
5374				ps.wait = iowait_get_ib_work(&priv->s_iowait);
5375			}
5376			spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5377
5378			/*
5379			 * If the packet cannot be sent now, return and
5380			 * the send tasklet will be woken up later.
5381			 */
5382			if (hfi1_verbs_send(qp, &ps))
5383				return;
5384
5385			/* allow other tasks to run */
5386			if (hfi1_schedule_send_yield(qp, &ps, true))
5387				return;
5388
5389			spin_lock_irqsave(&qp->s_lock, ps.flags);
5390			if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5391				qp->s_flags &= ~RVT_S_BUSY;
5392				priv->s_flags &= ~HFI1_S_TID_BUSY_SET;
5393				ps.wait = iowait_get_tid_work(&priv->s_iowait);
5394				if (iowait_flag_set(&priv->s_iowait,
5395						    IOWAIT_PENDING_IB))
5396					hfi1_schedule_send(qp);
5397			}
5398		}
5399	} while (hfi1_make_tid_rdma_pkt(qp, &ps));
5400	iowait_starve_clear(ps.pkts_sent, &priv->s_iowait);
5401	spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5402}
5403
5404static bool _hfi1_schedule_tid_send(struct rvt_qp *qp)
5405{
5406	struct hfi1_qp_priv *priv = qp->priv;
5407	struct hfi1_ibport *ibp =
5408		to_iport(qp->ibqp.device, qp->port_num);
5409	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
5410	struct hfi1_devdata *dd = ppd->dd;
5411
5412	if ((dd->flags & HFI1_SHUTDOWN))
5413		return true;
5414
5415	return iowait_tid_schedule(&priv->s_iowait, ppd->hfi1_wq,
5416				   priv->s_sde ?
5417				   priv->s_sde->cpu :
5418				   cpumask_first(cpumask_of_node(dd->node)));
5419}
5420
5421/**
5422 * hfi1_schedule_tid_send - schedule progress on TID RDMA state machine
5423 * @qp: the QP
5424 *
5425 * This schedules qp progress on the TID RDMA state machine. Caller
5426 * should hold the s_lock.
5427 * Unlike hfi1_schedule_send(), this cannot use hfi1_send_ok() because
5428 * the two state machines can step on each other with respect to the
5429 * RVT_S_BUSY flag.
5430 * Therefore, a modified test is used.
5431 * @return true if the second leg is scheduled;
5432 *  false if the second leg is not scheduled.
5433 */
5434bool hfi1_schedule_tid_send(struct rvt_qp *qp)
5435{
5436	lockdep_assert_held(&qp->s_lock);
5437	if (hfi1_send_tid_ok(qp)) {
5438		/*
5439		 * The following call returns true if the qp is not on the
5440		 * queue and false if the qp is already on the queue before
5441		 * this call. Either way, the qp will be on the queue when the
5442		 * call returns.
5443		 */
5444		_hfi1_schedule_tid_send(qp);
5445		return true;
5446	}
5447	if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5448		iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
5449				IOWAIT_PENDING_TID);
5450	return false;
5451}
5452
5453bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e)
5454{
5455	struct rvt_ack_entry *prev;
5456	struct tid_rdma_request *req;
5457	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5458	struct hfi1_qp_priv *priv = qp->priv;
5459	u32 s_prev;
5460
5461	s_prev = qp->s_tail_ack_queue == 0 ? rvt_size_atomic(&dev->rdi) :
5462		(qp->s_tail_ack_queue - 1);
5463	prev = &qp->s_ack_queue[s_prev];
5464
5465	if ((e->opcode == TID_OP(READ_REQ) ||
5466	     e->opcode == OP(RDMA_READ_REQUEST)) &&
5467	    prev->opcode == TID_OP(WRITE_REQ)) {
5468		req = ack_to_tid_req(prev);
5469		if (req->ack_seg != req->total_segs) {
5470			priv->s_flags |= HFI1_R_TID_WAIT_INTERLCK;
5471			return true;
5472		}
5473	}
5474	return false;
5475}
5476
5477static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx)
5478{
5479	u64 reg;
5480
5481	/*
5482	 * The only sane way to get the amount of
5483	 * progress is to read the HW flow state.
5484	 */
5485	reg = read_uctxt_csr(dd, ctxt, RCV_TID_FLOW_TABLE + (8 * fidx));
5486	return mask_psn(reg);
5487}
5488
5489static void tid_rdma_rcv_err(struct hfi1_packet *packet,
5490			     struct ib_other_headers *ohdr,
5491			     struct rvt_qp *qp, u32 psn, int diff, bool fecn)
5492{
5493	unsigned long flags;
5494
5495	tid_rdma_rcv_error(packet, ohdr, qp, psn, diff);
5496	if (fecn) {
5497		spin_lock_irqsave(&qp->s_lock, flags);
5498		qp->s_flags |= RVT_S_ECN;
5499		spin_unlock_irqrestore(&qp->s_lock, flags);
5500	}
5501}
5502
5503static void update_r_next_psn_fecn(struct hfi1_packet *packet,
5504				   struct hfi1_qp_priv *priv,
5505				   struct hfi1_ctxtdata *rcd,
5506				   struct tid_rdma_flow *flow,
5507				   bool fecn)
5508{
5509	/*
5510	 * If a start/middle packet is delivered here due to
5511	 * RSM rule and FECN, we need to update the r_next_psn.
5512	 */
5513	if (fecn && packet->etype == RHF_RCV_TYPE_EAGER &&
5514	    !(priv->s_flags & HFI1_R_TID_SW_PSN)) {
5515		struct hfi1_devdata *dd = rcd->dd;
5516
5517		flow->flow_state.r_next_psn =
5518			read_r_next_psn(dd, rcd->ctxt, flow->idx);
5519	}
5520}
5521