1/*
2 * Copyright(c) 2015-2020 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license.  When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 *  - Redistributions of source code must retain the above copyright
25 *    notice, this list of conditions and the following disclaimer.
26 *  - Redistributions in binary form must reproduce the above copyright
27 *    notice, this list of conditions and the following disclaimer in
28 *    the documentation and/or other materials provided with the
29 *    distribution.
30 *  - Neither the name of Intel Corporation nor the names of its
31 *    contributors may be used to endorse or promote products derived
32 *    from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48#include <linux/spinlock.h>
49#include <linux/pci.h>
50#include <linux/io.h>
51#include <linux/delay.h>
52#include <linux/netdevice.h>
53#include <linux/vmalloc.h>
54#include <linux/module.h>
55#include <linux/prefetch.h>
56#include <rdma/ib_verbs.h>
57#include <linux/etherdevice.h>
58
59#include "hfi.h"
60#include "trace.h"
61#include "qp.h"
62#include "sdma.h"
63#include "debugfs.h"
64#include "vnic.h"
65#include "fault.h"
66
67#include "ipoib.h"
68#include "netdev.h"
69
70#undef pr_fmt
71#define pr_fmt(fmt) DRIVER_NAME ": " fmt
72
73/*
74 * The size has to be longer than this string, so we can append
75 * board/chip information to it in the initialization code.
76 */
77const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
78
79DEFINE_MUTEX(hfi1_mutex);	/* general driver use */
80
81unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
82module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
83MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
84		 HFI1_DEFAULT_MAX_MTU));
85
86unsigned int hfi1_cu = 1;
87module_param_named(cu, hfi1_cu, uint, S_IRUGO);
88MODULE_PARM_DESC(cu, "Credit return units");
89
90unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
91static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
92static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
93static const struct kernel_param_ops cap_ops = {
94	.set = hfi1_caps_set,
95	.get = hfi1_caps_get
96};
97module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
98MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
99
100MODULE_LICENSE("Dual BSD/GPL");
101MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
102
103/*
104 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
105 */
106#define MAX_PKT_RECV 64
107/*
108 * MAX_PKT_THREAD_RCV is the max # of packets processed before
109 * the qp_wait_list queue is flushed.
110 */
111#define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
112#define EGR_HEAD_UPDATE_THRESHOLD 16
113
114struct hfi1_ib_stats hfi1_stats;
115
116static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
117{
118	int ret = 0;
119	unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
120		cap_mask = *cap_mask_ptr, value, diff,
121		write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
122			      HFI1_CAP_WRITABLE_MASK);
123
124	ret = kstrtoul(val, 0, &value);
125	if (ret) {
126		pr_warn("Invalid module parameter value for 'cap_mask'\n");
127		goto done;
128	}
129	/* Get the changed bits (except the locked bit) */
130	diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
131
132	/* Remove any bits that are not allowed to change after driver load */
133	if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
134		pr_warn("Ignoring non-writable capability bits %#lx\n",
135			diff & ~write_mask);
136		diff &= write_mask;
137	}
138
139	/* Mask off any reserved bits */
140	diff &= ~HFI1_CAP_RESERVED_MASK;
141	/* Clear any previously set and changing bits */
142	cap_mask &= ~diff;
143	/* Update the bits with the new capability */
144	cap_mask |= (value & diff);
145	/* Check for any kernel/user restrictions */
146	diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
147		((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
148	cap_mask &= ~diff;
149	/* Set the bitmask to the final set */
150	*cap_mask_ptr = cap_mask;
151done:
152	return ret;
153}
154
155static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
156{
157	unsigned long cap_mask = *(unsigned long *)kp->arg;
158
159	cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
160	cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
161
162	return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
163}
164
165struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
166{
167	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
168	struct hfi1_devdata *dd = container_of(ibdev,
169					       struct hfi1_devdata, verbs_dev);
170	return dd->pcidev;
171}
172
173/*
174 * Return count of units with at least one port ACTIVE.
175 */
176int hfi1_count_active_units(void)
177{
178	struct hfi1_devdata *dd;
179	struct hfi1_pportdata *ppd;
180	unsigned long index, flags;
181	int pidx, nunits_active = 0;
182
183	xa_lock_irqsave(&hfi1_dev_table, flags);
184	xa_for_each(&hfi1_dev_table, index, dd) {
185		if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
186			continue;
187		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
188			ppd = dd->pport + pidx;
189			if (ppd->lid && ppd->linkup) {
190				nunits_active++;
191				break;
192			}
193		}
194	}
195	xa_unlock_irqrestore(&hfi1_dev_table, flags);
196	return nunits_active;
197}
198
199/*
200 * Get address of eager buffer from it's index (allocated in chunks, not
201 * contiguous).
202 */
203static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
204			       u8 *update)
205{
206	u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
207
208	*update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
209	return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
210			(offset * RCV_BUF_BLOCK_SIZE));
211}
212
213static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
214				    __le32 *rhf_addr)
215{
216	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
217
218	return (void *)(rhf_addr - rcd->rhf_offset + offset);
219}
220
221static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
222						   __le32 *rhf_addr)
223{
224	return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
225}
226
227static inline struct hfi1_16b_header
228		*hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
229				     __le32 *rhf_addr)
230{
231	return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
232}
233
234/*
235 * Validate and encode the a given RcvArray Buffer size.
236 * The function will check whether the given size falls within
237 * allowed size ranges for the respective type and, optionally,
238 * return the proper encoding.
239 */
240int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
241{
242	if (unlikely(!PAGE_ALIGNED(size)))
243		return 0;
244	if (unlikely(size < MIN_EAGER_BUFFER))
245		return 0;
246	if (size >
247	    (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
248		return 0;
249	if (encoded)
250		*encoded = ilog2(size / PAGE_SIZE) + 1;
251	return 1;
252}
253
254static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
255		       struct hfi1_packet *packet)
256{
257	struct ib_header *rhdr = packet->hdr;
258	u32 rte = rhf_rcv_type_err(packet->rhf);
259	u32 mlid_base;
260	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
261	struct hfi1_devdata *dd = ppd->dd;
262	struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
263	struct rvt_dev_info *rdi = &verbs_dev->rdi;
264
265	if ((packet->rhf & RHF_DC_ERR) &&
266	    hfi1_dbg_fault_suppress_err(verbs_dev))
267		return;
268
269	if (packet->rhf & RHF_ICRC_ERR)
270		return;
271
272	if (packet->etype == RHF_RCV_TYPE_BYPASS) {
273		goto drop;
274	} else {
275		u8 lnh = ib_get_lnh(rhdr);
276
277		mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
278		if (lnh == HFI1_LRH_BTH) {
279			packet->ohdr = &rhdr->u.oth;
280		} else if (lnh == HFI1_LRH_GRH) {
281			packet->ohdr = &rhdr->u.l.oth;
282			packet->grh = &rhdr->u.l.grh;
283		} else {
284			goto drop;
285		}
286	}
287
288	if (packet->rhf & RHF_TID_ERR) {
289		/* For TIDERR and RC QPs preemptively schedule a NAK */
290		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
291		u32 dlid = ib_get_dlid(rhdr);
292		u32 qp_num;
293
294		/* Sanity check packet */
295		if (tlen < 24)
296			goto drop;
297
298		/* Check for GRH */
299		if (packet->grh) {
300			u32 vtf;
301			struct ib_grh *grh = packet->grh;
302
303			if (grh->next_hdr != IB_GRH_NEXT_HDR)
304				goto drop;
305			vtf = be32_to_cpu(grh->version_tclass_flow);
306			if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
307				goto drop;
308		}
309
310		/* Get the destination QP number. */
311		qp_num = ib_bth_get_qpn(packet->ohdr);
312		if (dlid < mlid_base) {
313			struct rvt_qp *qp;
314			unsigned long flags;
315
316			rcu_read_lock();
317			qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
318			if (!qp) {
319				rcu_read_unlock();
320				goto drop;
321			}
322
323			/*
324			 * Handle only RC QPs - for other QP types drop error
325			 * packet.
326			 */
327			spin_lock_irqsave(&qp->r_lock, flags);
328
329			/* Check for valid receive state. */
330			if (!(ib_rvt_state_ops[qp->state] &
331			      RVT_PROCESS_RECV_OK)) {
332				ibp->rvp.n_pkt_drops++;
333			}
334
335			switch (qp->ibqp.qp_type) {
336			case IB_QPT_RC:
337				hfi1_rc_hdrerr(rcd, packet, qp);
338				break;
339			default:
340				/* For now don't handle any other QP types */
341				break;
342			}
343
344			spin_unlock_irqrestore(&qp->r_lock, flags);
345			rcu_read_unlock();
346		} /* Unicast QP */
347	} /* Valid packet with TIDErr */
348
349	/* handle "RcvTypeErr" flags */
350	switch (rte) {
351	case RHF_RTE_ERROR_OP_CODE_ERR:
352	{
353		void *ebuf = NULL;
354		u8 opcode;
355
356		if (rhf_use_egr_bfr(packet->rhf))
357			ebuf = packet->ebuf;
358
359		if (!ebuf)
360			goto drop; /* this should never happen */
361
362		opcode = ib_bth_get_opcode(packet->ohdr);
363		if (opcode == IB_OPCODE_CNP) {
364			/*
365			 * Only in pre-B0 h/w is the CNP_OPCODE handled
366			 * via this code path.
367			 */
368			struct rvt_qp *qp = NULL;
369			u32 lqpn, rqpn;
370			u16 rlid;
371			u8 svc_type, sl, sc5;
372
373			sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
374			sl = ibp->sc_to_sl[sc5];
375
376			lqpn = ib_bth_get_qpn(packet->ohdr);
377			rcu_read_lock();
378			qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
379			if (!qp) {
380				rcu_read_unlock();
381				goto drop;
382			}
383
384			switch (qp->ibqp.qp_type) {
385			case IB_QPT_UD:
386				rlid = 0;
387				rqpn = 0;
388				svc_type = IB_CC_SVCTYPE_UD;
389				break;
390			case IB_QPT_UC:
391				rlid = ib_get_slid(rhdr);
392				rqpn = qp->remote_qpn;
393				svc_type = IB_CC_SVCTYPE_UC;
394				break;
395			default:
396				rcu_read_unlock();
397				goto drop;
398			}
399
400			process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
401			rcu_read_unlock();
402		}
403
404		packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
405		break;
406	}
407	default:
408		break;
409	}
410
411drop:
412	return;
413}
414
415static inline void init_packet(struct hfi1_ctxtdata *rcd,
416			       struct hfi1_packet *packet)
417{
418	packet->rsize = get_hdrqentsize(rcd); /* words */
419	packet->maxcnt = get_hdrq_cnt(rcd) * packet->rsize; /* words */
420	packet->rcd = rcd;
421	packet->updegr = 0;
422	packet->etail = -1;
423	packet->rhf_addr = get_rhf_addr(rcd);
424	packet->rhf = rhf_to_cpu(packet->rhf_addr);
425	packet->rhqoff = hfi1_rcd_head(rcd);
426	packet->numpkt = 0;
427}
428
429/* We support only two types - 9B and 16B for now */
430static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
431	[HFI1_PKT_TYPE_9B] = &return_cnp,
432	[HFI1_PKT_TYPE_16B] = &return_cnp_16B
433};
434
435/**
436 * hfi1_process_ecn_slowpath - Process FECN or BECN bits
437 * @qp: The packet's destination QP
438 * @pkt: The packet itself.
439 * @prescan: Is the caller the RXQ prescan
440 *
441 * Process the packet's FECN or BECN bits. By now, the packet
442 * has already been evaluated whether processing of those bit should
443 * be done.
444 * The significance of the @prescan argument is that if the caller
445 * is the RXQ prescan, a CNP will be send out instead of waiting for the
446 * normal packet processing to send an ACK with BECN set (or a CNP).
447 */
448bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
449			       bool prescan)
450{
451	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
452	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
453	struct ib_other_headers *ohdr = pkt->ohdr;
454	struct ib_grh *grh = pkt->grh;
455	u32 rqpn = 0;
456	u16 pkey;
457	u32 rlid, slid, dlid = 0;
458	u8 hdr_type, sc, svc_type, opcode;
459	bool is_mcast = false, ignore_fecn = false, do_cnp = false,
460		fecn, becn;
461
462	/* can be called from prescan */
463	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
464		pkey = hfi1_16B_get_pkey(pkt->hdr);
465		sc = hfi1_16B_get_sc(pkt->hdr);
466		dlid = hfi1_16B_get_dlid(pkt->hdr);
467		slid = hfi1_16B_get_slid(pkt->hdr);
468		is_mcast = hfi1_is_16B_mcast(dlid);
469		opcode = ib_bth_get_opcode(ohdr);
470		hdr_type = HFI1_PKT_TYPE_16B;
471		fecn = hfi1_16B_get_fecn(pkt->hdr);
472		becn = hfi1_16B_get_becn(pkt->hdr);
473	} else {
474		pkey = ib_bth_get_pkey(ohdr);
475		sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
476		dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
477			ppd->lid;
478		slid = ib_get_slid(pkt->hdr);
479		is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
480			   (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
481		opcode = ib_bth_get_opcode(ohdr);
482		hdr_type = HFI1_PKT_TYPE_9B;
483		fecn = ib_bth_get_fecn(ohdr);
484		becn = ib_bth_get_becn(ohdr);
485	}
486
487	switch (qp->ibqp.qp_type) {
488	case IB_QPT_UD:
489		rlid = slid;
490		rqpn = ib_get_sqpn(pkt->ohdr);
491		svc_type = IB_CC_SVCTYPE_UD;
492		break;
493	case IB_QPT_SMI:
494	case IB_QPT_GSI:
495		rlid = slid;
496		rqpn = ib_get_sqpn(pkt->ohdr);
497		svc_type = IB_CC_SVCTYPE_UD;
498		break;
499	case IB_QPT_UC:
500		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
501		rqpn = qp->remote_qpn;
502		svc_type = IB_CC_SVCTYPE_UC;
503		break;
504	case IB_QPT_RC:
505		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
506		rqpn = qp->remote_qpn;
507		svc_type = IB_CC_SVCTYPE_RC;
508		break;
509	default:
510		return false;
511	}
512
513	ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
514		(opcode == IB_OPCODE_RC_ACKNOWLEDGE);
515	/*
516	 * ACKNOWLEDGE packets do not get a CNP but this will be
517	 * guarded by ignore_fecn above.
518	 */
519	do_cnp = prescan ||
520		(opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
521		 opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) ||
522		opcode == TID_OP(READ_RESP) ||
523		opcode == TID_OP(ACK);
524
525	/* Call appropriate CNP handler */
526	if (!ignore_fecn && do_cnp && fecn)
527		hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
528					      dlid, rlid, sc, grh);
529
530	if (becn) {
531		u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
532		u8 sl = ibp->sc_to_sl[sc];
533
534		process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
535	}
536	return !ignore_fecn && fecn;
537}
538
539struct ps_mdata {
540	struct hfi1_ctxtdata *rcd;
541	u32 rsize;
542	u32 maxcnt;
543	u32 ps_head;
544	u32 ps_tail;
545	u32 ps_seq;
546};
547
548static inline void init_ps_mdata(struct ps_mdata *mdata,
549				 struct hfi1_packet *packet)
550{
551	struct hfi1_ctxtdata *rcd = packet->rcd;
552
553	mdata->rcd = rcd;
554	mdata->rsize = packet->rsize;
555	mdata->maxcnt = packet->maxcnt;
556	mdata->ps_head = packet->rhqoff;
557
558	if (get_dma_rtail_setting(rcd)) {
559		mdata->ps_tail = get_rcvhdrtail(rcd);
560		if (rcd->ctxt == HFI1_CTRL_CTXT)
561			mdata->ps_seq = hfi1_seq_cnt(rcd);
562		else
563			mdata->ps_seq = 0; /* not used with DMA_RTAIL */
564	} else {
565		mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
566		mdata->ps_seq = hfi1_seq_cnt(rcd);
567	}
568}
569
570static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
571			  struct hfi1_ctxtdata *rcd)
572{
573	if (get_dma_rtail_setting(rcd))
574		return mdata->ps_head == mdata->ps_tail;
575	return mdata->ps_seq != rhf_rcv_seq(rhf);
576}
577
578static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
579			  struct hfi1_ctxtdata *rcd)
580{
581	/*
582	 * Control context can potentially receive an invalid rhf.
583	 * Drop such packets.
584	 */
585	if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
586		return mdata->ps_seq != rhf_rcv_seq(rhf);
587
588	return 0;
589}
590
591static inline void update_ps_mdata(struct ps_mdata *mdata,
592				   struct hfi1_ctxtdata *rcd)
593{
594	mdata->ps_head += mdata->rsize;
595	if (mdata->ps_head >= mdata->maxcnt)
596		mdata->ps_head = 0;
597
598	/* Control context must do seq counting */
599	if (!get_dma_rtail_setting(rcd) ||
600	    rcd->ctxt == HFI1_CTRL_CTXT)
601		mdata->ps_seq = hfi1_seq_incr_wrap(mdata->ps_seq);
602}
603
604/*
605 * prescan_rxq - search through the receive queue looking for packets
606 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
607 * When an ECN is found, process the Congestion Notification, and toggle
608 * it off.
609 * This is declared as a macro to allow quick checking of the port to avoid
610 * the overhead of a function call if not enabled.
611 */
612#define prescan_rxq(rcd, packet) \
613	do { \
614		if (rcd->ppd->cc_prescan) \
615			__prescan_rxq(packet); \
616	} while (0)
617static void __prescan_rxq(struct hfi1_packet *packet)
618{
619	struct hfi1_ctxtdata *rcd = packet->rcd;
620	struct ps_mdata mdata;
621
622	init_ps_mdata(&mdata, packet);
623
624	while (1) {
625		struct hfi1_ibport *ibp = rcd_to_iport(rcd);
626		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
627					 packet->rcd->rhf_offset;
628		struct rvt_qp *qp;
629		struct ib_header *hdr;
630		struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
631		u64 rhf = rhf_to_cpu(rhf_addr);
632		u32 etype = rhf_rcv_type(rhf), qpn, bth1;
633		u8 lnh;
634
635		if (ps_done(&mdata, rhf, rcd))
636			break;
637
638		if (ps_skip(&mdata, rhf, rcd))
639			goto next;
640
641		if (etype != RHF_RCV_TYPE_IB)
642			goto next;
643
644		packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
645		hdr = packet->hdr;
646		lnh = ib_get_lnh(hdr);
647
648		if (lnh == HFI1_LRH_BTH) {
649			packet->ohdr = &hdr->u.oth;
650			packet->grh = NULL;
651		} else if (lnh == HFI1_LRH_GRH) {
652			packet->ohdr = &hdr->u.l.oth;
653			packet->grh = &hdr->u.l.grh;
654		} else {
655			goto next; /* just in case */
656		}
657
658		if (!hfi1_may_ecn(packet))
659			goto next;
660
661		bth1 = be32_to_cpu(packet->ohdr->bth[1]);
662		qpn = bth1 & RVT_QPN_MASK;
663		rcu_read_lock();
664		qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
665
666		if (!qp) {
667			rcu_read_unlock();
668			goto next;
669		}
670
671		hfi1_process_ecn_slowpath(qp, packet, true);
672		rcu_read_unlock();
673
674		/* turn off BECN, FECN */
675		bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
676		packet->ohdr->bth[1] = cpu_to_be32(bth1);
677next:
678		update_ps_mdata(&mdata, rcd);
679	}
680}
681
682static void process_rcv_qp_work(struct hfi1_packet *packet)
683{
684	struct rvt_qp *qp, *nqp;
685	struct hfi1_ctxtdata *rcd = packet->rcd;
686
687	/*
688	 * Iterate over all QPs waiting to respond.
689	 * The list won't change since the IRQ is only run on one CPU.
690	 */
691	list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
692		list_del_init(&qp->rspwait);
693		if (qp->r_flags & RVT_R_RSP_NAK) {
694			qp->r_flags &= ~RVT_R_RSP_NAK;
695			packet->qp = qp;
696			hfi1_send_rc_ack(packet, 0);
697		}
698		if (qp->r_flags & RVT_R_RSP_SEND) {
699			unsigned long flags;
700
701			qp->r_flags &= ~RVT_R_RSP_SEND;
702			spin_lock_irqsave(&qp->s_lock, flags);
703			if (ib_rvt_state_ops[qp->state] &
704					RVT_PROCESS_OR_FLUSH_SEND)
705				hfi1_schedule_send(qp);
706			spin_unlock_irqrestore(&qp->s_lock, flags);
707		}
708		rvt_put_qp(qp);
709	}
710}
711
712static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
713{
714	if (thread) {
715		if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
716			/* allow defered processing */
717			process_rcv_qp_work(packet);
718		cond_resched();
719		return RCV_PKT_OK;
720	} else {
721		this_cpu_inc(*packet->rcd->dd->rcv_limit);
722		return RCV_PKT_LIMIT;
723	}
724}
725
726static inline int check_max_packet(struct hfi1_packet *packet, int thread)
727{
728	int ret = RCV_PKT_OK;
729
730	if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
731		ret = max_packet_exceeded(packet, thread);
732	return ret;
733}
734
735static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
736{
737	int ret;
738
739	packet->rcd->dd->ctx0_seq_drop++;
740	/* Set up for the next packet */
741	packet->rhqoff += packet->rsize;
742	if (packet->rhqoff >= packet->maxcnt)
743		packet->rhqoff = 0;
744
745	packet->numpkt++;
746	ret = check_max_packet(packet, thread);
747
748	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
749				     packet->rcd->rhf_offset;
750	packet->rhf = rhf_to_cpu(packet->rhf_addr);
751
752	return ret;
753}
754
755static void process_rcv_packet_napi(struct hfi1_packet *packet)
756{
757	packet->etype = rhf_rcv_type(packet->rhf);
758
759	/* total length */
760	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
761	/* retrieve eager buffer details */
762	packet->etail = rhf_egr_index(packet->rhf);
763	packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
764				  &packet->updegr);
765	/*
766	 * Prefetch the contents of the eager buffer.  It is
767	 * OK to send a negative length to prefetch_range().
768	 * The +2 is the size of the RHF.
769	 */
770	prefetch_range(packet->ebuf,
771		       packet->tlen - ((packet->rcd->rcvhdrqentsize -
772				       (rhf_hdrq_offset(packet->rhf)
773					+ 2)) * 4));
774
775	packet->rcd->rhf_rcv_function_map[packet->etype](packet);
776	packet->numpkt++;
777
778	/* Set up for the next packet */
779	packet->rhqoff += packet->rsize;
780	if (packet->rhqoff >= packet->maxcnt)
781		packet->rhqoff = 0;
782
783	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
784				      packet->rcd->rhf_offset;
785	packet->rhf = rhf_to_cpu(packet->rhf_addr);
786}
787
788static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
789{
790	int ret;
791
792	packet->etype = rhf_rcv_type(packet->rhf);
793
794	/* total length */
795	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
796	/* retrieve eager buffer details */
797	packet->ebuf = NULL;
798	if (rhf_use_egr_bfr(packet->rhf)) {
799		packet->etail = rhf_egr_index(packet->rhf);
800		packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
801				 &packet->updegr);
802		/*
803		 * Prefetch the contents of the eager buffer.  It is
804		 * OK to send a negative length to prefetch_range().
805		 * The +2 is the size of the RHF.
806		 */
807		prefetch_range(packet->ebuf,
808			       packet->tlen - ((get_hdrqentsize(packet->rcd) -
809					       (rhf_hdrq_offset(packet->rhf)
810						+ 2)) * 4));
811	}
812
813	/*
814	 * Call a type specific handler for the packet. We
815	 * should be able to trust that etype won't be beyond
816	 * the range of valid indexes. If so something is really
817	 * wrong and we can probably just let things come
818	 * crashing down. There is no need to eat another
819	 * comparison in this performance critical code.
820	 */
821	packet->rcd->rhf_rcv_function_map[packet->etype](packet);
822	packet->numpkt++;
823
824	/* Set up for the next packet */
825	packet->rhqoff += packet->rsize;
826	if (packet->rhqoff >= packet->maxcnt)
827		packet->rhqoff = 0;
828
829	ret = check_max_packet(packet, thread);
830
831	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
832				      packet->rcd->rhf_offset;
833	packet->rhf = rhf_to_cpu(packet->rhf_addr);
834
835	return ret;
836}
837
838static inline void process_rcv_update(int last, struct hfi1_packet *packet)
839{
840	/*
841	 * Update head regs etc., every 16 packets, if not last pkt,
842	 * to help prevent rcvhdrq overflows, when many packets
843	 * are processed and queue is nearly full.
844	 * Don't request an interrupt for intermediate updates.
845	 */
846	if (!last && !(packet->numpkt & 0xf)) {
847		update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
848			       packet->etail, 0, 0);
849		packet->updegr = 0;
850	}
851	packet->grh = NULL;
852}
853
854static inline void finish_packet(struct hfi1_packet *packet)
855{
856	/*
857	 * Nothing we need to free for the packet.
858	 *
859	 * The only thing we need to do is a final update and call for an
860	 * interrupt
861	 */
862	update_usrhead(packet->rcd, hfi1_rcd_head(packet->rcd), packet->updegr,
863		       packet->etail, rcv_intr_dynamic, packet->numpkt);
864}
865
866/*
867 * handle_receive_interrupt_napi_fp - receive a packet
868 * @rcd: the context
869 * @budget: polling budget
870 *
871 * Called from interrupt handler for receive interrupt.
872 * This is the fast path interrupt handler
873 * when executing napi soft irq environment.
874 */
875int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget)
876{
877	struct hfi1_packet packet;
878
879	init_packet(rcd, &packet);
880	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
881		goto bail;
882
883	while (packet.numpkt < budget) {
884		process_rcv_packet_napi(&packet);
885		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
886			break;
887
888		process_rcv_update(0, &packet);
889	}
890	hfi1_set_rcd_head(rcd, packet.rhqoff);
891bail:
892	finish_packet(&packet);
893	return packet.numpkt;
894}
895
896/*
897 * Handle receive interrupts when using the no dma rtail option.
898 */
899int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
900{
901	int last = RCV_PKT_OK;
902	struct hfi1_packet packet;
903
904	init_packet(rcd, &packet);
905	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
906		last = RCV_PKT_DONE;
907		goto bail;
908	}
909
910	prescan_rxq(rcd, &packet);
911
912	while (last == RCV_PKT_OK) {
913		last = process_rcv_packet(&packet, thread);
914		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
915			last = RCV_PKT_DONE;
916		process_rcv_update(last, &packet);
917	}
918	process_rcv_qp_work(&packet);
919	hfi1_set_rcd_head(rcd, packet.rhqoff);
920bail:
921	finish_packet(&packet);
922	return last;
923}
924
925int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
926{
927	u32 hdrqtail;
928	int last = RCV_PKT_OK;
929	struct hfi1_packet packet;
930
931	init_packet(rcd, &packet);
932	hdrqtail = get_rcvhdrtail(rcd);
933	if (packet.rhqoff == hdrqtail) {
934		last = RCV_PKT_DONE;
935		goto bail;
936	}
937	smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
938
939	prescan_rxq(rcd, &packet);
940
941	while (last == RCV_PKT_OK) {
942		last = process_rcv_packet(&packet, thread);
943		if (packet.rhqoff == hdrqtail)
944			last = RCV_PKT_DONE;
945		process_rcv_update(last, &packet);
946	}
947	process_rcv_qp_work(&packet);
948	hfi1_set_rcd_head(rcd, packet.rhqoff);
949bail:
950	finish_packet(&packet);
951	return last;
952}
953
954static void set_all_fastpath(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
955{
956	u16 i;
957
958	/*
959	 * For dynamically allocated kernel contexts (like vnic) switch
960	 * interrupt handler only for that context. Otherwise, switch
961	 * interrupt handler for all statically allocated kernel contexts.
962	 */
963	if (rcd->ctxt >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic) {
964		hfi1_rcd_get(rcd);
965		hfi1_set_fast(rcd);
966		hfi1_rcd_put(rcd);
967		return;
968	}
969
970	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
971		rcd = hfi1_rcd_get_by_index(dd, i);
972		if (rcd && (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic))
973			hfi1_set_fast(rcd);
974		hfi1_rcd_put(rcd);
975	}
976}
977
978void set_all_slowpath(struct hfi1_devdata *dd)
979{
980	struct hfi1_ctxtdata *rcd;
981	u16 i;
982
983	/* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
984	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
985		rcd = hfi1_rcd_get_by_index(dd, i);
986		if (!rcd)
987			continue;
988		if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
989			rcd->do_interrupt = rcd->slow_handler;
990
991		hfi1_rcd_put(rcd);
992	}
993}
994
995static bool __set_armed_to_active(struct hfi1_packet *packet)
996{
997	u8 etype = rhf_rcv_type(packet->rhf);
998	u8 sc = SC15_PACKET;
999
1000	if (etype == RHF_RCV_TYPE_IB) {
1001		struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
1002							   packet->rhf_addr);
1003		sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1004	} else if (etype == RHF_RCV_TYPE_BYPASS) {
1005		struct hfi1_16b_header *hdr = hfi1_get_16B_header(
1006						packet->rcd,
1007						packet->rhf_addr);
1008		sc = hfi1_16B_get_sc(hdr);
1009	}
1010	if (sc != SC15_PACKET) {
1011		int hwstate = driver_lstate(packet->rcd->ppd);
1012		struct work_struct *lsaw =
1013				&packet->rcd->ppd->linkstate_active_work;
1014
1015		if (hwstate != IB_PORT_ACTIVE) {
1016			dd_dev_info(packet->rcd->dd,
1017				    "Unexpected link state %s\n",
1018				    opa_lstate_name(hwstate));
1019			return false;
1020		}
1021
1022		queue_work(packet->rcd->ppd->link_wq, lsaw);
1023		return true;
1024	}
1025	return false;
1026}
1027
1028/**
1029 * armed to active - the fast path for armed to active
1030 * @packet: the packet structure
1031 *
1032 * Return true if packet processing needs to bail.
1033 */
1034static bool set_armed_to_active(struct hfi1_packet *packet)
1035{
1036	if (likely(packet->rcd->ppd->host_link_state != HLS_UP_ARMED))
1037		return false;
1038	return __set_armed_to_active(packet);
1039}
1040
1041/*
1042 * handle_receive_interrupt - receive a packet
1043 * @rcd: the context
1044 *
1045 * Called from interrupt handler for errors or receive interrupt.
1046 * This is the slow path interrupt handler.
1047 */
1048int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
1049{
1050	struct hfi1_devdata *dd = rcd->dd;
1051	u32 hdrqtail;
1052	int needset, last = RCV_PKT_OK;
1053	struct hfi1_packet packet;
1054	int skip_pkt = 0;
1055
1056	if (!rcd->rcvhdrq)
1057		return RCV_PKT_OK;
1058	/* Control context will always use the slow path interrupt handler */
1059	needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
1060
1061	init_packet(rcd, &packet);
1062
1063	if (!get_dma_rtail_setting(rcd)) {
1064		if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
1065			last = RCV_PKT_DONE;
1066			goto bail;
1067		}
1068		hdrqtail = 0;
1069	} else {
1070		hdrqtail = get_rcvhdrtail(rcd);
1071		if (packet.rhqoff == hdrqtail) {
1072			last = RCV_PKT_DONE;
1073			goto bail;
1074		}
1075		smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
1076
1077		/*
1078		 * Control context can potentially receive an invalid
1079		 * rhf. Drop such packets.
1080		 */
1081		if (rcd->ctxt == HFI1_CTRL_CTXT)
1082			if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1083				skip_pkt = 1;
1084	}
1085
1086	prescan_rxq(rcd, &packet);
1087
1088	while (last == RCV_PKT_OK) {
1089		if (hfi1_need_drop(dd)) {
1090			/* On to the next packet */
1091			packet.rhqoff += packet.rsize;
1092			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1093					  packet.rhqoff +
1094					  rcd->rhf_offset;
1095			packet.rhf = rhf_to_cpu(packet.rhf_addr);
1096
1097		} else if (skip_pkt) {
1098			last = skip_rcv_packet(&packet, thread);
1099			skip_pkt = 0;
1100		} else {
1101			if (set_armed_to_active(&packet))
1102				goto bail;
1103			last = process_rcv_packet(&packet, thread);
1104		}
1105
1106		if (!get_dma_rtail_setting(rcd)) {
1107			if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1108				last = RCV_PKT_DONE;
1109		} else {
1110			if (packet.rhqoff == hdrqtail)
1111				last = RCV_PKT_DONE;
1112			/*
1113			 * Control context can potentially receive an invalid
1114			 * rhf. Drop such packets.
1115			 */
1116			if (rcd->ctxt == HFI1_CTRL_CTXT) {
1117				bool lseq;
1118
1119				lseq = hfi1_seq_incr(rcd,
1120						     rhf_rcv_seq(packet.rhf));
1121				if (!last && lseq)
1122					skip_pkt = 1;
1123			}
1124		}
1125
1126		if (needset) {
1127			needset = false;
1128			set_all_fastpath(dd, rcd);
1129		}
1130		process_rcv_update(last, &packet);
1131	}
1132
1133	process_rcv_qp_work(&packet);
1134	hfi1_set_rcd_head(rcd, packet.rhqoff);
1135
1136bail:
1137	/*
1138	 * Always write head at end, and setup rcv interrupt, even
1139	 * if no packets were processed.
1140	 */
1141	finish_packet(&packet);
1142	return last;
1143}
1144
1145/*
1146 * handle_receive_interrupt_napi_sp - receive a packet
1147 * @rcd: the context
1148 * @budget: polling budget
1149 *
1150 * Called from interrupt handler for errors or receive interrupt.
1151 * This is the slow path interrupt handler
1152 * when executing napi soft irq environment.
1153 */
1154int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget)
1155{
1156	struct hfi1_devdata *dd = rcd->dd;
1157	int last = RCV_PKT_OK;
1158	bool needset = true;
1159	struct hfi1_packet packet;
1160
1161	init_packet(rcd, &packet);
1162	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1163		goto bail;
1164
1165	while (last != RCV_PKT_DONE && packet.numpkt < budget) {
1166		if (hfi1_need_drop(dd)) {
1167			/* On to the next packet */
1168			packet.rhqoff += packet.rsize;
1169			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1170					  packet.rhqoff +
1171					  rcd->rhf_offset;
1172			packet.rhf = rhf_to_cpu(packet.rhf_addr);
1173
1174		} else {
1175			if (set_armed_to_active(&packet))
1176				goto bail;
1177			process_rcv_packet_napi(&packet);
1178		}
1179
1180		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1181			last = RCV_PKT_DONE;
1182
1183		if (needset) {
1184			needset = false;
1185			set_all_fastpath(dd, rcd);
1186		}
1187
1188		process_rcv_update(last, &packet);
1189	}
1190
1191	hfi1_set_rcd_head(rcd, packet.rhqoff);
1192
1193bail:
1194	/*
1195	 * Always write head at end, and setup rcv interrupt, even
1196	 * if no packets were processed.
1197	 */
1198	finish_packet(&packet);
1199	return packet.numpkt;
1200}
1201
1202/*
1203 * We may discover in the interrupt that the hardware link state has
1204 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1205 * and we need to update the driver's notion of the link state.  We cannot
1206 * run set_link_state from interrupt context, so we queue this function on
1207 * a workqueue.
1208 *
1209 * We delay the regular interrupt processing until after the state changes
1210 * so that the link will be in the correct state by the time any application
1211 * we wake up attempts to send a reply to any message it received.
1212 * (Subsequent receive interrupts may possibly force the wakeup before we
1213 * update the link state.)
1214 *
1215 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1216 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1217 * so we're safe from use-after-free of the rcd.
1218 */
1219void receive_interrupt_work(struct work_struct *work)
1220{
1221	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1222						  linkstate_active_work);
1223	struct hfi1_devdata *dd = ppd->dd;
1224	struct hfi1_ctxtdata *rcd;
1225	u16 i;
1226
1227	/* Received non-SC15 packet implies neighbor_normal */
1228	ppd->neighbor_normal = 1;
1229	set_link_state(ppd, HLS_UP_ACTIVE);
1230
1231	/*
1232	 * Interrupt all statically allocated kernel contexts that could
1233	 * have had an interrupt during auto activation.
1234	 */
1235	for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1236		rcd = hfi1_rcd_get_by_index(dd, i);
1237		if (rcd)
1238			force_recv_intr(rcd);
1239		hfi1_rcd_put(rcd);
1240	}
1241}
1242
1243/*
1244 * Convert a given MTU size to the on-wire MAD packet enumeration.
1245 * Return -1 if the size is invalid.
1246 */
1247int mtu_to_enum(u32 mtu, int default_if_bad)
1248{
1249	switch (mtu) {
1250	case     0: return OPA_MTU_0;
1251	case   256: return OPA_MTU_256;
1252	case   512: return OPA_MTU_512;
1253	case  1024: return OPA_MTU_1024;
1254	case  2048: return OPA_MTU_2048;
1255	case  4096: return OPA_MTU_4096;
1256	case  8192: return OPA_MTU_8192;
1257	case 10240: return OPA_MTU_10240;
1258	}
1259	return default_if_bad;
1260}
1261
1262u16 enum_to_mtu(int mtu)
1263{
1264	switch (mtu) {
1265	case OPA_MTU_0:     return 0;
1266	case OPA_MTU_256:   return 256;
1267	case OPA_MTU_512:   return 512;
1268	case OPA_MTU_1024:  return 1024;
1269	case OPA_MTU_2048:  return 2048;
1270	case OPA_MTU_4096:  return 4096;
1271	case OPA_MTU_8192:  return 8192;
1272	case OPA_MTU_10240: return 10240;
1273	default: return 0xffff;
1274	}
1275}
1276
1277/*
1278 * set_mtu - set the MTU
1279 * @ppd: the per port data
1280 *
1281 * We can handle "any" incoming size, the issue here is whether we
1282 * need to restrict our outgoing size.  We do not deal with what happens
1283 * to programs that are already running when the size changes.
1284 */
1285int set_mtu(struct hfi1_pportdata *ppd)
1286{
1287	struct hfi1_devdata *dd = ppd->dd;
1288	int i, drain, ret = 0, is_up = 0;
1289
1290	ppd->ibmtu = 0;
1291	for (i = 0; i < ppd->vls_supported; i++)
1292		if (ppd->ibmtu < dd->vld[i].mtu)
1293			ppd->ibmtu = dd->vld[i].mtu;
1294	ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1295
1296	mutex_lock(&ppd->hls_lock);
1297	if (ppd->host_link_state == HLS_UP_INIT ||
1298	    ppd->host_link_state == HLS_UP_ARMED ||
1299	    ppd->host_link_state == HLS_UP_ACTIVE)
1300		is_up = 1;
1301
1302	drain = !is_ax(dd) && is_up;
1303
1304	if (drain)
1305		/*
1306		 * MTU is specified per-VL. To ensure that no packet gets
1307		 * stuck (due, e.g., to the MTU for the packet's VL being
1308		 * reduced), empty the per-VL FIFOs before adjusting MTU.
1309		 */
1310		ret = stop_drain_data_vls(dd);
1311
1312	if (ret) {
1313		dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1314			   __func__);
1315		goto err;
1316	}
1317
1318	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1319
1320	if (drain)
1321		open_fill_data_vls(dd); /* reopen all VLs */
1322
1323err:
1324	mutex_unlock(&ppd->hls_lock);
1325
1326	return ret;
1327}
1328
1329int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1330{
1331	struct hfi1_devdata *dd = ppd->dd;
1332
1333	ppd->lid = lid;
1334	ppd->lmc = lmc;
1335	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1336
1337	dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1338
1339	return 0;
1340}
1341
1342void shutdown_led_override(struct hfi1_pportdata *ppd)
1343{
1344	struct hfi1_devdata *dd = ppd->dd;
1345
1346	/*
1347	 * This pairs with the memory barrier in hfi1_start_led_override to
1348	 * ensure that we read the correct state of LED beaconing represented
1349	 * by led_override_timer_active
1350	 */
1351	smp_rmb();
1352	if (atomic_read(&ppd->led_override_timer_active)) {
1353		del_timer_sync(&ppd->led_override_timer);
1354		atomic_set(&ppd->led_override_timer_active, 0);
1355		/* Ensure the atomic_set is visible to all CPUs */
1356		smp_wmb();
1357	}
1358
1359	/* Hand control of the LED to the DC for normal operation */
1360	write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1361}
1362
1363static void run_led_override(struct timer_list *t)
1364{
1365	struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1366	struct hfi1_devdata *dd = ppd->dd;
1367	unsigned long timeout;
1368	int phase_idx;
1369
1370	if (!(dd->flags & HFI1_INITTED))
1371		return;
1372
1373	phase_idx = ppd->led_override_phase & 1;
1374
1375	setextled(dd, phase_idx);
1376
1377	timeout = ppd->led_override_vals[phase_idx];
1378
1379	/* Set up for next phase */
1380	ppd->led_override_phase = !ppd->led_override_phase;
1381
1382	mod_timer(&ppd->led_override_timer, jiffies + timeout);
1383}
1384
1385/*
1386 * To have the LED blink in a particular pattern, provide timeon and timeoff
1387 * in milliseconds.
1388 * To turn off custom blinking and return to normal operation, use
1389 * shutdown_led_override()
1390 */
1391void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1392			     unsigned int timeoff)
1393{
1394	if (!(ppd->dd->flags & HFI1_INITTED))
1395		return;
1396
1397	/* Convert to jiffies for direct use in timer */
1398	ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1399	ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1400
1401	/* Arbitrarily start from LED on phase */
1402	ppd->led_override_phase = 1;
1403
1404	/*
1405	 * If the timer has not already been started, do so. Use a "quick"
1406	 * timeout so the handler will be called soon to look at our request.
1407	 */
1408	if (!timer_pending(&ppd->led_override_timer)) {
1409		timer_setup(&ppd->led_override_timer, run_led_override, 0);
1410		ppd->led_override_timer.expires = jiffies + 1;
1411		add_timer(&ppd->led_override_timer);
1412		atomic_set(&ppd->led_override_timer_active, 1);
1413		/* Ensure the atomic_set is visible to all CPUs */
1414		smp_wmb();
1415	}
1416}
1417
1418/**
1419 * hfi1_reset_device - reset the chip if possible
1420 * @unit: the device to reset
1421 *
1422 * Whether or not reset is successful, we attempt to re-initialize the chip
1423 * (that is, much like a driver unload/reload).  We clear the INITTED flag
1424 * so that the various entry points will fail until we reinitialize.  For
1425 * now, we only allow this if no user contexts are open that use chip resources
1426 */
1427int hfi1_reset_device(int unit)
1428{
1429	int ret;
1430	struct hfi1_devdata *dd = hfi1_lookup(unit);
1431	struct hfi1_pportdata *ppd;
1432	int pidx;
1433
1434	if (!dd) {
1435		ret = -ENODEV;
1436		goto bail;
1437	}
1438
1439	dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1440
1441	if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1442		dd_dev_info(dd,
1443			    "Invalid unit number %u or not initialized or not present\n",
1444			    unit);
1445		ret = -ENXIO;
1446		goto bail;
1447	}
1448
1449	/* If there are any user/vnic contexts, we cannot reset */
1450	mutex_lock(&hfi1_mutex);
1451	if (dd->rcd)
1452		if (hfi1_stats.sps_ctxts) {
1453			mutex_unlock(&hfi1_mutex);
1454			ret = -EBUSY;
1455			goto bail;
1456		}
1457	mutex_unlock(&hfi1_mutex);
1458
1459	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1460		ppd = dd->pport + pidx;
1461
1462		shutdown_led_override(ppd);
1463	}
1464	if (dd->flags & HFI1_HAS_SEND_DMA)
1465		sdma_exit(dd);
1466
1467	hfi1_reset_cpu_counters(dd);
1468
1469	ret = hfi1_init(dd, 1);
1470
1471	if (ret)
1472		dd_dev_err(dd,
1473			   "Reinitialize unit %u after reset failed with %d\n",
1474			   unit, ret);
1475	else
1476		dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1477			    unit);
1478
1479bail:
1480	return ret;
1481}
1482
1483static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1484{
1485	packet->hdr = (struct hfi1_ib_message_header *)
1486			hfi1_get_msgheader(packet->rcd,
1487					   packet->rhf_addr);
1488	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1489}
1490
1491static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1492{
1493	struct hfi1_pportdata *ppd = packet->rcd->ppd;
1494
1495	/* slid and dlid cannot be 0 */
1496	if ((!packet->slid) || (!packet->dlid))
1497		return -EINVAL;
1498
1499	/* Compare port lid with incoming packet dlid */
1500	if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1501	    (packet->dlid !=
1502		opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1503		if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
1504			return -EINVAL;
1505	}
1506
1507	/* No multicast packets with SC15 */
1508	if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1509		return -EINVAL;
1510
1511	/* Packets with permissive DLID always on SC15 */
1512	if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1513					 16B)) &&
1514	    (packet->sc != 0xF))
1515		return -EINVAL;
1516
1517	return 0;
1518}
1519
1520static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1521{
1522	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1523	struct ib_header *hdr;
1524	u8 lnh;
1525
1526	hfi1_setup_ib_header(packet);
1527	hdr = packet->hdr;
1528
1529	lnh = ib_get_lnh(hdr);
1530	if (lnh == HFI1_LRH_BTH) {
1531		packet->ohdr = &hdr->u.oth;
1532		packet->grh = NULL;
1533	} else if (lnh == HFI1_LRH_GRH) {
1534		u32 vtf;
1535
1536		packet->ohdr = &hdr->u.l.oth;
1537		packet->grh = &hdr->u.l.grh;
1538		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1539			goto drop;
1540		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1541		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1542			goto drop;
1543	} else {
1544		goto drop;
1545	}
1546
1547	/* Query commonly used fields from packet header */
1548	packet->payload = packet->ebuf;
1549	packet->opcode = ib_bth_get_opcode(packet->ohdr);
1550	packet->slid = ib_get_slid(hdr);
1551	packet->dlid = ib_get_dlid(hdr);
1552	if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1553		     (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1554		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1555				be16_to_cpu(IB_MULTICAST_LID_BASE);
1556	packet->sl = ib_get_sl(hdr);
1557	packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1558	packet->pad = ib_bth_get_pad(packet->ohdr);
1559	packet->extra_byte = 0;
1560	packet->pkey = ib_bth_get_pkey(packet->ohdr);
1561	packet->migrated = ib_bth_is_migration(packet->ohdr);
1562
1563	return 0;
1564drop:
1565	ibp->rvp.n_pkt_drops++;
1566	return -EINVAL;
1567}
1568
1569static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1570{
1571	/*
1572	 * Bypass packets have a different header/payload split
1573	 * compared to an IB packet.
1574	 * Current split is set such that 16 bytes of the actual
1575	 * header is in the header buffer and the remining is in
1576	 * the eager buffer. We chose 16 since hfi1 driver only
1577	 * supports 16B bypass packets and we will be able to
1578	 * receive the entire LRH with such a split.
1579	 */
1580
1581	struct hfi1_ctxtdata *rcd = packet->rcd;
1582	struct hfi1_pportdata *ppd = rcd->ppd;
1583	struct hfi1_ibport *ibp = &ppd->ibport_data;
1584	u8 l4;
1585
1586	packet->hdr = (struct hfi1_16b_header *)
1587			hfi1_get_16B_header(packet->rcd,
1588					    packet->rhf_addr);
1589	l4 = hfi1_16B_get_l4(packet->hdr);
1590	if (l4 == OPA_16B_L4_IB_LOCAL) {
1591		packet->ohdr = packet->ebuf;
1592		packet->grh = NULL;
1593		packet->opcode = ib_bth_get_opcode(packet->ohdr);
1594		packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1595		/* hdr_len_by_opcode already has an IB LRH factored in */
1596		packet->hlen = hdr_len_by_opcode[packet->opcode] +
1597			(LRH_16B_BYTES - LRH_9B_BYTES);
1598		packet->migrated = opa_bth_is_migration(packet->ohdr);
1599	} else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1600		u32 vtf;
1601		u8 grh_len = sizeof(struct ib_grh);
1602
1603		packet->ohdr = packet->ebuf + grh_len;
1604		packet->grh = packet->ebuf;
1605		packet->opcode = ib_bth_get_opcode(packet->ohdr);
1606		packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1607		/* hdr_len_by_opcode already has an IB LRH factored in */
1608		packet->hlen = hdr_len_by_opcode[packet->opcode] +
1609			(LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1610		packet->migrated = opa_bth_is_migration(packet->ohdr);
1611
1612		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1613			goto drop;
1614		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1615		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1616			goto drop;
1617	} else if (l4 == OPA_16B_L4_FM) {
1618		packet->mgmt = packet->ebuf;
1619		packet->ohdr = NULL;
1620		packet->grh = NULL;
1621		packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1622		packet->pad = OPA_16B_L4_FM_PAD;
1623		packet->hlen = OPA_16B_L4_FM_HLEN;
1624		packet->migrated = false;
1625	} else {
1626		goto drop;
1627	}
1628
1629	/* Query commonly used fields from packet header */
1630	packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1631	packet->slid = hfi1_16B_get_slid(packet->hdr);
1632	packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1633	if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1634		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1635				opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1636					    16B);
1637	packet->sc = hfi1_16B_get_sc(packet->hdr);
1638	packet->sl = ibp->sc_to_sl[packet->sc];
1639	packet->extra_byte = SIZE_OF_LT;
1640	packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1641
1642	if (hfi1_bypass_ingress_pkt_check(packet))
1643		goto drop;
1644
1645	return 0;
1646drop:
1647	hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1648	ibp->rvp.n_pkt_drops++;
1649	return -EINVAL;
1650}
1651
1652static void show_eflags_errs(struct hfi1_packet *packet)
1653{
1654	struct hfi1_ctxtdata *rcd = packet->rcd;
1655	u32 rte = rhf_rcv_type_err(packet->rhf);
1656
1657	dd_dev_err(rcd->dd,
1658		   "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
1659		   rcd->ctxt, packet->rhf,
1660		   packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1661		   packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1662		   packet->rhf & RHF_DC_ERR ? "dc " : "",
1663		   packet->rhf & RHF_TID_ERR ? "tid " : "",
1664		   packet->rhf & RHF_LEN_ERR ? "len " : "",
1665		   packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1666		   packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1667		   rte);
1668}
1669
1670void handle_eflags(struct hfi1_packet *packet)
1671{
1672	struct hfi1_ctxtdata *rcd = packet->rcd;
1673
1674	rcv_hdrerr(rcd, rcd->ppd, packet);
1675	if (rhf_err_flags(packet->rhf))
1676		show_eflags_errs(packet);
1677}
1678
1679static void hfi1_ipoib_ib_rcv(struct hfi1_packet *packet)
1680{
1681	struct hfi1_ibport *ibp;
1682	struct net_device *netdev;
1683	struct hfi1_ctxtdata *rcd = packet->rcd;
1684	struct napi_struct *napi = rcd->napi;
1685	struct sk_buff *skb;
1686	struct hfi1_netdev_rxq *rxq = container_of(napi,
1687			struct hfi1_netdev_rxq, napi);
1688	u32 extra_bytes;
1689	u32 tlen, qpnum;
1690	bool do_work, do_cnp;
1691	struct hfi1_ipoib_dev_priv *priv;
1692
1693	trace_hfi1_rcvhdr(packet);
1694
1695	hfi1_setup_ib_header(packet);
1696
1697	packet->ohdr = &((struct ib_header *)packet->hdr)->u.oth;
1698	packet->grh = NULL;
1699
1700	if (unlikely(rhf_err_flags(packet->rhf))) {
1701		handle_eflags(packet);
1702		return;
1703	}
1704
1705	qpnum = ib_bth_get_qpn(packet->ohdr);
1706	netdev = hfi1_netdev_get_data(rcd->dd, qpnum);
1707	if (!netdev)
1708		goto drop_no_nd;
1709
1710	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
1711	trace_ctxt_rsm_hist(rcd->ctxt);
1712
1713	/* handle congestion notifications */
1714	do_work = hfi1_may_ecn(packet);
1715	if (unlikely(do_work)) {
1716		do_cnp = (packet->opcode != IB_OPCODE_CNP);
1717		(void)hfi1_process_ecn_slowpath(hfi1_ipoib_priv(netdev)->qp,
1718						 packet, do_cnp);
1719	}
1720
1721	/*
1722	 * We have split point after last byte of DETH
1723	 * lets strip padding and CRC and ICRC.
1724	 * tlen is whole packet len so we need to
1725	 * subtract header size as well.
1726	 */
1727	tlen = packet->tlen;
1728	extra_bytes = ib_bth_get_pad(packet->ohdr) + (SIZE_OF_CRC << 2) +
1729			packet->hlen;
1730	if (unlikely(tlen < extra_bytes))
1731		goto drop;
1732
1733	tlen -= extra_bytes;
1734
1735	skb = hfi1_ipoib_prepare_skb(rxq, tlen, packet->ebuf);
1736	if (unlikely(!skb))
1737		goto drop;
1738
1739	priv = hfi1_ipoib_priv(netdev);
1740	hfi1_ipoib_update_rx_netstats(priv, 1, skb->len);
1741
1742	skb->dev = netdev;
1743	skb->pkt_type = PACKET_HOST;
1744	netif_receive_skb(skb);
1745
1746	return;
1747
1748drop:
1749	++netdev->stats.rx_dropped;
1750drop_no_nd:
1751	ibp = rcd_to_iport(packet->rcd);
1752	++ibp->rvp.n_pkt_drops;
1753}
1754
1755/*
1756 * The following functions are called by the interrupt handler. They are type
1757 * specific handlers for each packet type.
1758 */
1759static void process_receive_ib(struct hfi1_packet *packet)
1760{
1761	if (hfi1_setup_9B_packet(packet))
1762		return;
1763
1764	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1765		return;
1766
1767	trace_hfi1_rcvhdr(packet);
1768
1769	if (unlikely(rhf_err_flags(packet->rhf))) {
1770		handle_eflags(packet);
1771		return;
1772	}
1773
1774	hfi1_ib_rcv(packet);
1775}
1776
1777static void process_receive_bypass(struct hfi1_packet *packet)
1778{
1779	struct hfi1_devdata *dd = packet->rcd->dd;
1780
1781	if (hfi1_setup_bypass_packet(packet))
1782		return;
1783
1784	trace_hfi1_rcvhdr(packet);
1785
1786	if (unlikely(rhf_err_flags(packet->rhf))) {
1787		handle_eflags(packet);
1788		return;
1789	}
1790
1791	if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1792		hfi1_16B_rcv(packet);
1793	} else {
1794		dd_dev_err(dd,
1795			   "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1796		incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1797		if (!(dd->err_info_rcvport.status_and_code &
1798		      OPA_EI_STATUS_SMASK)) {
1799			u64 *flits = packet->ebuf;
1800
1801			if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1802				dd->err_info_rcvport.packet_flit1 = flits[0];
1803				dd->err_info_rcvport.packet_flit2 =
1804					packet->tlen > sizeof(flits[0]) ?
1805					flits[1] : 0;
1806			}
1807			dd->err_info_rcvport.status_and_code |=
1808				(OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1809		}
1810	}
1811}
1812
1813static void process_receive_error(struct hfi1_packet *packet)
1814{
1815	/* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1816	if (unlikely(
1817		 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1818		 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1819		  packet->rhf & RHF_DC_ERR)))
1820		return;
1821
1822	hfi1_setup_ib_header(packet);
1823	handle_eflags(packet);
1824
1825	if (unlikely(rhf_err_flags(packet->rhf)))
1826		dd_dev_err(packet->rcd->dd,
1827			   "Unhandled error packet received. Dropping.\n");
1828}
1829
1830static void kdeth_process_expected(struct hfi1_packet *packet)
1831{
1832	hfi1_setup_9B_packet(packet);
1833	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1834		return;
1835
1836	if (unlikely(rhf_err_flags(packet->rhf))) {
1837		struct hfi1_ctxtdata *rcd = packet->rcd;
1838
1839		if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1840			return;
1841	}
1842
1843	hfi1_kdeth_expected_rcv(packet);
1844}
1845
1846static void kdeth_process_eager(struct hfi1_packet *packet)
1847{
1848	hfi1_setup_9B_packet(packet);
1849	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1850		return;
1851
1852	trace_hfi1_rcvhdr(packet);
1853	if (unlikely(rhf_err_flags(packet->rhf))) {
1854		struct hfi1_ctxtdata *rcd = packet->rcd;
1855
1856		show_eflags_errs(packet);
1857		if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1858			return;
1859	}
1860
1861	hfi1_kdeth_eager_rcv(packet);
1862}
1863
1864static void process_receive_invalid(struct hfi1_packet *packet)
1865{
1866	dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1867		   rhf_rcv_type(packet->rhf));
1868}
1869
1870#define HFI1_RCVHDR_DUMP_MAX	5
1871
1872void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1873{
1874	struct hfi1_packet packet;
1875	struct ps_mdata mdata;
1876	int i;
1877
1878	seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu  sw head %u\n",
1879		   rcd->ctxt, get_hdrq_cnt(rcd), get_hdrqentsize(rcd),
1880		   get_dma_rtail_setting(rcd) ?
1881		   "dma_rtail" : "nodma_rtail",
1882		   read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_CTRL),
1883		   read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_STATUS),
1884		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1885		   RCV_HDR_HEAD_HEAD_MASK,
1886		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL),
1887		   rcd->head);
1888
1889	init_packet(rcd, &packet);
1890	init_ps_mdata(&mdata, &packet);
1891
1892	for (i = 0; i < HFI1_RCVHDR_DUMP_MAX; i++) {
1893		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1894					 rcd->rhf_offset;
1895		struct ib_header *hdr;
1896		u64 rhf = rhf_to_cpu(rhf_addr);
1897		u32 etype = rhf_rcv_type(rhf), qpn;
1898		u8 opcode;
1899		u32 psn;
1900		u8 lnh;
1901
1902		if (ps_done(&mdata, rhf, rcd))
1903			break;
1904
1905		if (ps_skip(&mdata, rhf, rcd))
1906			goto next;
1907
1908		if (etype > RHF_RCV_TYPE_IB)
1909			goto next;
1910
1911		packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1912		hdr = packet.hdr;
1913
1914		lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1915
1916		if (lnh == HFI1_LRH_BTH)
1917			packet.ohdr = &hdr->u.oth;
1918		else if (lnh == HFI1_LRH_GRH)
1919			packet.ohdr = &hdr->u.l.oth;
1920		else
1921			goto next; /* just in case */
1922
1923		opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1924		qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1925		psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1926
1927		seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1928			   mdata.ps_head, opcode, qpn, psn);
1929next:
1930		update_ps_mdata(&mdata, rcd);
1931	}
1932}
1933
1934const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1935	[RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1936	[RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1937	[RHF_RCV_TYPE_IB] = process_receive_ib,
1938	[RHF_RCV_TYPE_ERROR] = process_receive_error,
1939	[RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1940	[RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1941	[RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1942	[RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1943};
1944
1945const rhf_rcv_function_ptr netdev_rhf_rcv_functions[] = {
1946	[RHF_RCV_TYPE_EXPECTED] = process_receive_invalid,
1947	[RHF_RCV_TYPE_EAGER] = process_receive_invalid,
1948	[RHF_RCV_TYPE_IB] = hfi1_ipoib_ib_rcv,
1949	[RHF_RCV_TYPE_ERROR] = process_receive_error,
1950	[RHF_RCV_TYPE_BYPASS] = hfi1_vnic_bypass_rcv,
1951	[RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1952	[RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1953	[RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1954};
1955