1/*
2 * Copyright(c) 2015 - 2017 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license.  When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 *  - Redistributions of source code must retain the above copyright
25 *    notice, this list of conditions and the following disclaimer.
26 *  - Redistributions in binary form must reproduce the above copyright
27 *    notice, this list of conditions and the following disclaimer in
28 *    the documentation and/or other materials provided with the
29 *    distribution.
30 *  - Neither the name of Intel Corporation nor the names of its
31 *    contributors may be used to endorse or promote products derived
32 *    from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48#include <linux/firmware.h>
49#include <linux/mutex.h>
50#include <linux/module.h>
51#include <linux/delay.h>
52#include <linux/crc32.h>
53
54#include "hfi.h"
55#include "trace.h"
56
57/*
58 * Make it easy to toggle firmware file name and if it gets loaded by
59 * editing the following. This may be something we do while in development
60 * but not necessarily something a user would ever need to use.
61 */
62#define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
63#define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
64#define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
65#define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
66#define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
67#define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
68#define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
69#define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
70#define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
71
72MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC);
73MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME);
74MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME);
75MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME);
76
77static uint fw_8051_load = 1;
78static uint fw_fabric_serdes_load = 1;
79static uint fw_pcie_serdes_load = 1;
80static uint fw_sbus_load = 1;
81
82/* Firmware file names get set in hfi1_firmware_init() based on the above */
83static char *fw_8051_name;
84static char *fw_fabric_serdes_name;
85static char *fw_sbus_name;
86static char *fw_pcie_serdes_name;
87
88#define SBUS_MAX_POLL_COUNT 100
89#define SBUS_COUNTER(reg, name) \
90	(((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
91	 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
92
93/*
94 * Firmware security header.
95 */
96struct css_header {
97	u32 module_type;
98	u32 header_len;
99	u32 header_version;
100	u32 module_id;
101	u32 module_vendor;
102	u32 date;		/* BCD yyyymmdd */
103	u32 size;		/* in DWORDs */
104	u32 key_size;		/* in DWORDs */
105	u32 modulus_size;	/* in DWORDs */
106	u32 exponent_size;	/* in DWORDs */
107	u32 reserved[22];
108};
109
110/* expected field values */
111#define CSS_MODULE_TYPE	   0x00000006
112#define CSS_HEADER_LEN	   0x000000a1
113#define CSS_HEADER_VERSION 0x00010000
114#define CSS_MODULE_VENDOR  0x00008086
115
116#define KEY_SIZE      256
117#define MU_SIZE		8
118#define EXPONENT_SIZE	4
119
120/* size of platform configuration partition */
121#define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
122
123/* size of file of plaform configuration encoded in format version 4 */
124#define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
125
126/* the file itself */
127struct firmware_file {
128	struct css_header css_header;
129	u8 modulus[KEY_SIZE];
130	u8 exponent[EXPONENT_SIZE];
131	u8 signature[KEY_SIZE];
132	u8 firmware[];
133};
134
135struct augmented_firmware_file {
136	struct css_header css_header;
137	u8 modulus[KEY_SIZE];
138	u8 exponent[EXPONENT_SIZE];
139	u8 signature[KEY_SIZE];
140	u8 r2[KEY_SIZE];
141	u8 mu[MU_SIZE];
142	u8 firmware[];
143};
144
145/* augmented file size difference */
146#define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
147						sizeof(struct firmware_file))
148
149struct firmware_details {
150	/* Linux core piece */
151	const struct firmware *fw;
152
153	struct css_header *css_header;
154	u8 *firmware_ptr;		/* pointer to binary data */
155	u32 firmware_len;		/* length in bytes */
156	u8 *modulus;			/* pointer to the modulus */
157	u8 *exponent;			/* pointer to the exponent */
158	u8 *signature;			/* pointer to the signature */
159	u8 *r2;				/* pointer to r2 */
160	u8 *mu;				/* pointer to mu */
161	struct augmented_firmware_file dummy_header;
162};
163
164/*
165 * The mutex protects fw_state, fw_err, and all of the firmware_details
166 * variables.
167 */
168static DEFINE_MUTEX(fw_mutex);
169enum fw_state {
170	FW_EMPTY,
171	FW_TRY,
172	FW_FINAL,
173	FW_ERR
174};
175
176static enum fw_state fw_state = FW_EMPTY;
177static int fw_err;
178static struct firmware_details fw_8051;
179static struct firmware_details fw_fabric;
180static struct firmware_details fw_pcie;
181static struct firmware_details fw_sbus;
182
183/* flags for turn_off_spicos() */
184#define SPICO_SBUS   0x1
185#define SPICO_FABRIC 0x2
186#define ENABLE_SPICO_SMASK 0x1
187
188/* security block commands */
189#define RSA_CMD_INIT  0x1
190#define RSA_CMD_START 0x2
191
192/* security block status */
193#define RSA_STATUS_IDLE   0x0
194#define RSA_STATUS_ACTIVE 0x1
195#define RSA_STATUS_DONE   0x2
196#define RSA_STATUS_FAILED 0x3
197
198/* RSA engine timeout, in ms */
199#define RSA_ENGINE_TIMEOUT 100 /* ms */
200
201/* hardware mutex timeout, in ms */
202#define HM_TIMEOUT 10 /* ms */
203
204/* 8051 memory access timeout, in us */
205#define DC8051_ACCESS_TIMEOUT 100 /* us */
206
207/* the number of fabric SerDes on the SBus */
208#define NUM_FABRIC_SERDES 4
209
210/* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
211#define SBUS_READ_COMPLETE 0x4
212
213/* SBus fabric SerDes addresses, one set per HFI */
214static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
215	{ 0x01, 0x02, 0x03, 0x04 },
216	{ 0x28, 0x29, 0x2a, 0x2b }
217};
218
219/* SBus PCIe SerDes addresses, one set per HFI */
220static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
221	{ 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
222	  0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
223	{ 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
224	  0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
225};
226
227/* SBus PCIe PCS addresses, one set per HFI */
228const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
229	{ 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
230	  0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
231	{ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
232	  0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
233};
234
235/* SBus fabric SerDes broadcast addresses, one per HFI */
236static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
237static const u8 all_fabric_serdes_broadcast = 0xe1;
238
239/* SBus PCIe SerDes broadcast addresses, one per HFI */
240const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
241static const u8 all_pcie_serdes_broadcast = 0xe0;
242
243static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
244	0,
245	SYSTEM_TABLE_MAX,
246	PORT_TABLE_MAX,
247	RX_PRESET_TABLE_MAX,
248	TX_PRESET_TABLE_MAX,
249	QSFP_ATTEN_TABLE_MAX,
250	VARIABLE_SETTINGS_TABLE_MAX
251};
252
253/* forwards */
254static void dispose_one_firmware(struct firmware_details *fdet);
255static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
256				       struct firmware_details *fdet);
257static void dump_fw_version(struct hfi1_devdata *dd);
258
259/*
260 * Read a single 64-bit value from 8051 data memory.
261 *
262 * Expects:
263 * o caller to have already set up data read, no auto increment
264 * o caller to turn off read enable when finished
265 *
266 * The address argument is a byte offset.  Bits 0:2 in the address are
267 * ignored - i.e. the hardware will always do aligned 8-byte reads as if
268 * the lower bits are zero.
269 *
270 * Return 0 on success, -ENXIO on a read error (timeout).
271 */
272static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
273{
274	u64 reg;
275	int count;
276
277	/* step 1: set the address, clear enable */
278	reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
279			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
280	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
281	/* step 2: enable */
282	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
283		  reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
284
285	/* wait until ACCESS_COMPLETED is set */
286	count = 0;
287	while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
288		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
289		    == 0) {
290		count++;
291		if (count > DC8051_ACCESS_TIMEOUT) {
292			dd_dev_err(dd, "timeout reading 8051 data\n");
293			return -ENXIO;
294		}
295		ndelay(10);
296	}
297
298	/* gather the data */
299	*result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
300
301	return 0;
302}
303
304/*
305 * Read 8051 data starting at addr, for len bytes.  Will read in 8-byte chunks.
306 * Return 0 on success, -errno on error.
307 */
308int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
309{
310	unsigned long flags;
311	u32 done;
312	int ret = 0;
313
314	spin_lock_irqsave(&dd->dc8051_memlock, flags);
315
316	/* data read set-up, no auto-increment */
317	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
318
319	for (done = 0; done < len; addr += 8, done += 8, result++) {
320		ret = __read_8051_data(dd, addr, result);
321		if (ret)
322			break;
323	}
324
325	/* turn off read enable */
326	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
327
328	spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
329
330	return ret;
331}
332
333/*
334 * Write data or code to the 8051 code or data RAM.
335 */
336static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
337		      const u8 *data, u32 len)
338{
339	u64 reg;
340	u32 offset;
341	int aligned, count;
342
343	/* check alignment */
344	aligned = ((unsigned long)data & 0x7) == 0;
345
346	/* write set-up */
347	reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
348		| DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
349	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
350
351	reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
352			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
353		| DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
354	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
355
356	/* write */
357	for (offset = 0; offset < len; offset += 8) {
358		int bytes = len - offset;
359
360		if (bytes < 8) {
361			reg = 0;
362			memcpy(&reg, &data[offset], bytes);
363		} else if (aligned) {
364			reg = *(u64 *)&data[offset];
365		} else {
366			memcpy(&reg, &data[offset], 8);
367		}
368		write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
369
370		/* wait until ACCESS_COMPLETED is set */
371		count = 0;
372		while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
373		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
374		    == 0) {
375			count++;
376			if (count > DC8051_ACCESS_TIMEOUT) {
377				dd_dev_err(dd, "timeout writing 8051 data\n");
378				return -ENXIO;
379			}
380			udelay(1);
381		}
382	}
383
384	/* turn off write access, auto increment (also sets to data access) */
385	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
386	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
387
388	return 0;
389}
390
391/* return 0 if values match, non-zero and complain otherwise */
392static int invalid_header(struct hfi1_devdata *dd, const char *what,
393			  u32 actual, u32 expected)
394{
395	if (actual == expected)
396		return 0;
397
398	dd_dev_err(dd,
399		   "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
400		   what, expected, actual);
401	return 1;
402}
403
404/*
405 * Verify that the static fields in the CSS header match.
406 */
407static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
408{
409	/* verify CSS header fields (most sizes are in DW, so add /4) */
410	if (invalid_header(dd, "module_type", css->module_type,
411			   CSS_MODULE_TYPE) ||
412	    invalid_header(dd, "header_len", css->header_len,
413			   (sizeof(struct firmware_file) / 4)) ||
414	    invalid_header(dd, "header_version", css->header_version,
415			   CSS_HEADER_VERSION) ||
416	    invalid_header(dd, "module_vendor", css->module_vendor,
417			   CSS_MODULE_VENDOR) ||
418	    invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
419	    invalid_header(dd, "modulus_size", css->modulus_size,
420			   KEY_SIZE / 4) ||
421	    invalid_header(dd, "exponent_size", css->exponent_size,
422			   EXPONENT_SIZE / 4)) {
423		return -EINVAL;
424	}
425	return 0;
426}
427
428/*
429 * Make sure there are at least some bytes after the prefix.
430 */
431static int payload_check(struct hfi1_devdata *dd, const char *name,
432			 long file_size, long prefix_size)
433{
434	/* make sure we have some payload */
435	if (prefix_size >= file_size) {
436		dd_dev_err(dd,
437			   "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
438			   name, file_size, prefix_size);
439		return -EINVAL;
440	}
441
442	return 0;
443}
444
445/*
446 * Request the firmware from the system.  Extract the pieces and fill in
447 * fdet.  If successful, the caller will need to call dispose_one_firmware().
448 * Returns 0 on success, -ERRNO on error.
449 */
450static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
451			       struct firmware_details *fdet)
452{
453	struct css_header *css;
454	int ret;
455
456	memset(fdet, 0, sizeof(*fdet));
457
458	ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
459	if (ret) {
460		dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
461			    name, ret);
462		return ret;
463	}
464
465	/* verify the firmware */
466	if (fdet->fw->size < sizeof(struct css_header)) {
467		dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
468		ret = -EINVAL;
469		goto done;
470	}
471	css = (struct css_header *)fdet->fw->data;
472
473	hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
474	hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
475	hfi1_cdbg(FIRMWARE, "CSS structure:");
476	hfi1_cdbg(FIRMWARE, "  module_type    0x%x", css->module_type);
477	hfi1_cdbg(FIRMWARE, "  header_len     0x%03x (0x%03x bytes)",
478		  css->header_len, 4 * css->header_len);
479	hfi1_cdbg(FIRMWARE, "  header_version 0x%x", css->header_version);
480	hfi1_cdbg(FIRMWARE, "  module_id      0x%x", css->module_id);
481	hfi1_cdbg(FIRMWARE, "  module_vendor  0x%x", css->module_vendor);
482	hfi1_cdbg(FIRMWARE, "  date           0x%x", css->date);
483	hfi1_cdbg(FIRMWARE, "  size           0x%03x (0x%03x bytes)",
484		  css->size, 4 * css->size);
485	hfi1_cdbg(FIRMWARE, "  key_size       0x%03x (0x%03x bytes)",
486		  css->key_size, 4 * css->key_size);
487	hfi1_cdbg(FIRMWARE, "  modulus_size   0x%03x (0x%03x bytes)",
488		  css->modulus_size, 4 * css->modulus_size);
489	hfi1_cdbg(FIRMWARE, "  exponent_size  0x%03x (0x%03x bytes)",
490		  css->exponent_size, 4 * css->exponent_size);
491	hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
492		  fdet->fw->size - sizeof(struct firmware_file));
493
494	/*
495	 * If the file does not have a valid CSS header, fail.
496	 * Otherwise, check the CSS size field for an expected size.
497	 * The augmented file has r2 and mu inserted after the header
498	 * was generated, so there will be a known difference between
499	 * the CSS header size and the actual file size.  Use this
500	 * difference to identify an augmented file.
501	 *
502	 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
503	 */
504	ret = verify_css_header(dd, css);
505	if (ret) {
506		dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
507	} else if ((css->size * 4) == fdet->fw->size) {
508		/* non-augmented firmware file */
509		struct firmware_file *ff = (struct firmware_file *)
510							fdet->fw->data;
511
512		/* make sure there are bytes in the payload */
513		ret = payload_check(dd, name, fdet->fw->size,
514				    sizeof(struct firmware_file));
515		if (ret == 0) {
516			fdet->css_header = css;
517			fdet->modulus = ff->modulus;
518			fdet->exponent = ff->exponent;
519			fdet->signature = ff->signature;
520			fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
521			fdet->mu = fdet->dummy_header.mu; /* use dummy space */
522			fdet->firmware_ptr = ff->firmware;
523			fdet->firmware_len = fdet->fw->size -
524						sizeof(struct firmware_file);
525			/*
526			 * Header does not include r2 and mu - generate here.
527			 * For now, fail.
528			 */
529			dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
530			ret = -EINVAL;
531		}
532	} else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
533		/* augmented firmware file */
534		struct augmented_firmware_file *aff =
535			(struct augmented_firmware_file *)fdet->fw->data;
536
537		/* make sure there are bytes in the payload */
538		ret = payload_check(dd, name, fdet->fw->size,
539				    sizeof(struct augmented_firmware_file));
540		if (ret == 0) {
541			fdet->css_header = css;
542			fdet->modulus = aff->modulus;
543			fdet->exponent = aff->exponent;
544			fdet->signature = aff->signature;
545			fdet->r2 = aff->r2;
546			fdet->mu = aff->mu;
547			fdet->firmware_ptr = aff->firmware;
548			fdet->firmware_len = fdet->fw->size -
549					sizeof(struct augmented_firmware_file);
550		}
551	} else {
552		/* css->size check failed */
553		dd_dev_err(dd,
554			   "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
555			   fdet->fw->size / 4,
556			   (fdet->fw->size - AUGMENT_SIZE) / 4,
557			   css->size);
558
559		ret = -EINVAL;
560	}
561
562done:
563	/* if returning an error, clean up after ourselves */
564	if (ret)
565		dispose_one_firmware(fdet);
566	return ret;
567}
568
569static void dispose_one_firmware(struct firmware_details *fdet)
570{
571	release_firmware(fdet->fw);
572	/* erase all previous information */
573	memset(fdet, 0, sizeof(*fdet));
574}
575
576/*
577 * Obtain the 4 firmwares from the OS.  All must be obtained at once or not
578 * at all.  If called with the firmware state in FW_TRY, use alternate names.
579 * On exit, this routine will have set the firmware state to one of FW_TRY,
580 * FW_FINAL, or FW_ERR.
581 *
582 * Must be holding fw_mutex.
583 */
584static void __obtain_firmware(struct hfi1_devdata *dd)
585{
586	int err = 0;
587
588	if (fw_state == FW_FINAL)	/* nothing more to obtain */
589		return;
590	if (fw_state == FW_ERR)		/* already in error */
591		return;
592
593	/* fw_state is FW_EMPTY or FW_TRY */
594retry:
595	if (fw_state == FW_TRY) {
596		/*
597		 * We tried the original and it failed.  Move to the
598		 * alternate.
599		 */
600		dd_dev_warn(dd, "using alternate firmware names\n");
601		/*
602		 * Let others run.  Some systems, when missing firmware, does
603		 * something that holds for 30 seconds.  If we do that twice
604		 * in a row it triggers task blocked warning.
605		 */
606		cond_resched();
607		if (fw_8051_load)
608			dispose_one_firmware(&fw_8051);
609		if (fw_fabric_serdes_load)
610			dispose_one_firmware(&fw_fabric);
611		if (fw_sbus_load)
612			dispose_one_firmware(&fw_sbus);
613		if (fw_pcie_serdes_load)
614			dispose_one_firmware(&fw_pcie);
615		fw_8051_name = ALT_FW_8051_NAME_ASIC;
616		fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
617		fw_sbus_name = ALT_FW_SBUS_NAME;
618		fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
619
620		/*
621		 * Add a delay before obtaining and loading debug firmware.
622		 * Authorization will fail if the delay between firmware
623		 * authorization events is shorter than 50us. Add 100us to
624		 * make a delay time safe.
625		 */
626		usleep_range(100, 120);
627	}
628
629	if (fw_sbus_load) {
630		err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
631		if (err)
632			goto done;
633	}
634
635	if (fw_pcie_serdes_load) {
636		err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
637		if (err)
638			goto done;
639	}
640
641	if (fw_fabric_serdes_load) {
642		err = obtain_one_firmware(dd, fw_fabric_serdes_name,
643					  &fw_fabric);
644		if (err)
645			goto done;
646	}
647
648	if (fw_8051_load) {
649		err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
650		if (err)
651			goto done;
652	}
653
654done:
655	if (err) {
656		/* oops, had problems obtaining a firmware */
657		if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
658			/* retry with alternate (RTL only) */
659			fw_state = FW_TRY;
660			goto retry;
661		}
662		dd_dev_err(dd, "unable to obtain working firmware\n");
663		fw_state = FW_ERR;
664		fw_err = -ENOENT;
665	} else {
666		/* success */
667		if (fw_state == FW_EMPTY &&
668		    dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
669			fw_state = FW_TRY;	/* may retry later */
670		else
671			fw_state = FW_FINAL;	/* cannot try again */
672	}
673}
674
675/*
676 * Called by all HFIs when loading their firmware - i.e. device probe time.
677 * The first one will do the actual firmware load.  Use a mutex to resolve
678 * any possible race condition.
679 *
680 * The call to this routine cannot be moved to driver load because the kernel
681 * call request_firmware() requires a device which is only available after
682 * the first device probe.
683 */
684static int obtain_firmware(struct hfi1_devdata *dd)
685{
686	unsigned long timeout;
687
688	mutex_lock(&fw_mutex);
689
690	/* 40s delay due to long delay on missing firmware on some systems */
691	timeout = jiffies + msecs_to_jiffies(40000);
692	while (fw_state == FW_TRY) {
693		/*
694		 * Another device is trying the firmware.  Wait until it
695		 * decides what works (or not).
696		 */
697		if (time_after(jiffies, timeout)) {
698			/* waited too long */
699			dd_dev_err(dd, "Timeout waiting for firmware try");
700			fw_state = FW_ERR;
701			fw_err = -ETIMEDOUT;
702			break;
703		}
704		mutex_unlock(&fw_mutex);
705		msleep(20);	/* arbitrary delay */
706		mutex_lock(&fw_mutex);
707	}
708	/* not in FW_TRY state */
709
710	/* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
711	if (fw_state == FW_EMPTY)
712		__obtain_firmware(dd);
713
714	mutex_unlock(&fw_mutex);
715	return fw_err;
716}
717
718/*
719 * Called when the driver unloads.  The timing is asymmetric with its
720 * counterpart, obtain_firmware().  If called at device remove time,
721 * then it is conceivable that another device could probe while the
722 * firmware is being disposed.  The mutexes can be moved to do that
723 * safely, but then the firmware would be requested from the OS multiple
724 * times.
725 *
726 * No mutex is needed as the driver is unloading and there cannot be any
727 * other callers.
728 */
729void dispose_firmware(void)
730{
731	dispose_one_firmware(&fw_8051);
732	dispose_one_firmware(&fw_fabric);
733	dispose_one_firmware(&fw_pcie);
734	dispose_one_firmware(&fw_sbus);
735
736	/* retain the error state, otherwise revert to empty */
737	if (fw_state != FW_ERR)
738		fw_state = FW_EMPTY;
739}
740
741/*
742 * Called with the result of a firmware download.
743 *
744 * Return 1 to retry loading the firmware, 0 to stop.
745 */
746static int retry_firmware(struct hfi1_devdata *dd, int load_result)
747{
748	int retry;
749
750	mutex_lock(&fw_mutex);
751
752	if (load_result == 0) {
753		/*
754		 * The load succeeded, so expect all others to do the same.
755		 * Do not retry again.
756		 */
757		if (fw_state == FW_TRY)
758			fw_state = FW_FINAL;
759		retry = 0;	/* do NOT retry */
760	} else if (fw_state == FW_TRY) {
761		/* load failed, obtain alternate firmware */
762		__obtain_firmware(dd);
763		retry = (fw_state == FW_FINAL);
764	} else {
765		/* else in FW_FINAL or FW_ERR, no retry in either case */
766		retry = 0;
767	}
768
769	mutex_unlock(&fw_mutex);
770	return retry;
771}
772
773/*
774 * Write a block of data to a given array CSR.  All calls will be in
775 * multiples of 8 bytes.
776 */
777static void write_rsa_data(struct hfi1_devdata *dd, int what,
778			   const u8 *data, int nbytes)
779{
780	int qw_size = nbytes / 8;
781	int i;
782
783	if (((unsigned long)data & 0x7) == 0) {
784		/* aligned */
785		u64 *ptr = (u64 *)data;
786
787		for (i = 0; i < qw_size; i++, ptr++)
788			write_csr(dd, what + (8 * i), *ptr);
789	} else {
790		/* not aligned */
791		for (i = 0; i < qw_size; i++, data += 8) {
792			u64 value;
793
794			memcpy(&value, data, 8);
795			write_csr(dd, what + (8 * i), value);
796		}
797	}
798}
799
800/*
801 * Write a block of data to a given CSR as a stream of writes.  All calls will
802 * be in multiples of 8 bytes.
803 */
804static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
805				    const u8 *data, int nbytes)
806{
807	u64 *ptr = (u64 *)data;
808	int qw_size = nbytes / 8;
809
810	for (; qw_size > 0; qw_size--, ptr++)
811		write_csr(dd, what, *ptr);
812}
813
814/*
815 * Download the signature and start the RSA mechanism.  Wait for
816 * RSA_ENGINE_TIMEOUT before giving up.
817 */
818static int run_rsa(struct hfi1_devdata *dd, const char *who,
819		   const u8 *signature)
820{
821	unsigned long timeout;
822	u64 reg;
823	u32 status;
824	int ret = 0;
825
826	/* write the signature */
827	write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
828
829	/* initialize RSA */
830	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
831
832	/*
833	 * Make sure the engine is idle and insert a delay between the two
834	 * writes to MISC_CFG_RSA_CMD.
835	 */
836	status = (read_csr(dd, MISC_CFG_FW_CTRL)
837			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
838			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
839	if (status != RSA_STATUS_IDLE) {
840		dd_dev_err(dd, "%s security engine not idle - giving up\n",
841			   who);
842		return -EBUSY;
843	}
844
845	/* start RSA */
846	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
847
848	/*
849	 * Look for the result.
850	 *
851	 * The RSA engine is hooked up to two MISC errors.  The driver
852	 * masks these errors as they do not respond to the standard
853	 * error "clear down" mechanism.  Look for these errors here and
854	 * clear them when possible.  This routine will exit with the
855	 * errors of the current run still set.
856	 *
857	 * MISC_FW_AUTH_FAILED_ERR
858	 *	Firmware authorization failed.  This can be cleared by
859	 *	re-initializing the RSA engine, then clearing the status bit.
860	 *	Do not re-init the RSA angine immediately after a successful
861	 *	run - this will reset the current authorization.
862	 *
863	 * MISC_KEY_MISMATCH_ERR
864	 *	Key does not match.  The only way to clear this is to load
865	 *	a matching key then clear the status bit.  If this error
866	 *	is raised, it will persist outside of this routine until a
867	 *	matching key is loaded.
868	 */
869	timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
870	while (1) {
871		status = (read_csr(dd, MISC_CFG_FW_CTRL)
872			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
873			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
874
875		if (status == RSA_STATUS_IDLE) {
876			/* should not happen */
877			dd_dev_err(dd, "%s firmware security bad idle state\n",
878				   who);
879			ret = -EINVAL;
880			break;
881		} else if (status == RSA_STATUS_DONE) {
882			/* finished successfully */
883			break;
884		} else if (status == RSA_STATUS_FAILED) {
885			/* finished unsuccessfully */
886			ret = -EINVAL;
887			break;
888		}
889		/* else still active */
890
891		if (time_after(jiffies, timeout)) {
892			/*
893			 * Timed out while active.  We can't reset the engine
894			 * if it is stuck active, but run through the
895			 * error code to see what error bits are set.
896			 */
897			dd_dev_err(dd, "%s firmware security time out\n", who);
898			ret = -ETIMEDOUT;
899			break;
900		}
901
902		msleep(20);
903	}
904
905	/*
906	 * Arrive here on success or failure.  Clear all RSA engine
907	 * errors.  All current errors will stick - the RSA logic is keeping
908	 * error high.  All previous errors will clear - the RSA logic
909	 * is not keeping the error high.
910	 */
911	write_csr(dd, MISC_ERR_CLEAR,
912		  MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
913		  MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
914	/*
915	 * All that is left are the current errors.  Print warnings on
916	 * authorization failure details, if any.  Firmware authorization
917	 * can be retried, so these are only warnings.
918	 */
919	reg = read_csr(dd, MISC_ERR_STATUS);
920	if (ret) {
921		if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
922			dd_dev_warn(dd, "%s firmware authorization failed\n",
923				    who);
924		if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
925			dd_dev_warn(dd, "%s firmware key mismatch\n", who);
926	}
927
928	return ret;
929}
930
931static void load_security_variables(struct hfi1_devdata *dd,
932				    struct firmware_details *fdet)
933{
934	/* Security variables a.  Write the modulus */
935	write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
936	/* Security variables b.  Write the r2 */
937	write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
938	/* Security variables c.  Write the mu */
939	write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
940	/* Security variables d.  Write the header */
941	write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
942				(u8 *)fdet->css_header,
943				sizeof(struct css_header));
944}
945
946/* return the 8051 firmware state */
947static inline u32 get_firmware_state(struct hfi1_devdata *dd)
948{
949	u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
950
951	return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
952				& DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
953}
954
955/*
956 * Wait until the firmware is up and ready to take host requests.
957 * Return 0 on success, -ETIMEDOUT on timeout.
958 */
959int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
960{
961	unsigned long timeout;
962
963	/* in the simulator, the fake 8051 is always ready */
964	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
965		return 0;
966
967	timeout = msecs_to_jiffies(mstimeout) + jiffies;
968	while (1) {
969		if (get_firmware_state(dd) == 0xa0)	/* ready */
970			return 0;
971		if (time_after(jiffies, timeout))	/* timed out */
972			return -ETIMEDOUT;
973		usleep_range(1950, 2050); /* sleep 2ms-ish */
974	}
975}
976
977/*
978 * Load the 8051 firmware.
979 */
980static int load_8051_firmware(struct hfi1_devdata *dd,
981			      struct firmware_details *fdet)
982{
983	u64 reg;
984	int ret;
985	u8 ver_major;
986	u8 ver_minor;
987	u8 ver_patch;
988
989	/*
990	 * DC Reset sequence
991	 * Load DC 8051 firmware
992	 */
993	/*
994	 * DC reset step 1: Reset DC8051
995	 */
996	reg = DC_DC8051_CFG_RST_M8051W_SMASK
997		| DC_DC8051_CFG_RST_CRAM_SMASK
998		| DC_DC8051_CFG_RST_DRAM_SMASK
999		| DC_DC8051_CFG_RST_IRAM_SMASK
1000		| DC_DC8051_CFG_RST_SFR_SMASK;
1001	write_csr(dd, DC_DC8051_CFG_RST, reg);
1002
1003	/*
1004	 * DC reset step 2 (optional): Load 8051 data memory with link
1005	 * configuration
1006	 */
1007
1008	/*
1009	 * DC reset step 3: Load DC8051 firmware
1010	 */
1011	/* release all but the core reset */
1012	reg = DC_DC8051_CFG_RST_M8051W_SMASK;
1013	write_csr(dd, DC_DC8051_CFG_RST, reg);
1014
1015	/* Firmware load step 1 */
1016	load_security_variables(dd, fdet);
1017
1018	/*
1019	 * Firmware load step 2.  Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
1020	 */
1021	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1022
1023	/* Firmware load steps 3-5 */
1024	ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
1025			 fdet->firmware_len);
1026	if (ret)
1027		return ret;
1028
1029	/*
1030	 * DC reset step 4. Host starts the DC8051 firmware
1031	 */
1032	/*
1033	 * Firmware load step 6.  Set MISC_CFG_FW_CTRL.FW_8051_LOADED
1034	 */
1035	write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
1036
1037	/* Firmware load steps 7-10 */
1038	ret = run_rsa(dd, "8051", fdet->signature);
1039	if (ret)
1040		return ret;
1041
1042	/* clear all reset bits, releasing the 8051 */
1043	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1044
1045	/*
1046	 * DC reset step 5. Wait for firmware to be ready to accept host
1047	 * requests.
1048	 */
1049	ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1050	if (ret) { /* timed out */
1051		dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1052			   get_firmware_state(dd));
1053		return -ETIMEDOUT;
1054	}
1055
1056	read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
1057	dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
1058		    (int)ver_major, (int)ver_minor, (int)ver_patch);
1059	dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
1060	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
1061	if (ret != HCMD_SUCCESS) {
1062		dd_dev_err(dd,
1063			   "Failed to set host interface version, return 0x%x\n",
1064			   ret);
1065		return -EIO;
1066	}
1067
1068	return 0;
1069}
1070
1071/*
1072 * Write the SBus request register
1073 *
1074 * No need for masking - the arguments are sized exactly.
1075 */
1076void sbus_request(struct hfi1_devdata *dd,
1077		  u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1078{
1079	write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1080		  ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1081		  ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1082		  ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1083		  ((u64)receiver_addr <<
1084		   ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1085}
1086
1087/*
1088 * Read a value from the SBus.
1089 *
1090 * Requires the caller to be in fast mode
1091 */
1092static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1093		     u32 data_in)
1094{
1095	u64 reg;
1096	int retries;
1097	int success = 0;
1098	u32 result = 0;
1099	u32 result_code = 0;
1100
1101	sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1102
1103	for (retries = 0; retries < 100; retries++) {
1104		usleep_range(1000, 1200); /* arbitrary */
1105		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1106		result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1107				& ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1108		if (result_code != SBUS_READ_COMPLETE)
1109			continue;
1110
1111		success = 1;
1112		result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1113			   & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1114		break;
1115	}
1116
1117	if (!success) {
1118		dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1119			   result_code);
1120	}
1121
1122	return result;
1123}
1124
1125/*
1126 * Turn off the SBus and fabric serdes spicos.
1127 *
1128 * + Must be called with Sbus fast mode turned on.
1129 * + Must be called after fabric serdes broadcast is set up.
1130 * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1131 *   when using MISC_CFG_FW_CTRL.
1132 */
1133static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1134{
1135	/* only needed on A0 */
1136	if (!is_ax(dd))
1137		return;
1138
1139	dd_dev_info(dd, "Turning off spicos:%s%s\n",
1140		    flags & SPICO_SBUS ? " SBus" : "",
1141		    flags & SPICO_FABRIC ? " fabric" : "");
1142
1143	write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1144	/* disable SBus spico */
1145	if (flags & SPICO_SBUS)
1146		sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1147			     WRITE_SBUS_RECEIVER, 0x00000040);
1148
1149	/* disable the fabric serdes spicos */
1150	if (flags & SPICO_FABRIC)
1151		sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1152			     0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1153	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1154}
1155
1156/*
1157 * Reset all of the fabric serdes for this HFI in preparation to take the
1158 * link to Polling.
1159 *
1160 * To do a reset, we need to write to to the serdes registers.  Unfortunately,
1161 * the fabric serdes download to the other HFI on the ASIC will have turned
1162 * off the firmware validation on this HFI.  This means we can't write to the
1163 * registers to reset the serdes.  Work around this by performing a complete
1164 * re-download and validation of the fabric serdes firmware.  This, as a
1165 * by-product, will reset the serdes.  NOTE: the re-download requires that
1166 * the 8051 be in the Offline state.  I.e. not actively trying to use the
1167 * serdes.  This routine is called at the point where the link is Offline and
1168 * is getting ready to go to Polling.
1169 */
1170void fabric_serdes_reset(struct hfi1_devdata *dd)
1171{
1172	int ret;
1173
1174	if (!fw_fabric_serdes_load)
1175		return;
1176
1177	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1178	if (ret) {
1179		dd_dev_err(dd,
1180			   "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1181		return;
1182	}
1183	set_sbus_fast_mode(dd);
1184
1185	if (is_ax(dd)) {
1186		/* A0 serdes do not work with a re-download */
1187		u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1188
1189		/* place SerDes in reset and disable SPICO */
1190		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1191		/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1192		udelay(1);
1193		/* remove SerDes reset */
1194		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1195		/* turn SPICO enable on */
1196		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1197	} else {
1198		turn_off_spicos(dd, SPICO_FABRIC);
1199		/*
1200		 * No need for firmware retry - what to download has already
1201		 * been decided.
1202		 * No need to pay attention to the load return - the only
1203		 * failure is a validation failure, which has already been
1204		 * checked by the initial download.
1205		 */
1206		(void)load_fabric_serdes_firmware(dd, &fw_fabric);
1207	}
1208
1209	clear_sbus_fast_mode(dd);
1210	release_chip_resource(dd, CR_SBUS);
1211}
1212
1213/* Access to the SBus in this routine should probably be serialized */
1214int sbus_request_slow(struct hfi1_devdata *dd,
1215		      u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1216{
1217	u64 reg, count = 0;
1218
1219	/* make sure fast mode is clear */
1220	clear_sbus_fast_mode(dd);
1221
1222	sbus_request(dd, receiver_addr, data_addr, command, data_in);
1223	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1224		  ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1225	/* Wait for both DONE and RCV_DATA_VALID to go high */
1226	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1227	while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1228		 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1229		if (count++ >= SBUS_MAX_POLL_COUNT) {
1230			u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1231			/*
1232			 * If the loop has timed out, we are OK if DONE bit
1233			 * is set and RCV_DATA_VALID and EXECUTE counters
1234			 * are the same. If not, we cannot proceed.
1235			 */
1236			if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1237			    (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1238			     SBUS_COUNTER(counts, EXECUTE)))
1239				break;
1240			return -ETIMEDOUT;
1241		}
1242		udelay(1);
1243		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1244	}
1245	count = 0;
1246	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1247	/* Wait for DONE to clear after EXECUTE is cleared */
1248	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1249	while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1250		if (count++ >= SBUS_MAX_POLL_COUNT)
1251			return -ETIME;
1252		udelay(1);
1253		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1254	}
1255	return 0;
1256}
1257
1258static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1259				       struct firmware_details *fdet)
1260{
1261	int i, err;
1262	const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1263
1264	dd_dev_info(dd, "Downloading fabric firmware\n");
1265
1266	/* step 1: load security variables */
1267	load_security_variables(dd, fdet);
1268	/* step 2: place SerDes in reset and disable SPICO */
1269	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1270	/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1271	udelay(1);
1272	/* step 3:  remove SerDes reset */
1273	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1274	/* step 4: assert IMEM override */
1275	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1276	/* step 5: download SerDes machine code */
1277	for (i = 0; i < fdet->firmware_len; i += 4) {
1278		sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1279			     *(u32 *)&fdet->firmware_ptr[i]);
1280	}
1281	/* step 6: IMEM override off */
1282	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1283	/* step 7: turn ECC on */
1284	sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1285
1286	/* steps 8-11: run the RSA engine */
1287	err = run_rsa(dd, "fabric serdes", fdet->signature);
1288	if (err)
1289		return err;
1290
1291	/* step 12: turn SPICO enable on */
1292	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1293	/* step 13: enable core hardware interrupts */
1294	sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1295
1296	return 0;
1297}
1298
1299static int load_sbus_firmware(struct hfi1_devdata *dd,
1300			      struct firmware_details *fdet)
1301{
1302	int i, err;
1303	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1304
1305	dd_dev_info(dd, "Downloading SBus firmware\n");
1306
1307	/* step 1: load security variables */
1308	load_security_variables(dd, fdet);
1309	/* step 2: place SPICO into reset and enable off */
1310	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1311	/* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1312	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1313	/* step 4: set starting IMEM address for burst download */
1314	sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1315	/* step 5: download the SBus Master machine code */
1316	for (i = 0; i < fdet->firmware_len; i += 4) {
1317		sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1318			     *(u32 *)&fdet->firmware_ptr[i]);
1319	}
1320	/* step 6: set IMEM_CNTL_EN off */
1321	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1322	/* step 7: turn ECC on */
1323	sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1324
1325	/* steps 8-11: run the RSA engine */
1326	err = run_rsa(dd, "SBus", fdet->signature);
1327	if (err)
1328		return err;
1329
1330	/* step 12: set SPICO_ENABLE on */
1331	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1332
1333	return 0;
1334}
1335
1336static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1337				     struct firmware_details *fdet)
1338{
1339	int i;
1340	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1341
1342	dd_dev_info(dd, "Downloading PCIe firmware\n");
1343
1344	/* step 1: load security variables */
1345	load_security_variables(dd, fdet);
1346	/* step 2: assert single step (halts the SBus Master spico) */
1347	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1348	/* step 3: enable XDMEM access */
1349	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1350	/* step 4: load firmware into SBus Master XDMEM */
1351	/*
1352	 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1353	 * we only need to pick up the bytes and write them
1354	 */
1355	for (i = 0; i < fdet->firmware_len; i += 4) {
1356		sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1357			     *(u32 *)&fdet->firmware_ptr[i]);
1358	}
1359	/* step 5: disable XDMEM access */
1360	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1361	/* step 6: allow SBus Spico to run */
1362	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1363
1364	/*
1365	 * steps 7-11: run RSA, if it succeeds, firmware is available to
1366	 * be swapped
1367	 */
1368	return run_rsa(dd, "PCIe serdes", fdet->signature);
1369}
1370
1371/*
1372 * Set the given broadcast values on the given list of devices.
1373 */
1374static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1375				 const u8 *addrs, int count)
1376{
1377	while (--count >= 0) {
1378		/*
1379		 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1380		 * defaults for everything else.  Do not read-modify-write,
1381		 * per instruction from the manufacturer.
1382		 *
1383		 * Register 0xfd:
1384		 *	bits    what
1385		 *	-----	---------------------------------
1386		 *	  0	IGNORE_BROADCAST  (default 0)
1387		 *	11:4	BROADCAST_GROUP_1 (default 0xff)
1388		 *	23:16	BROADCAST_GROUP_2 (default 0xff)
1389		 */
1390		sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1391			     (u32)bg1 << 4 | (u32)bg2 << 16);
1392	}
1393}
1394
1395int acquire_hw_mutex(struct hfi1_devdata *dd)
1396{
1397	unsigned long timeout;
1398	int try = 0;
1399	u8 mask = 1 << dd->hfi1_id;
1400	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1401
1402	if (user == mask) {
1403		dd_dev_info(dd,
1404			    "Hardware mutex already acquired, mutex mask %u\n",
1405			    (u32)mask);
1406		return 0;
1407	}
1408
1409retry:
1410	timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1411	while (1) {
1412		write_csr(dd, ASIC_CFG_MUTEX, mask);
1413		user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1414		if (user == mask)
1415			return 0; /* success */
1416		if (time_after(jiffies, timeout))
1417			break; /* timed out */
1418		msleep(20);
1419	}
1420
1421	/* timed out */
1422	dd_dev_err(dd,
1423		   "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1424		   (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1425
1426	if (try == 0) {
1427		/* break mutex and retry */
1428		write_csr(dd, ASIC_CFG_MUTEX, 0);
1429		try++;
1430		goto retry;
1431	}
1432
1433	return -EBUSY;
1434}
1435
1436void release_hw_mutex(struct hfi1_devdata *dd)
1437{
1438	u8 mask = 1 << dd->hfi1_id;
1439	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1440
1441	if (user != mask)
1442		dd_dev_warn(dd,
1443			    "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
1444			    (u32)user, (u32)mask);
1445	else
1446		write_csr(dd, ASIC_CFG_MUTEX, 0);
1447}
1448
1449/* return the given resource bit(s) as a mask for the given HFI */
1450static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1451{
1452	return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1453}
1454
1455static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1456				       const char *func)
1457{
1458	dd_dev_err(dd,
1459		   "%s: hardware mutex stuck - suggest rebooting the machine\n",
1460		   func);
1461}
1462
1463/*
1464 * Acquire access to a chip resource.
1465 *
1466 * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1467 */
1468static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1469{
1470	u64 scratch0, all_bits, my_bit;
1471	int ret;
1472
1473	if (resource & CR_DYN_MASK) {
1474		/* a dynamic resource is in use if either HFI has set the bit */
1475		if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1476		    (resource & (CR_I2C1 | CR_I2C2))) {
1477			/* discrete devices must serialize across both chains */
1478			all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1479					resource_mask(1, CR_I2C1 | CR_I2C2);
1480		} else {
1481			all_bits = resource_mask(0, resource) |
1482						resource_mask(1, resource);
1483		}
1484		my_bit = resource_mask(dd->hfi1_id, resource);
1485	} else {
1486		/* non-dynamic resources are not split between HFIs */
1487		all_bits = resource;
1488		my_bit = resource;
1489	}
1490
1491	/* lock against other callers within the driver wanting a resource */
1492	mutex_lock(&dd->asic_data->asic_resource_mutex);
1493
1494	ret = acquire_hw_mutex(dd);
1495	if (ret) {
1496		fail_mutex_acquire_message(dd, __func__);
1497		ret = -EIO;
1498		goto done;
1499	}
1500
1501	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1502	if (scratch0 & all_bits) {
1503		ret = -EBUSY;
1504	} else {
1505		write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1506		/* force write to be visible to other HFI on another OS */
1507		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1508	}
1509
1510	release_hw_mutex(dd);
1511
1512done:
1513	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1514	return ret;
1515}
1516
1517/*
1518 * Acquire access to a chip resource, wait up to mswait milliseconds for
1519 * the resource to become available.
1520 *
1521 * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1522 * acquire failed.
1523 */
1524int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1525{
1526	unsigned long timeout;
1527	int ret;
1528
1529	timeout = jiffies + msecs_to_jiffies(mswait);
1530	while (1) {
1531		ret = __acquire_chip_resource(dd, resource);
1532		if (ret != -EBUSY)
1533			return ret;
1534		/* resource is busy, check our timeout */
1535		if (time_after_eq(jiffies, timeout))
1536			return -EBUSY;
1537		usleep_range(80, 120);	/* arbitrary delay */
1538	}
1539}
1540
1541/*
1542 * Release access to a chip resource
1543 */
1544void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1545{
1546	u64 scratch0, bit;
1547
1548	/* only dynamic resources should ever be cleared */
1549	if (!(resource & CR_DYN_MASK)) {
1550		dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1551			   resource);
1552		return;
1553	}
1554	bit = resource_mask(dd->hfi1_id, resource);
1555
1556	/* lock against other callers within the driver wanting a resource */
1557	mutex_lock(&dd->asic_data->asic_resource_mutex);
1558
1559	if (acquire_hw_mutex(dd)) {
1560		fail_mutex_acquire_message(dd, __func__);
1561		goto done;
1562	}
1563
1564	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1565	if ((scratch0 & bit) != 0) {
1566		scratch0 &= ~bit;
1567		write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1568		/* force write to be visible to other HFI on another OS */
1569		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1570	} else {
1571		dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1572			    __func__, dd->hfi1_id, resource);
1573	}
1574
1575	release_hw_mutex(dd);
1576
1577done:
1578	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1579}
1580
1581/*
1582 * Return true if resource is set, false otherwise.  Print a warning
1583 * if not set and a function is supplied.
1584 */
1585bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1586			 const char *func)
1587{
1588	u64 scratch0, bit;
1589
1590	if (resource & CR_DYN_MASK)
1591		bit = resource_mask(dd->hfi1_id, resource);
1592	else
1593		bit = resource;
1594
1595	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1596	if ((scratch0 & bit) == 0) {
1597		if (func)
1598			dd_dev_warn(dd,
1599				    "%s: id %d, resource 0x%x, not acquired!\n",
1600				    func, dd->hfi1_id, resource);
1601		return false;
1602	}
1603	return true;
1604}
1605
1606static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1607{
1608	u64 scratch0;
1609
1610	/* lock against other callers within the driver wanting a resource */
1611	mutex_lock(&dd->asic_data->asic_resource_mutex);
1612
1613	if (acquire_hw_mutex(dd)) {
1614		fail_mutex_acquire_message(dd, func);
1615		goto done;
1616	}
1617
1618	/* clear all dynamic access bits for this HFI */
1619	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1620	scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1621	write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1622	/* force write to be visible to other HFI on another OS */
1623	(void)read_csr(dd, ASIC_CFG_SCRATCH);
1624
1625	release_hw_mutex(dd);
1626
1627done:
1628	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1629}
1630
1631void init_chip_resources(struct hfi1_devdata *dd)
1632{
1633	/* clear any holds left by us */
1634	clear_chip_resources(dd, __func__);
1635}
1636
1637void finish_chip_resources(struct hfi1_devdata *dd)
1638{
1639	/* clear any holds left by us */
1640	clear_chip_resources(dd, __func__);
1641}
1642
1643void set_sbus_fast_mode(struct hfi1_devdata *dd)
1644{
1645	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1646		  ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1647}
1648
1649void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1650{
1651	u64 reg, count = 0;
1652
1653	reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1654	while (SBUS_COUNTER(reg, EXECUTE) !=
1655	       SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1656		if (count++ >= SBUS_MAX_POLL_COUNT)
1657			break;
1658		udelay(1);
1659		reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1660	}
1661	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1662}
1663
1664int load_firmware(struct hfi1_devdata *dd)
1665{
1666	int ret;
1667
1668	if (fw_fabric_serdes_load) {
1669		ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1670		if (ret)
1671			return ret;
1672
1673		set_sbus_fast_mode(dd);
1674
1675		set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1676				     fabric_serdes_broadcast[dd->hfi1_id],
1677				     fabric_serdes_addrs[dd->hfi1_id],
1678				     NUM_FABRIC_SERDES);
1679		turn_off_spicos(dd, SPICO_FABRIC);
1680		do {
1681			ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1682		} while (retry_firmware(dd, ret));
1683
1684		clear_sbus_fast_mode(dd);
1685		release_chip_resource(dd, CR_SBUS);
1686		if (ret)
1687			return ret;
1688	}
1689
1690	if (fw_8051_load) {
1691		do {
1692			ret = load_8051_firmware(dd, &fw_8051);
1693		} while (retry_firmware(dd, ret));
1694		if (ret)
1695			return ret;
1696	}
1697
1698	dump_fw_version(dd);
1699	return 0;
1700}
1701
1702int hfi1_firmware_init(struct hfi1_devdata *dd)
1703{
1704	/* only RTL can use these */
1705	if (dd->icode != ICODE_RTL_SILICON) {
1706		fw_fabric_serdes_load = 0;
1707		fw_pcie_serdes_load = 0;
1708		fw_sbus_load = 0;
1709	}
1710
1711	/* no 8051 or QSFP on simulator */
1712	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
1713		fw_8051_load = 0;
1714
1715	if (!fw_8051_name) {
1716		if (dd->icode == ICODE_RTL_SILICON)
1717			fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1718		else
1719			fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1720	}
1721	if (!fw_fabric_serdes_name)
1722		fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1723	if (!fw_sbus_name)
1724		fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1725	if (!fw_pcie_serdes_name)
1726		fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1727
1728	return obtain_firmware(dd);
1729}
1730
1731/*
1732 * This function is a helper function for parse_platform_config(...) and
1733 * does not check for validity of the platform configuration cache
1734 * (because we know it is invalid as we are building up the cache).
1735 * As such, this should not be called from anywhere other than
1736 * parse_platform_config
1737 */
1738static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1739{
1740	u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1741	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1742
1743	if (!system_table)
1744		return -EINVAL;
1745
1746	meta_ver_meta =
1747	*(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1748	+ SYSTEM_TABLE_META_VERSION);
1749
1750	mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1751	ver_start = meta_ver_meta & mask;
1752
1753	meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1754
1755	mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1756	ver_len = meta_ver_meta & mask;
1757
1758	ver_start /= 8;
1759	meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1760
1761	if (meta_ver < 4) {
1762		dd_dev_info(
1763			dd, "%s:Please update platform config\n", __func__);
1764		return -EINVAL;
1765	}
1766	return 0;
1767}
1768
1769int parse_platform_config(struct hfi1_devdata *dd)
1770{
1771	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1772	struct hfi1_pportdata *ppd = dd->pport;
1773	u32 *ptr = NULL;
1774	u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1775	u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1776	int ret = -EINVAL; /* assume failure */
1777
1778	/*
1779	 * For integrated devices that did not fall back to the default file,
1780	 * the SI tuning information for active channels is acquired from the
1781	 * scratch register bitmap, thus there is no platform config to parse.
1782	 * Skip parsing in these situations.
1783	 */
1784	if (ppd->config_from_scratch)
1785		return 0;
1786
1787	if (!dd->platform_config.data) {
1788		dd_dev_err(dd, "%s: Missing config file\n", __func__);
1789		ret = -EINVAL;
1790		goto bail;
1791	}
1792	ptr = (u32 *)dd->platform_config.data;
1793
1794	magic_num = *ptr;
1795	ptr++;
1796	if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1797		dd_dev_err(dd, "%s: Bad config file\n", __func__);
1798		ret = -EINVAL;
1799		goto bail;
1800	}
1801
1802	/* Field is file size in DWORDs */
1803	file_length = (*ptr) * 4;
1804
1805	/*
1806	 * Length can't be larger than partition size. Assume platform
1807	 * config format version 4 is being used. Interpret the file size
1808	 * field as header instead by not moving the pointer.
1809	 */
1810	if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) {
1811		dd_dev_info(dd,
1812			    "%s:File length out of bounds, using alternative format\n",
1813			    __func__);
1814		file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE;
1815	} else {
1816		ptr++;
1817	}
1818
1819	if (file_length > dd->platform_config.size) {
1820		dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1821			    __func__);
1822		ret = -EINVAL;
1823		goto bail;
1824	} else if (file_length < dd->platform_config.size) {
1825		dd_dev_info(dd,
1826			    "%s:File claims to be smaller than read size, continuing\n",
1827			    __func__);
1828	}
1829	/* exactly equal, perfection */
1830
1831	/*
1832	 * In both cases where we proceed, using the self-reported file length
1833	 * is the safer option. In case of old format a predefined value is
1834	 * being used.
1835	 */
1836	while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1837		header1 = *ptr;
1838		header2 = *(ptr + 1);
1839		if (header1 != ~header2) {
1840			dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
1841				   __func__, (ptr - (u32 *)
1842					      dd->platform_config.data));
1843			ret = -EINVAL;
1844			goto bail;
1845		}
1846
1847		record_idx = *ptr &
1848			((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1849
1850		table_length_dwords = (*ptr >>
1851				PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1852		      ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1853
1854		table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1855			((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1856
1857		/* Done with this set of headers */
1858		ptr += 2;
1859
1860		if (record_idx) {
1861			/* data table */
1862			switch (table_type) {
1863			case PLATFORM_CONFIG_SYSTEM_TABLE:
1864				pcfgcache->config_tables[table_type].num_table =
1865									1;
1866				ret = check_meta_version(dd, ptr);
1867				if (ret)
1868					goto bail;
1869				break;
1870			case PLATFORM_CONFIG_PORT_TABLE:
1871				pcfgcache->config_tables[table_type].num_table =
1872									2;
1873				break;
1874			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1875			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1876			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1877			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1878				pcfgcache->config_tables[table_type].num_table =
1879							table_length_dwords;
1880				break;
1881			default:
1882				dd_dev_err(dd,
1883					   "%s: Unknown data table %d, offset %ld\n",
1884					   __func__, table_type,
1885					   (ptr - (u32 *)
1886					    dd->platform_config.data));
1887				ret = -EINVAL;
1888				goto bail; /* We don't trust this file now */
1889			}
1890			pcfgcache->config_tables[table_type].table = ptr;
1891		} else {
1892			/* metadata table */
1893			switch (table_type) {
1894			case PLATFORM_CONFIG_SYSTEM_TABLE:
1895			case PLATFORM_CONFIG_PORT_TABLE:
1896			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1897			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1898			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1899			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1900				break;
1901			default:
1902				dd_dev_err(dd,
1903					   "%s: Unknown meta table %d, offset %ld\n",
1904					   __func__, table_type,
1905					   (ptr -
1906					    (u32 *)dd->platform_config.data));
1907				ret = -EINVAL;
1908				goto bail; /* We don't trust this file now */
1909			}
1910			pcfgcache->config_tables[table_type].table_metadata =
1911									ptr;
1912		}
1913
1914		/* Calculate and check table crc */
1915		crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1916			       (table_length_dwords * 4));
1917		crc ^= ~(u32)0;
1918
1919		/* Jump the table */
1920		ptr += table_length_dwords;
1921		if (crc != *ptr) {
1922			dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
1923				   __func__, (ptr -
1924				   (u32 *)dd->platform_config.data));
1925			ret = -EINVAL;
1926			goto bail;
1927		}
1928		/* Jump the CRC DWORD */
1929		ptr++;
1930	}
1931
1932	pcfgcache->cache_valid = 1;
1933	return 0;
1934bail:
1935	memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1936	return ret;
1937}
1938
1939static void get_integrated_platform_config_field(
1940		struct hfi1_devdata *dd,
1941		enum platform_config_table_type_encoding table_type,
1942		int field_index, u32 *data)
1943{
1944	struct hfi1_pportdata *ppd = dd->pport;
1945	u8 *cache = ppd->qsfp_info.cache;
1946	u32 tx_preset = 0;
1947
1948	switch (table_type) {
1949	case PLATFORM_CONFIG_SYSTEM_TABLE:
1950		if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
1951			*data = ppd->max_power_class;
1952		else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
1953			*data = ppd->default_atten;
1954		break;
1955	case PLATFORM_CONFIG_PORT_TABLE:
1956		if (field_index == PORT_TABLE_PORT_TYPE)
1957			*data = ppd->port_type;
1958		else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
1959			*data = ppd->local_atten;
1960		else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
1961			*data = ppd->remote_atten;
1962		break;
1963	case PLATFORM_CONFIG_RX_PRESET_TABLE:
1964		if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
1965			*data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
1966				QSFP_RX_CDR_APPLY_SHIFT;
1967		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
1968			*data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
1969				QSFP_RX_EMP_APPLY_SHIFT;
1970		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
1971			*data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
1972				QSFP_RX_AMP_APPLY_SHIFT;
1973		else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
1974			*data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
1975				QSFP_RX_CDR_SHIFT;
1976		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
1977			*data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
1978				QSFP_RX_EMP_SHIFT;
1979		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
1980			*data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
1981				QSFP_RX_AMP_SHIFT;
1982		break;
1983	case PLATFORM_CONFIG_TX_PRESET_TABLE:
1984		if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
1985			tx_preset = ppd->tx_preset_eq;
1986		else
1987			tx_preset = ppd->tx_preset_noeq;
1988		if (field_index == TX_PRESET_TABLE_PRECUR)
1989			*data = (tx_preset & TX_PRECUR_SMASK) >>
1990				TX_PRECUR_SHIFT;
1991		else if (field_index == TX_PRESET_TABLE_ATTN)
1992			*data = (tx_preset & TX_ATTN_SMASK) >>
1993				TX_ATTN_SHIFT;
1994		else if (field_index == TX_PRESET_TABLE_POSTCUR)
1995			*data = (tx_preset & TX_POSTCUR_SMASK) >>
1996				TX_POSTCUR_SHIFT;
1997		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
1998			*data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
1999				QSFP_TX_CDR_APPLY_SHIFT;
2000		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
2001			*data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
2002				QSFP_TX_EQ_APPLY_SHIFT;
2003		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
2004			*data = (tx_preset & QSFP_TX_CDR_SMASK) >>
2005				QSFP_TX_CDR_SHIFT;
2006		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
2007			*data = (tx_preset & QSFP_TX_EQ_SMASK) >>
2008				QSFP_TX_EQ_SHIFT;
2009		break;
2010	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2011	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2012	default:
2013		break;
2014	}
2015}
2016
2017static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
2018					  int field, u32 *field_len_bits,
2019					  u32 *field_start_bits)
2020{
2021	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2022	u32 *src_ptr = NULL;
2023
2024	if (!pcfgcache->cache_valid)
2025		return -EINVAL;
2026
2027	switch (table) {
2028	case PLATFORM_CONFIG_SYSTEM_TABLE:
2029	case PLATFORM_CONFIG_PORT_TABLE:
2030	case PLATFORM_CONFIG_RX_PRESET_TABLE:
2031	case PLATFORM_CONFIG_TX_PRESET_TABLE:
2032	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2033	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2034		if (field && field < platform_config_table_limits[table])
2035			src_ptr =
2036			pcfgcache->config_tables[table].table_metadata + field;
2037		break;
2038	default:
2039		dd_dev_info(dd, "%s: Unknown table\n", __func__);
2040		break;
2041	}
2042
2043	if (!src_ptr)
2044		return -EINVAL;
2045
2046	if (field_start_bits)
2047		*field_start_bits = *src_ptr &
2048		      ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
2049
2050	if (field_len_bits)
2051		*field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
2052		       & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
2053
2054	return 0;
2055}
2056
2057/* This is the central interface to getting data out of the platform config
2058 * file. It depends on parse_platform_config() having populated the
2059 * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2060 * validate the sanity of the cache.
2061 *
2062 * The non-obvious parameters:
2063 * @table_index: Acts as a look up key into which instance of the tables the
2064 * relevant field is fetched from.
2065 *
2066 * This applies to the data tables that have multiple instances. The port table
2067 * is an exception to this rule as each HFI only has one port and thus the
2068 * relevant table can be distinguished by hfi_id.
2069 *
2070 * @data: pointer to memory that will be populated with the field requested.
2071 * @len: length of memory pointed by @data in bytes.
2072 */
2073int get_platform_config_field(struct hfi1_devdata *dd,
2074			      enum platform_config_table_type_encoding
2075			      table_type, int table_index, int field_index,
2076			      u32 *data, u32 len)
2077{
2078	int ret = 0, wlen = 0, seek = 0;
2079	u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
2080	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2081	struct hfi1_pportdata *ppd = dd->pport;
2082
2083	if (data)
2084		memset(data, 0, len);
2085	else
2086		return -EINVAL;
2087
2088	if (ppd->config_from_scratch) {
2089		/*
2090		 * Use saved configuration from ppd for integrated platforms
2091		 */
2092		get_integrated_platform_config_field(dd, table_type,
2093						     field_index, data);
2094		return 0;
2095	}
2096
2097	ret = get_platform_fw_field_metadata(dd, table_type, field_index,
2098					     &field_len_bits,
2099					     &field_start_bits);
2100	if (ret)
2101		return -EINVAL;
2102
2103	/* Convert length to bits */
2104	len *= 8;
2105
2106	/* Our metadata function checked cache_valid and field_index for us */
2107	switch (table_type) {
2108	case PLATFORM_CONFIG_SYSTEM_TABLE:
2109		src_ptr = pcfgcache->config_tables[table_type].table;
2110
2111		if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
2112			if (len < field_len_bits)
2113				return -EINVAL;
2114
2115			seek = field_start_bits / 8;
2116			wlen = field_len_bits / 8;
2117
2118			src_ptr = (u32 *)((u8 *)src_ptr + seek);
2119
2120			/*
2121			 * We expect the field to be byte aligned and whole byte
2122			 * lengths if we are here
2123			 */
2124			memcpy(data, src_ptr, wlen);
2125			return 0;
2126		}
2127		break;
2128	case PLATFORM_CONFIG_PORT_TABLE:
2129		/* Port table is 4 DWORDS */
2130		src_ptr = dd->hfi1_id ?
2131			pcfgcache->config_tables[table_type].table + 4 :
2132			pcfgcache->config_tables[table_type].table;
2133		break;
2134	case PLATFORM_CONFIG_RX_PRESET_TABLE:
2135	case PLATFORM_CONFIG_TX_PRESET_TABLE:
2136	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2137	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2138		src_ptr = pcfgcache->config_tables[table_type].table;
2139
2140		if (table_index <
2141			pcfgcache->config_tables[table_type].num_table)
2142			src_ptr += table_index;
2143		else
2144			src_ptr = NULL;
2145		break;
2146	default:
2147		dd_dev_info(dd, "%s: Unknown table\n", __func__);
2148		break;
2149	}
2150
2151	if (!src_ptr || len < field_len_bits)
2152		return -EINVAL;
2153
2154	src_ptr += (field_start_bits / 32);
2155	*data = (*src_ptr >> (field_start_bits % 32)) &
2156			((1 << field_len_bits) - 1);
2157
2158	return 0;
2159}
2160
2161/*
2162 * Download the firmware needed for the Gen3 PCIe SerDes.  An update
2163 * to the SBus firmware is needed before updating the PCIe firmware.
2164 *
2165 * Note: caller must be holding the SBus resource.
2166 */
2167int load_pcie_firmware(struct hfi1_devdata *dd)
2168{
2169	int ret = 0;
2170
2171	/* both firmware loads below use the SBus */
2172	set_sbus_fast_mode(dd);
2173
2174	if (fw_sbus_load) {
2175		turn_off_spicos(dd, SPICO_SBUS);
2176		do {
2177			ret = load_sbus_firmware(dd, &fw_sbus);
2178		} while (retry_firmware(dd, ret));
2179		if (ret)
2180			goto done;
2181	}
2182
2183	if (fw_pcie_serdes_load) {
2184		dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2185		set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2186				     pcie_serdes_broadcast[dd->hfi1_id],
2187				     pcie_serdes_addrs[dd->hfi1_id],
2188				     NUM_PCIE_SERDES);
2189		do {
2190			ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2191		} while (retry_firmware(dd, ret));
2192		if (ret)
2193			goto done;
2194	}
2195
2196done:
2197	clear_sbus_fast_mode(dd);
2198
2199	return ret;
2200}
2201
2202/*
2203 * Read the GUID from the hardware, store it in dd.
2204 */
2205void read_guid(struct hfi1_devdata *dd)
2206{
2207	/* Take the DC out of reset to get a valid GUID value */
2208	write_csr(dd, CCE_DC_CTRL, 0);
2209	(void)read_csr(dd, CCE_DC_CTRL);
2210
2211	dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2212	dd_dev_info(dd, "GUID %llx",
2213		    (unsigned long long)dd->base_guid);
2214}
2215
2216/* read and display firmware version info */
2217static void dump_fw_version(struct hfi1_devdata *dd)
2218{
2219	u32 pcie_vers[NUM_PCIE_SERDES];
2220	u32 fabric_vers[NUM_FABRIC_SERDES];
2221	u32 sbus_vers;
2222	int i;
2223	int all_same;
2224	int ret;
2225	u8 rcv_addr;
2226
2227	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2228	if (ret) {
2229		dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2230		return;
2231	}
2232
2233	/* set fast mode */
2234	set_sbus_fast_mode(dd);
2235
2236	/* read version for SBus Master */
2237	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2238	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2239	/* wait for interrupt to be processed */
2240	usleep_range(10000, 11000);
2241	sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2242	dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2243
2244	/* read version for PCIe SerDes */
2245	all_same = 1;
2246	pcie_vers[0] = 0;
2247	for (i = 0; i < NUM_PCIE_SERDES; i++) {
2248		rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2249		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2250		/* wait for interrupt to be processed */
2251		usleep_range(10000, 11000);
2252		pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2253		if (i > 0 && pcie_vers[0] != pcie_vers[i])
2254			all_same = 0;
2255	}
2256
2257	if (all_same) {
2258		dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2259			    pcie_vers[0]);
2260	} else {
2261		dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2262		for (i = 0; i < NUM_PCIE_SERDES; i++) {
2263			dd_dev_info(dd,
2264				    "PCIe SerDes lane %d firmware version 0x%x\n",
2265				    i, pcie_vers[i]);
2266		}
2267	}
2268
2269	/* read version for fabric SerDes */
2270	all_same = 1;
2271	fabric_vers[0] = 0;
2272	for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2273		rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2274		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2275		/* wait for interrupt to be processed */
2276		usleep_range(10000, 11000);
2277		fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2278		if (i > 0 && fabric_vers[0] != fabric_vers[i])
2279			all_same = 0;
2280	}
2281
2282	if (all_same) {
2283		dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2284			    fabric_vers[0]);
2285	} else {
2286		dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2287		for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2288			dd_dev_info(dd,
2289				    "Fabric SerDes lane %d firmware version 0x%x\n",
2290				    i, fabric_vers[i]);
2291		}
2292	}
2293
2294	clear_sbus_fast_mode(dd);
2295	release_chip_resource(dd, CR_SBUS);
2296}
2297