1/*
2 * Copyright(c) 2020 Cornelis Networks, Inc.
3 * Copyright(c) 2015-2020 Intel Corporation.
4 *
5 * This file is provided under a dual BSD/GPLv2 license.  When using or
6 * redistributing this file, you may do so under either license.
7 *
8 * GPL LICENSE SUMMARY
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Redistribution and use in source and binary forms, with or without
22 * modification, are permitted provided that the following conditions
23 * are met:
24 *
25 *  - Redistributions of source code must retain the above copyright
26 *    notice, this list of conditions and the following disclaimer.
27 *  - Redistributions in binary form must reproduce the above copyright
28 *    notice, this list of conditions and the following disclaimer in
29 *    the documentation and/or other materials provided with the
30 *    distribution.
31 *  - Neither the name of Intel Corporation nor the names of its
32 *    contributors may be used to endorse or promote products derived
33 *    from this software without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
36 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
37 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
38 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
39 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
41 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
42 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
43 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
44 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
45 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
46 *
47 */
48#include <linux/poll.h>
49#include <linux/cdev.h>
50#include <linux/vmalloc.h>
51#include <linux/io.h>
52#include <linux/sched/mm.h>
53#include <linux/bitmap.h>
54
55#include <rdma/ib.h>
56
57#include "hfi.h"
58#include "pio.h"
59#include "device.h"
60#include "common.h"
61#include "trace.h"
62#include "mmu_rb.h"
63#include "user_sdma.h"
64#include "user_exp_rcv.h"
65#include "aspm.h"
66
67#undef pr_fmt
68#define pr_fmt(fmt) DRIVER_NAME ": " fmt
69
70#define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
71
72/*
73 * File operation functions
74 */
75static int hfi1_file_open(struct inode *inode, struct file *fp);
76static int hfi1_file_close(struct inode *inode, struct file *fp);
77static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
78static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
79static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
80
81static u64 kvirt_to_phys(void *addr);
82static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
83static void init_subctxts(struct hfi1_ctxtdata *uctxt,
84			  const struct hfi1_user_info *uinfo);
85static int init_user_ctxt(struct hfi1_filedata *fd,
86			  struct hfi1_ctxtdata *uctxt);
87static void user_init(struct hfi1_ctxtdata *uctxt);
88static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
89static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
90static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
91			      u32 len);
92static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
93			      u32 len);
94static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
95				u32 len);
96static int setup_base_ctxt(struct hfi1_filedata *fd,
97			   struct hfi1_ctxtdata *uctxt);
98static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
99
100static int find_sub_ctxt(struct hfi1_filedata *fd,
101			 const struct hfi1_user_info *uinfo);
102static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
103			 struct hfi1_user_info *uinfo,
104			 struct hfi1_ctxtdata **cd);
105static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
106static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
107static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
108static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
109			  unsigned long arg);
110static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
111static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
112static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
113		       unsigned long arg);
114static vm_fault_t vma_fault(struct vm_fault *vmf);
115static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
116			    unsigned long arg);
117
118static const struct file_operations hfi1_file_ops = {
119	.owner = THIS_MODULE,
120	.write_iter = hfi1_write_iter,
121	.open = hfi1_file_open,
122	.release = hfi1_file_close,
123	.unlocked_ioctl = hfi1_file_ioctl,
124	.poll = hfi1_poll,
125	.mmap = hfi1_file_mmap,
126	.llseek = noop_llseek,
127};
128
129static const struct vm_operations_struct vm_ops = {
130	.fault = vma_fault,
131};
132
133/*
134 * Types of memories mapped into user processes' space
135 */
136enum mmap_types {
137	PIO_BUFS = 1,
138	PIO_BUFS_SOP,
139	PIO_CRED,
140	RCV_HDRQ,
141	RCV_EGRBUF,
142	UREGS,
143	EVENTS,
144	STATUS,
145	RTAIL,
146	SUBCTXT_UREGS,
147	SUBCTXT_RCV_HDRQ,
148	SUBCTXT_EGRBUF,
149	SDMA_COMP
150};
151
152/*
153 * Masks and offsets defining the mmap tokens
154 */
155#define HFI1_MMAP_OFFSET_MASK   0xfffULL
156#define HFI1_MMAP_OFFSET_SHIFT  0
157#define HFI1_MMAP_SUBCTXT_MASK  0xfULL
158#define HFI1_MMAP_SUBCTXT_SHIFT 12
159#define HFI1_MMAP_CTXT_MASK     0xffULL
160#define HFI1_MMAP_CTXT_SHIFT    16
161#define HFI1_MMAP_TYPE_MASK     0xfULL
162#define HFI1_MMAP_TYPE_SHIFT    24
163#define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
164#define HFI1_MMAP_MAGIC_SHIFT   32
165
166#define HFI1_MMAP_MAGIC         0xdabbad00
167
168#define HFI1_MMAP_TOKEN_SET(field, val)	\
169	(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
170#define HFI1_MMAP_TOKEN_GET(field, token) \
171	(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
172#define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
173	(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
174	HFI1_MMAP_TOKEN_SET(TYPE, type) | \
175	HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
176	HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
177	HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
178
179#define dbg(fmt, ...)				\
180	pr_info(fmt, ##__VA_ARGS__)
181
182static inline int is_valid_mmap(u64 token)
183{
184	return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
185}
186
187static int hfi1_file_open(struct inode *inode, struct file *fp)
188{
189	struct hfi1_filedata *fd;
190	struct hfi1_devdata *dd = container_of(inode->i_cdev,
191					       struct hfi1_devdata,
192					       user_cdev);
193
194	if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
195		return -EINVAL;
196
197	if (!atomic_inc_not_zero(&dd->user_refcount))
198		return -ENXIO;
199
200	/* The real work is performed later in assign_ctxt() */
201
202	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
203
204	if (!fd || init_srcu_struct(&fd->pq_srcu))
205		goto nomem;
206	spin_lock_init(&fd->pq_rcu_lock);
207	spin_lock_init(&fd->tid_lock);
208	spin_lock_init(&fd->invalid_lock);
209	fd->rec_cpu_num = -1; /* no cpu affinity by default */
210	fd->dd = dd;
211	fp->private_data = fd;
212	return 0;
213nomem:
214	kfree(fd);
215	fp->private_data = NULL;
216	if (atomic_dec_and_test(&dd->user_refcount))
217		complete(&dd->user_comp);
218	return -ENOMEM;
219}
220
221static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
222			    unsigned long arg)
223{
224	struct hfi1_filedata *fd = fp->private_data;
225	struct hfi1_ctxtdata *uctxt = fd->uctxt;
226	int ret = 0;
227	int uval = 0;
228
229	hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
230	if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
231	    cmd != HFI1_IOCTL_GET_VERS &&
232	    !uctxt)
233		return -EINVAL;
234
235	switch (cmd) {
236	case HFI1_IOCTL_ASSIGN_CTXT:
237		ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
238		break;
239
240	case HFI1_IOCTL_CTXT_INFO:
241		ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
242		break;
243
244	case HFI1_IOCTL_USER_INFO:
245		ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
246		break;
247
248	case HFI1_IOCTL_CREDIT_UPD:
249		if (uctxt)
250			sc_return_credits(uctxt->sc);
251		break;
252
253	case HFI1_IOCTL_TID_UPDATE:
254		ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
255		break;
256
257	case HFI1_IOCTL_TID_FREE:
258		ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
259		break;
260
261	case HFI1_IOCTL_TID_INVAL_READ:
262		ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
263		break;
264
265	case HFI1_IOCTL_RECV_CTRL:
266		ret = manage_rcvq(uctxt, fd->subctxt, arg);
267		break;
268
269	case HFI1_IOCTL_POLL_TYPE:
270		if (get_user(uval, (int __user *)arg))
271			return -EFAULT;
272		uctxt->poll_type = (typeof(uctxt->poll_type))uval;
273		break;
274
275	case HFI1_IOCTL_ACK_EVENT:
276		ret = user_event_ack(uctxt, fd->subctxt, arg);
277		break;
278
279	case HFI1_IOCTL_SET_PKEY:
280		ret = set_ctxt_pkey(uctxt, arg);
281		break;
282
283	case HFI1_IOCTL_CTXT_RESET:
284		ret = ctxt_reset(uctxt);
285		break;
286
287	case HFI1_IOCTL_GET_VERS:
288		uval = HFI1_USER_SWVERSION;
289		if (put_user(uval, (int __user *)arg))
290			return -EFAULT;
291		break;
292
293	default:
294		return -EINVAL;
295	}
296
297	return ret;
298}
299
300static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
301{
302	struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
303	struct hfi1_user_sdma_pkt_q *pq;
304	struct hfi1_user_sdma_comp_q *cq = fd->cq;
305	int done = 0, reqs = 0;
306	unsigned long dim = from->nr_segs;
307	int idx;
308
309	if (!HFI1_CAP_IS_KSET(SDMA))
310		return -EINVAL;
311	idx = srcu_read_lock(&fd->pq_srcu);
312	pq = srcu_dereference(fd->pq, &fd->pq_srcu);
313	if (!cq || !pq) {
314		srcu_read_unlock(&fd->pq_srcu, idx);
315		return -EIO;
316	}
317
318	if (!iter_is_iovec(from) || !dim) {
319		srcu_read_unlock(&fd->pq_srcu, idx);
320		return -EINVAL;
321	}
322
323	trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
324
325	if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
326		srcu_read_unlock(&fd->pq_srcu, idx);
327		return -ENOSPC;
328	}
329
330	while (dim) {
331		int ret;
332		unsigned long count = 0;
333
334		ret = hfi1_user_sdma_process_request(
335			fd, (struct iovec *)(from->iov + done),
336			dim, &count);
337		if (ret) {
338			reqs = ret;
339			break;
340		}
341		dim -= count;
342		done += count;
343		reqs++;
344	}
345
346	srcu_read_unlock(&fd->pq_srcu, idx);
347	return reqs;
348}
349
350static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
351{
352	struct hfi1_filedata *fd = fp->private_data;
353	struct hfi1_ctxtdata *uctxt = fd->uctxt;
354	struct hfi1_devdata *dd;
355	unsigned long flags;
356	u64 token = vma->vm_pgoff << PAGE_SHIFT,
357		memaddr = 0;
358	void *memvirt = NULL;
359	u8 subctxt, mapio = 0, vmf = 0, type;
360	ssize_t memlen = 0;
361	int ret = 0;
362	u16 ctxt;
363
364	if (!is_valid_mmap(token) || !uctxt ||
365	    !(vma->vm_flags & VM_SHARED)) {
366		ret = -EINVAL;
367		goto done;
368	}
369	dd = uctxt->dd;
370	ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
371	subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
372	type = HFI1_MMAP_TOKEN_GET(TYPE, token);
373	if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
374		ret = -EINVAL;
375		goto done;
376	}
377
378	flags = vma->vm_flags;
379
380	switch (type) {
381	case PIO_BUFS:
382	case PIO_BUFS_SOP:
383		memaddr = ((dd->physaddr + TXE_PIO_SEND) +
384				/* chip pio base */
385			   (uctxt->sc->hw_context * BIT(16))) +
386				/* 64K PIO space / ctxt */
387			(type == PIO_BUFS_SOP ?
388				(TXE_PIO_SIZE / 2) : 0); /* sop? */
389		/*
390		 * Map only the amount allocated to the context, not the
391		 * entire available context's PIO space.
392		 */
393		memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
394		flags &= ~VM_MAYREAD;
395		flags |= VM_DONTCOPY | VM_DONTEXPAND;
396		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
397		mapio = 1;
398		break;
399	case PIO_CRED:
400		if (flags & VM_WRITE) {
401			ret = -EPERM;
402			goto done;
403		}
404		/*
405		 * The credit return location for this context could be on the
406		 * second or third page allocated for credit returns (if number
407		 * of enabled contexts > 64 and 128 respectively).
408		 */
409		memvirt = dd->cr_base[uctxt->numa_id].va;
410		memaddr = virt_to_phys(memvirt) +
411			(((u64)uctxt->sc->hw_free -
412			  (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
413		memlen = PAGE_SIZE;
414		flags &= ~VM_MAYWRITE;
415		flags |= VM_DONTCOPY | VM_DONTEXPAND;
416		/*
417		 * The driver has already allocated memory for credit
418		 * returns and programmed it into the chip. Has that
419		 * memory been flagged as non-cached?
420		 */
421		/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
422		mapio = 1;
423		break;
424	case RCV_HDRQ:
425		memlen = rcvhdrq_size(uctxt);
426		memvirt = uctxt->rcvhdrq;
427		break;
428	case RCV_EGRBUF: {
429		unsigned long addr;
430		int i;
431		/*
432		 * The RcvEgr buffer need to be handled differently
433		 * as multiple non-contiguous pages need to be mapped
434		 * into the user process.
435		 */
436		memlen = uctxt->egrbufs.size;
437		if ((vma->vm_end - vma->vm_start) != memlen) {
438			dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
439				   (vma->vm_end - vma->vm_start), memlen);
440			ret = -EINVAL;
441			goto done;
442		}
443		if (vma->vm_flags & VM_WRITE) {
444			ret = -EPERM;
445			goto done;
446		}
447		vma->vm_flags &= ~VM_MAYWRITE;
448		addr = vma->vm_start;
449		for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
450			memlen = uctxt->egrbufs.buffers[i].len;
451			memvirt = uctxt->egrbufs.buffers[i].addr;
452			ret = remap_pfn_range(
453				vma, addr,
454				/*
455				 * virt_to_pfn() does the same, but
456				 * it's not available on x86_64
457				 * when CONFIG_MMU is enabled.
458				 */
459				PFN_DOWN(__pa(memvirt)),
460				memlen,
461				vma->vm_page_prot);
462			if (ret < 0)
463				goto done;
464			addr += memlen;
465		}
466		ret = 0;
467		goto done;
468	}
469	case UREGS:
470		/*
471		 * Map only the page that contains this context's user
472		 * registers.
473		 */
474		memaddr = (unsigned long)
475			(dd->physaddr + RXE_PER_CONTEXT_USER)
476			+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
477		/*
478		 * TidFlow table is on the same page as the rest of the
479		 * user registers.
480		 */
481		memlen = PAGE_SIZE;
482		flags |= VM_DONTCOPY | VM_DONTEXPAND;
483		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
484		mapio = 1;
485		break;
486	case EVENTS:
487		/*
488		 * Use the page where this context's flags are. User level
489		 * knows where it's own bitmap is within the page.
490		 */
491		memaddr = (unsigned long)
492			(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
493		memlen = PAGE_SIZE;
494		/*
495		 * v3.7 removes VM_RESERVED but the effect is kept by
496		 * using VM_IO.
497		 */
498		flags |= VM_IO | VM_DONTEXPAND;
499		vmf = 1;
500		break;
501	case STATUS:
502		if (flags & VM_WRITE) {
503			ret = -EPERM;
504			goto done;
505		}
506		memaddr = kvirt_to_phys((void *)dd->status);
507		memlen = PAGE_SIZE;
508		flags |= VM_IO | VM_DONTEXPAND;
509		break;
510	case RTAIL:
511		if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
512			/*
513			 * If the memory allocation failed, the context alloc
514			 * also would have failed, so we would never get here
515			 */
516			ret = -EINVAL;
517			goto done;
518		}
519		if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
520			ret = -EPERM;
521			goto done;
522		}
523		memlen = PAGE_SIZE;
524		memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
525		flags &= ~VM_MAYWRITE;
526		break;
527	case SUBCTXT_UREGS:
528		memaddr = (u64)uctxt->subctxt_uregbase;
529		memlen = PAGE_SIZE;
530		flags |= VM_IO | VM_DONTEXPAND;
531		vmf = 1;
532		break;
533	case SUBCTXT_RCV_HDRQ:
534		memaddr = (u64)uctxt->subctxt_rcvhdr_base;
535		memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
536		flags |= VM_IO | VM_DONTEXPAND;
537		vmf = 1;
538		break;
539	case SUBCTXT_EGRBUF:
540		memaddr = (u64)uctxt->subctxt_rcvegrbuf;
541		memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
542		flags |= VM_IO | VM_DONTEXPAND;
543		flags &= ~VM_MAYWRITE;
544		vmf = 1;
545		break;
546	case SDMA_COMP: {
547		struct hfi1_user_sdma_comp_q *cq = fd->cq;
548
549		if (!cq) {
550			ret = -EFAULT;
551			goto done;
552		}
553		memaddr = (u64)cq->comps;
554		memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
555		flags |= VM_IO | VM_DONTEXPAND;
556		vmf = 1;
557		break;
558	}
559	default:
560		ret = -EINVAL;
561		break;
562	}
563
564	if ((vma->vm_end - vma->vm_start) != memlen) {
565		hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
566			  uctxt->ctxt, fd->subctxt,
567			  (vma->vm_end - vma->vm_start), memlen);
568		ret = -EINVAL;
569		goto done;
570	}
571
572	vma->vm_flags = flags;
573	hfi1_cdbg(PROC,
574		  "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
575		    ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
576		    vma->vm_end - vma->vm_start, vma->vm_flags);
577	if (vmf) {
578		vma->vm_pgoff = PFN_DOWN(memaddr);
579		vma->vm_ops = &vm_ops;
580		ret = 0;
581	} else if (mapio) {
582		ret = io_remap_pfn_range(vma, vma->vm_start,
583					 PFN_DOWN(memaddr),
584					 memlen,
585					 vma->vm_page_prot);
586	} else if (memvirt) {
587		ret = remap_pfn_range(vma, vma->vm_start,
588				      PFN_DOWN(__pa(memvirt)),
589				      memlen,
590				      vma->vm_page_prot);
591	} else {
592		ret = remap_pfn_range(vma, vma->vm_start,
593				      PFN_DOWN(memaddr),
594				      memlen,
595				      vma->vm_page_prot);
596	}
597done:
598	return ret;
599}
600
601/*
602 * Local (non-chip) user memory is not mapped right away but as it is
603 * accessed by the user-level code.
604 */
605static vm_fault_t vma_fault(struct vm_fault *vmf)
606{
607	struct page *page;
608
609	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
610	if (!page)
611		return VM_FAULT_SIGBUS;
612
613	get_page(page);
614	vmf->page = page;
615
616	return 0;
617}
618
619static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
620{
621	struct hfi1_ctxtdata *uctxt;
622	__poll_t pollflag;
623
624	uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
625	if (!uctxt)
626		pollflag = EPOLLERR;
627	else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
628		pollflag = poll_urgent(fp, pt);
629	else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
630		pollflag = poll_next(fp, pt);
631	else /* invalid */
632		pollflag = EPOLLERR;
633
634	return pollflag;
635}
636
637static int hfi1_file_close(struct inode *inode, struct file *fp)
638{
639	struct hfi1_filedata *fdata = fp->private_data;
640	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
641	struct hfi1_devdata *dd = container_of(inode->i_cdev,
642					       struct hfi1_devdata,
643					       user_cdev);
644	unsigned long flags, *ev;
645
646	fp->private_data = NULL;
647
648	if (!uctxt)
649		goto done;
650
651	hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
652
653	flush_wc();
654	/* drain user sdma queue */
655	hfi1_user_sdma_free_queues(fdata, uctxt);
656
657	/* release the cpu */
658	hfi1_put_proc_affinity(fdata->rec_cpu_num);
659
660	/* clean up rcv side */
661	hfi1_user_exp_rcv_free(fdata);
662
663	/*
664	 * fdata->uctxt is used in the above cleanup.  It is not ready to be
665	 * removed until here.
666	 */
667	fdata->uctxt = NULL;
668	hfi1_rcd_put(uctxt);
669
670	/*
671	 * Clear any left over, unhandled events so the next process that
672	 * gets this context doesn't get confused.
673	 */
674	ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
675	*ev = 0;
676
677	spin_lock_irqsave(&dd->uctxt_lock, flags);
678	__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
679	if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
680		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
681		goto done;
682	}
683	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
684
685	/*
686	 * Disable receive context and interrupt available, reset all
687	 * RcvCtxtCtrl bits to default values.
688	 */
689	hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
690		     HFI1_RCVCTRL_TIDFLOW_DIS |
691		     HFI1_RCVCTRL_INTRAVAIL_DIS |
692		     HFI1_RCVCTRL_TAILUPD_DIS |
693		     HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
694		     HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
695		     HFI1_RCVCTRL_NO_EGR_DROP_DIS |
696		     HFI1_RCVCTRL_URGENT_DIS, uctxt);
697	/* Clear the context's J_KEY */
698	hfi1_clear_ctxt_jkey(dd, uctxt);
699	/*
700	 * If a send context is allocated, reset context integrity
701	 * checks to default and disable the send context.
702	 */
703	if (uctxt->sc) {
704		sc_disable(uctxt->sc);
705		set_pio_integrity(uctxt->sc);
706	}
707
708	hfi1_free_ctxt_rcv_groups(uctxt);
709	hfi1_clear_ctxt_pkey(dd, uctxt);
710
711	uctxt->event_flags = 0;
712
713	deallocate_ctxt(uctxt);
714done:
715
716	if (atomic_dec_and_test(&dd->user_refcount))
717		complete(&dd->user_comp);
718
719	cleanup_srcu_struct(&fdata->pq_srcu);
720	kfree(fdata);
721	return 0;
722}
723
724/*
725 * Convert kernel *virtual* addresses to physical addresses.
726 * This is used to vmalloc'ed addresses.
727 */
728static u64 kvirt_to_phys(void *addr)
729{
730	struct page *page;
731	u64 paddr = 0;
732
733	page = vmalloc_to_page(addr);
734	if (page)
735		paddr = page_to_pfn(page) << PAGE_SHIFT;
736
737	return paddr;
738}
739
740/**
741 * complete_subctxt
742 * @fd: valid filedata pointer
743 *
744 * Sub-context info can only be set up after the base context
745 * has been completed.  This is indicated by the clearing of the
746 * HFI1_CTXT_BASE_UINIT bit.
747 *
748 * Wait for the bit to be cleared, and then complete the subcontext
749 * initialization.
750 *
751 */
752static int complete_subctxt(struct hfi1_filedata *fd)
753{
754	int ret;
755	unsigned long flags;
756
757	/*
758	 * sub-context info can only be set up after the base context
759	 * has been completed.
760	 */
761	ret = wait_event_interruptible(
762		fd->uctxt->wait,
763		!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
764
765	if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
766		ret = -ENOMEM;
767
768	/* Finish the sub-context init */
769	if (!ret) {
770		fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
771		ret = init_user_ctxt(fd, fd->uctxt);
772	}
773
774	if (ret) {
775		spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
776		__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
777		spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
778		hfi1_rcd_put(fd->uctxt);
779		fd->uctxt = NULL;
780	}
781
782	return ret;
783}
784
785static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
786{
787	int ret;
788	unsigned int swmajor;
789	struct hfi1_ctxtdata *uctxt = NULL;
790	struct hfi1_user_info uinfo;
791
792	if (fd->uctxt)
793		return -EINVAL;
794
795	if (sizeof(uinfo) != len)
796		return -EINVAL;
797
798	if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
799		return -EFAULT;
800
801	swmajor = uinfo.userversion >> 16;
802	if (swmajor != HFI1_USER_SWMAJOR)
803		return -ENODEV;
804
805	if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
806		return -EINVAL;
807
808	/*
809	 * Acquire the mutex to protect against multiple creations of what
810	 * could be a shared base context.
811	 */
812	mutex_lock(&hfi1_mutex);
813	/*
814	 * Get a sub context if available  (fd->uctxt will be set).
815	 * ret < 0 error, 0 no context, 1 sub-context found
816	 */
817	ret = find_sub_ctxt(fd, &uinfo);
818
819	/*
820	 * Allocate a base context if context sharing is not required or a
821	 * sub context wasn't found.
822	 */
823	if (!ret)
824		ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
825
826	mutex_unlock(&hfi1_mutex);
827
828	/* Depending on the context type, finish the appropriate init */
829	switch (ret) {
830	case 0:
831		ret = setup_base_ctxt(fd, uctxt);
832		if (ret)
833			deallocate_ctxt(uctxt);
834		break;
835	case 1:
836		ret = complete_subctxt(fd);
837		break;
838	default:
839		break;
840	}
841
842	return ret;
843}
844
845/**
846 * match_ctxt
847 * @fd: valid filedata pointer
848 * @uinfo: user info to compare base context with
849 * @uctxt: context to compare uinfo to.
850 *
851 * Compare the given context with the given information to see if it
852 * can be used for a sub context.
853 */
854static int match_ctxt(struct hfi1_filedata *fd,
855		      const struct hfi1_user_info *uinfo,
856		      struct hfi1_ctxtdata *uctxt)
857{
858	struct hfi1_devdata *dd = fd->dd;
859	unsigned long flags;
860	u16 subctxt;
861
862	/* Skip dynamically allocated kernel contexts */
863	if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
864		return 0;
865
866	/* Skip ctxt if it doesn't match the requested one */
867	if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
868	    uctxt->jkey != generate_jkey(current_uid()) ||
869	    uctxt->subctxt_id != uinfo->subctxt_id ||
870	    uctxt->subctxt_cnt != uinfo->subctxt_cnt)
871		return 0;
872
873	/* Verify the sharing process matches the base */
874	if (uctxt->userversion != uinfo->userversion)
875		return -EINVAL;
876
877	/* Find an unused sub context */
878	spin_lock_irqsave(&dd->uctxt_lock, flags);
879	if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
880		/* context is being closed, do not use */
881		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
882		return 0;
883	}
884
885	subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
886				      HFI1_MAX_SHARED_CTXTS);
887	if (subctxt >= uctxt->subctxt_cnt) {
888		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
889		return -EBUSY;
890	}
891
892	fd->subctxt = subctxt;
893	__set_bit(fd->subctxt, uctxt->in_use_ctxts);
894	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
895
896	fd->uctxt = uctxt;
897	hfi1_rcd_get(uctxt);
898
899	return 1;
900}
901
902/**
903 * find_sub_ctxt
904 * @fd: valid filedata pointer
905 * @uinfo: matching info to use to find a possible context to share.
906 *
907 * The hfi1_mutex must be held when this function is called.  It is
908 * necessary to ensure serialized creation of shared contexts.
909 *
910 * Return:
911 *    0      No sub-context found
912 *    1      Subcontext found and allocated
913 *    errno  EINVAL (incorrect parameters)
914 *           EBUSY (all sub contexts in use)
915 */
916static int find_sub_ctxt(struct hfi1_filedata *fd,
917			 const struct hfi1_user_info *uinfo)
918{
919	struct hfi1_ctxtdata *uctxt;
920	struct hfi1_devdata *dd = fd->dd;
921	u16 i;
922	int ret;
923
924	if (!uinfo->subctxt_cnt)
925		return 0;
926
927	for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
928		uctxt = hfi1_rcd_get_by_index(dd, i);
929		if (uctxt) {
930			ret = match_ctxt(fd, uinfo, uctxt);
931			hfi1_rcd_put(uctxt);
932			/* value of != 0 will return */
933			if (ret)
934				return ret;
935		}
936	}
937
938	return 0;
939}
940
941static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
942			 struct hfi1_user_info *uinfo,
943			 struct hfi1_ctxtdata **rcd)
944{
945	struct hfi1_ctxtdata *uctxt;
946	int ret, numa;
947
948	if (dd->flags & HFI1_FROZEN) {
949		/*
950		 * Pick an error that is unique from all other errors
951		 * that are returned so the user process knows that
952		 * it tried to allocate while the SPC was frozen.  It
953		 * it should be able to retry with success in a short
954		 * while.
955		 */
956		return -EIO;
957	}
958
959	if (!dd->freectxts)
960		return -EBUSY;
961
962	/*
963	 * If we don't have a NUMA node requested, preference is towards
964	 * device NUMA node.
965	 */
966	fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
967	if (fd->rec_cpu_num != -1)
968		numa = cpu_to_node(fd->rec_cpu_num);
969	else
970		numa = numa_node_id();
971	ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
972	if (ret < 0) {
973		dd_dev_err(dd, "user ctxtdata allocation failed\n");
974		return ret;
975	}
976	hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
977		  uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
978		  uctxt->numa_id);
979
980	/*
981	 * Allocate and enable a PIO send context.
982	 */
983	uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
984	if (!uctxt->sc) {
985		ret = -ENOMEM;
986		goto ctxdata_free;
987	}
988	hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
989		  uctxt->sc->hw_context);
990	ret = sc_enable(uctxt->sc);
991	if (ret)
992		goto ctxdata_free;
993
994	/*
995	 * Setup sub context information if the user-level has requested
996	 * sub contexts.
997	 * This has to be done here so the rest of the sub-contexts find the
998	 * proper base context.
999	 * NOTE: _set_bit() can be used here because the context creation is
1000	 * protected by the mutex (rather than the spin_lock), and will be the
1001	 * very first instance of this context.
1002	 */
1003	__set_bit(0, uctxt->in_use_ctxts);
1004	if (uinfo->subctxt_cnt)
1005		init_subctxts(uctxt, uinfo);
1006	uctxt->userversion = uinfo->userversion;
1007	uctxt->flags = hfi1_cap_mask; /* save current flag state */
1008	init_waitqueue_head(&uctxt->wait);
1009	strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1010	memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1011	uctxt->jkey = generate_jkey(current_uid());
1012	hfi1_stats.sps_ctxts++;
1013	/*
1014	 * Disable ASPM when there are open user/PSM contexts to avoid
1015	 * issues with ASPM L1 exit latency
1016	 */
1017	if (dd->freectxts-- == dd->num_user_contexts)
1018		aspm_disable_all(dd);
1019
1020	*rcd = uctxt;
1021
1022	return 0;
1023
1024ctxdata_free:
1025	hfi1_free_ctxt(uctxt);
1026	return ret;
1027}
1028
1029static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1030{
1031	mutex_lock(&hfi1_mutex);
1032	hfi1_stats.sps_ctxts--;
1033	if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1034		aspm_enable_all(uctxt->dd);
1035	mutex_unlock(&hfi1_mutex);
1036
1037	hfi1_free_ctxt(uctxt);
1038}
1039
1040static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1041			  const struct hfi1_user_info *uinfo)
1042{
1043	uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1044	uctxt->subctxt_id = uinfo->subctxt_id;
1045	set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1046}
1047
1048static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1049{
1050	int ret = 0;
1051	u16 num_subctxts = uctxt->subctxt_cnt;
1052
1053	uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1054	if (!uctxt->subctxt_uregbase)
1055		return -ENOMEM;
1056
1057	/* We can take the size of the RcvHdr Queue from the master */
1058	uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1059						  num_subctxts);
1060	if (!uctxt->subctxt_rcvhdr_base) {
1061		ret = -ENOMEM;
1062		goto bail_ureg;
1063	}
1064
1065	uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1066						num_subctxts);
1067	if (!uctxt->subctxt_rcvegrbuf) {
1068		ret = -ENOMEM;
1069		goto bail_rhdr;
1070	}
1071
1072	return 0;
1073
1074bail_rhdr:
1075	vfree(uctxt->subctxt_rcvhdr_base);
1076	uctxt->subctxt_rcvhdr_base = NULL;
1077bail_ureg:
1078	vfree(uctxt->subctxt_uregbase);
1079	uctxt->subctxt_uregbase = NULL;
1080
1081	return ret;
1082}
1083
1084static void user_init(struct hfi1_ctxtdata *uctxt)
1085{
1086	unsigned int rcvctrl_ops = 0;
1087
1088	/* initialize poll variables... */
1089	uctxt->urgent = 0;
1090	uctxt->urgent_poll = 0;
1091
1092	/*
1093	 * Now enable the ctxt for receive.
1094	 * For chips that are set to DMA the tail register to memory
1095	 * when they change (and when the update bit transitions from
1096	 * 0 to 1.  So for those chips, we turn it off and then back on.
1097	 * This will (very briefly) affect any other open ctxts, but the
1098	 * duration is very short, and therefore isn't an issue.  We
1099	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1100	 * don't have to wait to be sure the DMA update has happened
1101	 * (chip resets head/tail to 0 on transition to enable).
1102	 */
1103	if (hfi1_rcvhdrtail_kvaddr(uctxt))
1104		clear_rcvhdrtail(uctxt);
1105
1106	/* Setup J_KEY before enabling the context */
1107	hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1108
1109	rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1110	rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1111	if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1112		rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1113	/*
1114	 * Ignore the bit in the flags for now until proper
1115	 * support for multiple packet per rcv array entry is
1116	 * added.
1117	 */
1118	if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1119		rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1120	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1121		rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1122	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1123		rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1124	/*
1125	 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1126	 * We can't rely on the correct value to be set from prior
1127	 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1128	 * for both cases.
1129	 */
1130	if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1131		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1132	else
1133		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1134	hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1135}
1136
1137static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1138{
1139	struct hfi1_ctxt_info cinfo;
1140	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1141
1142	if (sizeof(cinfo) != len)
1143		return -EINVAL;
1144
1145	memset(&cinfo, 0, sizeof(cinfo));
1146	cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1147				HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1148			HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1149			HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1150	/* adjust flag if this fd is not able to cache */
1151	if (!fd->use_mn)
1152		cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1153
1154	cinfo.num_active = hfi1_count_active_units();
1155	cinfo.unit = uctxt->dd->unit;
1156	cinfo.ctxt = uctxt->ctxt;
1157	cinfo.subctxt = fd->subctxt;
1158	cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1159				uctxt->dd->rcv_entries.group_size) +
1160		uctxt->expected_count;
1161	cinfo.credits = uctxt->sc->credits;
1162	cinfo.numa_node = uctxt->numa_id;
1163	cinfo.rec_cpu = fd->rec_cpu_num;
1164	cinfo.send_ctxt = uctxt->sc->hw_context;
1165
1166	cinfo.egrtids = uctxt->egrbufs.alloced;
1167	cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1168	cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1169	cinfo.sdma_ring_size = fd->cq->nentries;
1170	cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1171
1172	trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1173	if (copy_to_user((void __user *)arg, &cinfo, len))
1174		return -EFAULT;
1175
1176	return 0;
1177}
1178
1179static int init_user_ctxt(struct hfi1_filedata *fd,
1180			  struct hfi1_ctxtdata *uctxt)
1181{
1182	int ret;
1183
1184	ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1185	if (ret)
1186		return ret;
1187
1188	ret = hfi1_user_exp_rcv_init(fd, uctxt);
1189	if (ret)
1190		hfi1_user_sdma_free_queues(fd, uctxt);
1191
1192	return ret;
1193}
1194
1195static int setup_base_ctxt(struct hfi1_filedata *fd,
1196			   struct hfi1_ctxtdata *uctxt)
1197{
1198	struct hfi1_devdata *dd = uctxt->dd;
1199	int ret = 0;
1200
1201	hfi1_init_ctxt(uctxt->sc);
1202
1203	/* Now allocate the RcvHdr queue and eager buffers. */
1204	ret = hfi1_create_rcvhdrq(dd, uctxt);
1205	if (ret)
1206		goto done;
1207
1208	ret = hfi1_setup_eagerbufs(uctxt);
1209	if (ret)
1210		goto done;
1211
1212	/* If sub-contexts are enabled, do the appropriate setup */
1213	if (uctxt->subctxt_cnt)
1214		ret = setup_subctxt(uctxt);
1215	if (ret)
1216		goto done;
1217
1218	ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1219	if (ret)
1220		goto done;
1221
1222	ret = init_user_ctxt(fd, uctxt);
1223	if (ret) {
1224		hfi1_free_ctxt_rcv_groups(uctxt);
1225		goto done;
1226	}
1227
1228	user_init(uctxt);
1229
1230	/* Now that the context is set up, the fd can get a reference. */
1231	fd->uctxt = uctxt;
1232	hfi1_rcd_get(uctxt);
1233
1234done:
1235	if (uctxt->subctxt_cnt) {
1236		/*
1237		 * On error, set the failed bit so sub-contexts will clean up
1238		 * correctly.
1239		 */
1240		if (ret)
1241			set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1242
1243		/*
1244		 * Base context is done (successfully or not), notify anybody
1245		 * using a sub-context that is waiting for this completion.
1246		 */
1247		clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1248		wake_up(&uctxt->wait);
1249	}
1250
1251	return ret;
1252}
1253
1254static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1255{
1256	struct hfi1_base_info binfo;
1257	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1258	struct hfi1_devdata *dd = uctxt->dd;
1259	unsigned offset;
1260
1261	trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1262
1263	if (sizeof(binfo) != len)
1264		return -EINVAL;
1265
1266	memset(&binfo, 0, sizeof(binfo));
1267	binfo.hw_version = dd->revision;
1268	binfo.sw_version = HFI1_KERN_SWVERSION;
1269	binfo.bthqp = RVT_KDETH_QP_PREFIX;
1270	binfo.jkey = uctxt->jkey;
1271	/*
1272	 * If more than 64 contexts are enabled the allocated credit
1273	 * return will span two or three contiguous pages. Since we only
1274	 * map the page containing the context's credit return address,
1275	 * we need to calculate the offset in the proper page.
1276	 */
1277	offset = ((u64)uctxt->sc->hw_free -
1278		  (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1279	binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1280						fd->subctxt, offset);
1281	binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1282					    fd->subctxt,
1283					    uctxt->sc->base_addr);
1284	binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1285						uctxt->ctxt,
1286						fd->subctxt,
1287						uctxt->sc->base_addr);
1288	binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1289					       fd->subctxt,
1290					       uctxt->rcvhdrq);
1291	binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1292					       fd->subctxt,
1293					       uctxt->egrbufs.rcvtids[0].dma);
1294	binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1295						  fd->subctxt, 0);
1296	/*
1297	 * user regs are at
1298	 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1299	 */
1300	binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1301					     fd->subctxt, 0);
1302	offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1303				sizeof(*dd->events));
1304	binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1305					       fd->subctxt,
1306					       offset);
1307	binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1308					       fd->subctxt,
1309					       dd->status);
1310	if (HFI1_CAP_IS_USET(DMA_RTAIL))
1311		binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1312							fd->subctxt, 0);
1313	if (uctxt->subctxt_cnt) {
1314		binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1315							 uctxt->ctxt,
1316							 fd->subctxt, 0);
1317		binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1318							  uctxt->ctxt,
1319							  fd->subctxt, 0);
1320		binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1321							  uctxt->ctxt,
1322							  fd->subctxt, 0);
1323	}
1324
1325	if (copy_to_user((void __user *)arg, &binfo, len))
1326		return -EFAULT;
1327
1328	return 0;
1329}
1330
1331/**
1332 * user_exp_rcv_setup - Set up the given tid rcv list
1333 * @fd: file data of the current driver instance
1334 * @arg: ioctl argumnent for user space information
1335 * @len: length of data structure associated with ioctl command
1336 *
1337 * Wrapper to validate ioctl information before doing _rcv_setup.
1338 *
1339 */
1340static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1341			      u32 len)
1342{
1343	int ret;
1344	unsigned long addr;
1345	struct hfi1_tid_info tinfo;
1346
1347	if (sizeof(tinfo) != len)
1348		return -EINVAL;
1349
1350	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1351		return -EFAULT;
1352
1353	ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1354	if (!ret) {
1355		/*
1356		 * Copy the number of tidlist entries we used
1357		 * and the length of the buffer we registered.
1358		 */
1359		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1360		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1361				 sizeof(tinfo.tidcnt)))
1362			ret = -EFAULT;
1363
1364		addr = arg + offsetof(struct hfi1_tid_info, length);
1365		if (!ret && copy_to_user((void __user *)addr, &tinfo.length,
1366				 sizeof(tinfo.length)))
1367			ret = -EFAULT;
1368
1369		if (ret)
1370			hfi1_user_exp_rcv_invalid(fd, &tinfo);
1371	}
1372
1373	return ret;
1374}
1375
1376/**
1377 * user_exp_rcv_clear - Clear the given tid rcv list
1378 * @fd: file data of the current driver instance
1379 * @arg: ioctl argumnent for user space information
1380 * @len: length of data structure associated with ioctl command
1381 *
1382 * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1383 * of this, we need to use this wrapper to copy the user space information
1384 * before doing the clear.
1385 */
1386static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1387			      u32 len)
1388{
1389	int ret;
1390	unsigned long addr;
1391	struct hfi1_tid_info tinfo;
1392
1393	if (sizeof(tinfo) != len)
1394		return -EINVAL;
1395
1396	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1397		return -EFAULT;
1398
1399	ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1400	if (!ret) {
1401		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1402		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1403				 sizeof(tinfo.tidcnt)))
1404			return -EFAULT;
1405	}
1406
1407	return ret;
1408}
1409
1410/**
1411 * user_exp_rcv_invalid - Invalidate the given tid rcv list
1412 * @fd: file data of the current driver instance
1413 * @arg: ioctl argumnent for user space information
1414 * @len: length of data structure associated with ioctl command
1415 *
1416 * Wrapper to validate ioctl information before doing _rcv_invalid.
1417 *
1418 */
1419static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1420				u32 len)
1421{
1422	int ret;
1423	unsigned long addr;
1424	struct hfi1_tid_info tinfo;
1425
1426	if (sizeof(tinfo) != len)
1427		return -EINVAL;
1428
1429	if (!fd->invalid_tids)
1430		return -EINVAL;
1431
1432	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1433		return -EFAULT;
1434
1435	ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1436	if (ret)
1437		return ret;
1438
1439	addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1440	if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1441			 sizeof(tinfo.tidcnt)))
1442		ret = -EFAULT;
1443
1444	return ret;
1445}
1446
1447static __poll_t poll_urgent(struct file *fp,
1448				struct poll_table_struct *pt)
1449{
1450	struct hfi1_filedata *fd = fp->private_data;
1451	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1452	struct hfi1_devdata *dd = uctxt->dd;
1453	__poll_t pollflag;
1454
1455	poll_wait(fp, &uctxt->wait, pt);
1456
1457	spin_lock_irq(&dd->uctxt_lock);
1458	if (uctxt->urgent != uctxt->urgent_poll) {
1459		pollflag = EPOLLIN | EPOLLRDNORM;
1460		uctxt->urgent_poll = uctxt->urgent;
1461	} else {
1462		pollflag = 0;
1463		set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1464	}
1465	spin_unlock_irq(&dd->uctxt_lock);
1466
1467	return pollflag;
1468}
1469
1470static __poll_t poll_next(struct file *fp,
1471			      struct poll_table_struct *pt)
1472{
1473	struct hfi1_filedata *fd = fp->private_data;
1474	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1475	struct hfi1_devdata *dd = uctxt->dd;
1476	__poll_t pollflag;
1477
1478	poll_wait(fp, &uctxt->wait, pt);
1479
1480	spin_lock_irq(&dd->uctxt_lock);
1481	if (hdrqempty(uctxt)) {
1482		set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1483		hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1484		pollflag = 0;
1485	} else {
1486		pollflag = EPOLLIN | EPOLLRDNORM;
1487	}
1488	spin_unlock_irq(&dd->uctxt_lock);
1489
1490	return pollflag;
1491}
1492
1493/*
1494 * Find all user contexts in use, and set the specified bit in their
1495 * event mask.
1496 * See also find_ctxt() for a similar use, that is specific to send buffers.
1497 */
1498int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1499{
1500	struct hfi1_ctxtdata *uctxt;
1501	struct hfi1_devdata *dd = ppd->dd;
1502	u16 ctxt;
1503
1504	if (!dd->events)
1505		return -EINVAL;
1506
1507	for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1508	     ctxt++) {
1509		uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1510		if (uctxt) {
1511			unsigned long *evs;
1512			int i;
1513			/*
1514			 * subctxt_cnt is 0 if not shared, so do base
1515			 * separately, first, then remaining subctxt, if any
1516			 */
1517			evs = dd->events + uctxt_offset(uctxt);
1518			set_bit(evtbit, evs);
1519			for (i = 1; i < uctxt->subctxt_cnt; i++)
1520				set_bit(evtbit, evs + i);
1521			hfi1_rcd_put(uctxt);
1522		}
1523	}
1524
1525	return 0;
1526}
1527
1528/**
1529 * manage_rcvq - manage a context's receive queue
1530 * @uctxt: the context
1531 * @subctxt: the sub-context
1532 * @start_stop: action to carry out
1533 *
1534 * start_stop == 0 disables receive on the context, for use in queue
1535 * overflow conditions.  start_stop==1 re-enables, to be used to
1536 * re-init the software copy of the head register
1537 */
1538static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1539		       unsigned long arg)
1540{
1541	struct hfi1_devdata *dd = uctxt->dd;
1542	unsigned int rcvctrl_op;
1543	int start_stop;
1544
1545	if (subctxt)
1546		return 0;
1547
1548	if (get_user(start_stop, (int __user *)arg))
1549		return -EFAULT;
1550
1551	/* atomically clear receive enable ctxt. */
1552	if (start_stop) {
1553		/*
1554		 * On enable, force in-memory copy of the tail register to
1555		 * 0, so that protocol code doesn't have to worry about
1556		 * whether or not the chip has yet updated the in-memory
1557		 * copy or not on return from the system call. The chip
1558		 * always resets it's tail register back to 0 on a
1559		 * transition from disabled to enabled.
1560		 */
1561		if (hfi1_rcvhdrtail_kvaddr(uctxt))
1562			clear_rcvhdrtail(uctxt);
1563		rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1564	} else {
1565		rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1566	}
1567	hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1568	/* always; new head should be equal to new tail; see above */
1569
1570	return 0;
1571}
1572
1573/*
1574 * clear the event notifier events for this context.
1575 * User process then performs actions appropriate to bit having been
1576 * set, if desired, and checks again in future.
1577 */
1578static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1579			  unsigned long arg)
1580{
1581	int i;
1582	struct hfi1_devdata *dd = uctxt->dd;
1583	unsigned long *evs;
1584	unsigned long events;
1585
1586	if (!dd->events)
1587		return 0;
1588
1589	if (get_user(events, (unsigned long __user *)arg))
1590		return -EFAULT;
1591
1592	evs = dd->events + uctxt_offset(uctxt) + subctxt;
1593
1594	for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1595		if (!test_bit(i, &events))
1596			continue;
1597		clear_bit(i, evs);
1598	}
1599	return 0;
1600}
1601
1602static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1603{
1604	int i;
1605	struct hfi1_pportdata *ppd = uctxt->ppd;
1606	struct hfi1_devdata *dd = uctxt->dd;
1607	u16 pkey;
1608
1609	if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1610		return -EPERM;
1611
1612	if (get_user(pkey, (u16 __user *)arg))
1613		return -EFAULT;
1614
1615	if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1616		return -EINVAL;
1617
1618	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1619		if (pkey == ppd->pkeys[i])
1620			return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1621
1622	return -ENOENT;
1623}
1624
1625/**
1626 * ctxt_reset - Reset the user context
1627 * @uctxt: valid user context
1628 */
1629static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1630{
1631	struct send_context *sc;
1632	struct hfi1_devdata *dd;
1633	int ret = 0;
1634
1635	if (!uctxt || !uctxt->dd || !uctxt->sc)
1636		return -EINVAL;
1637
1638	/*
1639	 * There is no protection here. User level has to guarantee that
1640	 * no one will be writing to the send context while it is being
1641	 * re-initialized.  If user level breaks that guarantee, it will
1642	 * break it's own context and no one else's.
1643	 */
1644	dd = uctxt->dd;
1645	sc = uctxt->sc;
1646
1647	/*
1648	 * Wait until the interrupt handler has marked the context as
1649	 * halted or frozen. Report error if we time out.
1650	 */
1651	wait_event_interruptible_timeout(
1652		sc->halt_wait, (sc->flags & SCF_HALTED),
1653		msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1654	if (!(sc->flags & SCF_HALTED))
1655		return -ENOLCK;
1656
1657	/*
1658	 * If the send context was halted due to a Freeze, wait until the
1659	 * device has been "unfrozen" before resetting the context.
1660	 */
1661	if (sc->flags & SCF_FROZEN) {
1662		wait_event_interruptible_timeout(
1663			dd->event_queue,
1664			!(READ_ONCE(dd->flags) & HFI1_FROZEN),
1665			msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1666		if (dd->flags & HFI1_FROZEN)
1667			return -ENOLCK;
1668
1669		if (dd->flags & HFI1_FORCED_FREEZE)
1670			/*
1671			 * Don't allow context reset if we are into
1672			 * forced freeze
1673			 */
1674			return -ENODEV;
1675
1676		sc_disable(sc);
1677		ret = sc_enable(sc);
1678		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1679	} else {
1680		ret = sc_restart(sc);
1681	}
1682	if (!ret)
1683		sc_return_credits(sc);
1684
1685	return ret;
1686}
1687
1688static void user_remove(struct hfi1_devdata *dd)
1689{
1690
1691	hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1692}
1693
1694static int user_add(struct hfi1_devdata *dd)
1695{
1696	char name[10];
1697	int ret;
1698
1699	snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1700	ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1701			     &dd->user_cdev, &dd->user_device,
1702			     true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1703	if (ret)
1704		user_remove(dd);
1705
1706	return ret;
1707}
1708
1709/*
1710 * Create per-unit files in /dev
1711 */
1712int hfi1_device_create(struct hfi1_devdata *dd)
1713{
1714	return user_add(dd);
1715}
1716
1717/*
1718 * Remove per-unit files in /dev
1719 * void, core kernel returns no errors for this stuff
1720 */
1721void hfi1_device_remove(struct hfi1_devdata *dd)
1722{
1723	user_remove(dd);
1724}
1725