1/*
2 * Copyright(c) 2015 - 2020 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license.  When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 *  - Redistributions of source code must retain the above copyright
25 *    notice, this list of conditions and the following disclaimer.
26 *  - Redistributions in binary form must reproduce the above copyright
27 *    notice, this list of conditions and the following disclaimer in
28 *    the documentation and/or other materials provided with the
29 *    distribution.
30 *  - Neither the name of Intel Corporation nor the names of its
31 *    contributors may be used to endorse or promote products derived
32 *    from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48/*
49 * This file contains all of the code that is specific to the HFI chip
50 */
51
52#include <linux/pci.h>
53#include <linux/delay.h>
54#include <linux/interrupt.h>
55#include <linux/module.h>
56
57#include "hfi.h"
58#include "trace.h"
59#include "mad.h"
60#include "pio.h"
61#include "sdma.h"
62#include "eprom.h"
63#include "efivar.h"
64#include "platform.h"
65#include "aspm.h"
66#include "affinity.h"
67#include "debugfs.h"
68#include "fault.h"
69#include "netdev.h"
70
71uint num_vls = HFI1_MAX_VLS_SUPPORTED;
72module_param(num_vls, uint, S_IRUGO);
73MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
74
75/*
76 * Default time to aggregate two 10K packets from the idle state
77 * (timer not running). The timer starts at the end of the first packet,
78 * so only the time for one 10K packet and header plus a bit extra is needed.
79 * 10 * 1024 + 64 header byte = 10304 byte
80 * 10304 byte / 12.5 GB/s = 824.32ns
81 */
82uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
83module_param(rcv_intr_timeout, uint, S_IRUGO);
84MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
85
86uint rcv_intr_count = 16; /* same as qib */
87module_param(rcv_intr_count, uint, S_IRUGO);
88MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
89
90ushort link_crc_mask = SUPPORTED_CRCS;
91module_param(link_crc_mask, ushort, S_IRUGO);
92MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
93
94uint loopback;
95module_param_named(loopback, loopback, uint, S_IRUGO);
96MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
97
98/* Other driver tunables */
99uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
100static ushort crc_14b_sideband = 1;
101static uint use_flr = 1;
102uint quick_linkup; /* skip LNI */
103
104struct flag_table {
105	u64 flag;	/* the flag */
106	char *str;	/* description string */
107	u16 extra;	/* extra information */
108	u16 unused0;
109	u32 unused1;
110};
111
112/* str must be a string constant */
113#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
114#define FLAG_ENTRY0(str, flag) {flag, str, 0}
115
116/* Send Error Consequences */
117#define SEC_WRITE_DROPPED	0x1
118#define SEC_PACKET_DROPPED	0x2
119#define SEC_SC_HALTED		0x4	/* per-context only */
120#define SEC_SPC_FREEZE		0x8	/* per-HFI only */
121
122#define DEFAULT_KRCVQS		  2
123#define MIN_KERNEL_KCTXTS         2
124#define FIRST_KERNEL_KCTXT        1
125
126/*
127 * RSM instance allocation
128 *   0 - User Fecn Handling
129 *   1 - Vnic
130 *   2 - AIP
131 *   3 - Verbs
132 */
133#define RSM_INS_FECN              0
134#define RSM_INS_VNIC              1
135#define RSM_INS_AIP               2
136#define RSM_INS_VERBS             3
137
138/* Bit offset into the GUID which carries HFI id information */
139#define GUID_HFI_INDEX_SHIFT     39
140
141/* extract the emulation revision */
142#define emulator_rev(dd) ((dd)->irev >> 8)
143/* parallel and serial emulation versions are 3 and 4 respectively */
144#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
145#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
146
147/* RSM fields for Verbs */
148/* packet type */
149#define IB_PACKET_TYPE         2ull
150#define QW_SHIFT               6ull
151/* QPN[7..1] */
152#define QPN_WIDTH              7ull
153
154/* LRH.BTH: QW 0, OFFSET 48 - for match */
155#define LRH_BTH_QW             0ull
156#define LRH_BTH_BIT_OFFSET     48ull
157#define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
158#define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
159#define LRH_BTH_SELECT
160#define LRH_BTH_MASK           3ull
161#define LRH_BTH_VALUE          2ull
162
163/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
164#define LRH_SC_QW              0ull
165#define LRH_SC_BIT_OFFSET      56ull
166#define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
167#define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
168#define LRH_SC_MASK            128ull
169#define LRH_SC_VALUE           0ull
170
171/* SC[n..0] QW 0, OFFSET 60 - for select */
172#define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
173
174/* QPN[m+n:1] QW 1, OFFSET 1 */
175#define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
176
177/* RSM fields for AIP */
178/* LRH.BTH above is reused for this rule */
179
180/* BTH.DESTQP: QW 1, OFFSET 16 for match */
181#define BTH_DESTQP_QW           1ull
182#define BTH_DESTQP_BIT_OFFSET   16ull
183#define BTH_DESTQP_OFFSET(off) ((BTH_DESTQP_QW << QW_SHIFT) | (off))
184#define BTH_DESTQP_MATCH_OFFSET BTH_DESTQP_OFFSET(BTH_DESTQP_BIT_OFFSET)
185#define BTH_DESTQP_MASK         0xFFull
186#define BTH_DESTQP_VALUE        0x81ull
187
188/* DETH.SQPN: QW 1 Offset 56 for select */
189/* We use 8 most significant Soure QPN bits as entropy fpr AIP */
190#define DETH_AIP_SQPN_QW 3ull
191#define DETH_AIP_SQPN_BIT_OFFSET 56ull
192#define DETH_AIP_SQPN_OFFSET(off) ((DETH_AIP_SQPN_QW << QW_SHIFT) | (off))
193#define DETH_AIP_SQPN_SELECT_OFFSET \
194	DETH_AIP_SQPN_OFFSET(DETH_AIP_SQPN_BIT_OFFSET)
195
196/* RSM fields for Vnic */
197/* L2_TYPE: QW 0, OFFSET 61 - for match */
198#define L2_TYPE_QW             0ull
199#define L2_TYPE_BIT_OFFSET     61ull
200#define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
201#define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
202#define L2_TYPE_MASK           3ull
203#define L2_16B_VALUE           2ull
204
205/* L4_TYPE QW 1, OFFSET 0 - for match */
206#define L4_TYPE_QW              1ull
207#define L4_TYPE_BIT_OFFSET      0ull
208#define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
209#define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
210#define L4_16B_TYPE_MASK        0xFFull
211#define L4_16B_ETH_VALUE        0x78ull
212
213/* 16B VESWID - for select */
214#define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
215/* 16B ENTROPY - for select */
216#define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
217
218/* defines to build power on SC2VL table */
219#define SC2VL_VAL( \
220	num, \
221	sc0, sc0val, \
222	sc1, sc1val, \
223	sc2, sc2val, \
224	sc3, sc3val, \
225	sc4, sc4val, \
226	sc5, sc5val, \
227	sc6, sc6val, \
228	sc7, sc7val) \
229( \
230	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
231	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
232	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
233	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
234	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
235	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
236	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
237	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
238)
239
240#define DC_SC_VL_VAL( \
241	range, \
242	e0, e0val, \
243	e1, e1val, \
244	e2, e2val, \
245	e3, e3val, \
246	e4, e4val, \
247	e5, e5val, \
248	e6, e6val, \
249	e7, e7val, \
250	e8, e8val, \
251	e9, e9val, \
252	e10, e10val, \
253	e11, e11val, \
254	e12, e12val, \
255	e13, e13val, \
256	e14, e14val, \
257	e15, e15val) \
258( \
259	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
260	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
261	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
262	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
263	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
264	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
265	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
266	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
267	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
268	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
269	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
270	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
271	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
272	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
273	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
274	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
275)
276
277/* all CceStatus sub-block freeze bits */
278#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
279			| CCE_STATUS_RXE_FROZE_SMASK \
280			| CCE_STATUS_TXE_FROZE_SMASK \
281			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
282/* all CceStatus sub-block TXE pause bits */
283#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
284			| CCE_STATUS_TXE_PAUSED_SMASK \
285			| CCE_STATUS_SDMA_PAUSED_SMASK)
286/* all CceStatus sub-block RXE pause bits */
287#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
288
289#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
290#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
291
292/*
293 * CCE Error flags.
294 */
295static struct flag_table cce_err_status_flags[] = {
296/* 0*/	FLAG_ENTRY0("CceCsrParityErr",
297		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
298/* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
299		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
300/* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
301		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
302/* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
303		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
304/* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
305		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
306/* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
307		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
308/* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
309		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
310/* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
311		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
312/* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
313		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
314/* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
315	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
316/*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
317	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
318/*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
319	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
320/*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
321		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
322/*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
323		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
324/*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
325		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
326/*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
327		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
328/*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
329		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
330/*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
331		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
332/*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
333		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
334/*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
335		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
336/*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
337		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
338/*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
339		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
340/*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
341		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
342/*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
343		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
344/*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
345		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
346/*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
347		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
348/*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
349		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
350/*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
351		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
352/*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
353		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
354/*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
355		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
356/*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
357		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
358/*31*/	FLAG_ENTRY0("LATriggered",
359		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
360/*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
361		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
362/*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
363		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
364/*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
365		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
366/*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
367		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
368/*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
369		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
370/*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
371		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
372/*38*/	FLAG_ENTRY0("CceIntMapCorErr",
373		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
374/*39*/	FLAG_ENTRY0("CceIntMapUncErr",
375		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
376/*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
377		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
378/*41-63 reserved*/
379};
380
381/*
382 * Misc Error flags
383 */
384#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
385static struct flag_table misc_err_status_flags[] = {
386/* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
387/* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
388/* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
389/* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
390/* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
391/* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
392/* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
393/* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
394/* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
395/* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
396/*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
397/*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
398/*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
399};
400
401/*
402 * TXE PIO Error flags and consequences
403 */
404static struct flag_table pio_err_status_flags[] = {
405/* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
406	SEC_WRITE_DROPPED,
407	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
408/* 1*/	FLAG_ENTRY("PioWriteAddrParity",
409	SEC_SPC_FREEZE,
410	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
411/* 2*/	FLAG_ENTRY("PioCsrParity",
412	SEC_SPC_FREEZE,
413	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
414/* 3*/	FLAG_ENTRY("PioSbMemFifo0",
415	SEC_SPC_FREEZE,
416	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
417/* 4*/	FLAG_ENTRY("PioSbMemFifo1",
418	SEC_SPC_FREEZE,
419	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
420/* 5*/	FLAG_ENTRY("PioPccFifoParity",
421	SEC_SPC_FREEZE,
422	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
423/* 6*/	FLAG_ENTRY("PioPecFifoParity",
424	SEC_SPC_FREEZE,
425	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
426/* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
427	SEC_SPC_FREEZE,
428	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
429/* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
430	SEC_SPC_FREEZE,
431	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
432/* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
433	SEC_SPC_FREEZE,
434	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
435/*10*/	FLAG_ENTRY("PioSmPktResetParity",
436	SEC_SPC_FREEZE,
437	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
438/*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
439	SEC_SPC_FREEZE,
440	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
441/*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
442	SEC_SPC_FREEZE,
443	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
444/*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
445	0,
446	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
447/*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
448	0,
449	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
450/*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
451	SEC_SPC_FREEZE,
452	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
453/*16*/	FLAG_ENTRY("PioPpmcPblFifo",
454	SEC_SPC_FREEZE,
455	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
456/*17*/	FLAG_ENTRY("PioInitSmIn",
457	0,
458	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
459/*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
460	SEC_SPC_FREEZE,
461	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
462/*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
463	SEC_SPC_FREEZE,
464	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
465/*20*/	FLAG_ENTRY("PioHostAddrMemCor",
466	0,
467	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
468/*21*/	FLAG_ENTRY("PioWriteDataParity",
469	SEC_SPC_FREEZE,
470	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
471/*22*/	FLAG_ENTRY("PioStateMachine",
472	SEC_SPC_FREEZE,
473	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
474/*23*/	FLAG_ENTRY("PioWriteQwValidParity",
475	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
476	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
477/*24*/	FLAG_ENTRY("PioBlockQwCountParity",
478	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
479	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
480/*25*/	FLAG_ENTRY("PioVlfVlLenParity",
481	SEC_SPC_FREEZE,
482	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
483/*26*/	FLAG_ENTRY("PioVlfSopParity",
484	SEC_SPC_FREEZE,
485	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
486/*27*/	FLAG_ENTRY("PioVlFifoParity",
487	SEC_SPC_FREEZE,
488	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
489/*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
490	SEC_SPC_FREEZE,
491	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
492/*29*/	FLAG_ENTRY("PioPpmcSopLen",
493	SEC_SPC_FREEZE,
494	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
495/*30-31 reserved*/
496/*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
497	SEC_SPC_FREEZE,
498	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
499/*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
500	SEC_SPC_FREEZE,
501	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
502/*34*/	FLAG_ENTRY("PioPccSopHeadParity",
503	SEC_SPC_FREEZE,
504	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
505/*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
506	SEC_SPC_FREEZE,
507	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
508/*36-63 reserved*/
509};
510
511/* TXE PIO errors that cause an SPC freeze */
512#define ALL_PIO_FREEZE_ERR \
513	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
514	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
515	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
516	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
517	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
518	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
519	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
520	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
521	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
522	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
523	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
524	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
525	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
526	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
527	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
528	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
529	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
530	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
531	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
532	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
533	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
534	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
535	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
536	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
537	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
538	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
539	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
540	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
541	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
542
543/*
544 * TXE SDMA Error flags
545 */
546static struct flag_table sdma_err_status_flags[] = {
547/* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
548		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
549/* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
550		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
551/* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
552		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
553/* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
554		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
555/*04-63 reserved*/
556};
557
558/* TXE SDMA errors that cause an SPC freeze */
559#define ALL_SDMA_FREEZE_ERR  \
560		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
561		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
562		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
563
564/* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
565#define PORT_DISCARD_EGRESS_ERRS \
566	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
567	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
568	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
569
570/*
571 * TXE Egress Error flags
572 */
573#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
574static struct flag_table egress_err_status_flags[] = {
575/* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
576/* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
577/* 2 reserved */
578/* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
579		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
580/* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
581/* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
582/* 6 reserved */
583/* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
584		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
585/* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
586		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
587/* 9-10 reserved */
588/*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
589		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
590/*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
591/*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
592/*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
593/*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
594/*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
595		SEES(TX_SDMA0_DISALLOWED_PACKET)),
596/*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
597		SEES(TX_SDMA1_DISALLOWED_PACKET)),
598/*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
599		SEES(TX_SDMA2_DISALLOWED_PACKET)),
600/*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
601		SEES(TX_SDMA3_DISALLOWED_PACKET)),
602/*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
603		SEES(TX_SDMA4_DISALLOWED_PACKET)),
604/*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
605		SEES(TX_SDMA5_DISALLOWED_PACKET)),
606/*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
607		SEES(TX_SDMA6_DISALLOWED_PACKET)),
608/*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
609		SEES(TX_SDMA7_DISALLOWED_PACKET)),
610/*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
611		SEES(TX_SDMA8_DISALLOWED_PACKET)),
612/*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
613		SEES(TX_SDMA9_DISALLOWED_PACKET)),
614/*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
615		SEES(TX_SDMA10_DISALLOWED_PACKET)),
616/*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
617		SEES(TX_SDMA11_DISALLOWED_PACKET)),
618/*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
619		SEES(TX_SDMA12_DISALLOWED_PACKET)),
620/*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
621		SEES(TX_SDMA13_DISALLOWED_PACKET)),
622/*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
623		SEES(TX_SDMA14_DISALLOWED_PACKET)),
624/*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
625		SEES(TX_SDMA15_DISALLOWED_PACKET)),
626/*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
627		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
628/*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
629		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
630/*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
631		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
632/*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
633		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
634/*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
635		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
636/*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
637		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
638/*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
639		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
640/*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
641		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
642/*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
643		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
644/*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
645/*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
646/*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
647/*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
648/*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
649/*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
650/*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
651/*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
652/*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
653/*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
654/*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
655/*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
656/*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
657/*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
658/*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
659/*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
660/*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
661/*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
662/*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
663/*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
664/*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
665/*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
666		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
667/*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
668		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
669};
670
671/*
672 * TXE Egress Error Info flags
673 */
674#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
675static struct flag_table egress_err_info_flags[] = {
676/* 0*/	FLAG_ENTRY0("Reserved", 0ull),
677/* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
678/* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
679/* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
680/* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
681/* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
682/* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
683/* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
684/* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
685/* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
686/*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
687/*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
688/*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
689/*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
690/*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
691/*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
692/*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
693/*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
694/*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
695/*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
696/*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
697/*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
698};
699
700/* TXE Egress errors that cause an SPC freeze */
701#define ALL_TXE_EGRESS_FREEZE_ERR \
702	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
703	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
704	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
705	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
706	| SEES(TX_LAUNCH_CSR_PARITY) \
707	| SEES(TX_SBRD_CTL_CSR_PARITY) \
708	| SEES(TX_CONFIG_PARITY) \
709	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
710	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
711	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
712	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
713	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
714	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
715	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
716	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
717	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
718	| SEES(TX_CREDIT_RETURN_PARITY))
719
720/*
721 * TXE Send error flags
722 */
723#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
724static struct flag_table send_err_status_flags[] = {
725/* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
726/* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
727/* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
728};
729
730/*
731 * TXE Send Context Error flags and consequences
732 */
733static struct flag_table sc_err_status_flags[] = {
734/* 0*/	FLAG_ENTRY("InconsistentSop",
735		SEC_PACKET_DROPPED | SEC_SC_HALTED,
736		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
737/* 1*/	FLAG_ENTRY("DisallowedPacket",
738		SEC_PACKET_DROPPED | SEC_SC_HALTED,
739		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
740/* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
741		SEC_WRITE_DROPPED | SEC_SC_HALTED,
742		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
743/* 3*/	FLAG_ENTRY("WriteOverflow",
744		SEC_WRITE_DROPPED | SEC_SC_HALTED,
745		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
746/* 4*/	FLAG_ENTRY("WriteOutOfBounds",
747		SEC_WRITE_DROPPED | SEC_SC_HALTED,
748		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
749/* 5-63 reserved*/
750};
751
752/*
753 * RXE Receive Error flags
754 */
755#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
756static struct flag_table rxe_err_status_flags[] = {
757/* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
758/* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
759/* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
760/* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
761/* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
762/* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
763/* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
764/* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
765/* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
766/* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
767/*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
768/*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
769/*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
770/*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
771/*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
772/*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
773/*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
774		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
775/*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
776/*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
777/*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
778		RXES(RBUF_BLOCK_LIST_READ_UNC)),
779/*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
780		RXES(RBUF_BLOCK_LIST_READ_COR)),
781/*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
782		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
783/*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
784		RXES(RBUF_CSR_QENT_CNT_PARITY)),
785/*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
786		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
787/*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
788		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
789/*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
790/*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
791/*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
792		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
793/*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
794/*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
795/*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
796/*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
797/*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
798/*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
799/*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
800/*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
801		RXES(RBUF_FL_INITDONE_PARITY)),
802/*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
803		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
804/*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
805/*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
806/*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
807/*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
808		RXES(LOOKUP_DES_PART1_UNC_COR)),
809/*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
810		RXES(LOOKUP_DES_PART2_PARITY)),
811/*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
812/*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
813/*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
814/*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
815/*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
816/*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
817/*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
818/*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
819/*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
820/*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
821/*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
822/*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
823/*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
824/*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
825/*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
826/*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
827/*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
828/*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
829/*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
830/*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
831/*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
832/*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
833};
834
835/* RXE errors that will trigger an SPC freeze */
836#define ALL_RXE_FREEZE_ERR  \
837	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
838	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
839	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
840	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
841	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
842	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
843	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
844	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
845	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
846	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
847	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
848	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
849	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
850	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
851	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
852	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
853	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
854	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
855	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
856	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
857	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
858	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
859	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
860	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
861	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
862	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
863	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
864	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
865	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
866	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
867	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
868	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
869	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
870	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
871	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
872	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
873	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
874	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
875	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
876	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
877	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
878	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
879	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
880	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
881
882#define RXE_FREEZE_ABORT_MASK \
883	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
884	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
885	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
886
887/*
888 * DCC Error Flags
889 */
890#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
891static struct flag_table dcc_err_flags[] = {
892	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
893	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
894	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
895	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
896	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
897	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
898	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
899	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
900	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
901	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
902	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
903	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
904	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
905	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
906	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
907	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
908	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
909	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
910	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
911	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
912	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
913	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
914	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
915	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
916	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
917	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
918	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
919	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
920	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
921	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
922	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
923	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
924	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
925	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
926	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
927	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
928	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
929	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
930	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
931	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
932	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
933	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
934	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
935	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
936	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
937	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
938};
939
940/*
941 * LCB error flags
942 */
943#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
944static struct flag_table lcb_err_flags[] = {
945/* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
946/* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
947/* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
948/* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
949		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
950/* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
951/* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
952/* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
953/* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
954/* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
955/* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
956/*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
957/*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
958/*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
959/*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
960		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
961/*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
962/*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
963/*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
964/*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
965/*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
966/*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
967		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
968/*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
969/*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
970/*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
971/*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
972/*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
973/*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
974/*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
975		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
976/*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
977/*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
978		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
979/*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
980		LCBE(REDUNDANT_FLIT_PARITY_ERR))
981};
982
983/*
984 * DC8051 Error Flags
985 */
986#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
987static struct flag_table dc8051_err_flags[] = {
988	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
989	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
990	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
991	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
992	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
993	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
994	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
995	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
996	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
997		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
998	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
999};
1000
1001/*
1002 * DC8051 Information Error flags
1003 *
1004 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
1005 */
1006static struct flag_table dc8051_info_err_flags[] = {
1007	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
1008	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
1009	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
1010	FLAG_ENTRY0("Serdes internal loopback failure",
1011		    FAILED_SERDES_INTERNAL_LOOPBACK),
1012	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
1013	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
1014	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
1015	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
1016	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1017	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1018	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1019	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1020	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1021	FLAG_ENTRY0("External Device Request Timeout",
1022		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1023};
1024
1025/*
1026 * DC8051 Information Host Information flags
1027 *
1028 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1029 */
1030static struct flag_table dc8051_info_host_msg_flags[] = {
1031	FLAG_ENTRY0("Host request done", 0x0001),
1032	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1033	FLAG_ENTRY0("BC SMA message", 0x0004),
1034	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1035	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1036	FLAG_ENTRY0("External device config request", 0x0020),
1037	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1038	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1039	FLAG_ENTRY0("Link going down", 0x0100),
1040	FLAG_ENTRY0("Link width downgraded", 0x0200),
1041};
1042
1043static u32 encoded_size(u32 size);
1044static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1045static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1046static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1047			       u8 *continuous);
1048static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1049				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1050static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1051				      u8 *remote_tx_rate, u16 *link_widths);
1052static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1053				    u8 *flag_bits, u16 *link_widths);
1054static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1055				  u8 *device_rev);
1056static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1057static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1058			    u8 *tx_polarity_inversion,
1059			    u8 *rx_polarity_inversion, u8 *max_rate);
1060static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1061				unsigned int context, u64 err_status);
1062static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1063static void handle_dcc_err(struct hfi1_devdata *dd,
1064			   unsigned int context, u64 err_status);
1065static void handle_lcb_err(struct hfi1_devdata *dd,
1066			   unsigned int context, u64 err_status);
1067static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1068static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1069static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1070static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1071static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1072static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1073static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1074static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1075static void set_partition_keys(struct hfi1_pportdata *ppd);
1076static const char *link_state_name(u32 state);
1077static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1078					  u32 state);
1079static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1080			   u64 *out_data);
1081static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1082static int thermal_init(struct hfi1_devdata *dd);
1083
1084static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1085static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1086					    int msecs);
1087static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1088				  int msecs);
1089static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1090static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1091static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1092				   int msecs);
1093static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1094					 int msecs);
1095static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1096static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1097static void handle_temp_err(struct hfi1_devdata *dd);
1098static void dc_shutdown(struct hfi1_devdata *dd);
1099static void dc_start(struct hfi1_devdata *dd);
1100static int qos_rmt_entries(unsigned int n_krcv_queues, unsigned int *mp,
1101			   unsigned int *np);
1102static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1103static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1104static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1105static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1106
1107/*
1108 * Error interrupt table entry.  This is used as input to the interrupt
1109 * "clear down" routine used for all second tier error interrupt register.
1110 * Second tier interrupt registers have a single bit representing them
1111 * in the top-level CceIntStatus.
1112 */
1113struct err_reg_info {
1114	u32 status;		/* status CSR offset */
1115	u32 clear;		/* clear CSR offset */
1116	u32 mask;		/* mask CSR offset */
1117	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1118	const char *desc;
1119};
1120
1121#define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1122#define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1123#define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1124
1125/*
1126 * Helpers for building HFI and DC error interrupt table entries.  Different
1127 * helpers are needed because of inconsistent register names.
1128 */
1129#define EE(reg, handler, desc) \
1130	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1131		handler, desc }
1132#define DC_EE1(reg, handler, desc) \
1133	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1134#define DC_EE2(reg, handler, desc) \
1135	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1136
1137/*
1138 * Table of the "misc" grouping of error interrupts.  Each entry refers to
1139 * another register containing more information.
1140 */
1141static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1142/* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1143/* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1144/* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1145/* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1146/* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1147/* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1148/* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1149/* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1150	/* the rest are reserved */
1151};
1152
1153/*
1154 * Index into the Various section of the interrupt sources
1155 * corresponding to the Critical Temperature interrupt.
1156 */
1157#define TCRIT_INT_SOURCE 4
1158
1159/*
1160 * SDMA error interrupt entry - refers to another register containing more
1161 * information.
1162 */
1163static const struct err_reg_info sdma_eng_err =
1164	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1165
1166static const struct err_reg_info various_err[NUM_VARIOUS] = {
1167/* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1168/* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1169/* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1170/* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1171/* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1172	/* rest are reserved */
1173};
1174
1175/*
1176 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1177 * register can not be derived from the MTU value because 10K is not
1178 * a power of 2. Therefore, we need a constant. Everything else can
1179 * be calculated.
1180 */
1181#define DCC_CFG_PORT_MTU_CAP_10240 7
1182
1183/*
1184 * Table of the DC grouping of error interrupts.  Each entry refers to
1185 * another register containing more information.
1186 */
1187static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1188/* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1189/* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1190/* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1191/* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1192	/* the rest are reserved */
1193};
1194
1195struct cntr_entry {
1196	/*
1197	 * counter name
1198	 */
1199	char *name;
1200
1201	/*
1202	 * csr to read for name (if applicable)
1203	 */
1204	u64 csr;
1205
1206	/*
1207	 * offset into dd or ppd to store the counter's value
1208	 */
1209	int offset;
1210
1211	/*
1212	 * flags
1213	 */
1214	u8 flags;
1215
1216	/*
1217	 * accessor for stat element, context either dd or ppd
1218	 */
1219	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1220		       int mode, u64 data);
1221};
1222
1223#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1224#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1225
1226#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1227{ \
1228	name, \
1229	csr, \
1230	offset, \
1231	flags, \
1232	accessor \
1233}
1234
1235/* 32bit RXE */
1236#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1237CNTR_ELEM(#name, \
1238	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1239	  0, flags | CNTR_32BIT, \
1240	  port_access_u32_csr)
1241
1242#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1243CNTR_ELEM(#name, \
1244	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1245	  0, flags | CNTR_32BIT, \
1246	  dev_access_u32_csr)
1247
1248/* 64bit RXE */
1249#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1250CNTR_ELEM(#name, \
1251	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1252	  0, flags, \
1253	  port_access_u64_csr)
1254
1255#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1256CNTR_ELEM(#name, \
1257	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1258	  0, flags, \
1259	  dev_access_u64_csr)
1260
1261#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1262#define OVR_ELM(ctx) \
1263CNTR_ELEM("RcvHdrOvr" #ctx, \
1264	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1265	  0, CNTR_NORMAL, port_access_u64_csr)
1266
1267/* 32bit TXE */
1268#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1269CNTR_ELEM(#name, \
1270	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1271	  0, flags | CNTR_32BIT, \
1272	  port_access_u32_csr)
1273
1274/* 64bit TXE */
1275#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1276CNTR_ELEM(#name, \
1277	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1278	  0, flags, \
1279	  port_access_u64_csr)
1280
1281# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1282CNTR_ELEM(#name,\
1283	  counter * 8 + SEND_COUNTER_ARRAY64, \
1284	  0, \
1285	  flags, \
1286	  dev_access_u64_csr)
1287
1288/* CCE */
1289#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1290CNTR_ELEM(#name, \
1291	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1292	  0, flags | CNTR_32BIT, \
1293	  dev_access_u32_csr)
1294
1295#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1296CNTR_ELEM(#name, \
1297	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1298	  0, flags | CNTR_32BIT, \
1299	  dev_access_u32_csr)
1300
1301/* DC */
1302#define DC_PERF_CNTR(name, counter, flags) \
1303CNTR_ELEM(#name, \
1304	  counter, \
1305	  0, \
1306	  flags, \
1307	  dev_access_u64_csr)
1308
1309#define DC_PERF_CNTR_LCB(name, counter, flags) \
1310CNTR_ELEM(#name, \
1311	  counter, \
1312	  0, \
1313	  flags, \
1314	  dc_access_lcb_cntr)
1315
1316/* ibp counters */
1317#define SW_IBP_CNTR(name, cntr) \
1318CNTR_ELEM(#name, \
1319	  0, \
1320	  0, \
1321	  CNTR_SYNTH, \
1322	  access_ibp_##cntr)
1323
1324/**
1325 * hfi_addr_from_offset - return addr for readq/writeq
1326 * @dd - the dd device
1327 * @offset - the offset of the CSR within bar0
1328 *
1329 * This routine selects the appropriate base address
1330 * based on the indicated offset.
1331 */
1332static inline void __iomem *hfi1_addr_from_offset(
1333	const struct hfi1_devdata *dd,
1334	u32 offset)
1335{
1336	if (offset >= dd->base2_start)
1337		return dd->kregbase2 + (offset - dd->base2_start);
1338	return dd->kregbase1 + offset;
1339}
1340
1341/**
1342 * read_csr - read CSR at the indicated offset
1343 * @dd - the dd device
1344 * @offset - the offset of the CSR within bar0
1345 *
1346 * Return: the value read or all FF's if there
1347 * is no mapping
1348 */
1349u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1350{
1351	if (dd->flags & HFI1_PRESENT)
1352		return readq(hfi1_addr_from_offset(dd, offset));
1353	return -1;
1354}
1355
1356/**
1357 * write_csr - write CSR at the indicated offset
1358 * @dd - the dd device
1359 * @offset - the offset of the CSR within bar0
1360 * @value - value to write
1361 */
1362void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1363{
1364	if (dd->flags & HFI1_PRESENT) {
1365		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1366
1367		/* avoid write to RcvArray */
1368		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1369			return;
1370		writeq(value, base);
1371	}
1372}
1373
1374/**
1375 * get_csr_addr - return te iomem address for offset
1376 * @dd - the dd device
1377 * @offset - the offset of the CSR within bar0
1378 *
1379 * Return: The iomem address to use in subsequent
1380 * writeq/readq operations.
1381 */
1382void __iomem *get_csr_addr(
1383	const struct hfi1_devdata *dd,
1384	u32 offset)
1385{
1386	if (dd->flags & HFI1_PRESENT)
1387		return hfi1_addr_from_offset(dd, offset);
1388	return NULL;
1389}
1390
1391static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1392				 int mode, u64 value)
1393{
1394	u64 ret;
1395
1396	if (mode == CNTR_MODE_R) {
1397		ret = read_csr(dd, csr);
1398	} else if (mode == CNTR_MODE_W) {
1399		write_csr(dd, csr, value);
1400		ret = value;
1401	} else {
1402		dd_dev_err(dd, "Invalid cntr register access mode");
1403		return 0;
1404	}
1405
1406	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1407	return ret;
1408}
1409
1410/* Dev Access */
1411static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1412			      void *context, int vl, int mode, u64 data)
1413{
1414	struct hfi1_devdata *dd = context;
1415	u64 csr = entry->csr;
1416
1417	if (entry->flags & CNTR_SDMA) {
1418		if (vl == CNTR_INVALID_VL)
1419			return 0;
1420		csr += 0x100 * vl;
1421	} else {
1422		if (vl != CNTR_INVALID_VL)
1423			return 0;
1424	}
1425	return read_write_csr(dd, csr, mode, data);
1426}
1427
1428static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1429			      void *context, int idx, int mode, u64 data)
1430{
1431	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1432
1433	if (dd->per_sdma && idx < dd->num_sdma)
1434		return dd->per_sdma[idx].err_cnt;
1435	return 0;
1436}
1437
1438static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1439			      void *context, int idx, int mode, u64 data)
1440{
1441	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1442
1443	if (dd->per_sdma && idx < dd->num_sdma)
1444		return dd->per_sdma[idx].sdma_int_cnt;
1445	return 0;
1446}
1447
1448static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1449				   void *context, int idx, int mode, u64 data)
1450{
1451	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1452
1453	if (dd->per_sdma && idx < dd->num_sdma)
1454		return dd->per_sdma[idx].idle_int_cnt;
1455	return 0;
1456}
1457
1458static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1459				       void *context, int idx, int mode,
1460				       u64 data)
1461{
1462	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1463
1464	if (dd->per_sdma && idx < dd->num_sdma)
1465		return dd->per_sdma[idx].progress_int_cnt;
1466	return 0;
1467}
1468
1469static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1470			      int vl, int mode, u64 data)
1471{
1472	struct hfi1_devdata *dd = context;
1473
1474	u64 val = 0;
1475	u64 csr = entry->csr;
1476
1477	if (entry->flags & CNTR_VL) {
1478		if (vl == CNTR_INVALID_VL)
1479			return 0;
1480		csr += 8 * vl;
1481	} else {
1482		if (vl != CNTR_INVALID_VL)
1483			return 0;
1484	}
1485
1486	val = read_write_csr(dd, csr, mode, data);
1487	return val;
1488}
1489
1490static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1491			      int vl, int mode, u64 data)
1492{
1493	struct hfi1_devdata *dd = context;
1494	u32 csr = entry->csr;
1495	int ret = 0;
1496
1497	if (vl != CNTR_INVALID_VL)
1498		return 0;
1499	if (mode == CNTR_MODE_R)
1500		ret = read_lcb_csr(dd, csr, &data);
1501	else if (mode == CNTR_MODE_W)
1502		ret = write_lcb_csr(dd, csr, data);
1503
1504	if (ret) {
1505		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1506		return 0;
1507	}
1508
1509	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1510	return data;
1511}
1512
1513/* Port Access */
1514static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1515			       int vl, int mode, u64 data)
1516{
1517	struct hfi1_pportdata *ppd = context;
1518
1519	if (vl != CNTR_INVALID_VL)
1520		return 0;
1521	return read_write_csr(ppd->dd, entry->csr, mode, data);
1522}
1523
1524static u64 port_access_u64_csr(const struct cntr_entry *entry,
1525			       void *context, int vl, int mode, u64 data)
1526{
1527	struct hfi1_pportdata *ppd = context;
1528	u64 val;
1529	u64 csr = entry->csr;
1530
1531	if (entry->flags & CNTR_VL) {
1532		if (vl == CNTR_INVALID_VL)
1533			return 0;
1534		csr += 8 * vl;
1535	} else {
1536		if (vl != CNTR_INVALID_VL)
1537			return 0;
1538	}
1539	val = read_write_csr(ppd->dd, csr, mode, data);
1540	return val;
1541}
1542
1543/* Software defined */
1544static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1545				u64 data)
1546{
1547	u64 ret;
1548
1549	if (mode == CNTR_MODE_R) {
1550		ret = *cntr;
1551	} else if (mode == CNTR_MODE_W) {
1552		*cntr = data;
1553		ret = data;
1554	} else {
1555		dd_dev_err(dd, "Invalid cntr sw access mode");
1556		return 0;
1557	}
1558
1559	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1560
1561	return ret;
1562}
1563
1564static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1565				 int vl, int mode, u64 data)
1566{
1567	struct hfi1_pportdata *ppd = context;
1568
1569	if (vl != CNTR_INVALID_VL)
1570		return 0;
1571	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1572}
1573
1574static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1575				 int vl, int mode, u64 data)
1576{
1577	struct hfi1_pportdata *ppd = context;
1578
1579	if (vl != CNTR_INVALID_VL)
1580		return 0;
1581	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1582}
1583
1584static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1585				       void *context, int vl, int mode,
1586				       u64 data)
1587{
1588	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1589
1590	if (vl != CNTR_INVALID_VL)
1591		return 0;
1592	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1593}
1594
1595static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1596				   void *context, int vl, int mode, u64 data)
1597{
1598	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1599	u64 zero = 0;
1600	u64 *counter;
1601
1602	if (vl == CNTR_INVALID_VL)
1603		counter = &ppd->port_xmit_discards;
1604	else if (vl >= 0 && vl < C_VL_COUNT)
1605		counter = &ppd->port_xmit_discards_vl[vl];
1606	else
1607		counter = &zero;
1608
1609	return read_write_sw(ppd->dd, counter, mode, data);
1610}
1611
1612static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1613				       void *context, int vl, int mode,
1614				       u64 data)
1615{
1616	struct hfi1_pportdata *ppd = context;
1617
1618	if (vl != CNTR_INVALID_VL)
1619		return 0;
1620
1621	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1622			     mode, data);
1623}
1624
1625static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1626				      void *context, int vl, int mode, u64 data)
1627{
1628	struct hfi1_pportdata *ppd = context;
1629
1630	if (vl != CNTR_INVALID_VL)
1631		return 0;
1632
1633	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1634			     mode, data);
1635}
1636
1637u64 get_all_cpu_total(u64 __percpu *cntr)
1638{
1639	int cpu;
1640	u64 counter = 0;
1641
1642	for_each_possible_cpu(cpu)
1643		counter += *per_cpu_ptr(cntr, cpu);
1644	return counter;
1645}
1646
1647static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1648			  u64 __percpu *cntr,
1649			  int vl, int mode, u64 data)
1650{
1651	u64 ret = 0;
1652
1653	if (vl != CNTR_INVALID_VL)
1654		return 0;
1655
1656	if (mode == CNTR_MODE_R) {
1657		ret = get_all_cpu_total(cntr) - *z_val;
1658	} else if (mode == CNTR_MODE_W) {
1659		/* A write can only zero the counter */
1660		if (data == 0)
1661			*z_val = get_all_cpu_total(cntr);
1662		else
1663			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1664	} else {
1665		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1666		return 0;
1667	}
1668
1669	return ret;
1670}
1671
1672static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1673			      void *context, int vl, int mode, u64 data)
1674{
1675	struct hfi1_devdata *dd = context;
1676
1677	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1678			      mode, data);
1679}
1680
1681static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1682				   void *context, int vl, int mode, u64 data)
1683{
1684	struct hfi1_devdata *dd = context;
1685
1686	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1687			      mode, data);
1688}
1689
1690static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1691			      void *context, int vl, int mode, u64 data)
1692{
1693	struct hfi1_devdata *dd = context;
1694
1695	return dd->verbs_dev.n_piowait;
1696}
1697
1698static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1699			       void *context, int vl, int mode, u64 data)
1700{
1701	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1702
1703	return dd->verbs_dev.n_piodrain;
1704}
1705
1706static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry,
1707				   void *context, int vl, int mode, u64 data)
1708{
1709	struct hfi1_devdata *dd = context;
1710
1711	return dd->ctx0_seq_drop;
1712}
1713
1714static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1715			      void *context, int vl, int mode, u64 data)
1716{
1717	struct hfi1_devdata *dd = context;
1718
1719	return dd->verbs_dev.n_txwait;
1720}
1721
1722static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1723			       void *context, int vl, int mode, u64 data)
1724{
1725	struct hfi1_devdata *dd = context;
1726
1727	return dd->verbs_dev.n_kmem_wait;
1728}
1729
1730static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1731				   void *context, int vl, int mode, u64 data)
1732{
1733	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1734
1735	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1736			      mode, data);
1737}
1738
1739/* Software counters for the error status bits within MISC_ERR_STATUS */
1740static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1741					     void *context, int vl, int mode,
1742					     u64 data)
1743{
1744	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745
1746	return dd->misc_err_status_cnt[12];
1747}
1748
1749static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1750					  void *context, int vl, int mode,
1751					  u64 data)
1752{
1753	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754
1755	return dd->misc_err_status_cnt[11];
1756}
1757
1758static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1759					       void *context, int vl, int mode,
1760					       u64 data)
1761{
1762	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763
1764	return dd->misc_err_status_cnt[10];
1765}
1766
1767static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1768						 void *context, int vl,
1769						 int mode, u64 data)
1770{
1771	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772
1773	return dd->misc_err_status_cnt[9];
1774}
1775
1776static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1777					   void *context, int vl, int mode,
1778					   u64 data)
1779{
1780	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1781
1782	return dd->misc_err_status_cnt[8];
1783}
1784
1785static u64 access_misc_efuse_read_bad_addr_err_cnt(
1786				const struct cntr_entry *entry,
1787				void *context, int vl, int mode, u64 data)
1788{
1789	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1790
1791	return dd->misc_err_status_cnt[7];
1792}
1793
1794static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1795						void *context, int vl,
1796						int mode, u64 data)
1797{
1798	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1799
1800	return dd->misc_err_status_cnt[6];
1801}
1802
1803static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1804					      void *context, int vl, int mode,
1805					      u64 data)
1806{
1807	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1808
1809	return dd->misc_err_status_cnt[5];
1810}
1811
1812static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1813					    void *context, int vl, int mode,
1814					    u64 data)
1815{
1816	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1817
1818	return dd->misc_err_status_cnt[4];
1819}
1820
1821static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1822						 void *context, int vl,
1823						 int mode, u64 data)
1824{
1825	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826
1827	return dd->misc_err_status_cnt[3];
1828}
1829
1830static u64 access_misc_csr_write_bad_addr_err_cnt(
1831				const struct cntr_entry *entry,
1832				void *context, int vl, int mode, u64 data)
1833{
1834	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1835
1836	return dd->misc_err_status_cnt[2];
1837}
1838
1839static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1840						 void *context, int vl,
1841						 int mode, u64 data)
1842{
1843	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1844
1845	return dd->misc_err_status_cnt[1];
1846}
1847
1848static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1849					  void *context, int vl, int mode,
1850					  u64 data)
1851{
1852	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1853
1854	return dd->misc_err_status_cnt[0];
1855}
1856
1857/*
1858 * Software counter for the aggregate of
1859 * individual CceErrStatus counters
1860 */
1861static u64 access_sw_cce_err_status_aggregated_cnt(
1862				const struct cntr_entry *entry,
1863				void *context, int vl, int mode, u64 data)
1864{
1865	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1866
1867	return dd->sw_cce_err_status_aggregate;
1868}
1869
1870/*
1871 * Software counters corresponding to each of the
1872 * error status bits within CceErrStatus
1873 */
1874static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1875					      void *context, int vl, int mode,
1876					      u64 data)
1877{
1878	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1879
1880	return dd->cce_err_status_cnt[40];
1881}
1882
1883static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1884					  void *context, int vl, int mode,
1885					  u64 data)
1886{
1887	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1888
1889	return dd->cce_err_status_cnt[39];
1890}
1891
1892static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1893					  void *context, int vl, int mode,
1894					  u64 data)
1895{
1896	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1897
1898	return dd->cce_err_status_cnt[38];
1899}
1900
1901static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1902					     void *context, int vl, int mode,
1903					     u64 data)
1904{
1905	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1906
1907	return dd->cce_err_status_cnt[37];
1908}
1909
1910static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1911					     void *context, int vl, int mode,
1912					     u64 data)
1913{
1914	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1915
1916	return dd->cce_err_status_cnt[36];
1917}
1918
1919static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1920				const struct cntr_entry *entry,
1921				void *context, int vl, int mode, u64 data)
1922{
1923	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1924
1925	return dd->cce_err_status_cnt[35];
1926}
1927
1928static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1929				const struct cntr_entry *entry,
1930				void *context, int vl, int mode, u64 data)
1931{
1932	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933
1934	return dd->cce_err_status_cnt[34];
1935}
1936
1937static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1938						 void *context, int vl,
1939						 int mode, u64 data)
1940{
1941	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942
1943	return dd->cce_err_status_cnt[33];
1944}
1945
1946static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1947						void *context, int vl, int mode,
1948						u64 data)
1949{
1950	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951
1952	return dd->cce_err_status_cnt[32];
1953}
1954
1955static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1956				   void *context, int vl, int mode, u64 data)
1957{
1958	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959
1960	return dd->cce_err_status_cnt[31];
1961}
1962
1963static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1964					       void *context, int vl, int mode,
1965					       u64 data)
1966{
1967	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968
1969	return dd->cce_err_status_cnt[30];
1970}
1971
1972static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1973					      void *context, int vl, int mode,
1974					      u64 data)
1975{
1976	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977
1978	return dd->cce_err_status_cnt[29];
1979}
1980
1981static u64 access_pcic_transmit_back_parity_err_cnt(
1982				const struct cntr_entry *entry,
1983				void *context, int vl, int mode, u64 data)
1984{
1985	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986
1987	return dd->cce_err_status_cnt[28];
1988}
1989
1990static u64 access_pcic_transmit_front_parity_err_cnt(
1991				const struct cntr_entry *entry,
1992				void *context, int vl, int mode, u64 data)
1993{
1994	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995
1996	return dd->cce_err_status_cnt[27];
1997}
1998
1999static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
2000					     void *context, int vl, int mode,
2001					     u64 data)
2002{
2003	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004
2005	return dd->cce_err_status_cnt[26];
2006}
2007
2008static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2009					    void *context, int vl, int mode,
2010					    u64 data)
2011{
2012	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013
2014	return dd->cce_err_status_cnt[25];
2015}
2016
2017static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
2018					      void *context, int vl, int mode,
2019					      u64 data)
2020{
2021	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022
2023	return dd->cce_err_status_cnt[24];
2024}
2025
2026static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2027					     void *context, int vl, int mode,
2028					     u64 data)
2029{
2030	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031
2032	return dd->cce_err_status_cnt[23];
2033}
2034
2035static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2036						 void *context, int vl,
2037						 int mode, u64 data)
2038{
2039	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040
2041	return dd->cce_err_status_cnt[22];
2042}
2043
2044static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2045					 void *context, int vl, int mode,
2046					 u64 data)
2047{
2048	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049
2050	return dd->cce_err_status_cnt[21];
2051}
2052
2053static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2054				const struct cntr_entry *entry,
2055				void *context, int vl, int mode, u64 data)
2056{
2057	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058
2059	return dd->cce_err_status_cnt[20];
2060}
2061
2062static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2063						 void *context, int vl,
2064						 int mode, u64 data)
2065{
2066	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067
2068	return dd->cce_err_status_cnt[19];
2069}
2070
2071static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2072					     void *context, int vl, int mode,
2073					     u64 data)
2074{
2075	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076
2077	return dd->cce_err_status_cnt[18];
2078}
2079
2080static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2081					    void *context, int vl, int mode,
2082					    u64 data)
2083{
2084	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085
2086	return dd->cce_err_status_cnt[17];
2087}
2088
2089static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2090					      void *context, int vl, int mode,
2091					      u64 data)
2092{
2093	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094
2095	return dd->cce_err_status_cnt[16];
2096}
2097
2098static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2099					     void *context, int vl, int mode,
2100					     u64 data)
2101{
2102	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103
2104	return dd->cce_err_status_cnt[15];
2105}
2106
2107static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2108						 void *context, int vl,
2109						 int mode, u64 data)
2110{
2111	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112
2113	return dd->cce_err_status_cnt[14];
2114}
2115
2116static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2117					     void *context, int vl, int mode,
2118					     u64 data)
2119{
2120	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121
2122	return dd->cce_err_status_cnt[13];
2123}
2124
2125static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2126				const struct cntr_entry *entry,
2127				void *context, int vl, int mode, u64 data)
2128{
2129	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130
2131	return dd->cce_err_status_cnt[12];
2132}
2133
2134static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2135				const struct cntr_entry *entry,
2136				void *context, int vl, int mode, u64 data)
2137{
2138	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139
2140	return dd->cce_err_status_cnt[11];
2141}
2142
2143static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2144				const struct cntr_entry *entry,
2145				void *context, int vl, int mode, u64 data)
2146{
2147	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148
2149	return dd->cce_err_status_cnt[10];
2150}
2151
2152static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2153				const struct cntr_entry *entry,
2154				void *context, int vl, int mode, u64 data)
2155{
2156	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157
2158	return dd->cce_err_status_cnt[9];
2159}
2160
2161static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2162				const struct cntr_entry *entry,
2163				void *context, int vl, int mode, u64 data)
2164{
2165	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2166
2167	return dd->cce_err_status_cnt[8];
2168}
2169
2170static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2171						 void *context, int vl,
2172						 int mode, u64 data)
2173{
2174	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2175
2176	return dd->cce_err_status_cnt[7];
2177}
2178
2179static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2180				const struct cntr_entry *entry,
2181				void *context, int vl, int mode, u64 data)
2182{
2183	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2184
2185	return dd->cce_err_status_cnt[6];
2186}
2187
2188static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2189					       void *context, int vl, int mode,
2190					       u64 data)
2191{
2192	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2193
2194	return dd->cce_err_status_cnt[5];
2195}
2196
2197static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2198					  void *context, int vl, int mode,
2199					  u64 data)
2200{
2201	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2202
2203	return dd->cce_err_status_cnt[4];
2204}
2205
2206static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2207				const struct cntr_entry *entry,
2208				void *context, int vl, int mode, u64 data)
2209{
2210	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211
2212	return dd->cce_err_status_cnt[3];
2213}
2214
2215static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2216						 void *context, int vl,
2217						 int mode, u64 data)
2218{
2219	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2220
2221	return dd->cce_err_status_cnt[2];
2222}
2223
2224static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2225						void *context, int vl,
2226						int mode, u64 data)
2227{
2228	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2229
2230	return dd->cce_err_status_cnt[1];
2231}
2232
2233static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2234					 void *context, int vl, int mode,
2235					 u64 data)
2236{
2237	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2238
2239	return dd->cce_err_status_cnt[0];
2240}
2241
2242/*
2243 * Software counters corresponding to each of the
2244 * error status bits within RcvErrStatus
2245 */
2246static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2247					void *context, int vl, int mode,
2248					u64 data)
2249{
2250	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251
2252	return dd->rcv_err_status_cnt[63];
2253}
2254
2255static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2256						void *context, int vl,
2257						int mode, u64 data)
2258{
2259	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260
2261	return dd->rcv_err_status_cnt[62];
2262}
2263
2264static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2265					       void *context, int vl, int mode,
2266					       u64 data)
2267{
2268	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269
2270	return dd->rcv_err_status_cnt[61];
2271}
2272
2273static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2274					 void *context, int vl, int mode,
2275					 u64 data)
2276{
2277	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278
2279	return dd->rcv_err_status_cnt[60];
2280}
2281
2282static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2283						 void *context, int vl,
2284						 int mode, u64 data)
2285{
2286	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287
2288	return dd->rcv_err_status_cnt[59];
2289}
2290
2291static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2292						 void *context, int vl,
2293						 int mode, u64 data)
2294{
2295	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296
2297	return dd->rcv_err_status_cnt[58];
2298}
2299
2300static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2301					    void *context, int vl, int mode,
2302					    u64 data)
2303{
2304	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305
2306	return dd->rcv_err_status_cnt[57];
2307}
2308
2309static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2310					   void *context, int vl, int mode,
2311					   u64 data)
2312{
2313	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314
2315	return dd->rcv_err_status_cnt[56];
2316}
2317
2318static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2319					   void *context, int vl, int mode,
2320					   u64 data)
2321{
2322	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323
2324	return dd->rcv_err_status_cnt[55];
2325}
2326
2327static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2328				const struct cntr_entry *entry,
2329				void *context, int vl, int mode, u64 data)
2330{
2331	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332
2333	return dd->rcv_err_status_cnt[54];
2334}
2335
2336static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2337				const struct cntr_entry *entry,
2338				void *context, int vl, int mode, u64 data)
2339{
2340	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341
2342	return dd->rcv_err_status_cnt[53];
2343}
2344
2345static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2346						 void *context, int vl,
2347						 int mode, u64 data)
2348{
2349	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350
2351	return dd->rcv_err_status_cnt[52];
2352}
2353
2354static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2355						 void *context, int vl,
2356						 int mode, u64 data)
2357{
2358	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359
2360	return dd->rcv_err_status_cnt[51];
2361}
2362
2363static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2364						 void *context, int vl,
2365						 int mode, u64 data)
2366{
2367	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368
2369	return dd->rcv_err_status_cnt[50];
2370}
2371
2372static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2373						 void *context, int vl,
2374						 int mode, u64 data)
2375{
2376	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377
2378	return dd->rcv_err_status_cnt[49];
2379}
2380
2381static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2382						 void *context, int vl,
2383						 int mode, u64 data)
2384{
2385	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386
2387	return dd->rcv_err_status_cnt[48];
2388}
2389
2390static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2391						 void *context, int vl,
2392						 int mode, u64 data)
2393{
2394	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395
2396	return dd->rcv_err_status_cnt[47];
2397}
2398
2399static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2400					 void *context, int vl, int mode,
2401					 u64 data)
2402{
2403	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404
2405	return dd->rcv_err_status_cnt[46];
2406}
2407
2408static u64 access_rx_hq_intr_csr_parity_err_cnt(
2409				const struct cntr_entry *entry,
2410				void *context, int vl, int mode, u64 data)
2411{
2412	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413
2414	return dd->rcv_err_status_cnt[45];
2415}
2416
2417static u64 access_rx_lookup_csr_parity_err_cnt(
2418				const struct cntr_entry *entry,
2419				void *context, int vl, int mode, u64 data)
2420{
2421	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422
2423	return dd->rcv_err_status_cnt[44];
2424}
2425
2426static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2427				const struct cntr_entry *entry,
2428				void *context, int vl, int mode, u64 data)
2429{
2430	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431
2432	return dd->rcv_err_status_cnt[43];
2433}
2434
2435static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2436				const struct cntr_entry *entry,
2437				void *context, int vl, int mode, u64 data)
2438{
2439	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440
2441	return dd->rcv_err_status_cnt[42];
2442}
2443
2444static u64 access_rx_lookup_des_part2_parity_err_cnt(
2445				const struct cntr_entry *entry,
2446				void *context, int vl, int mode, u64 data)
2447{
2448	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449
2450	return dd->rcv_err_status_cnt[41];
2451}
2452
2453static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2454				const struct cntr_entry *entry,
2455				void *context, int vl, int mode, u64 data)
2456{
2457	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458
2459	return dd->rcv_err_status_cnt[40];
2460}
2461
2462static u64 access_rx_lookup_des_part1_unc_err_cnt(
2463				const struct cntr_entry *entry,
2464				void *context, int vl, int mode, u64 data)
2465{
2466	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467
2468	return dd->rcv_err_status_cnt[39];
2469}
2470
2471static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2472				const struct cntr_entry *entry,
2473				void *context, int vl, int mode, u64 data)
2474{
2475	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476
2477	return dd->rcv_err_status_cnt[38];
2478}
2479
2480static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2481				const struct cntr_entry *entry,
2482				void *context, int vl, int mode, u64 data)
2483{
2484	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485
2486	return dd->rcv_err_status_cnt[37];
2487}
2488
2489static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2490				const struct cntr_entry *entry,
2491				void *context, int vl, int mode, u64 data)
2492{
2493	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494
2495	return dd->rcv_err_status_cnt[36];
2496}
2497
2498static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2499				const struct cntr_entry *entry,
2500				void *context, int vl, int mode, u64 data)
2501{
2502	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503
2504	return dd->rcv_err_status_cnt[35];
2505}
2506
2507static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2508				const struct cntr_entry *entry,
2509				void *context, int vl, int mode, u64 data)
2510{
2511	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512
2513	return dd->rcv_err_status_cnt[34];
2514}
2515
2516static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2517				const struct cntr_entry *entry,
2518				void *context, int vl, int mode, u64 data)
2519{
2520	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521
2522	return dd->rcv_err_status_cnt[33];
2523}
2524
2525static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2526					void *context, int vl, int mode,
2527					u64 data)
2528{
2529	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530
2531	return dd->rcv_err_status_cnt[32];
2532}
2533
2534static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2535				       void *context, int vl, int mode,
2536				       u64 data)
2537{
2538	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539
2540	return dd->rcv_err_status_cnt[31];
2541}
2542
2543static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2544					  void *context, int vl, int mode,
2545					  u64 data)
2546{
2547	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548
2549	return dd->rcv_err_status_cnt[30];
2550}
2551
2552static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2553					     void *context, int vl, int mode,
2554					     u64 data)
2555{
2556	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557
2558	return dd->rcv_err_status_cnt[29];
2559}
2560
2561static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2562						 void *context, int vl,
2563						 int mode, u64 data)
2564{
2565	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566
2567	return dd->rcv_err_status_cnt[28];
2568}
2569
2570static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2571				const struct cntr_entry *entry,
2572				void *context, int vl, int mode, u64 data)
2573{
2574	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575
2576	return dd->rcv_err_status_cnt[27];
2577}
2578
2579static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2580				const struct cntr_entry *entry,
2581				void *context, int vl, int mode, u64 data)
2582{
2583	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584
2585	return dd->rcv_err_status_cnt[26];
2586}
2587
2588static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2589				const struct cntr_entry *entry,
2590				void *context, int vl, int mode, u64 data)
2591{
2592	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593
2594	return dd->rcv_err_status_cnt[25];
2595}
2596
2597static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2598				const struct cntr_entry *entry,
2599				void *context, int vl, int mode, u64 data)
2600{
2601	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602
2603	return dd->rcv_err_status_cnt[24];
2604}
2605
2606static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2607				const struct cntr_entry *entry,
2608				void *context, int vl, int mode, u64 data)
2609{
2610	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611
2612	return dd->rcv_err_status_cnt[23];
2613}
2614
2615static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2616				const struct cntr_entry *entry,
2617				void *context, int vl, int mode, u64 data)
2618{
2619	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620
2621	return dd->rcv_err_status_cnt[22];
2622}
2623
2624static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2625				const struct cntr_entry *entry,
2626				void *context, int vl, int mode, u64 data)
2627{
2628	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629
2630	return dd->rcv_err_status_cnt[21];
2631}
2632
2633static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2634				const struct cntr_entry *entry,
2635				void *context, int vl, int mode, u64 data)
2636{
2637	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638
2639	return dd->rcv_err_status_cnt[20];
2640}
2641
2642static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2643				const struct cntr_entry *entry,
2644				void *context, int vl, int mode, u64 data)
2645{
2646	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647
2648	return dd->rcv_err_status_cnt[19];
2649}
2650
2651static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2652						 void *context, int vl,
2653						 int mode, u64 data)
2654{
2655	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656
2657	return dd->rcv_err_status_cnt[18];
2658}
2659
2660static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2661						 void *context, int vl,
2662						 int mode, u64 data)
2663{
2664	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665
2666	return dd->rcv_err_status_cnt[17];
2667}
2668
2669static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2670				const struct cntr_entry *entry,
2671				void *context, int vl, int mode, u64 data)
2672{
2673	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674
2675	return dd->rcv_err_status_cnt[16];
2676}
2677
2678static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2679				const struct cntr_entry *entry,
2680				void *context, int vl, int mode, u64 data)
2681{
2682	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683
2684	return dd->rcv_err_status_cnt[15];
2685}
2686
2687static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2688						void *context, int vl,
2689						int mode, u64 data)
2690{
2691	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692
2693	return dd->rcv_err_status_cnt[14];
2694}
2695
2696static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2697						void *context, int vl,
2698						int mode, u64 data)
2699{
2700	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701
2702	return dd->rcv_err_status_cnt[13];
2703}
2704
2705static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2706					      void *context, int vl, int mode,
2707					      u64 data)
2708{
2709	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710
2711	return dd->rcv_err_status_cnt[12];
2712}
2713
2714static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2715					  void *context, int vl, int mode,
2716					  u64 data)
2717{
2718	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719
2720	return dd->rcv_err_status_cnt[11];
2721}
2722
2723static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2724					  void *context, int vl, int mode,
2725					  u64 data)
2726{
2727	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728
2729	return dd->rcv_err_status_cnt[10];
2730}
2731
2732static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2733					       void *context, int vl, int mode,
2734					       u64 data)
2735{
2736	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737
2738	return dd->rcv_err_status_cnt[9];
2739}
2740
2741static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2742					    void *context, int vl, int mode,
2743					    u64 data)
2744{
2745	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2746
2747	return dd->rcv_err_status_cnt[8];
2748}
2749
2750static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2751				const struct cntr_entry *entry,
2752				void *context, int vl, int mode, u64 data)
2753{
2754	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2755
2756	return dd->rcv_err_status_cnt[7];
2757}
2758
2759static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2760				const struct cntr_entry *entry,
2761				void *context, int vl, int mode, u64 data)
2762{
2763	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2764
2765	return dd->rcv_err_status_cnt[6];
2766}
2767
2768static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2769					  void *context, int vl, int mode,
2770					  u64 data)
2771{
2772	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2773
2774	return dd->rcv_err_status_cnt[5];
2775}
2776
2777static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2778					  void *context, int vl, int mode,
2779					  u64 data)
2780{
2781	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2782
2783	return dd->rcv_err_status_cnt[4];
2784}
2785
2786static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2787					 void *context, int vl, int mode,
2788					 u64 data)
2789{
2790	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791
2792	return dd->rcv_err_status_cnt[3];
2793}
2794
2795static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2796					 void *context, int vl, int mode,
2797					 u64 data)
2798{
2799	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2800
2801	return dd->rcv_err_status_cnt[2];
2802}
2803
2804static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2805					    void *context, int vl, int mode,
2806					    u64 data)
2807{
2808	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2809
2810	return dd->rcv_err_status_cnt[1];
2811}
2812
2813static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2814					 void *context, int vl, int mode,
2815					 u64 data)
2816{
2817	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2818
2819	return dd->rcv_err_status_cnt[0];
2820}
2821
2822/*
2823 * Software counters corresponding to each of the
2824 * error status bits within SendPioErrStatus
2825 */
2826static u64 access_pio_pec_sop_head_parity_err_cnt(
2827				const struct cntr_entry *entry,
2828				void *context, int vl, int mode, u64 data)
2829{
2830	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831
2832	return dd->send_pio_err_status_cnt[35];
2833}
2834
2835static u64 access_pio_pcc_sop_head_parity_err_cnt(
2836				const struct cntr_entry *entry,
2837				void *context, int vl, int mode, u64 data)
2838{
2839	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840
2841	return dd->send_pio_err_status_cnt[34];
2842}
2843
2844static u64 access_pio_last_returned_cnt_parity_err_cnt(
2845				const struct cntr_entry *entry,
2846				void *context, int vl, int mode, u64 data)
2847{
2848	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849
2850	return dd->send_pio_err_status_cnt[33];
2851}
2852
2853static u64 access_pio_current_free_cnt_parity_err_cnt(
2854				const struct cntr_entry *entry,
2855				void *context, int vl, int mode, u64 data)
2856{
2857	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858
2859	return dd->send_pio_err_status_cnt[32];
2860}
2861
2862static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2863					  void *context, int vl, int mode,
2864					  u64 data)
2865{
2866	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867
2868	return dd->send_pio_err_status_cnt[31];
2869}
2870
2871static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2872					  void *context, int vl, int mode,
2873					  u64 data)
2874{
2875	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876
2877	return dd->send_pio_err_status_cnt[30];
2878}
2879
2880static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2881					   void *context, int vl, int mode,
2882					   u64 data)
2883{
2884	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885
2886	return dd->send_pio_err_status_cnt[29];
2887}
2888
2889static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2890				const struct cntr_entry *entry,
2891				void *context, int vl, int mode, u64 data)
2892{
2893	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894
2895	return dd->send_pio_err_status_cnt[28];
2896}
2897
2898static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2899					     void *context, int vl, int mode,
2900					     u64 data)
2901{
2902	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903
2904	return dd->send_pio_err_status_cnt[27];
2905}
2906
2907static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2908					     void *context, int vl, int mode,
2909					     u64 data)
2910{
2911	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912
2913	return dd->send_pio_err_status_cnt[26];
2914}
2915
2916static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2917						void *context, int vl,
2918						int mode, u64 data)
2919{
2920	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921
2922	return dd->send_pio_err_status_cnt[25];
2923}
2924
2925static u64 access_pio_block_qw_count_parity_err_cnt(
2926				const struct cntr_entry *entry,
2927				void *context, int vl, int mode, u64 data)
2928{
2929	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930
2931	return dd->send_pio_err_status_cnt[24];
2932}
2933
2934static u64 access_pio_write_qw_valid_parity_err_cnt(
2935				const struct cntr_entry *entry,
2936				void *context, int vl, int mode, u64 data)
2937{
2938	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939
2940	return dd->send_pio_err_status_cnt[23];
2941}
2942
2943static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2944					    void *context, int vl, int mode,
2945					    u64 data)
2946{
2947	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948
2949	return dd->send_pio_err_status_cnt[22];
2950}
2951
2952static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2953						void *context, int vl,
2954						int mode, u64 data)
2955{
2956	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957
2958	return dd->send_pio_err_status_cnt[21];
2959}
2960
2961static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2962						void *context, int vl,
2963						int mode, u64 data)
2964{
2965	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966
2967	return dd->send_pio_err_status_cnt[20];
2968}
2969
2970static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2971						void *context, int vl,
2972						int mode, u64 data)
2973{
2974	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975
2976	return dd->send_pio_err_status_cnt[19];
2977}
2978
2979static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2980				const struct cntr_entry *entry,
2981				void *context, int vl, int mode, u64 data)
2982{
2983	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984
2985	return dd->send_pio_err_status_cnt[18];
2986}
2987
2988static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2989					 void *context, int vl, int mode,
2990					 u64 data)
2991{
2992	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993
2994	return dd->send_pio_err_status_cnt[17];
2995}
2996
2997static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2998					    void *context, int vl, int mode,
2999					    u64 data)
3000{
3001	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002
3003	return dd->send_pio_err_status_cnt[16];
3004}
3005
3006static u64 access_pio_credit_ret_fifo_parity_err_cnt(
3007				const struct cntr_entry *entry,
3008				void *context, int vl, int mode, u64 data)
3009{
3010	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011
3012	return dd->send_pio_err_status_cnt[15];
3013}
3014
3015static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
3016				const struct cntr_entry *entry,
3017				void *context, int vl, int mode, u64 data)
3018{
3019	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020
3021	return dd->send_pio_err_status_cnt[14];
3022}
3023
3024static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
3025				const struct cntr_entry *entry,
3026				void *context, int vl, int mode, u64 data)
3027{
3028	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029
3030	return dd->send_pio_err_status_cnt[13];
3031}
3032
3033static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3034				const struct cntr_entry *entry,
3035				void *context, int vl, int mode, u64 data)
3036{
3037	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038
3039	return dd->send_pio_err_status_cnt[12];
3040}
3041
3042static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3043				const struct cntr_entry *entry,
3044				void *context, int vl, int mode, u64 data)
3045{
3046	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047
3048	return dd->send_pio_err_status_cnt[11];
3049}
3050
3051static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3052				const struct cntr_entry *entry,
3053				void *context, int vl, int mode, u64 data)
3054{
3055	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056
3057	return dd->send_pio_err_status_cnt[10];
3058}
3059
3060static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3061				const struct cntr_entry *entry,
3062				void *context, int vl, int mode, u64 data)
3063{
3064	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065
3066	return dd->send_pio_err_status_cnt[9];
3067}
3068
3069static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3070				const struct cntr_entry *entry,
3071				void *context, int vl, int mode, u64 data)
3072{
3073	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074
3075	return dd->send_pio_err_status_cnt[8];
3076}
3077
3078static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3079				const struct cntr_entry *entry,
3080				void *context, int vl, int mode, u64 data)
3081{
3082	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3083
3084	return dd->send_pio_err_status_cnt[7];
3085}
3086
3087static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3088					      void *context, int vl, int mode,
3089					      u64 data)
3090{
3091	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3092
3093	return dd->send_pio_err_status_cnt[6];
3094}
3095
3096static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3097					      void *context, int vl, int mode,
3098					      u64 data)
3099{
3100	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3101
3102	return dd->send_pio_err_status_cnt[5];
3103}
3104
3105static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3106					   void *context, int vl, int mode,
3107					   u64 data)
3108{
3109	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3110
3111	return dd->send_pio_err_status_cnt[4];
3112}
3113
3114static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3115					   void *context, int vl, int mode,
3116					   u64 data)
3117{
3118	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119
3120	return dd->send_pio_err_status_cnt[3];
3121}
3122
3123static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3124					 void *context, int vl, int mode,
3125					 u64 data)
3126{
3127	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3128
3129	return dd->send_pio_err_status_cnt[2];
3130}
3131
3132static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3133						void *context, int vl,
3134						int mode, u64 data)
3135{
3136	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3137
3138	return dd->send_pio_err_status_cnt[1];
3139}
3140
3141static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3142					     void *context, int vl, int mode,
3143					     u64 data)
3144{
3145	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3146
3147	return dd->send_pio_err_status_cnt[0];
3148}
3149
3150/*
3151 * Software counters corresponding to each of the
3152 * error status bits within SendDmaErrStatus
3153 */
3154static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3155				const struct cntr_entry *entry,
3156				void *context, int vl, int mode, u64 data)
3157{
3158	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159
3160	return dd->send_dma_err_status_cnt[3];
3161}
3162
3163static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3164				const struct cntr_entry *entry,
3165				void *context, int vl, int mode, u64 data)
3166{
3167	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3168
3169	return dd->send_dma_err_status_cnt[2];
3170}
3171
3172static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3173					  void *context, int vl, int mode,
3174					  u64 data)
3175{
3176	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3177
3178	return dd->send_dma_err_status_cnt[1];
3179}
3180
3181static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3182				       void *context, int vl, int mode,
3183				       u64 data)
3184{
3185	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3186
3187	return dd->send_dma_err_status_cnt[0];
3188}
3189
3190/*
3191 * Software counters corresponding to each of the
3192 * error status bits within SendEgressErrStatus
3193 */
3194static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3195				const struct cntr_entry *entry,
3196				void *context, int vl, int mode, u64 data)
3197{
3198	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199
3200	return dd->send_egress_err_status_cnt[63];
3201}
3202
3203static u64 access_tx_read_sdma_memory_csr_err_cnt(
3204				const struct cntr_entry *entry,
3205				void *context, int vl, int mode, u64 data)
3206{
3207	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208
3209	return dd->send_egress_err_status_cnt[62];
3210}
3211
3212static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3213					     void *context, int vl, int mode,
3214					     u64 data)
3215{
3216	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217
3218	return dd->send_egress_err_status_cnt[61];
3219}
3220
3221static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3222						 void *context, int vl,
3223						 int mode, u64 data)
3224{
3225	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226
3227	return dd->send_egress_err_status_cnt[60];
3228}
3229
3230static u64 access_tx_read_sdma_memory_cor_err_cnt(
3231				const struct cntr_entry *entry,
3232				void *context, int vl, int mode, u64 data)
3233{
3234	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235
3236	return dd->send_egress_err_status_cnt[59];
3237}
3238
3239static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3240					void *context, int vl, int mode,
3241					u64 data)
3242{
3243	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244
3245	return dd->send_egress_err_status_cnt[58];
3246}
3247
3248static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3249					    void *context, int vl, int mode,
3250					    u64 data)
3251{
3252	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253
3254	return dd->send_egress_err_status_cnt[57];
3255}
3256
3257static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3258					      void *context, int vl, int mode,
3259					      u64 data)
3260{
3261	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262
3263	return dd->send_egress_err_status_cnt[56];
3264}
3265
3266static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3267					      void *context, int vl, int mode,
3268					      u64 data)
3269{
3270	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271
3272	return dd->send_egress_err_status_cnt[55];
3273}
3274
3275static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3276					      void *context, int vl, int mode,
3277					      u64 data)
3278{
3279	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280
3281	return dd->send_egress_err_status_cnt[54];
3282}
3283
3284static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3285					      void *context, int vl, int mode,
3286					      u64 data)
3287{
3288	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289
3290	return dd->send_egress_err_status_cnt[53];
3291}
3292
3293static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3294					      void *context, int vl, int mode,
3295					      u64 data)
3296{
3297	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298
3299	return dd->send_egress_err_status_cnt[52];
3300}
3301
3302static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3303					      void *context, int vl, int mode,
3304					      u64 data)
3305{
3306	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307
3308	return dd->send_egress_err_status_cnt[51];
3309}
3310
3311static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3312					      void *context, int vl, int mode,
3313					      u64 data)
3314{
3315	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316
3317	return dd->send_egress_err_status_cnt[50];
3318}
3319
3320static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3321					      void *context, int vl, int mode,
3322					      u64 data)
3323{
3324	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325
3326	return dd->send_egress_err_status_cnt[49];
3327}
3328
3329static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3330					      void *context, int vl, int mode,
3331					      u64 data)
3332{
3333	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334
3335	return dd->send_egress_err_status_cnt[48];
3336}
3337
3338static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3339					      void *context, int vl, int mode,
3340					      u64 data)
3341{
3342	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343
3344	return dd->send_egress_err_status_cnt[47];
3345}
3346
3347static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3348					    void *context, int vl, int mode,
3349					    u64 data)
3350{
3351	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352
3353	return dd->send_egress_err_status_cnt[46];
3354}
3355
3356static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3357					     void *context, int vl, int mode,
3358					     u64 data)
3359{
3360	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361
3362	return dd->send_egress_err_status_cnt[45];
3363}
3364
3365static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3366						 void *context, int vl,
3367						 int mode, u64 data)
3368{
3369	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370
3371	return dd->send_egress_err_status_cnt[44];
3372}
3373
3374static u64 access_tx_read_sdma_memory_unc_err_cnt(
3375				const struct cntr_entry *entry,
3376				void *context, int vl, int mode, u64 data)
3377{
3378	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379
3380	return dd->send_egress_err_status_cnt[43];
3381}
3382
3383static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3384					void *context, int vl, int mode,
3385					u64 data)
3386{
3387	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388
3389	return dd->send_egress_err_status_cnt[42];
3390}
3391
3392static u64 access_tx_credit_return_partiy_err_cnt(
3393				const struct cntr_entry *entry,
3394				void *context, int vl, int mode, u64 data)
3395{
3396	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397
3398	return dd->send_egress_err_status_cnt[41];
3399}
3400
3401static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3402				const struct cntr_entry *entry,
3403				void *context, int vl, int mode, u64 data)
3404{
3405	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406
3407	return dd->send_egress_err_status_cnt[40];
3408}
3409
3410static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3411				const struct cntr_entry *entry,
3412				void *context, int vl, int mode, u64 data)
3413{
3414	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415
3416	return dd->send_egress_err_status_cnt[39];
3417}
3418
3419static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3420				const struct cntr_entry *entry,
3421				void *context, int vl, int mode, u64 data)
3422{
3423	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424
3425	return dd->send_egress_err_status_cnt[38];
3426}
3427
3428static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3429				const struct cntr_entry *entry,
3430				void *context, int vl, int mode, u64 data)
3431{
3432	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433
3434	return dd->send_egress_err_status_cnt[37];
3435}
3436
3437static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3438				const struct cntr_entry *entry,
3439				void *context, int vl, int mode, u64 data)
3440{
3441	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442
3443	return dd->send_egress_err_status_cnt[36];
3444}
3445
3446static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3447				const struct cntr_entry *entry,
3448				void *context, int vl, int mode, u64 data)
3449{
3450	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451
3452	return dd->send_egress_err_status_cnt[35];
3453}
3454
3455static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3456				const struct cntr_entry *entry,
3457				void *context, int vl, int mode, u64 data)
3458{
3459	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460
3461	return dd->send_egress_err_status_cnt[34];
3462}
3463
3464static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3465				const struct cntr_entry *entry,
3466				void *context, int vl, int mode, u64 data)
3467{
3468	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469
3470	return dd->send_egress_err_status_cnt[33];
3471}
3472
3473static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3474				const struct cntr_entry *entry,
3475				void *context, int vl, int mode, u64 data)
3476{
3477	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478
3479	return dd->send_egress_err_status_cnt[32];
3480}
3481
3482static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3483				const struct cntr_entry *entry,
3484				void *context, int vl, int mode, u64 data)
3485{
3486	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487
3488	return dd->send_egress_err_status_cnt[31];
3489}
3490
3491static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3492				const struct cntr_entry *entry,
3493				void *context, int vl, int mode, u64 data)
3494{
3495	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496
3497	return dd->send_egress_err_status_cnt[30];
3498}
3499
3500static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3501				const struct cntr_entry *entry,
3502				void *context, int vl, int mode, u64 data)
3503{
3504	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505
3506	return dd->send_egress_err_status_cnt[29];
3507}
3508
3509static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3510				const struct cntr_entry *entry,
3511				void *context, int vl, int mode, u64 data)
3512{
3513	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514
3515	return dd->send_egress_err_status_cnt[28];
3516}
3517
3518static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3519				const struct cntr_entry *entry,
3520				void *context, int vl, int mode, u64 data)
3521{
3522	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523
3524	return dd->send_egress_err_status_cnt[27];
3525}
3526
3527static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3528				const struct cntr_entry *entry,
3529				void *context, int vl, int mode, u64 data)
3530{
3531	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532
3533	return dd->send_egress_err_status_cnt[26];
3534}
3535
3536static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3537				const struct cntr_entry *entry,
3538				void *context, int vl, int mode, u64 data)
3539{
3540	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541
3542	return dd->send_egress_err_status_cnt[25];
3543}
3544
3545static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3546				const struct cntr_entry *entry,
3547				void *context, int vl, int mode, u64 data)
3548{
3549	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550
3551	return dd->send_egress_err_status_cnt[24];
3552}
3553
3554static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3555				const struct cntr_entry *entry,
3556				void *context, int vl, int mode, u64 data)
3557{
3558	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559
3560	return dd->send_egress_err_status_cnt[23];
3561}
3562
3563static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3564				const struct cntr_entry *entry,
3565				void *context, int vl, int mode, u64 data)
3566{
3567	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568
3569	return dd->send_egress_err_status_cnt[22];
3570}
3571
3572static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3573				const struct cntr_entry *entry,
3574				void *context, int vl, int mode, u64 data)
3575{
3576	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577
3578	return dd->send_egress_err_status_cnt[21];
3579}
3580
3581static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3582				const struct cntr_entry *entry,
3583				void *context, int vl, int mode, u64 data)
3584{
3585	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586
3587	return dd->send_egress_err_status_cnt[20];
3588}
3589
3590static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3591				const struct cntr_entry *entry,
3592				void *context, int vl, int mode, u64 data)
3593{
3594	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595
3596	return dd->send_egress_err_status_cnt[19];
3597}
3598
3599static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3600				const struct cntr_entry *entry,
3601				void *context, int vl, int mode, u64 data)
3602{
3603	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604
3605	return dd->send_egress_err_status_cnt[18];
3606}
3607
3608static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3609				const struct cntr_entry *entry,
3610				void *context, int vl, int mode, u64 data)
3611{
3612	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613
3614	return dd->send_egress_err_status_cnt[17];
3615}
3616
3617static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3618				const struct cntr_entry *entry,
3619				void *context, int vl, int mode, u64 data)
3620{
3621	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622
3623	return dd->send_egress_err_status_cnt[16];
3624}
3625
3626static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3627					   void *context, int vl, int mode,
3628					   u64 data)
3629{
3630	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631
3632	return dd->send_egress_err_status_cnt[15];
3633}
3634
3635static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3636						 void *context, int vl,
3637						 int mode, u64 data)
3638{
3639	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640
3641	return dd->send_egress_err_status_cnt[14];
3642}
3643
3644static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3645					       void *context, int vl, int mode,
3646					       u64 data)
3647{
3648	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649
3650	return dd->send_egress_err_status_cnt[13];
3651}
3652
3653static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3654					void *context, int vl, int mode,
3655					u64 data)
3656{
3657	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658
3659	return dd->send_egress_err_status_cnt[12];
3660}
3661
3662static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3663				const struct cntr_entry *entry,
3664				void *context, int vl, int mode, u64 data)
3665{
3666	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667
3668	return dd->send_egress_err_status_cnt[11];
3669}
3670
3671static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3672					     void *context, int vl, int mode,
3673					     u64 data)
3674{
3675	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676
3677	return dd->send_egress_err_status_cnt[10];
3678}
3679
3680static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3681					    void *context, int vl, int mode,
3682					    u64 data)
3683{
3684	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685
3686	return dd->send_egress_err_status_cnt[9];
3687}
3688
3689static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3690				const struct cntr_entry *entry,
3691				void *context, int vl, int mode, u64 data)
3692{
3693	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3694
3695	return dd->send_egress_err_status_cnt[8];
3696}
3697
3698static u64 access_tx_pio_launch_intf_parity_err_cnt(
3699				const struct cntr_entry *entry,
3700				void *context, int vl, int mode, u64 data)
3701{
3702	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3703
3704	return dd->send_egress_err_status_cnt[7];
3705}
3706
3707static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3708					    void *context, int vl, int mode,
3709					    u64 data)
3710{
3711	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3712
3713	return dd->send_egress_err_status_cnt[6];
3714}
3715
3716static u64 access_tx_incorrect_link_state_err_cnt(
3717				const struct cntr_entry *entry,
3718				void *context, int vl, int mode, u64 data)
3719{
3720	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3721
3722	return dd->send_egress_err_status_cnt[5];
3723}
3724
3725static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3726				      void *context, int vl, int mode,
3727				      u64 data)
3728{
3729	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3730
3731	return dd->send_egress_err_status_cnt[4];
3732}
3733
3734static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3735				const struct cntr_entry *entry,
3736				void *context, int vl, int mode, u64 data)
3737{
3738	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3739
3740	return dd->send_egress_err_status_cnt[3];
3741}
3742
3743static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3744					    void *context, int vl, int mode,
3745					    u64 data)
3746{
3747	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3748
3749	return dd->send_egress_err_status_cnt[2];
3750}
3751
3752static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3753				const struct cntr_entry *entry,
3754				void *context, int vl, int mode, u64 data)
3755{
3756	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3757
3758	return dd->send_egress_err_status_cnt[1];
3759}
3760
3761static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3762				const struct cntr_entry *entry,
3763				void *context, int vl, int mode, u64 data)
3764{
3765	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3766
3767	return dd->send_egress_err_status_cnt[0];
3768}
3769
3770/*
3771 * Software counters corresponding to each of the
3772 * error status bits within SendErrStatus
3773 */
3774static u64 access_send_csr_write_bad_addr_err_cnt(
3775				const struct cntr_entry *entry,
3776				void *context, int vl, int mode, u64 data)
3777{
3778	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3779
3780	return dd->send_err_status_cnt[2];
3781}
3782
3783static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3784						 void *context, int vl,
3785						 int mode, u64 data)
3786{
3787	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3788
3789	return dd->send_err_status_cnt[1];
3790}
3791
3792static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3793				      void *context, int vl, int mode,
3794				      u64 data)
3795{
3796	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3797
3798	return dd->send_err_status_cnt[0];
3799}
3800
3801/*
3802 * Software counters corresponding to each of the
3803 * error status bits within SendCtxtErrStatus
3804 */
3805static u64 access_pio_write_out_of_bounds_err_cnt(
3806				const struct cntr_entry *entry,
3807				void *context, int vl, int mode, u64 data)
3808{
3809	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3810
3811	return dd->sw_ctxt_err_status_cnt[4];
3812}
3813
3814static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3815					     void *context, int vl, int mode,
3816					     u64 data)
3817{
3818	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819
3820	return dd->sw_ctxt_err_status_cnt[3];
3821}
3822
3823static u64 access_pio_write_crosses_boundary_err_cnt(
3824				const struct cntr_entry *entry,
3825				void *context, int vl, int mode, u64 data)
3826{
3827	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3828
3829	return dd->sw_ctxt_err_status_cnt[2];
3830}
3831
3832static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3833						void *context, int vl,
3834						int mode, u64 data)
3835{
3836	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3837
3838	return dd->sw_ctxt_err_status_cnt[1];
3839}
3840
3841static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3842					       void *context, int vl, int mode,
3843					       u64 data)
3844{
3845	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3846
3847	return dd->sw_ctxt_err_status_cnt[0];
3848}
3849
3850/*
3851 * Software counters corresponding to each of the
3852 * error status bits within SendDmaEngErrStatus
3853 */
3854static u64 access_sdma_header_request_fifo_cor_err_cnt(
3855				const struct cntr_entry *entry,
3856				void *context, int vl, int mode, u64 data)
3857{
3858	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859
3860	return dd->sw_send_dma_eng_err_status_cnt[23];
3861}
3862
3863static u64 access_sdma_header_storage_cor_err_cnt(
3864				const struct cntr_entry *entry,
3865				void *context, int vl, int mode, u64 data)
3866{
3867	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868
3869	return dd->sw_send_dma_eng_err_status_cnt[22];
3870}
3871
3872static u64 access_sdma_packet_tracking_cor_err_cnt(
3873				const struct cntr_entry *entry,
3874				void *context, int vl, int mode, u64 data)
3875{
3876	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877
3878	return dd->sw_send_dma_eng_err_status_cnt[21];
3879}
3880
3881static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3882					    void *context, int vl, int mode,
3883					    u64 data)
3884{
3885	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886
3887	return dd->sw_send_dma_eng_err_status_cnt[20];
3888}
3889
3890static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3891					      void *context, int vl, int mode,
3892					      u64 data)
3893{
3894	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895
3896	return dd->sw_send_dma_eng_err_status_cnt[19];
3897}
3898
3899static u64 access_sdma_header_request_fifo_unc_err_cnt(
3900				const struct cntr_entry *entry,
3901				void *context, int vl, int mode, u64 data)
3902{
3903	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904
3905	return dd->sw_send_dma_eng_err_status_cnt[18];
3906}
3907
3908static u64 access_sdma_header_storage_unc_err_cnt(
3909				const struct cntr_entry *entry,
3910				void *context, int vl, int mode, u64 data)
3911{
3912	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913
3914	return dd->sw_send_dma_eng_err_status_cnt[17];
3915}
3916
3917static u64 access_sdma_packet_tracking_unc_err_cnt(
3918				const struct cntr_entry *entry,
3919				void *context, int vl, int mode, u64 data)
3920{
3921	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922
3923	return dd->sw_send_dma_eng_err_status_cnt[16];
3924}
3925
3926static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3927					    void *context, int vl, int mode,
3928					    u64 data)
3929{
3930	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3931
3932	return dd->sw_send_dma_eng_err_status_cnt[15];
3933}
3934
3935static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3936					      void *context, int vl, int mode,
3937					      u64 data)
3938{
3939	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3940
3941	return dd->sw_send_dma_eng_err_status_cnt[14];
3942}
3943
3944static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3945				       void *context, int vl, int mode,
3946				       u64 data)
3947{
3948	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3949
3950	return dd->sw_send_dma_eng_err_status_cnt[13];
3951}
3952
3953static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3954					     void *context, int vl, int mode,
3955					     u64 data)
3956{
3957	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3958
3959	return dd->sw_send_dma_eng_err_status_cnt[12];
3960}
3961
3962static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3963					      void *context, int vl, int mode,
3964					      u64 data)
3965{
3966	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3967
3968	return dd->sw_send_dma_eng_err_status_cnt[11];
3969}
3970
3971static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3972					     void *context, int vl, int mode,
3973					     u64 data)
3974{
3975	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3976
3977	return dd->sw_send_dma_eng_err_status_cnt[10];
3978}
3979
3980static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3981					  void *context, int vl, int mode,
3982					  u64 data)
3983{
3984	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3985
3986	return dd->sw_send_dma_eng_err_status_cnt[9];
3987}
3988
3989static u64 access_sdma_packet_desc_overflow_err_cnt(
3990				const struct cntr_entry *entry,
3991				void *context, int vl, int mode, u64 data)
3992{
3993	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3994
3995	return dd->sw_send_dma_eng_err_status_cnt[8];
3996}
3997
3998static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3999					       void *context, int vl,
4000					       int mode, u64 data)
4001{
4002	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4003
4004	return dd->sw_send_dma_eng_err_status_cnt[7];
4005}
4006
4007static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
4008				    void *context, int vl, int mode, u64 data)
4009{
4010	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4011
4012	return dd->sw_send_dma_eng_err_status_cnt[6];
4013}
4014
4015static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
4016					void *context, int vl, int mode,
4017					u64 data)
4018{
4019	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4020
4021	return dd->sw_send_dma_eng_err_status_cnt[5];
4022}
4023
4024static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
4025					  void *context, int vl, int mode,
4026					  u64 data)
4027{
4028	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4029
4030	return dd->sw_send_dma_eng_err_status_cnt[4];
4031}
4032
4033static u64 access_sdma_tail_out_of_bounds_err_cnt(
4034				const struct cntr_entry *entry,
4035				void *context, int vl, int mode, u64 data)
4036{
4037	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4038
4039	return dd->sw_send_dma_eng_err_status_cnt[3];
4040}
4041
4042static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4043					void *context, int vl, int mode,
4044					u64 data)
4045{
4046	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4047
4048	return dd->sw_send_dma_eng_err_status_cnt[2];
4049}
4050
4051static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4052					    void *context, int vl, int mode,
4053					    u64 data)
4054{
4055	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4056
4057	return dd->sw_send_dma_eng_err_status_cnt[1];
4058}
4059
4060static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4061					void *context, int vl, int mode,
4062					u64 data)
4063{
4064	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4065
4066	return dd->sw_send_dma_eng_err_status_cnt[0];
4067}
4068
4069static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4070				 void *context, int vl, int mode,
4071				 u64 data)
4072{
4073	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4074
4075	u64 val = 0;
4076	u64 csr = entry->csr;
4077
4078	val = read_write_csr(dd, csr, mode, data);
4079	if (mode == CNTR_MODE_R) {
4080		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4081			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4082	} else if (mode == CNTR_MODE_W) {
4083		dd->sw_rcv_bypass_packet_errors = 0;
4084	} else {
4085		dd_dev_err(dd, "Invalid cntr register access mode");
4086		return 0;
4087	}
4088	return val;
4089}
4090
4091#define def_access_sw_cpu(cntr) \
4092static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4093			      void *context, int vl, int mode, u64 data)      \
4094{									      \
4095	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4096	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4097			      ppd->ibport_data.rvp.cntr, vl,		      \
4098			      mode, data);				      \
4099}
4100
4101def_access_sw_cpu(rc_acks);
4102def_access_sw_cpu(rc_qacks);
4103def_access_sw_cpu(rc_delayed_comp);
4104
4105#define def_access_ibp_counter(cntr) \
4106static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4107				void *context, int vl, int mode, u64 data)    \
4108{									      \
4109	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4110									      \
4111	if (vl != CNTR_INVALID_VL)					      \
4112		return 0;						      \
4113									      \
4114	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4115			     mode, data);				      \
4116}
4117
4118def_access_ibp_counter(loop_pkts);
4119def_access_ibp_counter(rc_resends);
4120def_access_ibp_counter(rnr_naks);
4121def_access_ibp_counter(other_naks);
4122def_access_ibp_counter(rc_timeouts);
4123def_access_ibp_counter(pkt_drops);
4124def_access_ibp_counter(dmawait);
4125def_access_ibp_counter(rc_seqnak);
4126def_access_ibp_counter(rc_dupreq);
4127def_access_ibp_counter(rdma_seq);
4128def_access_ibp_counter(unaligned);
4129def_access_ibp_counter(seq_naks);
4130def_access_ibp_counter(rc_crwaits);
4131
4132static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4133[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4134[C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH),
4135[C_RX_SHORT_ERR] = RXE32_DEV_CNTR_ELEM(RxShrErr, RCV_SHORT_ERR_CNT, CNTR_SYNTH),
4136[C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH),
4137[C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH),
4138[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4139			CNTR_NORMAL),
4140[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4141			CNTR_NORMAL),
4142[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4143			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4144			CNTR_NORMAL),
4145[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4146			CNTR_NORMAL),
4147[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4148			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4149[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4150			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4151[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4152			CNTR_NORMAL),
4153[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4154			CNTR_NORMAL),
4155[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4156			CNTR_NORMAL),
4157[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4158			CNTR_NORMAL),
4159[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4160			CNTR_NORMAL),
4161[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4162			CNTR_NORMAL),
4163[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4164			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4165[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4166			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4167[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4168			      CNTR_SYNTH),
4169[C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4170			    access_dc_rcv_err_cnt),
4171[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4172				 CNTR_SYNTH),
4173[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4174				  CNTR_SYNTH),
4175[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4176				  CNTR_SYNTH),
4177[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4178				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4179[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4180				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4181				  CNTR_SYNTH),
4182[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4183				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4184[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4185			       CNTR_SYNTH),
4186[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4187			      CNTR_SYNTH),
4188[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4189			       CNTR_SYNTH),
4190[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4191				 CNTR_SYNTH),
4192[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4193				CNTR_SYNTH),
4194[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4195				CNTR_SYNTH),
4196[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4197			       CNTR_SYNTH),
4198[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4199				 CNTR_SYNTH | CNTR_VL),
4200[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4201				CNTR_SYNTH | CNTR_VL),
4202[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4203[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4204				 CNTR_SYNTH | CNTR_VL),
4205[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4206[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4207				 CNTR_SYNTH | CNTR_VL),
4208[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4209			      CNTR_SYNTH),
4210[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4211				 CNTR_SYNTH | CNTR_VL),
4212[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4213				CNTR_SYNTH),
4214[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4215				   CNTR_SYNTH | CNTR_VL),
4216[C_DC_TOTAL_CRC] =
4217	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4218			 CNTR_SYNTH),
4219[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4220				  CNTR_SYNTH),
4221[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4222				  CNTR_SYNTH),
4223[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4224				  CNTR_SYNTH),
4225[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4226				  CNTR_SYNTH),
4227[C_DC_CRC_MULT_LN] =
4228	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4229			 CNTR_SYNTH),
4230[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4231				    CNTR_SYNTH),
4232[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4233				    CNTR_SYNTH),
4234[C_DC_SEQ_CRC_CNT] =
4235	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4236			 CNTR_SYNTH),
4237[C_DC_ESC0_ONLY_CNT] =
4238	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4239			 CNTR_SYNTH),
4240[C_DC_ESC0_PLUS1_CNT] =
4241	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4242			 CNTR_SYNTH),
4243[C_DC_ESC0_PLUS2_CNT] =
4244	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4245			 CNTR_SYNTH),
4246[C_DC_REINIT_FROM_PEER_CNT] =
4247	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4248			 CNTR_SYNTH),
4249[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4250				  CNTR_SYNTH),
4251[C_DC_MISC_FLG_CNT] =
4252	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4253			 CNTR_SYNTH),
4254[C_DC_PRF_GOOD_LTP_CNT] =
4255	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4256[C_DC_PRF_ACCEPTED_LTP_CNT] =
4257	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4258			 CNTR_SYNTH),
4259[C_DC_PRF_RX_FLIT_CNT] =
4260	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4261[C_DC_PRF_TX_FLIT_CNT] =
4262	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4263[C_DC_PRF_CLK_CNTR] =
4264	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4265[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4266	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4267[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4268	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4269			 CNTR_SYNTH),
4270[C_DC_PG_STS_TX_SBE_CNT] =
4271	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4272[C_DC_PG_STS_TX_MBE_CNT] =
4273	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4274			 CNTR_SYNTH),
4275[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4276			    access_sw_cpu_intr),
4277[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4278			    access_sw_cpu_rcv_limit),
4279[C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL,
4280			    access_sw_ctx0_seq_drop),
4281[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4282			    access_sw_vtx_wait),
4283[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4284			    access_sw_pio_wait),
4285[C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4286			    access_sw_pio_drain),
4287[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4288			    access_sw_kmem_wait),
4289[C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4290			    hfi1_access_sw_tid_wait),
4291[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4292			    access_sw_send_schedule),
4293[C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4294				      SEND_DMA_DESC_FETCHED_CNT, 0,
4295				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4296				      dev_access_u32_csr),
4297[C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4298			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4299			     access_sde_int_cnt),
4300[C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4301			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4302			     access_sde_err_cnt),
4303[C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4304				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4305				  access_sde_idle_int_cnt),
4306[C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4307				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4308				      access_sde_progress_int_cnt),
4309/* MISC_ERR_STATUS */
4310[C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4311				CNTR_NORMAL,
4312				access_misc_pll_lock_fail_err_cnt),
4313[C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4314				CNTR_NORMAL,
4315				access_misc_mbist_fail_err_cnt),
4316[C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4317				CNTR_NORMAL,
4318				access_misc_invalid_eep_cmd_err_cnt),
4319[C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4320				CNTR_NORMAL,
4321				access_misc_efuse_done_parity_err_cnt),
4322[C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4323				CNTR_NORMAL,
4324				access_misc_efuse_write_err_cnt),
4325[C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4326				0, CNTR_NORMAL,
4327				access_misc_efuse_read_bad_addr_err_cnt),
4328[C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4329				CNTR_NORMAL,
4330				access_misc_efuse_csr_parity_err_cnt),
4331[C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4332				CNTR_NORMAL,
4333				access_misc_fw_auth_failed_err_cnt),
4334[C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4335				CNTR_NORMAL,
4336				access_misc_key_mismatch_err_cnt),
4337[C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4338				CNTR_NORMAL,
4339				access_misc_sbus_write_failed_err_cnt),
4340[C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4341				CNTR_NORMAL,
4342				access_misc_csr_write_bad_addr_err_cnt),
4343[C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4344				CNTR_NORMAL,
4345				access_misc_csr_read_bad_addr_err_cnt),
4346[C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4347				CNTR_NORMAL,
4348				access_misc_csr_parity_err_cnt),
4349/* CceErrStatus */
4350[C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4351				CNTR_NORMAL,
4352				access_sw_cce_err_status_aggregated_cnt),
4353[C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4354				CNTR_NORMAL,
4355				access_cce_msix_csr_parity_err_cnt),
4356[C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4357				CNTR_NORMAL,
4358				access_cce_int_map_unc_err_cnt),
4359[C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4360				CNTR_NORMAL,
4361				access_cce_int_map_cor_err_cnt),
4362[C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4363				CNTR_NORMAL,
4364				access_cce_msix_table_unc_err_cnt),
4365[C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4366				CNTR_NORMAL,
4367				access_cce_msix_table_cor_err_cnt),
4368[C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4369				0, CNTR_NORMAL,
4370				access_cce_rxdma_conv_fifo_parity_err_cnt),
4371[C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4372				0, CNTR_NORMAL,
4373				access_cce_rcpl_async_fifo_parity_err_cnt),
4374[C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4375				CNTR_NORMAL,
4376				access_cce_seg_write_bad_addr_err_cnt),
4377[C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4378				CNTR_NORMAL,
4379				access_cce_seg_read_bad_addr_err_cnt),
4380[C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4381				CNTR_NORMAL,
4382				access_la_triggered_cnt),
4383[C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4384				CNTR_NORMAL,
4385				access_cce_trgt_cpl_timeout_err_cnt),
4386[C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4387				CNTR_NORMAL,
4388				access_pcic_receive_parity_err_cnt),
4389[C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4390				CNTR_NORMAL,
4391				access_pcic_transmit_back_parity_err_cnt),
4392[C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4393				0, CNTR_NORMAL,
4394				access_pcic_transmit_front_parity_err_cnt),
4395[C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4396				CNTR_NORMAL,
4397				access_pcic_cpl_dat_q_unc_err_cnt),
4398[C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4399				CNTR_NORMAL,
4400				access_pcic_cpl_hd_q_unc_err_cnt),
4401[C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4402				CNTR_NORMAL,
4403				access_pcic_post_dat_q_unc_err_cnt),
4404[C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4405				CNTR_NORMAL,
4406				access_pcic_post_hd_q_unc_err_cnt),
4407[C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4408				CNTR_NORMAL,
4409				access_pcic_retry_sot_mem_unc_err_cnt),
4410[C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4411				CNTR_NORMAL,
4412				access_pcic_retry_mem_unc_err),
4413[C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4414				CNTR_NORMAL,
4415				access_pcic_n_post_dat_q_parity_err_cnt),
4416[C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4417				CNTR_NORMAL,
4418				access_pcic_n_post_h_q_parity_err_cnt),
4419[C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4420				CNTR_NORMAL,
4421				access_pcic_cpl_dat_q_cor_err_cnt),
4422[C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4423				CNTR_NORMAL,
4424				access_pcic_cpl_hd_q_cor_err_cnt),
4425[C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4426				CNTR_NORMAL,
4427				access_pcic_post_dat_q_cor_err_cnt),
4428[C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4429				CNTR_NORMAL,
4430				access_pcic_post_hd_q_cor_err_cnt),
4431[C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4432				CNTR_NORMAL,
4433				access_pcic_retry_sot_mem_cor_err_cnt),
4434[C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4435				CNTR_NORMAL,
4436				access_pcic_retry_mem_cor_err_cnt),
4437[C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4438				"CceCli1AsyncFifoDbgParityError", 0, 0,
4439				CNTR_NORMAL,
4440				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4441[C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4442				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4443				CNTR_NORMAL,
4444				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4445				),
4446[C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4447			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4448			CNTR_NORMAL,
4449			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4450[C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4451			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4452			CNTR_NORMAL,
4453			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4454[C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4455			0, CNTR_NORMAL,
4456			access_cce_cli2_async_fifo_parity_err_cnt),
4457[C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4458			CNTR_NORMAL,
4459			access_cce_csr_cfg_bus_parity_err_cnt),
4460[C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4461			0, CNTR_NORMAL,
4462			access_cce_cli0_async_fifo_parity_err_cnt),
4463[C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4464			CNTR_NORMAL,
4465			access_cce_rspd_data_parity_err_cnt),
4466[C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4467			CNTR_NORMAL,
4468			access_cce_trgt_access_err_cnt),
4469[C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4470			0, CNTR_NORMAL,
4471			access_cce_trgt_async_fifo_parity_err_cnt),
4472[C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4473			CNTR_NORMAL,
4474			access_cce_csr_write_bad_addr_err_cnt),
4475[C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4476			CNTR_NORMAL,
4477			access_cce_csr_read_bad_addr_err_cnt),
4478[C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4479			CNTR_NORMAL,
4480			access_ccs_csr_parity_err_cnt),
4481
4482/* RcvErrStatus */
4483[C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4484			CNTR_NORMAL,
4485			access_rx_csr_parity_err_cnt),
4486[C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4487			CNTR_NORMAL,
4488			access_rx_csr_write_bad_addr_err_cnt),
4489[C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4490			CNTR_NORMAL,
4491			access_rx_csr_read_bad_addr_err_cnt),
4492[C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4493			CNTR_NORMAL,
4494			access_rx_dma_csr_unc_err_cnt),
4495[C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4496			CNTR_NORMAL,
4497			access_rx_dma_dq_fsm_encoding_err_cnt),
4498[C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4499			CNTR_NORMAL,
4500			access_rx_dma_eq_fsm_encoding_err_cnt),
4501[C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4502			CNTR_NORMAL,
4503			access_rx_dma_csr_parity_err_cnt),
4504[C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4505			CNTR_NORMAL,
4506			access_rx_rbuf_data_cor_err_cnt),
4507[C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4508			CNTR_NORMAL,
4509			access_rx_rbuf_data_unc_err_cnt),
4510[C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4511			CNTR_NORMAL,
4512			access_rx_dma_data_fifo_rd_cor_err_cnt),
4513[C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4514			CNTR_NORMAL,
4515			access_rx_dma_data_fifo_rd_unc_err_cnt),
4516[C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4517			CNTR_NORMAL,
4518			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4519[C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4520			CNTR_NORMAL,
4521			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4522[C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4523			CNTR_NORMAL,
4524			access_rx_rbuf_desc_part2_cor_err_cnt),
4525[C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4526			CNTR_NORMAL,
4527			access_rx_rbuf_desc_part2_unc_err_cnt),
4528[C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4529			CNTR_NORMAL,
4530			access_rx_rbuf_desc_part1_cor_err_cnt),
4531[C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4532			CNTR_NORMAL,
4533			access_rx_rbuf_desc_part1_unc_err_cnt),
4534[C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4535			CNTR_NORMAL,
4536			access_rx_hq_intr_fsm_err_cnt),
4537[C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4538			CNTR_NORMAL,
4539			access_rx_hq_intr_csr_parity_err_cnt),
4540[C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4541			CNTR_NORMAL,
4542			access_rx_lookup_csr_parity_err_cnt),
4543[C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4544			CNTR_NORMAL,
4545			access_rx_lookup_rcv_array_cor_err_cnt),
4546[C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4547			CNTR_NORMAL,
4548			access_rx_lookup_rcv_array_unc_err_cnt),
4549[C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4550			0, CNTR_NORMAL,
4551			access_rx_lookup_des_part2_parity_err_cnt),
4552[C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4553			0, CNTR_NORMAL,
4554			access_rx_lookup_des_part1_unc_cor_err_cnt),
4555[C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4556			CNTR_NORMAL,
4557			access_rx_lookup_des_part1_unc_err_cnt),
4558[C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4559			CNTR_NORMAL,
4560			access_rx_rbuf_next_free_buf_cor_err_cnt),
4561[C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4562			CNTR_NORMAL,
4563			access_rx_rbuf_next_free_buf_unc_err_cnt),
4564[C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4565			"RxRbufFlInitWrAddrParityErr", 0, 0,
4566			CNTR_NORMAL,
4567			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4568[C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4569			0, CNTR_NORMAL,
4570			access_rx_rbuf_fl_initdone_parity_err_cnt),
4571[C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4572			0, CNTR_NORMAL,
4573			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4574[C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4575			CNTR_NORMAL,
4576			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4577[C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4578			CNTR_NORMAL,
4579			access_rx_rbuf_empty_err_cnt),
4580[C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4581			CNTR_NORMAL,
4582			access_rx_rbuf_full_err_cnt),
4583[C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4584			CNTR_NORMAL,
4585			access_rbuf_bad_lookup_err_cnt),
4586[C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4587			CNTR_NORMAL,
4588			access_rbuf_ctx_id_parity_err_cnt),
4589[C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4590			CNTR_NORMAL,
4591			access_rbuf_csr_qeopdw_parity_err_cnt),
4592[C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4593			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4594			CNTR_NORMAL,
4595			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4596[C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4597			"RxRbufCsrQTlPtrParityErr", 0, 0,
4598			CNTR_NORMAL,
4599			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4600[C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4601			0, CNTR_NORMAL,
4602			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4603[C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4604			0, CNTR_NORMAL,
4605			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4606[C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4607			0, 0, CNTR_NORMAL,
4608			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4609[C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4610			0, CNTR_NORMAL,
4611			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4612[C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4613			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4614			CNTR_NORMAL,
4615			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4616[C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4617			0, CNTR_NORMAL,
4618			access_rx_rbuf_block_list_read_cor_err_cnt),
4619[C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4620			0, CNTR_NORMAL,
4621			access_rx_rbuf_block_list_read_unc_err_cnt),
4622[C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4623			CNTR_NORMAL,
4624			access_rx_rbuf_lookup_des_cor_err_cnt),
4625[C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4626			CNTR_NORMAL,
4627			access_rx_rbuf_lookup_des_unc_err_cnt),
4628[C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4629			"RxRbufLookupDesRegUncCorErr", 0, 0,
4630			CNTR_NORMAL,
4631			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4632[C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4633			CNTR_NORMAL,
4634			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4635[C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4636			CNTR_NORMAL,
4637			access_rx_rbuf_free_list_cor_err_cnt),
4638[C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4639			CNTR_NORMAL,
4640			access_rx_rbuf_free_list_unc_err_cnt),
4641[C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4642			CNTR_NORMAL,
4643			access_rx_rcv_fsm_encoding_err_cnt),
4644[C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4645			CNTR_NORMAL,
4646			access_rx_dma_flag_cor_err_cnt),
4647[C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4648			CNTR_NORMAL,
4649			access_rx_dma_flag_unc_err_cnt),
4650[C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4651			CNTR_NORMAL,
4652			access_rx_dc_sop_eop_parity_err_cnt),
4653[C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4654			CNTR_NORMAL,
4655			access_rx_rcv_csr_parity_err_cnt),
4656[C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4657			CNTR_NORMAL,
4658			access_rx_rcv_qp_map_table_cor_err_cnt),
4659[C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4660			CNTR_NORMAL,
4661			access_rx_rcv_qp_map_table_unc_err_cnt),
4662[C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4663			CNTR_NORMAL,
4664			access_rx_rcv_data_cor_err_cnt),
4665[C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4666			CNTR_NORMAL,
4667			access_rx_rcv_data_unc_err_cnt),
4668[C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4669			CNTR_NORMAL,
4670			access_rx_rcv_hdr_cor_err_cnt),
4671[C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4672			CNTR_NORMAL,
4673			access_rx_rcv_hdr_unc_err_cnt),
4674[C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4675			CNTR_NORMAL,
4676			access_rx_dc_intf_parity_err_cnt),
4677[C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4678			CNTR_NORMAL,
4679			access_rx_dma_csr_cor_err_cnt),
4680/* SendPioErrStatus */
4681[C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4682			CNTR_NORMAL,
4683			access_pio_pec_sop_head_parity_err_cnt),
4684[C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4685			CNTR_NORMAL,
4686			access_pio_pcc_sop_head_parity_err_cnt),
4687[C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4688			0, 0, CNTR_NORMAL,
4689			access_pio_last_returned_cnt_parity_err_cnt),
4690[C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4691			0, CNTR_NORMAL,
4692			access_pio_current_free_cnt_parity_err_cnt),
4693[C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4694			CNTR_NORMAL,
4695			access_pio_reserved_31_err_cnt),
4696[C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4697			CNTR_NORMAL,
4698			access_pio_reserved_30_err_cnt),
4699[C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4700			CNTR_NORMAL,
4701			access_pio_ppmc_sop_len_err_cnt),
4702[C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4703			CNTR_NORMAL,
4704			access_pio_ppmc_bqc_mem_parity_err_cnt),
4705[C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4706			CNTR_NORMAL,
4707			access_pio_vl_fifo_parity_err_cnt),
4708[C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4709			CNTR_NORMAL,
4710			access_pio_vlf_sop_parity_err_cnt),
4711[C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4712			CNTR_NORMAL,
4713			access_pio_vlf_v1_len_parity_err_cnt),
4714[C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4715			CNTR_NORMAL,
4716			access_pio_block_qw_count_parity_err_cnt),
4717[C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4718			CNTR_NORMAL,
4719			access_pio_write_qw_valid_parity_err_cnt),
4720[C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4721			CNTR_NORMAL,
4722			access_pio_state_machine_err_cnt),
4723[C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4724			CNTR_NORMAL,
4725			access_pio_write_data_parity_err_cnt),
4726[C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4727			CNTR_NORMAL,
4728			access_pio_host_addr_mem_cor_err_cnt),
4729[C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4730			CNTR_NORMAL,
4731			access_pio_host_addr_mem_unc_err_cnt),
4732[C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4733			CNTR_NORMAL,
4734			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4735[C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4736			CNTR_NORMAL,
4737			access_pio_init_sm_in_err_cnt),
4738[C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4739			CNTR_NORMAL,
4740			access_pio_ppmc_pbl_fifo_err_cnt),
4741[C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4742			0, CNTR_NORMAL,
4743			access_pio_credit_ret_fifo_parity_err_cnt),
4744[C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4745			CNTR_NORMAL,
4746			access_pio_v1_len_mem_bank1_cor_err_cnt),
4747[C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4748			CNTR_NORMAL,
4749			access_pio_v1_len_mem_bank0_cor_err_cnt),
4750[C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4751			CNTR_NORMAL,
4752			access_pio_v1_len_mem_bank1_unc_err_cnt),
4753[C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4754			CNTR_NORMAL,
4755			access_pio_v1_len_mem_bank0_unc_err_cnt),
4756[C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4757			CNTR_NORMAL,
4758			access_pio_sm_pkt_reset_parity_err_cnt),
4759[C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4760			CNTR_NORMAL,
4761			access_pio_pkt_evict_fifo_parity_err_cnt),
4762[C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4763			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4764			CNTR_NORMAL,
4765			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4766[C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4767			CNTR_NORMAL,
4768			access_pio_sbrdctl_crrel_parity_err_cnt),
4769[C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4770			CNTR_NORMAL,
4771			access_pio_pec_fifo_parity_err_cnt),
4772[C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4773			CNTR_NORMAL,
4774			access_pio_pcc_fifo_parity_err_cnt),
4775[C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4776			CNTR_NORMAL,
4777			access_pio_sb_mem_fifo1_err_cnt),
4778[C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4779			CNTR_NORMAL,
4780			access_pio_sb_mem_fifo0_err_cnt),
4781[C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4782			CNTR_NORMAL,
4783			access_pio_csr_parity_err_cnt),
4784[C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4785			CNTR_NORMAL,
4786			access_pio_write_addr_parity_err_cnt),
4787[C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4788			CNTR_NORMAL,
4789			access_pio_write_bad_ctxt_err_cnt),
4790/* SendDmaErrStatus */
4791[C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4792			0, CNTR_NORMAL,
4793			access_sdma_pcie_req_tracking_cor_err_cnt),
4794[C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4795			0, CNTR_NORMAL,
4796			access_sdma_pcie_req_tracking_unc_err_cnt),
4797[C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4798			CNTR_NORMAL,
4799			access_sdma_csr_parity_err_cnt),
4800[C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4801			CNTR_NORMAL,
4802			access_sdma_rpy_tag_err_cnt),
4803/* SendEgressErrStatus */
4804[C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4805			CNTR_NORMAL,
4806			access_tx_read_pio_memory_csr_unc_err_cnt),
4807[C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4808			0, CNTR_NORMAL,
4809			access_tx_read_sdma_memory_csr_err_cnt),
4810[C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4811			CNTR_NORMAL,
4812			access_tx_egress_fifo_cor_err_cnt),
4813[C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4814			CNTR_NORMAL,
4815			access_tx_read_pio_memory_cor_err_cnt),
4816[C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4817			CNTR_NORMAL,
4818			access_tx_read_sdma_memory_cor_err_cnt),
4819[C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4820			CNTR_NORMAL,
4821			access_tx_sb_hdr_cor_err_cnt),
4822[C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4823			CNTR_NORMAL,
4824			access_tx_credit_overrun_err_cnt),
4825[C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4826			CNTR_NORMAL,
4827			access_tx_launch_fifo8_cor_err_cnt),
4828[C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4829			CNTR_NORMAL,
4830			access_tx_launch_fifo7_cor_err_cnt),
4831[C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4832			CNTR_NORMAL,
4833			access_tx_launch_fifo6_cor_err_cnt),
4834[C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4835			CNTR_NORMAL,
4836			access_tx_launch_fifo5_cor_err_cnt),
4837[C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4838			CNTR_NORMAL,
4839			access_tx_launch_fifo4_cor_err_cnt),
4840[C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4841			CNTR_NORMAL,
4842			access_tx_launch_fifo3_cor_err_cnt),
4843[C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4844			CNTR_NORMAL,
4845			access_tx_launch_fifo2_cor_err_cnt),
4846[C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4847			CNTR_NORMAL,
4848			access_tx_launch_fifo1_cor_err_cnt),
4849[C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4850			CNTR_NORMAL,
4851			access_tx_launch_fifo0_cor_err_cnt),
4852[C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4853			CNTR_NORMAL,
4854			access_tx_credit_return_vl_err_cnt),
4855[C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4856			CNTR_NORMAL,
4857			access_tx_hcrc_insertion_err_cnt),
4858[C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4859			CNTR_NORMAL,
4860			access_tx_egress_fifo_unc_err_cnt),
4861[C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4862			CNTR_NORMAL,
4863			access_tx_read_pio_memory_unc_err_cnt),
4864[C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4865			CNTR_NORMAL,
4866			access_tx_read_sdma_memory_unc_err_cnt),
4867[C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4868			CNTR_NORMAL,
4869			access_tx_sb_hdr_unc_err_cnt),
4870[C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4871			CNTR_NORMAL,
4872			access_tx_credit_return_partiy_err_cnt),
4873[C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4874			0, 0, CNTR_NORMAL,
4875			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4876[C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4877			0, 0, CNTR_NORMAL,
4878			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4879[C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4880			0, 0, CNTR_NORMAL,
4881			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4882[C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4883			0, 0, CNTR_NORMAL,
4884			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4885[C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4886			0, 0, CNTR_NORMAL,
4887			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4888[C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4889			0, 0, CNTR_NORMAL,
4890			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4891[C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4892			0, 0, CNTR_NORMAL,
4893			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4894[C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4895			0, 0, CNTR_NORMAL,
4896			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4897[C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4898			0, 0, CNTR_NORMAL,
4899			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4900[C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4901			0, 0, CNTR_NORMAL,
4902			access_tx_sdma15_disallowed_packet_err_cnt),
4903[C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4904			0, 0, CNTR_NORMAL,
4905			access_tx_sdma14_disallowed_packet_err_cnt),
4906[C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4907			0, 0, CNTR_NORMAL,
4908			access_tx_sdma13_disallowed_packet_err_cnt),
4909[C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4910			0, 0, CNTR_NORMAL,
4911			access_tx_sdma12_disallowed_packet_err_cnt),
4912[C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4913			0, 0, CNTR_NORMAL,
4914			access_tx_sdma11_disallowed_packet_err_cnt),
4915[C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4916			0, 0, CNTR_NORMAL,
4917			access_tx_sdma10_disallowed_packet_err_cnt),
4918[C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4919			0, 0, CNTR_NORMAL,
4920			access_tx_sdma9_disallowed_packet_err_cnt),
4921[C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4922			0, 0, CNTR_NORMAL,
4923			access_tx_sdma8_disallowed_packet_err_cnt),
4924[C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4925			0, 0, CNTR_NORMAL,
4926			access_tx_sdma7_disallowed_packet_err_cnt),
4927[C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4928			0, 0, CNTR_NORMAL,
4929			access_tx_sdma6_disallowed_packet_err_cnt),
4930[C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4931			0, 0, CNTR_NORMAL,
4932			access_tx_sdma5_disallowed_packet_err_cnt),
4933[C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4934			0, 0, CNTR_NORMAL,
4935			access_tx_sdma4_disallowed_packet_err_cnt),
4936[C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4937			0, 0, CNTR_NORMAL,
4938			access_tx_sdma3_disallowed_packet_err_cnt),
4939[C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4940			0, 0, CNTR_NORMAL,
4941			access_tx_sdma2_disallowed_packet_err_cnt),
4942[C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4943			0, 0, CNTR_NORMAL,
4944			access_tx_sdma1_disallowed_packet_err_cnt),
4945[C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4946			0, 0, CNTR_NORMAL,
4947			access_tx_sdma0_disallowed_packet_err_cnt),
4948[C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4949			CNTR_NORMAL,
4950			access_tx_config_parity_err_cnt),
4951[C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4952			CNTR_NORMAL,
4953			access_tx_sbrd_ctl_csr_parity_err_cnt),
4954[C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4955			CNTR_NORMAL,
4956			access_tx_launch_csr_parity_err_cnt),
4957[C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4958			CNTR_NORMAL,
4959			access_tx_illegal_vl_err_cnt),
4960[C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4961			"TxSbrdCtlStateMachineParityErr", 0, 0,
4962			CNTR_NORMAL,
4963			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4964[C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4965			CNTR_NORMAL,
4966			access_egress_reserved_10_err_cnt),
4967[C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4968			CNTR_NORMAL,
4969			access_egress_reserved_9_err_cnt),
4970[C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4971			0, 0, CNTR_NORMAL,
4972			access_tx_sdma_launch_intf_parity_err_cnt),
4973[C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4974			CNTR_NORMAL,
4975			access_tx_pio_launch_intf_parity_err_cnt),
4976[C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4977			CNTR_NORMAL,
4978			access_egress_reserved_6_err_cnt),
4979[C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4980			CNTR_NORMAL,
4981			access_tx_incorrect_link_state_err_cnt),
4982[C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4983			CNTR_NORMAL,
4984			access_tx_linkdown_err_cnt),
4985[C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4986			"EgressFifoUnderrunOrParityErr", 0, 0,
4987			CNTR_NORMAL,
4988			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4989[C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4990			CNTR_NORMAL,
4991			access_egress_reserved_2_err_cnt),
4992[C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4993			CNTR_NORMAL,
4994			access_tx_pkt_integrity_mem_unc_err_cnt),
4995[C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4996			CNTR_NORMAL,
4997			access_tx_pkt_integrity_mem_cor_err_cnt),
4998/* SendErrStatus */
4999[C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
5000			CNTR_NORMAL,
5001			access_send_csr_write_bad_addr_err_cnt),
5002[C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
5003			CNTR_NORMAL,
5004			access_send_csr_read_bad_addr_err_cnt),
5005[C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
5006			CNTR_NORMAL,
5007			access_send_csr_parity_cnt),
5008/* SendCtxtErrStatus */
5009[C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
5010			CNTR_NORMAL,
5011			access_pio_write_out_of_bounds_err_cnt),
5012[C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
5013			CNTR_NORMAL,
5014			access_pio_write_overflow_err_cnt),
5015[C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
5016			0, 0, CNTR_NORMAL,
5017			access_pio_write_crosses_boundary_err_cnt),
5018[C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
5019			CNTR_NORMAL,
5020			access_pio_disallowed_packet_err_cnt),
5021[C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
5022			CNTR_NORMAL,
5023			access_pio_inconsistent_sop_err_cnt),
5024/* SendDmaEngErrStatus */
5025[C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
5026			0, 0, CNTR_NORMAL,
5027			access_sdma_header_request_fifo_cor_err_cnt),
5028[C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
5029			CNTR_NORMAL,
5030			access_sdma_header_storage_cor_err_cnt),
5031[C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
5032			CNTR_NORMAL,
5033			access_sdma_packet_tracking_cor_err_cnt),
5034[C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5035			CNTR_NORMAL,
5036			access_sdma_assembly_cor_err_cnt),
5037[C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5038			CNTR_NORMAL,
5039			access_sdma_desc_table_cor_err_cnt),
5040[C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5041			0, 0, CNTR_NORMAL,
5042			access_sdma_header_request_fifo_unc_err_cnt),
5043[C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5044			CNTR_NORMAL,
5045			access_sdma_header_storage_unc_err_cnt),
5046[C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5047			CNTR_NORMAL,
5048			access_sdma_packet_tracking_unc_err_cnt),
5049[C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5050			CNTR_NORMAL,
5051			access_sdma_assembly_unc_err_cnt),
5052[C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5053			CNTR_NORMAL,
5054			access_sdma_desc_table_unc_err_cnt),
5055[C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5056			CNTR_NORMAL,
5057			access_sdma_timeout_err_cnt),
5058[C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5059			CNTR_NORMAL,
5060			access_sdma_header_length_err_cnt),
5061[C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5062			CNTR_NORMAL,
5063			access_sdma_header_address_err_cnt),
5064[C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5065			CNTR_NORMAL,
5066			access_sdma_header_select_err_cnt),
5067[C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5068			CNTR_NORMAL,
5069			access_sdma_reserved_9_err_cnt),
5070[C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5071			CNTR_NORMAL,
5072			access_sdma_packet_desc_overflow_err_cnt),
5073[C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5074			CNTR_NORMAL,
5075			access_sdma_length_mismatch_err_cnt),
5076[C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5077			CNTR_NORMAL,
5078			access_sdma_halt_err_cnt),
5079[C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5080			CNTR_NORMAL,
5081			access_sdma_mem_read_err_cnt),
5082[C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5083			CNTR_NORMAL,
5084			access_sdma_first_desc_err_cnt),
5085[C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5086			CNTR_NORMAL,
5087			access_sdma_tail_out_of_bounds_err_cnt),
5088[C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5089			CNTR_NORMAL,
5090			access_sdma_too_long_err_cnt),
5091[C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5092			CNTR_NORMAL,
5093			access_sdma_gen_mismatch_err_cnt),
5094[C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5095			CNTR_NORMAL,
5096			access_sdma_wrong_dw_err_cnt),
5097};
5098
5099static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5100[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5101			CNTR_NORMAL),
5102[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5103			CNTR_NORMAL),
5104[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5105			CNTR_NORMAL),
5106[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5107			CNTR_NORMAL),
5108[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5109			CNTR_NORMAL),
5110[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5111			CNTR_NORMAL),
5112[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5113			CNTR_NORMAL),
5114[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5115[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5116[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5117[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5118				      CNTR_SYNTH | CNTR_VL),
5119[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5120				     CNTR_SYNTH | CNTR_VL),
5121[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5122				      CNTR_SYNTH | CNTR_VL),
5123[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5124[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5125[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5126			     access_sw_link_dn_cnt),
5127[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5128			   access_sw_link_up_cnt),
5129[C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5130				 access_sw_unknown_frame_cnt),
5131[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5132			     access_sw_xmit_discards),
5133[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5134				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5135				access_sw_xmit_discards),
5136[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5137				 access_xmit_constraint_errs),
5138[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5139				access_rcv_constraint_errs),
5140[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5141[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5142[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5143[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5144[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5145[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5146[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5147[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5148[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5149[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5150[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5151[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5152[C_SW_IBP_RC_CRWAITS] = SW_IBP_CNTR(RcCrWait, rc_crwaits),
5153[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5154			       access_sw_cpu_rc_acks),
5155[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5156				access_sw_cpu_rc_qacks),
5157[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5158				       access_sw_cpu_rc_delayed_comp),
5159[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5160[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5161[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5162[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5163[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5164[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5165[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5166[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5167[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5168[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5169[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5170[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5171[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5172[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5173[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5174[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5175[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5176[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5177[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5178[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5179[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5180[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5181[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5182[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5183[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5184[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5185[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5186[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5187[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5188[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5189[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5190[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5191[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5192[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5193[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5194[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5195[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5196[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5197[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5198[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5199[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5200[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5201[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5202[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5203[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5204[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5205[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5206[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5207[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5208[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5209[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5210[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5211[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5212[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5213[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5214[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5215[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5216[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5217[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5218[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5219[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5220[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5221[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5222[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5223[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5224[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5225[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5226[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5227[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5228[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5229[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5230[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5231[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5232[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5233[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5234[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5235[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5236[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5237[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5238[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5239};
5240
5241/* ======================================================================== */
5242
5243/* return true if this is chip revision revision a */
5244int is_ax(struct hfi1_devdata *dd)
5245{
5246	u8 chip_rev_minor =
5247		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5248			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5249	return (chip_rev_minor & 0xf0) == 0;
5250}
5251
5252/* return true if this is chip revision revision b */
5253int is_bx(struct hfi1_devdata *dd)
5254{
5255	u8 chip_rev_minor =
5256		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5257			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5258	return (chip_rev_minor & 0xF0) == 0x10;
5259}
5260
5261/* return true is kernel urg disabled for rcd */
5262bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5263{
5264	u64 mask;
5265	u32 is = IS_RCVURGENT_START + rcd->ctxt;
5266	u8 bit = is % 64;
5267
5268	mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5269	return !(mask & BIT_ULL(bit));
5270}
5271
5272/*
5273 * Append string s to buffer buf.  Arguments curp and len are the current
5274 * position and remaining length, respectively.
5275 *
5276 * return 0 on success, 1 on out of room
5277 */
5278static int append_str(char *buf, char **curp, int *lenp, const char *s)
5279{
5280	char *p = *curp;
5281	int len = *lenp;
5282	int result = 0; /* success */
5283	char c;
5284
5285	/* add a comma, if first in the buffer */
5286	if (p != buf) {
5287		if (len == 0) {
5288			result = 1; /* out of room */
5289			goto done;
5290		}
5291		*p++ = ',';
5292		len--;
5293	}
5294
5295	/* copy the string */
5296	while ((c = *s++) != 0) {
5297		if (len == 0) {
5298			result = 1; /* out of room */
5299			goto done;
5300		}
5301		*p++ = c;
5302		len--;
5303	}
5304
5305done:
5306	/* write return values */
5307	*curp = p;
5308	*lenp = len;
5309
5310	return result;
5311}
5312
5313/*
5314 * Using the given flag table, print a comma separated string into
5315 * the buffer.  End in '*' if the buffer is too short.
5316 */
5317static char *flag_string(char *buf, int buf_len, u64 flags,
5318			 struct flag_table *table, int table_size)
5319{
5320	char extra[32];
5321	char *p = buf;
5322	int len = buf_len;
5323	int no_room = 0;
5324	int i;
5325
5326	/* make sure there is at least 2 so we can form "*" */
5327	if (len < 2)
5328		return "";
5329
5330	len--;	/* leave room for a nul */
5331	for (i = 0; i < table_size; i++) {
5332		if (flags & table[i].flag) {
5333			no_room = append_str(buf, &p, &len, table[i].str);
5334			if (no_room)
5335				break;
5336			flags &= ~table[i].flag;
5337		}
5338	}
5339
5340	/* any undocumented bits left? */
5341	if (!no_room && flags) {
5342		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5343		no_room = append_str(buf, &p, &len, extra);
5344	}
5345
5346	/* add * if ran out of room */
5347	if (no_room) {
5348		/* may need to back up to add space for a '*' */
5349		if (len == 0)
5350			--p;
5351		*p++ = '*';
5352	}
5353
5354	/* add final nul - space already allocated above */
5355	*p = 0;
5356	return buf;
5357}
5358
5359/* first 8 CCE error interrupt source names */
5360static const char * const cce_misc_names[] = {
5361	"CceErrInt",		/* 0 */
5362	"RxeErrInt",		/* 1 */
5363	"MiscErrInt",		/* 2 */
5364	"Reserved3",		/* 3 */
5365	"PioErrInt",		/* 4 */
5366	"SDmaErrInt",		/* 5 */
5367	"EgressErrInt",		/* 6 */
5368	"TxeErrInt"		/* 7 */
5369};
5370
5371/*
5372 * Return the miscellaneous error interrupt name.
5373 */
5374static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5375{
5376	if (source < ARRAY_SIZE(cce_misc_names))
5377		strncpy(buf, cce_misc_names[source], bsize);
5378	else
5379		snprintf(buf, bsize, "Reserved%u",
5380			 source + IS_GENERAL_ERR_START);
5381
5382	return buf;
5383}
5384
5385/*
5386 * Return the SDMA engine error interrupt name.
5387 */
5388static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5389{
5390	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5391	return buf;
5392}
5393
5394/*
5395 * Return the send context error interrupt name.
5396 */
5397static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5398{
5399	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5400	return buf;
5401}
5402
5403static const char * const various_names[] = {
5404	"PbcInt",
5405	"GpioAssertInt",
5406	"Qsfp1Int",
5407	"Qsfp2Int",
5408	"TCritInt"
5409};
5410
5411/*
5412 * Return the various interrupt name.
5413 */
5414static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5415{
5416	if (source < ARRAY_SIZE(various_names))
5417		strncpy(buf, various_names[source], bsize);
5418	else
5419		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5420	return buf;
5421}
5422
5423/*
5424 * Return the DC interrupt name.
5425 */
5426static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5427{
5428	static const char * const dc_int_names[] = {
5429		"common",
5430		"lcb",
5431		"8051",
5432		"lbm"	/* local block merge */
5433	};
5434
5435	if (source < ARRAY_SIZE(dc_int_names))
5436		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5437	else
5438		snprintf(buf, bsize, "DCInt%u", source);
5439	return buf;
5440}
5441
5442static const char * const sdma_int_names[] = {
5443	"SDmaInt",
5444	"SdmaIdleInt",
5445	"SdmaProgressInt",
5446};
5447
5448/*
5449 * Return the SDMA engine interrupt name.
5450 */
5451static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5452{
5453	/* what interrupt */
5454	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5455	/* which engine */
5456	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5457
5458	if (likely(what < 3))
5459		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5460	else
5461		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5462	return buf;
5463}
5464
5465/*
5466 * Return the receive available interrupt name.
5467 */
5468static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5469{
5470	snprintf(buf, bsize, "RcvAvailInt%u", source);
5471	return buf;
5472}
5473
5474/*
5475 * Return the receive urgent interrupt name.
5476 */
5477static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5478{
5479	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5480	return buf;
5481}
5482
5483/*
5484 * Return the send credit interrupt name.
5485 */
5486static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5487{
5488	snprintf(buf, bsize, "SendCreditInt%u", source);
5489	return buf;
5490}
5491
5492/*
5493 * Return the reserved interrupt name.
5494 */
5495static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5496{
5497	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5498	return buf;
5499}
5500
5501static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5502{
5503	return flag_string(buf, buf_len, flags,
5504			   cce_err_status_flags,
5505			   ARRAY_SIZE(cce_err_status_flags));
5506}
5507
5508static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5509{
5510	return flag_string(buf, buf_len, flags,
5511			   rxe_err_status_flags,
5512			   ARRAY_SIZE(rxe_err_status_flags));
5513}
5514
5515static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5516{
5517	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5518			   ARRAY_SIZE(misc_err_status_flags));
5519}
5520
5521static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5522{
5523	return flag_string(buf, buf_len, flags,
5524			   pio_err_status_flags,
5525			   ARRAY_SIZE(pio_err_status_flags));
5526}
5527
5528static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5529{
5530	return flag_string(buf, buf_len, flags,
5531			   sdma_err_status_flags,
5532			   ARRAY_SIZE(sdma_err_status_flags));
5533}
5534
5535static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5536{
5537	return flag_string(buf, buf_len, flags,
5538			   egress_err_status_flags,
5539			   ARRAY_SIZE(egress_err_status_flags));
5540}
5541
5542static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5543{
5544	return flag_string(buf, buf_len, flags,
5545			   egress_err_info_flags,
5546			   ARRAY_SIZE(egress_err_info_flags));
5547}
5548
5549static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5550{
5551	return flag_string(buf, buf_len, flags,
5552			   send_err_status_flags,
5553			   ARRAY_SIZE(send_err_status_flags));
5554}
5555
5556static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5557{
5558	char buf[96];
5559	int i = 0;
5560
5561	/*
5562	 * For most these errors, there is nothing that can be done except
5563	 * report or record it.
5564	 */
5565	dd_dev_info(dd, "CCE Error: %s\n",
5566		    cce_err_status_string(buf, sizeof(buf), reg));
5567
5568	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5569	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5570		/* this error requires a manual drop into SPC freeze mode */
5571		/* then a fix up */
5572		start_freeze_handling(dd->pport, FREEZE_SELF);
5573	}
5574
5575	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5576		if (reg & (1ull << i)) {
5577			incr_cntr64(&dd->cce_err_status_cnt[i]);
5578			/* maintain a counter over all cce_err_status errors */
5579			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5580		}
5581	}
5582}
5583
5584/*
5585 * Check counters for receive errors that do not have an interrupt
5586 * associated with them.
5587 */
5588#define RCVERR_CHECK_TIME 10
5589static void update_rcverr_timer(struct timer_list *t)
5590{
5591	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5592	struct hfi1_pportdata *ppd = dd->pport;
5593	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5594
5595	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5596	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5597		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5598		set_link_down_reason(
5599		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5600		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5601		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5602	}
5603	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5604
5605	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5606}
5607
5608static int init_rcverr(struct hfi1_devdata *dd)
5609{
5610	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5611	/* Assume the hardware counter has been reset */
5612	dd->rcv_ovfl_cnt = 0;
5613	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5614}
5615
5616static void free_rcverr(struct hfi1_devdata *dd)
5617{
5618	if (dd->rcverr_timer.function)
5619		del_timer_sync(&dd->rcverr_timer);
5620}
5621
5622static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5623{
5624	char buf[96];
5625	int i = 0;
5626
5627	dd_dev_info(dd, "Receive Error: %s\n",
5628		    rxe_err_status_string(buf, sizeof(buf), reg));
5629
5630	if (reg & ALL_RXE_FREEZE_ERR) {
5631		int flags = 0;
5632
5633		/*
5634		 * Freeze mode recovery is disabled for the errors
5635		 * in RXE_FREEZE_ABORT_MASK
5636		 */
5637		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5638			flags = FREEZE_ABORT;
5639
5640		start_freeze_handling(dd->pport, flags);
5641	}
5642
5643	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5644		if (reg & (1ull << i))
5645			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5646	}
5647}
5648
5649static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5650{
5651	char buf[96];
5652	int i = 0;
5653
5654	dd_dev_info(dd, "Misc Error: %s",
5655		    misc_err_status_string(buf, sizeof(buf), reg));
5656	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5657		if (reg & (1ull << i))
5658			incr_cntr64(&dd->misc_err_status_cnt[i]);
5659	}
5660}
5661
5662static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5663{
5664	char buf[96];
5665	int i = 0;
5666
5667	dd_dev_info(dd, "PIO Error: %s\n",
5668		    pio_err_status_string(buf, sizeof(buf), reg));
5669
5670	if (reg & ALL_PIO_FREEZE_ERR)
5671		start_freeze_handling(dd->pport, 0);
5672
5673	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5674		if (reg & (1ull << i))
5675			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5676	}
5677}
5678
5679static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5680{
5681	char buf[96];
5682	int i = 0;
5683
5684	dd_dev_info(dd, "SDMA Error: %s\n",
5685		    sdma_err_status_string(buf, sizeof(buf), reg));
5686
5687	if (reg & ALL_SDMA_FREEZE_ERR)
5688		start_freeze_handling(dd->pport, 0);
5689
5690	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5691		if (reg & (1ull << i))
5692			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5693	}
5694}
5695
5696static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5697{
5698	incr_cntr64(&ppd->port_xmit_discards);
5699}
5700
5701static void count_port_inactive(struct hfi1_devdata *dd)
5702{
5703	__count_port_discards(dd->pport);
5704}
5705
5706/*
5707 * We have had a "disallowed packet" error during egress. Determine the
5708 * integrity check which failed, and update relevant error counter, etc.
5709 *
5710 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5711 * bit of state per integrity check, and so we can miss the reason for an
5712 * egress error if more than one packet fails the same integrity check
5713 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5714 */
5715static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5716					int vl)
5717{
5718	struct hfi1_pportdata *ppd = dd->pport;
5719	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5720	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5721	char buf[96];
5722
5723	/* clear down all observed info as quickly as possible after read */
5724	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5725
5726	dd_dev_info(dd,
5727		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5728		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5729
5730	/* Eventually add other counters for each bit */
5731	if (info & PORT_DISCARD_EGRESS_ERRS) {
5732		int weight, i;
5733
5734		/*
5735		 * Count all applicable bits as individual errors and
5736		 * attribute them to the packet that triggered this handler.
5737		 * This may not be completely accurate due to limitations
5738		 * on the available hardware error information.  There is
5739		 * a single information register and any number of error
5740		 * packets may have occurred and contributed to it before
5741		 * this routine is called.  This means that:
5742		 * a) If multiple packets with the same error occur before
5743		 *    this routine is called, earlier packets are missed.
5744		 *    There is only a single bit for each error type.
5745		 * b) Errors may not be attributed to the correct VL.
5746		 *    The driver is attributing all bits in the info register
5747		 *    to the packet that triggered this call, but bits
5748		 *    could be an accumulation of different packets with
5749		 *    different VLs.
5750		 * c) A single error packet may have multiple counts attached
5751		 *    to it.  There is no way for the driver to know if
5752		 *    multiple bits set in the info register are due to a
5753		 *    single packet or multiple packets.  The driver assumes
5754		 *    multiple packets.
5755		 */
5756		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5757		for (i = 0; i < weight; i++) {
5758			__count_port_discards(ppd);
5759			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5760				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5761			else if (vl == 15)
5762				incr_cntr64(&ppd->port_xmit_discards_vl
5763					    [C_VL_15]);
5764		}
5765	}
5766}
5767
5768/*
5769 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5770 * register. Does it represent a 'port inactive' error?
5771 */
5772static inline int port_inactive_err(u64 posn)
5773{
5774	return (posn >= SEES(TX_LINKDOWN) &&
5775		posn <= SEES(TX_INCORRECT_LINK_STATE));
5776}
5777
5778/*
5779 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5780 * register. Does it represent a 'disallowed packet' error?
5781 */
5782static inline int disallowed_pkt_err(int posn)
5783{
5784	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5785		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5786}
5787
5788/*
5789 * Input value is a bit position of one of the SDMA engine disallowed
5790 * packet errors.  Return which engine.  Use of this must be guarded by
5791 * disallowed_pkt_err().
5792 */
5793static inline int disallowed_pkt_engine(int posn)
5794{
5795	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5796}
5797
5798/*
5799 * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5800 * be done.
5801 */
5802static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5803{
5804	struct sdma_vl_map *m;
5805	int vl;
5806
5807	/* range check */
5808	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5809		return -1;
5810
5811	rcu_read_lock();
5812	m = rcu_dereference(dd->sdma_map);
5813	vl = m->engine_to_vl[engine];
5814	rcu_read_unlock();
5815
5816	return vl;
5817}
5818
5819/*
5820 * Translate the send context (sofware index) into a VL.  Return -1 if the
5821 * translation cannot be done.
5822 */
5823static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5824{
5825	struct send_context_info *sci;
5826	struct send_context *sc;
5827	int i;
5828
5829	sci = &dd->send_contexts[sw_index];
5830
5831	/* there is no information for user (PSM) and ack contexts */
5832	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5833		return -1;
5834
5835	sc = sci->sc;
5836	if (!sc)
5837		return -1;
5838	if (dd->vld[15].sc == sc)
5839		return 15;
5840	for (i = 0; i < num_vls; i++)
5841		if (dd->vld[i].sc == sc)
5842			return i;
5843
5844	return -1;
5845}
5846
5847static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5848{
5849	u64 reg_copy = reg, handled = 0;
5850	char buf[96];
5851	int i = 0;
5852
5853	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5854		start_freeze_handling(dd->pport, 0);
5855	else if (is_ax(dd) &&
5856		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5857		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5858		start_freeze_handling(dd->pport, 0);
5859
5860	while (reg_copy) {
5861		int posn = fls64(reg_copy);
5862		/* fls64() returns a 1-based offset, we want it zero based */
5863		int shift = posn - 1;
5864		u64 mask = 1ULL << shift;
5865
5866		if (port_inactive_err(shift)) {
5867			count_port_inactive(dd);
5868			handled |= mask;
5869		} else if (disallowed_pkt_err(shift)) {
5870			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5871
5872			handle_send_egress_err_info(dd, vl);
5873			handled |= mask;
5874		}
5875		reg_copy &= ~mask;
5876	}
5877
5878	reg &= ~handled;
5879
5880	if (reg)
5881		dd_dev_info(dd, "Egress Error: %s\n",
5882			    egress_err_status_string(buf, sizeof(buf), reg));
5883
5884	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5885		if (reg & (1ull << i))
5886			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5887	}
5888}
5889
5890static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5891{
5892	char buf[96];
5893	int i = 0;
5894
5895	dd_dev_info(dd, "Send Error: %s\n",
5896		    send_err_status_string(buf, sizeof(buf), reg));
5897
5898	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5899		if (reg & (1ull << i))
5900			incr_cntr64(&dd->send_err_status_cnt[i]);
5901	}
5902}
5903
5904/*
5905 * The maximum number of times the error clear down will loop before
5906 * blocking a repeating error.  This value is arbitrary.
5907 */
5908#define MAX_CLEAR_COUNT 20
5909
5910/*
5911 * Clear and handle an error register.  All error interrupts are funneled
5912 * through here to have a central location to correctly handle single-
5913 * or multi-shot errors.
5914 *
5915 * For non per-context registers, call this routine with a context value
5916 * of 0 so the per-context offset is zero.
5917 *
5918 * If the handler loops too many times, assume that something is wrong
5919 * and can't be fixed, so mask the error bits.
5920 */
5921static void interrupt_clear_down(struct hfi1_devdata *dd,
5922				 u32 context,
5923				 const struct err_reg_info *eri)
5924{
5925	u64 reg;
5926	u32 count;
5927
5928	/* read in a loop until no more errors are seen */
5929	count = 0;
5930	while (1) {
5931		reg = read_kctxt_csr(dd, context, eri->status);
5932		if (reg == 0)
5933			break;
5934		write_kctxt_csr(dd, context, eri->clear, reg);
5935		if (likely(eri->handler))
5936			eri->handler(dd, context, reg);
5937		count++;
5938		if (count > MAX_CLEAR_COUNT) {
5939			u64 mask;
5940
5941			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5942				   eri->desc, reg);
5943			/*
5944			 * Read-modify-write so any other masked bits
5945			 * remain masked.
5946			 */
5947			mask = read_kctxt_csr(dd, context, eri->mask);
5948			mask &= ~reg;
5949			write_kctxt_csr(dd, context, eri->mask, mask);
5950			break;
5951		}
5952	}
5953}
5954
5955/*
5956 * CCE block "misc" interrupt.  Source is < 16.
5957 */
5958static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5959{
5960	const struct err_reg_info *eri = &misc_errs[source];
5961
5962	if (eri->handler) {
5963		interrupt_clear_down(dd, 0, eri);
5964	} else {
5965		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5966			   source);
5967	}
5968}
5969
5970static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5971{
5972	return flag_string(buf, buf_len, flags,
5973			   sc_err_status_flags,
5974			   ARRAY_SIZE(sc_err_status_flags));
5975}
5976
5977/*
5978 * Send context error interrupt.  Source (hw_context) is < 160.
5979 *
5980 * All send context errors cause the send context to halt.  The normal
5981 * clear-down mechanism cannot be used because we cannot clear the
5982 * error bits until several other long-running items are done first.
5983 * This is OK because with the context halted, nothing else is going
5984 * to happen on it anyway.
5985 */
5986static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5987				unsigned int hw_context)
5988{
5989	struct send_context_info *sci;
5990	struct send_context *sc;
5991	char flags[96];
5992	u64 status;
5993	u32 sw_index;
5994	int i = 0;
5995	unsigned long irq_flags;
5996
5997	sw_index = dd->hw_to_sw[hw_context];
5998	if (sw_index >= dd->num_send_contexts) {
5999		dd_dev_err(dd,
6000			   "out of range sw index %u for send context %u\n",
6001			   sw_index, hw_context);
6002		return;
6003	}
6004	sci = &dd->send_contexts[sw_index];
6005	spin_lock_irqsave(&dd->sc_lock, irq_flags);
6006	sc = sci->sc;
6007	if (!sc) {
6008		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
6009			   sw_index, hw_context);
6010		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
6011		return;
6012	}
6013
6014	/* tell the software that a halt has begun */
6015	sc_stop(sc, SCF_HALTED);
6016
6017	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
6018
6019	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
6020		    send_context_err_status_string(flags, sizeof(flags),
6021						   status));
6022
6023	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
6024		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
6025
6026	/*
6027	 * Automatically restart halted kernel contexts out of interrupt
6028	 * context.  User contexts must ask the driver to restart the context.
6029	 */
6030	if (sc->type != SC_USER)
6031		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
6032	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
6033
6034	/*
6035	 * Update the counters for the corresponding status bits.
6036	 * Note that these particular counters are aggregated over all
6037	 * 160 contexts.
6038	 */
6039	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
6040		if (status & (1ull << i))
6041			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6042	}
6043}
6044
6045static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6046				unsigned int source, u64 status)
6047{
6048	struct sdma_engine *sde;
6049	int i = 0;
6050
6051	sde = &dd->per_sdma[source];
6052#ifdef CONFIG_SDMA_VERBOSITY
6053	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6054		   slashstrip(__FILE__), __LINE__, __func__);
6055	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6056		   sde->this_idx, source, (unsigned long long)status);
6057#endif
6058	sde->err_cnt++;
6059	sdma_engine_error(sde, status);
6060
6061	/*
6062	* Update the counters for the corresponding status bits.
6063	* Note that these particular counters are aggregated over
6064	* all 16 DMA engines.
6065	*/
6066	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6067		if (status & (1ull << i))
6068			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6069	}
6070}
6071
6072/*
6073 * CCE block SDMA error interrupt.  Source is < 16.
6074 */
6075static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6076{
6077#ifdef CONFIG_SDMA_VERBOSITY
6078	struct sdma_engine *sde = &dd->per_sdma[source];
6079
6080	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6081		   slashstrip(__FILE__), __LINE__, __func__);
6082	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6083		   source);
6084	sdma_dumpstate(sde);
6085#endif
6086	interrupt_clear_down(dd, source, &sdma_eng_err);
6087}
6088
6089/*
6090 * CCE block "various" interrupt.  Source is < 8.
6091 */
6092static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6093{
6094	const struct err_reg_info *eri = &various_err[source];
6095
6096	/*
6097	 * TCritInt cannot go through interrupt_clear_down()
6098	 * because it is not a second tier interrupt. The handler
6099	 * should be called directly.
6100	 */
6101	if (source == TCRIT_INT_SOURCE)
6102		handle_temp_err(dd);
6103	else if (eri->handler)
6104		interrupt_clear_down(dd, 0, eri);
6105	else
6106		dd_dev_info(dd,
6107			    "%s: Unimplemented/reserved interrupt %d\n",
6108			    __func__, source);
6109}
6110
6111static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6112{
6113	/* src_ctx is always zero */
6114	struct hfi1_pportdata *ppd = dd->pport;
6115	unsigned long flags;
6116	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6117
6118	if (reg & QSFP_HFI0_MODPRST_N) {
6119		if (!qsfp_mod_present(ppd)) {
6120			dd_dev_info(dd, "%s: QSFP module removed\n",
6121				    __func__);
6122
6123			ppd->driver_link_ready = 0;
6124			/*
6125			 * Cable removed, reset all our information about the
6126			 * cache and cable capabilities
6127			 */
6128
6129			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6130			/*
6131			 * We don't set cache_refresh_required here as we expect
6132			 * an interrupt when a cable is inserted
6133			 */
6134			ppd->qsfp_info.cache_valid = 0;
6135			ppd->qsfp_info.reset_needed = 0;
6136			ppd->qsfp_info.limiting_active = 0;
6137			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6138					       flags);
6139			/* Invert the ModPresent pin now to detect plug-in */
6140			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6141				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6142
6143			if ((ppd->offline_disabled_reason >
6144			  HFI1_ODR_MASK(
6145			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6146			  (ppd->offline_disabled_reason ==
6147			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6148				ppd->offline_disabled_reason =
6149				HFI1_ODR_MASK(
6150				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6151
6152			if (ppd->host_link_state == HLS_DN_POLL) {
6153				/*
6154				 * The link is still in POLL. This means
6155				 * that the normal link down processing
6156				 * will not happen. We have to do it here
6157				 * before turning the DC off.
6158				 */
6159				queue_work(ppd->link_wq, &ppd->link_down_work);
6160			}
6161		} else {
6162			dd_dev_info(dd, "%s: QSFP module inserted\n",
6163				    __func__);
6164
6165			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6166			ppd->qsfp_info.cache_valid = 0;
6167			ppd->qsfp_info.cache_refresh_required = 1;
6168			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6169					       flags);
6170
6171			/*
6172			 * Stop inversion of ModPresent pin to detect
6173			 * removal of the cable
6174			 */
6175			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6176			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6177				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6178
6179			ppd->offline_disabled_reason =
6180				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6181		}
6182	}
6183
6184	if (reg & QSFP_HFI0_INT_N) {
6185		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6186			    __func__);
6187		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6188		ppd->qsfp_info.check_interrupt_flags = 1;
6189		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6190	}
6191
6192	/* Schedule the QSFP work only if there is a cable attached. */
6193	if (qsfp_mod_present(ppd))
6194		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6195}
6196
6197static int request_host_lcb_access(struct hfi1_devdata *dd)
6198{
6199	int ret;
6200
6201	ret = do_8051_command(dd, HCMD_MISC,
6202			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6203			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6204	if (ret != HCMD_SUCCESS) {
6205		dd_dev_err(dd, "%s: command failed with error %d\n",
6206			   __func__, ret);
6207	}
6208	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6209}
6210
6211static int request_8051_lcb_access(struct hfi1_devdata *dd)
6212{
6213	int ret;
6214
6215	ret = do_8051_command(dd, HCMD_MISC,
6216			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6217			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6218	if (ret != HCMD_SUCCESS) {
6219		dd_dev_err(dd, "%s: command failed with error %d\n",
6220			   __func__, ret);
6221	}
6222	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6223}
6224
6225/*
6226 * Set the LCB selector - allow host access.  The DCC selector always
6227 * points to the host.
6228 */
6229static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6230{
6231	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6232		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6233		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6234}
6235
6236/*
6237 * Clear the LCB selector - allow 8051 access.  The DCC selector always
6238 * points to the host.
6239 */
6240static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6241{
6242	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6243		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6244}
6245
6246/*
6247 * Acquire LCB access from the 8051.  If the host already has access,
6248 * just increment a counter.  Otherwise, inform the 8051 that the
6249 * host is taking access.
6250 *
6251 * Returns:
6252 *	0 on success
6253 *	-EBUSY if the 8051 has control and cannot be disturbed
6254 *	-errno if unable to acquire access from the 8051
6255 */
6256int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6257{
6258	struct hfi1_pportdata *ppd = dd->pport;
6259	int ret = 0;
6260
6261	/*
6262	 * Use the host link state lock so the operation of this routine
6263	 * { link state check, selector change, count increment } can occur
6264	 * as a unit against a link state change.  Otherwise there is a
6265	 * race between the state change and the count increment.
6266	 */
6267	if (sleep_ok) {
6268		mutex_lock(&ppd->hls_lock);
6269	} else {
6270		while (!mutex_trylock(&ppd->hls_lock))
6271			udelay(1);
6272	}
6273
6274	/* this access is valid only when the link is up */
6275	if (ppd->host_link_state & HLS_DOWN) {
6276		dd_dev_info(dd, "%s: link state %s not up\n",
6277			    __func__, link_state_name(ppd->host_link_state));
6278		ret = -EBUSY;
6279		goto done;
6280	}
6281
6282	if (dd->lcb_access_count == 0) {
6283		ret = request_host_lcb_access(dd);
6284		if (ret) {
6285			dd_dev_err(dd,
6286				   "%s: unable to acquire LCB access, err %d\n",
6287				   __func__, ret);
6288			goto done;
6289		}
6290		set_host_lcb_access(dd);
6291	}
6292	dd->lcb_access_count++;
6293done:
6294	mutex_unlock(&ppd->hls_lock);
6295	return ret;
6296}
6297
6298/*
6299 * Release LCB access by decrementing the use count.  If the count is moving
6300 * from 1 to 0, inform 8051 that it has control back.
6301 *
6302 * Returns:
6303 *	0 on success
6304 *	-errno if unable to release access to the 8051
6305 */
6306int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6307{
6308	int ret = 0;
6309
6310	/*
6311	 * Use the host link state lock because the acquire needed it.
6312	 * Here, we only need to keep { selector change, count decrement }
6313	 * as a unit.
6314	 */
6315	if (sleep_ok) {
6316		mutex_lock(&dd->pport->hls_lock);
6317	} else {
6318		while (!mutex_trylock(&dd->pport->hls_lock))
6319			udelay(1);
6320	}
6321
6322	if (dd->lcb_access_count == 0) {
6323		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6324			   __func__);
6325		goto done;
6326	}
6327
6328	if (dd->lcb_access_count == 1) {
6329		set_8051_lcb_access(dd);
6330		ret = request_8051_lcb_access(dd);
6331		if (ret) {
6332			dd_dev_err(dd,
6333				   "%s: unable to release LCB access, err %d\n",
6334				   __func__, ret);
6335			/* restore host access if the grant didn't work */
6336			set_host_lcb_access(dd);
6337			goto done;
6338		}
6339	}
6340	dd->lcb_access_count--;
6341done:
6342	mutex_unlock(&dd->pport->hls_lock);
6343	return ret;
6344}
6345
6346/*
6347 * Initialize LCB access variables and state.  Called during driver load,
6348 * after most of the initialization is finished.
6349 *
6350 * The DC default is LCB access on for the host.  The driver defaults to
6351 * leaving access to the 8051.  Assign access now - this constrains the call
6352 * to this routine to be after all LCB set-up is done.  In particular, after
6353 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6354 */
6355static void init_lcb_access(struct hfi1_devdata *dd)
6356{
6357	dd->lcb_access_count = 0;
6358}
6359
6360/*
6361 * Write a response back to a 8051 request.
6362 */
6363static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6364{
6365	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6366		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6367		  (u64)return_code <<
6368		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6369		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6370}
6371
6372/*
6373 * Handle host requests from the 8051.
6374 */
6375static void handle_8051_request(struct hfi1_pportdata *ppd)
6376{
6377	struct hfi1_devdata *dd = ppd->dd;
6378	u64 reg;
6379	u16 data = 0;
6380	u8 type;
6381
6382	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6383	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6384		return;	/* no request */
6385
6386	/* zero out COMPLETED so the response is seen */
6387	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6388
6389	/* extract request details */
6390	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6391			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6392	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6393			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6394
6395	switch (type) {
6396	case HREQ_LOAD_CONFIG:
6397	case HREQ_SAVE_CONFIG:
6398	case HREQ_READ_CONFIG:
6399	case HREQ_SET_TX_EQ_ABS:
6400	case HREQ_SET_TX_EQ_REL:
6401	case HREQ_ENABLE:
6402		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6403			    type);
6404		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6405		break;
6406	case HREQ_LCB_RESET:
6407		/* Put the LCB, RX FPE and TX FPE into reset */
6408		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6409		/* Make sure the write completed */
6410		(void)read_csr(dd, DCC_CFG_RESET);
6411		/* Hold the reset long enough to take effect */
6412		udelay(1);
6413		/* Take the LCB, RX FPE and TX FPE out of reset */
6414		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6415		hreq_response(dd, HREQ_SUCCESS, 0);
6416
6417		break;
6418	case HREQ_CONFIG_DONE:
6419		hreq_response(dd, HREQ_SUCCESS, 0);
6420		break;
6421
6422	case HREQ_INTERFACE_TEST:
6423		hreq_response(dd, HREQ_SUCCESS, data);
6424		break;
6425	default:
6426		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6427		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6428		break;
6429	}
6430}
6431
6432/*
6433 * Set up allocation unit vaulue.
6434 */
6435void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6436{
6437	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6438
6439	/* do not modify other values in the register */
6440	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6441	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6442	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6443}
6444
6445/*
6446 * Set up initial VL15 credits of the remote.  Assumes the rest of
6447 * the CM credit registers are zero from a previous global or credit reset.
6448 * Shared limit for VL15 will always be 0.
6449 */
6450void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6451{
6452	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6453
6454	/* set initial values for total and shared credit limit */
6455	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6456		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6457
6458	/*
6459	 * Set total limit to be equal to VL15 credits.
6460	 * Leave shared limit at 0.
6461	 */
6462	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6463	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6464
6465	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6466		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6467}
6468
6469/*
6470 * Zero all credit details from the previous connection and
6471 * reset the CM manager's internal counters.
6472 */
6473void reset_link_credits(struct hfi1_devdata *dd)
6474{
6475	int i;
6476
6477	/* remove all previous VL credit limits */
6478	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6479		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6480	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6481	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6482	/* reset the CM block */
6483	pio_send_control(dd, PSC_CM_RESET);
6484	/* reset cached value */
6485	dd->vl15buf_cached = 0;
6486}
6487
6488/* convert a vCU to a CU */
6489static u32 vcu_to_cu(u8 vcu)
6490{
6491	return 1 << vcu;
6492}
6493
6494/* convert a CU to a vCU */
6495static u8 cu_to_vcu(u32 cu)
6496{
6497	return ilog2(cu);
6498}
6499
6500/* convert a vAU to an AU */
6501static u32 vau_to_au(u8 vau)
6502{
6503	return 8 * (1 << vau);
6504}
6505
6506static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6507{
6508	ppd->sm_trap_qp = 0x0;
6509	ppd->sa_qp = 0x1;
6510}
6511
6512/*
6513 * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6514 */
6515static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6516{
6517	u64 reg;
6518
6519	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6520	write_csr(dd, DC_LCB_CFG_RUN, 0);
6521	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6522	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6523		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6524	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6525	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6526	reg = read_csr(dd, DCC_CFG_RESET);
6527	write_csr(dd, DCC_CFG_RESET, reg |
6528		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6529	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6530	if (!abort) {
6531		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6532		write_csr(dd, DCC_CFG_RESET, reg);
6533		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6534	}
6535}
6536
6537/*
6538 * This routine should be called after the link has been transitioned to
6539 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6540 * reset).
6541 *
6542 * The expectation is that the caller of this routine would have taken
6543 * care of properly transitioning the link into the correct state.
6544 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6545 *       before calling this function.
6546 */
6547static void _dc_shutdown(struct hfi1_devdata *dd)
6548{
6549	lockdep_assert_held(&dd->dc8051_lock);
6550
6551	if (dd->dc_shutdown)
6552		return;
6553
6554	dd->dc_shutdown = 1;
6555	/* Shutdown the LCB */
6556	lcb_shutdown(dd, 1);
6557	/*
6558	 * Going to OFFLINE would have causes the 8051 to put the
6559	 * SerDes into reset already. Just need to shut down the 8051,
6560	 * itself.
6561	 */
6562	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6563}
6564
6565static void dc_shutdown(struct hfi1_devdata *dd)
6566{
6567	mutex_lock(&dd->dc8051_lock);
6568	_dc_shutdown(dd);
6569	mutex_unlock(&dd->dc8051_lock);
6570}
6571
6572/*
6573 * Calling this after the DC has been brought out of reset should not
6574 * do any damage.
6575 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6576 *       before calling this function.
6577 */
6578static void _dc_start(struct hfi1_devdata *dd)
6579{
6580	lockdep_assert_held(&dd->dc8051_lock);
6581
6582	if (!dd->dc_shutdown)
6583		return;
6584
6585	/* Take the 8051 out of reset */
6586	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6587	/* Wait until 8051 is ready */
6588	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6589		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6590			   __func__);
6591
6592	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6593	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6594	/* lcb_shutdown() with abort=1 does not restore these */
6595	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6596	dd->dc_shutdown = 0;
6597}
6598
6599static void dc_start(struct hfi1_devdata *dd)
6600{
6601	mutex_lock(&dd->dc8051_lock);
6602	_dc_start(dd);
6603	mutex_unlock(&dd->dc8051_lock);
6604}
6605
6606/*
6607 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6608 */
6609static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6610{
6611	u64 rx_radr, tx_radr;
6612	u32 version;
6613
6614	if (dd->icode != ICODE_FPGA_EMULATION)
6615		return;
6616
6617	/*
6618	 * These LCB defaults on emulator _s are good, nothing to do here:
6619	 *	LCB_CFG_TX_FIFOS_RADR
6620	 *	LCB_CFG_RX_FIFOS_RADR
6621	 *	LCB_CFG_LN_DCLK
6622	 *	LCB_CFG_IGNORE_LOST_RCLK
6623	 */
6624	if (is_emulator_s(dd))
6625		return;
6626	/* else this is _p */
6627
6628	version = emulator_rev(dd);
6629	if (!is_ax(dd))
6630		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6631
6632	if (version <= 0x12) {
6633		/* release 0x12 and below */
6634
6635		/*
6636		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6637		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6638		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6639		 */
6640		rx_radr =
6641		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6642		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6643		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6644		/*
6645		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6646		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6647		 */
6648		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6649	} else if (version <= 0x18) {
6650		/* release 0x13 up to 0x18 */
6651		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6652		rx_radr =
6653		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6654		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6655		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6656		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6657	} else if (version == 0x19) {
6658		/* release 0x19 */
6659		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6660		rx_radr =
6661		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6662		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6663		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6664		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6665	} else if (version == 0x1a) {
6666		/* release 0x1a */
6667		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6668		rx_radr =
6669		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6670		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6671		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6672		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6673		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6674	} else {
6675		/* release 0x1b and higher */
6676		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6677		rx_radr =
6678		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6679		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6680		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6681		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6682	}
6683
6684	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6685	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6686	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6687		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6688	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6689}
6690
6691/*
6692 * Handle a SMA idle message
6693 *
6694 * This is a work-queue function outside of the interrupt.
6695 */
6696void handle_sma_message(struct work_struct *work)
6697{
6698	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6699							sma_message_work);
6700	struct hfi1_devdata *dd = ppd->dd;
6701	u64 msg;
6702	int ret;
6703
6704	/*
6705	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6706	 * is stripped off
6707	 */
6708	ret = read_idle_sma(dd, &msg);
6709	if (ret)
6710		return;
6711	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6712	/*
6713	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6714	 */
6715	switch (msg & 0xff) {
6716	case SMA_IDLE_ARM:
6717		/*
6718		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6719		 * State Transitions
6720		 *
6721		 * Only expected in INIT or ARMED, discard otherwise.
6722		 */
6723		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6724			ppd->neighbor_normal = 1;
6725		break;
6726	case SMA_IDLE_ACTIVE:
6727		/*
6728		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6729		 * State Transitions
6730		 *
6731		 * Can activate the node.  Discard otherwise.
6732		 */
6733		if (ppd->host_link_state == HLS_UP_ARMED &&
6734		    ppd->is_active_optimize_enabled) {
6735			ppd->neighbor_normal = 1;
6736			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6737			if (ret)
6738				dd_dev_err(
6739					dd,
6740					"%s: received Active SMA idle message, couldn't set link to Active\n",
6741					__func__);
6742		}
6743		break;
6744	default:
6745		dd_dev_err(dd,
6746			   "%s: received unexpected SMA idle message 0x%llx\n",
6747			   __func__, msg);
6748		break;
6749	}
6750}
6751
6752static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6753{
6754	u64 rcvctrl;
6755	unsigned long flags;
6756
6757	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6758	rcvctrl = read_csr(dd, RCV_CTRL);
6759	rcvctrl |= add;
6760	rcvctrl &= ~clear;
6761	write_csr(dd, RCV_CTRL, rcvctrl);
6762	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6763}
6764
6765static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6766{
6767	adjust_rcvctrl(dd, add, 0);
6768}
6769
6770static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6771{
6772	adjust_rcvctrl(dd, 0, clear);
6773}
6774
6775/*
6776 * Called from all interrupt handlers to start handling an SPC freeze.
6777 */
6778void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6779{
6780	struct hfi1_devdata *dd = ppd->dd;
6781	struct send_context *sc;
6782	int i;
6783	int sc_flags;
6784
6785	if (flags & FREEZE_SELF)
6786		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6787
6788	/* enter frozen mode */
6789	dd->flags |= HFI1_FROZEN;
6790
6791	/* notify all SDMA engines that they are going into a freeze */
6792	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6793
6794	sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6795					      SCF_LINK_DOWN : 0);
6796	/* do halt pre-handling on all enabled send contexts */
6797	for (i = 0; i < dd->num_send_contexts; i++) {
6798		sc = dd->send_contexts[i].sc;
6799		if (sc && (sc->flags & SCF_ENABLED))
6800			sc_stop(sc, sc_flags);
6801	}
6802
6803	/* Send context are frozen. Notify user space */
6804	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6805
6806	if (flags & FREEZE_ABORT) {
6807		dd_dev_err(dd,
6808			   "Aborted freeze recovery. Please REBOOT system\n");
6809		return;
6810	}
6811	/* queue non-interrupt handler */
6812	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6813}
6814
6815/*
6816 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6817 * depending on the "freeze" parameter.
6818 *
6819 * No need to return an error if it times out, our only option
6820 * is to proceed anyway.
6821 */
6822static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6823{
6824	unsigned long timeout;
6825	u64 reg;
6826
6827	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6828	while (1) {
6829		reg = read_csr(dd, CCE_STATUS);
6830		if (freeze) {
6831			/* waiting until all indicators are set */
6832			if ((reg & ALL_FROZE) == ALL_FROZE)
6833				return;	/* all done */
6834		} else {
6835			/* waiting until all indicators are clear */
6836			if ((reg & ALL_FROZE) == 0)
6837				return; /* all done */
6838		}
6839
6840		if (time_after(jiffies, timeout)) {
6841			dd_dev_err(dd,
6842				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6843				   freeze ? "" : "un", reg & ALL_FROZE,
6844				   freeze ? ALL_FROZE : 0ull);
6845			return;
6846		}
6847		usleep_range(80, 120);
6848	}
6849}
6850
6851/*
6852 * Do all freeze handling for the RXE block.
6853 */
6854static void rxe_freeze(struct hfi1_devdata *dd)
6855{
6856	int i;
6857	struct hfi1_ctxtdata *rcd;
6858
6859	/* disable port */
6860	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6861
6862	/* disable all receive contexts */
6863	for (i = 0; i < dd->num_rcv_contexts; i++) {
6864		rcd = hfi1_rcd_get_by_index(dd, i);
6865		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6866		hfi1_rcd_put(rcd);
6867	}
6868}
6869
6870/*
6871 * Unfreeze handling for the RXE block - kernel contexts only.
6872 * This will also enable the port.  User contexts will do unfreeze
6873 * handling on a per-context basis as they call into the driver.
6874 *
6875 */
6876static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6877{
6878	u32 rcvmask;
6879	u16 i;
6880	struct hfi1_ctxtdata *rcd;
6881
6882	/* enable all kernel contexts */
6883	for (i = 0; i < dd->num_rcv_contexts; i++) {
6884		rcd = hfi1_rcd_get_by_index(dd, i);
6885
6886		/* Ensure all non-user contexts(including vnic) are enabled */
6887		if (!rcd ||
6888		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6889			hfi1_rcd_put(rcd);
6890			continue;
6891		}
6892		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6893		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6894		rcvmask |= hfi1_rcvhdrtail_kvaddr(rcd) ?
6895			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6896		hfi1_rcvctrl(dd, rcvmask, rcd);
6897		hfi1_rcd_put(rcd);
6898	}
6899
6900	/* enable port */
6901	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6902}
6903
6904/*
6905 * Non-interrupt SPC freeze handling.
6906 *
6907 * This is a work-queue function outside of the triggering interrupt.
6908 */
6909void handle_freeze(struct work_struct *work)
6910{
6911	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6912								freeze_work);
6913	struct hfi1_devdata *dd = ppd->dd;
6914
6915	/* wait for freeze indicators on all affected blocks */
6916	wait_for_freeze_status(dd, 1);
6917
6918	/* SPC is now frozen */
6919
6920	/* do send PIO freeze steps */
6921	pio_freeze(dd);
6922
6923	/* do send DMA freeze steps */
6924	sdma_freeze(dd);
6925
6926	/* do send egress freeze steps - nothing to do */
6927
6928	/* do receive freeze steps */
6929	rxe_freeze(dd);
6930
6931	/*
6932	 * Unfreeze the hardware - clear the freeze, wait for each
6933	 * block's frozen bit to clear, then clear the frozen flag.
6934	 */
6935	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6936	wait_for_freeze_status(dd, 0);
6937
6938	if (is_ax(dd)) {
6939		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6940		wait_for_freeze_status(dd, 1);
6941		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6942		wait_for_freeze_status(dd, 0);
6943	}
6944
6945	/* do send PIO unfreeze steps for kernel contexts */
6946	pio_kernel_unfreeze(dd);
6947
6948	/* do send DMA unfreeze steps */
6949	sdma_unfreeze(dd);
6950
6951	/* do send egress unfreeze steps - nothing to do */
6952
6953	/* do receive unfreeze steps for kernel contexts */
6954	rxe_kernel_unfreeze(dd);
6955
6956	/*
6957	 * The unfreeze procedure touches global device registers when
6958	 * it disables and re-enables RXE. Mark the device unfrozen
6959	 * after all that is done so other parts of the driver waiting
6960	 * for the device to unfreeze don't do things out of order.
6961	 *
6962	 * The above implies that the meaning of HFI1_FROZEN flag is
6963	 * "Device has gone into freeze mode and freeze mode handling
6964	 * is still in progress."
6965	 *
6966	 * The flag will be removed when freeze mode processing has
6967	 * completed.
6968	 */
6969	dd->flags &= ~HFI1_FROZEN;
6970	wake_up(&dd->event_queue);
6971
6972	/* no longer frozen */
6973}
6974
6975/**
6976 * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6977 * counters.
6978 * @ppd: info of physical Hfi port
6979 * @link_width: new link width after link up or downgrade
6980 *
6981 * Update the PortXmitWait and PortVlXmitWait counters after
6982 * a link up or downgrade event to reflect a link width change.
6983 */
6984static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6985{
6986	int i;
6987	u16 tx_width;
6988	u16 link_speed;
6989
6990	tx_width = tx_link_width(link_width);
6991	link_speed = get_link_speed(ppd->link_speed_active);
6992
6993	/*
6994	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6995	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6996	 */
6997	for (i = 0; i < C_VL_COUNT + 1; i++)
6998		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6999}
7000
7001/*
7002 * Handle a link up interrupt from the 8051.
7003 *
7004 * This is a work-queue function outside of the interrupt.
7005 */
7006void handle_link_up(struct work_struct *work)
7007{
7008	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7009						  link_up_work);
7010	struct hfi1_devdata *dd = ppd->dd;
7011
7012	set_link_state(ppd, HLS_UP_INIT);
7013
7014	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
7015	read_ltp_rtt(dd);
7016	/*
7017	 * OPA specifies that certain counters are cleared on a transition
7018	 * to link up, so do that.
7019	 */
7020	clear_linkup_counters(dd);
7021	/*
7022	 * And (re)set link up default values.
7023	 */
7024	set_linkup_defaults(ppd);
7025
7026	/*
7027	 * Set VL15 credits. Use cached value from verify cap interrupt.
7028	 * In case of quick linkup or simulator, vl15 value will be set by
7029	 * handle_linkup_change. VerifyCap interrupt handler will not be
7030	 * called in those scenarios.
7031	 */
7032	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
7033		set_up_vl15(dd, dd->vl15buf_cached);
7034
7035	/* enforce link speed enabled */
7036	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
7037		/* oops - current speed is not enabled, bounce */
7038		dd_dev_err(dd,
7039			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
7040			   ppd->link_speed_active, ppd->link_speed_enabled);
7041		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7042				     OPA_LINKDOWN_REASON_SPEED_POLICY);
7043		set_link_state(ppd, HLS_DN_OFFLINE);
7044		start_link(ppd);
7045	}
7046}
7047
7048/*
7049 * Several pieces of LNI information were cached for SMA in ppd.
7050 * Reset these on link down
7051 */
7052static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7053{
7054	ppd->neighbor_guid = 0;
7055	ppd->neighbor_port_number = 0;
7056	ppd->neighbor_type = 0;
7057	ppd->neighbor_fm_security = 0;
7058}
7059
7060static const char * const link_down_reason_strs[] = {
7061	[OPA_LINKDOWN_REASON_NONE] = "None",
7062	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7063	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7064	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7065	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7066	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7067	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7068	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7069	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7070	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7071	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7072	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7073	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7074	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7075	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7076	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7077	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7078	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7079	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7080	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7081	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7082	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7083	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7084	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7085	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7086	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7087	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7088	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7089	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7090	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7091	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7092	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7093	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7094					"Excessive buffer overrun",
7095	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7096	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7097	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7098	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7099	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7100	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7101	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7102	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7103					"Local media not installed",
7104	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7105	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7106	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7107					"End to end not installed",
7108	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7109	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7110	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7111	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7112	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7113	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7114};
7115
7116/* return the neighbor link down reason string */
7117static const char *link_down_reason_str(u8 reason)
7118{
7119	const char *str = NULL;
7120
7121	if (reason < ARRAY_SIZE(link_down_reason_strs))
7122		str = link_down_reason_strs[reason];
7123	if (!str)
7124		str = "(invalid)";
7125
7126	return str;
7127}
7128
7129/*
7130 * Handle a link down interrupt from the 8051.
7131 *
7132 * This is a work-queue function outside of the interrupt.
7133 */
7134void handle_link_down(struct work_struct *work)
7135{
7136	u8 lcl_reason, neigh_reason = 0;
7137	u8 link_down_reason;
7138	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7139						  link_down_work);
7140	int was_up;
7141	static const char ldr_str[] = "Link down reason: ";
7142
7143	if ((ppd->host_link_state &
7144	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7145	     ppd->port_type == PORT_TYPE_FIXED)
7146		ppd->offline_disabled_reason =
7147			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7148
7149	/* Go offline first, then deal with reading/writing through 8051 */
7150	was_up = !!(ppd->host_link_state & HLS_UP);
7151	set_link_state(ppd, HLS_DN_OFFLINE);
7152	xchg(&ppd->is_link_down_queued, 0);
7153
7154	if (was_up) {
7155		lcl_reason = 0;
7156		/* link down reason is only valid if the link was up */
7157		read_link_down_reason(ppd->dd, &link_down_reason);
7158		switch (link_down_reason) {
7159		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7160			/* the link went down, no idle message reason */
7161			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7162				    ldr_str);
7163			break;
7164		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7165			/*
7166			 * The neighbor reason is only valid if an idle message
7167			 * was received for it.
7168			 */
7169			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7170			dd_dev_info(ppd->dd,
7171				    "%sNeighbor link down message %d, %s\n",
7172				    ldr_str, neigh_reason,
7173				    link_down_reason_str(neigh_reason));
7174			break;
7175		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7176			dd_dev_info(ppd->dd,
7177				    "%sHost requested link to go offline\n",
7178				    ldr_str);
7179			break;
7180		default:
7181			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7182				    ldr_str, link_down_reason);
7183			break;
7184		}
7185
7186		/*
7187		 * If no reason, assume peer-initiated but missed
7188		 * LinkGoingDown idle flits.
7189		 */
7190		if (neigh_reason == 0)
7191			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7192	} else {
7193		/* went down while polling or going up */
7194		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7195	}
7196
7197	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7198
7199	/* inform the SMA when the link transitions from up to down */
7200	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7201	    ppd->neigh_link_down_reason.sma == 0) {
7202		ppd->local_link_down_reason.sma =
7203					ppd->local_link_down_reason.latest;
7204		ppd->neigh_link_down_reason.sma =
7205					ppd->neigh_link_down_reason.latest;
7206	}
7207
7208	reset_neighbor_info(ppd);
7209
7210	/* disable the port */
7211	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7212
7213	/*
7214	 * If there is no cable attached, turn the DC off. Otherwise,
7215	 * start the link bring up.
7216	 */
7217	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7218		dc_shutdown(ppd->dd);
7219	else
7220		start_link(ppd);
7221}
7222
7223void handle_link_bounce(struct work_struct *work)
7224{
7225	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7226							link_bounce_work);
7227
7228	/*
7229	 * Only do something if the link is currently up.
7230	 */
7231	if (ppd->host_link_state & HLS_UP) {
7232		set_link_state(ppd, HLS_DN_OFFLINE);
7233		start_link(ppd);
7234	} else {
7235		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7236			    __func__, link_state_name(ppd->host_link_state));
7237	}
7238}
7239
7240/*
7241 * Mask conversion: Capability exchange to Port LTP.  The capability
7242 * exchange has an implicit 16b CRC that is mandatory.
7243 */
7244static int cap_to_port_ltp(int cap)
7245{
7246	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7247
7248	if (cap & CAP_CRC_14B)
7249		port_ltp |= PORT_LTP_CRC_MODE_14;
7250	if (cap & CAP_CRC_48B)
7251		port_ltp |= PORT_LTP_CRC_MODE_48;
7252	if (cap & CAP_CRC_12B_16B_PER_LANE)
7253		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7254
7255	return port_ltp;
7256}
7257
7258/*
7259 * Convert an OPA Port LTP mask to capability mask
7260 */
7261int port_ltp_to_cap(int port_ltp)
7262{
7263	int cap_mask = 0;
7264
7265	if (port_ltp & PORT_LTP_CRC_MODE_14)
7266		cap_mask |= CAP_CRC_14B;
7267	if (port_ltp & PORT_LTP_CRC_MODE_48)
7268		cap_mask |= CAP_CRC_48B;
7269	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7270		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7271
7272	return cap_mask;
7273}
7274
7275/*
7276 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7277 */
7278static int lcb_to_port_ltp(int lcb_crc)
7279{
7280	int port_ltp = 0;
7281
7282	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7283		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7284	else if (lcb_crc == LCB_CRC_48B)
7285		port_ltp = PORT_LTP_CRC_MODE_48;
7286	else if (lcb_crc == LCB_CRC_14B)
7287		port_ltp = PORT_LTP_CRC_MODE_14;
7288	else
7289		port_ltp = PORT_LTP_CRC_MODE_16;
7290
7291	return port_ltp;
7292}
7293
7294static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7295{
7296	if (ppd->pkeys[2] != 0) {
7297		ppd->pkeys[2] = 0;
7298		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7299		hfi1_event_pkey_change(ppd->dd, ppd->port);
7300	}
7301}
7302
7303/*
7304 * Convert the given link width to the OPA link width bitmask.
7305 */
7306static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7307{
7308	switch (width) {
7309	case 0:
7310		/*
7311		 * Simulator and quick linkup do not set the width.
7312		 * Just set it to 4x without complaint.
7313		 */
7314		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7315			return OPA_LINK_WIDTH_4X;
7316		return 0; /* no lanes up */
7317	case 1: return OPA_LINK_WIDTH_1X;
7318	case 2: return OPA_LINK_WIDTH_2X;
7319	case 3: return OPA_LINK_WIDTH_3X;
7320	case 4: return OPA_LINK_WIDTH_4X;
7321	default:
7322		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7323			    __func__, width);
7324		return OPA_LINK_WIDTH_4X;
7325	}
7326}
7327
7328/*
7329 * Do a population count on the bottom nibble.
7330 */
7331static const u8 bit_counts[16] = {
7332	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7333};
7334
7335static inline u8 nibble_to_count(u8 nibble)
7336{
7337	return bit_counts[nibble & 0xf];
7338}
7339
7340/*
7341 * Read the active lane information from the 8051 registers and return
7342 * their widths.
7343 *
7344 * Active lane information is found in these 8051 registers:
7345 *	enable_lane_tx
7346 *	enable_lane_rx
7347 */
7348static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7349			    u16 *rx_width)
7350{
7351	u16 tx, rx;
7352	u8 enable_lane_rx;
7353	u8 enable_lane_tx;
7354	u8 tx_polarity_inversion;
7355	u8 rx_polarity_inversion;
7356	u8 max_rate;
7357
7358	/* read the active lanes */
7359	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7360			 &rx_polarity_inversion, &max_rate);
7361	read_local_lni(dd, &enable_lane_rx);
7362
7363	/* convert to counts */
7364	tx = nibble_to_count(enable_lane_tx);
7365	rx = nibble_to_count(enable_lane_rx);
7366
7367	/*
7368	 * Set link_speed_active here, overriding what was set in
7369	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7370	 * set the max_rate field in handle_verify_cap until v0.19.
7371	 */
7372	if ((dd->icode == ICODE_RTL_SILICON) &&
7373	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7374		/* max_rate: 0 = 12.5G, 1 = 25G */
7375		switch (max_rate) {
7376		case 0:
7377			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7378			break;
7379		case 1:
7380			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7381			break;
7382		default:
7383			dd_dev_err(dd,
7384				   "%s: unexpected max rate %d, using 25Gb\n",
7385				   __func__, (int)max_rate);
7386			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7387			break;
7388		}
7389	}
7390
7391	dd_dev_info(dd,
7392		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7393		    enable_lane_tx, tx, enable_lane_rx, rx);
7394	*tx_width = link_width_to_bits(dd, tx);
7395	*rx_width = link_width_to_bits(dd, rx);
7396}
7397
7398/*
7399 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7400 * Valid after the end of VerifyCap and during LinkUp.  Does not change
7401 * after link up.  I.e. look elsewhere for downgrade information.
7402 *
7403 * Bits are:
7404 *	+ bits [7:4] contain the number of active transmitters
7405 *	+ bits [3:0] contain the number of active receivers
7406 * These are numbers 1 through 4 and can be different values if the
7407 * link is asymmetric.
7408 *
7409 * verify_cap_local_fm_link_width[0] retains its original value.
7410 */
7411static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7412			      u16 *rx_width)
7413{
7414	u16 widths, tx, rx;
7415	u8 misc_bits, local_flags;
7416	u16 active_tx, active_rx;
7417
7418	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7419	tx = widths >> 12;
7420	rx = (widths >> 8) & 0xf;
7421
7422	*tx_width = link_width_to_bits(dd, tx);
7423	*rx_width = link_width_to_bits(dd, rx);
7424
7425	/* print the active widths */
7426	get_link_widths(dd, &active_tx, &active_rx);
7427}
7428
7429/*
7430 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7431 * hardware information when the link first comes up.
7432 *
7433 * The link width is not available until after VerifyCap.AllFramesReceived
7434 * (the trigger for handle_verify_cap), so this is outside that routine
7435 * and should be called when the 8051 signals linkup.
7436 */
7437void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7438{
7439	u16 tx_width, rx_width;
7440
7441	/* get end-of-LNI link widths */
7442	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7443
7444	/* use tx_width as the link is supposed to be symmetric on link up */
7445	ppd->link_width_active = tx_width;
7446	/* link width downgrade active (LWD.A) starts out matching LW.A */
7447	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7448	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7449	/* per OPA spec, on link up LWD.E resets to LWD.S */
7450	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7451	/* cache the active egress rate (units {10^6 bits/sec]) */
7452	ppd->current_egress_rate = active_egress_rate(ppd);
7453}
7454
7455/*
7456 * Handle a verify capabilities interrupt from the 8051.
7457 *
7458 * This is a work-queue function outside of the interrupt.
7459 */
7460void handle_verify_cap(struct work_struct *work)
7461{
7462	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7463								link_vc_work);
7464	struct hfi1_devdata *dd = ppd->dd;
7465	u64 reg;
7466	u8 power_management;
7467	u8 continuous;
7468	u8 vcu;
7469	u8 vau;
7470	u8 z;
7471	u16 vl15buf;
7472	u16 link_widths;
7473	u16 crc_mask;
7474	u16 crc_val;
7475	u16 device_id;
7476	u16 active_tx, active_rx;
7477	u8 partner_supported_crc;
7478	u8 remote_tx_rate;
7479	u8 device_rev;
7480
7481	set_link_state(ppd, HLS_VERIFY_CAP);
7482
7483	lcb_shutdown(dd, 0);
7484	adjust_lcb_for_fpga_serdes(dd);
7485
7486	read_vc_remote_phy(dd, &power_management, &continuous);
7487	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7488			      &partner_supported_crc);
7489	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7490	read_remote_device_id(dd, &device_id, &device_rev);
7491
7492	/* print the active widths */
7493	get_link_widths(dd, &active_tx, &active_rx);
7494	dd_dev_info(dd,
7495		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7496		    (int)power_management, (int)continuous);
7497	dd_dev_info(dd,
7498		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7499		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7500		    (int)partner_supported_crc);
7501	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7502		    (u32)remote_tx_rate, (u32)link_widths);
7503	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7504		    (u32)device_id, (u32)device_rev);
7505	/*
7506	 * The peer vAU value just read is the peer receiver value.  HFI does
7507	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7508	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7509	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7510	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7511	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7512	 * subject to the Z value exception.
7513	 */
7514	if (vau == 0)
7515		vau = 1;
7516	set_up_vau(dd, vau);
7517
7518	/*
7519	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7520	 * credits value and wait for link-up interrupt ot set it.
7521	 */
7522	set_up_vl15(dd, 0);
7523	dd->vl15buf_cached = vl15buf;
7524
7525	/* set up the LCB CRC mode */
7526	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7527
7528	/* order is important: use the lowest bit in common */
7529	if (crc_mask & CAP_CRC_14B)
7530		crc_val = LCB_CRC_14B;
7531	else if (crc_mask & CAP_CRC_48B)
7532		crc_val = LCB_CRC_48B;
7533	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7534		crc_val = LCB_CRC_12B_16B_PER_LANE;
7535	else
7536		crc_val = LCB_CRC_16B;
7537
7538	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7539	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7540		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7541
7542	/* set (14b only) or clear sideband credit */
7543	reg = read_csr(dd, SEND_CM_CTRL);
7544	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7545		write_csr(dd, SEND_CM_CTRL,
7546			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7547	} else {
7548		write_csr(dd, SEND_CM_CTRL,
7549			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7550	}
7551
7552	ppd->link_speed_active = 0;	/* invalid value */
7553	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7554		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7555		switch (remote_tx_rate) {
7556		case 0:
7557			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7558			break;
7559		case 1:
7560			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7561			break;
7562		}
7563	} else {
7564		/* actual rate is highest bit of the ANDed rates */
7565		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7566
7567		if (rate & 2)
7568			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7569		else if (rate & 1)
7570			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7571	}
7572	if (ppd->link_speed_active == 0) {
7573		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7574			   __func__, (int)remote_tx_rate);
7575		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7576	}
7577
7578	/*
7579	 * Cache the values of the supported, enabled, and active
7580	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7581	 * flags that are returned in the portinfo query differ from
7582	 * what's in the link_crc_mask, crc_sizes, and crc_val
7583	 * variables. Convert these here.
7584	 */
7585	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7586		/* supported crc modes */
7587	ppd->port_ltp_crc_mode |=
7588		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7589		/* enabled crc modes */
7590	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7591		/* active crc mode */
7592
7593	/* set up the remote credit return table */
7594	assign_remote_cm_au_table(dd, vcu);
7595
7596	/*
7597	 * The LCB is reset on entry to handle_verify_cap(), so this must
7598	 * be applied on every link up.
7599	 *
7600	 * Adjust LCB error kill enable to kill the link if
7601	 * these RBUF errors are seen:
7602	 *	REPLAY_BUF_MBE_SMASK
7603	 *	FLIT_INPUT_BUF_MBE_SMASK
7604	 */
7605	if (is_ax(dd)) {			/* fixed in B0 */
7606		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7607		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7608			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7609		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7610	}
7611
7612	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7613	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7614
7615	/* give 8051 access to the LCB CSRs */
7616	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7617	set_8051_lcb_access(dd);
7618
7619	/* tell the 8051 to go to LinkUp */
7620	set_link_state(ppd, HLS_GOING_UP);
7621}
7622
7623/**
7624 * apply_link_downgrade_policy - Apply the link width downgrade enabled
7625 * policy against the current active link widths.
7626 * @ppd: info of physical Hfi port
7627 * @refresh_widths: True indicates link downgrade event
7628 * @return: True indicates a successful link downgrade. False indicates
7629 *	    link downgrade event failed and the link will bounce back to
7630 *	    default link width.
7631 *
7632 * Called when the enabled policy changes or the active link widths
7633 * change.
7634 * Refresh_widths indicates that a link downgrade occurred. The
7635 * link_downgraded variable is set by refresh_widths and
7636 * determines the success/failure of the policy application.
7637 */
7638bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7639				 bool refresh_widths)
7640{
7641	int do_bounce = 0;
7642	int tries;
7643	u16 lwde;
7644	u16 tx, rx;
7645	bool link_downgraded = refresh_widths;
7646
7647	/* use the hls lock to avoid a race with actual link up */
7648	tries = 0;
7649retry:
7650	mutex_lock(&ppd->hls_lock);
7651	/* only apply if the link is up */
7652	if (ppd->host_link_state & HLS_DOWN) {
7653		/* still going up..wait and retry */
7654		if (ppd->host_link_state & HLS_GOING_UP) {
7655			if (++tries < 1000) {
7656				mutex_unlock(&ppd->hls_lock);
7657				usleep_range(100, 120); /* arbitrary */
7658				goto retry;
7659			}
7660			dd_dev_err(ppd->dd,
7661				   "%s: giving up waiting for link state change\n",
7662				   __func__);
7663		}
7664		goto done;
7665	}
7666
7667	lwde = ppd->link_width_downgrade_enabled;
7668
7669	if (refresh_widths) {
7670		get_link_widths(ppd->dd, &tx, &rx);
7671		ppd->link_width_downgrade_tx_active = tx;
7672		ppd->link_width_downgrade_rx_active = rx;
7673	}
7674
7675	if (ppd->link_width_downgrade_tx_active == 0 ||
7676	    ppd->link_width_downgrade_rx_active == 0) {
7677		/* the 8051 reported a dead link as a downgrade */
7678		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7679		link_downgraded = false;
7680	} else if (lwde == 0) {
7681		/* downgrade is disabled */
7682
7683		/* bounce if not at starting active width */
7684		if ((ppd->link_width_active !=
7685		     ppd->link_width_downgrade_tx_active) ||
7686		    (ppd->link_width_active !=
7687		     ppd->link_width_downgrade_rx_active)) {
7688			dd_dev_err(ppd->dd,
7689				   "Link downgrade is disabled and link has downgraded, downing link\n");
7690			dd_dev_err(ppd->dd,
7691				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7692				   ppd->link_width_active,
7693				   ppd->link_width_downgrade_tx_active,
7694				   ppd->link_width_downgrade_rx_active);
7695			do_bounce = 1;
7696			link_downgraded = false;
7697		}
7698	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7699		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7700		/* Tx or Rx is outside the enabled policy */
7701		dd_dev_err(ppd->dd,
7702			   "Link is outside of downgrade allowed, downing link\n");
7703		dd_dev_err(ppd->dd,
7704			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7705			   lwde, ppd->link_width_downgrade_tx_active,
7706			   ppd->link_width_downgrade_rx_active);
7707		do_bounce = 1;
7708		link_downgraded = false;
7709	}
7710
7711done:
7712	mutex_unlock(&ppd->hls_lock);
7713
7714	if (do_bounce) {
7715		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7716				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7717		set_link_state(ppd, HLS_DN_OFFLINE);
7718		start_link(ppd);
7719	}
7720
7721	return link_downgraded;
7722}
7723
7724/*
7725 * Handle a link downgrade interrupt from the 8051.
7726 *
7727 * This is a work-queue function outside of the interrupt.
7728 */
7729void handle_link_downgrade(struct work_struct *work)
7730{
7731	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7732							link_downgrade_work);
7733
7734	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7735	if (apply_link_downgrade_policy(ppd, true))
7736		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7737}
7738
7739static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7740{
7741	return flag_string(buf, buf_len, flags, dcc_err_flags,
7742		ARRAY_SIZE(dcc_err_flags));
7743}
7744
7745static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7746{
7747	return flag_string(buf, buf_len, flags, lcb_err_flags,
7748		ARRAY_SIZE(lcb_err_flags));
7749}
7750
7751static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7752{
7753	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7754		ARRAY_SIZE(dc8051_err_flags));
7755}
7756
7757static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7758{
7759	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7760		ARRAY_SIZE(dc8051_info_err_flags));
7761}
7762
7763static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7764{
7765	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7766		ARRAY_SIZE(dc8051_info_host_msg_flags));
7767}
7768
7769static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7770{
7771	struct hfi1_pportdata *ppd = dd->pport;
7772	u64 info, err, host_msg;
7773	int queue_link_down = 0;
7774	char buf[96];
7775
7776	/* look at the flags */
7777	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7778		/* 8051 information set by firmware */
7779		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7780		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7781		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7782			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7783		host_msg = (info >>
7784			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7785			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7786
7787		/*
7788		 * Handle error flags.
7789		 */
7790		if (err & FAILED_LNI) {
7791			/*
7792			 * LNI error indications are cleared by the 8051
7793			 * only when starting polling.  Only pay attention
7794			 * to them when in the states that occur during
7795			 * LNI.
7796			 */
7797			if (ppd->host_link_state
7798			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7799				queue_link_down = 1;
7800				dd_dev_info(dd, "Link error: %s\n",
7801					    dc8051_info_err_string(buf,
7802								   sizeof(buf),
7803								   err &
7804								   FAILED_LNI));
7805			}
7806			err &= ~(u64)FAILED_LNI;
7807		}
7808		/* unknown frames can happen durning LNI, just count */
7809		if (err & UNKNOWN_FRAME) {
7810			ppd->unknown_frame_count++;
7811			err &= ~(u64)UNKNOWN_FRAME;
7812		}
7813		if (err) {
7814			/* report remaining errors, but do not do anything */
7815			dd_dev_err(dd, "8051 info error: %s\n",
7816				   dc8051_info_err_string(buf, sizeof(buf),
7817							  err));
7818		}
7819
7820		/*
7821		 * Handle host message flags.
7822		 */
7823		if (host_msg & HOST_REQ_DONE) {
7824			/*
7825			 * Presently, the driver does a busy wait for
7826			 * host requests to complete.  This is only an
7827			 * informational message.
7828			 * NOTE: The 8051 clears the host message
7829			 * information *on the next 8051 command*.
7830			 * Therefore, when linkup is achieved,
7831			 * this flag will still be set.
7832			 */
7833			host_msg &= ~(u64)HOST_REQ_DONE;
7834		}
7835		if (host_msg & BC_SMA_MSG) {
7836			queue_work(ppd->link_wq, &ppd->sma_message_work);
7837			host_msg &= ~(u64)BC_SMA_MSG;
7838		}
7839		if (host_msg & LINKUP_ACHIEVED) {
7840			dd_dev_info(dd, "8051: Link up\n");
7841			queue_work(ppd->link_wq, &ppd->link_up_work);
7842			host_msg &= ~(u64)LINKUP_ACHIEVED;
7843		}
7844		if (host_msg & EXT_DEVICE_CFG_REQ) {
7845			handle_8051_request(ppd);
7846			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7847		}
7848		if (host_msg & VERIFY_CAP_FRAME) {
7849			queue_work(ppd->link_wq, &ppd->link_vc_work);
7850			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7851		}
7852		if (host_msg & LINK_GOING_DOWN) {
7853			const char *extra = "";
7854			/* no downgrade action needed if going down */
7855			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7856				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7857				extra = " (ignoring downgrade)";
7858			}
7859			dd_dev_info(dd, "8051: Link down%s\n", extra);
7860			queue_link_down = 1;
7861			host_msg &= ~(u64)LINK_GOING_DOWN;
7862		}
7863		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7864			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7865			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7866		}
7867		if (host_msg) {
7868			/* report remaining messages, but do not do anything */
7869			dd_dev_info(dd, "8051 info host message: %s\n",
7870				    dc8051_info_host_msg_string(buf,
7871								sizeof(buf),
7872								host_msg));
7873		}
7874
7875		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7876	}
7877	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7878		/*
7879		 * Lost the 8051 heartbeat.  If this happens, we
7880		 * receive constant interrupts about it.  Disable
7881		 * the interrupt after the first.
7882		 */
7883		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7884		write_csr(dd, DC_DC8051_ERR_EN,
7885			  read_csr(dd, DC_DC8051_ERR_EN) &
7886			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7887
7888		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7889	}
7890	if (reg) {
7891		/* report the error, but do not do anything */
7892		dd_dev_err(dd, "8051 error: %s\n",
7893			   dc8051_err_string(buf, sizeof(buf), reg));
7894	}
7895
7896	if (queue_link_down) {
7897		/*
7898		 * if the link is already going down or disabled, do not
7899		 * queue another. If there's a link down entry already
7900		 * queued, don't queue another one.
7901		 */
7902		if ((ppd->host_link_state &
7903		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7904		    ppd->link_enabled == 0) {
7905			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7906				    __func__, ppd->host_link_state,
7907				    ppd->link_enabled);
7908		} else {
7909			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7910				dd_dev_info(dd,
7911					    "%s: link down request already queued\n",
7912					    __func__);
7913			else
7914				queue_work(ppd->link_wq, &ppd->link_down_work);
7915		}
7916	}
7917}
7918
7919static const char * const fm_config_txt[] = {
7920[0] =
7921	"BadHeadDist: Distance violation between two head flits",
7922[1] =
7923	"BadTailDist: Distance violation between two tail flits",
7924[2] =
7925	"BadCtrlDist: Distance violation between two credit control flits",
7926[3] =
7927	"BadCrdAck: Credits return for unsupported VL",
7928[4] =
7929	"UnsupportedVLMarker: Received VL Marker",
7930[5] =
7931	"BadPreempt: Exceeded the preemption nesting level",
7932[6] =
7933	"BadControlFlit: Received unsupported control flit",
7934/* no 7 */
7935[8] =
7936	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7937};
7938
7939static const char * const port_rcv_txt[] = {
7940[1] =
7941	"BadPktLen: Illegal PktLen",
7942[2] =
7943	"PktLenTooLong: Packet longer than PktLen",
7944[3] =
7945	"PktLenTooShort: Packet shorter than PktLen",
7946[4] =
7947	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7948[5] =
7949	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7950[6] =
7951	"BadL2: Illegal L2 opcode",
7952[7] =
7953	"BadSC: Unsupported SC",
7954[9] =
7955	"BadRC: Illegal RC",
7956[11] =
7957	"PreemptError: Preempting with same VL",
7958[12] =
7959	"PreemptVL15: Preempting a VL15 packet",
7960};
7961
7962#define OPA_LDR_FMCONFIG_OFFSET 16
7963#define OPA_LDR_PORTRCV_OFFSET 0
7964static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7965{
7966	u64 info, hdr0, hdr1;
7967	const char *extra;
7968	char buf[96];
7969	struct hfi1_pportdata *ppd = dd->pport;
7970	u8 lcl_reason = 0;
7971	int do_bounce = 0;
7972
7973	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7974		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7975			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7976			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7977			/* set status bit */
7978			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7979		}
7980		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7981	}
7982
7983	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7984		struct hfi1_pportdata *ppd = dd->pport;
7985		/* this counter saturates at (2^32) - 1 */
7986		if (ppd->link_downed < (u32)UINT_MAX)
7987			ppd->link_downed++;
7988		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7989	}
7990
7991	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7992		u8 reason_valid = 1;
7993
7994		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7995		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7996			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7997			/* set status bit */
7998			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7999		}
8000		switch (info) {
8001		case 0:
8002		case 1:
8003		case 2:
8004		case 3:
8005		case 4:
8006		case 5:
8007		case 6:
8008			extra = fm_config_txt[info];
8009			break;
8010		case 8:
8011			extra = fm_config_txt[info];
8012			if (ppd->port_error_action &
8013			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
8014				do_bounce = 1;
8015				/*
8016				 * lcl_reason cannot be derived from info
8017				 * for this error
8018				 */
8019				lcl_reason =
8020				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
8021			}
8022			break;
8023		default:
8024			reason_valid = 0;
8025			snprintf(buf, sizeof(buf), "reserved%lld", info);
8026			extra = buf;
8027			break;
8028		}
8029
8030		if (reason_valid && !do_bounce) {
8031			do_bounce = ppd->port_error_action &
8032					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
8033			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
8034		}
8035
8036		/* just report this */
8037		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
8038					extra);
8039		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
8040	}
8041
8042	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8043		u8 reason_valid = 1;
8044
8045		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8046		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8047		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8048		if (!(dd->err_info_rcvport.status_and_code &
8049		      OPA_EI_STATUS_SMASK)) {
8050			dd->err_info_rcvport.status_and_code =
8051				info & OPA_EI_CODE_SMASK;
8052			/* set status bit */
8053			dd->err_info_rcvport.status_and_code |=
8054				OPA_EI_STATUS_SMASK;
8055			/*
8056			 * save first 2 flits in the packet that caused
8057			 * the error
8058			 */
8059			dd->err_info_rcvport.packet_flit1 = hdr0;
8060			dd->err_info_rcvport.packet_flit2 = hdr1;
8061		}
8062		switch (info) {
8063		case 1:
8064		case 2:
8065		case 3:
8066		case 4:
8067		case 5:
8068		case 6:
8069		case 7:
8070		case 9:
8071		case 11:
8072		case 12:
8073			extra = port_rcv_txt[info];
8074			break;
8075		default:
8076			reason_valid = 0;
8077			snprintf(buf, sizeof(buf), "reserved%lld", info);
8078			extra = buf;
8079			break;
8080		}
8081
8082		if (reason_valid && !do_bounce) {
8083			do_bounce = ppd->port_error_action &
8084					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8085			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8086		}
8087
8088		/* just report this */
8089		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8090					"               hdr0 0x%llx, hdr1 0x%llx\n",
8091					extra, hdr0, hdr1);
8092
8093		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8094	}
8095
8096	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8097		/* informative only */
8098		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8099		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8100	}
8101	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8102		/* informative only */
8103		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8104		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8105	}
8106
8107	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8108		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8109
8110	/* report any remaining errors */
8111	if (reg)
8112		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8113					dcc_err_string(buf, sizeof(buf), reg));
8114
8115	if (lcl_reason == 0)
8116		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8117
8118	if (do_bounce) {
8119		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8120					__func__);
8121		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8122		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8123	}
8124}
8125
8126static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8127{
8128	char buf[96];
8129
8130	dd_dev_info(dd, "LCB Error: %s\n",
8131		    lcb_err_string(buf, sizeof(buf), reg));
8132}
8133
8134/*
8135 * CCE block DC interrupt.  Source is < 8.
8136 */
8137static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8138{
8139	const struct err_reg_info *eri = &dc_errs[source];
8140
8141	if (eri->handler) {
8142		interrupt_clear_down(dd, 0, eri);
8143	} else if (source == 3 /* dc_lbm_int */) {
8144		/*
8145		 * This indicates that a parity error has occurred on the
8146		 * address/control lines presented to the LBM.  The error
8147		 * is a single pulse, there is no associated error flag,
8148		 * and it is non-maskable.  This is because if a parity
8149		 * error occurs on the request the request is dropped.
8150		 * This should never occur, but it is nice to know if it
8151		 * ever does.
8152		 */
8153		dd_dev_err(dd, "Parity error in DC LBM block\n");
8154	} else {
8155		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8156	}
8157}
8158
8159/*
8160 * TX block send credit interrupt.  Source is < 160.
8161 */
8162static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8163{
8164	sc_group_release_update(dd, source);
8165}
8166
8167/*
8168 * TX block SDMA interrupt.  Source is < 48.
8169 *
8170 * SDMA interrupts are grouped by type:
8171 *
8172 *	 0 -  N-1 = SDma
8173 *	 N - 2N-1 = SDmaProgress
8174 *	2N - 3N-1 = SDmaIdle
8175 */
8176static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8177{
8178	/* what interrupt */
8179	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8180	/* which engine */
8181	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8182
8183#ifdef CONFIG_SDMA_VERBOSITY
8184	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8185		   slashstrip(__FILE__), __LINE__, __func__);
8186	sdma_dumpstate(&dd->per_sdma[which]);
8187#endif
8188
8189	if (likely(what < 3 && which < dd->num_sdma)) {
8190		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8191	} else {
8192		/* should not happen */
8193		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8194	}
8195}
8196
8197/**
8198 * is_rcv_avail_int() - User receive context available IRQ handler
8199 * @dd: valid dd
8200 * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8201 *
8202 * RX block receive available interrupt.  Source is < 160.
8203 *
8204 * This is the general interrupt handler for user (PSM) receive contexts,
8205 * and can only be used for non-threaded IRQs.
8206 */
8207static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8208{
8209	struct hfi1_ctxtdata *rcd;
8210	char *err_detail;
8211
8212	if (likely(source < dd->num_rcv_contexts)) {
8213		rcd = hfi1_rcd_get_by_index(dd, source);
8214		if (rcd) {
8215			handle_user_interrupt(rcd);
8216			hfi1_rcd_put(rcd);
8217			return;	/* OK */
8218		}
8219		/* received an interrupt, but no rcd */
8220		err_detail = "dataless";
8221	} else {
8222		/* received an interrupt, but are not using that context */
8223		err_detail = "out of range";
8224	}
8225	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8226		   err_detail, source);
8227}
8228
8229/**
8230 * is_rcv_urgent_int() - User receive context urgent IRQ handler
8231 * @dd: valid dd
8232 * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8233 *
8234 * RX block receive urgent interrupt.  Source is < 160.
8235 *
8236 * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8237 */
8238static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8239{
8240	struct hfi1_ctxtdata *rcd;
8241	char *err_detail;
8242
8243	if (likely(source < dd->num_rcv_contexts)) {
8244		rcd = hfi1_rcd_get_by_index(dd, source);
8245		if (rcd) {
8246			handle_user_interrupt(rcd);
8247			hfi1_rcd_put(rcd);
8248			return;	/* OK */
8249		}
8250		/* received an interrupt, but no rcd */
8251		err_detail = "dataless";
8252	} else {
8253		/* received an interrupt, but are not using that context */
8254		err_detail = "out of range";
8255	}
8256	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8257		   err_detail, source);
8258}
8259
8260/*
8261 * Reserved range interrupt.  Should not be called in normal operation.
8262 */
8263static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8264{
8265	char name[64];
8266
8267	dd_dev_err(dd, "unexpected %s interrupt\n",
8268		   is_reserved_name(name, sizeof(name), source));
8269}
8270
8271static const struct is_table is_table[] = {
8272/*
8273 * start		 end
8274 *				name func		interrupt func
8275 */
8276{ IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8277				is_misc_err_name,	is_misc_err_int },
8278{ IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8279				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8280{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8281				is_sendctxt_err_name,	is_sendctxt_err_int },
8282{ IS_SDMA_START,	     IS_SDMA_IDLE_END,
8283				is_sdma_eng_name,	is_sdma_eng_int },
8284{ IS_VARIOUS_START,	     IS_VARIOUS_END,
8285				is_various_name,	is_various_int },
8286{ IS_DC_START,	     IS_DC_END,
8287				is_dc_name,		is_dc_int },
8288{ IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8289				is_rcv_avail_name,	is_rcv_avail_int },
8290{ IS_RCVURGENT_START,    IS_RCVURGENT_END,
8291				is_rcv_urgent_name,	is_rcv_urgent_int },
8292{ IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8293				is_send_credit_name,	is_send_credit_int},
8294{ IS_RESERVED_START,     IS_RESERVED_END,
8295				is_reserved_name,	is_reserved_int},
8296};
8297
8298/*
8299 * Interrupt source interrupt - called when the given source has an interrupt.
8300 * Source is a bit index into an array of 64-bit integers.
8301 */
8302static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8303{
8304	const struct is_table *entry;
8305
8306	/* avoids a double compare by walking the table in-order */
8307	for (entry = &is_table[0]; entry->is_name; entry++) {
8308		if (source <= entry->end) {
8309			trace_hfi1_interrupt(dd, entry, source);
8310			entry->is_int(dd, source - entry->start);
8311			return;
8312		}
8313	}
8314	/* fell off the end */
8315	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8316}
8317
8318/**
8319 * gerneral_interrupt() -  General interrupt handler
8320 * @irq: MSIx IRQ vector
8321 * @data: hfi1 devdata
8322 *
8323 * This is able to correctly handle all non-threaded interrupts.  Receive
8324 * context DATA IRQs are threaded and are not supported by this handler.
8325 *
8326 */
8327irqreturn_t general_interrupt(int irq, void *data)
8328{
8329	struct hfi1_devdata *dd = data;
8330	u64 regs[CCE_NUM_INT_CSRS];
8331	u32 bit;
8332	int i;
8333	irqreturn_t handled = IRQ_NONE;
8334
8335	this_cpu_inc(*dd->int_counter);
8336
8337	/* phase 1: scan and clear all handled interrupts */
8338	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8339		if (dd->gi_mask[i] == 0) {
8340			regs[i] = 0;	/* used later */
8341			continue;
8342		}
8343		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8344				dd->gi_mask[i];
8345		/* only clear if anything is set */
8346		if (regs[i])
8347			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8348	}
8349
8350	/* phase 2: call the appropriate handler */
8351	for_each_set_bit(bit, (unsigned long *)&regs[0],
8352			 CCE_NUM_INT_CSRS * 64) {
8353		is_interrupt(dd, bit);
8354		handled = IRQ_HANDLED;
8355	}
8356
8357	return handled;
8358}
8359
8360irqreturn_t sdma_interrupt(int irq, void *data)
8361{
8362	struct sdma_engine *sde = data;
8363	struct hfi1_devdata *dd = sde->dd;
8364	u64 status;
8365
8366#ifdef CONFIG_SDMA_VERBOSITY
8367	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8368		   slashstrip(__FILE__), __LINE__, __func__);
8369	sdma_dumpstate(sde);
8370#endif
8371
8372	this_cpu_inc(*dd->int_counter);
8373
8374	/* This read_csr is really bad in the hot path */
8375	status = read_csr(dd,
8376			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8377			  & sde->imask;
8378	if (likely(status)) {
8379		/* clear the interrupt(s) */
8380		write_csr(dd,
8381			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8382			  status);
8383
8384		/* handle the interrupt(s) */
8385		sdma_engine_interrupt(sde, status);
8386	} else {
8387		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8388					sde->this_idx);
8389	}
8390	return IRQ_HANDLED;
8391}
8392
8393/*
8394 * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8395 * to insure that the write completed.  This does NOT guarantee that
8396 * queued DMA writes to memory from the chip are pushed.
8397 */
8398static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8399{
8400	struct hfi1_devdata *dd = rcd->dd;
8401	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8402
8403	write_csr(dd, addr, rcd->imask);
8404	/* force the above write on the chip and get a value back */
8405	(void)read_csr(dd, addr);
8406}
8407
8408/* force the receive interrupt */
8409void force_recv_intr(struct hfi1_ctxtdata *rcd)
8410{
8411	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8412}
8413
8414/*
8415 * Return non-zero if a packet is present.
8416 *
8417 * This routine is called when rechecking for packets after the RcvAvail
8418 * interrupt has been cleared down.  First, do a quick check of memory for
8419 * a packet present.  If not found, use an expensive CSR read of the context
8420 * tail to determine the actual tail.  The CSR read is necessary because there
8421 * is no method to push pending DMAs to memory other than an interrupt and we
8422 * are trying to determine if we need to force an interrupt.
8423 */
8424static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8425{
8426	u32 tail;
8427
8428	if (hfi1_packet_present(rcd))
8429		return 1;
8430
8431	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8432	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8433	return hfi1_rcd_head(rcd) != tail;
8434}
8435
8436/**
8437 * Common code for receive contexts interrupt handlers.
8438 * Update traces, increment kernel IRQ counter and
8439 * setup ASPM when needed.
8440 */
8441static void receive_interrupt_common(struct hfi1_ctxtdata *rcd)
8442{
8443	struct hfi1_devdata *dd = rcd->dd;
8444
8445	trace_hfi1_receive_interrupt(dd, rcd);
8446	this_cpu_inc(*dd->int_counter);
8447	aspm_ctx_disable(rcd);
8448}
8449
8450/**
8451 * __hfi1_rcd_eoi_intr() - Make HW issue receive interrupt
8452 * when there are packets present in the queue. When calling
8453 * with interrupts enabled please use hfi1_rcd_eoi_intr.
8454 *
8455 * @rcd: valid receive context
8456 */
8457static void __hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8458{
8459	if (!rcd->rcvhdrq)
8460		return;
8461	clear_recv_intr(rcd);
8462	if (check_packet_present(rcd))
8463		force_recv_intr(rcd);
8464}
8465
8466/**
8467 * hfi1_rcd_eoi_intr() - End of Interrupt processing action
8468 *
8469 * @rcd: Ptr to hfi1_ctxtdata of receive context
8470 *
8471 *  Hold IRQs so we can safely clear the interrupt and
8472 *  recheck for a packet that may have arrived after the previous
8473 *  check and the interrupt clear.  If a packet arrived, force another
8474 *  interrupt. This routine can be called at the end of receive packet
8475 *  processing in interrupt service routines, interrupt service thread
8476 *  and softirqs
8477 */
8478static void hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8479{
8480	unsigned long flags;
8481
8482	local_irq_save(flags);
8483	__hfi1_rcd_eoi_intr(rcd);
8484	local_irq_restore(flags);
8485}
8486
8487/**
8488 * hfi1_netdev_rx_napi - napi poll function to move eoi inline
8489 * @napi - pointer to napi object
8490 * @budget - netdev budget
8491 */
8492int hfi1_netdev_rx_napi(struct napi_struct *napi, int budget)
8493{
8494	struct hfi1_netdev_rxq *rxq = container_of(napi,
8495			struct hfi1_netdev_rxq, napi);
8496	struct hfi1_ctxtdata *rcd = rxq->rcd;
8497	int work_done = 0;
8498
8499	work_done = rcd->do_interrupt(rcd, budget);
8500
8501	if (work_done < budget) {
8502		napi_complete_done(napi, work_done);
8503		hfi1_rcd_eoi_intr(rcd);
8504	}
8505
8506	return work_done;
8507}
8508
8509/* Receive packet napi handler for netdevs VNIC and AIP  */
8510irqreturn_t receive_context_interrupt_napi(int irq, void *data)
8511{
8512	struct hfi1_ctxtdata *rcd = data;
8513
8514	receive_interrupt_common(rcd);
8515
8516	if (likely(rcd->napi)) {
8517		if (likely(napi_schedule_prep(rcd->napi)))
8518			__napi_schedule_irqoff(rcd->napi);
8519		else
8520			__hfi1_rcd_eoi_intr(rcd);
8521	} else {
8522		WARN_ONCE(1, "Napi IRQ handler without napi set up ctxt=%d\n",
8523			  rcd->ctxt);
8524		__hfi1_rcd_eoi_intr(rcd);
8525	}
8526
8527	return IRQ_HANDLED;
8528}
8529
8530/*
8531 * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8532 * This routine will try to handle packets immediately (latency), but if
8533 * it finds too many, it will invoke the thread handler (bandwitdh).  The
8534 * chip receive interrupt is *not* cleared down until this or the thread (if
8535 * invoked) is finished.  The intent is to avoid extra interrupts while we
8536 * are processing packets anyway.
8537 */
8538irqreturn_t receive_context_interrupt(int irq, void *data)
8539{
8540	struct hfi1_ctxtdata *rcd = data;
8541	int disposition;
8542
8543	receive_interrupt_common(rcd);
8544
8545	/* receive interrupt remains blocked while processing packets */
8546	disposition = rcd->do_interrupt(rcd, 0);
8547
8548	/*
8549	 * Too many packets were seen while processing packets in this
8550	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8551	 * remains blocked.
8552	 */
8553	if (disposition == RCV_PKT_LIMIT)
8554		return IRQ_WAKE_THREAD;
8555
8556	__hfi1_rcd_eoi_intr(rcd);
8557	return IRQ_HANDLED;
8558}
8559
8560/*
8561 * Receive packet thread handler.  This expects to be invoked with the
8562 * receive interrupt still blocked.
8563 */
8564irqreturn_t receive_context_thread(int irq, void *data)
8565{
8566	struct hfi1_ctxtdata *rcd = data;
8567
8568	/* receive interrupt is still blocked from the IRQ handler */
8569	(void)rcd->do_interrupt(rcd, 1);
8570
8571	hfi1_rcd_eoi_intr(rcd);
8572
8573	return IRQ_HANDLED;
8574}
8575
8576/* ========================================================================= */
8577
8578u32 read_physical_state(struct hfi1_devdata *dd)
8579{
8580	u64 reg;
8581
8582	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8583	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8584				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8585}
8586
8587u32 read_logical_state(struct hfi1_devdata *dd)
8588{
8589	u64 reg;
8590
8591	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8592	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8593				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8594}
8595
8596static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8597{
8598	u64 reg;
8599
8600	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8601	/* clear current state, set new state */
8602	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8603	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8604	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8605}
8606
8607/*
8608 * Use the 8051 to read a LCB CSR.
8609 */
8610static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8611{
8612	u32 regno;
8613	int ret;
8614
8615	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8616		if (acquire_lcb_access(dd, 0) == 0) {
8617			*data = read_csr(dd, addr);
8618			release_lcb_access(dd, 0);
8619			return 0;
8620		}
8621		return -EBUSY;
8622	}
8623
8624	/* register is an index of LCB registers: (offset - base) / 8 */
8625	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8626	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8627	if (ret != HCMD_SUCCESS)
8628		return -EBUSY;
8629	return 0;
8630}
8631
8632/*
8633 * Provide a cache for some of the LCB registers in case the LCB is
8634 * unavailable.
8635 * (The LCB is unavailable in certain link states, for example.)
8636 */
8637struct lcb_datum {
8638	u32 off;
8639	u64 val;
8640};
8641
8642static struct lcb_datum lcb_cache[] = {
8643	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8644	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8645	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8646};
8647
8648static void update_lcb_cache(struct hfi1_devdata *dd)
8649{
8650	int i;
8651	int ret;
8652	u64 val;
8653
8654	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8655		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8656
8657		/* Update if we get good data */
8658		if (likely(ret != -EBUSY))
8659			lcb_cache[i].val = val;
8660	}
8661}
8662
8663static int read_lcb_cache(u32 off, u64 *val)
8664{
8665	int i;
8666
8667	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8668		if (lcb_cache[i].off == off) {
8669			*val = lcb_cache[i].val;
8670			return 0;
8671		}
8672	}
8673
8674	pr_warn("%s bad offset 0x%x\n", __func__, off);
8675	return -1;
8676}
8677
8678/*
8679 * Read an LCB CSR.  Access may not be in host control, so check.
8680 * Return 0 on success, -EBUSY on failure.
8681 */
8682int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8683{
8684	struct hfi1_pportdata *ppd = dd->pport;
8685
8686	/* if up, go through the 8051 for the value */
8687	if (ppd->host_link_state & HLS_UP)
8688		return read_lcb_via_8051(dd, addr, data);
8689	/* if going up or down, check the cache, otherwise, no access */
8690	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8691		if (read_lcb_cache(addr, data))
8692			return -EBUSY;
8693		return 0;
8694	}
8695
8696	/* otherwise, host has access */
8697	*data = read_csr(dd, addr);
8698	return 0;
8699}
8700
8701/*
8702 * Use the 8051 to write a LCB CSR.
8703 */
8704static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8705{
8706	u32 regno;
8707	int ret;
8708
8709	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8710	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8711		if (acquire_lcb_access(dd, 0) == 0) {
8712			write_csr(dd, addr, data);
8713			release_lcb_access(dd, 0);
8714			return 0;
8715		}
8716		return -EBUSY;
8717	}
8718
8719	/* register is an index of LCB registers: (offset - base) / 8 */
8720	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8721	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8722	if (ret != HCMD_SUCCESS)
8723		return -EBUSY;
8724	return 0;
8725}
8726
8727/*
8728 * Write an LCB CSR.  Access may not be in host control, so check.
8729 * Return 0 on success, -EBUSY on failure.
8730 */
8731int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8732{
8733	struct hfi1_pportdata *ppd = dd->pport;
8734
8735	/* if up, go through the 8051 for the value */
8736	if (ppd->host_link_state & HLS_UP)
8737		return write_lcb_via_8051(dd, addr, data);
8738	/* if going up or down, no access */
8739	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8740		return -EBUSY;
8741	/* otherwise, host has access */
8742	write_csr(dd, addr, data);
8743	return 0;
8744}
8745
8746/*
8747 * Returns:
8748 *	< 0 = Linux error, not able to get access
8749 *	> 0 = 8051 command RETURN_CODE
8750 */
8751static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8752			   u64 *out_data)
8753{
8754	u64 reg, completed;
8755	int return_code;
8756	unsigned long timeout;
8757
8758	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8759
8760	mutex_lock(&dd->dc8051_lock);
8761
8762	/* We can't send any commands to the 8051 if it's in reset */
8763	if (dd->dc_shutdown) {
8764		return_code = -ENODEV;
8765		goto fail;
8766	}
8767
8768	/*
8769	 * If an 8051 host command timed out previously, then the 8051 is
8770	 * stuck.
8771	 *
8772	 * On first timeout, attempt to reset and restart the entire DC
8773	 * block (including 8051). (Is this too big of a hammer?)
8774	 *
8775	 * If the 8051 times out a second time, the reset did not bring it
8776	 * back to healthy life. In that case, fail any subsequent commands.
8777	 */
8778	if (dd->dc8051_timed_out) {
8779		if (dd->dc8051_timed_out > 1) {
8780			dd_dev_err(dd,
8781				   "Previous 8051 host command timed out, skipping command %u\n",
8782				   type);
8783			return_code = -ENXIO;
8784			goto fail;
8785		}
8786		_dc_shutdown(dd);
8787		_dc_start(dd);
8788	}
8789
8790	/*
8791	 * If there is no timeout, then the 8051 command interface is
8792	 * waiting for a command.
8793	 */
8794
8795	/*
8796	 * When writing a LCB CSR, out_data contains the full value to
8797	 * to be written, while in_data contains the relative LCB
8798	 * address in 7:0.  Do the work here, rather than the caller,
8799	 * of distrubting the write data to where it needs to go:
8800	 *
8801	 * Write data
8802	 *   39:00 -> in_data[47:8]
8803	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8804	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8805	 */
8806	if (type == HCMD_WRITE_LCB_CSR) {
8807		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8808		/* must preserve COMPLETED - it is tied to hardware */
8809		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8810		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8811		reg |= ((((*out_data) >> 40) & 0xff) <<
8812				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8813		      | ((((*out_data) >> 48) & 0xffff) <<
8814				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8815		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8816	}
8817
8818	/*
8819	 * Do two writes: the first to stabilize the type and req_data, the
8820	 * second to activate.
8821	 */
8822	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8823			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8824		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8825			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8826	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8827	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8828	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8829
8830	/* wait for completion, alternate: interrupt */
8831	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8832	while (1) {
8833		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8834		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8835		if (completed)
8836			break;
8837		if (time_after(jiffies, timeout)) {
8838			dd->dc8051_timed_out++;
8839			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8840			if (out_data)
8841				*out_data = 0;
8842			return_code = -ETIMEDOUT;
8843			goto fail;
8844		}
8845		udelay(2);
8846	}
8847
8848	if (out_data) {
8849		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8850				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8851		if (type == HCMD_READ_LCB_CSR) {
8852			/* top 16 bits are in a different register */
8853			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8854				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8855				<< (48
8856				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8857		}
8858	}
8859	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8860				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8861	dd->dc8051_timed_out = 0;
8862	/*
8863	 * Clear command for next user.
8864	 */
8865	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8866
8867fail:
8868	mutex_unlock(&dd->dc8051_lock);
8869	return return_code;
8870}
8871
8872static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8873{
8874	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8875}
8876
8877int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8878		     u8 lane_id, u32 config_data)
8879{
8880	u64 data;
8881	int ret;
8882
8883	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8884		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8885		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8886	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8887	if (ret != HCMD_SUCCESS) {
8888		dd_dev_err(dd,
8889			   "load 8051 config: field id %d, lane %d, err %d\n",
8890			   (int)field_id, (int)lane_id, ret);
8891	}
8892	return ret;
8893}
8894
8895/*
8896 * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8897 * set the result, even on error.
8898 * Return 0 on success, -errno on failure
8899 */
8900int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8901		     u32 *result)
8902{
8903	u64 big_data;
8904	u32 addr;
8905	int ret;
8906
8907	/* address start depends on the lane_id */
8908	if (lane_id < 4)
8909		addr = (4 * NUM_GENERAL_FIELDS)
8910			+ (lane_id * 4 * NUM_LANE_FIELDS);
8911	else
8912		addr = 0;
8913	addr += field_id * 4;
8914
8915	/* read is in 8-byte chunks, hardware will truncate the address down */
8916	ret = read_8051_data(dd, addr, 8, &big_data);
8917
8918	if (ret == 0) {
8919		/* extract the 4 bytes we want */
8920		if (addr & 0x4)
8921			*result = (u32)(big_data >> 32);
8922		else
8923			*result = (u32)big_data;
8924	} else {
8925		*result = 0;
8926		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8927			   __func__, lane_id, field_id);
8928	}
8929
8930	return ret;
8931}
8932
8933static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8934			      u8 continuous)
8935{
8936	u32 frame;
8937
8938	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8939		| power_management << POWER_MANAGEMENT_SHIFT;
8940	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8941				GENERAL_CONFIG, frame);
8942}
8943
8944static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8945				 u16 vl15buf, u8 crc_sizes)
8946{
8947	u32 frame;
8948
8949	frame = (u32)vau << VAU_SHIFT
8950		| (u32)z << Z_SHIFT
8951		| (u32)vcu << VCU_SHIFT
8952		| (u32)vl15buf << VL15BUF_SHIFT
8953		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8954	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8955				GENERAL_CONFIG, frame);
8956}
8957
8958static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8959				    u8 *flag_bits, u16 *link_widths)
8960{
8961	u32 frame;
8962
8963	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8964			 &frame);
8965	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8966	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8967	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8968}
8969
8970static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8971				    u8 misc_bits,
8972				    u8 flag_bits,
8973				    u16 link_widths)
8974{
8975	u32 frame;
8976
8977	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8978		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8979		| (u32)link_widths << LINK_WIDTH_SHIFT;
8980	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8981		     frame);
8982}
8983
8984static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8985				 u8 device_rev)
8986{
8987	u32 frame;
8988
8989	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8990		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8991	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8992}
8993
8994static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8995				  u8 *device_rev)
8996{
8997	u32 frame;
8998
8999	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
9000	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
9001	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
9002			& REMOTE_DEVICE_REV_MASK;
9003}
9004
9005int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
9006{
9007	u32 frame;
9008	u32 mask;
9009
9010	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
9011	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
9012	/* Clear, then set field */
9013	frame &= ~mask;
9014	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
9015	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
9016				frame);
9017}
9018
9019void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
9020		      u8 *ver_patch)
9021{
9022	u32 frame;
9023
9024	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
9025	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
9026		STS_FM_VERSION_MAJOR_MASK;
9027	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
9028		STS_FM_VERSION_MINOR_MASK;
9029
9030	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
9031	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
9032		STS_FM_VERSION_PATCH_MASK;
9033}
9034
9035static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
9036			       u8 *continuous)
9037{
9038	u32 frame;
9039
9040	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
9041	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
9042					& POWER_MANAGEMENT_MASK;
9043	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
9044					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
9045}
9046
9047static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
9048				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
9049{
9050	u32 frame;
9051
9052	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
9053	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
9054	*z = (frame >> Z_SHIFT) & Z_MASK;
9055	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
9056	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
9057	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
9058}
9059
9060static void read_vc_remote_link_width(struct hfi1_devdata *dd,
9061				      u8 *remote_tx_rate,
9062				      u16 *link_widths)
9063{
9064	u32 frame;
9065
9066	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
9067			 &frame);
9068	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
9069				& REMOTE_TX_RATE_MASK;
9070	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
9071}
9072
9073static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
9074{
9075	u32 frame;
9076
9077	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
9078	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
9079}
9080
9081static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
9082{
9083	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
9084}
9085
9086static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
9087{
9088	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
9089}
9090
9091void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
9092{
9093	u32 frame;
9094	int ret;
9095
9096	*link_quality = 0;
9097	if (dd->pport->host_link_state & HLS_UP) {
9098		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9099				       &frame);
9100		if (ret == 0)
9101			*link_quality = (frame >> LINK_QUALITY_SHIFT)
9102						& LINK_QUALITY_MASK;
9103	}
9104}
9105
9106static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9107{
9108	u32 frame;
9109
9110	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9111	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9112}
9113
9114static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9115{
9116	u32 frame;
9117
9118	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9119	*ldr = (frame & 0xff);
9120}
9121
9122static int read_tx_settings(struct hfi1_devdata *dd,
9123			    u8 *enable_lane_tx,
9124			    u8 *tx_polarity_inversion,
9125			    u8 *rx_polarity_inversion,
9126			    u8 *max_rate)
9127{
9128	u32 frame;
9129	int ret;
9130
9131	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9132	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9133				& ENABLE_LANE_TX_MASK;
9134	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9135				& TX_POLARITY_INVERSION_MASK;
9136	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9137				& RX_POLARITY_INVERSION_MASK;
9138	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9139	return ret;
9140}
9141
9142static int write_tx_settings(struct hfi1_devdata *dd,
9143			     u8 enable_lane_tx,
9144			     u8 tx_polarity_inversion,
9145			     u8 rx_polarity_inversion,
9146			     u8 max_rate)
9147{
9148	u32 frame;
9149
9150	/* no need to mask, all variable sizes match field widths */
9151	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9152		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9153		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9154		| max_rate << MAX_RATE_SHIFT;
9155	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9156}
9157
9158/*
9159 * Read an idle LCB message.
9160 *
9161 * Returns 0 on success, -EINVAL on error
9162 */
9163static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9164{
9165	int ret;
9166
9167	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9168	if (ret != HCMD_SUCCESS) {
9169		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9170			   (u32)type, ret);
9171		return -EINVAL;
9172	}
9173	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9174	/* return only the payload as we already know the type */
9175	*data_out >>= IDLE_PAYLOAD_SHIFT;
9176	return 0;
9177}
9178
9179/*
9180 * Read an idle SMA message.  To be done in response to a notification from
9181 * the 8051.
9182 *
9183 * Returns 0 on success, -EINVAL on error
9184 */
9185static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9186{
9187	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9188				 data);
9189}
9190
9191/*
9192 * Send an idle LCB message.
9193 *
9194 * Returns 0 on success, -EINVAL on error
9195 */
9196static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9197{
9198	int ret;
9199
9200	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9201	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9202	if (ret != HCMD_SUCCESS) {
9203		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9204			   data, ret);
9205		return -EINVAL;
9206	}
9207	return 0;
9208}
9209
9210/*
9211 * Send an idle SMA message.
9212 *
9213 * Returns 0 on success, -EINVAL on error
9214 */
9215int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9216{
9217	u64 data;
9218
9219	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9220		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9221	return send_idle_message(dd, data);
9222}
9223
9224/*
9225 * Initialize the LCB then do a quick link up.  This may or may not be
9226 * in loopback.
9227 *
9228 * return 0 on success, -errno on error
9229 */
9230static int do_quick_linkup(struct hfi1_devdata *dd)
9231{
9232	int ret;
9233
9234	lcb_shutdown(dd, 0);
9235
9236	if (loopback) {
9237		/* LCB_CFG_LOOPBACK.VAL = 2 */
9238		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9239		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9240			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9241		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9242	}
9243
9244	/* start the LCBs */
9245	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9246	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9247
9248	/* simulator only loopback steps */
9249	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9250		/* LCB_CFG_RUN.EN = 1 */
9251		write_csr(dd, DC_LCB_CFG_RUN,
9252			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9253
9254		ret = wait_link_transfer_active(dd, 10);
9255		if (ret)
9256			return ret;
9257
9258		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9259			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9260	}
9261
9262	if (!loopback) {
9263		/*
9264		 * When doing quick linkup and not in loopback, both
9265		 * sides must be done with LCB set-up before either
9266		 * starts the quick linkup.  Put a delay here so that
9267		 * both sides can be started and have a chance to be
9268		 * done with LCB set up before resuming.
9269		 */
9270		dd_dev_err(dd,
9271			   "Pausing for peer to be finished with LCB set up\n");
9272		msleep(5000);
9273		dd_dev_err(dd, "Continuing with quick linkup\n");
9274	}
9275
9276	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9277	set_8051_lcb_access(dd);
9278
9279	/*
9280	 * State "quick" LinkUp request sets the physical link state to
9281	 * LinkUp without a verify capability sequence.
9282	 * This state is in simulator v37 and later.
9283	 */
9284	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9285	if (ret != HCMD_SUCCESS) {
9286		dd_dev_err(dd,
9287			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9288			   __func__, ret);
9289
9290		set_host_lcb_access(dd);
9291		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9292
9293		if (ret >= 0)
9294			ret = -EINVAL;
9295		return ret;
9296	}
9297
9298	return 0; /* success */
9299}
9300
9301/*
9302 * Do all special steps to set up loopback.
9303 */
9304static int init_loopback(struct hfi1_devdata *dd)
9305{
9306	dd_dev_info(dd, "Entering loopback mode\n");
9307
9308	/* all loopbacks should disable self GUID check */
9309	write_csr(dd, DC_DC8051_CFG_MODE,
9310		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9311
9312	/*
9313	 * The simulator has only one loopback option - LCB.  Switch
9314	 * to that option, which includes quick link up.
9315	 *
9316	 * Accept all valid loopback values.
9317	 */
9318	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9319	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9320	     loopback == LOOPBACK_CABLE)) {
9321		loopback = LOOPBACK_LCB;
9322		quick_linkup = 1;
9323		return 0;
9324	}
9325
9326	/*
9327	 * SerDes loopback init sequence is handled in set_local_link_attributes
9328	 */
9329	if (loopback == LOOPBACK_SERDES)
9330		return 0;
9331
9332	/* LCB loopback - handled at poll time */
9333	if (loopback == LOOPBACK_LCB) {
9334		quick_linkup = 1; /* LCB is always quick linkup */
9335
9336		/* not supported in emulation due to emulation RTL changes */
9337		if (dd->icode == ICODE_FPGA_EMULATION) {
9338			dd_dev_err(dd,
9339				   "LCB loopback not supported in emulation\n");
9340			return -EINVAL;
9341		}
9342		return 0;
9343	}
9344
9345	/* external cable loopback requires no extra steps */
9346	if (loopback == LOOPBACK_CABLE)
9347		return 0;
9348
9349	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9350	return -EINVAL;
9351}
9352
9353/*
9354 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9355 * used in the Verify Capability link width attribute.
9356 */
9357static u16 opa_to_vc_link_widths(u16 opa_widths)
9358{
9359	int i;
9360	u16 result = 0;
9361
9362	static const struct link_bits {
9363		u16 from;
9364		u16 to;
9365	} opa_link_xlate[] = {
9366		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9367		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9368		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9369		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9370	};
9371
9372	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9373		if (opa_widths & opa_link_xlate[i].from)
9374			result |= opa_link_xlate[i].to;
9375	}
9376	return result;
9377}
9378
9379/*
9380 * Set link attributes before moving to polling.
9381 */
9382static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9383{
9384	struct hfi1_devdata *dd = ppd->dd;
9385	u8 enable_lane_tx;
9386	u8 tx_polarity_inversion;
9387	u8 rx_polarity_inversion;
9388	int ret;
9389	u32 misc_bits = 0;
9390	/* reset our fabric serdes to clear any lingering problems */
9391	fabric_serdes_reset(dd);
9392
9393	/* set the local tx rate - need to read-modify-write */
9394	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9395			       &rx_polarity_inversion, &ppd->local_tx_rate);
9396	if (ret)
9397		goto set_local_link_attributes_fail;
9398
9399	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9400		/* set the tx rate to the fastest enabled */
9401		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9402			ppd->local_tx_rate = 1;
9403		else
9404			ppd->local_tx_rate = 0;
9405	} else {
9406		/* set the tx rate to all enabled */
9407		ppd->local_tx_rate = 0;
9408		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9409			ppd->local_tx_rate |= 2;
9410		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9411			ppd->local_tx_rate |= 1;
9412	}
9413
9414	enable_lane_tx = 0xF; /* enable all four lanes */
9415	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9416				rx_polarity_inversion, ppd->local_tx_rate);
9417	if (ret != HCMD_SUCCESS)
9418		goto set_local_link_attributes_fail;
9419
9420	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9421	if (ret != HCMD_SUCCESS) {
9422		dd_dev_err(dd,
9423			   "Failed to set host interface version, return 0x%x\n",
9424			   ret);
9425		goto set_local_link_attributes_fail;
9426	}
9427
9428	/*
9429	 * DC supports continuous updates.
9430	 */
9431	ret = write_vc_local_phy(dd,
9432				 0 /* no power management */,
9433				 1 /* continuous updates */);
9434	if (ret != HCMD_SUCCESS)
9435		goto set_local_link_attributes_fail;
9436
9437	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9438	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9439				    ppd->port_crc_mode_enabled);
9440	if (ret != HCMD_SUCCESS)
9441		goto set_local_link_attributes_fail;
9442
9443	/*
9444	 * SerDes loopback init sequence requires
9445	 * setting bit 0 of MISC_CONFIG_BITS
9446	 */
9447	if (loopback == LOOPBACK_SERDES)
9448		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9449
9450	/*
9451	 * An external device configuration request is used to reset the LCB
9452	 * to retry to obtain operational lanes when the first attempt is
9453	 * unsuccesful.
9454	 */
9455	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9456		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9457
9458	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9459				       opa_to_vc_link_widths(
9460						ppd->link_width_enabled));
9461	if (ret != HCMD_SUCCESS)
9462		goto set_local_link_attributes_fail;
9463
9464	/* let peer know who we are */
9465	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9466	if (ret == HCMD_SUCCESS)
9467		return 0;
9468
9469set_local_link_attributes_fail:
9470	dd_dev_err(dd,
9471		   "Failed to set local link attributes, return 0x%x\n",
9472		   ret);
9473	return ret;
9474}
9475
9476/*
9477 * Call this to start the link.
9478 * Do not do anything if the link is disabled.
9479 * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9480 */
9481int start_link(struct hfi1_pportdata *ppd)
9482{
9483	/*
9484	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9485	 * error rate.  Needs to be done before starting the link.
9486	 */
9487	tune_serdes(ppd);
9488
9489	if (!ppd->driver_link_ready) {
9490		dd_dev_info(ppd->dd,
9491			    "%s: stopping link start because driver is not ready\n",
9492			    __func__);
9493		return 0;
9494	}
9495
9496	/*
9497	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9498	 * pkey table can be configured properly if the HFI unit is connected
9499	 * to switch port with MgmtAllowed=NO
9500	 */
9501	clear_full_mgmt_pkey(ppd);
9502
9503	return set_link_state(ppd, HLS_DN_POLL);
9504}
9505
9506static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9507{
9508	struct hfi1_devdata *dd = ppd->dd;
9509	u64 mask;
9510	unsigned long timeout;
9511
9512	/*
9513	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9514	 * effect of power up on plug-in. We ignore this false positive
9515	 * interrupt until the module has finished powering up by waiting for
9516	 * a minimum timeout of the module inrush initialization time of
9517	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9518	 * module have stabilized.
9519	 */
9520	msleep(500);
9521
9522	/*
9523	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9524	 */
9525	timeout = jiffies + msecs_to_jiffies(2000);
9526	while (1) {
9527		mask = read_csr(dd, dd->hfi1_id ?
9528				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9529		if (!(mask & QSFP_HFI0_INT_N))
9530			break;
9531		if (time_after(jiffies, timeout)) {
9532			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9533				    __func__);
9534			break;
9535		}
9536		udelay(2);
9537	}
9538}
9539
9540static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9541{
9542	struct hfi1_devdata *dd = ppd->dd;
9543	u64 mask;
9544
9545	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9546	if (enable) {
9547		/*
9548		 * Clear the status register to avoid an immediate interrupt
9549		 * when we re-enable the IntN pin
9550		 */
9551		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9552			  QSFP_HFI0_INT_N);
9553		mask |= (u64)QSFP_HFI0_INT_N;
9554	} else {
9555		mask &= ~(u64)QSFP_HFI0_INT_N;
9556	}
9557	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9558}
9559
9560int reset_qsfp(struct hfi1_pportdata *ppd)
9561{
9562	struct hfi1_devdata *dd = ppd->dd;
9563	u64 mask, qsfp_mask;
9564
9565	/* Disable INT_N from triggering QSFP interrupts */
9566	set_qsfp_int_n(ppd, 0);
9567
9568	/* Reset the QSFP */
9569	mask = (u64)QSFP_HFI0_RESET_N;
9570
9571	qsfp_mask = read_csr(dd,
9572			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9573	qsfp_mask &= ~mask;
9574	write_csr(dd,
9575		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9576
9577	udelay(10);
9578
9579	qsfp_mask |= mask;
9580	write_csr(dd,
9581		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9582
9583	wait_for_qsfp_init(ppd);
9584
9585	/*
9586	 * Allow INT_N to trigger the QSFP interrupt to watch
9587	 * for alarms and warnings
9588	 */
9589	set_qsfp_int_n(ppd, 1);
9590
9591	/*
9592	 * After the reset, AOC transmitters are enabled by default. They need
9593	 * to be turned off to complete the QSFP setup before they can be
9594	 * enabled again.
9595	 */
9596	return set_qsfp_tx(ppd, 0);
9597}
9598
9599static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9600					u8 *qsfp_interrupt_status)
9601{
9602	struct hfi1_devdata *dd = ppd->dd;
9603
9604	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9605	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9606		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9607			   __func__);
9608
9609	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9610	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9611		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9612			   __func__);
9613
9614	/*
9615	 * The remaining alarms/warnings don't matter if the link is down.
9616	 */
9617	if (ppd->host_link_state & HLS_DOWN)
9618		return 0;
9619
9620	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9621	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9622		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9623			   __func__);
9624
9625	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9626	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9627		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9628			   __func__);
9629
9630	/* Byte 2 is vendor specific */
9631
9632	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9633	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9634		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9635			   __func__);
9636
9637	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9638	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9639		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9640			   __func__);
9641
9642	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9643	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9644		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9645			   __func__);
9646
9647	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9648	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9649		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9650			   __func__);
9651
9652	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9653	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9654		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9655			   __func__);
9656
9657	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9658	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9659		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9660			   __func__);
9661
9662	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9663	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9664		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9665			   __func__);
9666
9667	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9668	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9669		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9670			   __func__);
9671
9672	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9673	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9674		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9675			   __func__);
9676
9677	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9678	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9679		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9680			   __func__);
9681
9682	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9683	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9684		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9685			   __func__);
9686
9687	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9688	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9689		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9690			   __func__);
9691
9692	/* Bytes 9-10 and 11-12 are reserved */
9693	/* Bytes 13-15 are vendor specific */
9694
9695	return 0;
9696}
9697
9698/* This routine will only be scheduled if the QSFP module present is asserted */
9699void qsfp_event(struct work_struct *work)
9700{
9701	struct qsfp_data *qd;
9702	struct hfi1_pportdata *ppd;
9703	struct hfi1_devdata *dd;
9704
9705	qd = container_of(work, struct qsfp_data, qsfp_work);
9706	ppd = qd->ppd;
9707	dd = ppd->dd;
9708
9709	/* Sanity check */
9710	if (!qsfp_mod_present(ppd))
9711		return;
9712
9713	if (ppd->host_link_state == HLS_DN_DISABLE) {
9714		dd_dev_info(ppd->dd,
9715			    "%s: stopping link start because link is disabled\n",
9716			    __func__);
9717		return;
9718	}
9719
9720	/*
9721	 * Turn DC back on after cable has been re-inserted. Up until
9722	 * now, the DC has been in reset to save power.
9723	 */
9724	dc_start(dd);
9725
9726	if (qd->cache_refresh_required) {
9727		set_qsfp_int_n(ppd, 0);
9728
9729		wait_for_qsfp_init(ppd);
9730
9731		/*
9732		 * Allow INT_N to trigger the QSFP interrupt to watch
9733		 * for alarms and warnings
9734		 */
9735		set_qsfp_int_n(ppd, 1);
9736
9737		start_link(ppd);
9738	}
9739
9740	if (qd->check_interrupt_flags) {
9741		u8 qsfp_interrupt_status[16] = {0,};
9742
9743		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9744				  &qsfp_interrupt_status[0], 16) != 16) {
9745			dd_dev_info(dd,
9746				    "%s: Failed to read status of QSFP module\n",
9747				    __func__);
9748		} else {
9749			unsigned long flags;
9750
9751			handle_qsfp_error_conditions(
9752					ppd, qsfp_interrupt_status);
9753			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9754			ppd->qsfp_info.check_interrupt_flags = 0;
9755			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9756					       flags);
9757		}
9758	}
9759}
9760
9761void init_qsfp_int(struct hfi1_devdata *dd)
9762{
9763	struct hfi1_pportdata *ppd = dd->pport;
9764	u64 qsfp_mask;
9765
9766	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9767	/* Clear current status to avoid spurious interrupts */
9768	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9769		  qsfp_mask);
9770	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9771		  qsfp_mask);
9772
9773	set_qsfp_int_n(ppd, 0);
9774
9775	/* Handle active low nature of INT_N and MODPRST_N pins */
9776	if (qsfp_mod_present(ppd))
9777		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9778	write_csr(dd,
9779		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9780		  qsfp_mask);
9781
9782	/* Enable the appropriate QSFP IRQ source */
9783	if (!dd->hfi1_id)
9784		set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9785	else
9786		set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9787}
9788
9789/*
9790 * Do a one-time initialize of the LCB block.
9791 */
9792static void init_lcb(struct hfi1_devdata *dd)
9793{
9794	/* simulator does not correctly handle LCB cclk loopback, skip */
9795	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9796		return;
9797
9798	/* the DC has been reset earlier in the driver load */
9799
9800	/* set LCB for cclk loopback on the port */
9801	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9802	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9803	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9804	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9805	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9806	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9807	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9808}
9809
9810/*
9811 * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9812 * on error.
9813 */
9814static int test_qsfp_read(struct hfi1_pportdata *ppd)
9815{
9816	int ret;
9817	u8 status;
9818
9819	/*
9820	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9821	 * not present
9822	 */
9823	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9824		return 0;
9825
9826	/* read byte 2, the status byte */
9827	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9828	if (ret < 0)
9829		return ret;
9830	if (ret != 1)
9831		return -EIO;
9832
9833	return 0; /* success */
9834}
9835
9836/*
9837 * Values for QSFP retry.
9838 *
9839 * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9840 * arrived at from experience on a large cluster.
9841 */
9842#define MAX_QSFP_RETRIES 20
9843#define QSFP_RETRY_WAIT 500 /* msec */
9844
9845/*
9846 * Try a QSFP read.  If it fails, schedule a retry for later.
9847 * Called on first link activation after driver load.
9848 */
9849static void try_start_link(struct hfi1_pportdata *ppd)
9850{
9851	if (test_qsfp_read(ppd)) {
9852		/* read failed */
9853		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9854			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9855			return;
9856		}
9857		dd_dev_info(ppd->dd,
9858			    "QSFP not responding, waiting and retrying %d\n",
9859			    (int)ppd->qsfp_retry_count);
9860		ppd->qsfp_retry_count++;
9861		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9862				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9863		return;
9864	}
9865	ppd->qsfp_retry_count = 0;
9866
9867	start_link(ppd);
9868}
9869
9870/*
9871 * Workqueue function to start the link after a delay.
9872 */
9873void handle_start_link(struct work_struct *work)
9874{
9875	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9876						  start_link_work.work);
9877	try_start_link(ppd);
9878}
9879
9880int bringup_serdes(struct hfi1_pportdata *ppd)
9881{
9882	struct hfi1_devdata *dd = ppd->dd;
9883	u64 guid;
9884	int ret;
9885
9886	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9887		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9888
9889	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9890	if (!guid) {
9891		if (dd->base_guid)
9892			guid = dd->base_guid + ppd->port - 1;
9893		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9894	}
9895
9896	/* Set linkinit_reason on power up per OPA spec */
9897	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9898
9899	/* one-time init of the LCB */
9900	init_lcb(dd);
9901
9902	if (loopback) {
9903		ret = init_loopback(dd);
9904		if (ret < 0)
9905			return ret;
9906	}
9907
9908	get_port_type(ppd);
9909	if (ppd->port_type == PORT_TYPE_QSFP) {
9910		set_qsfp_int_n(ppd, 0);
9911		wait_for_qsfp_init(ppd);
9912		set_qsfp_int_n(ppd, 1);
9913	}
9914
9915	try_start_link(ppd);
9916	return 0;
9917}
9918
9919void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9920{
9921	struct hfi1_devdata *dd = ppd->dd;
9922
9923	/*
9924	 * Shut down the link and keep it down.   First turn off that the
9925	 * driver wants to allow the link to be up (driver_link_ready).
9926	 * Then make sure the link is not automatically restarted
9927	 * (link_enabled).  Cancel any pending restart.  And finally
9928	 * go offline.
9929	 */
9930	ppd->driver_link_ready = 0;
9931	ppd->link_enabled = 0;
9932
9933	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9934	flush_delayed_work(&ppd->start_link_work);
9935	cancel_delayed_work_sync(&ppd->start_link_work);
9936
9937	ppd->offline_disabled_reason =
9938			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9939	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9940			     OPA_LINKDOWN_REASON_REBOOT);
9941	set_link_state(ppd, HLS_DN_OFFLINE);
9942
9943	/* disable the port */
9944	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9945	cancel_work_sync(&ppd->freeze_work);
9946}
9947
9948static inline int init_cpu_counters(struct hfi1_devdata *dd)
9949{
9950	struct hfi1_pportdata *ppd;
9951	int i;
9952
9953	ppd = (struct hfi1_pportdata *)(dd + 1);
9954	for (i = 0; i < dd->num_pports; i++, ppd++) {
9955		ppd->ibport_data.rvp.rc_acks = NULL;
9956		ppd->ibport_data.rvp.rc_qacks = NULL;
9957		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9958		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9959		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9960		if (!ppd->ibport_data.rvp.rc_acks ||
9961		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9962		    !ppd->ibport_data.rvp.rc_qacks)
9963			return -ENOMEM;
9964	}
9965
9966	return 0;
9967}
9968
9969/*
9970 * index is the index into the receive array
9971 */
9972void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9973		  u32 type, unsigned long pa, u16 order)
9974{
9975	u64 reg;
9976
9977	if (!(dd->flags & HFI1_PRESENT))
9978		goto done;
9979
9980	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9981		pa = 0;
9982		order = 0;
9983	} else if (type > PT_INVALID) {
9984		dd_dev_err(dd,
9985			   "unexpected receive array type %u for index %u, not handled\n",
9986			   type, index);
9987		goto done;
9988	}
9989	trace_hfi1_put_tid(dd, index, type, pa, order);
9990
9991#define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9992	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9993		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9994		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9995					<< RCV_ARRAY_RT_ADDR_SHIFT;
9996	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9997	writeq(reg, dd->rcvarray_wc + (index * 8));
9998
9999	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
10000		/*
10001		 * Eager entries are written and flushed
10002		 *
10003		 * Expected entries are flushed every 4 writes
10004		 */
10005		flush_wc();
10006done:
10007	return;
10008}
10009
10010void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
10011{
10012	struct hfi1_devdata *dd = rcd->dd;
10013	u32 i;
10014
10015	/* this could be optimized */
10016	for (i = rcd->eager_base; i < rcd->eager_base +
10017		     rcd->egrbufs.alloced; i++)
10018		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
10019
10020	for (i = rcd->expected_base;
10021			i < rcd->expected_base + rcd->expected_count; i++)
10022		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
10023}
10024
10025static const char * const ib_cfg_name_strings[] = {
10026	"HFI1_IB_CFG_LIDLMC",
10027	"HFI1_IB_CFG_LWID_DG_ENB",
10028	"HFI1_IB_CFG_LWID_ENB",
10029	"HFI1_IB_CFG_LWID",
10030	"HFI1_IB_CFG_SPD_ENB",
10031	"HFI1_IB_CFG_SPD",
10032	"HFI1_IB_CFG_RXPOL_ENB",
10033	"HFI1_IB_CFG_LREV_ENB",
10034	"HFI1_IB_CFG_LINKLATENCY",
10035	"HFI1_IB_CFG_HRTBT",
10036	"HFI1_IB_CFG_OP_VLS",
10037	"HFI1_IB_CFG_VL_HIGH_CAP",
10038	"HFI1_IB_CFG_VL_LOW_CAP",
10039	"HFI1_IB_CFG_OVERRUN_THRESH",
10040	"HFI1_IB_CFG_PHYERR_THRESH",
10041	"HFI1_IB_CFG_LINKDEFAULT",
10042	"HFI1_IB_CFG_PKEYS",
10043	"HFI1_IB_CFG_MTU",
10044	"HFI1_IB_CFG_LSTATE",
10045	"HFI1_IB_CFG_VL_HIGH_LIMIT",
10046	"HFI1_IB_CFG_PMA_TICKS",
10047	"HFI1_IB_CFG_PORT"
10048};
10049
10050static const char *ib_cfg_name(int which)
10051{
10052	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
10053		return "invalid";
10054	return ib_cfg_name_strings[which];
10055}
10056
10057int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
10058{
10059	struct hfi1_devdata *dd = ppd->dd;
10060	int val = 0;
10061
10062	switch (which) {
10063	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
10064		val = ppd->link_width_enabled;
10065		break;
10066	case HFI1_IB_CFG_LWID: /* currently active Link-width */
10067		val = ppd->link_width_active;
10068		break;
10069	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10070		val = ppd->link_speed_enabled;
10071		break;
10072	case HFI1_IB_CFG_SPD: /* current Link speed */
10073		val = ppd->link_speed_active;
10074		break;
10075
10076	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
10077	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
10078	case HFI1_IB_CFG_LINKLATENCY:
10079		goto unimplemented;
10080
10081	case HFI1_IB_CFG_OP_VLS:
10082		val = ppd->actual_vls_operational;
10083		break;
10084	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
10085		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
10086		break;
10087	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
10088		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
10089		break;
10090	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10091		val = ppd->overrun_threshold;
10092		break;
10093	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10094		val = ppd->phy_error_threshold;
10095		break;
10096	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10097		val = HLS_DEFAULT;
10098		break;
10099
10100	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10101	case HFI1_IB_CFG_PMA_TICKS:
10102	default:
10103unimplemented:
10104		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10105			dd_dev_info(
10106				dd,
10107				"%s: which %s: not implemented\n",
10108				__func__,
10109				ib_cfg_name(which));
10110		break;
10111	}
10112
10113	return val;
10114}
10115
10116/*
10117 * The largest MAD packet size.
10118 */
10119#define MAX_MAD_PACKET 2048
10120
10121/*
10122 * Return the maximum header bytes that can go on the _wire_
10123 * for this device. This count includes the ICRC which is
10124 * not part of the packet held in memory but it is appended
10125 * by the HW.
10126 * This is dependent on the device's receive header entry size.
10127 * HFI allows this to be set per-receive context, but the
10128 * driver presently enforces a global value.
10129 */
10130u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10131{
10132	/*
10133	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10134	 * the Receive Header Entry Size minus the PBC (or RHF) size
10135	 * plus one DW for the ICRC appended by HW.
10136	 *
10137	 * dd->rcd[0].rcvhdrqentsize is in DW.
10138	 * We use rcd[0] as all context will have the same value. Also,
10139	 * the first kernel context would have been allocated by now so
10140	 * we are guaranteed a valid value.
10141	 */
10142	return (get_hdrqentsize(dd->rcd[0]) - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10143}
10144
10145/*
10146 * Set Send Length
10147 * @ppd - per port data
10148 *
10149 * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10150 * registers compare against LRH.PktLen, so use the max bytes included
10151 * in the LRH.
10152 *
10153 * This routine changes all VL values except VL15, which it maintains at
10154 * the same value.
10155 */
10156static void set_send_length(struct hfi1_pportdata *ppd)
10157{
10158	struct hfi1_devdata *dd = ppd->dd;
10159	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10160	u32 maxvlmtu = dd->vld[15].mtu;
10161	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10162			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10163		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10164	int i, j;
10165	u32 thres;
10166
10167	for (i = 0; i < ppd->vls_supported; i++) {
10168		if (dd->vld[i].mtu > maxvlmtu)
10169			maxvlmtu = dd->vld[i].mtu;
10170		if (i <= 3)
10171			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10172				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10173				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10174		else
10175			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10176				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10177				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10178	}
10179	write_csr(dd, SEND_LEN_CHECK0, len1);
10180	write_csr(dd, SEND_LEN_CHECK1, len2);
10181	/* adjust kernel credit return thresholds based on new MTUs */
10182	/* all kernel receive contexts have the same hdrqentsize */
10183	for (i = 0; i < ppd->vls_supported; i++) {
10184		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10185			    sc_mtu_to_threshold(dd->vld[i].sc,
10186						dd->vld[i].mtu,
10187						get_hdrqentsize(dd->rcd[0])));
10188		for (j = 0; j < INIT_SC_PER_VL; j++)
10189			sc_set_cr_threshold(
10190					pio_select_send_context_vl(dd, j, i),
10191					    thres);
10192	}
10193	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10194		    sc_mtu_to_threshold(dd->vld[15].sc,
10195					dd->vld[15].mtu,
10196					dd->rcd[0]->rcvhdrqentsize));
10197	sc_set_cr_threshold(dd->vld[15].sc, thres);
10198
10199	/* Adjust maximum MTU for the port in DC */
10200	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10201		(ilog2(maxvlmtu >> 8) + 1);
10202	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10203	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10204	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10205		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10206	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10207}
10208
10209static void set_lidlmc(struct hfi1_pportdata *ppd)
10210{
10211	int i;
10212	u64 sreg = 0;
10213	struct hfi1_devdata *dd = ppd->dd;
10214	u32 mask = ~((1U << ppd->lmc) - 1);
10215	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10216	u32 lid;
10217
10218	/*
10219	 * Program 0 in CSR if port lid is extended. This prevents
10220	 * 9B packets being sent out for large lids.
10221	 */
10222	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10223	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10224		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10225	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10226			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10227	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10228			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10229	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10230
10231	/*
10232	 * Iterate over all the send contexts and set their SLID check
10233	 */
10234	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10235			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10236	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10237			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10238
10239	for (i = 0; i < chip_send_contexts(dd); i++) {
10240		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10241			  i, (u32)sreg);
10242		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10243	}
10244
10245	/* Now we have to do the same thing for the sdma engines */
10246	sdma_update_lmc(dd, mask, lid);
10247}
10248
10249static const char *state_completed_string(u32 completed)
10250{
10251	static const char * const state_completed[] = {
10252		"EstablishComm",
10253		"OptimizeEQ",
10254		"VerifyCap"
10255	};
10256
10257	if (completed < ARRAY_SIZE(state_completed))
10258		return state_completed[completed];
10259
10260	return "unknown";
10261}
10262
10263static const char all_lanes_dead_timeout_expired[] =
10264	"All lanes were inactive – was the interconnect media removed?";
10265static const char tx_out_of_policy[] =
10266	"Passing lanes on local port do not meet the local link width policy";
10267static const char no_state_complete[] =
10268	"State timeout occurred before link partner completed the state";
10269static const char * const state_complete_reasons[] = {
10270	[0x00] = "Reason unknown",
10271	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10272	[0x02] = "Link partner reported failure",
10273	[0x10] = "Unable to achieve frame sync on any lane",
10274	[0x11] =
10275	  "Unable to find a common bit rate with the link partner",
10276	[0x12] =
10277	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10278	[0x13] =
10279	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10280	[0x14] = no_state_complete,
10281	[0x15] =
10282	  "State timeout occurred before link partner identified equalization presets",
10283	[0x16] =
10284	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10285	[0x17] = tx_out_of_policy,
10286	[0x20] = all_lanes_dead_timeout_expired,
10287	[0x21] =
10288	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10289	[0x22] = no_state_complete,
10290	[0x23] =
10291	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10292	[0x24] = tx_out_of_policy,
10293	[0x30] = all_lanes_dead_timeout_expired,
10294	[0x31] =
10295	  "State timeout occurred waiting for host to process received frames",
10296	[0x32] = no_state_complete,
10297	[0x33] =
10298	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10299	[0x34] = tx_out_of_policy,
10300	[0x35] = "Negotiated link width is mutually exclusive",
10301	[0x36] =
10302	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10303	[0x37] = "Unable to resolve secure data exchange",
10304};
10305
10306static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10307						     u32 code)
10308{
10309	const char *str = NULL;
10310
10311	if (code < ARRAY_SIZE(state_complete_reasons))
10312		str = state_complete_reasons[code];
10313
10314	if (str)
10315		return str;
10316	return "Reserved";
10317}
10318
10319/* describe the given last state complete frame */
10320static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10321				  const char *prefix)
10322{
10323	struct hfi1_devdata *dd = ppd->dd;
10324	u32 success;
10325	u32 state;
10326	u32 reason;
10327	u32 lanes;
10328
10329	/*
10330	 * Decode frame:
10331	 *  [ 0: 0] - success
10332	 *  [ 3: 1] - state
10333	 *  [ 7: 4] - next state timeout
10334	 *  [15: 8] - reason code
10335	 *  [31:16] - lanes
10336	 */
10337	success = frame & 0x1;
10338	state = (frame >> 1) & 0x7;
10339	reason = (frame >> 8) & 0xff;
10340	lanes = (frame >> 16) & 0xffff;
10341
10342	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10343		   prefix, frame);
10344	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10345		   state_completed_string(state), state);
10346	dd_dev_err(dd, "    state successfully completed: %s\n",
10347		   success ? "yes" : "no");
10348	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10349		   reason, state_complete_reason_code_string(ppd, reason));
10350	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10351}
10352
10353/*
10354 * Read the last state complete frames and explain them.  This routine
10355 * expects to be called if the link went down during link negotiation
10356 * and initialization (LNI).  That is, anywhere between polling and link up.
10357 */
10358static void check_lni_states(struct hfi1_pportdata *ppd)
10359{
10360	u32 last_local_state;
10361	u32 last_remote_state;
10362
10363	read_last_local_state(ppd->dd, &last_local_state);
10364	read_last_remote_state(ppd->dd, &last_remote_state);
10365
10366	/*
10367	 * Don't report anything if there is nothing to report.  A value of
10368	 * 0 means the link was taken down while polling and there was no
10369	 * training in-process.
10370	 */
10371	if (last_local_state == 0 && last_remote_state == 0)
10372		return;
10373
10374	decode_state_complete(ppd, last_local_state, "transmitted");
10375	decode_state_complete(ppd, last_remote_state, "received");
10376}
10377
10378/* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10379static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10380{
10381	u64 reg;
10382	unsigned long timeout;
10383
10384	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10385	timeout = jiffies + msecs_to_jiffies(wait_ms);
10386	while (1) {
10387		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10388		if (reg)
10389			break;
10390		if (time_after(jiffies, timeout)) {
10391			dd_dev_err(dd,
10392				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10393			return -ETIMEDOUT;
10394		}
10395		udelay(2);
10396	}
10397	return 0;
10398}
10399
10400/* called when the logical link state is not down as it should be */
10401static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10402{
10403	struct hfi1_devdata *dd = ppd->dd;
10404
10405	/*
10406	 * Bring link up in LCB loopback
10407	 */
10408	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10409	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10410		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10411
10412	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10413	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10414	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10415	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10416
10417	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10418	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10419	udelay(3);
10420	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10421	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10422
10423	wait_link_transfer_active(dd, 100);
10424
10425	/*
10426	 * Bring the link down again.
10427	 */
10428	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10429	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10430	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10431
10432	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10433}
10434
10435/*
10436 * Helper for set_link_state().  Do not call except from that routine.
10437 * Expects ppd->hls_mutex to be held.
10438 *
10439 * @rem_reason value to be sent to the neighbor
10440 *
10441 * LinkDownReasons only set if transition succeeds.
10442 */
10443static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10444{
10445	struct hfi1_devdata *dd = ppd->dd;
10446	u32 previous_state;
10447	int offline_state_ret;
10448	int ret;
10449
10450	update_lcb_cache(dd);
10451
10452	previous_state = ppd->host_link_state;
10453	ppd->host_link_state = HLS_GOING_OFFLINE;
10454
10455	/* start offline transition */
10456	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10457
10458	if (ret != HCMD_SUCCESS) {
10459		dd_dev_err(dd,
10460			   "Failed to transition to Offline link state, return %d\n",
10461			   ret);
10462		return -EINVAL;
10463	}
10464	if (ppd->offline_disabled_reason ==
10465			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10466		ppd->offline_disabled_reason =
10467		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10468
10469	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10470	if (offline_state_ret < 0)
10471		return offline_state_ret;
10472
10473	/* Disabling AOC transmitters */
10474	if (ppd->port_type == PORT_TYPE_QSFP &&
10475	    ppd->qsfp_info.limiting_active &&
10476	    qsfp_mod_present(ppd)) {
10477		int ret;
10478
10479		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10480		if (ret == 0) {
10481			set_qsfp_tx(ppd, 0);
10482			release_chip_resource(dd, qsfp_resource(dd));
10483		} else {
10484			/* not fatal, but should warn */
10485			dd_dev_err(dd,
10486				   "Unable to acquire lock to turn off QSFP TX\n");
10487		}
10488	}
10489
10490	/*
10491	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10492	 * can take a while for the link to go down.
10493	 */
10494	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10495		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10496		if (ret < 0)
10497			return ret;
10498	}
10499
10500	/*
10501	 * Now in charge of LCB - must be after the physical state is
10502	 * offline.quiet and before host_link_state is changed.
10503	 */
10504	set_host_lcb_access(dd);
10505	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10506
10507	/* make sure the logical state is also down */
10508	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10509	if (ret)
10510		force_logical_link_state_down(ppd);
10511
10512	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10513	update_statusp(ppd, IB_PORT_DOWN);
10514
10515	/*
10516	 * The LNI has a mandatory wait time after the physical state
10517	 * moves to Offline.Quiet.  The wait time may be different
10518	 * depending on how the link went down.  The 8051 firmware
10519	 * will observe the needed wait time and only move to ready
10520	 * when that is completed.  The largest of the quiet timeouts
10521	 * is 6s, so wait that long and then at least 0.5s more for
10522	 * other transitions, and another 0.5s for a buffer.
10523	 */
10524	ret = wait_fm_ready(dd, 7000);
10525	if (ret) {
10526		dd_dev_err(dd,
10527			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10528		/* state is really offline, so make it so */
10529		ppd->host_link_state = HLS_DN_OFFLINE;
10530		return ret;
10531	}
10532
10533	/*
10534	 * The state is now offline and the 8051 is ready to accept host
10535	 * requests.
10536	 *	- change our state
10537	 *	- notify others if we were previously in a linkup state
10538	 */
10539	ppd->host_link_state = HLS_DN_OFFLINE;
10540	if (previous_state & HLS_UP) {
10541		/* went down while link was up */
10542		handle_linkup_change(dd, 0);
10543	} else if (previous_state
10544			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10545		/* went down while attempting link up */
10546		check_lni_states(ppd);
10547
10548		/* The QSFP doesn't need to be reset on LNI failure */
10549		ppd->qsfp_info.reset_needed = 0;
10550	}
10551
10552	/* the active link width (downgrade) is 0 on link down */
10553	ppd->link_width_active = 0;
10554	ppd->link_width_downgrade_tx_active = 0;
10555	ppd->link_width_downgrade_rx_active = 0;
10556	ppd->current_egress_rate = 0;
10557	return 0;
10558}
10559
10560/* return the link state name */
10561static const char *link_state_name(u32 state)
10562{
10563	const char *name;
10564	int n = ilog2(state);
10565	static const char * const names[] = {
10566		[__HLS_UP_INIT_BP]	 = "INIT",
10567		[__HLS_UP_ARMED_BP]	 = "ARMED",
10568		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10569		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10570		[__HLS_DN_POLL_BP]	 = "POLL",
10571		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10572		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10573		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10574		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10575		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10576		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10577	};
10578
10579	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10580	return name ? name : "unknown";
10581}
10582
10583/* return the link state reason name */
10584static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10585{
10586	if (state == HLS_UP_INIT) {
10587		switch (ppd->linkinit_reason) {
10588		case OPA_LINKINIT_REASON_LINKUP:
10589			return "(LINKUP)";
10590		case OPA_LINKINIT_REASON_FLAPPING:
10591			return "(FLAPPING)";
10592		case OPA_LINKINIT_OUTSIDE_POLICY:
10593			return "(OUTSIDE_POLICY)";
10594		case OPA_LINKINIT_QUARANTINED:
10595			return "(QUARANTINED)";
10596		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10597			return "(INSUFIC_CAPABILITY)";
10598		default:
10599			break;
10600		}
10601	}
10602	return "";
10603}
10604
10605/*
10606 * driver_pstate - convert the driver's notion of a port's
10607 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10608 * Return -1 (converted to a u32) to indicate error.
10609 */
10610u32 driver_pstate(struct hfi1_pportdata *ppd)
10611{
10612	switch (ppd->host_link_state) {
10613	case HLS_UP_INIT:
10614	case HLS_UP_ARMED:
10615	case HLS_UP_ACTIVE:
10616		return IB_PORTPHYSSTATE_LINKUP;
10617	case HLS_DN_POLL:
10618		return IB_PORTPHYSSTATE_POLLING;
10619	case HLS_DN_DISABLE:
10620		return IB_PORTPHYSSTATE_DISABLED;
10621	case HLS_DN_OFFLINE:
10622		return OPA_PORTPHYSSTATE_OFFLINE;
10623	case HLS_VERIFY_CAP:
10624		return IB_PORTPHYSSTATE_TRAINING;
10625	case HLS_GOING_UP:
10626		return IB_PORTPHYSSTATE_TRAINING;
10627	case HLS_GOING_OFFLINE:
10628		return OPA_PORTPHYSSTATE_OFFLINE;
10629	case HLS_LINK_COOLDOWN:
10630		return OPA_PORTPHYSSTATE_OFFLINE;
10631	case HLS_DN_DOWNDEF:
10632	default:
10633		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10634			   ppd->host_link_state);
10635		return  -1;
10636	}
10637}
10638
10639/*
10640 * driver_lstate - convert the driver's notion of a port's
10641 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10642 * (converted to a u32) to indicate error.
10643 */
10644u32 driver_lstate(struct hfi1_pportdata *ppd)
10645{
10646	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10647		return IB_PORT_DOWN;
10648
10649	switch (ppd->host_link_state & HLS_UP) {
10650	case HLS_UP_INIT:
10651		return IB_PORT_INIT;
10652	case HLS_UP_ARMED:
10653		return IB_PORT_ARMED;
10654	case HLS_UP_ACTIVE:
10655		return IB_PORT_ACTIVE;
10656	default:
10657		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10658			   ppd->host_link_state);
10659	return -1;
10660	}
10661}
10662
10663void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10664			  u8 neigh_reason, u8 rem_reason)
10665{
10666	if (ppd->local_link_down_reason.latest == 0 &&
10667	    ppd->neigh_link_down_reason.latest == 0) {
10668		ppd->local_link_down_reason.latest = lcl_reason;
10669		ppd->neigh_link_down_reason.latest = neigh_reason;
10670		ppd->remote_link_down_reason = rem_reason;
10671	}
10672}
10673
10674/**
10675 * data_vls_operational() - Verify if data VL BCT credits and MTU
10676 *			    are both set.
10677 * @ppd: pointer to hfi1_pportdata structure
10678 *
10679 * Return: true - Ok, false -otherwise.
10680 */
10681static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10682{
10683	int i;
10684	u64 reg;
10685
10686	if (!ppd->actual_vls_operational)
10687		return false;
10688
10689	for (i = 0; i < ppd->vls_supported; i++) {
10690		reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10691		if ((reg && !ppd->dd->vld[i].mtu) ||
10692		    (!reg && ppd->dd->vld[i].mtu))
10693			return false;
10694	}
10695
10696	return true;
10697}
10698
10699/*
10700 * Change the physical and/or logical link state.
10701 *
10702 * Do not call this routine while inside an interrupt.  It contains
10703 * calls to routines that can take multiple seconds to finish.
10704 *
10705 * Returns 0 on success, -errno on failure.
10706 */
10707int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10708{
10709	struct hfi1_devdata *dd = ppd->dd;
10710	struct ib_event event = {.device = NULL};
10711	int ret1, ret = 0;
10712	int orig_new_state, poll_bounce;
10713
10714	mutex_lock(&ppd->hls_lock);
10715
10716	orig_new_state = state;
10717	if (state == HLS_DN_DOWNDEF)
10718		state = HLS_DEFAULT;
10719
10720	/* interpret poll -> poll as a link bounce */
10721	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10722		      state == HLS_DN_POLL;
10723
10724	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10725		    link_state_name(ppd->host_link_state),
10726		    link_state_name(orig_new_state),
10727		    poll_bounce ? "(bounce) " : "",
10728		    link_state_reason_name(ppd, state));
10729
10730	/*
10731	 * If we're going to a (HLS_*) link state that implies the logical
10732	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10733	 * reset is_sm_config_started to 0.
10734	 */
10735	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10736		ppd->is_sm_config_started = 0;
10737
10738	/*
10739	 * Do nothing if the states match.  Let a poll to poll link bounce
10740	 * go through.
10741	 */
10742	if (ppd->host_link_state == state && !poll_bounce)
10743		goto done;
10744
10745	switch (state) {
10746	case HLS_UP_INIT:
10747		if (ppd->host_link_state == HLS_DN_POLL &&
10748		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10749			/*
10750			 * Quick link up jumps from polling to here.
10751			 *
10752			 * Whether in normal or loopback mode, the
10753			 * simulator jumps from polling to link up.
10754			 * Accept that here.
10755			 */
10756			/* OK */
10757		} else if (ppd->host_link_state != HLS_GOING_UP) {
10758			goto unexpected;
10759		}
10760
10761		/*
10762		 * Wait for Link_Up physical state.
10763		 * Physical and Logical states should already be
10764		 * be transitioned to LinkUp and LinkInit respectively.
10765		 */
10766		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10767		if (ret) {
10768			dd_dev_err(dd,
10769				   "%s: physical state did not change to LINK-UP\n",
10770				   __func__);
10771			break;
10772		}
10773
10774		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10775		if (ret) {
10776			dd_dev_err(dd,
10777				   "%s: logical state did not change to INIT\n",
10778				   __func__);
10779			break;
10780		}
10781
10782		/* clear old transient LINKINIT_REASON code */
10783		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10784			ppd->linkinit_reason =
10785				OPA_LINKINIT_REASON_LINKUP;
10786
10787		/* enable the port */
10788		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10789
10790		handle_linkup_change(dd, 1);
10791		pio_kernel_linkup(dd);
10792
10793		/*
10794		 * After link up, a new link width will have been set.
10795		 * Update the xmit counters with regards to the new
10796		 * link width.
10797		 */
10798		update_xmit_counters(ppd, ppd->link_width_active);
10799
10800		ppd->host_link_state = HLS_UP_INIT;
10801		update_statusp(ppd, IB_PORT_INIT);
10802		break;
10803	case HLS_UP_ARMED:
10804		if (ppd->host_link_state != HLS_UP_INIT)
10805			goto unexpected;
10806
10807		if (!data_vls_operational(ppd)) {
10808			dd_dev_err(dd,
10809				   "%s: Invalid data VL credits or mtu\n",
10810				   __func__);
10811			ret = -EINVAL;
10812			break;
10813		}
10814
10815		set_logical_state(dd, LSTATE_ARMED);
10816		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10817		if (ret) {
10818			dd_dev_err(dd,
10819				   "%s: logical state did not change to ARMED\n",
10820				   __func__);
10821			break;
10822		}
10823		ppd->host_link_state = HLS_UP_ARMED;
10824		update_statusp(ppd, IB_PORT_ARMED);
10825		/*
10826		 * The simulator does not currently implement SMA messages,
10827		 * so neighbor_normal is not set.  Set it here when we first
10828		 * move to Armed.
10829		 */
10830		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10831			ppd->neighbor_normal = 1;
10832		break;
10833	case HLS_UP_ACTIVE:
10834		if (ppd->host_link_state != HLS_UP_ARMED)
10835			goto unexpected;
10836
10837		set_logical_state(dd, LSTATE_ACTIVE);
10838		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10839		if (ret) {
10840			dd_dev_err(dd,
10841				   "%s: logical state did not change to ACTIVE\n",
10842				   __func__);
10843		} else {
10844			/* tell all engines to go running */
10845			sdma_all_running(dd);
10846			ppd->host_link_state = HLS_UP_ACTIVE;
10847			update_statusp(ppd, IB_PORT_ACTIVE);
10848
10849			/* Signal the IB layer that the port has went active */
10850			event.device = &dd->verbs_dev.rdi.ibdev;
10851			event.element.port_num = ppd->port;
10852			event.event = IB_EVENT_PORT_ACTIVE;
10853		}
10854		break;
10855	case HLS_DN_POLL:
10856		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10857		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10858		    dd->dc_shutdown)
10859			dc_start(dd);
10860		/* Hand LED control to the DC */
10861		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10862
10863		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10864			u8 tmp = ppd->link_enabled;
10865
10866			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10867			if (ret) {
10868				ppd->link_enabled = tmp;
10869				break;
10870			}
10871			ppd->remote_link_down_reason = 0;
10872
10873			if (ppd->driver_link_ready)
10874				ppd->link_enabled = 1;
10875		}
10876
10877		set_all_slowpath(ppd->dd);
10878		ret = set_local_link_attributes(ppd);
10879		if (ret)
10880			break;
10881
10882		ppd->port_error_action = 0;
10883
10884		if (quick_linkup) {
10885			/* quick linkup does not go into polling */
10886			ret = do_quick_linkup(dd);
10887		} else {
10888			ret1 = set_physical_link_state(dd, PLS_POLLING);
10889			if (!ret1)
10890				ret1 = wait_phys_link_out_of_offline(ppd,
10891								     3000);
10892			if (ret1 != HCMD_SUCCESS) {
10893				dd_dev_err(dd,
10894					   "Failed to transition to Polling link state, return 0x%x\n",
10895					   ret1);
10896				ret = -EINVAL;
10897			}
10898		}
10899
10900		/*
10901		 * Change the host link state after requesting DC8051 to
10902		 * change its physical state so that we can ignore any
10903		 * interrupt with stale LNI(XX) error, which will not be
10904		 * cleared until DC8051 transitions to Polling state.
10905		 */
10906		ppd->host_link_state = HLS_DN_POLL;
10907		ppd->offline_disabled_reason =
10908			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10909		/*
10910		 * If an error occurred above, go back to offline.  The
10911		 * caller may reschedule another attempt.
10912		 */
10913		if (ret)
10914			goto_offline(ppd, 0);
10915		else
10916			log_physical_state(ppd, PLS_POLLING);
10917		break;
10918	case HLS_DN_DISABLE:
10919		/* link is disabled */
10920		ppd->link_enabled = 0;
10921
10922		/* allow any state to transition to disabled */
10923
10924		/* must transition to offline first */
10925		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10926			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10927			if (ret)
10928				break;
10929			ppd->remote_link_down_reason = 0;
10930		}
10931
10932		if (!dd->dc_shutdown) {
10933			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10934			if (ret1 != HCMD_SUCCESS) {
10935				dd_dev_err(dd,
10936					   "Failed to transition to Disabled link state, return 0x%x\n",
10937					   ret1);
10938				ret = -EINVAL;
10939				break;
10940			}
10941			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10942			if (ret) {
10943				dd_dev_err(dd,
10944					   "%s: physical state did not change to DISABLED\n",
10945					   __func__);
10946				break;
10947			}
10948			dc_shutdown(dd);
10949		}
10950		ppd->host_link_state = HLS_DN_DISABLE;
10951		break;
10952	case HLS_DN_OFFLINE:
10953		if (ppd->host_link_state == HLS_DN_DISABLE)
10954			dc_start(dd);
10955
10956		/* allow any state to transition to offline */
10957		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10958		if (!ret)
10959			ppd->remote_link_down_reason = 0;
10960		break;
10961	case HLS_VERIFY_CAP:
10962		if (ppd->host_link_state != HLS_DN_POLL)
10963			goto unexpected;
10964		ppd->host_link_state = HLS_VERIFY_CAP;
10965		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10966		break;
10967	case HLS_GOING_UP:
10968		if (ppd->host_link_state != HLS_VERIFY_CAP)
10969			goto unexpected;
10970
10971		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10972		if (ret1 != HCMD_SUCCESS) {
10973			dd_dev_err(dd,
10974				   "Failed to transition to link up state, return 0x%x\n",
10975				   ret1);
10976			ret = -EINVAL;
10977			break;
10978		}
10979		ppd->host_link_state = HLS_GOING_UP;
10980		break;
10981
10982	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10983	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10984	default:
10985		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10986			    __func__, state);
10987		ret = -EINVAL;
10988		break;
10989	}
10990
10991	goto done;
10992
10993unexpected:
10994	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10995		   __func__, link_state_name(ppd->host_link_state),
10996		   link_state_name(state));
10997	ret = -EINVAL;
10998
10999done:
11000	mutex_unlock(&ppd->hls_lock);
11001
11002	if (event.device)
11003		ib_dispatch_event(&event);
11004
11005	return ret;
11006}
11007
11008int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
11009{
11010	u64 reg;
11011	int ret = 0;
11012
11013	switch (which) {
11014	case HFI1_IB_CFG_LIDLMC:
11015		set_lidlmc(ppd);
11016		break;
11017	case HFI1_IB_CFG_VL_HIGH_LIMIT:
11018		/*
11019		 * The VL Arbitrator high limit is sent in units of 4k
11020		 * bytes, while HFI stores it in units of 64 bytes.
11021		 */
11022		val *= 4096 / 64;
11023		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
11024			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
11025		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
11026		break;
11027	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
11028		/* HFI only supports POLL as the default link down state */
11029		if (val != HLS_DN_POLL)
11030			ret = -EINVAL;
11031		break;
11032	case HFI1_IB_CFG_OP_VLS:
11033		if (ppd->vls_operational != val) {
11034			ppd->vls_operational = val;
11035			if (!ppd->port)
11036				ret = -EINVAL;
11037		}
11038		break;
11039	/*
11040	 * For link width, link width downgrade, and speed enable, always AND
11041	 * the setting with what is actually supported.  This has two benefits.
11042	 * First, enabled can't have unsupported values, no matter what the
11043	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
11044	 * "fill in with your supported value" have all the bits in the
11045	 * field set, so simply ANDing with supported has the desired result.
11046	 */
11047	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
11048		ppd->link_width_enabled = val & ppd->link_width_supported;
11049		break;
11050	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
11051		ppd->link_width_downgrade_enabled =
11052				val & ppd->link_width_downgrade_supported;
11053		break;
11054	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
11055		ppd->link_speed_enabled = val & ppd->link_speed_supported;
11056		break;
11057	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
11058		/*
11059		 * HFI does not follow IB specs, save this value
11060		 * so we can report it, if asked.
11061		 */
11062		ppd->overrun_threshold = val;
11063		break;
11064	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
11065		/*
11066		 * HFI does not follow IB specs, save this value
11067		 * so we can report it, if asked.
11068		 */
11069		ppd->phy_error_threshold = val;
11070		break;
11071
11072	case HFI1_IB_CFG_MTU:
11073		set_send_length(ppd);
11074		break;
11075
11076	case HFI1_IB_CFG_PKEYS:
11077		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
11078			set_partition_keys(ppd);
11079		break;
11080
11081	default:
11082		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
11083			dd_dev_info(ppd->dd,
11084				    "%s: which %s, val 0x%x: not implemented\n",
11085				    __func__, ib_cfg_name(which), val);
11086		break;
11087	}
11088	return ret;
11089}
11090
11091/* begin functions related to vl arbitration table caching */
11092static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
11093{
11094	int i;
11095
11096	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11097			VL_ARB_LOW_PRIO_TABLE_SIZE);
11098	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11099			VL_ARB_HIGH_PRIO_TABLE_SIZE);
11100
11101	/*
11102	 * Note that we always return values directly from the
11103	 * 'vl_arb_cache' (and do no CSR reads) in response to a
11104	 * 'Get(VLArbTable)'. This is obviously correct after a
11105	 * 'Set(VLArbTable)', since the cache will then be up to
11106	 * date. But it's also correct prior to any 'Set(VLArbTable)'
11107	 * since then both the cache, and the relevant h/w registers
11108	 * will be zeroed.
11109	 */
11110
11111	for (i = 0; i < MAX_PRIO_TABLE; i++)
11112		spin_lock_init(&ppd->vl_arb_cache[i].lock);
11113}
11114
11115/*
11116 * vl_arb_lock_cache
11117 *
11118 * All other vl_arb_* functions should be called only after locking
11119 * the cache.
11120 */
11121static inline struct vl_arb_cache *
11122vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11123{
11124	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11125		return NULL;
11126	spin_lock(&ppd->vl_arb_cache[idx].lock);
11127	return &ppd->vl_arb_cache[idx];
11128}
11129
11130static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11131{
11132	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11133}
11134
11135static void vl_arb_get_cache(struct vl_arb_cache *cache,
11136			     struct ib_vl_weight_elem *vl)
11137{
11138	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11139}
11140
11141static void vl_arb_set_cache(struct vl_arb_cache *cache,
11142			     struct ib_vl_weight_elem *vl)
11143{
11144	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11145}
11146
11147static int vl_arb_match_cache(struct vl_arb_cache *cache,
11148			      struct ib_vl_weight_elem *vl)
11149{
11150	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11151}
11152
11153/* end functions related to vl arbitration table caching */
11154
11155static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11156			  u32 size, struct ib_vl_weight_elem *vl)
11157{
11158	struct hfi1_devdata *dd = ppd->dd;
11159	u64 reg;
11160	unsigned int i, is_up = 0;
11161	int drain, ret = 0;
11162
11163	mutex_lock(&ppd->hls_lock);
11164
11165	if (ppd->host_link_state & HLS_UP)
11166		is_up = 1;
11167
11168	drain = !is_ax(dd) && is_up;
11169
11170	if (drain)
11171		/*
11172		 * Before adjusting VL arbitration weights, empty per-VL
11173		 * FIFOs, otherwise a packet whose VL weight is being
11174		 * set to 0 could get stuck in a FIFO with no chance to
11175		 * egress.
11176		 */
11177		ret = stop_drain_data_vls(dd);
11178
11179	if (ret) {
11180		dd_dev_err(
11181			dd,
11182			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11183			__func__);
11184		goto err;
11185	}
11186
11187	for (i = 0; i < size; i++, vl++) {
11188		/*
11189		 * NOTE: The low priority shift and mask are used here, but
11190		 * they are the same for both the low and high registers.
11191		 */
11192		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11193				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11194		      | (((u64)vl->weight
11195				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11196				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11197		write_csr(dd, target + (i * 8), reg);
11198	}
11199	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11200
11201	if (drain)
11202		open_fill_data_vls(dd); /* reopen all VLs */
11203
11204err:
11205	mutex_unlock(&ppd->hls_lock);
11206
11207	return ret;
11208}
11209
11210/*
11211 * Read one credit merge VL register.
11212 */
11213static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11214			   struct vl_limit *vll)
11215{
11216	u64 reg = read_csr(dd, csr);
11217
11218	vll->dedicated = cpu_to_be16(
11219		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11220		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11221	vll->shared = cpu_to_be16(
11222		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11223		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11224}
11225
11226/*
11227 * Read the current credit merge limits.
11228 */
11229static int get_buffer_control(struct hfi1_devdata *dd,
11230			      struct buffer_control *bc, u16 *overall_limit)
11231{
11232	u64 reg;
11233	int i;
11234
11235	/* not all entries are filled in */
11236	memset(bc, 0, sizeof(*bc));
11237
11238	/* OPA and HFI have a 1-1 mapping */
11239	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11240		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11241
11242	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11243	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11244
11245	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11246	bc->overall_shared_limit = cpu_to_be16(
11247		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11248		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11249	if (overall_limit)
11250		*overall_limit = (reg
11251			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11252			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11253	return sizeof(struct buffer_control);
11254}
11255
11256static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11257{
11258	u64 reg;
11259	int i;
11260
11261	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11262	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11263	for (i = 0; i < sizeof(u64); i++) {
11264		u8 byte = *(((u8 *)&reg) + i);
11265
11266		dp->vlnt[2 * i] = byte & 0xf;
11267		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11268	}
11269
11270	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11271	for (i = 0; i < sizeof(u64); i++) {
11272		u8 byte = *(((u8 *)&reg) + i);
11273
11274		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11275		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11276	}
11277	return sizeof(struct sc2vlnt);
11278}
11279
11280static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11281			      struct ib_vl_weight_elem *vl)
11282{
11283	unsigned int i;
11284
11285	for (i = 0; i < nelems; i++, vl++) {
11286		vl->vl = 0xf;
11287		vl->weight = 0;
11288	}
11289}
11290
11291static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11292{
11293	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11294		  DC_SC_VL_VAL(15_0,
11295			       0, dp->vlnt[0] & 0xf,
11296			       1, dp->vlnt[1] & 0xf,
11297			       2, dp->vlnt[2] & 0xf,
11298			       3, dp->vlnt[3] & 0xf,
11299			       4, dp->vlnt[4] & 0xf,
11300			       5, dp->vlnt[5] & 0xf,
11301			       6, dp->vlnt[6] & 0xf,
11302			       7, dp->vlnt[7] & 0xf,
11303			       8, dp->vlnt[8] & 0xf,
11304			       9, dp->vlnt[9] & 0xf,
11305			       10, dp->vlnt[10] & 0xf,
11306			       11, dp->vlnt[11] & 0xf,
11307			       12, dp->vlnt[12] & 0xf,
11308			       13, dp->vlnt[13] & 0xf,
11309			       14, dp->vlnt[14] & 0xf,
11310			       15, dp->vlnt[15] & 0xf));
11311	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11312		  DC_SC_VL_VAL(31_16,
11313			       16, dp->vlnt[16] & 0xf,
11314			       17, dp->vlnt[17] & 0xf,
11315			       18, dp->vlnt[18] & 0xf,
11316			       19, dp->vlnt[19] & 0xf,
11317			       20, dp->vlnt[20] & 0xf,
11318			       21, dp->vlnt[21] & 0xf,
11319			       22, dp->vlnt[22] & 0xf,
11320			       23, dp->vlnt[23] & 0xf,
11321			       24, dp->vlnt[24] & 0xf,
11322			       25, dp->vlnt[25] & 0xf,
11323			       26, dp->vlnt[26] & 0xf,
11324			       27, dp->vlnt[27] & 0xf,
11325			       28, dp->vlnt[28] & 0xf,
11326			       29, dp->vlnt[29] & 0xf,
11327			       30, dp->vlnt[30] & 0xf,
11328			       31, dp->vlnt[31] & 0xf));
11329}
11330
11331static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11332			u16 limit)
11333{
11334	if (limit != 0)
11335		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11336			    what, (int)limit, idx);
11337}
11338
11339/* change only the shared limit portion of SendCmGLobalCredit */
11340static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11341{
11342	u64 reg;
11343
11344	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11345	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11346	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11347	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11348}
11349
11350/* change only the total credit limit portion of SendCmGLobalCredit */
11351static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11352{
11353	u64 reg;
11354
11355	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11356	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11357	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11358	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11359}
11360
11361/* set the given per-VL shared limit */
11362static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11363{
11364	u64 reg;
11365	u32 addr;
11366
11367	if (vl < TXE_NUM_DATA_VL)
11368		addr = SEND_CM_CREDIT_VL + (8 * vl);
11369	else
11370		addr = SEND_CM_CREDIT_VL15;
11371
11372	reg = read_csr(dd, addr);
11373	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11374	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11375	write_csr(dd, addr, reg);
11376}
11377
11378/* set the given per-VL dedicated limit */
11379static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11380{
11381	u64 reg;
11382	u32 addr;
11383
11384	if (vl < TXE_NUM_DATA_VL)
11385		addr = SEND_CM_CREDIT_VL + (8 * vl);
11386	else
11387		addr = SEND_CM_CREDIT_VL15;
11388
11389	reg = read_csr(dd, addr);
11390	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11391	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11392	write_csr(dd, addr, reg);
11393}
11394
11395/* spin until the given per-VL status mask bits clear */
11396static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11397				     const char *which)
11398{
11399	unsigned long timeout;
11400	u64 reg;
11401
11402	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11403	while (1) {
11404		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11405
11406		if (reg == 0)
11407			return;	/* success */
11408		if (time_after(jiffies, timeout))
11409			break;		/* timed out */
11410		udelay(1);
11411	}
11412
11413	dd_dev_err(dd,
11414		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11415		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11416	/*
11417	 * If this occurs, it is likely there was a credit loss on the link.
11418	 * The only recovery from that is a link bounce.
11419	 */
11420	dd_dev_err(dd,
11421		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11422}
11423
11424/*
11425 * The number of credits on the VLs may be changed while everything
11426 * is "live", but the following algorithm must be followed due to
11427 * how the hardware is actually implemented.  In particular,
11428 * Return_Credit_Status[] is the only correct status check.
11429 *
11430 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11431 *     set Global_Shared_Credit_Limit = 0
11432 *     use_all_vl = 1
11433 * mask0 = all VLs that are changing either dedicated or shared limits
11434 * set Shared_Limit[mask0] = 0
11435 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11436 * if (changing any dedicated limit)
11437 *     mask1 = all VLs that are lowering dedicated limits
11438 *     lower Dedicated_Limit[mask1]
11439 *     spin until Return_Credit_Status[mask1] == 0
11440 *     raise Dedicated_Limits
11441 * raise Shared_Limits
11442 * raise Global_Shared_Credit_Limit
11443 *
11444 * lower = if the new limit is lower, set the limit to the new value
11445 * raise = if the new limit is higher than the current value (may be changed
11446 *	earlier in the algorithm), set the new limit to the new value
11447 */
11448int set_buffer_control(struct hfi1_pportdata *ppd,
11449		       struct buffer_control *new_bc)
11450{
11451	struct hfi1_devdata *dd = ppd->dd;
11452	u64 changing_mask, ld_mask, stat_mask;
11453	int change_count;
11454	int i, use_all_mask;
11455	int this_shared_changing;
11456	int vl_count = 0, ret;
11457	/*
11458	 * A0: add the variable any_shared_limit_changing below and in the
11459	 * algorithm above.  If removing A0 support, it can be removed.
11460	 */
11461	int any_shared_limit_changing;
11462	struct buffer_control cur_bc;
11463	u8 changing[OPA_MAX_VLS];
11464	u8 lowering_dedicated[OPA_MAX_VLS];
11465	u16 cur_total;
11466	u32 new_total = 0;
11467	const u64 all_mask =
11468	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11469	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11470	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11471	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11472	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11473	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11474	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11475	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11476	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11477
11478#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11479#define NUM_USABLE_VLS 16	/* look at VL15 and less */
11480
11481	/* find the new total credits, do sanity check on unused VLs */
11482	for (i = 0; i < OPA_MAX_VLS; i++) {
11483		if (valid_vl(i)) {
11484			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11485			continue;
11486		}
11487		nonzero_msg(dd, i, "dedicated",
11488			    be16_to_cpu(new_bc->vl[i].dedicated));
11489		nonzero_msg(dd, i, "shared",
11490			    be16_to_cpu(new_bc->vl[i].shared));
11491		new_bc->vl[i].dedicated = 0;
11492		new_bc->vl[i].shared = 0;
11493	}
11494	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11495
11496	/* fetch the current values */
11497	get_buffer_control(dd, &cur_bc, &cur_total);
11498
11499	/*
11500	 * Create the masks we will use.
11501	 */
11502	memset(changing, 0, sizeof(changing));
11503	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11504	/*
11505	 * NOTE: Assumes that the individual VL bits are adjacent and in
11506	 * increasing order
11507	 */
11508	stat_mask =
11509		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11510	changing_mask = 0;
11511	ld_mask = 0;
11512	change_count = 0;
11513	any_shared_limit_changing = 0;
11514	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11515		if (!valid_vl(i))
11516			continue;
11517		this_shared_changing = new_bc->vl[i].shared
11518						!= cur_bc.vl[i].shared;
11519		if (this_shared_changing)
11520			any_shared_limit_changing = 1;
11521		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11522		    this_shared_changing) {
11523			changing[i] = 1;
11524			changing_mask |= stat_mask;
11525			change_count++;
11526		}
11527		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11528					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11529			lowering_dedicated[i] = 1;
11530			ld_mask |= stat_mask;
11531		}
11532	}
11533
11534	/* bracket the credit change with a total adjustment */
11535	if (new_total > cur_total)
11536		set_global_limit(dd, new_total);
11537
11538	/*
11539	 * Start the credit change algorithm.
11540	 */
11541	use_all_mask = 0;
11542	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11543	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11544	    (is_ax(dd) && any_shared_limit_changing)) {
11545		set_global_shared(dd, 0);
11546		cur_bc.overall_shared_limit = 0;
11547		use_all_mask = 1;
11548	}
11549
11550	for (i = 0; i < NUM_USABLE_VLS; i++) {
11551		if (!valid_vl(i))
11552			continue;
11553
11554		if (changing[i]) {
11555			set_vl_shared(dd, i, 0);
11556			cur_bc.vl[i].shared = 0;
11557		}
11558	}
11559
11560	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11561				 "shared");
11562
11563	if (change_count > 0) {
11564		for (i = 0; i < NUM_USABLE_VLS; i++) {
11565			if (!valid_vl(i))
11566				continue;
11567
11568			if (lowering_dedicated[i]) {
11569				set_vl_dedicated(dd, i,
11570						 be16_to_cpu(new_bc->
11571							     vl[i].dedicated));
11572				cur_bc.vl[i].dedicated =
11573						new_bc->vl[i].dedicated;
11574			}
11575		}
11576
11577		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11578
11579		/* now raise all dedicated that are going up */
11580		for (i = 0; i < NUM_USABLE_VLS; i++) {
11581			if (!valid_vl(i))
11582				continue;
11583
11584			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11585					be16_to_cpu(cur_bc.vl[i].dedicated))
11586				set_vl_dedicated(dd, i,
11587						 be16_to_cpu(new_bc->
11588							     vl[i].dedicated));
11589		}
11590	}
11591
11592	/* next raise all shared that are going up */
11593	for (i = 0; i < NUM_USABLE_VLS; i++) {
11594		if (!valid_vl(i))
11595			continue;
11596
11597		if (be16_to_cpu(new_bc->vl[i].shared) >
11598				be16_to_cpu(cur_bc.vl[i].shared))
11599			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11600	}
11601
11602	/* finally raise the global shared */
11603	if (be16_to_cpu(new_bc->overall_shared_limit) >
11604	    be16_to_cpu(cur_bc.overall_shared_limit))
11605		set_global_shared(dd,
11606				  be16_to_cpu(new_bc->overall_shared_limit));
11607
11608	/* bracket the credit change with a total adjustment */
11609	if (new_total < cur_total)
11610		set_global_limit(dd, new_total);
11611
11612	/*
11613	 * Determine the actual number of operational VLS using the number of
11614	 * dedicated and shared credits for each VL.
11615	 */
11616	if (change_count > 0) {
11617		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11618			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11619			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11620				vl_count++;
11621		ppd->actual_vls_operational = vl_count;
11622		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11623				    ppd->actual_vls_operational :
11624				    ppd->vls_operational,
11625				    NULL);
11626		if (ret == 0)
11627			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11628					   ppd->actual_vls_operational :
11629					   ppd->vls_operational, NULL);
11630		if (ret)
11631			return ret;
11632	}
11633	return 0;
11634}
11635
11636/*
11637 * Read the given fabric manager table. Return the size of the
11638 * table (in bytes) on success, and a negative error code on
11639 * failure.
11640 */
11641int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11642
11643{
11644	int size;
11645	struct vl_arb_cache *vlc;
11646
11647	switch (which) {
11648	case FM_TBL_VL_HIGH_ARB:
11649		size = 256;
11650		/*
11651		 * OPA specifies 128 elements (of 2 bytes each), though
11652		 * HFI supports only 16 elements in h/w.
11653		 */
11654		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11655		vl_arb_get_cache(vlc, t);
11656		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11657		break;
11658	case FM_TBL_VL_LOW_ARB:
11659		size = 256;
11660		/*
11661		 * OPA specifies 128 elements (of 2 bytes each), though
11662		 * HFI supports only 16 elements in h/w.
11663		 */
11664		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11665		vl_arb_get_cache(vlc, t);
11666		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11667		break;
11668	case FM_TBL_BUFFER_CONTROL:
11669		size = get_buffer_control(ppd->dd, t, NULL);
11670		break;
11671	case FM_TBL_SC2VLNT:
11672		size = get_sc2vlnt(ppd->dd, t);
11673		break;
11674	case FM_TBL_VL_PREEMPT_ELEMS:
11675		size = 256;
11676		/* OPA specifies 128 elements, of 2 bytes each */
11677		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11678		break;
11679	case FM_TBL_VL_PREEMPT_MATRIX:
11680		size = 256;
11681		/*
11682		 * OPA specifies that this is the same size as the VL
11683		 * arbitration tables (i.e., 256 bytes).
11684		 */
11685		break;
11686	default:
11687		return -EINVAL;
11688	}
11689	return size;
11690}
11691
11692/*
11693 * Write the given fabric manager table.
11694 */
11695int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11696{
11697	int ret = 0;
11698	struct vl_arb_cache *vlc;
11699
11700	switch (which) {
11701	case FM_TBL_VL_HIGH_ARB:
11702		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11703		if (vl_arb_match_cache(vlc, t)) {
11704			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11705			break;
11706		}
11707		vl_arb_set_cache(vlc, t);
11708		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11709		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11710				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11711		break;
11712	case FM_TBL_VL_LOW_ARB:
11713		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11714		if (vl_arb_match_cache(vlc, t)) {
11715			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11716			break;
11717		}
11718		vl_arb_set_cache(vlc, t);
11719		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11720		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11721				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11722		break;
11723	case FM_TBL_BUFFER_CONTROL:
11724		ret = set_buffer_control(ppd, t);
11725		break;
11726	case FM_TBL_SC2VLNT:
11727		set_sc2vlnt(ppd->dd, t);
11728		break;
11729	default:
11730		ret = -EINVAL;
11731	}
11732	return ret;
11733}
11734
11735/*
11736 * Disable all data VLs.
11737 *
11738 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11739 */
11740static int disable_data_vls(struct hfi1_devdata *dd)
11741{
11742	if (is_ax(dd))
11743		return 1;
11744
11745	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11746
11747	return 0;
11748}
11749
11750/*
11751 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11752 * Just re-enables all data VLs (the "fill" part happens
11753 * automatically - the name was chosen for symmetry with
11754 * stop_drain_data_vls()).
11755 *
11756 * Return 0 if successful, non-zero if the VLs cannot be enabled.
11757 */
11758int open_fill_data_vls(struct hfi1_devdata *dd)
11759{
11760	if (is_ax(dd))
11761		return 1;
11762
11763	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11764
11765	return 0;
11766}
11767
11768/*
11769 * drain_data_vls() - assumes that disable_data_vls() has been called,
11770 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11771 * engines to drop to 0.
11772 */
11773static void drain_data_vls(struct hfi1_devdata *dd)
11774{
11775	sc_wait(dd);
11776	sdma_wait(dd);
11777	pause_for_credit_return(dd);
11778}
11779
11780/*
11781 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11782 *
11783 * Use open_fill_data_vls() to resume using data VLs.  This pair is
11784 * meant to be used like this:
11785 *
11786 * stop_drain_data_vls(dd);
11787 * // do things with per-VL resources
11788 * open_fill_data_vls(dd);
11789 */
11790int stop_drain_data_vls(struct hfi1_devdata *dd)
11791{
11792	int ret;
11793
11794	ret = disable_data_vls(dd);
11795	if (ret == 0)
11796		drain_data_vls(dd);
11797
11798	return ret;
11799}
11800
11801/*
11802 * Convert a nanosecond time to a cclock count.  No matter how slow
11803 * the cclock, a non-zero ns will always have a non-zero result.
11804 */
11805u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11806{
11807	u32 cclocks;
11808
11809	if (dd->icode == ICODE_FPGA_EMULATION)
11810		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11811	else  /* simulation pretends to be ASIC */
11812		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11813	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11814		cclocks = 1;
11815	return cclocks;
11816}
11817
11818/*
11819 * Convert a cclock count to nanoseconds. Not matter how slow
11820 * the cclock, a non-zero cclocks will always have a non-zero result.
11821 */
11822u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11823{
11824	u32 ns;
11825
11826	if (dd->icode == ICODE_FPGA_EMULATION)
11827		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11828	else  /* simulation pretends to be ASIC */
11829		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11830	if (cclocks && !ns)
11831		ns = 1;
11832	return ns;
11833}
11834
11835/*
11836 * Dynamically adjust the receive interrupt timeout for a context based on
11837 * incoming packet rate.
11838 *
11839 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11840 */
11841static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11842{
11843	struct hfi1_devdata *dd = rcd->dd;
11844	u32 timeout = rcd->rcvavail_timeout;
11845
11846	/*
11847	 * This algorithm doubles or halves the timeout depending on whether
11848	 * the number of packets received in this interrupt were less than or
11849	 * greater equal the interrupt count.
11850	 *
11851	 * The calculations below do not allow a steady state to be achieved.
11852	 * Only at the endpoints it is possible to have an unchanging
11853	 * timeout.
11854	 */
11855	if (npkts < rcv_intr_count) {
11856		/*
11857		 * Not enough packets arrived before the timeout, adjust
11858		 * timeout downward.
11859		 */
11860		if (timeout < 2) /* already at minimum? */
11861			return;
11862		timeout >>= 1;
11863	} else {
11864		/*
11865		 * More than enough packets arrived before the timeout, adjust
11866		 * timeout upward.
11867		 */
11868		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11869			return;
11870		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11871	}
11872
11873	rcd->rcvavail_timeout = timeout;
11874	/*
11875	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11876	 * been verified to be in range
11877	 */
11878	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11879			(u64)timeout <<
11880			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11881}
11882
11883void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11884		    u32 intr_adjust, u32 npkts)
11885{
11886	struct hfi1_devdata *dd = rcd->dd;
11887	u64 reg;
11888	u32 ctxt = rcd->ctxt;
11889
11890	/*
11891	 * Need to write timeout register before updating RcvHdrHead to ensure
11892	 * that a new value is used when the HW decides to restart counting.
11893	 */
11894	if (intr_adjust)
11895		adjust_rcv_timeout(rcd, npkts);
11896	if (updegr) {
11897		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11898			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11899		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11900	}
11901	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11902		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11903			<< RCV_HDR_HEAD_HEAD_SHIFT);
11904	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11905}
11906
11907u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11908{
11909	u32 head, tail;
11910
11911	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11912		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11913
11914	if (hfi1_rcvhdrtail_kvaddr(rcd))
11915		tail = get_rcvhdrtail(rcd);
11916	else
11917		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11918
11919	return head == tail;
11920}
11921
11922/*
11923 * Context Control and Receive Array encoding for buffer size:
11924 *	0x0 invalid
11925 *	0x1   4 KB
11926 *	0x2   8 KB
11927 *	0x3  16 KB
11928 *	0x4  32 KB
11929 *	0x5  64 KB
11930 *	0x6 128 KB
11931 *	0x7 256 KB
11932 *	0x8 512 KB (Receive Array only)
11933 *	0x9   1 MB (Receive Array only)
11934 *	0xa   2 MB (Receive Array only)
11935 *
11936 *	0xB-0xF - reserved (Receive Array only)
11937 *
11938 *
11939 * This routine assumes that the value has already been sanity checked.
11940 */
11941static u32 encoded_size(u32 size)
11942{
11943	switch (size) {
11944	case   4 * 1024: return 0x1;
11945	case   8 * 1024: return 0x2;
11946	case  16 * 1024: return 0x3;
11947	case  32 * 1024: return 0x4;
11948	case  64 * 1024: return 0x5;
11949	case 128 * 1024: return 0x6;
11950	case 256 * 1024: return 0x7;
11951	case 512 * 1024: return 0x8;
11952	case   1 * 1024 * 1024: return 0x9;
11953	case   2 * 1024 * 1024: return 0xa;
11954	}
11955	return 0x1;	/* if invalid, go with the minimum size */
11956}
11957
11958/**
11959 * encode_rcv_header_entry_size - return chip specific encoding for size
11960 * @size: size in dwords
11961 *
11962 * Convert a receive header entry size that to the encoding used in the CSR.
11963 *
11964 * Return a zero if the given size is invalid, otherwise the encoding.
11965 */
11966u8 encode_rcv_header_entry_size(u8 size)
11967{
11968	/* there are only 3 valid receive header entry sizes */
11969	if (size == 2)
11970		return 1;
11971	if (size == 16)
11972		return 2;
11973	if (size == 32)
11974		return 4;
11975	return 0; /* invalid */
11976}
11977
11978/**
11979 * hfi1_validate_rcvhdrcnt - validate hdrcnt
11980 * @dd: the device data
11981 * @thecnt: the header count
11982 */
11983int hfi1_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
11984{
11985	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
11986		dd_dev_err(dd, "Receive header queue count too small\n");
11987		return -EINVAL;
11988	}
11989
11990	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
11991		dd_dev_err(dd,
11992			   "Receive header queue count cannot be greater than %u\n",
11993			   HFI1_MAX_HDRQ_EGRBUF_CNT);
11994		return -EINVAL;
11995	}
11996
11997	if (thecnt % HDRQ_INCREMENT) {
11998		dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
11999			   thecnt, HDRQ_INCREMENT);
12000		return -EINVAL;
12001	}
12002
12003	return 0;
12004}
12005
12006/**
12007 * set_hdrq_regs - set header queue registers for context
12008 * @dd: the device data
12009 * @ctxt: the context
12010 * @entsize: the dword entry size
12011 * @hdrcnt: the number of header entries
12012 */
12013void set_hdrq_regs(struct hfi1_devdata *dd, u8 ctxt, u8 entsize, u16 hdrcnt)
12014{
12015	u64 reg;
12016
12017	reg = (((u64)hdrcnt >> HDRQ_SIZE_SHIFT) & RCV_HDR_CNT_CNT_MASK) <<
12018	      RCV_HDR_CNT_CNT_SHIFT;
12019	write_kctxt_csr(dd, ctxt, RCV_HDR_CNT, reg);
12020	reg = ((u64)encode_rcv_header_entry_size(entsize) &
12021	       RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) <<
12022	      RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
12023	write_kctxt_csr(dd, ctxt, RCV_HDR_ENT_SIZE, reg);
12024	reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK) <<
12025	      RCV_HDR_SIZE_HDR_SIZE_SHIFT;
12026	write_kctxt_csr(dd, ctxt, RCV_HDR_SIZE, reg);
12027
12028	/*
12029	 * Program dummy tail address for every receive context
12030	 * before enabling any receive context
12031	 */
12032	write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12033			dd->rcvhdrtail_dummy_dma);
12034}
12035
12036void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
12037		  struct hfi1_ctxtdata *rcd)
12038{
12039	u64 rcvctrl, reg;
12040	int did_enable = 0;
12041	u16 ctxt;
12042
12043	if (!rcd)
12044		return;
12045
12046	ctxt = rcd->ctxt;
12047
12048	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
12049
12050	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
12051	/* if the context already enabled, don't do the extra steps */
12052	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
12053	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
12054		/* reset the tail and hdr addresses, and sequence count */
12055		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
12056				rcd->rcvhdrq_dma);
12057		if (hfi1_rcvhdrtail_kvaddr(rcd))
12058			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12059					rcd->rcvhdrqtailaddr_dma);
12060		hfi1_set_seq_cnt(rcd, 1);
12061
12062		/* reset the cached receive header queue head value */
12063		hfi1_set_rcd_head(rcd, 0);
12064
12065		/*
12066		 * Zero the receive header queue so we don't get false
12067		 * positives when checking the sequence number.  The
12068		 * sequence numbers could land exactly on the same spot.
12069		 * E.g. a rcd restart before the receive header wrapped.
12070		 */
12071		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
12072
12073		/* starting timeout */
12074		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
12075
12076		/* enable the context */
12077		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
12078
12079		/* clean the egr buffer size first */
12080		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12081		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
12082				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
12083					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
12084
12085		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
12086		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
12087		did_enable = 1;
12088
12089		/* zero RcvEgrIndexHead */
12090		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
12091
12092		/* set eager count and base index */
12093		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
12094			& RCV_EGR_CTRL_EGR_CNT_MASK)
12095		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
12096			(((rcd->eager_base >> RCV_SHIFT)
12097			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
12098			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
12099		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
12100
12101		/*
12102		 * Set TID (expected) count and base index.
12103		 * rcd->expected_count is set to individual RcvArray entries,
12104		 * not pairs, and the CSR takes a pair-count in groups of
12105		 * four, so divide by 8.
12106		 */
12107		reg = (((rcd->expected_count >> RCV_SHIFT)
12108					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
12109				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
12110		      (((rcd->expected_base >> RCV_SHIFT)
12111					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
12112				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
12113		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
12114		if (ctxt == HFI1_CTRL_CTXT)
12115			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
12116	}
12117	if (op & HFI1_RCVCTRL_CTXT_DIS) {
12118		write_csr(dd, RCV_VL15, 0);
12119		/*
12120		 * When receive context is being disabled turn on tail
12121		 * update with a dummy tail address and then disable
12122		 * receive context.
12123		 */
12124		if (dd->rcvhdrtail_dummy_dma) {
12125			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12126					dd->rcvhdrtail_dummy_dma);
12127			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
12128			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12129		}
12130
12131		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
12132	}
12133	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
12134		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12135			      IS_RCVAVAIL_START + rcd->ctxt, true);
12136		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12137	}
12138	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
12139		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12140			      IS_RCVAVAIL_START + rcd->ctxt, false);
12141		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12142	}
12143	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && hfi1_rcvhdrtail_kvaddr(rcd))
12144		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12145	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
12146		/* See comment on RcvCtxtCtrl.TailUpd above */
12147		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
12148			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12149	}
12150	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
12151		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12152	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
12153		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12154	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
12155		/*
12156		 * In one-packet-per-eager mode, the size comes from
12157		 * the RcvArray entry.
12158		 */
12159		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12160		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12161	}
12162	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
12163		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12164	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
12165		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12166	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
12167		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12168	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
12169		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12170	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12171		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12172	if (op & HFI1_RCVCTRL_URGENT_ENB)
12173		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12174			      IS_RCVURGENT_START + rcd->ctxt, true);
12175	if (op & HFI1_RCVCTRL_URGENT_DIS)
12176		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12177			      IS_RCVURGENT_START + rcd->ctxt, false);
12178
12179	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
12180	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12181
12182	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
12183	if (did_enable &&
12184	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12185		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12186		if (reg != 0) {
12187			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12188				    ctxt, reg);
12189			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12190			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12191			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12192			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12193			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12194			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12195				    ctxt, reg, reg == 0 ? "not" : "still");
12196		}
12197	}
12198
12199	if (did_enable) {
12200		/*
12201		 * The interrupt timeout and count must be set after
12202		 * the context is enabled to take effect.
12203		 */
12204		/* set interrupt timeout */
12205		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12206				(u64)rcd->rcvavail_timeout <<
12207				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12208
12209		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12210		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12211		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12212	}
12213
12214	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12215		/*
12216		 * If the context has been disabled and the Tail Update has
12217		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12218		 * so it doesn't contain an address that is invalid.
12219		 */
12220		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12221				dd->rcvhdrtail_dummy_dma);
12222}
12223
12224u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12225{
12226	int ret;
12227	u64 val = 0;
12228
12229	if (namep) {
12230		ret = dd->cntrnameslen;
12231		*namep = dd->cntrnames;
12232	} else {
12233		const struct cntr_entry *entry;
12234		int i, j;
12235
12236		ret = (dd->ndevcntrs) * sizeof(u64);
12237
12238		/* Get the start of the block of counters */
12239		*cntrp = dd->cntrs;
12240
12241		/*
12242		 * Now go and fill in each counter in the block.
12243		 */
12244		for (i = 0; i < DEV_CNTR_LAST; i++) {
12245			entry = &dev_cntrs[i];
12246			hfi1_cdbg(CNTR, "reading %s", entry->name);
12247			if (entry->flags & CNTR_DISABLED) {
12248				/* Nothing */
12249				hfi1_cdbg(CNTR, "\tDisabled\n");
12250			} else {
12251				if (entry->flags & CNTR_VL) {
12252					hfi1_cdbg(CNTR, "\tPer VL\n");
12253					for (j = 0; j < C_VL_COUNT; j++) {
12254						val = entry->rw_cntr(entry,
12255								  dd, j,
12256								  CNTR_MODE_R,
12257								  0);
12258						hfi1_cdbg(
12259						   CNTR,
12260						   "\t\tRead 0x%llx for %d\n",
12261						   val, j);
12262						dd->cntrs[entry->offset + j] =
12263									    val;
12264					}
12265				} else if (entry->flags & CNTR_SDMA) {
12266					hfi1_cdbg(CNTR,
12267						  "\t Per SDMA Engine\n");
12268					for (j = 0; j < chip_sdma_engines(dd);
12269					     j++) {
12270						val =
12271						entry->rw_cntr(entry, dd, j,
12272							       CNTR_MODE_R, 0);
12273						hfi1_cdbg(CNTR,
12274							  "\t\tRead 0x%llx for %d\n",
12275							  val, j);
12276						dd->cntrs[entry->offset + j] =
12277									val;
12278					}
12279				} else {
12280					val = entry->rw_cntr(entry, dd,
12281							CNTR_INVALID_VL,
12282							CNTR_MODE_R, 0);
12283					dd->cntrs[entry->offset] = val;
12284					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12285				}
12286			}
12287		}
12288	}
12289	return ret;
12290}
12291
12292/*
12293 * Used by sysfs to create files for hfi stats to read
12294 */
12295u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12296{
12297	int ret;
12298	u64 val = 0;
12299
12300	if (namep) {
12301		ret = ppd->dd->portcntrnameslen;
12302		*namep = ppd->dd->portcntrnames;
12303	} else {
12304		const struct cntr_entry *entry;
12305		int i, j;
12306
12307		ret = ppd->dd->nportcntrs * sizeof(u64);
12308		*cntrp = ppd->cntrs;
12309
12310		for (i = 0; i < PORT_CNTR_LAST; i++) {
12311			entry = &port_cntrs[i];
12312			hfi1_cdbg(CNTR, "reading %s", entry->name);
12313			if (entry->flags & CNTR_DISABLED) {
12314				/* Nothing */
12315				hfi1_cdbg(CNTR, "\tDisabled\n");
12316				continue;
12317			}
12318
12319			if (entry->flags & CNTR_VL) {
12320				hfi1_cdbg(CNTR, "\tPer VL");
12321				for (j = 0; j < C_VL_COUNT; j++) {
12322					val = entry->rw_cntr(entry, ppd, j,
12323							       CNTR_MODE_R,
12324							       0);
12325					hfi1_cdbg(
12326					   CNTR,
12327					   "\t\tRead 0x%llx for %d",
12328					   val, j);
12329					ppd->cntrs[entry->offset + j] = val;
12330				}
12331			} else {
12332				val = entry->rw_cntr(entry, ppd,
12333						       CNTR_INVALID_VL,
12334						       CNTR_MODE_R,
12335						       0);
12336				ppd->cntrs[entry->offset] = val;
12337				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12338			}
12339		}
12340	}
12341	return ret;
12342}
12343
12344static void free_cntrs(struct hfi1_devdata *dd)
12345{
12346	struct hfi1_pportdata *ppd;
12347	int i;
12348
12349	if (dd->synth_stats_timer.function)
12350		del_timer_sync(&dd->synth_stats_timer);
12351	cancel_work_sync(&dd->update_cntr_work);
12352	ppd = (struct hfi1_pportdata *)(dd + 1);
12353	for (i = 0; i < dd->num_pports; i++, ppd++) {
12354		kfree(ppd->cntrs);
12355		kfree(ppd->scntrs);
12356		free_percpu(ppd->ibport_data.rvp.rc_acks);
12357		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12358		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12359		ppd->cntrs = NULL;
12360		ppd->scntrs = NULL;
12361		ppd->ibport_data.rvp.rc_acks = NULL;
12362		ppd->ibport_data.rvp.rc_qacks = NULL;
12363		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12364	}
12365	kfree(dd->portcntrnames);
12366	dd->portcntrnames = NULL;
12367	kfree(dd->cntrs);
12368	dd->cntrs = NULL;
12369	kfree(dd->scntrs);
12370	dd->scntrs = NULL;
12371	kfree(dd->cntrnames);
12372	dd->cntrnames = NULL;
12373	if (dd->update_cntr_wq) {
12374		destroy_workqueue(dd->update_cntr_wq);
12375		dd->update_cntr_wq = NULL;
12376	}
12377}
12378
12379static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12380			      u64 *psval, void *context, int vl)
12381{
12382	u64 val;
12383	u64 sval = *psval;
12384
12385	if (entry->flags & CNTR_DISABLED) {
12386		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12387		return 0;
12388	}
12389
12390	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12391
12392	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12393
12394	/* If its a synthetic counter there is more work we need to do */
12395	if (entry->flags & CNTR_SYNTH) {
12396		if (sval == CNTR_MAX) {
12397			/* No need to read already saturated */
12398			return CNTR_MAX;
12399		}
12400
12401		if (entry->flags & CNTR_32BIT) {
12402			/* 32bit counters can wrap multiple times */
12403			u64 upper = sval >> 32;
12404			u64 lower = (sval << 32) >> 32;
12405
12406			if (lower > val) { /* hw wrapped */
12407				if (upper == CNTR_32BIT_MAX)
12408					val = CNTR_MAX;
12409				else
12410					upper++;
12411			}
12412
12413			if (val != CNTR_MAX)
12414				val = (upper << 32) | val;
12415
12416		} else {
12417			/* If we rolled we are saturated */
12418			if ((val < sval) || (val > CNTR_MAX))
12419				val = CNTR_MAX;
12420		}
12421	}
12422
12423	*psval = val;
12424
12425	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12426
12427	return val;
12428}
12429
12430static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12431			       struct cntr_entry *entry,
12432			       u64 *psval, void *context, int vl, u64 data)
12433{
12434	u64 val;
12435
12436	if (entry->flags & CNTR_DISABLED) {
12437		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12438		return 0;
12439	}
12440
12441	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12442
12443	if (entry->flags & CNTR_SYNTH) {
12444		*psval = data;
12445		if (entry->flags & CNTR_32BIT) {
12446			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12447					     (data << 32) >> 32);
12448			val = data; /* return the full 64bit value */
12449		} else {
12450			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12451					     data);
12452		}
12453	} else {
12454		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12455	}
12456
12457	*psval = val;
12458
12459	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12460
12461	return val;
12462}
12463
12464u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12465{
12466	struct cntr_entry *entry;
12467	u64 *sval;
12468
12469	entry = &dev_cntrs[index];
12470	sval = dd->scntrs + entry->offset;
12471
12472	if (vl != CNTR_INVALID_VL)
12473		sval += vl;
12474
12475	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12476}
12477
12478u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12479{
12480	struct cntr_entry *entry;
12481	u64 *sval;
12482
12483	entry = &dev_cntrs[index];
12484	sval = dd->scntrs + entry->offset;
12485
12486	if (vl != CNTR_INVALID_VL)
12487		sval += vl;
12488
12489	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12490}
12491
12492u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12493{
12494	struct cntr_entry *entry;
12495	u64 *sval;
12496
12497	entry = &port_cntrs[index];
12498	sval = ppd->scntrs + entry->offset;
12499
12500	if (vl != CNTR_INVALID_VL)
12501		sval += vl;
12502
12503	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12504	    (index <= C_RCV_HDR_OVF_LAST)) {
12505		/* We do not want to bother for disabled contexts */
12506		return 0;
12507	}
12508
12509	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12510}
12511
12512u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12513{
12514	struct cntr_entry *entry;
12515	u64 *sval;
12516
12517	entry = &port_cntrs[index];
12518	sval = ppd->scntrs + entry->offset;
12519
12520	if (vl != CNTR_INVALID_VL)
12521		sval += vl;
12522
12523	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12524	    (index <= C_RCV_HDR_OVF_LAST)) {
12525		/* We do not want to bother for disabled contexts */
12526		return 0;
12527	}
12528
12529	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12530}
12531
12532static void do_update_synth_timer(struct work_struct *work)
12533{
12534	u64 cur_tx;
12535	u64 cur_rx;
12536	u64 total_flits;
12537	u8 update = 0;
12538	int i, j, vl;
12539	struct hfi1_pportdata *ppd;
12540	struct cntr_entry *entry;
12541	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12542					       update_cntr_work);
12543
12544	/*
12545	 * Rather than keep beating on the CSRs pick a minimal set that we can
12546	 * check to watch for potential roll over. We can do this by looking at
12547	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12548	 * we have to iterate all the counters and update.
12549	 */
12550	entry = &dev_cntrs[C_DC_RCV_FLITS];
12551	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12552
12553	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12554	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12555
12556	hfi1_cdbg(
12557	    CNTR,
12558	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12559	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12560
12561	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12562		/*
12563		 * May not be strictly necessary to update but it won't hurt and
12564		 * simplifies the logic here.
12565		 */
12566		update = 1;
12567		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12568			  dd->unit);
12569	} else {
12570		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12571		hfi1_cdbg(CNTR,
12572			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12573			  total_flits, (u64)CNTR_32BIT_MAX);
12574		if (total_flits >= CNTR_32BIT_MAX) {
12575			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12576				  dd->unit);
12577			update = 1;
12578		}
12579	}
12580
12581	if (update) {
12582		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12583		for (i = 0; i < DEV_CNTR_LAST; i++) {
12584			entry = &dev_cntrs[i];
12585			if (entry->flags & CNTR_VL) {
12586				for (vl = 0; vl < C_VL_COUNT; vl++)
12587					read_dev_cntr(dd, i, vl);
12588			} else {
12589				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12590			}
12591		}
12592		ppd = (struct hfi1_pportdata *)(dd + 1);
12593		for (i = 0; i < dd->num_pports; i++, ppd++) {
12594			for (j = 0; j < PORT_CNTR_LAST; j++) {
12595				entry = &port_cntrs[j];
12596				if (entry->flags & CNTR_VL) {
12597					for (vl = 0; vl < C_VL_COUNT; vl++)
12598						read_port_cntr(ppd, j, vl);
12599				} else {
12600					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12601				}
12602			}
12603		}
12604
12605		/*
12606		 * We want the value in the register. The goal is to keep track
12607		 * of the number of "ticks" not the counter value. In other
12608		 * words if the register rolls we want to notice it and go ahead
12609		 * and force an update.
12610		 */
12611		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12612		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12613						CNTR_MODE_R, 0);
12614
12615		entry = &dev_cntrs[C_DC_RCV_FLITS];
12616		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12617						CNTR_MODE_R, 0);
12618
12619		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12620			  dd->unit, dd->last_tx, dd->last_rx);
12621
12622	} else {
12623		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12624	}
12625}
12626
12627static void update_synth_timer(struct timer_list *t)
12628{
12629	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12630
12631	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12632	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12633}
12634
12635#define C_MAX_NAME 16 /* 15 chars + one for /0 */
12636static int init_cntrs(struct hfi1_devdata *dd)
12637{
12638	int i, rcv_ctxts, j;
12639	size_t sz;
12640	char *p;
12641	char name[C_MAX_NAME];
12642	struct hfi1_pportdata *ppd;
12643	const char *bit_type_32 = ",32";
12644	const int bit_type_32_sz = strlen(bit_type_32);
12645	u32 sdma_engines = chip_sdma_engines(dd);
12646
12647	/* set up the stats timer; the add_timer is done at the end */
12648	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12649
12650	/***********************/
12651	/* per device counters */
12652	/***********************/
12653
12654	/* size names and determine how many we have*/
12655	dd->ndevcntrs = 0;
12656	sz = 0;
12657
12658	for (i = 0; i < DEV_CNTR_LAST; i++) {
12659		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12660			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12661			continue;
12662		}
12663
12664		if (dev_cntrs[i].flags & CNTR_VL) {
12665			dev_cntrs[i].offset = dd->ndevcntrs;
12666			for (j = 0; j < C_VL_COUNT; j++) {
12667				snprintf(name, C_MAX_NAME, "%s%d",
12668					 dev_cntrs[i].name, vl_from_idx(j));
12669				sz += strlen(name);
12670				/* Add ",32" for 32-bit counters */
12671				if (dev_cntrs[i].flags & CNTR_32BIT)
12672					sz += bit_type_32_sz;
12673				sz++;
12674				dd->ndevcntrs++;
12675			}
12676		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12677			dev_cntrs[i].offset = dd->ndevcntrs;
12678			for (j = 0; j < sdma_engines; j++) {
12679				snprintf(name, C_MAX_NAME, "%s%d",
12680					 dev_cntrs[i].name, j);
12681				sz += strlen(name);
12682				/* Add ",32" for 32-bit counters */
12683				if (dev_cntrs[i].flags & CNTR_32BIT)
12684					sz += bit_type_32_sz;
12685				sz++;
12686				dd->ndevcntrs++;
12687			}
12688		} else {
12689			/* +1 for newline. */
12690			sz += strlen(dev_cntrs[i].name) + 1;
12691			/* Add ",32" for 32-bit counters */
12692			if (dev_cntrs[i].flags & CNTR_32BIT)
12693				sz += bit_type_32_sz;
12694			dev_cntrs[i].offset = dd->ndevcntrs;
12695			dd->ndevcntrs++;
12696		}
12697	}
12698
12699	/* allocate space for the counter values */
12700	dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12701			    GFP_KERNEL);
12702	if (!dd->cntrs)
12703		goto bail;
12704
12705	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12706	if (!dd->scntrs)
12707		goto bail;
12708
12709	/* allocate space for the counter names */
12710	dd->cntrnameslen = sz;
12711	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12712	if (!dd->cntrnames)
12713		goto bail;
12714
12715	/* fill in the names */
12716	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12717		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12718			/* Nothing */
12719		} else if (dev_cntrs[i].flags & CNTR_VL) {
12720			for (j = 0; j < C_VL_COUNT; j++) {
12721				snprintf(name, C_MAX_NAME, "%s%d",
12722					 dev_cntrs[i].name,
12723					 vl_from_idx(j));
12724				memcpy(p, name, strlen(name));
12725				p += strlen(name);
12726
12727				/* Counter is 32 bits */
12728				if (dev_cntrs[i].flags & CNTR_32BIT) {
12729					memcpy(p, bit_type_32, bit_type_32_sz);
12730					p += bit_type_32_sz;
12731				}
12732
12733				*p++ = '\n';
12734			}
12735		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12736			for (j = 0; j < sdma_engines; j++) {
12737				snprintf(name, C_MAX_NAME, "%s%d",
12738					 dev_cntrs[i].name, j);
12739				memcpy(p, name, strlen(name));
12740				p += strlen(name);
12741
12742				/* Counter is 32 bits */
12743				if (dev_cntrs[i].flags & CNTR_32BIT) {
12744					memcpy(p, bit_type_32, bit_type_32_sz);
12745					p += bit_type_32_sz;
12746				}
12747
12748				*p++ = '\n';
12749			}
12750		} else {
12751			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12752			p += strlen(dev_cntrs[i].name);
12753
12754			/* Counter is 32 bits */
12755			if (dev_cntrs[i].flags & CNTR_32BIT) {
12756				memcpy(p, bit_type_32, bit_type_32_sz);
12757				p += bit_type_32_sz;
12758			}
12759
12760			*p++ = '\n';
12761		}
12762	}
12763
12764	/*********************/
12765	/* per port counters */
12766	/*********************/
12767
12768	/*
12769	 * Go through the counters for the overflows and disable the ones we
12770	 * don't need. This varies based on platform so we need to do it
12771	 * dynamically here.
12772	 */
12773	rcv_ctxts = dd->num_rcv_contexts;
12774	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12775	     i <= C_RCV_HDR_OVF_LAST; i++) {
12776		port_cntrs[i].flags |= CNTR_DISABLED;
12777	}
12778
12779	/* size port counter names and determine how many we have*/
12780	sz = 0;
12781	dd->nportcntrs = 0;
12782	for (i = 0; i < PORT_CNTR_LAST; i++) {
12783		if (port_cntrs[i].flags & CNTR_DISABLED) {
12784			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12785			continue;
12786		}
12787
12788		if (port_cntrs[i].flags & CNTR_VL) {
12789			port_cntrs[i].offset = dd->nportcntrs;
12790			for (j = 0; j < C_VL_COUNT; j++) {
12791				snprintf(name, C_MAX_NAME, "%s%d",
12792					 port_cntrs[i].name, vl_from_idx(j));
12793				sz += strlen(name);
12794				/* Add ",32" for 32-bit counters */
12795				if (port_cntrs[i].flags & CNTR_32BIT)
12796					sz += bit_type_32_sz;
12797				sz++;
12798				dd->nportcntrs++;
12799			}
12800		} else {
12801			/* +1 for newline */
12802			sz += strlen(port_cntrs[i].name) + 1;
12803			/* Add ",32" for 32-bit counters */
12804			if (port_cntrs[i].flags & CNTR_32BIT)
12805				sz += bit_type_32_sz;
12806			port_cntrs[i].offset = dd->nportcntrs;
12807			dd->nportcntrs++;
12808		}
12809	}
12810
12811	/* allocate space for the counter names */
12812	dd->portcntrnameslen = sz;
12813	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12814	if (!dd->portcntrnames)
12815		goto bail;
12816
12817	/* fill in port cntr names */
12818	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12819		if (port_cntrs[i].flags & CNTR_DISABLED)
12820			continue;
12821
12822		if (port_cntrs[i].flags & CNTR_VL) {
12823			for (j = 0; j < C_VL_COUNT; j++) {
12824				snprintf(name, C_MAX_NAME, "%s%d",
12825					 port_cntrs[i].name, vl_from_idx(j));
12826				memcpy(p, name, strlen(name));
12827				p += strlen(name);
12828
12829				/* Counter is 32 bits */
12830				if (port_cntrs[i].flags & CNTR_32BIT) {
12831					memcpy(p, bit_type_32, bit_type_32_sz);
12832					p += bit_type_32_sz;
12833				}
12834
12835				*p++ = '\n';
12836			}
12837		} else {
12838			memcpy(p, port_cntrs[i].name,
12839			       strlen(port_cntrs[i].name));
12840			p += strlen(port_cntrs[i].name);
12841
12842			/* Counter is 32 bits */
12843			if (port_cntrs[i].flags & CNTR_32BIT) {
12844				memcpy(p, bit_type_32, bit_type_32_sz);
12845				p += bit_type_32_sz;
12846			}
12847
12848			*p++ = '\n';
12849		}
12850	}
12851
12852	/* allocate per port storage for counter values */
12853	ppd = (struct hfi1_pportdata *)(dd + 1);
12854	for (i = 0; i < dd->num_pports; i++, ppd++) {
12855		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12856		if (!ppd->cntrs)
12857			goto bail;
12858
12859		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12860		if (!ppd->scntrs)
12861			goto bail;
12862	}
12863
12864	/* CPU counters need to be allocated and zeroed */
12865	if (init_cpu_counters(dd))
12866		goto bail;
12867
12868	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12869						     WQ_MEM_RECLAIM, dd->unit);
12870	if (!dd->update_cntr_wq)
12871		goto bail;
12872
12873	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12874
12875	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12876	return 0;
12877bail:
12878	free_cntrs(dd);
12879	return -ENOMEM;
12880}
12881
12882static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12883{
12884	switch (chip_lstate) {
12885	case LSTATE_DOWN:
12886		return IB_PORT_DOWN;
12887	case LSTATE_INIT:
12888		return IB_PORT_INIT;
12889	case LSTATE_ARMED:
12890		return IB_PORT_ARMED;
12891	case LSTATE_ACTIVE:
12892		return IB_PORT_ACTIVE;
12893	default:
12894		dd_dev_err(dd,
12895			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12896			   chip_lstate);
12897		return IB_PORT_DOWN;
12898	}
12899}
12900
12901u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12902{
12903	/* look at the HFI meta-states only */
12904	switch (chip_pstate & 0xf0) {
12905	case PLS_DISABLED:
12906		return IB_PORTPHYSSTATE_DISABLED;
12907	case PLS_OFFLINE:
12908		return OPA_PORTPHYSSTATE_OFFLINE;
12909	case PLS_POLLING:
12910		return IB_PORTPHYSSTATE_POLLING;
12911	case PLS_CONFIGPHY:
12912		return IB_PORTPHYSSTATE_TRAINING;
12913	case PLS_LINKUP:
12914		return IB_PORTPHYSSTATE_LINKUP;
12915	case PLS_PHYTEST:
12916		return IB_PORTPHYSSTATE_PHY_TEST;
12917	default:
12918		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12919			   chip_pstate);
12920		return IB_PORTPHYSSTATE_DISABLED;
12921	}
12922}
12923
12924/* return the OPA port logical state name */
12925const char *opa_lstate_name(u32 lstate)
12926{
12927	static const char * const port_logical_names[] = {
12928		"PORT_NOP",
12929		"PORT_DOWN",
12930		"PORT_INIT",
12931		"PORT_ARMED",
12932		"PORT_ACTIVE",
12933		"PORT_ACTIVE_DEFER",
12934	};
12935	if (lstate < ARRAY_SIZE(port_logical_names))
12936		return port_logical_names[lstate];
12937	return "unknown";
12938}
12939
12940/* return the OPA port physical state name */
12941const char *opa_pstate_name(u32 pstate)
12942{
12943	static const char * const port_physical_names[] = {
12944		"PHYS_NOP",
12945		"reserved1",
12946		"PHYS_POLL",
12947		"PHYS_DISABLED",
12948		"PHYS_TRAINING",
12949		"PHYS_LINKUP",
12950		"PHYS_LINK_ERR_RECOVER",
12951		"PHYS_PHY_TEST",
12952		"reserved8",
12953		"PHYS_OFFLINE",
12954		"PHYS_GANGED",
12955		"PHYS_TEST",
12956	};
12957	if (pstate < ARRAY_SIZE(port_physical_names))
12958		return port_physical_names[pstate];
12959	return "unknown";
12960}
12961
12962/**
12963 * update_statusp - Update userspace status flag
12964 * @ppd: Port data structure
12965 * @state: port state information
12966 *
12967 * Actual port status is determined by the host_link_state value
12968 * in the ppd.
12969 *
12970 * host_link_state MUST be updated before updating the user space
12971 * statusp.
12972 */
12973static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12974{
12975	/*
12976	 * Set port status flags in the page mapped into userspace
12977	 * memory. Do it here to ensure a reliable state - this is
12978	 * the only function called by all state handling code.
12979	 * Always set the flags due to the fact that the cache value
12980	 * might have been changed explicitly outside of this
12981	 * function.
12982	 */
12983	if (ppd->statusp) {
12984		switch (state) {
12985		case IB_PORT_DOWN:
12986		case IB_PORT_INIT:
12987			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12988					   HFI1_STATUS_IB_READY);
12989			break;
12990		case IB_PORT_ARMED:
12991			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12992			break;
12993		case IB_PORT_ACTIVE:
12994			*ppd->statusp |= HFI1_STATUS_IB_READY;
12995			break;
12996		}
12997	}
12998	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12999		    opa_lstate_name(state), state);
13000}
13001
13002/**
13003 * wait_logical_linkstate - wait for an IB link state change to occur
13004 * @ppd: port device
13005 * @state: the state to wait for
13006 * @msecs: the number of milliseconds to wait
13007 *
13008 * Wait up to msecs milliseconds for IB link state change to occur.
13009 * For now, take the easy polling route.
13010 * Returns 0 if state reached, otherwise -ETIMEDOUT.
13011 */
13012static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13013				  int msecs)
13014{
13015	unsigned long timeout;
13016	u32 new_state;
13017
13018	timeout = jiffies + msecs_to_jiffies(msecs);
13019	while (1) {
13020		new_state = chip_to_opa_lstate(ppd->dd,
13021					       read_logical_state(ppd->dd));
13022		if (new_state == state)
13023			break;
13024		if (time_after(jiffies, timeout)) {
13025			dd_dev_err(ppd->dd,
13026				   "timeout waiting for link state 0x%x\n",
13027				   state);
13028			return -ETIMEDOUT;
13029		}
13030		msleep(20);
13031	}
13032
13033	return 0;
13034}
13035
13036static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
13037{
13038	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
13039
13040	dd_dev_info(ppd->dd,
13041		    "physical state changed to %s (0x%x), phy 0x%x\n",
13042		    opa_pstate_name(ib_pstate), ib_pstate, state);
13043}
13044
13045/*
13046 * Read the physical hardware link state and check if it matches host
13047 * drivers anticipated state.
13048 */
13049static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
13050{
13051	u32 read_state = read_physical_state(ppd->dd);
13052
13053	if (read_state == state) {
13054		log_state_transition(ppd, state);
13055	} else {
13056		dd_dev_err(ppd->dd,
13057			   "anticipated phy link state 0x%x, read 0x%x\n",
13058			   state, read_state);
13059	}
13060}
13061
13062/*
13063 * wait_physical_linkstate - wait for an physical link state change to occur
13064 * @ppd: port device
13065 * @state: the state to wait for
13066 * @msecs: the number of milliseconds to wait
13067 *
13068 * Wait up to msecs milliseconds for physical link state change to occur.
13069 * Returns 0 if state reached, otherwise -ETIMEDOUT.
13070 */
13071static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13072				   int msecs)
13073{
13074	u32 read_state;
13075	unsigned long timeout;
13076
13077	timeout = jiffies + msecs_to_jiffies(msecs);
13078	while (1) {
13079		read_state = read_physical_state(ppd->dd);
13080		if (read_state == state)
13081			break;
13082		if (time_after(jiffies, timeout)) {
13083			dd_dev_err(ppd->dd,
13084				   "timeout waiting for phy link state 0x%x\n",
13085				   state);
13086			return -ETIMEDOUT;
13087		}
13088		usleep_range(1950, 2050); /* sleep 2ms-ish */
13089	}
13090
13091	log_state_transition(ppd, state);
13092	return 0;
13093}
13094
13095/*
13096 * wait_phys_link_offline_quiet_substates - wait for any offline substate
13097 * @ppd: port device
13098 * @msecs: the number of milliseconds to wait
13099 *
13100 * Wait up to msecs milliseconds for any offline physical link
13101 * state change to occur.
13102 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13103 */
13104static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
13105					    int msecs)
13106{
13107	u32 read_state;
13108	unsigned long timeout;
13109
13110	timeout = jiffies + msecs_to_jiffies(msecs);
13111	while (1) {
13112		read_state = read_physical_state(ppd->dd);
13113		if ((read_state & 0xF0) == PLS_OFFLINE)
13114			break;
13115		if (time_after(jiffies, timeout)) {
13116			dd_dev_err(ppd->dd,
13117				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
13118				   read_state, msecs);
13119			return -ETIMEDOUT;
13120		}
13121		usleep_range(1950, 2050); /* sleep 2ms-ish */
13122	}
13123
13124	log_state_transition(ppd, read_state);
13125	return read_state;
13126}
13127
13128/*
13129 * wait_phys_link_out_of_offline - wait for any out of offline state
13130 * @ppd: port device
13131 * @msecs: the number of milliseconds to wait
13132 *
13133 * Wait up to msecs milliseconds for any out of offline physical link
13134 * state change to occur.
13135 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13136 */
13137static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
13138					 int msecs)
13139{
13140	u32 read_state;
13141	unsigned long timeout;
13142
13143	timeout = jiffies + msecs_to_jiffies(msecs);
13144	while (1) {
13145		read_state = read_physical_state(ppd->dd);
13146		if ((read_state & 0xF0) != PLS_OFFLINE)
13147			break;
13148		if (time_after(jiffies, timeout)) {
13149			dd_dev_err(ppd->dd,
13150				   "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
13151				   read_state, msecs);
13152			return -ETIMEDOUT;
13153		}
13154		usleep_range(1950, 2050); /* sleep 2ms-ish */
13155	}
13156
13157	log_state_transition(ppd, read_state);
13158	return read_state;
13159}
13160
13161#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
13162(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13163
13164#define SET_STATIC_RATE_CONTROL_SMASK(r) \
13165(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13166
13167void hfi1_init_ctxt(struct send_context *sc)
13168{
13169	if (sc) {
13170		struct hfi1_devdata *dd = sc->dd;
13171		u64 reg;
13172		u8 set = (sc->type == SC_USER ?
13173			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13174			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13175		reg = read_kctxt_csr(dd, sc->hw_context,
13176				     SEND_CTXT_CHECK_ENABLE);
13177		if (set)
13178			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13179		else
13180			SET_STATIC_RATE_CONTROL_SMASK(reg);
13181		write_kctxt_csr(dd, sc->hw_context,
13182				SEND_CTXT_CHECK_ENABLE, reg);
13183	}
13184}
13185
13186int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13187{
13188	int ret = 0;
13189	u64 reg;
13190
13191	if (dd->icode != ICODE_RTL_SILICON) {
13192		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13193			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13194				    __func__);
13195		return -EINVAL;
13196	}
13197	reg = read_csr(dd, ASIC_STS_THERM);
13198	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13199		      ASIC_STS_THERM_CURR_TEMP_MASK);
13200	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13201			ASIC_STS_THERM_LO_TEMP_MASK);
13202	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13203			ASIC_STS_THERM_HI_TEMP_MASK);
13204	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13205			  ASIC_STS_THERM_CRIT_TEMP_MASK);
13206	/* triggers is a 3-bit value - 1 bit per trigger. */
13207	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13208
13209	return ret;
13210}
13211
13212/* ========================================================================= */
13213
13214/**
13215 * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13216 * @dd: valid devdata
13217 * @src: IRQ source to determine register index from
13218 * @bits: the bits to set or clear
13219 * @set: true == set the bits, false == clear the bits
13220 *
13221 */
13222static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13223			   bool set)
13224{
13225	u64 reg;
13226	u16 idx = src / BITS_PER_REGISTER;
13227
13228	spin_lock(&dd->irq_src_lock);
13229	reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13230	if (set)
13231		reg |= bits;
13232	else
13233		reg &= ~bits;
13234	write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13235	spin_unlock(&dd->irq_src_lock);
13236}
13237
13238/**
13239 * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13240 * @dd: valid devdata
13241 * @first: first IRQ source to set/clear
13242 * @last: last IRQ source (inclusive) to set/clear
13243 * @set: true == set the bits, false == clear the bits
13244 *
13245 * If first == last, set the exact source.
13246 */
13247int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13248{
13249	u64 bits = 0;
13250	u64 bit;
13251	u16 src;
13252
13253	if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13254		return -EINVAL;
13255
13256	if (last < first)
13257		return -ERANGE;
13258
13259	for (src = first; src <= last; src++) {
13260		bit = src % BITS_PER_REGISTER;
13261		/* wrapped to next register? */
13262		if (!bit && bits) {
13263			read_mod_write(dd, src - 1, bits, set);
13264			bits = 0;
13265		}
13266		bits |= BIT_ULL(bit);
13267	}
13268	read_mod_write(dd, last, bits, set);
13269
13270	return 0;
13271}
13272
13273/*
13274 * Clear all interrupt sources on the chip.
13275 */
13276void clear_all_interrupts(struct hfi1_devdata *dd)
13277{
13278	int i;
13279
13280	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13281		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13282
13283	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13284	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13285	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13286	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13287	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13288	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13289	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13290	for (i = 0; i < chip_send_contexts(dd); i++)
13291		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13292	for (i = 0; i < chip_sdma_engines(dd); i++)
13293		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13294
13295	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13296	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13297	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13298}
13299
13300/*
13301 * Remap the interrupt source from the general handler to the given MSI-X
13302 * interrupt.
13303 */
13304void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13305{
13306	u64 reg;
13307	int m, n;
13308
13309	/* clear from the handled mask of the general interrupt */
13310	m = isrc / 64;
13311	n = isrc % 64;
13312	if (likely(m < CCE_NUM_INT_CSRS)) {
13313		dd->gi_mask[m] &= ~((u64)1 << n);
13314	} else {
13315		dd_dev_err(dd, "remap interrupt err\n");
13316		return;
13317	}
13318
13319	/* direct the chip source to the given MSI-X interrupt */
13320	m = isrc / 8;
13321	n = isrc % 8;
13322	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13323	reg &= ~((u64)0xff << (8 * n));
13324	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13325	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13326}
13327
13328void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13329{
13330	/*
13331	 * SDMA engine interrupt sources grouped by type, rather than
13332	 * engine.  Per-engine interrupts are as follows:
13333	 *	SDMA
13334	 *	SDMAProgress
13335	 *	SDMAIdle
13336	 */
13337	remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13338	remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13339	remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13340}
13341
13342/*
13343 * Set the general handler to accept all interrupts, remap all
13344 * chip interrupts back to MSI-X 0.
13345 */
13346void reset_interrupts(struct hfi1_devdata *dd)
13347{
13348	int i;
13349
13350	/* all interrupts handled by the general handler */
13351	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13352		dd->gi_mask[i] = ~(u64)0;
13353
13354	/* all chip interrupts map to MSI-X 0 */
13355	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13356		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13357}
13358
13359/**
13360 * set_up_interrupts() - Initialize the IRQ resources and state
13361 * @dd: valid devdata
13362 *
13363 */
13364static int set_up_interrupts(struct hfi1_devdata *dd)
13365{
13366	int ret;
13367
13368	/* mask all interrupts */
13369	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13370
13371	/* clear all pending interrupts */
13372	clear_all_interrupts(dd);
13373
13374	/* reset general handler mask, chip MSI-X mappings */
13375	reset_interrupts(dd);
13376
13377	/* ask for MSI-X interrupts */
13378	ret = msix_initialize(dd);
13379	if (ret)
13380		return ret;
13381
13382	ret = msix_request_irqs(dd);
13383	if (ret)
13384		msix_clean_up_interrupts(dd);
13385
13386	return ret;
13387}
13388
13389/*
13390 * Set up context values in dd.  Sets:
13391 *
13392 *	num_rcv_contexts - number of contexts being used
13393 *	n_krcv_queues - number of kernel contexts
13394 *	first_dyn_alloc_ctxt - first dynamically allocated context
13395 *                             in array of contexts
13396 *	freectxts  - number of free user contexts
13397 *	num_send_contexts - number of PIO send contexts being used
13398 *	num_netdev_contexts - number of contexts reserved for netdev
13399 */
13400static int set_up_context_variables(struct hfi1_devdata *dd)
13401{
13402	unsigned long num_kernel_contexts;
13403	u16 num_netdev_contexts;
13404	int ret;
13405	unsigned ngroups;
13406	int rmt_count;
13407	u32 n_usr_ctxts;
13408	u32 send_contexts = chip_send_contexts(dd);
13409	u32 rcv_contexts = chip_rcv_contexts(dd);
13410
13411	/*
13412	 * Kernel receive contexts:
13413	 * - Context 0 - control context (VL15/multicast/error)
13414	 * - Context 1 - first kernel context
13415	 * - Context 2 - second kernel context
13416	 * ...
13417	 */
13418	if (n_krcvqs)
13419		/*
13420		 * n_krcvqs is the sum of module parameter kernel receive
13421		 * contexts, krcvqs[].  It does not include the control
13422		 * context, so add that.
13423		 */
13424		num_kernel_contexts = n_krcvqs + 1;
13425	else
13426		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13427	/*
13428	 * Every kernel receive context needs an ACK send context.
13429	 * one send context is allocated for each VL{0-7} and VL15
13430	 */
13431	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13432		dd_dev_err(dd,
13433			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13434			   send_contexts - num_vls - 1,
13435			   num_kernel_contexts);
13436		num_kernel_contexts = send_contexts - num_vls - 1;
13437	}
13438
13439	/*
13440	 * User contexts:
13441	 *	- default to 1 user context per real (non-HT) CPU core if
13442	 *	  num_user_contexts is negative
13443	 */
13444	if (num_user_contexts < 0)
13445		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13446	else
13447		n_usr_ctxts = num_user_contexts;
13448	/*
13449	 * Adjust the counts given a global max.
13450	 */
13451	if (num_kernel_contexts + n_usr_ctxts > rcv_contexts) {
13452		dd_dev_err(dd,
13453			   "Reducing # user receive contexts to: %u, from %u\n",
13454			   (u32)(rcv_contexts - num_kernel_contexts),
13455			   n_usr_ctxts);
13456		/* recalculate */
13457		n_usr_ctxts = rcv_contexts - num_kernel_contexts;
13458	}
13459
13460	num_netdev_contexts =
13461		hfi1_num_netdev_contexts(dd, rcv_contexts -
13462					 (num_kernel_contexts + n_usr_ctxts),
13463					 &node_affinity.real_cpu_mask);
13464	/*
13465	 * RMT entries are allocated as follows:
13466	 * 1. QOS (0 to 128 entries)
13467	 * 2. FECN (num_kernel_context - 1 [a] + num_user_contexts +
13468	 *          num_netdev_contexts [b])
13469	 * 3. netdev (NUM_NETDEV_MAP_ENTRIES)
13470	 *
13471	 * Notes:
13472	 * [a] Kernel contexts (except control) are included in FECN if kernel
13473	 *     TID_RDMA is active.
13474	 * [b] Netdev and user contexts are randomly allocated from the same
13475	 *     context pool, so FECN must cover all contexts in the pool.
13476	 */
13477	rmt_count = qos_rmt_entries(num_kernel_contexts - 1, NULL, NULL)
13478		    + (HFI1_CAP_IS_KSET(TID_RDMA) ? num_kernel_contexts - 1
13479						  : 0)
13480		    + n_usr_ctxts
13481		    + num_netdev_contexts
13482		    + NUM_NETDEV_MAP_ENTRIES;
13483	if (rmt_count > NUM_MAP_ENTRIES) {
13484		int over = rmt_count - NUM_MAP_ENTRIES;
13485		/* try to squish user contexts, minimum of 1 */
13486		if (over >= n_usr_ctxts) {
13487			dd_dev_err(dd, "RMT overflow: reduce the requested number of contexts\n");
13488			return -EINVAL;
13489		}
13490		dd_dev_err(dd, "RMT overflow: reducing # user contexts from %u to %u\n",
13491			   n_usr_ctxts, n_usr_ctxts - over);
13492		n_usr_ctxts -= over;
13493	}
13494
13495	/* the first N are kernel contexts, the rest are user/netdev contexts */
13496	dd->num_rcv_contexts =
13497		num_kernel_contexts + n_usr_ctxts + num_netdev_contexts;
13498	dd->n_krcv_queues = num_kernel_contexts;
13499	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13500	dd->num_netdev_contexts = num_netdev_contexts;
13501	dd->num_user_contexts = n_usr_ctxts;
13502	dd->freectxts = n_usr_ctxts;
13503	dd_dev_info(dd,
13504		    "rcv contexts: chip %d, used %d (kernel %d, netdev %u, user %u)\n",
13505		    rcv_contexts,
13506		    (int)dd->num_rcv_contexts,
13507		    (int)dd->n_krcv_queues,
13508		    dd->num_netdev_contexts,
13509		    dd->num_user_contexts);
13510
13511	/*
13512	 * Receive array allocation:
13513	 *   All RcvArray entries are divided into groups of 8. This
13514	 *   is required by the hardware and will speed up writes to
13515	 *   consecutive entries by using write-combining of the entire
13516	 *   cacheline.
13517	 *
13518	 *   The number of groups are evenly divided among all contexts.
13519	 *   any left over groups will be given to the first N user
13520	 *   contexts.
13521	 */
13522	dd->rcv_entries.group_size = RCV_INCREMENT;
13523	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13524	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13525	dd->rcv_entries.nctxt_extra = ngroups -
13526		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13527	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13528		    dd->rcv_entries.ngroups,
13529		    dd->rcv_entries.nctxt_extra);
13530	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13531	    MAX_EAGER_ENTRIES * 2) {
13532		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13533			dd->rcv_entries.group_size;
13534		dd_dev_info(dd,
13535			    "RcvArray group count too high, change to %u\n",
13536			    dd->rcv_entries.ngroups);
13537		dd->rcv_entries.nctxt_extra = 0;
13538	}
13539	/*
13540	 * PIO send contexts
13541	 */
13542	ret = init_sc_pools_and_sizes(dd);
13543	if (ret >= 0) {	/* success */
13544		dd->num_send_contexts = ret;
13545		dd_dev_info(
13546			dd,
13547			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13548			send_contexts,
13549			dd->num_send_contexts,
13550			dd->sc_sizes[SC_KERNEL].count,
13551			dd->sc_sizes[SC_ACK].count,
13552			dd->sc_sizes[SC_USER].count,
13553			dd->sc_sizes[SC_VL15].count);
13554		ret = 0;	/* success */
13555	}
13556
13557	return ret;
13558}
13559
13560/*
13561 * Set the device/port partition key table. The MAD code
13562 * will ensure that, at least, the partial management
13563 * partition key is present in the table.
13564 */
13565static void set_partition_keys(struct hfi1_pportdata *ppd)
13566{
13567	struct hfi1_devdata *dd = ppd->dd;
13568	u64 reg = 0;
13569	int i;
13570
13571	dd_dev_info(dd, "Setting partition keys\n");
13572	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13573		reg |= (ppd->pkeys[i] &
13574			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13575			((i % 4) *
13576			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13577		/* Each register holds 4 PKey values. */
13578		if ((i % 4) == 3) {
13579			write_csr(dd, RCV_PARTITION_KEY +
13580				  ((i - 3) * 2), reg);
13581			reg = 0;
13582		}
13583	}
13584
13585	/* Always enable HW pkeys check when pkeys table is set */
13586	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13587}
13588
13589/*
13590 * These CSRs and memories are uninitialized on reset and must be
13591 * written before reading to set the ECC/parity bits.
13592 *
13593 * NOTE: All user context CSRs that are not mmaped write-only
13594 * (e.g. the TID flows) must be initialized even if the driver never
13595 * reads them.
13596 */
13597static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13598{
13599	int i, j;
13600
13601	/* CceIntMap */
13602	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13603		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13604
13605	/* SendCtxtCreditReturnAddr */
13606	for (i = 0; i < chip_send_contexts(dd); i++)
13607		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13608
13609	/* PIO Send buffers */
13610	/* SDMA Send buffers */
13611	/*
13612	 * These are not normally read, and (presently) have no method
13613	 * to be read, so are not pre-initialized
13614	 */
13615
13616	/* RcvHdrAddr */
13617	/* RcvHdrTailAddr */
13618	/* RcvTidFlowTable */
13619	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13620		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13621		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13622		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13623			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13624	}
13625
13626	/* RcvArray */
13627	for (i = 0; i < chip_rcv_array_count(dd); i++)
13628		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13629
13630	/* RcvQPMapTable */
13631	for (i = 0; i < 32; i++)
13632		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13633}
13634
13635/*
13636 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13637 */
13638static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13639			     u64 ctrl_bits)
13640{
13641	unsigned long timeout;
13642	u64 reg;
13643
13644	/* is the condition present? */
13645	reg = read_csr(dd, CCE_STATUS);
13646	if ((reg & status_bits) == 0)
13647		return;
13648
13649	/* clear the condition */
13650	write_csr(dd, CCE_CTRL, ctrl_bits);
13651
13652	/* wait for the condition to clear */
13653	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13654	while (1) {
13655		reg = read_csr(dd, CCE_STATUS);
13656		if ((reg & status_bits) == 0)
13657			return;
13658		if (time_after(jiffies, timeout)) {
13659			dd_dev_err(dd,
13660				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13661				   status_bits, reg & status_bits);
13662			return;
13663		}
13664		udelay(1);
13665	}
13666}
13667
13668/* set CCE CSRs to chip reset defaults */
13669static void reset_cce_csrs(struct hfi1_devdata *dd)
13670{
13671	int i;
13672
13673	/* CCE_REVISION read-only */
13674	/* CCE_REVISION2 read-only */
13675	/* CCE_CTRL - bits clear automatically */
13676	/* CCE_STATUS read-only, use CceCtrl to clear */
13677	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13678	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13679	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13680	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13681		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13682	/* CCE_ERR_STATUS read-only */
13683	write_csr(dd, CCE_ERR_MASK, 0);
13684	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13685	/* CCE_ERR_FORCE leave alone */
13686	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13687		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13688	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13689	/* CCE_PCIE_CTRL leave alone */
13690	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13691		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13692		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13693			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13694	}
13695	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13696		/* CCE_MSIX_PBA read-only */
13697		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13698		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13699	}
13700	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13701		write_csr(dd, CCE_INT_MAP, 0);
13702	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13703		/* CCE_INT_STATUS read-only */
13704		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13705		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13706		/* CCE_INT_FORCE leave alone */
13707		/* CCE_INT_BLOCKED read-only */
13708	}
13709	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13710		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13711}
13712
13713/* set MISC CSRs to chip reset defaults */
13714static void reset_misc_csrs(struct hfi1_devdata *dd)
13715{
13716	int i;
13717
13718	for (i = 0; i < 32; i++) {
13719		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13720		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13721		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13722	}
13723	/*
13724	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13725	 * only be written 128-byte chunks
13726	 */
13727	/* init RSA engine to clear lingering errors */
13728	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13729	write_csr(dd, MISC_CFG_RSA_MU, 0);
13730	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13731	/* MISC_STS_8051_DIGEST read-only */
13732	/* MISC_STS_SBM_DIGEST read-only */
13733	/* MISC_STS_PCIE_DIGEST read-only */
13734	/* MISC_STS_FAB_DIGEST read-only */
13735	/* MISC_ERR_STATUS read-only */
13736	write_csr(dd, MISC_ERR_MASK, 0);
13737	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13738	/* MISC_ERR_FORCE leave alone */
13739}
13740
13741/* set TXE CSRs to chip reset defaults */
13742static void reset_txe_csrs(struct hfi1_devdata *dd)
13743{
13744	int i;
13745
13746	/*
13747	 * TXE Kernel CSRs
13748	 */
13749	write_csr(dd, SEND_CTRL, 0);
13750	__cm_reset(dd, 0);	/* reset CM internal state */
13751	/* SEND_CONTEXTS read-only */
13752	/* SEND_DMA_ENGINES read-only */
13753	/* SEND_PIO_MEM_SIZE read-only */
13754	/* SEND_DMA_MEM_SIZE read-only */
13755	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13756	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13757	/* SEND_PIO_ERR_STATUS read-only */
13758	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13759	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13760	/* SEND_PIO_ERR_FORCE leave alone */
13761	/* SEND_DMA_ERR_STATUS read-only */
13762	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13763	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13764	/* SEND_DMA_ERR_FORCE leave alone */
13765	/* SEND_EGRESS_ERR_STATUS read-only */
13766	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13767	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13768	/* SEND_EGRESS_ERR_FORCE leave alone */
13769	write_csr(dd, SEND_BTH_QP, 0);
13770	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13771	write_csr(dd, SEND_SC2VLT0, 0);
13772	write_csr(dd, SEND_SC2VLT1, 0);
13773	write_csr(dd, SEND_SC2VLT2, 0);
13774	write_csr(dd, SEND_SC2VLT3, 0);
13775	write_csr(dd, SEND_LEN_CHECK0, 0);
13776	write_csr(dd, SEND_LEN_CHECK1, 0);
13777	/* SEND_ERR_STATUS read-only */
13778	write_csr(dd, SEND_ERR_MASK, 0);
13779	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13780	/* SEND_ERR_FORCE read-only */
13781	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13782		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13783	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13784		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13785	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13786		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13787	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13788		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13789	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13790		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13791	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13792	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13793	/* SEND_CM_CREDIT_USED_STATUS read-only */
13794	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13795	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13796	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13797	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13798	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13799	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13800		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13801	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13802	/* SEND_CM_CREDIT_USED_VL read-only */
13803	/* SEND_CM_CREDIT_USED_VL15 read-only */
13804	/* SEND_EGRESS_CTXT_STATUS read-only */
13805	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13806	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13807	/* SEND_EGRESS_ERR_INFO read-only */
13808	/* SEND_EGRESS_ERR_SOURCE read-only */
13809
13810	/*
13811	 * TXE Per-Context CSRs
13812	 */
13813	for (i = 0; i < chip_send_contexts(dd); i++) {
13814		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13815		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13816		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13817		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13818		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13819		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13820		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13821		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13822		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13823		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13824		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13825		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13826	}
13827
13828	/*
13829	 * TXE Per-SDMA CSRs
13830	 */
13831	for (i = 0; i < chip_sdma_engines(dd); i++) {
13832		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13833		/* SEND_DMA_STATUS read-only */
13834		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13835		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13836		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13837		/* SEND_DMA_HEAD read-only */
13838		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13839		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13840		/* SEND_DMA_IDLE_CNT read-only */
13841		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13842		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13843		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13844		/* SEND_DMA_ENG_ERR_STATUS read-only */
13845		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13846		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13847		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13848		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13849		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13850		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13851		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13852		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13853		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13854		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13855	}
13856}
13857
13858/*
13859 * Expect on entry:
13860 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13861 */
13862static void init_rbufs(struct hfi1_devdata *dd)
13863{
13864	u64 reg;
13865	int count;
13866
13867	/*
13868	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13869	 * clear.
13870	 */
13871	count = 0;
13872	while (1) {
13873		reg = read_csr(dd, RCV_STATUS);
13874		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13875			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13876			break;
13877		/*
13878		 * Give up after 1ms - maximum wait time.
13879		 *
13880		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13881		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13882		 *	136 KB / (66% * 250MB/s) = 844us
13883		 */
13884		if (count++ > 500) {
13885			dd_dev_err(dd,
13886				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13887				   __func__, reg);
13888			break;
13889		}
13890		udelay(2); /* do not busy-wait the CSR */
13891	}
13892
13893	/* start the init - expect RcvCtrl to be 0 */
13894	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13895
13896	/*
13897	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13898	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13899	 * The delay in the first run through the loop below is sufficient and
13900	 * required before the first read of RcvStatus.RxRbufInintDone.
13901	 */
13902	read_csr(dd, RCV_CTRL);
13903
13904	/* wait for the init to finish */
13905	count = 0;
13906	while (1) {
13907		/* delay is required first time through - see above */
13908		udelay(2); /* do not busy-wait the CSR */
13909		reg = read_csr(dd, RCV_STATUS);
13910		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13911			break;
13912
13913		/* give up after 100us - slowest possible at 33MHz is 73us */
13914		if (count++ > 50) {
13915			dd_dev_err(dd,
13916				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13917				   __func__);
13918			break;
13919		}
13920	}
13921}
13922
13923/* set RXE CSRs to chip reset defaults */
13924static void reset_rxe_csrs(struct hfi1_devdata *dd)
13925{
13926	int i, j;
13927
13928	/*
13929	 * RXE Kernel CSRs
13930	 */
13931	write_csr(dd, RCV_CTRL, 0);
13932	init_rbufs(dd);
13933	/* RCV_STATUS read-only */
13934	/* RCV_CONTEXTS read-only */
13935	/* RCV_ARRAY_CNT read-only */
13936	/* RCV_BUF_SIZE read-only */
13937	write_csr(dd, RCV_BTH_QP, 0);
13938	write_csr(dd, RCV_MULTICAST, 0);
13939	write_csr(dd, RCV_BYPASS, 0);
13940	write_csr(dd, RCV_VL15, 0);
13941	/* this is a clear-down */
13942	write_csr(dd, RCV_ERR_INFO,
13943		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13944	/* RCV_ERR_STATUS read-only */
13945	write_csr(dd, RCV_ERR_MASK, 0);
13946	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13947	/* RCV_ERR_FORCE leave alone */
13948	for (i = 0; i < 32; i++)
13949		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13950	for (i = 0; i < 4; i++)
13951		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13952	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13953		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13954	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13955		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13956	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13957		clear_rsm_rule(dd, i);
13958	for (i = 0; i < 32; i++)
13959		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13960
13961	/*
13962	 * RXE Kernel and User Per-Context CSRs
13963	 */
13964	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13965		/* kernel */
13966		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13967		/* RCV_CTXT_STATUS read-only */
13968		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13969		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13970		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13971		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13972		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13973		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13974		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13975		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13976		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13977		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13978
13979		/* user */
13980		/* RCV_HDR_TAIL read-only */
13981		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13982		/* RCV_EGR_INDEX_TAIL read-only */
13983		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13984		/* RCV_EGR_OFFSET_TAIL read-only */
13985		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13986			write_uctxt_csr(dd, i,
13987					RCV_TID_FLOW_TABLE + (8 * j), 0);
13988		}
13989	}
13990}
13991
13992/*
13993 * Set sc2vl tables.
13994 *
13995 * They power on to zeros, so to avoid send context errors
13996 * they need to be set:
13997 *
13998 * SC 0-7 -> VL 0-7 (respectively)
13999 * SC 15  -> VL 15
14000 * otherwise
14001 *        -> VL 0
14002 */
14003static void init_sc2vl_tables(struct hfi1_devdata *dd)
14004{
14005	int i;
14006	/* init per architecture spec, constrained by hardware capability */
14007
14008	/* HFI maps sent packets */
14009	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
14010		0,
14011		0, 0, 1, 1,
14012		2, 2, 3, 3,
14013		4, 4, 5, 5,
14014		6, 6, 7, 7));
14015	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
14016		1,
14017		8, 0, 9, 0,
14018		10, 0, 11, 0,
14019		12, 0, 13, 0,
14020		14, 0, 15, 15));
14021	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
14022		2,
14023		16, 0, 17, 0,
14024		18, 0, 19, 0,
14025		20, 0, 21, 0,
14026		22, 0, 23, 0));
14027	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
14028		3,
14029		24, 0, 25, 0,
14030		26, 0, 27, 0,
14031		28, 0, 29, 0,
14032		30, 0, 31, 0));
14033
14034	/* DC maps received packets */
14035	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
14036		15_0,
14037		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
14038		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14039	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14040		31_16,
14041		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14042		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14043
14044	/* initialize the cached sc2vl values consistently with h/w */
14045	for (i = 0; i < 32; i++) {
14046		if (i < 8 || i == 15)
14047			*((u8 *)(dd->sc2vl) + i) = (u8)i;
14048		else
14049			*((u8 *)(dd->sc2vl) + i) = 0;
14050	}
14051}
14052
14053/*
14054 * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14055 * depend on the chip going through a power-on reset - a driver may be loaded
14056 * and unloaded many times.
14057 *
14058 * Do not write any CSR values to the chip in this routine - there may be
14059 * a reset following the (possible) FLR in this routine.
14060 *
14061 */
14062static int init_chip(struct hfi1_devdata *dd)
14063{
14064	int i;
14065	int ret = 0;
14066
14067	/*
14068	 * Put the HFI CSRs in a known state.
14069	 * Combine this with a DC reset.
14070	 *
14071	 * Stop the device from doing anything while we do a
14072	 * reset.  We know there are no other active users of
14073	 * the device since we are now in charge.  Turn off
14074	 * off all outbound and inbound traffic and make sure
14075	 * the device does not generate any interrupts.
14076	 */
14077
14078	/* disable send contexts and SDMA engines */
14079	write_csr(dd, SEND_CTRL, 0);
14080	for (i = 0; i < chip_send_contexts(dd); i++)
14081		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14082	for (i = 0; i < chip_sdma_engines(dd); i++)
14083		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14084	/* disable port (turn off RXE inbound traffic) and contexts */
14085	write_csr(dd, RCV_CTRL, 0);
14086	for (i = 0; i < chip_rcv_contexts(dd); i++)
14087		write_csr(dd, RCV_CTXT_CTRL, 0);
14088	/* mask all interrupt sources */
14089	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14090		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14091
14092	/*
14093	 * DC Reset: do a full DC reset before the register clear.
14094	 * A recommended length of time to hold is one CSR read,
14095	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14096	 * across the clear.
14097	 */
14098	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14099	(void)read_csr(dd, CCE_DC_CTRL);
14100
14101	if (use_flr) {
14102		/*
14103		 * A FLR will reset the SPC core and part of the PCIe.
14104		 * The parts that need to be restored have already been
14105		 * saved.
14106		 */
14107		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14108
14109		/* do the FLR, the DC reset will remain */
14110		pcie_flr(dd->pcidev);
14111
14112		/* restore command and BARs */
14113		ret = restore_pci_variables(dd);
14114		if (ret) {
14115			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14116				   __func__);
14117			return ret;
14118		}
14119
14120		if (is_ax(dd)) {
14121			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14122			pcie_flr(dd->pcidev);
14123			ret = restore_pci_variables(dd);
14124			if (ret) {
14125				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14126					   __func__);
14127				return ret;
14128			}
14129		}
14130	} else {
14131		dd_dev_info(dd, "Resetting CSRs with writes\n");
14132		reset_cce_csrs(dd);
14133		reset_txe_csrs(dd);
14134		reset_rxe_csrs(dd);
14135		reset_misc_csrs(dd);
14136	}
14137	/* clear the DC reset */
14138	write_csr(dd, CCE_DC_CTRL, 0);
14139
14140	/* Set the LED off */
14141	setextled(dd, 0);
14142
14143	/*
14144	 * Clear the QSFP reset.
14145	 * An FLR enforces a 0 on all out pins. The driver does not touch
14146	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14147	 * anything plugged constantly in reset, if it pays attention
14148	 * to RESET_N.
14149	 * Prime examples of this are optical cables. Set all pins high.
14150	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14151	 * MODPRS_N are input only and their value is ignored.
14152	 */
14153	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14154	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14155	init_chip_resources(dd);
14156	return ret;
14157}
14158
14159static void init_early_variables(struct hfi1_devdata *dd)
14160{
14161	int i;
14162
14163	/* assign link credit variables */
14164	dd->vau = CM_VAU;
14165	dd->link_credits = CM_GLOBAL_CREDITS;
14166	if (is_ax(dd))
14167		dd->link_credits--;
14168	dd->vcu = cu_to_vcu(hfi1_cu);
14169	/* enough room for 8 MAD packets plus header - 17K */
14170	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14171	if (dd->vl15_init > dd->link_credits)
14172		dd->vl15_init = dd->link_credits;
14173
14174	write_uninitialized_csrs_and_memories(dd);
14175
14176	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14177		for (i = 0; i < dd->num_pports; i++) {
14178			struct hfi1_pportdata *ppd = &dd->pport[i];
14179
14180			set_partition_keys(ppd);
14181		}
14182	init_sc2vl_tables(dd);
14183}
14184
14185static void init_kdeth_qp(struct hfi1_devdata *dd)
14186{
14187	write_csr(dd, SEND_BTH_QP,
14188		  (RVT_KDETH_QP_PREFIX & SEND_BTH_QP_KDETH_QP_MASK) <<
14189		  SEND_BTH_QP_KDETH_QP_SHIFT);
14190
14191	write_csr(dd, RCV_BTH_QP,
14192		  (RVT_KDETH_QP_PREFIX & RCV_BTH_QP_KDETH_QP_MASK) <<
14193		  RCV_BTH_QP_KDETH_QP_SHIFT);
14194}
14195
14196/**
14197 * hfi1_get_qp_map
14198 * @dd: device data
14199 * @idx: index to read
14200 */
14201u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx)
14202{
14203	u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8);
14204
14205	reg >>= (idx % 8) * 8;
14206	return reg;
14207}
14208
14209/**
14210 * init_qpmap_table
14211 * @dd - device data
14212 * @first_ctxt - first context
14213 * @last_ctxt - first context
14214 *
14215 * This return sets the qpn mapping table that
14216 * is indexed by qpn[8:1].
14217 *
14218 * The routine will round robin the 256 settings
14219 * from first_ctxt to last_ctxt.
14220 *
14221 * The first/last looks ahead to having specialized
14222 * receive contexts for mgmt and bypass.  Normal
14223 * verbs traffic will assumed to be on a range
14224 * of receive contexts.
14225 */
14226static void init_qpmap_table(struct hfi1_devdata *dd,
14227			     u32 first_ctxt,
14228			     u32 last_ctxt)
14229{
14230	u64 reg = 0;
14231	u64 regno = RCV_QP_MAP_TABLE;
14232	int i;
14233	u64 ctxt = first_ctxt;
14234
14235	for (i = 0; i < 256; i++) {
14236		reg |= ctxt << (8 * (i % 8));
14237		ctxt++;
14238		if (ctxt > last_ctxt)
14239			ctxt = first_ctxt;
14240		if (i % 8 == 7) {
14241			write_csr(dd, regno, reg);
14242			reg = 0;
14243			regno += 8;
14244		}
14245	}
14246
14247	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14248			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14249}
14250
14251struct rsm_map_table {
14252	u64 map[NUM_MAP_REGS];
14253	unsigned int used;
14254};
14255
14256struct rsm_rule_data {
14257	u8 offset;
14258	u8 pkt_type;
14259	u32 field1_off;
14260	u32 field2_off;
14261	u32 index1_off;
14262	u32 index1_width;
14263	u32 index2_off;
14264	u32 index2_width;
14265	u32 mask1;
14266	u32 value1;
14267	u32 mask2;
14268	u32 value2;
14269};
14270
14271/*
14272 * Return an initialized RMT map table for users to fill in.  OK if it
14273 * returns NULL, indicating no table.
14274 */
14275static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14276{
14277	struct rsm_map_table *rmt;
14278	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14279
14280	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14281	if (rmt) {
14282		memset(rmt->map, rxcontext, sizeof(rmt->map));
14283		rmt->used = 0;
14284	}
14285
14286	return rmt;
14287}
14288
14289/*
14290 * Write the final RMT map table to the chip and free the table.  OK if
14291 * table is NULL.
14292 */
14293static void complete_rsm_map_table(struct hfi1_devdata *dd,
14294				   struct rsm_map_table *rmt)
14295{
14296	int i;
14297
14298	if (rmt) {
14299		/* write table to chip */
14300		for (i = 0; i < NUM_MAP_REGS; i++)
14301			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14302
14303		/* enable RSM */
14304		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14305	}
14306}
14307
14308/* Is a receive side mapping rule */
14309static bool has_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14310{
14311	return read_csr(dd, RCV_RSM_CFG + (8 * rule_index)) != 0;
14312}
14313
14314/*
14315 * Add a receive side mapping rule.
14316 */
14317static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14318			 struct rsm_rule_data *rrd)
14319{
14320	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14321		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14322		  1ull << rule_index | /* enable bit */
14323		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14324	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14325		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14326		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14327		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14328		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14329		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14330		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14331	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14332		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14333		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14334		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14335		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14336}
14337
14338/*
14339 * Clear a receive side mapping rule.
14340 */
14341static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14342{
14343	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14344	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14345	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14346}
14347
14348/* return the number of RSM map table entries that will be used for QOS */
14349static int qos_rmt_entries(unsigned int n_krcv_queues, unsigned int *mp,
14350			   unsigned int *np)
14351{
14352	int i;
14353	unsigned int m, n;
14354	uint max_by_vl = 0;
14355
14356	/* is QOS active at all? */
14357	if (n_krcv_queues < MIN_KERNEL_KCTXTS ||
14358	    num_vls == 1 ||
14359	    krcvqsset <= 1)
14360		goto no_qos;
14361
14362	/* determine bits for qpn */
14363	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14364		if (krcvqs[i] > max_by_vl)
14365			max_by_vl = krcvqs[i];
14366	if (max_by_vl > 32)
14367		goto no_qos;
14368	m = ilog2(__roundup_pow_of_two(max_by_vl));
14369
14370	/* determine bits for vl */
14371	n = ilog2(__roundup_pow_of_two(num_vls));
14372
14373	/* reject if too much is used */
14374	if ((m + n) > 7)
14375		goto no_qos;
14376
14377	if (mp)
14378		*mp = m;
14379	if (np)
14380		*np = n;
14381
14382	return 1 << (m + n);
14383
14384no_qos:
14385	if (mp)
14386		*mp = 0;
14387	if (np)
14388		*np = 0;
14389	return 0;
14390}
14391
14392/**
14393 * init_qos - init RX qos
14394 * @dd - device data
14395 * @rmt - RSM map table
14396 *
14397 * This routine initializes Rule 0 and the RSM map table to implement
14398 * quality of service (qos).
14399 *
14400 * If all of the limit tests succeed, qos is applied based on the array
14401 * interpretation of krcvqs where entry 0 is VL0.
14402 *
14403 * The number of vl bits (n) and the number of qpn bits (m) are computed to
14404 * feed both the RSM map table and the single rule.
14405 */
14406static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14407{
14408	struct rsm_rule_data rrd;
14409	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14410	unsigned int rmt_entries;
14411	u64 reg;
14412
14413	if (!rmt)
14414		goto bail;
14415	rmt_entries = qos_rmt_entries(dd->n_krcv_queues - 1, &m, &n);
14416	if (rmt_entries == 0)
14417		goto bail;
14418	qpns_per_vl = 1 << m;
14419
14420	/* enough room in the map table? */
14421	rmt_entries = 1 << (m + n);
14422	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14423		goto bail;
14424
14425	/* add qos entries to the the RSM map table */
14426	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14427		unsigned tctxt;
14428
14429		for (qpn = 0, tctxt = ctxt;
14430		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14431			unsigned idx, regoff, regidx;
14432
14433			/* generate the index the hardware will produce */
14434			idx = rmt->used + ((qpn << n) ^ i);
14435			regoff = (idx % 8) * 8;
14436			regidx = idx / 8;
14437			/* replace default with context number */
14438			reg = rmt->map[regidx];
14439			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14440				<< regoff);
14441			reg |= (u64)(tctxt++) << regoff;
14442			rmt->map[regidx] = reg;
14443			if (tctxt == ctxt + krcvqs[i])
14444				tctxt = ctxt;
14445		}
14446		ctxt += krcvqs[i];
14447	}
14448
14449	rrd.offset = rmt->used;
14450	rrd.pkt_type = 2;
14451	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14452	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14453	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14454	rrd.index1_width = n;
14455	rrd.index2_off = QPN_SELECT_OFFSET;
14456	rrd.index2_width = m + n;
14457	rrd.mask1 = LRH_BTH_MASK;
14458	rrd.value1 = LRH_BTH_VALUE;
14459	rrd.mask2 = LRH_SC_MASK;
14460	rrd.value2 = LRH_SC_VALUE;
14461
14462	/* add rule 0 */
14463	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14464
14465	/* mark RSM map entries as used */
14466	rmt->used += rmt_entries;
14467	/* map everything else to the mcast/err/vl15 context */
14468	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14469	dd->qos_shift = n + 1;
14470	return;
14471bail:
14472	dd->qos_shift = 1;
14473	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14474}
14475
14476static void init_fecn_handling(struct hfi1_devdata *dd,
14477			       struct rsm_map_table *rmt)
14478{
14479	struct rsm_rule_data rrd;
14480	u64 reg;
14481	int i, idx, regoff, regidx, start;
14482	u8 offset;
14483	u32 total_cnt;
14484
14485	if (HFI1_CAP_IS_KSET(TID_RDMA))
14486		/* Exclude context 0 */
14487		start = 1;
14488	else
14489		start = dd->first_dyn_alloc_ctxt;
14490
14491	total_cnt = dd->num_rcv_contexts - start;
14492
14493	/* there needs to be enough room in the map table */
14494	if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) {
14495		dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n");
14496		return;
14497	}
14498
14499	/*
14500	 * RSM will extract the destination context as an index into the
14501	 * map table.  The destination contexts are a sequential block
14502	 * in the range start...num_rcv_contexts-1 (inclusive).
14503	 * Map entries are accessed as offset + extracted value.  Adjust
14504	 * the added offset so this sequence can be placed anywhere in
14505	 * the table - as long as the entries themselves do not wrap.
14506	 * There are only enough bits in offset for the table size, so
14507	 * start with that to allow for a "negative" offset.
14508	 */
14509	offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start);
14510
14511	for (i = start, idx = rmt->used; i < dd->num_rcv_contexts;
14512	     i++, idx++) {
14513		/* replace with identity mapping */
14514		regoff = (idx % 8) * 8;
14515		regidx = idx / 8;
14516		reg = rmt->map[regidx];
14517		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14518		reg |= (u64)i << regoff;
14519		rmt->map[regidx] = reg;
14520	}
14521
14522	/*
14523	 * For RSM intercept of Expected FECN packets:
14524	 * o packet type 0 - expected
14525	 * o match on F (bit 95), using select/match 1, and
14526	 * o match on SH (bit 133), using select/match 2.
14527	 *
14528	 * Use index 1 to extract the 8-bit receive context from DestQP
14529	 * (start at bit 64).  Use that as the RSM map table index.
14530	 */
14531	rrd.offset = offset;
14532	rrd.pkt_type = 0;
14533	rrd.field1_off = 95;
14534	rrd.field2_off = 133;
14535	rrd.index1_off = 64;
14536	rrd.index1_width = 8;
14537	rrd.index2_off = 0;
14538	rrd.index2_width = 0;
14539	rrd.mask1 = 1;
14540	rrd.value1 = 1;
14541	rrd.mask2 = 1;
14542	rrd.value2 = 1;
14543
14544	/* add rule 1 */
14545	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14546
14547	rmt->used += total_cnt;
14548}
14549
14550static inline bool hfi1_is_rmt_full(int start, int spare)
14551{
14552	return (start + spare) > NUM_MAP_ENTRIES;
14553}
14554
14555static bool hfi1_netdev_update_rmt(struct hfi1_devdata *dd)
14556{
14557	u8 i, j;
14558	u8 ctx_id = 0;
14559	u64 reg;
14560	u32 regoff;
14561	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14562	int ctxt_count = hfi1_netdev_ctxt_count(dd);
14563
14564	/* We already have contexts mapped in RMT */
14565	if (has_rsm_rule(dd, RSM_INS_VNIC) || has_rsm_rule(dd, RSM_INS_AIP)) {
14566		dd_dev_info(dd, "Contexts are already mapped in RMT\n");
14567		return true;
14568	}
14569
14570	if (hfi1_is_rmt_full(rmt_start, NUM_NETDEV_MAP_ENTRIES)) {
14571		dd_dev_err(dd, "Not enough RMT entries used = %d\n",
14572			   rmt_start);
14573		return false;
14574	}
14575
14576	dev_dbg(&(dd)->pcidev->dev, "RMT start = %d, end %d\n",
14577		rmt_start,
14578		rmt_start + NUM_NETDEV_MAP_ENTRIES);
14579
14580	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14581	regoff = RCV_RSM_MAP_TABLE + (rmt_start / 8) * 8;
14582	reg = read_csr(dd, regoff);
14583	for (i = 0; i < NUM_NETDEV_MAP_ENTRIES; i++) {
14584		/* Update map register with netdev context */
14585		j = (rmt_start + i) % 8;
14586		reg &= ~(0xffllu << (j * 8));
14587		reg |= (u64)hfi1_netdev_get_ctxt(dd, ctx_id++)->ctxt << (j * 8);
14588		/* Wrap up netdev ctx index */
14589		ctx_id %= ctxt_count;
14590		/* Write back map register */
14591		if (j == 7 || ((i + 1) == NUM_NETDEV_MAP_ENTRIES)) {
14592			dev_dbg(&(dd)->pcidev->dev,
14593				"RMT[%d] =0x%llx\n",
14594				regoff - RCV_RSM_MAP_TABLE, reg);
14595
14596			write_csr(dd, regoff, reg);
14597			regoff += 8;
14598			if (i < (NUM_NETDEV_MAP_ENTRIES - 1))
14599				reg = read_csr(dd, regoff);
14600		}
14601	}
14602
14603	return true;
14604}
14605
14606static void hfi1_enable_rsm_rule(struct hfi1_devdata *dd,
14607				 int rule, struct rsm_rule_data *rrd)
14608{
14609	if (!hfi1_netdev_update_rmt(dd)) {
14610		dd_dev_err(dd, "Failed to update RMT for RSM%d rule\n", rule);
14611		return;
14612	}
14613
14614	add_rsm_rule(dd, rule, rrd);
14615	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14616}
14617
14618void hfi1_init_aip_rsm(struct hfi1_devdata *dd)
14619{
14620	/*
14621	 * go through with the initialisation only if this rule actually doesn't
14622	 * exist yet
14623	 */
14624	if (atomic_fetch_inc(&dd->ipoib_rsm_usr_num) == 0) {
14625		int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14626		struct rsm_rule_data rrd = {
14627			.offset = rmt_start,
14628			.pkt_type = IB_PACKET_TYPE,
14629			.field1_off = LRH_BTH_MATCH_OFFSET,
14630			.mask1 = LRH_BTH_MASK,
14631			.value1 = LRH_BTH_VALUE,
14632			.field2_off = BTH_DESTQP_MATCH_OFFSET,
14633			.mask2 = BTH_DESTQP_MASK,
14634			.value2 = BTH_DESTQP_VALUE,
14635			.index1_off = DETH_AIP_SQPN_SELECT_OFFSET +
14636					ilog2(NUM_NETDEV_MAP_ENTRIES),
14637			.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14638			.index2_off = DETH_AIP_SQPN_SELECT_OFFSET,
14639			.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14640		};
14641
14642		hfi1_enable_rsm_rule(dd, RSM_INS_AIP, &rrd);
14643	}
14644}
14645
14646/* Initialize RSM for VNIC */
14647void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14648{
14649	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14650	struct rsm_rule_data rrd = {
14651		/* Add rule for vnic */
14652		.offset = rmt_start,
14653		.pkt_type = 4,
14654		/* Match 16B packets */
14655		.field1_off = L2_TYPE_MATCH_OFFSET,
14656		.mask1 = L2_TYPE_MASK,
14657		.value1 = L2_16B_VALUE,
14658		/* Match ETH L4 packets */
14659		.field2_off = L4_TYPE_MATCH_OFFSET,
14660		.mask2 = L4_16B_TYPE_MASK,
14661		.value2 = L4_16B_ETH_VALUE,
14662		/* Calc context from veswid and entropy */
14663		.index1_off = L4_16B_HDR_VESWID_OFFSET,
14664		.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14665		.index2_off = L2_16B_ENTROPY_OFFSET,
14666		.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14667	};
14668
14669	hfi1_enable_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14670}
14671
14672void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14673{
14674	clear_rsm_rule(dd, RSM_INS_VNIC);
14675}
14676
14677void hfi1_deinit_aip_rsm(struct hfi1_devdata *dd)
14678{
14679	/* only actually clear the rule if it's the last user asking to do so */
14680	if (atomic_fetch_add_unless(&dd->ipoib_rsm_usr_num, -1, 0) == 1)
14681		clear_rsm_rule(dd, RSM_INS_AIP);
14682}
14683
14684static int init_rxe(struct hfi1_devdata *dd)
14685{
14686	struct rsm_map_table *rmt;
14687	u64 val;
14688
14689	/* enable all receive errors */
14690	write_csr(dd, RCV_ERR_MASK, ~0ull);
14691
14692	rmt = alloc_rsm_map_table(dd);
14693	if (!rmt)
14694		return -ENOMEM;
14695
14696	/* set up QOS, including the QPN map table */
14697	init_qos(dd, rmt);
14698	init_fecn_handling(dd, rmt);
14699	complete_rsm_map_table(dd, rmt);
14700	/* record number of used rsm map entries for netdev */
14701	hfi1_netdev_set_free_rmt_idx(dd, rmt->used);
14702	kfree(rmt);
14703
14704	/*
14705	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14706	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14707	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14708	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14709	 * Max_PayLoad_Size set to its minimum of 128.
14710	 *
14711	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14712	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14713	 * tune_pcie_caps() which is called after this routine.
14714	 */
14715
14716	/* Have 16 bytes (4DW) of bypass header available in header queue */
14717	val = read_csr(dd, RCV_BYPASS);
14718	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14719	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14720		RCV_BYPASS_HDR_SIZE_SHIFT);
14721	write_csr(dd, RCV_BYPASS, val);
14722	return 0;
14723}
14724
14725static void init_other(struct hfi1_devdata *dd)
14726{
14727	/* enable all CCE errors */
14728	write_csr(dd, CCE_ERR_MASK, ~0ull);
14729	/* enable *some* Misc errors */
14730	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14731	/* enable all DC errors, except LCB */
14732	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14733	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14734}
14735
14736/*
14737 * Fill out the given AU table using the given CU.  A CU is defined in terms
14738 * AUs.  The table is a an encoding: given the index, how many AUs does that
14739 * represent?
14740 *
14741 * NOTE: Assumes that the register layout is the same for the
14742 * local and remote tables.
14743 */
14744static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14745			       u32 csr0to3, u32 csr4to7)
14746{
14747	write_csr(dd, csr0to3,
14748		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14749		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14750		  2ull * cu <<
14751		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14752		  4ull * cu <<
14753		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14754	write_csr(dd, csr4to7,
14755		  8ull * cu <<
14756		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14757		  16ull * cu <<
14758		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14759		  32ull * cu <<
14760		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14761		  64ull * cu <<
14762		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14763}
14764
14765static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14766{
14767	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14768			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14769}
14770
14771void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14772{
14773	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14774			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14775}
14776
14777static void init_txe(struct hfi1_devdata *dd)
14778{
14779	int i;
14780
14781	/* enable all PIO, SDMA, general, and Egress errors */
14782	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14783	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14784	write_csr(dd, SEND_ERR_MASK, ~0ull);
14785	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14786
14787	/* enable all per-context and per-SDMA engine errors */
14788	for (i = 0; i < chip_send_contexts(dd); i++)
14789		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14790	for (i = 0; i < chip_sdma_engines(dd); i++)
14791		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14792
14793	/* set the local CU to AU mapping */
14794	assign_local_cm_au_table(dd, dd->vcu);
14795
14796	/*
14797	 * Set reasonable default for Credit Return Timer
14798	 * Don't set on Simulator - causes it to choke.
14799	 */
14800	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14801		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14802}
14803
14804int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14805		       u16 jkey)
14806{
14807	u8 hw_ctxt;
14808	u64 reg;
14809
14810	if (!rcd || !rcd->sc)
14811		return -EINVAL;
14812
14813	hw_ctxt = rcd->sc->hw_context;
14814	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14815		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14816		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14817	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14818	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14819		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14820	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14821	/*
14822	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14823	 */
14824	if (!is_ax(dd)) {
14825		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14826		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14827		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14828	}
14829
14830	/* Enable J_KEY check on receive context. */
14831	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14832		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14833		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14834	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14835
14836	return 0;
14837}
14838
14839int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14840{
14841	u8 hw_ctxt;
14842	u64 reg;
14843
14844	if (!rcd || !rcd->sc)
14845		return -EINVAL;
14846
14847	hw_ctxt = rcd->sc->hw_context;
14848	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14849	/*
14850	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14851	 * This check would not have been enabled for A0 h/w, see
14852	 * set_ctxt_jkey().
14853	 */
14854	if (!is_ax(dd)) {
14855		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14856		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14857		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14858	}
14859	/* Turn off the J_KEY on the receive side */
14860	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14861
14862	return 0;
14863}
14864
14865int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14866		       u16 pkey)
14867{
14868	u8 hw_ctxt;
14869	u64 reg;
14870
14871	if (!rcd || !rcd->sc)
14872		return -EINVAL;
14873
14874	hw_ctxt = rcd->sc->hw_context;
14875	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14876		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14877	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14878	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14879	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14880	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14881	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14882
14883	return 0;
14884}
14885
14886int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14887{
14888	u8 hw_ctxt;
14889	u64 reg;
14890
14891	if (!ctxt || !ctxt->sc)
14892		return -EINVAL;
14893
14894	hw_ctxt = ctxt->sc->hw_context;
14895	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14896	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14897	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14898	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14899
14900	return 0;
14901}
14902
14903/*
14904 * Start doing the clean up the the chip. Our clean up happens in multiple
14905 * stages and this is just the first.
14906 */
14907void hfi1_start_cleanup(struct hfi1_devdata *dd)
14908{
14909	aspm_exit(dd);
14910	free_cntrs(dd);
14911	free_rcverr(dd);
14912	finish_chip_resources(dd);
14913}
14914
14915#define HFI_BASE_GUID(dev) \
14916	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14917
14918/*
14919 * Information can be shared between the two HFIs on the same ASIC
14920 * in the same OS.  This function finds the peer device and sets
14921 * up a shared structure.
14922 */
14923static int init_asic_data(struct hfi1_devdata *dd)
14924{
14925	unsigned long index;
14926	struct hfi1_devdata *peer;
14927	struct hfi1_asic_data *asic_data;
14928	int ret = 0;
14929
14930	/* pre-allocate the asic structure in case we are the first device */
14931	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14932	if (!asic_data)
14933		return -ENOMEM;
14934
14935	xa_lock_irq(&hfi1_dev_table);
14936	/* Find our peer device */
14937	xa_for_each(&hfi1_dev_table, index, peer) {
14938		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) &&
14939		    dd->unit != peer->unit)
14940			break;
14941	}
14942
14943	if (peer) {
14944		/* use already allocated structure */
14945		dd->asic_data = peer->asic_data;
14946		kfree(asic_data);
14947	} else {
14948		dd->asic_data = asic_data;
14949		mutex_init(&dd->asic_data->asic_resource_mutex);
14950	}
14951	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14952	xa_unlock_irq(&hfi1_dev_table);
14953
14954	/* first one through - set up i2c devices */
14955	if (!peer)
14956		ret = set_up_i2c(dd, dd->asic_data);
14957
14958	return ret;
14959}
14960
14961/*
14962 * Set dd->boardname.  Use a generic name if a name is not returned from
14963 * EFI variable space.
14964 *
14965 * Return 0 on success, -ENOMEM if space could not be allocated.
14966 */
14967static int obtain_boardname(struct hfi1_devdata *dd)
14968{
14969	/* generic board description */
14970	const char generic[] =
14971		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14972	unsigned long size;
14973	int ret;
14974
14975	ret = read_hfi1_efi_var(dd, "description", &size,
14976				(void **)&dd->boardname);
14977	if (ret) {
14978		dd_dev_info(dd, "Board description not found\n");
14979		/* use generic description */
14980		dd->boardname = kstrdup(generic, GFP_KERNEL);
14981		if (!dd->boardname)
14982			return -ENOMEM;
14983	}
14984	return 0;
14985}
14986
14987/*
14988 * Check the interrupt registers to make sure that they are mapped correctly.
14989 * It is intended to help user identify any mismapping by VMM when the driver
14990 * is running in a VM. This function should only be called before interrupt
14991 * is set up properly.
14992 *
14993 * Return 0 on success, -EINVAL on failure.
14994 */
14995static int check_int_registers(struct hfi1_devdata *dd)
14996{
14997	u64 reg;
14998	u64 all_bits = ~(u64)0;
14999	u64 mask;
15000
15001	/* Clear CceIntMask[0] to avoid raising any interrupts */
15002	mask = read_csr(dd, CCE_INT_MASK);
15003	write_csr(dd, CCE_INT_MASK, 0ull);
15004	reg = read_csr(dd, CCE_INT_MASK);
15005	if (reg)
15006		goto err_exit;
15007
15008	/* Clear all interrupt status bits */
15009	write_csr(dd, CCE_INT_CLEAR, all_bits);
15010	reg = read_csr(dd, CCE_INT_STATUS);
15011	if (reg)
15012		goto err_exit;
15013
15014	/* Set all interrupt status bits */
15015	write_csr(dd, CCE_INT_FORCE, all_bits);
15016	reg = read_csr(dd, CCE_INT_STATUS);
15017	if (reg != all_bits)
15018		goto err_exit;
15019
15020	/* Restore the interrupt mask */
15021	write_csr(dd, CCE_INT_CLEAR, all_bits);
15022	write_csr(dd, CCE_INT_MASK, mask);
15023
15024	return 0;
15025err_exit:
15026	write_csr(dd, CCE_INT_MASK, mask);
15027	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
15028	return -EINVAL;
15029}
15030
15031/**
15032 * hfi1_init_dd() - Initialize most of the dd structure.
15033 * @dev: the pci_dev for hfi1_ib device
15034 * @ent: pci_device_id struct for this dev
15035 *
15036 * This is global, and is called directly at init to set up the
15037 * chip-specific function pointers for later use.
15038 */
15039int hfi1_init_dd(struct hfi1_devdata *dd)
15040{
15041	struct pci_dev *pdev = dd->pcidev;
15042	struct hfi1_pportdata *ppd;
15043	u64 reg;
15044	int i, ret;
15045	static const char * const inames[] = { /* implementation names */
15046		"RTL silicon",
15047		"RTL VCS simulation",
15048		"RTL FPGA emulation",
15049		"Functional simulator"
15050	};
15051	struct pci_dev *parent = pdev->bus->self;
15052	u32 sdma_engines = chip_sdma_engines(dd);
15053
15054	ppd = dd->pport;
15055	for (i = 0; i < dd->num_pports; i++, ppd++) {
15056		int vl;
15057		/* init common fields */
15058		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
15059		/* DC supports 4 link widths */
15060		ppd->link_width_supported =
15061			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
15062			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
15063		ppd->link_width_downgrade_supported =
15064			ppd->link_width_supported;
15065		/* start out enabling only 4X */
15066		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
15067		ppd->link_width_downgrade_enabled =
15068					ppd->link_width_downgrade_supported;
15069		/* link width active is 0 when link is down */
15070		/* link width downgrade active is 0 when link is down */
15071
15072		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
15073		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
15074			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
15075				   num_vls, HFI1_MAX_VLS_SUPPORTED);
15076			num_vls = HFI1_MAX_VLS_SUPPORTED;
15077		}
15078		ppd->vls_supported = num_vls;
15079		ppd->vls_operational = ppd->vls_supported;
15080		/* Set the default MTU. */
15081		for (vl = 0; vl < num_vls; vl++)
15082			dd->vld[vl].mtu = hfi1_max_mtu;
15083		dd->vld[15].mtu = MAX_MAD_PACKET;
15084		/*
15085		 * Set the initial values to reasonable default, will be set
15086		 * for real when link is up.
15087		 */
15088		ppd->overrun_threshold = 0x4;
15089		ppd->phy_error_threshold = 0xf;
15090		ppd->port_crc_mode_enabled = link_crc_mask;
15091		/* initialize supported LTP CRC mode */
15092		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15093		/* initialize enabled LTP CRC mode */
15094		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15095		/* start in offline */
15096		ppd->host_link_state = HLS_DN_OFFLINE;
15097		init_vl_arb_caches(ppd);
15098	}
15099
15100	/*
15101	 * Do remaining PCIe setup and save PCIe values in dd.
15102	 * Any error printing is already done by the init code.
15103	 * On return, we have the chip mapped.
15104	 */
15105	ret = hfi1_pcie_ddinit(dd, pdev);
15106	if (ret < 0)
15107		goto bail_free;
15108
15109	/* Save PCI space registers to rewrite after device reset */
15110	ret = save_pci_variables(dd);
15111	if (ret < 0)
15112		goto bail_cleanup;
15113
15114	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15115			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
15116	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15117			& CCE_REVISION_CHIP_REV_MINOR_MASK;
15118
15119	/*
15120	 * Check interrupt registers mapping if the driver has no access to
15121	 * the upstream component. In this case, it is likely that the driver
15122	 * is running in a VM.
15123	 */
15124	if (!parent) {
15125		ret = check_int_registers(dd);
15126		if (ret)
15127			goto bail_cleanup;
15128	}
15129
15130	/*
15131	 * obtain the hardware ID - NOT related to unit, which is a
15132	 * software enumeration
15133	 */
15134	reg = read_csr(dd, CCE_REVISION2);
15135	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15136					& CCE_REVISION2_HFI_ID_MASK;
15137	/* the variable size will remove unwanted bits */
15138	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15139	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15140	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15141		    dd->icode < ARRAY_SIZE(inames) ?
15142		    inames[dd->icode] : "unknown", (int)dd->irev);
15143
15144	/* speeds the hardware can support */
15145	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15146	/* speeds allowed to run at */
15147	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15148	/* give a reasonable active value, will be set on link up */
15149	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15150
15151	/* fix up link widths for emulation _p */
15152	ppd = dd->pport;
15153	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15154		ppd->link_width_supported =
15155			ppd->link_width_enabled =
15156			ppd->link_width_downgrade_supported =
15157			ppd->link_width_downgrade_enabled =
15158				OPA_LINK_WIDTH_1X;
15159	}
15160	/* insure num_vls isn't larger than number of sdma engines */
15161	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
15162		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15163			   num_vls, sdma_engines);
15164		num_vls = sdma_engines;
15165		ppd->vls_supported = sdma_engines;
15166		ppd->vls_operational = ppd->vls_supported;
15167	}
15168
15169	/*
15170	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15171	 * Limit the max if larger than the field holds.  If timeout is
15172	 * non-zero, then the calculated field will be at least 1.
15173	 *
15174	 * Must be after icode is set up - the cclock rate depends
15175	 * on knowing the hardware being used.
15176	 */
15177	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15178	if (dd->rcv_intr_timeout_csr >
15179			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15180		dd->rcv_intr_timeout_csr =
15181			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15182	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15183		dd->rcv_intr_timeout_csr = 1;
15184
15185	/* needs to be done before we look for the peer device */
15186	read_guid(dd);
15187
15188	/* set up shared ASIC data with peer device */
15189	ret = init_asic_data(dd);
15190	if (ret)
15191		goto bail_cleanup;
15192
15193	/* obtain chip sizes, reset chip CSRs */
15194	ret = init_chip(dd);
15195	if (ret)
15196		goto bail_cleanup;
15197
15198	/* read in the PCIe link speed information */
15199	ret = pcie_speeds(dd);
15200	if (ret)
15201		goto bail_cleanup;
15202
15203	/* call before get_platform_config(), after init_chip_resources() */
15204	ret = eprom_init(dd);
15205	if (ret)
15206		goto bail_free_rcverr;
15207
15208	/* Needs to be called before hfi1_firmware_init */
15209	get_platform_config(dd);
15210
15211	/* read in firmware */
15212	ret = hfi1_firmware_init(dd);
15213	if (ret)
15214		goto bail_cleanup;
15215
15216	/*
15217	 * In general, the PCIe Gen3 transition must occur after the
15218	 * chip has been idled (so it won't initiate any PCIe transactions
15219	 * e.g. an interrupt) and before the driver changes any registers
15220	 * (the transition will reset the registers).
15221	 *
15222	 * In particular, place this call after:
15223	 * - init_chip()     - the chip will not initiate any PCIe transactions
15224	 * - pcie_speeds()   - reads the current link speed
15225	 * - hfi1_firmware_init() - the needed firmware is ready to be
15226	 *			    downloaded
15227	 */
15228	ret = do_pcie_gen3_transition(dd);
15229	if (ret)
15230		goto bail_cleanup;
15231
15232	/*
15233	 * This should probably occur in hfi1_pcie_init(), but historically
15234	 * occurs after the do_pcie_gen3_transition() code.
15235	 */
15236	tune_pcie_caps(dd);
15237
15238	/* start setting dd values and adjusting CSRs */
15239	init_early_variables(dd);
15240
15241	parse_platform_config(dd);
15242
15243	ret = obtain_boardname(dd);
15244	if (ret)
15245		goto bail_cleanup;
15246
15247	snprintf(dd->boardversion, BOARD_VERS_MAX,
15248		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15249		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15250		 (u32)dd->majrev,
15251		 (u32)dd->minrev,
15252		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15253		    & CCE_REVISION_SW_MASK);
15254
15255	/* alloc netdev data */
15256	ret = hfi1_netdev_alloc(dd);
15257	if (ret)
15258		goto bail_cleanup;
15259
15260	ret = set_up_context_variables(dd);
15261	if (ret)
15262		goto bail_cleanup;
15263
15264	/* set initial RXE CSRs */
15265	ret = init_rxe(dd);
15266	if (ret)
15267		goto bail_cleanup;
15268
15269	/* set initial TXE CSRs */
15270	init_txe(dd);
15271	/* set initial non-RXE, non-TXE CSRs */
15272	init_other(dd);
15273	/* set up KDETH QP prefix in both RX and TX CSRs */
15274	init_kdeth_qp(dd);
15275
15276	ret = hfi1_dev_affinity_init(dd);
15277	if (ret)
15278		goto bail_cleanup;
15279
15280	/* send contexts must be set up before receive contexts */
15281	ret = init_send_contexts(dd);
15282	if (ret)
15283		goto bail_cleanup;
15284
15285	ret = hfi1_create_kctxts(dd);
15286	if (ret)
15287		goto bail_cleanup;
15288
15289	/*
15290	 * Initialize aspm, to be done after gen3 transition and setting up
15291	 * contexts and before enabling interrupts
15292	 */
15293	aspm_init(dd);
15294
15295	ret = init_pervl_scs(dd);
15296	if (ret)
15297		goto bail_cleanup;
15298
15299	/* sdma init */
15300	for (i = 0; i < dd->num_pports; ++i) {
15301		ret = sdma_init(dd, i);
15302		if (ret)
15303			goto bail_cleanup;
15304	}
15305
15306	/* use contexts created by hfi1_create_kctxts */
15307	ret = set_up_interrupts(dd);
15308	if (ret)
15309		goto bail_cleanup;
15310
15311	ret = hfi1_comp_vectors_set_up(dd);
15312	if (ret)
15313		goto bail_clear_intr;
15314
15315	/* set up LCB access - must be after set_up_interrupts() */
15316	init_lcb_access(dd);
15317
15318	/*
15319	 * Serial number is created from the base guid:
15320	 * [27:24] = base guid [38:35]
15321	 * [23: 0] = base guid [23: 0]
15322	 */
15323	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15324		 (dd->base_guid & 0xFFFFFF) |
15325		     ((dd->base_guid >> 11) & 0xF000000));
15326
15327	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15328	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15329	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15330
15331	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15332	if (ret)
15333		goto bail_clear_intr;
15334
15335	thermal_init(dd);
15336
15337	ret = init_cntrs(dd);
15338	if (ret)
15339		goto bail_clear_intr;
15340
15341	ret = init_rcverr(dd);
15342	if (ret)
15343		goto bail_free_cntrs;
15344
15345	init_completion(&dd->user_comp);
15346
15347	/* The user refcount starts with one to inidicate an active device */
15348	atomic_set(&dd->user_refcount, 1);
15349
15350	goto bail;
15351
15352bail_free_rcverr:
15353	free_rcverr(dd);
15354bail_free_cntrs:
15355	free_cntrs(dd);
15356bail_clear_intr:
15357	hfi1_comp_vectors_clean_up(dd);
15358	msix_clean_up_interrupts(dd);
15359bail_cleanup:
15360	hfi1_netdev_free(dd);
15361	hfi1_pcie_ddcleanup(dd);
15362bail_free:
15363	hfi1_free_devdata(dd);
15364bail:
15365	return ret;
15366}
15367
15368static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15369			u32 dw_len)
15370{
15371	u32 delta_cycles;
15372	u32 current_egress_rate = ppd->current_egress_rate;
15373	/* rates here are in units of 10^6 bits/sec */
15374
15375	if (desired_egress_rate == -1)
15376		return 0; /* shouldn't happen */
15377
15378	if (desired_egress_rate >= current_egress_rate)
15379		return 0; /* we can't help go faster, only slower */
15380
15381	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15382			egress_cycles(dw_len * 4, current_egress_rate);
15383
15384	return (u16)delta_cycles;
15385}
15386
15387/**
15388 * create_pbc - build a pbc for transmission
15389 * @flags: special case flags or-ed in built pbc
15390 * @srate: static rate
15391 * @vl: vl
15392 * @dwlen: dword length (header words + data words + pbc words)
15393 *
15394 * Create a PBC with the given flags, rate, VL, and length.
15395 *
15396 * NOTE: The PBC created will not insert any HCRC - all callers but one are
15397 * for verbs, which does not use this PSM feature.  The lone other caller
15398 * is for the diagnostic interface which calls this if the user does not
15399 * supply their own PBC.
15400 */
15401u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15402	       u32 dw_len)
15403{
15404	u64 pbc, delay = 0;
15405
15406	if (unlikely(srate_mbs))
15407		delay = delay_cycles(ppd, srate_mbs, dw_len);
15408
15409	pbc = flags
15410		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15411		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15412		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15413		| (dw_len & PBC_LENGTH_DWS_MASK)
15414			<< PBC_LENGTH_DWS_SHIFT;
15415
15416	return pbc;
15417}
15418
15419#define SBUS_THERMAL    0x4f
15420#define SBUS_THERM_MONITOR_MODE 0x1
15421
15422#define THERM_FAILURE(dev, ret, reason) \
15423	dd_dev_err((dd),						\
15424		   "Thermal sensor initialization failed: %s (%d)\n",	\
15425		   (reason), (ret))
15426
15427/*
15428 * Initialize the thermal sensor.
15429 *
15430 * After initialization, enable polling of thermal sensor through
15431 * SBus interface. In order for this to work, the SBus Master
15432 * firmware has to be loaded due to the fact that the HW polling
15433 * logic uses SBus interrupts, which are not supported with
15434 * default firmware. Otherwise, no data will be returned through
15435 * the ASIC_STS_THERM CSR.
15436 */
15437static int thermal_init(struct hfi1_devdata *dd)
15438{
15439	int ret = 0;
15440
15441	if (dd->icode != ICODE_RTL_SILICON ||
15442	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15443		return ret;
15444
15445	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15446	if (ret) {
15447		THERM_FAILURE(dd, ret, "Acquire SBus");
15448		return ret;
15449	}
15450
15451	dd_dev_info(dd, "Initializing thermal sensor\n");
15452	/* Disable polling of thermal readings */
15453	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15454	msleep(100);
15455	/* Thermal Sensor Initialization */
15456	/*    Step 1: Reset the Thermal SBus Receiver */
15457	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15458				RESET_SBUS_RECEIVER, 0);
15459	if (ret) {
15460		THERM_FAILURE(dd, ret, "Bus Reset");
15461		goto done;
15462	}
15463	/*    Step 2: Set Reset bit in Thermal block */
15464	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15465				WRITE_SBUS_RECEIVER, 0x1);
15466	if (ret) {
15467		THERM_FAILURE(dd, ret, "Therm Block Reset");
15468		goto done;
15469	}
15470	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15471	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15472				WRITE_SBUS_RECEIVER, 0x32);
15473	if (ret) {
15474		THERM_FAILURE(dd, ret, "Write Clock Div");
15475		goto done;
15476	}
15477	/*    Step 4: Select temperature mode */
15478	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15479				WRITE_SBUS_RECEIVER,
15480				SBUS_THERM_MONITOR_MODE);
15481	if (ret) {
15482		THERM_FAILURE(dd, ret, "Write Mode Sel");
15483		goto done;
15484	}
15485	/*    Step 5: De-assert block reset and start conversion */
15486	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15487				WRITE_SBUS_RECEIVER, 0x2);
15488	if (ret) {
15489		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15490		goto done;
15491	}
15492	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15493	msleep(22);
15494
15495	/* Enable polling of thermal readings */
15496	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15497
15498	/* Set initialized flag */
15499	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15500	if (ret)
15501		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15502
15503done:
15504	release_chip_resource(dd, CR_SBUS);
15505	return ret;
15506}
15507
15508static void handle_temp_err(struct hfi1_devdata *dd)
15509{
15510	struct hfi1_pportdata *ppd = &dd->pport[0];
15511	/*
15512	 * Thermal Critical Interrupt
15513	 * Put the device into forced freeze mode, take link down to
15514	 * offline, and put DC into reset.
15515	 */
15516	dd_dev_emerg(dd,
15517		     "Critical temperature reached! Forcing device into freeze mode!\n");
15518	dd->flags |= HFI1_FORCED_FREEZE;
15519	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15520	/*
15521	 * Shut DC down as much and as quickly as possible.
15522	 *
15523	 * Step 1: Take the link down to OFFLINE. This will cause the
15524	 *         8051 to put the Serdes in reset. However, we don't want to
15525	 *         go through the entire link state machine since we want to
15526	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15527	 *         but rather an attempt to save the chip.
15528	 *         Code below is almost the same as quiet_serdes() but avoids
15529	 *         all the extra work and the sleeps.
15530	 */
15531	ppd->driver_link_ready = 0;
15532	ppd->link_enabled = 0;
15533	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15534				PLS_OFFLINE);
15535	/*
15536	 * Step 2: Shutdown LCB and 8051
15537	 *         After shutdown, do not restore DC_CFG_RESET value.
15538	 */
15539	dc_shutdown(dd);
15540}
15541