1/* 2 * Copyright(c) 2015 - 2020 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48/* 49 * This file contains all of the code that is specific to the HFI chip 50 */ 51 52#include <linux/pci.h> 53#include <linux/delay.h> 54#include <linux/interrupt.h> 55#include <linux/module.h> 56 57#include "hfi.h" 58#include "trace.h" 59#include "mad.h" 60#include "pio.h" 61#include "sdma.h" 62#include "eprom.h" 63#include "efivar.h" 64#include "platform.h" 65#include "aspm.h" 66#include "affinity.h" 67#include "debugfs.h" 68#include "fault.h" 69#include "netdev.h" 70 71uint num_vls = HFI1_MAX_VLS_SUPPORTED; 72module_param(num_vls, uint, S_IRUGO); 73MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)"); 74 75/* 76 * Default time to aggregate two 10K packets from the idle state 77 * (timer not running). The timer starts at the end of the first packet, 78 * so only the time for one 10K packet and header plus a bit extra is needed. 79 * 10 * 1024 + 64 header byte = 10304 byte 80 * 10304 byte / 12.5 GB/s = 824.32ns 81 */ 82uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */ 83module_param(rcv_intr_timeout, uint, S_IRUGO); 84MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns"); 85 86uint rcv_intr_count = 16; /* same as qib */ 87module_param(rcv_intr_count, uint, S_IRUGO); 88MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count"); 89 90ushort link_crc_mask = SUPPORTED_CRCS; 91module_param(link_crc_mask, ushort, S_IRUGO); 92MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link"); 93 94uint loopback; 95module_param_named(loopback, loopback, uint, S_IRUGO); 96MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable"); 97 98/* Other driver tunables */ 99uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/ 100static ushort crc_14b_sideband = 1; 101static uint use_flr = 1; 102uint quick_linkup; /* skip LNI */ 103 104struct flag_table { 105 u64 flag; /* the flag */ 106 char *str; /* description string */ 107 u16 extra; /* extra information */ 108 u16 unused0; 109 u32 unused1; 110}; 111 112/* str must be a string constant */ 113#define FLAG_ENTRY(str, extra, flag) {flag, str, extra} 114#define FLAG_ENTRY0(str, flag) {flag, str, 0} 115 116/* Send Error Consequences */ 117#define SEC_WRITE_DROPPED 0x1 118#define SEC_PACKET_DROPPED 0x2 119#define SEC_SC_HALTED 0x4 /* per-context only */ 120#define SEC_SPC_FREEZE 0x8 /* per-HFI only */ 121 122#define DEFAULT_KRCVQS 2 123#define MIN_KERNEL_KCTXTS 2 124#define FIRST_KERNEL_KCTXT 1 125 126/* 127 * RSM instance allocation 128 * 0 - User Fecn Handling 129 * 1 - Vnic 130 * 2 - AIP 131 * 3 - Verbs 132 */ 133#define RSM_INS_FECN 0 134#define RSM_INS_VNIC 1 135#define RSM_INS_AIP 2 136#define RSM_INS_VERBS 3 137 138/* Bit offset into the GUID which carries HFI id information */ 139#define GUID_HFI_INDEX_SHIFT 39 140 141/* extract the emulation revision */ 142#define emulator_rev(dd) ((dd)->irev >> 8) 143/* parallel and serial emulation versions are 3 and 4 respectively */ 144#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3) 145#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4) 146 147/* RSM fields for Verbs */ 148/* packet type */ 149#define IB_PACKET_TYPE 2ull 150#define QW_SHIFT 6ull 151/* QPN[7..1] */ 152#define QPN_WIDTH 7ull 153 154/* LRH.BTH: QW 0, OFFSET 48 - for match */ 155#define LRH_BTH_QW 0ull 156#define LRH_BTH_BIT_OFFSET 48ull 157#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off)) 158#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET) 159#define LRH_BTH_SELECT 160#define LRH_BTH_MASK 3ull 161#define LRH_BTH_VALUE 2ull 162 163/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */ 164#define LRH_SC_QW 0ull 165#define LRH_SC_BIT_OFFSET 56ull 166#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off)) 167#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET) 168#define LRH_SC_MASK 128ull 169#define LRH_SC_VALUE 0ull 170 171/* SC[n..0] QW 0, OFFSET 60 - for select */ 172#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull)) 173 174/* QPN[m+n:1] QW 1, OFFSET 1 */ 175#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull)) 176 177/* RSM fields for AIP */ 178/* LRH.BTH above is reused for this rule */ 179 180/* BTH.DESTQP: QW 1, OFFSET 16 for match */ 181#define BTH_DESTQP_QW 1ull 182#define BTH_DESTQP_BIT_OFFSET 16ull 183#define BTH_DESTQP_OFFSET(off) ((BTH_DESTQP_QW << QW_SHIFT) | (off)) 184#define BTH_DESTQP_MATCH_OFFSET BTH_DESTQP_OFFSET(BTH_DESTQP_BIT_OFFSET) 185#define BTH_DESTQP_MASK 0xFFull 186#define BTH_DESTQP_VALUE 0x81ull 187 188/* DETH.SQPN: QW 1 Offset 56 for select */ 189/* We use 8 most significant Soure QPN bits as entropy fpr AIP */ 190#define DETH_AIP_SQPN_QW 3ull 191#define DETH_AIP_SQPN_BIT_OFFSET 56ull 192#define DETH_AIP_SQPN_OFFSET(off) ((DETH_AIP_SQPN_QW << QW_SHIFT) | (off)) 193#define DETH_AIP_SQPN_SELECT_OFFSET \ 194 DETH_AIP_SQPN_OFFSET(DETH_AIP_SQPN_BIT_OFFSET) 195 196/* RSM fields for Vnic */ 197/* L2_TYPE: QW 0, OFFSET 61 - for match */ 198#define L2_TYPE_QW 0ull 199#define L2_TYPE_BIT_OFFSET 61ull 200#define L2_TYPE_OFFSET(off) ((L2_TYPE_QW << QW_SHIFT) | (off)) 201#define L2_TYPE_MATCH_OFFSET L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET) 202#define L2_TYPE_MASK 3ull 203#define L2_16B_VALUE 2ull 204 205/* L4_TYPE QW 1, OFFSET 0 - for match */ 206#define L4_TYPE_QW 1ull 207#define L4_TYPE_BIT_OFFSET 0ull 208#define L4_TYPE_OFFSET(off) ((L4_TYPE_QW << QW_SHIFT) | (off)) 209#define L4_TYPE_MATCH_OFFSET L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET) 210#define L4_16B_TYPE_MASK 0xFFull 211#define L4_16B_ETH_VALUE 0x78ull 212 213/* 16B VESWID - for select */ 214#define L4_16B_HDR_VESWID_OFFSET ((2 << QW_SHIFT) | (16ull)) 215/* 16B ENTROPY - for select */ 216#define L2_16B_ENTROPY_OFFSET ((1 << QW_SHIFT) | (32ull)) 217 218/* defines to build power on SC2VL table */ 219#define SC2VL_VAL( \ 220 num, \ 221 sc0, sc0val, \ 222 sc1, sc1val, \ 223 sc2, sc2val, \ 224 sc3, sc3val, \ 225 sc4, sc4val, \ 226 sc5, sc5val, \ 227 sc6, sc6val, \ 228 sc7, sc7val) \ 229( \ 230 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \ 231 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \ 232 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \ 233 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \ 234 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \ 235 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \ 236 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \ 237 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \ 238) 239 240#define DC_SC_VL_VAL( \ 241 range, \ 242 e0, e0val, \ 243 e1, e1val, \ 244 e2, e2val, \ 245 e3, e3val, \ 246 e4, e4val, \ 247 e5, e5val, \ 248 e6, e6val, \ 249 e7, e7val, \ 250 e8, e8val, \ 251 e9, e9val, \ 252 e10, e10val, \ 253 e11, e11val, \ 254 e12, e12val, \ 255 e13, e13val, \ 256 e14, e14val, \ 257 e15, e15val) \ 258( \ 259 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \ 260 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \ 261 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \ 262 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \ 263 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \ 264 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \ 265 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \ 266 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \ 267 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \ 268 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \ 269 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \ 270 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \ 271 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \ 272 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \ 273 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \ 274 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \ 275) 276 277/* all CceStatus sub-block freeze bits */ 278#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \ 279 | CCE_STATUS_RXE_FROZE_SMASK \ 280 | CCE_STATUS_TXE_FROZE_SMASK \ 281 | CCE_STATUS_TXE_PIO_FROZE_SMASK) 282/* all CceStatus sub-block TXE pause bits */ 283#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \ 284 | CCE_STATUS_TXE_PAUSED_SMASK \ 285 | CCE_STATUS_SDMA_PAUSED_SMASK) 286/* all CceStatus sub-block RXE pause bits */ 287#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK 288 289#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL 290#define CNTR_32BIT_MAX 0x00000000FFFFFFFF 291 292/* 293 * CCE Error flags. 294 */ 295static struct flag_table cce_err_status_flags[] = { 296/* 0*/ FLAG_ENTRY0("CceCsrParityErr", 297 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK), 298/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr", 299 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK), 300/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr", 301 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK), 302/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr", 303 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK), 304/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr", 305 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK), 306/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr", 307 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK), 308/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr", 309 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK), 310/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr", 311 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK), 312/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr", 313 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK), 314/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 315 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK), 316/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 317 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK), 318/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError", 319 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK), 320/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError", 321 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK), 322/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr", 323 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK), 324/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr", 325 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK), 326/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr", 327 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK), 328/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr", 329 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK), 330/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr", 331 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK), 332/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr", 333 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK), 334/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr", 335 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK), 336/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr", 337 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK), 338/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr", 339 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK), 340/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr", 341 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK), 342/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr", 343 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK), 344/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr", 345 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK), 346/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr", 347 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK), 348/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr", 349 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK), 350/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr", 351 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK), 352/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr", 353 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK), 354/*29*/ FLAG_ENTRY0("PcicReceiveParityErr", 355 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK), 356/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr", 357 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK), 358/*31*/ FLAG_ENTRY0("LATriggered", 359 CCE_ERR_STATUS_LA_TRIGGERED_SMASK), 360/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr", 361 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK), 362/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr", 363 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK), 364/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr", 365 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK), 366/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr", 367 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK), 368/*36*/ FLAG_ENTRY0("CceMsixTableCorErr", 369 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK), 370/*37*/ FLAG_ENTRY0("CceMsixTableUncErr", 371 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK), 372/*38*/ FLAG_ENTRY0("CceIntMapCorErr", 373 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK), 374/*39*/ FLAG_ENTRY0("CceIntMapUncErr", 375 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK), 376/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr", 377 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK), 378/*41-63 reserved*/ 379}; 380 381/* 382 * Misc Error flags 383 */ 384#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK 385static struct flag_table misc_err_status_flags[] = { 386/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)), 387/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)), 388/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)), 389/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)), 390/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)), 391/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)), 392/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)), 393/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)), 394/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)), 395/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)), 396/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)), 397/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)), 398/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL)) 399}; 400 401/* 402 * TXE PIO Error flags and consequences 403 */ 404static struct flag_table pio_err_status_flags[] = { 405/* 0*/ FLAG_ENTRY("PioWriteBadCtxt", 406 SEC_WRITE_DROPPED, 407 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK), 408/* 1*/ FLAG_ENTRY("PioWriteAddrParity", 409 SEC_SPC_FREEZE, 410 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK), 411/* 2*/ FLAG_ENTRY("PioCsrParity", 412 SEC_SPC_FREEZE, 413 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK), 414/* 3*/ FLAG_ENTRY("PioSbMemFifo0", 415 SEC_SPC_FREEZE, 416 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK), 417/* 4*/ FLAG_ENTRY("PioSbMemFifo1", 418 SEC_SPC_FREEZE, 419 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK), 420/* 5*/ FLAG_ENTRY("PioPccFifoParity", 421 SEC_SPC_FREEZE, 422 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK), 423/* 6*/ FLAG_ENTRY("PioPecFifoParity", 424 SEC_SPC_FREEZE, 425 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK), 426/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity", 427 SEC_SPC_FREEZE, 428 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK), 429/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity", 430 SEC_SPC_FREEZE, 431 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK), 432/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr", 433 SEC_SPC_FREEZE, 434 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK), 435/*10*/ FLAG_ENTRY("PioSmPktResetParity", 436 SEC_SPC_FREEZE, 437 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK), 438/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc", 439 SEC_SPC_FREEZE, 440 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK), 441/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc", 442 SEC_SPC_FREEZE, 443 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK), 444/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor", 445 0, 446 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK), 447/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor", 448 0, 449 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK), 450/*15*/ FLAG_ENTRY("PioCreditRetFifoParity", 451 SEC_SPC_FREEZE, 452 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK), 453/*16*/ FLAG_ENTRY("PioPpmcPblFifo", 454 SEC_SPC_FREEZE, 455 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK), 456/*17*/ FLAG_ENTRY("PioInitSmIn", 457 0, 458 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK), 459/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm", 460 SEC_SPC_FREEZE, 461 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK), 462/*19*/ FLAG_ENTRY("PioHostAddrMemUnc", 463 SEC_SPC_FREEZE, 464 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK), 465/*20*/ FLAG_ENTRY("PioHostAddrMemCor", 466 0, 467 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK), 468/*21*/ FLAG_ENTRY("PioWriteDataParity", 469 SEC_SPC_FREEZE, 470 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK), 471/*22*/ FLAG_ENTRY("PioStateMachine", 472 SEC_SPC_FREEZE, 473 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK), 474/*23*/ FLAG_ENTRY("PioWriteQwValidParity", 475 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 476 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK), 477/*24*/ FLAG_ENTRY("PioBlockQwCountParity", 478 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 479 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK), 480/*25*/ FLAG_ENTRY("PioVlfVlLenParity", 481 SEC_SPC_FREEZE, 482 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK), 483/*26*/ FLAG_ENTRY("PioVlfSopParity", 484 SEC_SPC_FREEZE, 485 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK), 486/*27*/ FLAG_ENTRY("PioVlFifoParity", 487 SEC_SPC_FREEZE, 488 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK), 489/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity", 490 SEC_SPC_FREEZE, 491 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK), 492/*29*/ FLAG_ENTRY("PioPpmcSopLen", 493 SEC_SPC_FREEZE, 494 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK), 495/*30-31 reserved*/ 496/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity", 497 SEC_SPC_FREEZE, 498 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK), 499/*33*/ FLAG_ENTRY("PioLastReturnedCntParity", 500 SEC_SPC_FREEZE, 501 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK), 502/*34*/ FLAG_ENTRY("PioPccSopHeadParity", 503 SEC_SPC_FREEZE, 504 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK), 505/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr", 506 SEC_SPC_FREEZE, 507 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK), 508/*36-63 reserved*/ 509}; 510 511/* TXE PIO errors that cause an SPC freeze */ 512#define ALL_PIO_FREEZE_ERR \ 513 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \ 514 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \ 515 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \ 516 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \ 517 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \ 518 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \ 519 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \ 520 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \ 521 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \ 522 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \ 523 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \ 524 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \ 525 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \ 526 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \ 527 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \ 528 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \ 529 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \ 530 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \ 531 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \ 532 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \ 533 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \ 534 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \ 535 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \ 536 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \ 537 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \ 538 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \ 539 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \ 540 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \ 541 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK) 542 543/* 544 * TXE SDMA Error flags 545 */ 546static struct flag_table sdma_err_status_flags[] = { 547/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr", 548 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK), 549/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr", 550 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK), 551/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr", 552 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK), 553/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr", 554 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK), 555/*04-63 reserved*/ 556}; 557 558/* TXE SDMA errors that cause an SPC freeze */ 559#define ALL_SDMA_FREEZE_ERR \ 560 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \ 561 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \ 562 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK) 563 564/* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */ 565#define PORT_DISCARD_EGRESS_ERRS \ 566 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \ 567 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \ 568 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK) 569 570/* 571 * TXE Egress Error flags 572 */ 573#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK 574static struct flag_table egress_err_status_flags[] = { 575/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)), 576/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)), 577/* 2 reserved */ 578/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr", 579 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)), 580/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)), 581/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)), 582/* 6 reserved */ 583/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr", 584 SEES(TX_PIO_LAUNCH_INTF_PARITY)), 585/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr", 586 SEES(TX_SDMA_LAUNCH_INTF_PARITY)), 587/* 9-10 reserved */ 588/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr", 589 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)), 590/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)), 591/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)), 592/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)), 593/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)), 594/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr", 595 SEES(TX_SDMA0_DISALLOWED_PACKET)), 596/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr", 597 SEES(TX_SDMA1_DISALLOWED_PACKET)), 598/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr", 599 SEES(TX_SDMA2_DISALLOWED_PACKET)), 600/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr", 601 SEES(TX_SDMA3_DISALLOWED_PACKET)), 602/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr", 603 SEES(TX_SDMA4_DISALLOWED_PACKET)), 604/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr", 605 SEES(TX_SDMA5_DISALLOWED_PACKET)), 606/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr", 607 SEES(TX_SDMA6_DISALLOWED_PACKET)), 608/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr", 609 SEES(TX_SDMA7_DISALLOWED_PACKET)), 610/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr", 611 SEES(TX_SDMA8_DISALLOWED_PACKET)), 612/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr", 613 SEES(TX_SDMA9_DISALLOWED_PACKET)), 614/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr", 615 SEES(TX_SDMA10_DISALLOWED_PACKET)), 616/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr", 617 SEES(TX_SDMA11_DISALLOWED_PACKET)), 618/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr", 619 SEES(TX_SDMA12_DISALLOWED_PACKET)), 620/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr", 621 SEES(TX_SDMA13_DISALLOWED_PACKET)), 622/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr", 623 SEES(TX_SDMA14_DISALLOWED_PACKET)), 624/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr", 625 SEES(TX_SDMA15_DISALLOWED_PACKET)), 626/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr", 627 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)), 628/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr", 629 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)), 630/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr", 631 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)), 632/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr", 633 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)), 634/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr", 635 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)), 636/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr", 637 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)), 638/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr", 639 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)), 640/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr", 641 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)), 642/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr", 643 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)), 644/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)), 645/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)), 646/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)), 647/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)), 648/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)), 649/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)), 650/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)), 651/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)), 652/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)), 653/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)), 654/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)), 655/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)), 656/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)), 657/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)), 658/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)), 659/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)), 660/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)), 661/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)), 662/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)), 663/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)), 664/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)), 665/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr", 666 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)), 667/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr", 668 SEES(TX_READ_PIO_MEMORY_CSR_UNC)), 669}; 670 671/* 672 * TXE Egress Error Info flags 673 */ 674#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK 675static struct flag_table egress_err_info_flags[] = { 676/* 0*/ FLAG_ENTRY0("Reserved", 0ull), 677/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)), 678/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 679/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 680/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)), 681/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)), 682/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)), 683/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)), 684/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)), 685/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)), 686/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)), 687/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)), 688/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)), 689/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)), 690/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)), 691/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)), 692/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)), 693/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)), 694/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)), 695/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)), 696/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)), 697/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)), 698}; 699 700/* TXE Egress errors that cause an SPC freeze */ 701#define ALL_TXE_EGRESS_FREEZE_ERR \ 702 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \ 703 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \ 704 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \ 705 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \ 706 | SEES(TX_LAUNCH_CSR_PARITY) \ 707 | SEES(TX_SBRD_CTL_CSR_PARITY) \ 708 | SEES(TX_CONFIG_PARITY) \ 709 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \ 710 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \ 711 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \ 712 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \ 713 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \ 714 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \ 715 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \ 716 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \ 717 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \ 718 | SEES(TX_CREDIT_RETURN_PARITY)) 719 720/* 721 * TXE Send error flags 722 */ 723#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK 724static struct flag_table send_err_status_flags[] = { 725/* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)), 726/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)), 727/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR)) 728}; 729 730/* 731 * TXE Send Context Error flags and consequences 732 */ 733static struct flag_table sc_err_status_flags[] = { 734/* 0*/ FLAG_ENTRY("InconsistentSop", 735 SEC_PACKET_DROPPED | SEC_SC_HALTED, 736 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK), 737/* 1*/ FLAG_ENTRY("DisallowedPacket", 738 SEC_PACKET_DROPPED | SEC_SC_HALTED, 739 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK), 740/* 2*/ FLAG_ENTRY("WriteCrossesBoundary", 741 SEC_WRITE_DROPPED | SEC_SC_HALTED, 742 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK), 743/* 3*/ FLAG_ENTRY("WriteOverflow", 744 SEC_WRITE_DROPPED | SEC_SC_HALTED, 745 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK), 746/* 4*/ FLAG_ENTRY("WriteOutOfBounds", 747 SEC_WRITE_DROPPED | SEC_SC_HALTED, 748 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK), 749/* 5-63 reserved*/ 750}; 751 752/* 753 * RXE Receive Error flags 754 */ 755#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK 756static struct flag_table rxe_err_status_flags[] = { 757/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)), 758/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)), 759/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)), 760/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)), 761/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)), 762/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)), 763/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)), 764/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)), 765/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)), 766/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)), 767/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)), 768/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)), 769/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)), 770/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)), 771/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)), 772/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)), 773/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr", 774 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)), 775/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)), 776/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)), 777/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr", 778 RXES(RBUF_BLOCK_LIST_READ_UNC)), 779/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr", 780 RXES(RBUF_BLOCK_LIST_READ_COR)), 781/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr", 782 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)), 783/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr", 784 RXES(RBUF_CSR_QENT_CNT_PARITY)), 785/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr", 786 RXES(RBUF_CSR_QNEXT_BUF_PARITY)), 787/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr", 788 RXES(RBUF_CSR_QVLD_BIT_PARITY)), 789/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)), 790/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)), 791/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr", 792 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)), 793/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)), 794/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)), 795/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)), 796/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)), 797/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)), 798/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)), 799/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)), 800/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr", 801 RXES(RBUF_FL_INITDONE_PARITY)), 802/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr", 803 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)), 804/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)), 805/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)), 806/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)), 807/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr", 808 RXES(LOOKUP_DES_PART1_UNC_COR)), 809/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr", 810 RXES(LOOKUP_DES_PART2_PARITY)), 811/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)), 812/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)), 813/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)), 814/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)), 815/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)), 816/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)), 817/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)), 818/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)), 819/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)), 820/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)), 821/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)), 822/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)), 823/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)), 824/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)), 825/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)), 826/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)), 827/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)), 828/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)), 829/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)), 830/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)), 831/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)), 832/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY)) 833}; 834 835/* RXE errors that will trigger an SPC freeze */ 836#define ALL_RXE_FREEZE_ERR \ 837 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \ 838 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \ 839 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \ 840 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \ 841 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \ 842 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \ 843 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \ 844 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \ 845 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \ 846 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \ 847 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \ 848 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \ 849 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \ 850 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \ 851 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \ 852 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \ 853 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \ 854 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \ 855 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \ 856 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \ 857 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \ 858 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \ 859 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \ 860 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \ 861 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \ 862 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \ 863 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \ 864 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \ 865 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \ 866 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \ 867 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \ 868 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \ 869 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \ 870 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \ 871 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \ 872 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \ 873 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \ 874 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \ 875 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \ 876 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \ 877 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \ 878 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \ 879 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \ 880 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK) 881 882#define RXE_FREEZE_ABORT_MASK \ 883 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \ 884 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \ 885 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK) 886 887/* 888 * DCC Error Flags 889 */ 890#define DCCE(name) DCC_ERR_FLG_##name##_SMASK 891static struct flag_table dcc_err_flags[] = { 892 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)), 893 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)), 894 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)), 895 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)), 896 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)), 897 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)), 898 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)), 899 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)), 900 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)), 901 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)), 902 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)), 903 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)), 904 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)), 905 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)), 906 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)), 907 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)), 908 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)), 909 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)), 910 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)), 911 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)), 912 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)), 913 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)), 914 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)), 915 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)), 916 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)), 917 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)), 918 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)), 919 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)), 920 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)), 921 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)), 922 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)), 923 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)), 924 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)), 925 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)), 926 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)), 927 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)), 928 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)), 929 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)), 930 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)), 931 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)), 932 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)), 933 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)), 934 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)), 935 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)), 936 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)), 937 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)), 938}; 939 940/* 941 * LCB error flags 942 */ 943#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK 944static struct flag_table lcb_err_flags[] = { 945/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)), 946/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)), 947/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)), 948/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST", 949 LCBE(ALL_LNS_FAILED_REINIT_TEST)), 950/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)), 951/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)), 952/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)), 953/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)), 954/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)), 955/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)), 956/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)), 957/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)), 958/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)), 959/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER", 960 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)), 961/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)), 962/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)), 963/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)), 964/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)), 965/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)), 966/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE", 967 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)), 968/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)), 969/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)), 970/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)), 971/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)), 972/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)), 973/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)), 974/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP", 975 LCBE(RST_FOR_INCOMPLT_RND_TRIP)), 976/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)), 977/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE", 978 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)), 979/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR", 980 LCBE(REDUNDANT_FLIT_PARITY_ERR)) 981}; 982 983/* 984 * DC8051 Error Flags 985 */ 986#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK 987static struct flag_table dc8051_err_flags[] = { 988 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)), 989 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)), 990 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)), 991 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)), 992 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)), 993 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)), 994 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)), 995 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)), 996 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES", 997 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)), 998 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)), 999}; 1000 1001/* 1002 * DC8051 Information Error flags 1003 * 1004 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field. 1005 */ 1006static struct flag_table dc8051_info_err_flags[] = { 1007 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED), 1008 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME), 1009 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET), 1010 FLAG_ENTRY0("Serdes internal loopback failure", 1011 FAILED_SERDES_INTERNAL_LOOPBACK), 1012 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT), 1013 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING), 1014 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE), 1015 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM), 1016 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ), 1017 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1), 1018 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2), 1019 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT), 1020 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT), 1021 FLAG_ENTRY0("External Device Request Timeout", 1022 EXTERNAL_DEVICE_REQ_TIMEOUT), 1023}; 1024 1025/* 1026 * DC8051 Information Host Information flags 1027 * 1028 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field. 1029 */ 1030static struct flag_table dc8051_info_host_msg_flags[] = { 1031 FLAG_ENTRY0("Host request done", 0x0001), 1032 FLAG_ENTRY0("BC PWR_MGM message", 0x0002), 1033 FLAG_ENTRY0("BC SMA message", 0x0004), 1034 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008), 1035 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010), 1036 FLAG_ENTRY0("External device config request", 0x0020), 1037 FLAG_ENTRY0("VerifyCap all frames received", 0x0040), 1038 FLAG_ENTRY0("LinkUp achieved", 0x0080), 1039 FLAG_ENTRY0("Link going down", 0x0100), 1040 FLAG_ENTRY0("Link width downgraded", 0x0200), 1041}; 1042 1043static u32 encoded_size(u32 size); 1044static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate); 1045static int set_physical_link_state(struct hfi1_devdata *dd, u64 state); 1046static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 1047 u8 *continuous); 1048static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 1049 u8 *vcu, u16 *vl15buf, u8 *crc_sizes); 1050static void read_vc_remote_link_width(struct hfi1_devdata *dd, 1051 u8 *remote_tx_rate, u16 *link_widths); 1052static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits, 1053 u8 *flag_bits, u16 *link_widths); 1054static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 1055 u8 *device_rev); 1056static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx); 1057static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx, 1058 u8 *tx_polarity_inversion, 1059 u8 *rx_polarity_inversion, u8 *max_rate); 1060static void handle_sdma_eng_err(struct hfi1_devdata *dd, 1061 unsigned int context, u64 err_status); 1062static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg); 1063static void handle_dcc_err(struct hfi1_devdata *dd, 1064 unsigned int context, u64 err_status); 1065static void handle_lcb_err(struct hfi1_devdata *dd, 1066 unsigned int context, u64 err_status); 1067static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg); 1068static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1069static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1070static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1071static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1072static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1073static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1074static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1075static void set_partition_keys(struct hfi1_pportdata *ppd); 1076static const char *link_state_name(u32 state); 1077static const char *link_state_reason_name(struct hfi1_pportdata *ppd, 1078 u32 state); 1079static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data, 1080 u64 *out_data); 1081static int read_idle_sma(struct hfi1_devdata *dd, u64 *data); 1082static int thermal_init(struct hfi1_devdata *dd); 1083 1084static void update_statusp(struct hfi1_pportdata *ppd, u32 state); 1085static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd, 1086 int msecs); 1087static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 1088 int msecs); 1089static void log_state_transition(struct hfi1_pportdata *ppd, u32 state); 1090static void log_physical_state(struct hfi1_pportdata *ppd, u32 state); 1091static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state, 1092 int msecs); 1093static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd, 1094 int msecs); 1095static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc); 1096static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr); 1097static void handle_temp_err(struct hfi1_devdata *dd); 1098static void dc_shutdown(struct hfi1_devdata *dd); 1099static void dc_start(struct hfi1_devdata *dd); 1100static int qos_rmt_entries(unsigned int n_krcv_queues, unsigned int *mp, 1101 unsigned int *np); 1102static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd); 1103static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms); 1104static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index); 1105static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width); 1106 1107/* 1108 * Error interrupt table entry. This is used as input to the interrupt 1109 * "clear down" routine used for all second tier error interrupt register. 1110 * Second tier interrupt registers have a single bit representing them 1111 * in the top-level CceIntStatus. 1112 */ 1113struct err_reg_info { 1114 u32 status; /* status CSR offset */ 1115 u32 clear; /* clear CSR offset */ 1116 u32 mask; /* mask CSR offset */ 1117 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg); 1118 const char *desc; 1119}; 1120 1121#define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START) 1122#define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START) 1123#define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START) 1124 1125/* 1126 * Helpers for building HFI and DC error interrupt table entries. Different 1127 * helpers are needed because of inconsistent register names. 1128 */ 1129#define EE(reg, handler, desc) \ 1130 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \ 1131 handler, desc } 1132#define DC_EE1(reg, handler, desc) \ 1133 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc } 1134#define DC_EE2(reg, handler, desc) \ 1135 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc } 1136 1137/* 1138 * Table of the "misc" grouping of error interrupts. Each entry refers to 1139 * another register containing more information. 1140 */ 1141static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = { 1142/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"), 1143/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"), 1144/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"), 1145/* 3*/ { 0, 0, 0, NULL }, /* reserved */ 1146/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"), 1147/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"), 1148/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"), 1149/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr") 1150 /* the rest are reserved */ 1151}; 1152 1153/* 1154 * Index into the Various section of the interrupt sources 1155 * corresponding to the Critical Temperature interrupt. 1156 */ 1157#define TCRIT_INT_SOURCE 4 1158 1159/* 1160 * SDMA error interrupt entry - refers to another register containing more 1161 * information. 1162 */ 1163static const struct err_reg_info sdma_eng_err = 1164 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr"); 1165 1166static const struct err_reg_info various_err[NUM_VARIOUS] = { 1167/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */ 1168/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */ 1169/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"), 1170/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"), 1171/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */ 1172 /* rest are reserved */ 1173}; 1174 1175/* 1176 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG 1177 * register can not be derived from the MTU value because 10K is not 1178 * a power of 2. Therefore, we need a constant. Everything else can 1179 * be calculated. 1180 */ 1181#define DCC_CFG_PORT_MTU_CAP_10240 7 1182 1183/* 1184 * Table of the DC grouping of error interrupts. Each entry refers to 1185 * another register containing more information. 1186 */ 1187static const struct err_reg_info dc_errs[NUM_DC_ERRS] = { 1188/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"), 1189/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"), 1190/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"), 1191/* 3*/ /* dc_lbm_int - special, see is_dc_int() */ 1192 /* the rest are reserved */ 1193}; 1194 1195struct cntr_entry { 1196 /* 1197 * counter name 1198 */ 1199 char *name; 1200 1201 /* 1202 * csr to read for name (if applicable) 1203 */ 1204 u64 csr; 1205 1206 /* 1207 * offset into dd or ppd to store the counter's value 1208 */ 1209 int offset; 1210 1211 /* 1212 * flags 1213 */ 1214 u8 flags; 1215 1216 /* 1217 * accessor for stat element, context either dd or ppd 1218 */ 1219 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl, 1220 int mode, u64 data); 1221}; 1222 1223#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0 1224#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159 1225 1226#define CNTR_ELEM(name, csr, offset, flags, accessor) \ 1227{ \ 1228 name, \ 1229 csr, \ 1230 offset, \ 1231 flags, \ 1232 accessor \ 1233} 1234 1235/* 32bit RXE */ 1236#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1237CNTR_ELEM(#name, \ 1238 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1239 0, flags | CNTR_32BIT, \ 1240 port_access_u32_csr) 1241 1242#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \ 1243CNTR_ELEM(#name, \ 1244 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1245 0, flags | CNTR_32BIT, \ 1246 dev_access_u32_csr) 1247 1248/* 64bit RXE */ 1249#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1250CNTR_ELEM(#name, \ 1251 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1252 0, flags, \ 1253 port_access_u64_csr) 1254 1255#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \ 1256CNTR_ELEM(#name, \ 1257 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1258 0, flags, \ 1259 dev_access_u64_csr) 1260 1261#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx 1262#define OVR_ELM(ctx) \ 1263CNTR_ELEM("RcvHdrOvr" #ctx, \ 1264 (RCV_HDR_OVFL_CNT + ctx * 0x100), \ 1265 0, CNTR_NORMAL, port_access_u64_csr) 1266 1267/* 32bit TXE */ 1268#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1269CNTR_ELEM(#name, \ 1270 (counter * 8 + SEND_COUNTER_ARRAY32), \ 1271 0, flags | CNTR_32BIT, \ 1272 port_access_u32_csr) 1273 1274/* 64bit TXE */ 1275#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1276CNTR_ELEM(#name, \ 1277 (counter * 8 + SEND_COUNTER_ARRAY64), \ 1278 0, flags, \ 1279 port_access_u64_csr) 1280 1281# define TX64_DEV_CNTR_ELEM(name, counter, flags) \ 1282CNTR_ELEM(#name,\ 1283 counter * 8 + SEND_COUNTER_ARRAY64, \ 1284 0, \ 1285 flags, \ 1286 dev_access_u64_csr) 1287 1288/* CCE */ 1289#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \ 1290CNTR_ELEM(#name, \ 1291 (counter * 8 + CCE_COUNTER_ARRAY32), \ 1292 0, flags | CNTR_32BIT, \ 1293 dev_access_u32_csr) 1294 1295#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \ 1296CNTR_ELEM(#name, \ 1297 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \ 1298 0, flags | CNTR_32BIT, \ 1299 dev_access_u32_csr) 1300 1301/* DC */ 1302#define DC_PERF_CNTR(name, counter, flags) \ 1303CNTR_ELEM(#name, \ 1304 counter, \ 1305 0, \ 1306 flags, \ 1307 dev_access_u64_csr) 1308 1309#define DC_PERF_CNTR_LCB(name, counter, flags) \ 1310CNTR_ELEM(#name, \ 1311 counter, \ 1312 0, \ 1313 flags, \ 1314 dc_access_lcb_cntr) 1315 1316/* ibp counters */ 1317#define SW_IBP_CNTR(name, cntr) \ 1318CNTR_ELEM(#name, \ 1319 0, \ 1320 0, \ 1321 CNTR_SYNTH, \ 1322 access_ibp_##cntr) 1323 1324/** 1325 * hfi_addr_from_offset - return addr for readq/writeq 1326 * @dd - the dd device 1327 * @offset - the offset of the CSR within bar0 1328 * 1329 * This routine selects the appropriate base address 1330 * based on the indicated offset. 1331 */ 1332static inline void __iomem *hfi1_addr_from_offset( 1333 const struct hfi1_devdata *dd, 1334 u32 offset) 1335{ 1336 if (offset >= dd->base2_start) 1337 return dd->kregbase2 + (offset - dd->base2_start); 1338 return dd->kregbase1 + offset; 1339} 1340 1341/** 1342 * read_csr - read CSR at the indicated offset 1343 * @dd - the dd device 1344 * @offset - the offset of the CSR within bar0 1345 * 1346 * Return: the value read or all FF's if there 1347 * is no mapping 1348 */ 1349u64 read_csr(const struct hfi1_devdata *dd, u32 offset) 1350{ 1351 if (dd->flags & HFI1_PRESENT) 1352 return readq(hfi1_addr_from_offset(dd, offset)); 1353 return -1; 1354} 1355 1356/** 1357 * write_csr - write CSR at the indicated offset 1358 * @dd - the dd device 1359 * @offset - the offset of the CSR within bar0 1360 * @value - value to write 1361 */ 1362void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value) 1363{ 1364 if (dd->flags & HFI1_PRESENT) { 1365 void __iomem *base = hfi1_addr_from_offset(dd, offset); 1366 1367 /* avoid write to RcvArray */ 1368 if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start)) 1369 return; 1370 writeq(value, base); 1371 } 1372} 1373 1374/** 1375 * get_csr_addr - return te iomem address for offset 1376 * @dd - the dd device 1377 * @offset - the offset of the CSR within bar0 1378 * 1379 * Return: The iomem address to use in subsequent 1380 * writeq/readq operations. 1381 */ 1382void __iomem *get_csr_addr( 1383 const struct hfi1_devdata *dd, 1384 u32 offset) 1385{ 1386 if (dd->flags & HFI1_PRESENT) 1387 return hfi1_addr_from_offset(dd, offset); 1388 return NULL; 1389} 1390 1391static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr, 1392 int mode, u64 value) 1393{ 1394 u64 ret; 1395 1396 if (mode == CNTR_MODE_R) { 1397 ret = read_csr(dd, csr); 1398 } else if (mode == CNTR_MODE_W) { 1399 write_csr(dd, csr, value); 1400 ret = value; 1401 } else { 1402 dd_dev_err(dd, "Invalid cntr register access mode"); 1403 return 0; 1404 } 1405 1406 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode); 1407 return ret; 1408} 1409 1410/* Dev Access */ 1411static u64 dev_access_u32_csr(const struct cntr_entry *entry, 1412 void *context, int vl, int mode, u64 data) 1413{ 1414 struct hfi1_devdata *dd = context; 1415 u64 csr = entry->csr; 1416 1417 if (entry->flags & CNTR_SDMA) { 1418 if (vl == CNTR_INVALID_VL) 1419 return 0; 1420 csr += 0x100 * vl; 1421 } else { 1422 if (vl != CNTR_INVALID_VL) 1423 return 0; 1424 } 1425 return read_write_csr(dd, csr, mode, data); 1426} 1427 1428static u64 access_sde_err_cnt(const struct cntr_entry *entry, 1429 void *context, int idx, int mode, u64 data) 1430{ 1431 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1432 1433 if (dd->per_sdma && idx < dd->num_sdma) 1434 return dd->per_sdma[idx].err_cnt; 1435 return 0; 1436} 1437 1438static u64 access_sde_int_cnt(const struct cntr_entry *entry, 1439 void *context, int idx, int mode, u64 data) 1440{ 1441 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1442 1443 if (dd->per_sdma && idx < dd->num_sdma) 1444 return dd->per_sdma[idx].sdma_int_cnt; 1445 return 0; 1446} 1447 1448static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry, 1449 void *context, int idx, int mode, u64 data) 1450{ 1451 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1452 1453 if (dd->per_sdma && idx < dd->num_sdma) 1454 return dd->per_sdma[idx].idle_int_cnt; 1455 return 0; 1456} 1457 1458static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry, 1459 void *context, int idx, int mode, 1460 u64 data) 1461{ 1462 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1463 1464 if (dd->per_sdma && idx < dd->num_sdma) 1465 return dd->per_sdma[idx].progress_int_cnt; 1466 return 0; 1467} 1468 1469static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context, 1470 int vl, int mode, u64 data) 1471{ 1472 struct hfi1_devdata *dd = context; 1473 1474 u64 val = 0; 1475 u64 csr = entry->csr; 1476 1477 if (entry->flags & CNTR_VL) { 1478 if (vl == CNTR_INVALID_VL) 1479 return 0; 1480 csr += 8 * vl; 1481 } else { 1482 if (vl != CNTR_INVALID_VL) 1483 return 0; 1484 } 1485 1486 val = read_write_csr(dd, csr, mode, data); 1487 return val; 1488} 1489 1490static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context, 1491 int vl, int mode, u64 data) 1492{ 1493 struct hfi1_devdata *dd = context; 1494 u32 csr = entry->csr; 1495 int ret = 0; 1496 1497 if (vl != CNTR_INVALID_VL) 1498 return 0; 1499 if (mode == CNTR_MODE_R) 1500 ret = read_lcb_csr(dd, csr, &data); 1501 else if (mode == CNTR_MODE_W) 1502 ret = write_lcb_csr(dd, csr, data); 1503 1504 if (ret) { 1505 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr); 1506 return 0; 1507 } 1508 1509 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode); 1510 return data; 1511} 1512 1513/* Port Access */ 1514static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context, 1515 int vl, int mode, u64 data) 1516{ 1517 struct hfi1_pportdata *ppd = context; 1518 1519 if (vl != CNTR_INVALID_VL) 1520 return 0; 1521 return read_write_csr(ppd->dd, entry->csr, mode, data); 1522} 1523 1524static u64 port_access_u64_csr(const struct cntr_entry *entry, 1525 void *context, int vl, int mode, u64 data) 1526{ 1527 struct hfi1_pportdata *ppd = context; 1528 u64 val; 1529 u64 csr = entry->csr; 1530 1531 if (entry->flags & CNTR_VL) { 1532 if (vl == CNTR_INVALID_VL) 1533 return 0; 1534 csr += 8 * vl; 1535 } else { 1536 if (vl != CNTR_INVALID_VL) 1537 return 0; 1538 } 1539 val = read_write_csr(ppd->dd, csr, mode, data); 1540 return val; 1541} 1542 1543/* Software defined */ 1544static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode, 1545 u64 data) 1546{ 1547 u64 ret; 1548 1549 if (mode == CNTR_MODE_R) { 1550 ret = *cntr; 1551 } else if (mode == CNTR_MODE_W) { 1552 *cntr = data; 1553 ret = data; 1554 } else { 1555 dd_dev_err(dd, "Invalid cntr sw access mode"); 1556 return 0; 1557 } 1558 1559 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode); 1560 1561 return ret; 1562} 1563 1564static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context, 1565 int vl, int mode, u64 data) 1566{ 1567 struct hfi1_pportdata *ppd = context; 1568 1569 if (vl != CNTR_INVALID_VL) 1570 return 0; 1571 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data); 1572} 1573 1574static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context, 1575 int vl, int mode, u64 data) 1576{ 1577 struct hfi1_pportdata *ppd = context; 1578 1579 if (vl != CNTR_INVALID_VL) 1580 return 0; 1581 return read_write_sw(ppd->dd, &ppd->link_up, mode, data); 1582} 1583 1584static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry, 1585 void *context, int vl, int mode, 1586 u64 data) 1587{ 1588 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1589 1590 if (vl != CNTR_INVALID_VL) 1591 return 0; 1592 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data); 1593} 1594 1595static u64 access_sw_xmit_discards(const struct cntr_entry *entry, 1596 void *context, int vl, int mode, u64 data) 1597{ 1598 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1599 u64 zero = 0; 1600 u64 *counter; 1601 1602 if (vl == CNTR_INVALID_VL) 1603 counter = &ppd->port_xmit_discards; 1604 else if (vl >= 0 && vl < C_VL_COUNT) 1605 counter = &ppd->port_xmit_discards_vl[vl]; 1606 else 1607 counter = &zero; 1608 1609 return read_write_sw(ppd->dd, counter, mode, data); 1610} 1611 1612static u64 access_xmit_constraint_errs(const struct cntr_entry *entry, 1613 void *context, int vl, int mode, 1614 u64 data) 1615{ 1616 struct hfi1_pportdata *ppd = context; 1617 1618 if (vl != CNTR_INVALID_VL) 1619 return 0; 1620 1621 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors, 1622 mode, data); 1623} 1624 1625static u64 access_rcv_constraint_errs(const struct cntr_entry *entry, 1626 void *context, int vl, int mode, u64 data) 1627{ 1628 struct hfi1_pportdata *ppd = context; 1629 1630 if (vl != CNTR_INVALID_VL) 1631 return 0; 1632 1633 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors, 1634 mode, data); 1635} 1636 1637u64 get_all_cpu_total(u64 __percpu *cntr) 1638{ 1639 int cpu; 1640 u64 counter = 0; 1641 1642 for_each_possible_cpu(cpu) 1643 counter += *per_cpu_ptr(cntr, cpu); 1644 return counter; 1645} 1646 1647static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val, 1648 u64 __percpu *cntr, 1649 int vl, int mode, u64 data) 1650{ 1651 u64 ret = 0; 1652 1653 if (vl != CNTR_INVALID_VL) 1654 return 0; 1655 1656 if (mode == CNTR_MODE_R) { 1657 ret = get_all_cpu_total(cntr) - *z_val; 1658 } else if (mode == CNTR_MODE_W) { 1659 /* A write can only zero the counter */ 1660 if (data == 0) 1661 *z_val = get_all_cpu_total(cntr); 1662 else 1663 dd_dev_err(dd, "Per CPU cntrs can only be zeroed"); 1664 } else { 1665 dd_dev_err(dd, "Invalid cntr sw cpu access mode"); 1666 return 0; 1667 } 1668 1669 return ret; 1670} 1671 1672static u64 access_sw_cpu_intr(const struct cntr_entry *entry, 1673 void *context, int vl, int mode, u64 data) 1674{ 1675 struct hfi1_devdata *dd = context; 1676 1677 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl, 1678 mode, data); 1679} 1680 1681static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry, 1682 void *context, int vl, int mode, u64 data) 1683{ 1684 struct hfi1_devdata *dd = context; 1685 1686 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl, 1687 mode, data); 1688} 1689 1690static u64 access_sw_pio_wait(const struct cntr_entry *entry, 1691 void *context, int vl, int mode, u64 data) 1692{ 1693 struct hfi1_devdata *dd = context; 1694 1695 return dd->verbs_dev.n_piowait; 1696} 1697 1698static u64 access_sw_pio_drain(const struct cntr_entry *entry, 1699 void *context, int vl, int mode, u64 data) 1700{ 1701 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1702 1703 return dd->verbs_dev.n_piodrain; 1704} 1705 1706static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry, 1707 void *context, int vl, int mode, u64 data) 1708{ 1709 struct hfi1_devdata *dd = context; 1710 1711 return dd->ctx0_seq_drop; 1712} 1713 1714static u64 access_sw_vtx_wait(const struct cntr_entry *entry, 1715 void *context, int vl, int mode, u64 data) 1716{ 1717 struct hfi1_devdata *dd = context; 1718 1719 return dd->verbs_dev.n_txwait; 1720} 1721 1722static u64 access_sw_kmem_wait(const struct cntr_entry *entry, 1723 void *context, int vl, int mode, u64 data) 1724{ 1725 struct hfi1_devdata *dd = context; 1726 1727 return dd->verbs_dev.n_kmem_wait; 1728} 1729 1730static u64 access_sw_send_schedule(const struct cntr_entry *entry, 1731 void *context, int vl, int mode, u64 data) 1732{ 1733 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1734 1735 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl, 1736 mode, data); 1737} 1738 1739/* Software counters for the error status bits within MISC_ERR_STATUS */ 1740static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry, 1741 void *context, int vl, int mode, 1742 u64 data) 1743{ 1744 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1745 1746 return dd->misc_err_status_cnt[12]; 1747} 1748 1749static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry, 1750 void *context, int vl, int mode, 1751 u64 data) 1752{ 1753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1754 1755 return dd->misc_err_status_cnt[11]; 1756} 1757 1758static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry, 1759 void *context, int vl, int mode, 1760 u64 data) 1761{ 1762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1763 1764 return dd->misc_err_status_cnt[10]; 1765} 1766 1767static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry, 1768 void *context, int vl, 1769 int mode, u64 data) 1770{ 1771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1772 1773 return dd->misc_err_status_cnt[9]; 1774} 1775 1776static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry, 1777 void *context, int vl, int mode, 1778 u64 data) 1779{ 1780 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1781 1782 return dd->misc_err_status_cnt[8]; 1783} 1784 1785static u64 access_misc_efuse_read_bad_addr_err_cnt( 1786 const struct cntr_entry *entry, 1787 void *context, int vl, int mode, u64 data) 1788{ 1789 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1790 1791 return dd->misc_err_status_cnt[7]; 1792} 1793 1794static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry, 1795 void *context, int vl, 1796 int mode, u64 data) 1797{ 1798 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1799 1800 return dd->misc_err_status_cnt[6]; 1801} 1802 1803static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry, 1804 void *context, int vl, int mode, 1805 u64 data) 1806{ 1807 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1808 1809 return dd->misc_err_status_cnt[5]; 1810} 1811 1812static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry, 1813 void *context, int vl, int mode, 1814 u64 data) 1815{ 1816 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1817 1818 return dd->misc_err_status_cnt[4]; 1819} 1820 1821static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry, 1822 void *context, int vl, 1823 int mode, u64 data) 1824{ 1825 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1826 1827 return dd->misc_err_status_cnt[3]; 1828} 1829 1830static u64 access_misc_csr_write_bad_addr_err_cnt( 1831 const struct cntr_entry *entry, 1832 void *context, int vl, int mode, u64 data) 1833{ 1834 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1835 1836 return dd->misc_err_status_cnt[2]; 1837} 1838 1839static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1840 void *context, int vl, 1841 int mode, u64 data) 1842{ 1843 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1844 1845 return dd->misc_err_status_cnt[1]; 1846} 1847 1848static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry, 1849 void *context, int vl, int mode, 1850 u64 data) 1851{ 1852 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1853 1854 return dd->misc_err_status_cnt[0]; 1855} 1856 1857/* 1858 * Software counter for the aggregate of 1859 * individual CceErrStatus counters 1860 */ 1861static u64 access_sw_cce_err_status_aggregated_cnt( 1862 const struct cntr_entry *entry, 1863 void *context, int vl, int mode, u64 data) 1864{ 1865 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1866 1867 return dd->sw_cce_err_status_aggregate; 1868} 1869 1870/* 1871 * Software counters corresponding to each of the 1872 * error status bits within CceErrStatus 1873 */ 1874static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry, 1875 void *context, int vl, int mode, 1876 u64 data) 1877{ 1878 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1879 1880 return dd->cce_err_status_cnt[40]; 1881} 1882 1883static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry, 1884 void *context, int vl, int mode, 1885 u64 data) 1886{ 1887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1888 1889 return dd->cce_err_status_cnt[39]; 1890} 1891 1892static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry, 1893 void *context, int vl, int mode, 1894 u64 data) 1895{ 1896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1897 1898 return dd->cce_err_status_cnt[38]; 1899} 1900 1901static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry, 1902 void *context, int vl, int mode, 1903 u64 data) 1904{ 1905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1906 1907 return dd->cce_err_status_cnt[37]; 1908} 1909 1910static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry, 1911 void *context, int vl, int mode, 1912 u64 data) 1913{ 1914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1915 1916 return dd->cce_err_status_cnt[36]; 1917} 1918 1919static u64 access_cce_rxdma_conv_fifo_parity_err_cnt( 1920 const struct cntr_entry *entry, 1921 void *context, int vl, int mode, u64 data) 1922{ 1923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1924 1925 return dd->cce_err_status_cnt[35]; 1926} 1927 1928static u64 access_cce_rcpl_async_fifo_parity_err_cnt( 1929 const struct cntr_entry *entry, 1930 void *context, int vl, int mode, u64 data) 1931{ 1932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1933 1934 return dd->cce_err_status_cnt[34]; 1935} 1936 1937static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry, 1938 void *context, int vl, 1939 int mode, u64 data) 1940{ 1941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1942 1943 return dd->cce_err_status_cnt[33]; 1944} 1945 1946static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1947 void *context, int vl, int mode, 1948 u64 data) 1949{ 1950 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1951 1952 return dd->cce_err_status_cnt[32]; 1953} 1954 1955static u64 access_la_triggered_cnt(const struct cntr_entry *entry, 1956 void *context, int vl, int mode, u64 data) 1957{ 1958 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1959 1960 return dd->cce_err_status_cnt[31]; 1961} 1962 1963static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry, 1964 void *context, int vl, int mode, 1965 u64 data) 1966{ 1967 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1968 1969 return dd->cce_err_status_cnt[30]; 1970} 1971 1972static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry, 1973 void *context, int vl, int mode, 1974 u64 data) 1975{ 1976 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1977 1978 return dd->cce_err_status_cnt[29]; 1979} 1980 1981static u64 access_pcic_transmit_back_parity_err_cnt( 1982 const struct cntr_entry *entry, 1983 void *context, int vl, int mode, u64 data) 1984{ 1985 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1986 1987 return dd->cce_err_status_cnt[28]; 1988} 1989 1990static u64 access_pcic_transmit_front_parity_err_cnt( 1991 const struct cntr_entry *entry, 1992 void *context, int vl, int mode, u64 data) 1993{ 1994 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1995 1996 return dd->cce_err_status_cnt[27]; 1997} 1998 1999static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry, 2000 void *context, int vl, int mode, 2001 u64 data) 2002{ 2003 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2004 2005 return dd->cce_err_status_cnt[26]; 2006} 2007 2008static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry, 2009 void *context, int vl, int mode, 2010 u64 data) 2011{ 2012 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2013 2014 return dd->cce_err_status_cnt[25]; 2015} 2016 2017static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry, 2018 void *context, int vl, int mode, 2019 u64 data) 2020{ 2021 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2022 2023 return dd->cce_err_status_cnt[24]; 2024} 2025 2026static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry, 2027 void *context, int vl, int mode, 2028 u64 data) 2029{ 2030 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2031 2032 return dd->cce_err_status_cnt[23]; 2033} 2034 2035static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry, 2036 void *context, int vl, 2037 int mode, u64 data) 2038{ 2039 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2040 2041 return dd->cce_err_status_cnt[22]; 2042} 2043 2044static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry, 2045 void *context, int vl, int mode, 2046 u64 data) 2047{ 2048 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2049 2050 return dd->cce_err_status_cnt[21]; 2051} 2052 2053static u64 access_pcic_n_post_dat_q_parity_err_cnt( 2054 const struct cntr_entry *entry, 2055 void *context, int vl, int mode, u64 data) 2056{ 2057 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2058 2059 return dd->cce_err_status_cnt[20]; 2060} 2061 2062static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry, 2063 void *context, int vl, 2064 int mode, u64 data) 2065{ 2066 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2067 2068 return dd->cce_err_status_cnt[19]; 2069} 2070 2071static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry, 2072 void *context, int vl, int mode, 2073 u64 data) 2074{ 2075 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2076 2077 return dd->cce_err_status_cnt[18]; 2078} 2079 2080static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry, 2081 void *context, int vl, int mode, 2082 u64 data) 2083{ 2084 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2085 2086 return dd->cce_err_status_cnt[17]; 2087} 2088 2089static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry, 2090 void *context, int vl, int mode, 2091 u64 data) 2092{ 2093 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2094 2095 return dd->cce_err_status_cnt[16]; 2096} 2097 2098static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry, 2099 void *context, int vl, int mode, 2100 u64 data) 2101{ 2102 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2103 2104 return dd->cce_err_status_cnt[15]; 2105} 2106 2107static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry, 2108 void *context, int vl, 2109 int mode, u64 data) 2110{ 2111 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2112 2113 return dd->cce_err_status_cnt[14]; 2114} 2115 2116static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry, 2117 void *context, int vl, int mode, 2118 u64 data) 2119{ 2120 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2121 2122 return dd->cce_err_status_cnt[13]; 2123} 2124 2125static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt( 2126 const struct cntr_entry *entry, 2127 void *context, int vl, int mode, u64 data) 2128{ 2129 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2130 2131 return dd->cce_err_status_cnt[12]; 2132} 2133 2134static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt( 2135 const struct cntr_entry *entry, 2136 void *context, int vl, int mode, u64 data) 2137{ 2138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2139 2140 return dd->cce_err_status_cnt[11]; 2141} 2142 2143static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt( 2144 const struct cntr_entry *entry, 2145 void *context, int vl, int mode, u64 data) 2146{ 2147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2148 2149 return dd->cce_err_status_cnt[10]; 2150} 2151 2152static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt( 2153 const struct cntr_entry *entry, 2154 void *context, int vl, int mode, u64 data) 2155{ 2156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2157 2158 return dd->cce_err_status_cnt[9]; 2159} 2160 2161static u64 access_cce_cli2_async_fifo_parity_err_cnt( 2162 const struct cntr_entry *entry, 2163 void *context, int vl, int mode, u64 data) 2164{ 2165 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2166 2167 return dd->cce_err_status_cnt[8]; 2168} 2169 2170static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry, 2171 void *context, int vl, 2172 int mode, u64 data) 2173{ 2174 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2175 2176 return dd->cce_err_status_cnt[7]; 2177} 2178 2179static u64 access_cce_cli0_async_fifo_parity_err_cnt( 2180 const struct cntr_entry *entry, 2181 void *context, int vl, int mode, u64 data) 2182{ 2183 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2184 2185 return dd->cce_err_status_cnt[6]; 2186} 2187 2188static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry, 2189 void *context, int vl, int mode, 2190 u64 data) 2191{ 2192 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2193 2194 return dd->cce_err_status_cnt[5]; 2195} 2196 2197static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry, 2198 void *context, int vl, int mode, 2199 u64 data) 2200{ 2201 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2202 2203 return dd->cce_err_status_cnt[4]; 2204} 2205 2206static u64 access_cce_trgt_async_fifo_parity_err_cnt( 2207 const struct cntr_entry *entry, 2208 void *context, int vl, int mode, u64 data) 2209{ 2210 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2211 2212 return dd->cce_err_status_cnt[3]; 2213} 2214 2215static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2216 void *context, int vl, 2217 int mode, u64 data) 2218{ 2219 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2220 2221 return dd->cce_err_status_cnt[2]; 2222} 2223 2224static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2225 void *context, int vl, 2226 int mode, u64 data) 2227{ 2228 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2229 2230 return dd->cce_err_status_cnt[1]; 2231} 2232 2233static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry, 2234 void *context, int vl, int mode, 2235 u64 data) 2236{ 2237 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2238 2239 return dd->cce_err_status_cnt[0]; 2240} 2241 2242/* 2243 * Software counters corresponding to each of the 2244 * error status bits within RcvErrStatus 2245 */ 2246static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry, 2247 void *context, int vl, int mode, 2248 u64 data) 2249{ 2250 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2251 2252 return dd->rcv_err_status_cnt[63]; 2253} 2254 2255static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2256 void *context, int vl, 2257 int mode, u64 data) 2258{ 2259 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2260 2261 return dd->rcv_err_status_cnt[62]; 2262} 2263 2264static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2265 void *context, int vl, int mode, 2266 u64 data) 2267{ 2268 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2269 2270 return dd->rcv_err_status_cnt[61]; 2271} 2272 2273static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry, 2274 void *context, int vl, int mode, 2275 u64 data) 2276{ 2277 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2278 2279 return dd->rcv_err_status_cnt[60]; 2280} 2281 2282static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2283 void *context, int vl, 2284 int mode, u64 data) 2285{ 2286 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2287 2288 return dd->rcv_err_status_cnt[59]; 2289} 2290 2291static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2292 void *context, int vl, 2293 int mode, u64 data) 2294{ 2295 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2296 2297 return dd->rcv_err_status_cnt[58]; 2298} 2299 2300static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry, 2301 void *context, int vl, int mode, 2302 u64 data) 2303{ 2304 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2305 2306 return dd->rcv_err_status_cnt[57]; 2307} 2308 2309static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry, 2310 void *context, int vl, int mode, 2311 u64 data) 2312{ 2313 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2314 2315 return dd->rcv_err_status_cnt[56]; 2316} 2317 2318static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry, 2319 void *context, int vl, int mode, 2320 u64 data) 2321{ 2322 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2323 2324 return dd->rcv_err_status_cnt[55]; 2325} 2326 2327static u64 access_rx_dma_data_fifo_rd_cor_err_cnt( 2328 const struct cntr_entry *entry, 2329 void *context, int vl, int mode, u64 data) 2330{ 2331 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2332 2333 return dd->rcv_err_status_cnt[54]; 2334} 2335 2336static u64 access_rx_dma_data_fifo_rd_unc_err_cnt( 2337 const struct cntr_entry *entry, 2338 void *context, int vl, int mode, u64 data) 2339{ 2340 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2341 2342 return dd->rcv_err_status_cnt[53]; 2343} 2344 2345static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry, 2346 void *context, int vl, 2347 int mode, u64 data) 2348{ 2349 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2350 2351 return dd->rcv_err_status_cnt[52]; 2352} 2353 2354static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry, 2355 void *context, int vl, 2356 int mode, u64 data) 2357{ 2358 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2359 2360 return dd->rcv_err_status_cnt[51]; 2361} 2362 2363static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry, 2364 void *context, int vl, 2365 int mode, u64 data) 2366{ 2367 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2368 2369 return dd->rcv_err_status_cnt[50]; 2370} 2371 2372static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry, 2373 void *context, int vl, 2374 int mode, u64 data) 2375{ 2376 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2377 2378 return dd->rcv_err_status_cnt[49]; 2379} 2380 2381static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry, 2382 void *context, int vl, 2383 int mode, u64 data) 2384{ 2385 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2386 2387 return dd->rcv_err_status_cnt[48]; 2388} 2389 2390static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry, 2391 void *context, int vl, 2392 int mode, u64 data) 2393{ 2394 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2395 2396 return dd->rcv_err_status_cnt[47]; 2397} 2398 2399static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry, 2400 void *context, int vl, int mode, 2401 u64 data) 2402{ 2403 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2404 2405 return dd->rcv_err_status_cnt[46]; 2406} 2407 2408static u64 access_rx_hq_intr_csr_parity_err_cnt( 2409 const struct cntr_entry *entry, 2410 void *context, int vl, int mode, u64 data) 2411{ 2412 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2413 2414 return dd->rcv_err_status_cnt[45]; 2415} 2416 2417static u64 access_rx_lookup_csr_parity_err_cnt( 2418 const struct cntr_entry *entry, 2419 void *context, int vl, int mode, u64 data) 2420{ 2421 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2422 2423 return dd->rcv_err_status_cnt[44]; 2424} 2425 2426static u64 access_rx_lookup_rcv_array_cor_err_cnt( 2427 const struct cntr_entry *entry, 2428 void *context, int vl, int mode, u64 data) 2429{ 2430 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2431 2432 return dd->rcv_err_status_cnt[43]; 2433} 2434 2435static u64 access_rx_lookup_rcv_array_unc_err_cnt( 2436 const struct cntr_entry *entry, 2437 void *context, int vl, int mode, u64 data) 2438{ 2439 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2440 2441 return dd->rcv_err_status_cnt[42]; 2442} 2443 2444static u64 access_rx_lookup_des_part2_parity_err_cnt( 2445 const struct cntr_entry *entry, 2446 void *context, int vl, int mode, u64 data) 2447{ 2448 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2449 2450 return dd->rcv_err_status_cnt[41]; 2451} 2452 2453static u64 access_rx_lookup_des_part1_unc_cor_err_cnt( 2454 const struct cntr_entry *entry, 2455 void *context, int vl, int mode, u64 data) 2456{ 2457 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2458 2459 return dd->rcv_err_status_cnt[40]; 2460} 2461 2462static u64 access_rx_lookup_des_part1_unc_err_cnt( 2463 const struct cntr_entry *entry, 2464 void *context, int vl, int mode, u64 data) 2465{ 2466 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2467 2468 return dd->rcv_err_status_cnt[39]; 2469} 2470 2471static u64 access_rx_rbuf_next_free_buf_cor_err_cnt( 2472 const struct cntr_entry *entry, 2473 void *context, int vl, int mode, u64 data) 2474{ 2475 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2476 2477 return dd->rcv_err_status_cnt[38]; 2478} 2479 2480static u64 access_rx_rbuf_next_free_buf_unc_err_cnt( 2481 const struct cntr_entry *entry, 2482 void *context, int vl, int mode, u64 data) 2483{ 2484 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2485 2486 return dd->rcv_err_status_cnt[37]; 2487} 2488 2489static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt( 2490 const struct cntr_entry *entry, 2491 void *context, int vl, int mode, u64 data) 2492{ 2493 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2494 2495 return dd->rcv_err_status_cnt[36]; 2496} 2497 2498static u64 access_rx_rbuf_fl_initdone_parity_err_cnt( 2499 const struct cntr_entry *entry, 2500 void *context, int vl, int mode, u64 data) 2501{ 2502 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2503 2504 return dd->rcv_err_status_cnt[35]; 2505} 2506 2507static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt( 2508 const struct cntr_entry *entry, 2509 void *context, int vl, int mode, u64 data) 2510{ 2511 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2512 2513 return dd->rcv_err_status_cnt[34]; 2514} 2515 2516static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt( 2517 const struct cntr_entry *entry, 2518 void *context, int vl, int mode, u64 data) 2519{ 2520 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2521 2522 return dd->rcv_err_status_cnt[33]; 2523} 2524 2525static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry, 2526 void *context, int vl, int mode, 2527 u64 data) 2528{ 2529 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2530 2531 return dd->rcv_err_status_cnt[32]; 2532} 2533 2534static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry, 2535 void *context, int vl, int mode, 2536 u64 data) 2537{ 2538 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2539 2540 return dd->rcv_err_status_cnt[31]; 2541} 2542 2543static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry, 2544 void *context, int vl, int mode, 2545 u64 data) 2546{ 2547 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2548 2549 return dd->rcv_err_status_cnt[30]; 2550} 2551 2552static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry, 2553 void *context, int vl, int mode, 2554 u64 data) 2555{ 2556 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2557 2558 return dd->rcv_err_status_cnt[29]; 2559} 2560 2561static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry, 2562 void *context, int vl, 2563 int mode, u64 data) 2564{ 2565 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2566 2567 return dd->rcv_err_status_cnt[28]; 2568} 2569 2570static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt( 2571 const struct cntr_entry *entry, 2572 void *context, int vl, int mode, u64 data) 2573{ 2574 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2575 2576 return dd->rcv_err_status_cnt[27]; 2577} 2578 2579static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt( 2580 const struct cntr_entry *entry, 2581 void *context, int vl, int mode, u64 data) 2582{ 2583 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2584 2585 return dd->rcv_err_status_cnt[26]; 2586} 2587 2588static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt( 2589 const struct cntr_entry *entry, 2590 void *context, int vl, int mode, u64 data) 2591{ 2592 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2593 2594 return dd->rcv_err_status_cnt[25]; 2595} 2596 2597static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt( 2598 const struct cntr_entry *entry, 2599 void *context, int vl, int mode, u64 data) 2600{ 2601 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2602 2603 return dd->rcv_err_status_cnt[24]; 2604} 2605 2606static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt( 2607 const struct cntr_entry *entry, 2608 void *context, int vl, int mode, u64 data) 2609{ 2610 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2611 2612 return dd->rcv_err_status_cnt[23]; 2613} 2614 2615static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt( 2616 const struct cntr_entry *entry, 2617 void *context, int vl, int mode, u64 data) 2618{ 2619 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2620 2621 return dd->rcv_err_status_cnt[22]; 2622} 2623 2624static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt( 2625 const struct cntr_entry *entry, 2626 void *context, int vl, int mode, u64 data) 2627{ 2628 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2629 2630 return dd->rcv_err_status_cnt[21]; 2631} 2632 2633static u64 access_rx_rbuf_block_list_read_cor_err_cnt( 2634 const struct cntr_entry *entry, 2635 void *context, int vl, int mode, u64 data) 2636{ 2637 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2638 2639 return dd->rcv_err_status_cnt[20]; 2640} 2641 2642static u64 access_rx_rbuf_block_list_read_unc_err_cnt( 2643 const struct cntr_entry *entry, 2644 void *context, int vl, int mode, u64 data) 2645{ 2646 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2647 2648 return dd->rcv_err_status_cnt[19]; 2649} 2650 2651static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry, 2652 void *context, int vl, 2653 int mode, u64 data) 2654{ 2655 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2656 2657 return dd->rcv_err_status_cnt[18]; 2658} 2659 2660static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry, 2661 void *context, int vl, 2662 int mode, u64 data) 2663{ 2664 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2665 2666 return dd->rcv_err_status_cnt[17]; 2667} 2668 2669static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt( 2670 const struct cntr_entry *entry, 2671 void *context, int vl, int mode, u64 data) 2672{ 2673 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2674 2675 return dd->rcv_err_status_cnt[16]; 2676} 2677 2678static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt( 2679 const struct cntr_entry *entry, 2680 void *context, int vl, int mode, u64 data) 2681{ 2682 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2683 2684 return dd->rcv_err_status_cnt[15]; 2685} 2686 2687static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry, 2688 void *context, int vl, 2689 int mode, u64 data) 2690{ 2691 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2692 2693 return dd->rcv_err_status_cnt[14]; 2694} 2695 2696static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry, 2697 void *context, int vl, 2698 int mode, u64 data) 2699{ 2700 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2701 2702 return dd->rcv_err_status_cnt[13]; 2703} 2704 2705static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2706 void *context, int vl, int mode, 2707 u64 data) 2708{ 2709 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2710 2711 return dd->rcv_err_status_cnt[12]; 2712} 2713 2714static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry, 2715 void *context, int vl, int mode, 2716 u64 data) 2717{ 2718 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2719 2720 return dd->rcv_err_status_cnt[11]; 2721} 2722 2723static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry, 2724 void *context, int vl, int mode, 2725 u64 data) 2726{ 2727 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2728 2729 return dd->rcv_err_status_cnt[10]; 2730} 2731 2732static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry, 2733 void *context, int vl, int mode, 2734 u64 data) 2735{ 2736 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2737 2738 return dd->rcv_err_status_cnt[9]; 2739} 2740 2741static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry, 2742 void *context, int vl, int mode, 2743 u64 data) 2744{ 2745 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2746 2747 return dd->rcv_err_status_cnt[8]; 2748} 2749 2750static u64 access_rx_rcv_qp_map_table_cor_err_cnt( 2751 const struct cntr_entry *entry, 2752 void *context, int vl, int mode, u64 data) 2753{ 2754 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2755 2756 return dd->rcv_err_status_cnt[7]; 2757} 2758 2759static u64 access_rx_rcv_qp_map_table_unc_err_cnt( 2760 const struct cntr_entry *entry, 2761 void *context, int vl, int mode, u64 data) 2762{ 2763 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2764 2765 return dd->rcv_err_status_cnt[6]; 2766} 2767 2768static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry, 2769 void *context, int vl, int mode, 2770 u64 data) 2771{ 2772 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2773 2774 return dd->rcv_err_status_cnt[5]; 2775} 2776 2777static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry, 2778 void *context, int vl, int mode, 2779 u64 data) 2780{ 2781 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2782 2783 return dd->rcv_err_status_cnt[4]; 2784} 2785 2786static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry, 2787 void *context, int vl, int mode, 2788 u64 data) 2789{ 2790 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2791 2792 return dd->rcv_err_status_cnt[3]; 2793} 2794 2795static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry, 2796 void *context, int vl, int mode, 2797 u64 data) 2798{ 2799 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2800 2801 return dd->rcv_err_status_cnt[2]; 2802} 2803 2804static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry, 2805 void *context, int vl, int mode, 2806 u64 data) 2807{ 2808 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2809 2810 return dd->rcv_err_status_cnt[1]; 2811} 2812 2813static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry, 2814 void *context, int vl, int mode, 2815 u64 data) 2816{ 2817 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2818 2819 return dd->rcv_err_status_cnt[0]; 2820} 2821 2822/* 2823 * Software counters corresponding to each of the 2824 * error status bits within SendPioErrStatus 2825 */ 2826static u64 access_pio_pec_sop_head_parity_err_cnt( 2827 const struct cntr_entry *entry, 2828 void *context, int vl, int mode, u64 data) 2829{ 2830 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2831 2832 return dd->send_pio_err_status_cnt[35]; 2833} 2834 2835static u64 access_pio_pcc_sop_head_parity_err_cnt( 2836 const struct cntr_entry *entry, 2837 void *context, int vl, int mode, u64 data) 2838{ 2839 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2840 2841 return dd->send_pio_err_status_cnt[34]; 2842} 2843 2844static u64 access_pio_last_returned_cnt_parity_err_cnt( 2845 const struct cntr_entry *entry, 2846 void *context, int vl, int mode, u64 data) 2847{ 2848 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2849 2850 return dd->send_pio_err_status_cnt[33]; 2851} 2852 2853static u64 access_pio_current_free_cnt_parity_err_cnt( 2854 const struct cntr_entry *entry, 2855 void *context, int vl, int mode, u64 data) 2856{ 2857 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2858 2859 return dd->send_pio_err_status_cnt[32]; 2860} 2861 2862static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry, 2863 void *context, int vl, int mode, 2864 u64 data) 2865{ 2866 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2867 2868 return dd->send_pio_err_status_cnt[31]; 2869} 2870 2871static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry, 2872 void *context, int vl, int mode, 2873 u64 data) 2874{ 2875 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2876 2877 return dd->send_pio_err_status_cnt[30]; 2878} 2879 2880static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry, 2881 void *context, int vl, int mode, 2882 u64 data) 2883{ 2884 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2885 2886 return dd->send_pio_err_status_cnt[29]; 2887} 2888 2889static u64 access_pio_ppmc_bqc_mem_parity_err_cnt( 2890 const struct cntr_entry *entry, 2891 void *context, int vl, int mode, u64 data) 2892{ 2893 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2894 2895 return dd->send_pio_err_status_cnt[28]; 2896} 2897 2898static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry, 2899 void *context, int vl, int mode, 2900 u64 data) 2901{ 2902 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2903 2904 return dd->send_pio_err_status_cnt[27]; 2905} 2906 2907static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry, 2908 void *context, int vl, int mode, 2909 u64 data) 2910{ 2911 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2912 2913 return dd->send_pio_err_status_cnt[26]; 2914} 2915 2916static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry, 2917 void *context, int vl, 2918 int mode, u64 data) 2919{ 2920 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2921 2922 return dd->send_pio_err_status_cnt[25]; 2923} 2924 2925static u64 access_pio_block_qw_count_parity_err_cnt( 2926 const struct cntr_entry *entry, 2927 void *context, int vl, int mode, u64 data) 2928{ 2929 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2930 2931 return dd->send_pio_err_status_cnt[24]; 2932} 2933 2934static u64 access_pio_write_qw_valid_parity_err_cnt( 2935 const struct cntr_entry *entry, 2936 void *context, int vl, int mode, u64 data) 2937{ 2938 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2939 2940 return dd->send_pio_err_status_cnt[23]; 2941} 2942 2943static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry, 2944 void *context, int vl, int mode, 2945 u64 data) 2946{ 2947 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2948 2949 return dd->send_pio_err_status_cnt[22]; 2950} 2951 2952static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry, 2953 void *context, int vl, 2954 int mode, u64 data) 2955{ 2956 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2957 2958 return dd->send_pio_err_status_cnt[21]; 2959} 2960 2961static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry, 2962 void *context, int vl, 2963 int mode, u64 data) 2964{ 2965 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2966 2967 return dd->send_pio_err_status_cnt[20]; 2968} 2969 2970static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry, 2971 void *context, int vl, 2972 int mode, u64 data) 2973{ 2974 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2975 2976 return dd->send_pio_err_status_cnt[19]; 2977} 2978 2979static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt( 2980 const struct cntr_entry *entry, 2981 void *context, int vl, int mode, u64 data) 2982{ 2983 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2984 2985 return dd->send_pio_err_status_cnt[18]; 2986} 2987 2988static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry, 2989 void *context, int vl, int mode, 2990 u64 data) 2991{ 2992 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2993 2994 return dd->send_pio_err_status_cnt[17]; 2995} 2996 2997static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry, 2998 void *context, int vl, int mode, 2999 u64 data) 3000{ 3001 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3002 3003 return dd->send_pio_err_status_cnt[16]; 3004} 3005 3006static u64 access_pio_credit_ret_fifo_parity_err_cnt( 3007 const struct cntr_entry *entry, 3008 void *context, int vl, int mode, u64 data) 3009{ 3010 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3011 3012 return dd->send_pio_err_status_cnt[15]; 3013} 3014 3015static u64 access_pio_v1_len_mem_bank1_cor_err_cnt( 3016 const struct cntr_entry *entry, 3017 void *context, int vl, int mode, u64 data) 3018{ 3019 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3020 3021 return dd->send_pio_err_status_cnt[14]; 3022} 3023 3024static u64 access_pio_v1_len_mem_bank0_cor_err_cnt( 3025 const struct cntr_entry *entry, 3026 void *context, int vl, int mode, u64 data) 3027{ 3028 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3029 3030 return dd->send_pio_err_status_cnt[13]; 3031} 3032 3033static u64 access_pio_v1_len_mem_bank1_unc_err_cnt( 3034 const struct cntr_entry *entry, 3035 void *context, int vl, int mode, u64 data) 3036{ 3037 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3038 3039 return dd->send_pio_err_status_cnt[12]; 3040} 3041 3042static u64 access_pio_v1_len_mem_bank0_unc_err_cnt( 3043 const struct cntr_entry *entry, 3044 void *context, int vl, int mode, u64 data) 3045{ 3046 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3047 3048 return dd->send_pio_err_status_cnt[11]; 3049} 3050 3051static u64 access_pio_sm_pkt_reset_parity_err_cnt( 3052 const struct cntr_entry *entry, 3053 void *context, int vl, int mode, u64 data) 3054{ 3055 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3056 3057 return dd->send_pio_err_status_cnt[10]; 3058} 3059 3060static u64 access_pio_pkt_evict_fifo_parity_err_cnt( 3061 const struct cntr_entry *entry, 3062 void *context, int vl, int mode, u64 data) 3063{ 3064 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3065 3066 return dd->send_pio_err_status_cnt[9]; 3067} 3068 3069static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt( 3070 const struct cntr_entry *entry, 3071 void *context, int vl, int mode, u64 data) 3072{ 3073 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3074 3075 return dd->send_pio_err_status_cnt[8]; 3076} 3077 3078static u64 access_pio_sbrdctl_crrel_parity_err_cnt( 3079 const struct cntr_entry *entry, 3080 void *context, int vl, int mode, u64 data) 3081{ 3082 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3083 3084 return dd->send_pio_err_status_cnt[7]; 3085} 3086 3087static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry, 3088 void *context, int vl, int mode, 3089 u64 data) 3090{ 3091 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3092 3093 return dd->send_pio_err_status_cnt[6]; 3094} 3095 3096static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry, 3097 void *context, int vl, int mode, 3098 u64 data) 3099{ 3100 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3101 3102 return dd->send_pio_err_status_cnt[5]; 3103} 3104 3105static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry, 3106 void *context, int vl, int mode, 3107 u64 data) 3108{ 3109 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3110 3111 return dd->send_pio_err_status_cnt[4]; 3112} 3113 3114static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry, 3115 void *context, int vl, int mode, 3116 u64 data) 3117{ 3118 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3119 3120 return dd->send_pio_err_status_cnt[3]; 3121} 3122 3123static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry, 3124 void *context, int vl, int mode, 3125 u64 data) 3126{ 3127 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3128 3129 return dd->send_pio_err_status_cnt[2]; 3130} 3131 3132static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry, 3133 void *context, int vl, 3134 int mode, u64 data) 3135{ 3136 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3137 3138 return dd->send_pio_err_status_cnt[1]; 3139} 3140 3141static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry, 3142 void *context, int vl, int mode, 3143 u64 data) 3144{ 3145 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3146 3147 return dd->send_pio_err_status_cnt[0]; 3148} 3149 3150/* 3151 * Software counters corresponding to each of the 3152 * error status bits within SendDmaErrStatus 3153 */ 3154static u64 access_sdma_pcie_req_tracking_cor_err_cnt( 3155 const struct cntr_entry *entry, 3156 void *context, int vl, int mode, u64 data) 3157{ 3158 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3159 3160 return dd->send_dma_err_status_cnt[3]; 3161} 3162 3163static u64 access_sdma_pcie_req_tracking_unc_err_cnt( 3164 const struct cntr_entry *entry, 3165 void *context, int vl, int mode, u64 data) 3166{ 3167 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3168 3169 return dd->send_dma_err_status_cnt[2]; 3170} 3171 3172static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry, 3173 void *context, int vl, int mode, 3174 u64 data) 3175{ 3176 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3177 3178 return dd->send_dma_err_status_cnt[1]; 3179} 3180 3181static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry, 3182 void *context, int vl, int mode, 3183 u64 data) 3184{ 3185 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3186 3187 return dd->send_dma_err_status_cnt[0]; 3188} 3189 3190/* 3191 * Software counters corresponding to each of the 3192 * error status bits within SendEgressErrStatus 3193 */ 3194static u64 access_tx_read_pio_memory_csr_unc_err_cnt( 3195 const struct cntr_entry *entry, 3196 void *context, int vl, int mode, u64 data) 3197{ 3198 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3199 3200 return dd->send_egress_err_status_cnt[63]; 3201} 3202 3203static u64 access_tx_read_sdma_memory_csr_err_cnt( 3204 const struct cntr_entry *entry, 3205 void *context, int vl, int mode, u64 data) 3206{ 3207 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3208 3209 return dd->send_egress_err_status_cnt[62]; 3210} 3211 3212static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry, 3213 void *context, int vl, int mode, 3214 u64 data) 3215{ 3216 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3217 3218 return dd->send_egress_err_status_cnt[61]; 3219} 3220 3221static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry, 3222 void *context, int vl, 3223 int mode, u64 data) 3224{ 3225 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3226 3227 return dd->send_egress_err_status_cnt[60]; 3228} 3229 3230static u64 access_tx_read_sdma_memory_cor_err_cnt( 3231 const struct cntr_entry *entry, 3232 void *context, int vl, int mode, u64 data) 3233{ 3234 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3235 3236 return dd->send_egress_err_status_cnt[59]; 3237} 3238 3239static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry, 3240 void *context, int vl, int mode, 3241 u64 data) 3242{ 3243 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3244 3245 return dd->send_egress_err_status_cnt[58]; 3246} 3247 3248static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry, 3249 void *context, int vl, int mode, 3250 u64 data) 3251{ 3252 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3253 3254 return dd->send_egress_err_status_cnt[57]; 3255} 3256 3257static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry, 3258 void *context, int vl, int mode, 3259 u64 data) 3260{ 3261 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3262 3263 return dd->send_egress_err_status_cnt[56]; 3264} 3265 3266static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry, 3267 void *context, int vl, int mode, 3268 u64 data) 3269{ 3270 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3271 3272 return dd->send_egress_err_status_cnt[55]; 3273} 3274 3275static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry, 3276 void *context, int vl, int mode, 3277 u64 data) 3278{ 3279 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3280 3281 return dd->send_egress_err_status_cnt[54]; 3282} 3283 3284static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry, 3285 void *context, int vl, int mode, 3286 u64 data) 3287{ 3288 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3289 3290 return dd->send_egress_err_status_cnt[53]; 3291} 3292 3293static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry, 3294 void *context, int vl, int mode, 3295 u64 data) 3296{ 3297 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3298 3299 return dd->send_egress_err_status_cnt[52]; 3300} 3301 3302static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry, 3303 void *context, int vl, int mode, 3304 u64 data) 3305{ 3306 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3307 3308 return dd->send_egress_err_status_cnt[51]; 3309} 3310 3311static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry, 3312 void *context, int vl, int mode, 3313 u64 data) 3314{ 3315 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3316 3317 return dd->send_egress_err_status_cnt[50]; 3318} 3319 3320static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry, 3321 void *context, int vl, int mode, 3322 u64 data) 3323{ 3324 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3325 3326 return dd->send_egress_err_status_cnt[49]; 3327} 3328 3329static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry, 3330 void *context, int vl, int mode, 3331 u64 data) 3332{ 3333 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3334 3335 return dd->send_egress_err_status_cnt[48]; 3336} 3337 3338static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry, 3339 void *context, int vl, int mode, 3340 u64 data) 3341{ 3342 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3343 3344 return dd->send_egress_err_status_cnt[47]; 3345} 3346 3347static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry, 3348 void *context, int vl, int mode, 3349 u64 data) 3350{ 3351 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3352 3353 return dd->send_egress_err_status_cnt[46]; 3354} 3355 3356static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry, 3357 void *context, int vl, int mode, 3358 u64 data) 3359{ 3360 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3361 3362 return dd->send_egress_err_status_cnt[45]; 3363} 3364 3365static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry, 3366 void *context, int vl, 3367 int mode, u64 data) 3368{ 3369 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3370 3371 return dd->send_egress_err_status_cnt[44]; 3372} 3373 3374static u64 access_tx_read_sdma_memory_unc_err_cnt( 3375 const struct cntr_entry *entry, 3376 void *context, int vl, int mode, u64 data) 3377{ 3378 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3379 3380 return dd->send_egress_err_status_cnt[43]; 3381} 3382 3383static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry, 3384 void *context, int vl, int mode, 3385 u64 data) 3386{ 3387 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3388 3389 return dd->send_egress_err_status_cnt[42]; 3390} 3391 3392static u64 access_tx_credit_return_partiy_err_cnt( 3393 const struct cntr_entry *entry, 3394 void *context, int vl, int mode, u64 data) 3395{ 3396 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3397 3398 return dd->send_egress_err_status_cnt[41]; 3399} 3400 3401static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt( 3402 const struct cntr_entry *entry, 3403 void *context, int vl, int mode, u64 data) 3404{ 3405 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3406 3407 return dd->send_egress_err_status_cnt[40]; 3408} 3409 3410static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt( 3411 const struct cntr_entry *entry, 3412 void *context, int vl, int mode, u64 data) 3413{ 3414 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3415 3416 return dd->send_egress_err_status_cnt[39]; 3417} 3418 3419static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt( 3420 const struct cntr_entry *entry, 3421 void *context, int vl, int mode, u64 data) 3422{ 3423 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3424 3425 return dd->send_egress_err_status_cnt[38]; 3426} 3427 3428static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt( 3429 const struct cntr_entry *entry, 3430 void *context, int vl, int mode, u64 data) 3431{ 3432 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3433 3434 return dd->send_egress_err_status_cnt[37]; 3435} 3436 3437static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt( 3438 const struct cntr_entry *entry, 3439 void *context, int vl, int mode, u64 data) 3440{ 3441 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3442 3443 return dd->send_egress_err_status_cnt[36]; 3444} 3445 3446static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt( 3447 const struct cntr_entry *entry, 3448 void *context, int vl, int mode, u64 data) 3449{ 3450 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3451 3452 return dd->send_egress_err_status_cnt[35]; 3453} 3454 3455static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt( 3456 const struct cntr_entry *entry, 3457 void *context, int vl, int mode, u64 data) 3458{ 3459 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3460 3461 return dd->send_egress_err_status_cnt[34]; 3462} 3463 3464static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt( 3465 const struct cntr_entry *entry, 3466 void *context, int vl, int mode, u64 data) 3467{ 3468 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3469 3470 return dd->send_egress_err_status_cnt[33]; 3471} 3472 3473static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt( 3474 const struct cntr_entry *entry, 3475 void *context, int vl, int mode, u64 data) 3476{ 3477 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3478 3479 return dd->send_egress_err_status_cnt[32]; 3480} 3481 3482static u64 access_tx_sdma15_disallowed_packet_err_cnt( 3483 const struct cntr_entry *entry, 3484 void *context, int vl, int mode, u64 data) 3485{ 3486 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3487 3488 return dd->send_egress_err_status_cnt[31]; 3489} 3490 3491static u64 access_tx_sdma14_disallowed_packet_err_cnt( 3492 const struct cntr_entry *entry, 3493 void *context, int vl, int mode, u64 data) 3494{ 3495 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3496 3497 return dd->send_egress_err_status_cnt[30]; 3498} 3499 3500static u64 access_tx_sdma13_disallowed_packet_err_cnt( 3501 const struct cntr_entry *entry, 3502 void *context, int vl, int mode, u64 data) 3503{ 3504 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3505 3506 return dd->send_egress_err_status_cnt[29]; 3507} 3508 3509static u64 access_tx_sdma12_disallowed_packet_err_cnt( 3510 const struct cntr_entry *entry, 3511 void *context, int vl, int mode, u64 data) 3512{ 3513 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3514 3515 return dd->send_egress_err_status_cnt[28]; 3516} 3517 3518static u64 access_tx_sdma11_disallowed_packet_err_cnt( 3519 const struct cntr_entry *entry, 3520 void *context, int vl, int mode, u64 data) 3521{ 3522 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3523 3524 return dd->send_egress_err_status_cnt[27]; 3525} 3526 3527static u64 access_tx_sdma10_disallowed_packet_err_cnt( 3528 const struct cntr_entry *entry, 3529 void *context, int vl, int mode, u64 data) 3530{ 3531 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3532 3533 return dd->send_egress_err_status_cnt[26]; 3534} 3535 3536static u64 access_tx_sdma9_disallowed_packet_err_cnt( 3537 const struct cntr_entry *entry, 3538 void *context, int vl, int mode, u64 data) 3539{ 3540 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3541 3542 return dd->send_egress_err_status_cnt[25]; 3543} 3544 3545static u64 access_tx_sdma8_disallowed_packet_err_cnt( 3546 const struct cntr_entry *entry, 3547 void *context, int vl, int mode, u64 data) 3548{ 3549 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3550 3551 return dd->send_egress_err_status_cnt[24]; 3552} 3553 3554static u64 access_tx_sdma7_disallowed_packet_err_cnt( 3555 const struct cntr_entry *entry, 3556 void *context, int vl, int mode, u64 data) 3557{ 3558 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3559 3560 return dd->send_egress_err_status_cnt[23]; 3561} 3562 3563static u64 access_tx_sdma6_disallowed_packet_err_cnt( 3564 const struct cntr_entry *entry, 3565 void *context, int vl, int mode, u64 data) 3566{ 3567 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3568 3569 return dd->send_egress_err_status_cnt[22]; 3570} 3571 3572static u64 access_tx_sdma5_disallowed_packet_err_cnt( 3573 const struct cntr_entry *entry, 3574 void *context, int vl, int mode, u64 data) 3575{ 3576 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3577 3578 return dd->send_egress_err_status_cnt[21]; 3579} 3580 3581static u64 access_tx_sdma4_disallowed_packet_err_cnt( 3582 const struct cntr_entry *entry, 3583 void *context, int vl, int mode, u64 data) 3584{ 3585 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3586 3587 return dd->send_egress_err_status_cnt[20]; 3588} 3589 3590static u64 access_tx_sdma3_disallowed_packet_err_cnt( 3591 const struct cntr_entry *entry, 3592 void *context, int vl, int mode, u64 data) 3593{ 3594 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3595 3596 return dd->send_egress_err_status_cnt[19]; 3597} 3598 3599static u64 access_tx_sdma2_disallowed_packet_err_cnt( 3600 const struct cntr_entry *entry, 3601 void *context, int vl, int mode, u64 data) 3602{ 3603 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3604 3605 return dd->send_egress_err_status_cnt[18]; 3606} 3607 3608static u64 access_tx_sdma1_disallowed_packet_err_cnt( 3609 const struct cntr_entry *entry, 3610 void *context, int vl, int mode, u64 data) 3611{ 3612 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3613 3614 return dd->send_egress_err_status_cnt[17]; 3615} 3616 3617static u64 access_tx_sdma0_disallowed_packet_err_cnt( 3618 const struct cntr_entry *entry, 3619 void *context, int vl, int mode, u64 data) 3620{ 3621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3622 3623 return dd->send_egress_err_status_cnt[16]; 3624} 3625 3626static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry, 3627 void *context, int vl, int mode, 3628 u64 data) 3629{ 3630 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3631 3632 return dd->send_egress_err_status_cnt[15]; 3633} 3634 3635static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry, 3636 void *context, int vl, 3637 int mode, u64 data) 3638{ 3639 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3640 3641 return dd->send_egress_err_status_cnt[14]; 3642} 3643 3644static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry, 3645 void *context, int vl, int mode, 3646 u64 data) 3647{ 3648 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3649 3650 return dd->send_egress_err_status_cnt[13]; 3651} 3652 3653static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry, 3654 void *context, int vl, int mode, 3655 u64 data) 3656{ 3657 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3658 3659 return dd->send_egress_err_status_cnt[12]; 3660} 3661 3662static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt( 3663 const struct cntr_entry *entry, 3664 void *context, int vl, int mode, u64 data) 3665{ 3666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3667 3668 return dd->send_egress_err_status_cnt[11]; 3669} 3670 3671static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry, 3672 void *context, int vl, int mode, 3673 u64 data) 3674{ 3675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3676 3677 return dd->send_egress_err_status_cnt[10]; 3678} 3679 3680static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry, 3681 void *context, int vl, int mode, 3682 u64 data) 3683{ 3684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3685 3686 return dd->send_egress_err_status_cnt[9]; 3687} 3688 3689static u64 access_tx_sdma_launch_intf_parity_err_cnt( 3690 const struct cntr_entry *entry, 3691 void *context, int vl, int mode, u64 data) 3692{ 3693 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3694 3695 return dd->send_egress_err_status_cnt[8]; 3696} 3697 3698static u64 access_tx_pio_launch_intf_parity_err_cnt( 3699 const struct cntr_entry *entry, 3700 void *context, int vl, int mode, u64 data) 3701{ 3702 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3703 3704 return dd->send_egress_err_status_cnt[7]; 3705} 3706 3707static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry, 3708 void *context, int vl, int mode, 3709 u64 data) 3710{ 3711 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3712 3713 return dd->send_egress_err_status_cnt[6]; 3714} 3715 3716static u64 access_tx_incorrect_link_state_err_cnt( 3717 const struct cntr_entry *entry, 3718 void *context, int vl, int mode, u64 data) 3719{ 3720 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3721 3722 return dd->send_egress_err_status_cnt[5]; 3723} 3724 3725static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry, 3726 void *context, int vl, int mode, 3727 u64 data) 3728{ 3729 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3730 3731 return dd->send_egress_err_status_cnt[4]; 3732} 3733 3734static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt( 3735 const struct cntr_entry *entry, 3736 void *context, int vl, int mode, u64 data) 3737{ 3738 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3739 3740 return dd->send_egress_err_status_cnt[3]; 3741} 3742 3743static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry, 3744 void *context, int vl, int mode, 3745 u64 data) 3746{ 3747 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3748 3749 return dd->send_egress_err_status_cnt[2]; 3750} 3751 3752static u64 access_tx_pkt_integrity_mem_unc_err_cnt( 3753 const struct cntr_entry *entry, 3754 void *context, int vl, int mode, u64 data) 3755{ 3756 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3757 3758 return dd->send_egress_err_status_cnt[1]; 3759} 3760 3761static u64 access_tx_pkt_integrity_mem_cor_err_cnt( 3762 const struct cntr_entry *entry, 3763 void *context, int vl, int mode, u64 data) 3764{ 3765 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3766 3767 return dd->send_egress_err_status_cnt[0]; 3768} 3769 3770/* 3771 * Software counters corresponding to each of the 3772 * error status bits within SendErrStatus 3773 */ 3774static u64 access_send_csr_write_bad_addr_err_cnt( 3775 const struct cntr_entry *entry, 3776 void *context, int vl, int mode, u64 data) 3777{ 3778 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3779 3780 return dd->send_err_status_cnt[2]; 3781} 3782 3783static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 3784 void *context, int vl, 3785 int mode, u64 data) 3786{ 3787 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3788 3789 return dd->send_err_status_cnt[1]; 3790} 3791 3792static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry, 3793 void *context, int vl, int mode, 3794 u64 data) 3795{ 3796 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3797 3798 return dd->send_err_status_cnt[0]; 3799} 3800 3801/* 3802 * Software counters corresponding to each of the 3803 * error status bits within SendCtxtErrStatus 3804 */ 3805static u64 access_pio_write_out_of_bounds_err_cnt( 3806 const struct cntr_entry *entry, 3807 void *context, int vl, int mode, u64 data) 3808{ 3809 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3810 3811 return dd->sw_ctxt_err_status_cnt[4]; 3812} 3813 3814static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry, 3815 void *context, int vl, int mode, 3816 u64 data) 3817{ 3818 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3819 3820 return dd->sw_ctxt_err_status_cnt[3]; 3821} 3822 3823static u64 access_pio_write_crosses_boundary_err_cnt( 3824 const struct cntr_entry *entry, 3825 void *context, int vl, int mode, u64 data) 3826{ 3827 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3828 3829 return dd->sw_ctxt_err_status_cnt[2]; 3830} 3831 3832static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry, 3833 void *context, int vl, 3834 int mode, u64 data) 3835{ 3836 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3837 3838 return dd->sw_ctxt_err_status_cnt[1]; 3839} 3840 3841static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry, 3842 void *context, int vl, int mode, 3843 u64 data) 3844{ 3845 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3846 3847 return dd->sw_ctxt_err_status_cnt[0]; 3848} 3849 3850/* 3851 * Software counters corresponding to each of the 3852 * error status bits within SendDmaEngErrStatus 3853 */ 3854static u64 access_sdma_header_request_fifo_cor_err_cnt( 3855 const struct cntr_entry *entry, 3856 void *context, int vl, int mode, u64 data) 3857{ 3858 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3859 3860 return dd->sw_send_dma_eng_err_status_cnt[23]; 3861} 3862 3863static u64 access_sdma_header_storage_cor_err_cnt( 3864 const struct cntr_entry *entry, 3865 void *context, int vl, int mode, u64 data) 3866{ 3867 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3868 3869 return dd->sw_send_dma_eng_err_status_cnt[22]; 3870} 3871 3872static u64 access_sdma_packet_tracking_cor_err_cnt( 3873 const struct cntr_entry *entry, 3874 void *context, int vl, int mode, u64 data) 3875{ 3876 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3877 3878 return dd->sw_send_dma_eng_err_status_cnt[21]; 3879} 3880 3881static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry, 3882 void *context, int vl, int mode, 3883 u64 data) 3884{ 3885 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3886 3887 return dd->sw_send_dma_eng_err_status_cnt[20]; 3888} 3889 3890static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry, 3891 void *context, int vl, int mode, 3892 u64 data) 3893{ 3894 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3895 3896 return dd->sw_send_dma_eng_err_status_cnt[19]; 3897} 3898 3899static u64 access_sdma_header_request_fifo_unc_err_cnt( 3900 const struct cntr_entry *entry, 3901 void *context, int vl, int mode, u64 data) 3902{ 3903 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3904 3905 return dd->sw_send_dma_eng_err_status_cnt[18]; 3906} 3907 3908static u64 access_sdma_header_storage_unc_err_cnt( 3909 const struct cntr_entry *entry, 3910 void *context, int vl, int mode, u64 data) 3911{ 3912 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3913 3914 return dd->sw_send_dma_eng_err_status_cnt[17]; 3915} 3916 3917static u64 access_sdma_packet_tracking_unc_err_cnt( 3918 const struct cntr_entry *entry, 3919 void *context, int vl, int mode, u64 data) 3920{ 3921 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3922 3923 return dd->sw_send_dma_eng_err_status_cnt[16]; 3924} 3925 3926static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry, 3927 void *context, int vl, int mode, 3928 u64 data) 3929{ 3930 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3931 3932 return dd->sw_send_dma_eng_err_status_cnt[15]; 3933} 3934 3935static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry, 3936 void *context, int vl, int mode, 3937 u64 data) 3938{ 3939 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3940 3941 return dd->sw_send_dma_eng_err_status_cnt[14]; 3942} 3943 3944static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry, 3945 void *context, int vl, int mode, 3946 u64 data) 3947{ 3948 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3949 3950 return dd->sw_send_dma_eng_err_status_cnt[13]; 3951} 3952 3953static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry, 3954 void *context, int vl, int mode, 3955 u64 data) 3956{ 3957 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3958 3959 return dd->sw_send_dma_eng_err_status_cnt[12]; 3960} 3961 3962static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry, 3963 void *context, int vl, int mode, 3964 u64 data) 3965{ 3966 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3967 3968 return dd->sw_send_dma_eng_err_status_cnt[11]; 3969} 3970 3971static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry, 3972 void *context, int vl, int mode, 3973 u64 data) 3974{ 3975 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3976 3977 return dd->sw_send_dma_eng_err_status_cnt[10]; 3978} 3979 3980static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry, 3981 void *context, int vl, int mode, 3982 u64 data) 3983{ 3984 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3985 3986 return dd->sw_send_dma_eng_err_status_cnt[9]; 3987} 3988 3989static u64 access_sdma_packet_desc_overflow_err_cnt( 3990 const struct cntr_entry *entry, 3991 void *context, int vl, int mode, u64 data) 3992{ 3993 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3994 3995 return dd->sw_send_dma_eng_err_status_cnt[8]; 3996} 3997 3998static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry, 3999 void *context, int vl, 4000 int mode, u64 data) 4001{ 4002 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4003 4004 return dd->sw_send_dma_eng_err_status_cnt[7]; 4005} 4006 4007static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry, 4008 void *context, int vl, int mode, u64 data) 4009{ 4010 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4011 4012 return dd->sw_send_dma_eng_err_status_cnt[6]; 4013} 4014 4015static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry, 4016 void *context, int vl, int mode, 4017 u64 data) 4018{ 4019 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4020 4021 return dd->sw_send_dma_eng_err_status_cnt[5]; 4022} 4023 4024static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry, 4025 void *context, int vl, int mode, 4026 u64 data) 4027{ 4028 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4029 4030 return dd->sw_send_dma_eng_err_status_cnt[4]; 4031} 4032 4033static u64 access_sdma_tail_out_of_bounds_err_cnt( 4034 const struct cntr_entry *entry, 4035 void *context, int vl, int mode, u64 data) 4036{ 4037 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4038 4039 return dd->sw_send_dma_eng_err_status_cnt[3]; 4040} 4041 4042static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry, 4043 void *context, int vl, int mode, 4044 u64 data) 4045{ 4046 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4047 4048 return dd->sw_send_dma_eng_err_status_cnt[2]; 4049} 4050 4051static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry, 4052 void *context, int vl, int mode, 4053 u64 data) 4054{ 4055 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4056 4057 return dd->sw_send_dma_eng_err_status_cnt[1]; 4058} 4059 4060static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry, 4061 void *context, int vl, int mode, 4062 u64 data) 4063{ 4064 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4065 4066 return dd->sw_send_dma_eng_err_status_cnt[0]; 4067} 4068 4069static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry, 4070 void *context, int vl, int mode, 4071 u64 data) 4072{ 4073 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4074 4075 u64 val = 0; 4076 u64 csr = entry->csr; 4077 4078 val = read_write_csr(dd, csr, mode, data); 4079 if (mode == CNTR_MODE_R) { 4080 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ? 4081 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors; 4082 } else if (mode == CNTR_MODE_W) { 4083 dd->sw_rcv_bypass_packet_errors = 0; 4084 } else { 4085 dd_dev_err(dd, "Invalid cntr register access mode"); 4086 return 0; 4087 } 4088 return val; 4089} 4090 4091#define def_access_sw_cpu(cntr) \ 4092static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \ 4093 void *context, int vl, int mode, u64 data) \ 4094{ \ 4095 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 4096 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \ 4097 ppd->ibport_data.rvp.cntr, vl, \ 4098 mode, data); \ 4099} 4100 4101def_access_sw_cpu(rc_acks); 4102def_access_sw_cpu(rc_qacks); 4103def_access_sw_cpu(rc_delayed_comp); 4104 4105#define def_access_ibp_counter(cntr) \ 4106static u64 access_ibp_##cntr(const struct cntr_entry *entry, \ 4107 void *context, int vl, int mode, u64 data) \ 4108{ \ 4109 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 4110 \ 4111 if (vl != CNTR_INVALID_VL) \ 4112 return 0; \ 4113 \ 4114 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \ 4115 mode, data); \ 4116} 4117 4118def_access_ibp_counter(loop_pkts); 4119def_access_ibp_counter(rc_resends); 4120def_access_ibp_counter(rnr_naks); 4121def_access_ibp_counter(other_naks); 4122def_access_ibp_counter(rc_timeouts); 4123def_access_ibp_counter(pkt_drops); 4124def_access_ibp_counter(dmawait); 4125def_access_ibp_counter(rc_seqnak); 4126def_access_ibp_counter(rc_dupreq); 4127def_access_ibp_counter(rdma_seq); 4128def_access_ibp_counter(unaligned); 4129def_access_ibp_counter(seq_naks); 4130def_access_ibp_counter(rc_crwaits); 4131 4132static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = { 4133[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH), 4134[C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH), 4135[C_RX_SHORT_ERR] = RXE32_DEV_CNTR_ELEM(RxShrErr, RCV_SHORT_ERR_CNT, CNTR_SYNTH), 4136[C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH), 4137[C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH), 4138[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT, 4139 CNTR_NORMAL), 4140[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT, 4141 CNTR_NORMAL), 4142[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs, 4143 RCV_TID_FLOW_GEN_MISMATCH_CNT, 4144 CNTR_NORMAL), 4145[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL, 4146 CNTR_NORMAL), 4147[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs, 4148 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL), 4149[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt, 4150 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL), 4151[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT, 4152 CNTR_NORMAL), 4153[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT, 4154 CNTR_NORMAL), 4155[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT, 4156 CNTR_NORMAL), 4157[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT, 4158 CNTR_NORMAL), 4159[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT, 4160 CNTR_NORMAL), 4161[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT, 4162 CNTR_NORMAL), 4163[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt, 4164 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL), 4165[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt, 4166 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL), 4167[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT, 4168 CNTR_SYNTH), 4169[C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH, 4170 access_dc_rcv_err_cnt), 4171[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT, 4172 CNTR_SYNTH), 4173[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT, 4174 CNTR_SYNTH), 4175[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT, 4176 CNTR_SYNTH), 4177[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts, 4178 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH), 4179[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts, 4180 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT, 4181 CNTR_SYNTH), 4182[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr, 4183 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH), 4184[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT, 4185 CNTR_SYNTH), 4186[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT, 4187 CNTR_SYNTH), 4188[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT, 4189 CNTR_SYNTH), 4190[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT, 4191 CNTR_SYNTH), 4192[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT, 4193 CNTR_SYNTH), 4194[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT, 4195 CNTR_SYNTH), 4196[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT, 4197 CNTR_SYNTH), 4198[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT, 4199 CNTR_SYNTH | CNTR_VL), 4200[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT, 4201 CNTR_SYNTH | CNTR_VL), 4202[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH), 4203[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT, 4204 CNTR_SYNTH | CNTR_VL), 4205[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH), 4206[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT, 4207 CNTR_SYNTH | CNTR_VL), 4208[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT, 4209 CNTR_SYNTH), 4210[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT, 4211 CNTR_SYNTH | CNTR_VL), 4212[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT, 4213 CNTR_SYNTH), 4214[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT, 4215 CNTR_SYNTH | CNTR_VL), 4216[C_DC_TOTAL_CRC] = 4217 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR, 4218 CNTR_SYNTH), 4219[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0, 4220 CNTR_SYNTH), 4221[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1, 4222 CNTR_SYNTH), 4223[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2, 4224 CNTR_SYNTH), 4225[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3, 4226 CNTR_SYNTH), 4227[C_DC_CRC_MULT_LN] = 4228 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN, 4229 CNTR_SYNTH), 4230[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT, 4231 CNTR_SYNTH), 4232[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT, 4233 CNTR_SYNTH), 4234[C_DC_SEQ_CRC_CNT] = 4235 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT, 4236 CNTR_SYNTH), 4237[C_DC_ESC0_ONLY_CNT] = 4238 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT, 4239 CNTR_SYNTH), 4240[C_DC_ESC0_PLUS1_CNT] = 4241 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT, 4242 CNTR_SYNTH), 4243[C_DC_ESC0_PLUS2_CNT] = 4244 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT, 4245 CNTR_SYNTH), 4246[C_DC_REINIT_FROM_PEER_CNT] = 4247 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 4248 CNTR_SYNTH), 4249[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT, 4250 CNTR_SYNTH), 4251[C_DC_MISC_FLG_CNT] = 4252 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT, 4253 CNTR_SYNTH), 4254[C_DC_PRF_GOOD_LTP_CNT] = 4255 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH), 4256[C_DC_PRF_ACCEPTED_LTP_CNT] = 4257 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT, 4258 CNTR_SYNTH), 4259[C_DC_PRF_RX_FLIT_CNT] = 4260 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH), 4261[C_DC_PRF_TX_FLIT_CNT] = 4262 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH), 4263[C_DC_PRF_CLK_CNTR] = 4264 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH), 4265[C_DC_PG_DBG_FLIT_CRDTS_CNT] = 4266 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH), 4267[C_DC_PG_STS_PAUSE_COMPLETE_CNT] = 4268 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT, 4269 CNTR_SYNTH), 4270[C_DC_PG_STS_TX_SBE_CNT] = 4271 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH), 4272[C_DC_PG_STS_TX_MBE_CNT] = 4273 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT, 4274 CNTR_SYNTH), 4275[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL, 4276 access_sw_cpu_intr), 4277[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL, 4278 access_sw_cpu_rcv_limit), 4279[C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL, 4280 access_sw_ctx0_seq_drop), 4281[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL, 4282 access_sw_vtx_wait), 4283[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL, 4284 access_sw_pio_wait), 4285[C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL, 4286 access_sw_pio_drain), 4287[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL, 4288 access_sw_kmem_wait), 4289[C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL, 4290 hfi1_access_sw_tid_wait), 4291[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL, 4292 access_sw_send_schedule), 4293[C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn", 4294 SEND_DMA_DESC_FETCHED_CNT, 0, 4295 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4296 dev_access_u32_csr), 4297[C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0, 4298 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4299 access_sde_int_cnt), 4300[C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0, 4301 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4302 access_sde_err_cnt), 4303[C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0, 4304 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4305 access_sde_idle_int_cnt), 4306[C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0, 4307 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4308 access_sde_progress_int_cnt), 4309/* MISC_ERR_STATUS */ 4310[C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0, 4311 CNTR_NORMAL, 4312 access_misc_pll_lock_fail_err_cnt), 4313[C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0, 4314 CNTR_NORMAL, 4315 access_misc_mbist_fail_err_cnt), 4316[C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0, 4317 CNTR_NORMAL, 4318 access_misc_invalid_eep_cmd_err_cnt), 4319[C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0, 4320 CNTR_NORMAL, 4321 access_misc_efuse_done_parity_err_cnt), 4322[C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0, 4323 CNTR_NORMAL, 4324 access_misc_efuse_write_err_cnt), 4325[C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0, 4326 0, CNTR_NORMAL, 4327 access_misc_efuse_read_bad_addr_err_cnt), 4328[C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0, 4329 CNTR_NORMAL, 4330 access_misc_efuse_csr_parity_err_cnt), 4331[C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0, 4332 CNTR_NORMAL, 4333 access_misc_fw_auth_failed_err_cnt), 4334[C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0, 4335 CNTR_NORMAL, 4336 access_misc_key_mismatch_err_cnt), 4337[C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0, 4338 CNTR_NORMAL, 4339 access_misc_sbus_write_failed_err_cnt), 4340[C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0, 4341 CNTR_NORMAL, 4342 access_misc_csr_write_bad_addr_err_cnt), 4343[C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0, 4344 CNTR_NORMAL, 4345 access_misc_csr_read_bad_addr_err_cnt), 4346[C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0, 4347 CNTR_NORMAL, 4348 access_misc_csr_parity_err_cnt), 4349/* CceErrStatus */ 4350[C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0, 4351 CNTR_NORMAL, 4352 access_sw_cce_err_status_aggregated_cnt), 4353[C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0, 4354 CNTR_NORMAL, 4355 access_cce_msix_csr_parity_err_cnt), 4356[C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0, 4357 CNTR_NORMAL, 4358 access_cce_int_map_unc_err_cnt), 4359[C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0, 4360 CNTR_NORMAL, 4361 access_cce_int_map_cor_err_cnt), 4362[C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0, 4363 CNTR_NORMAL, 4364 access_cce_msix_table_unc_err_cnt), 4365[C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0, 4366 CNTR_NORMAL, 4367 access_cce_msix_table_cor_err_cnt), 4368[C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0, 4369 0, CNTR_NORMAL, 4370 access_cce_rxdma_conv_fifo_parity_err_cnt), 4371[C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0, 4372 0, CNTR_NORMAL, 4373 access_cce_rcpl_async_fifo_parity_err_cnt), 4374[C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0, 4375 CNTR_NORMAL, 4376 access_cce_seg_write_bad_addr_err_cnt), 4377[C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0, 4378 CNTR_NORMAL, 4379 access_cce_seg_read_bad_addr_err_cnt), 4380[C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0, 4381 CNTR_NORMAL, 4382 access_la_triggered_cnt), 4383[C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0, 4384 CNTR_NORMAL, 4385 access_cce_trgt_cpl_timeout_err_cnt), 4386[C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0, 4387 CNTR_NORMAL, 4388 access_pcic_receive_parity_err_cnt), 4389[C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0, 4390 CNTR_NORMAL, 4391 access_pcic_transmit_back_parity_err_cnt), 4392[C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0, 4393 0, CNTR_NORMAL, 4394 access_pcic_transmit_front_parity_err_cnt), 4395[C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0, 4396 CNTR_NORMAL, 4397 access_pcic_cpl_dat_q_unc_err_cnt), 4398[C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0, 4399 CNTR_NORMAL, 4400 access_pcic_cpl_hd_q_unc_err_cnt), 4401[C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0, 4402 CNTR_NORMAL, 4403 access_pcic_post_dat_q_unc_err_cnt), 4404[C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0, 4405 CNTR_NORMAL, 4406 access_pcic_post_hd_q_unc_err_cnt), 4407[C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0, 4408 CNTR_NORMAL, 4409 access_pcic_retry_sot_mem_unc_err_cnt), 4410[C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0, 4411 CNTR_NORMAL, 4412 access_pcic_retry_mem_unc_err), 4413[C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0, 4414 CNTR_NORMAL, 4415 access_pcic_n_post_dat_q_parity_err_cnt), 4416[C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0, 4417 CNTR_NORMAL, 4418 access_pcic_n_post_h_q_parity_err_cnt), 4419[C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0, 4420 CNTR_NORMAL, 4421 access_pcic_cpl_dat_q_cor_err_cnt), 4422[C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0, 4423 CNTR_NORMAL, 4424 access_pcic_cpl_hd_q_cor_err_cnt), 4425[C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0, 4426 CNTR_NORMAL, 4427 access_pcic_post_dat_q_cor_err_cnt), 4428[C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0, 4429 CNTR_NORMAL, 4430 access_pcic_post_hd_q_cor_err_cnt), 4431[C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0, 4432 CNTR_NORMAL, 4433 access_pcic_retry_sot_mem_cor_err_cnt), 4434[C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0, 4435 CNTR_NORMAL, 4436 access_pcic_retry_mem_cor_err_cnt), 4437[C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM( 4438 "CceCli1AsyncFifoDbgParityError", 0, 0, 4439 CNTR_NORMAL, 4440 access_cce_cli1_async_fifo_dbg_parity_err_cnt), 4441[C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM( 4442 "CceCli1AsyncFifoRxdmaParityError", 0, 0, 4443 CNTR_NORMAL, 4444 access_cce_cli1_async_fifo_rxdma_parity_err_cnt 4445 ), 4446[C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM( 4447 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0, 4448 CNTR_NORMAL, 4449 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt), 4450[C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM( 4451 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0, 4452 CNTR_NORMAL, 4453 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt), 4454[C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0, 4455 0, CNTR_NORMAL, 4456 access_cce_cli2_async_fifo_parity_err_cnt), 4457[C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0, 4458 CNTR_NORMAL, 4459 access_cce_csr_cfg_bus_parity_err_cnt), 4460[C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0, 4461 0, CNTR_NORMAL, 4462 access_cce_cli0_async_fifo_parity_err_cnt), 4463[C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0, 4464 CNTR_NORMAL, 4465 access_cce_rspd_data_parity_err_cnt), 4466[C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0, 4467 CNTR_NORMAL, 4468 access_cce_trgt_access_err_cnt), 4469[C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0, 4470 0, CNTR_NORMAL, 4471 access_cce_trgt_async_fifo_parity_err_cnt), 4472[C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0, 4473 CNTR_NORMAL, 4474 access_cce_csr_write_bad_addr_err_cnt), 4475[C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0, 4476 CNTR_NORMAL, 4477 access_cce_csr_read_bad_addr_err_cnt), 4478[C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0, 4479 CNTR_NORMAL, 4480 access_ccs_csr_parity_err_cnt), 4481 4482/* RcvErrStatus */ 4483[C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0, 4484 CNTR_NORMAL, 4485 access_rx_csr_parity_err_cnt), 4486[C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0, 4487 CNTR_NORMAL, 4488 access_rx_csr_write_bad_addr_err_cnt), 4489[C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0, 4490 CNTR_NORMAL, 4491 access_rx_csr_read_bad_addr_err_cnt), 4492[C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0, 4493 CNTR_NORMAL, 4494 access_rx_dma_csr_unc_err_cnt), 4495[C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0, 4496 CNTR_NORMAL, 4497 access_rx_dma_dq_fsm_encoding_err_cnt), 4498[C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0, 4499 CNTR_NORMAL, 4500 access_rx_dma_eq_fsm_encoding_err_cnt), 4501[C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0, 4502 CNTR_NORMAL, 4503 access_rx_dma_csr_parity_err_cnt), 4504[C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0, 4505 CNTR_NORMAL, 4506 access_rx_rbuf_data_cor_err_cnt), 4507[C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0, 4508 CNTR_NORMAL, 4509 access_rx_rbuf_data_unc_err_cnt), 4510[C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0, 4511 CNTR_NORMAL, 4512 access_rx_dma_data_fifo_rd_cor_err_cnt), 4513[C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0, 4514 CNTR_NORMAL, 4515 access_rx_dma_data_fifo_rd_unc_err_cnt), 4516[C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0, 4517 CNTR_NORMAL, 4518 access_rx_dma_hdr_fifo_rd_cor_err_cnt), 4519[C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0, 4520 CNTR_NORMAL, 4521 access_rx_dma_hdr_fifo_rd_unc_err_cnt), 4522[C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0, 4523 CNTR_NORMAL, 4524 access_rx_rbuf_desc_part2_cor_err_cnt), 4525[C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0, 4526 CNTR_NORMAL, 4527 access_rx_rbuf_desc_part2_unc_err_cnt), 4528[C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0, 4529 CNTR_NORMAL, 4530 access_rx_rbuf_desc_part1_cor_err_cnt), 4531[C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0, 4532 CNTR_NORMAL, 4533 access_rx_rbuf_desc_part1_unc_err_cnt), 4534[C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0, 4535 CNTR_NORMAL, 4536 access_rx_hq_intr_fsm_err_cnt), 4537[C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0, 4538 CNTR_NORMAL, 4539 access_rx_hq_intr_csr_parity_err_cnt), 4540[C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0, 4541 CNTR_NORMAL, 4542 access_rx_lookup_csr_parity_err_cnt), 4543[C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0, 4544 CNTR_NORMAL, 4545 access_rx_lookup_rcv_array_cor_err_cnt), 4546[C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0, 4547 CNTR_NORMAL, 4548 access_rx_lookup_rcv_array_unc_err_cnt), 4549[C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0, 4550 0, CNTR_NORMAL, 4551 access_rx_lookup_des_part2_parity_err_cnt), 4552[C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0, 4553 0, CNTR_NORMAL, 4554 access_rx_lookup_des_part1_unc_cor_err_cnt), 4555[C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0, 4556 CNTR_NORMAL, 4557 access_rx_lookup_des_part1_unc_err_cnt), 4558[C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0, 4559 CNTR_NORMAL, 4560 access_rx_rbuf_next_free_buf_cor_err_cnt), 4561[C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0, 4562 CNTR_NORMAL, 4563 access_rx_rbuf_next_free_buf_unc_err_cnt), 4564[C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM( 4565 "RxRbufFlInitWrAddrParityErr", 0, 0, 4566 CNTR_NORMAL, 4567 access_rbuf_fl_init_wr_addr_parity_err_cnt), 4568[C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0, 4569 0, CNTR_NORMAL, 4570 access_rx_rbuf_fl_initdone_parity_err_cnt), 4571[C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0, 4572 0, CNTR_NORMAL, 4573 access_rx_rbuf_fl_write_addr_parity_err_cnt), 4574[C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0, 4575 CNTR_NORMAL, 4576 access_rx_rbuf_fl_rd_addr_parity_err_cnt), 4577[C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0, 4578 CNTR_NORMAL, 4579 access_rx_rbuf_empty_err_cnt), 4580[C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0, 4581 CNTR_NORMAL, 4582 access_rx_rbuf_full_err_cnt), 4583[C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0, 4584 CNTR_NORMAL, 4585 access_rbuf_bad_lookup_err_cnt), 4586[C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0, 4587 CNTR_NORMAL, 4588 access_rbuf_ctx_id_parity_err_cnt), 4589[C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0, 4590 CNTR_NORMAL, 4591 access_rbuf_csr_qeopdw_parity_err_cnt), 4592[C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM( 4593 "RxRbufCsrQNumOfPktParityErr", 0, 0, 4594 CNTR_NORMAL, 4595 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt), 4596[C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM( 4597 "RxRbufCsrQTlPtrParityErr", 0, 0, 4598 CNTR_NORMAL, 4599 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt), 4600[C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0, 4601 0, CNTR_NORMAL, 4602 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt), 4603[C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0, 4604 0, CNTR_NORMAL, 4605 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt), 4606[C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr", 4607 0, 0, CNTR_NORMAL, 4608 access_rx_rbuf_csr_q_next_buf_parity_err_cnt), 4609[C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0, 4610 0, CNTR_NORMAL, 4611 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt), 4612[C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM( 4613 "RxRbufCsrQHeadBufNumParityErr", 0, 0, 4614 CNTR_NORMAL, 4615 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt), 4616[C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0, 4617 0, CNTR_NORMAL, 4618 access_rx_rbuf_block_list_read_cor_err_cnt), 4619[C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0, 4620 0, CNTR_NORMAL, 4621 access_rx_rbuf_block_list_read_unc_err_cnt), 4622[C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0, 4623 CNTR_NORMAL, 4624 access_rx_rbuf_lookup_des_cor_err_cnt), 4625[C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0, 4626 CNTR_NORMAL, 4627 access_rx_rbuf_lookup_des_unc_err_cnt), 4628[C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM( 4629 "RxRbufLookupDesRegUncCorErr", 0, 0, 4630 CNTR_NORMAL, 4631 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt), 4632[C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0, 4633 CNTR_NORMAL, 4634 access_rx_rbuf_lookup_des_reg_unc_err_cnt), 4635[C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0, 4636 CNTR_NORMAL, 4637 access_rx_rbuf_free_list_cor_err_cnt), 4638[C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0, 4639 CNTR_NORMAL, 4640 access_rx_rbuf_free_list_unc_err_cnt), 4641[C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0, 4642 CNTR_NORMAL, 4643 access_rx_rcv_fsm_encoding_err_cnt), 4644[C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0, 4645 CNTR_NORMAL, 4646 access_rx_dma_flag_cor_err_cnt), 4647[C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0, 4648 CNTR_NORMAL, 4649 access_rx_dma_flag_unc_err_cnt), 4650[C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0, 4651 CNTR_NORMAL, 4652 access_rx_dc_sop_eop_parity_err_cnt), 4653[C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0, 4654 CNTR_NORMAL, 4655 access_rx_rcv_csr_parity_err_cnt), 4656[C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0, 4657 CNTR_NORMAL, 4658 access_rx_rcv_qp_map_table_cor_err_cnt), 4659[C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0, 4660 CNTR_NORMAL, 4661 access_rx_rcv_qp_map_table_unc_err_cnt), 4662[C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0, 4663 CNTR_NORMAL, 4664 access_rx_rcv_data_cor_err_cnt), 4665[C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0, 4666 CNTR_NORMAL, 4667 access_rx_rcv_data_unc_err_cnt), 4668[C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0, 4669 CNTR_NORMAL, 4670 access_rx_rcv_hdr_cor_err_cnt), 4671[C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0, 4672 CNTR_NORMAL, 4673 access_rx_rcv_hdr_unc_err_cnt), 4674[C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0, 4675 CNTR_NORMAL, 4676 access_rx_dc_intf_parity_err_cnt), 4677[C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0, 4678 CNTR_NORMAL, 4679 access_rx_dma_csr_cor_err_cnt), 4680/* SendPioErrStatus */ 4681[C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0, 4682 CNTR_NORMAL, 4683 access_pio_pec_sop_head_parity_err_cnt), 4684[C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0, 4685 CNTR_NORMAL, 4686 access_pio_pcc_sop_head_parity_err_cnt), 4687[C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr", 4688 0, 0, CNTR_NORMAL, 4689 access_pio_last_returned_cnt_parity_err_cnt), 4690[C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0, 4691 0, CNTR_NORMAL, 4692 access_pio_current_free_cnt_parity_err_cnt), 4693[C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0, 4694 CNTR_NORMAL, 4695 access_pio_reserved_31_err_cnt), 4696[C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0, 4697 CNTR_NORMAL, 4698 access_pio_reserved_30_err_cnt), 4699[C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0, 4700 CNTR_NORMAL, 4701 access_pio_ppmc_sop_len_err_cnt), 4702[C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0, 4703 CNTR_NORMAL, 4704 access_pio_ppmc_bqc_mem_parity_err_cnt), 4705[C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0, 4706 CNTR_NORMAL, 4707 access_pio_vl_fifo_parity_err_cnt), 4708[C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0, 4709 CNTR_NORMAL, 4710 access_pio_vlf_sop_parity_err_cnt), 4711[C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0, 4712 CNTR_NORMAL, 4713 access_pio_vlf_v1_len_parity_err_cnt), 4714[C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0, 4715 CNTR_NORMAL, 4716 access_pio_block_qw_count_parity_err_cnt), 4717[C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0, 4718 CNTR_NORMAL, 4719 access_pio_write_qw_valid_parity_err_cnt), 4720[C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0, 4721 CNTR_NORMAL, 4722 access_pio_state_machine_err_cnt), 4723[C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0, 4724 CNTR_NORMAL, 4725 access_pio_write_data_parity_err_cnt), 4726[C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0, 4727 CNTR_NORMAL, 4728 access_pio_host_addr_mem_cor_err_cnt), 4729[C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0, 4730 CNTR_NORMAL, 4731 access_pio_host_addr_mem_unc_err_cnt), 4732[C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0, 4733 CNTR_NORMAL, 4734 access_pio_pkt_evict_sm_or_arb_sm_err_cnt), 4735[C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0, 4736 CNTR_NORMAL, 4737 access_pio_init_sm_in_err_cnt), 4738[C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0, 4739 CNTR_NORMAL, 4740 access_pio_ppmc_pbl_fifo_err_cnt), 4741[C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0, 4742 0, CNTR_NORMAL, 4743 access_pio_credit_ret_fifo_parity_err_cnt), 4744[C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0, 4745 CNTR_NORMAL, 4746 access_pio_v1_len_mem_bank1_cor_err_cnt), 4747[C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0, 4748 CNTR_NORMAL, 4749 access_pio_v1_len_mem_bank0_cor_err_cnt), 4750[C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0, 4751 CNTR_NORMAL, 4752 access_pio_v1_len_mem_bank1_unc_err_cnt), 4753[C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0, 4754 CNTR_NORMAL, 4755 access_pio_v1_len_mem_bank0_unc_err_cnt), 4756[C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0, 4757 CNTR_NORMAL, 4758 access_pio_sm_pkt_reset_parity_err_cnt), 4759[C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0, 4760 CNTR_NORMAL, 4761 access_pio_pkt_evict_fifo_parity_err_cnt), 4762[C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM( 4763 "PioSbrdctrlCrrelFifoParityErr", 0, 0, 4764 CNTR_NORMAL, 4765 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt), 4766[C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0, 4767 CNTR_NORMAL, 4768 access_pio_sbrdctl_crrel_parity_err_cnt), 4769[C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0, 4770 CNTR_NORMAL, 4771 access_pio_pec_fifo_parity_err_cnt), 4772[C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0, 4773 CNTR_NORMAL, 4774 access_pio_pcc_fifo_parity_err_cnt), 4775[C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0, 4776 CNTR_NORMAL, 4777 access_pio_sb_mem_fifo1_err_cnt), 4778[C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0, 4779 CNTR_NORMAL, 4780 access_pio_sb_mem_fifo0_err_cnt), 4781[C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0, 4782 CNTR_NORMAL, 4783 access_pio_csr_parity_err_cnt), 4784[C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0, 4785 CNTR_NORMAL, 4786 access_pio_write_addr_parity_err_cnt), 4787[C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0, 4788 CNTR_NORMAL, 4789 access_pio_write_bad_ctxt_err_cnt), 4790/* SendDmaErrStatus */ 4791[C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0, 4792 0, CNTR_NORMAL, 4793 access_sdma_pcie_req_tracking_cor_err_cnt), 4794[C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0, 4795 0, CNTR_NORMAL, 4796 access_sdma_pcie_req_tracking_unc_err_cnt), 4797[C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0, 4798 CNTR_NORMAL, 4799 access_sdma_csr_parity_err_cnt), 4800[C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0, 4801 CNTR_NORMAL, 4802 access_sdma_rpy_tag_err_cnt), 4803/* SendEgressErrStatus */ 4804[C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0, 4805 CNTR_NORMAL, 4806 access_tx_read_pio_memory_csr_unc_err_cnt), 4807[C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0, 4808 0, CNTR_NORMAL, 4809 access_tx_read_sdma_memory_csr_err_cnt), 4810[C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0, 4811 CNTR_NORMAL, 4812 access_tx_egress_fifo_cor_err_cnt), 4813[C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0, 4814 CNTR_NORMAL, 4815 access_tx_read_pio_memory_cor_err_cnt), 4816[C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0, 4817 CNTR_NORMAL, 4818 access_tx_read_sdma_memory_cor_err_cnt), 4819[C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0, 4820 CNTR_NORMAL, 4821 access_tx_sb_hdr_cor_err_cnt), 4822[C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0, 4823 CNTR_NORMAL, 4824 access_tx_credit_overrun_err_cnt), 4825[C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0, 4826 CNTR_NORMAL, 4827 access_tx_launch_fifo8_cor_err_cnt), 4828[C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0, 4829 CNTR_NORMAL, 4830 access_tx_launch_fifo7_cor_err_cnt), 4831[C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0, 4832 CNTR_NORMAL, 4833 access_tx_launch_fifo6_cor_err_cnt), 4834[C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0, 4835 CNTR_NORMAL, 4836 access_tx_launch_fifo5_cor_err_cnt), 4837[C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0, 4838 CNTR_NORMAL, 4839 access_tx_launch_fifo4_cor_err_cnt), 4840[C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0, 4841 CNTR_NORMAL, 4842 access_tx_launch_fifo3_cor_err_cnt), 4843[C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0, 4844 CNTR_NORMAL, 4845 access_tx_launch_fifo2_cor_err_cnt), 4846[C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0, 4847 CNTR_NORMAL, 4848 access_tx_launch_fifo1_cor_err_cnt), 4849[C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0, 4850 CNTR_NORMAL, 4851 access_tx_launch_fifo0_cor_err_cnt), 4852[C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0, 4853 CNTR_NORMAL, 4854 access_tx_credit_return_vl_err_cnt), 4855[C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0, 4856 CNTR_NORMAL, 4857 access_tx_hcrc_insertion_err_cnt), 4858[C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0, 4859 CNTR_NORMAL, 4860 access_tx_egress_fifo_unc_err_cnt), 4861[C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0, 4862 CNTR_NORMAL, 4863 access_tx_read_pio_memory_unc_err_cnt), 4864[C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0, 4865 CNTR_NORMAL, 4866 access_tx_read_sdma_memory_unc_err_cnt), 4867[C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0, 4868 CNTR_NORMAL, 4869 access_tx_sb_hdr_unc_err_cnt), 4870[C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0, 4871 CNTR_NORMAL, 4872 access_tx_credit_return_partiy_err_cnt), 4873[C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr", 4874 0, 0, CNTR_NORMAL, 4875 access_tx_launch_fifo8_unc_or_parity_err_cnt), 4876[C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr", 4877 0, 0, CNTR_NORMAL, 4878 access_tx_launch_fifo7_unc_or_parity_err_cnt), 4879[C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr", 4880 0, 0, CNTR_NORMAL, 4881 access_tx_launch_fifo6_unc_or_parity_err_cnt), 4882[C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr", 4883 0, 0, CNTR_NORMAL, 4884 access_tx_launch_fifo5_unc_or_parity_err_cnt), 4885[C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr", 4886 0, 0, CNTR_NORMAL, 4887 access_tx_launch_fifo4_unc_or_parity_err_cnt), 4888[C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr", 4889 0, 0, CNTR_NORMAL, 4890 access_tx_launch_fifo3_unc_or_parity_err_cnt), 4891[C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr", 4892 0, 0, CNTR_NORMAL, 4893 access_tx_launch_fifo2_unc_or_parity_err_cnt), 4894[C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr", 4895 0, 0, CNTR_NORMAL, 4896 access_tx_launch_fifo1_unc_or_parity_err_cnt), 4897[C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr", 4898 0, 0, CNTR_NORMAL, 4899 access_tx_launch_fifo0_unc_or_parity_err_cnt), 4900[C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr", 4901 0, 0, CNTR_NORMAL, 4902 access_tx_sdma15_disallowed_packet_err_cnt), 4903[C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr", 4904 0, 0, CNTR_NORMAL, 4905 access_tx_sdma14_disallowed_packet_err_cnt), 4906[C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr", 4907 0, 0, CNTR_NORMAL, 4908 access_tx_sdma13_disallowed_packet_err_cnt), 4909[C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr", 4910 0, 0, CNTR_NORMAL, 4911 access_tx_sdma12_disallowed_packet_err_cnt), 4912[C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr", 4913 0, 0, CNTR_NORMAL, 4914 access_tx_sdma11_disallowed_packet_err_cnt), 4915[C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr", 4916 0, 0, CNTR_NORMAL, 4917 access_tx_sdma10_disallowed_packet_err_cnt), 4918[C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr", 4919 0, 0, CNTR_NORMAL, 4920 access_tx_sdma9_disallowed_packet_err_cnt), 4921[C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr", 4922 0, 0, CNTR_NORMAL, 4923 access_tx_sdma8_disallowed_packet_err_cnt), 4924[C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr", 4925 0, 0, CNTR_NORMAL, 4926 access_tx_sdma7_disallowed_packet_err_cnt), 4927[C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr", 4928 0, 0, CNTR_NORMAL, 4929 access_tx_sdma6_disallowed_packet_err_cnt), 4930[C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr", 4931 0, 0, CNTR_NORMAL, 4932 access_tx_sdma5_disallowed_packet_err_cnt), 4933[C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr", 4934 0, 0, CNTR_NORMAL, 4935 access_tx_sdma4_disallowed_packet_err_cnt), 4936[C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr", 4937 0, 0, CNTR_NORMAL, 4938 access_tx_sdma3_disallowed_packet_err_cnt), 4939[C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr", 4940 0, 0, CNTR_NORMAL, 4941 access_tx_sdma2_disallowed_packet_err_cnt), 4942[C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr", 4943 0, 0, CNTR_NORMAL, 4944 access_tx_sdma1_disallowed_packet_err_cnt), 4945[C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr", 4946 0, 0, CNTR_NORMAL, 4947 access_tx_sdma0_disallowed_packet_err_cnt), 4948[C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0, 4949 CNTR_NORMAL, 4950 access_tx_config_parity_err_cnt), 4951[C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0, 4952 CNTR_NORMAL, 4953 access_tx_sbrd_ctl_csr_parity_err_cnt), 4954[C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0, 4955 CNTR_NORMAL, 4956 access_tx_launch_csr_parity_err_cnt), 4957[C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0, 4958 CNTR_NORMAL, 4959 access_tx_illegal_vl_err_cnt), 4960[C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM( 4961 "TxSbrdCtlStateMachineParityErr", 0, 0, 4962 CNTR_NORMAL, 4963 access_tx_sbrd_ctl_state_machine_parity_err_cnt), 4964[C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0, 4965 CNTR_NORMAL, 4966 access_egress_reserved_10_err_cnt), 4967[C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0, 4968 CNTR_NORMAL, 4969 access_egress_reserved_9_err_cnt), 4970[C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr", 4971 0, 0, CNTR_NORMAL, 4972 access_tx_sdma_launch_intf_parity_err_cnt), 4973[C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0, 4974 CNTR_NORMAL, 4975 access_tx_pio_launch_intf_parity_err_cnt), 4976[C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0, 4977 CNTR_NORMAL, 4978 access_egress_reserved_6_err_cnt), 4979[C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0, 4980 CNTR_NORMAL, 4981 access_tx_incorrect_link_state_err_cnt), 4982[C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0, 4983 CNTR_NORMAL, 4984 access_tx_linkdown_err_cnt), 4985[C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM( 4986 "EgressFifoUnderrunOrParityErr", 0, 0, 4987 CNTR_NORMAL, 4988 access_tx_egress_fifi_underrun_or_parity_err_cnt), 4989[C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0, 4990 CNTR_NORMAL, 4991 access_egress_reserved_2_err_cnt), 4992[C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0, 4993 CNTR_NORMAL, 4994 access_tx_pkt_integrity_mem_unc_err_cnt), 4995[C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0, 4996 CNTR_NORMAL, 4997 access_tx_pkt_integrity_mem_cor_err_cnt), 4998/* SendErrStatus */ 4999[C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0, 5000 CNTR_NORMAL, 5001 access_send_csr_write_bad_addr_err_cnt), 5002[C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0, 5003 CNTR_NORMAL, 5004 access_send_csr_read_bad_addr_err_cnt), 5005[C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0, 5006 CNTR_NORMAL, 5007 access_send_csr_parity_cnt), 5008/* SendCtxtErrStatus */ 5009[C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0, 5010 CNTR_NORMAL, 5011 access_pio_write_out_of_bounds_err_cnt), 5012[C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0, 5013 CNTR_NORMAL, 5014 access_pio_write_overflow_err_cnt), 5015[C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr", 5016 0, 0, CNTR_NORMAL, 5017 access_pio_write_crosses_boundary_err_cnt), 5018[C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0, 5019 CNTR_NORMAL, 5020 access_pio_disallowed_packet_err_cnt), 5021[C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0, 5022 CNTR_NORMAL, 5023 access_pio_inconsistent_sop_err_cnt), 5024/* SendDmaEngErrStatus */ 5025[C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr", 5026 0, 0, CNTR_NORMAL, 5027 access_sdma_header_request_fifo_cor_err_cnt), 5028[C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0, 5029 CNTR_NORMAL, 5030 access_sdma_header_storage_cor_err_cnt), 5031[C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0, 5032 CNTR_NORMAL, 5033 access_sdma_packet_tracking_cor_err_cnt), 5034[C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0, 5035 CNTR_NORMAL, 5036 access_sdma_assembly_cor_err_cnt), 5037[C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0, 5038 CNTR_NORMAL, 5039 access_sdma_desc_table_cor_err_cnt), 5040[C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr", 5041 0, 0, CNTR_NORMAL, 5042 access_sdma_header_request_fifo_unc_err_cnt), 5043[C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0, 5044 CNTR_NORMAL, 5045 access_sdma_header_storage_unc_err_cnt), 5046[C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0, 5047 CNTR_NORMAL, 5048 access_sdma_packet_tracking_unc_err_cnt), 5049[C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0, 5050 CNTR_NORMAL, 5051 access_sdma_assembly_unc_err_cnt), 5052[C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0, 5053 CNTR_NORMAL, 5054 access_sdma_desc_table_unc_err_cnt), 5055[C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0, 5056 CNTR_NORMAL, 5057 access_sdma_timeout_err_cnt), 5058[C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0, 5059 CNTR_NORMAL, 5060 access_sdma_header_length_err_cnt), 5061[C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0, 5062 CNTR_NORMAL, 5063 access_sdma_header_address_err_cnt), 5064[C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0, 5065 CNTR_NORMAL, 5066 access_sdma_header_select_err_cnt), 5067[C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0, 5068 CNTR_NORMAL, 5069 access_sdma_reserved_9_err_cnt), 5070[C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0, 5071 CNTR_NORMAL, 5072 access_sdma_packet_desc_overflow_err_cnt), 5073[C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0, 5074 CNTR_NORMAL, 5075 access_sdma_length_mismatch_err_cnt), 5076[C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0, 5077 CNTR_NORMAL, 5078 access_sdma_halt_err_cnt), 5079[C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0, 5080 CNTR_NORMAL, 5081 access_sdma_mem_read_err_cnt), 5082[C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0, 5083 CNTR_NORMAL, 5084 access_sdma_first_desc_err_cnt), 5085[C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0, 5086 CNTR_NORMAL, 5087 access_sdma_tail_out_of_bounds_err_cnt), 5088[C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0, 5089 CNTR_NORMAL, 5090 access_sdma_too_long_err_cnt), 5091[C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0, 5092 CNTR_NORMAL, 5093 access_sdma_gen_mismatch_err_cnt), 5094[C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0, 5095 CNTR_NORMAL, 5096 access_sdma_wrong_dw_err_cnt), 5097}; 5098 5099static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = { 5100[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT, 5101 CNTR_NORMAL), 5102[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT, 5103 CNTR_NORMAL), 5104[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT, 5105 CNTR_NORMAL), 5106[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT, 5107 CNTR_NORMAL), 5108[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT, 5109 CNTR_NORMAL), 5110[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT, 5111 CNTR_NORMAL), 5112[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT, 5113 CNTR_NORMAL), 5114[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL), 5115[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL), 5116[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH), 5117[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT, 5118 CNTR_SYNTH | CNTR_VL), 5119[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT, 5120 CNTR_SYNTH | CNTR_VL), 5121[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT, 5122 CNTR_SYNTH | CNTR_VL), 5123[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL), 5124[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL), 5125[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5126 access_sw_link_dn_cnt), 5127[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5128 access_sw_link_up_cnt), 5129[C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL, 5130 access_sw_unknown_frame_cnt), 5131[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5132 access_sw_xmit_discards), 5133[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0, 5134 CNTR_SYNTH | CNTR_32BIT | CNTR_VL, 5135 access_sw_xmit_discards), 5136[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH, 5137 access_xmit_constraint_errs), 5138[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH, 5139 access_rcv_constraint_errs), 5140[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts), 5141[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends), 5142[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks), 5143[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks), 5144[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts), 5145[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops), 5146[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait), 5147[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak), 5148[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq), 5149[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq), 5150[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned), 5151[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks), 5152[C_SW_IBP_RC_CRWAITS] = SW_IBP_CNTR(RcCrWait, rc_crwaits), 5153[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL, 5154 access_sw_cpu_rc_acks), 5155[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL, 5156 access_sw_cpu_rc_qacks), 5157[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL, 5158 access_sw_cpu_rc_delayed_comp), 5159[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1), 5160[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3), 5161[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5), 5162[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7), 5163[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9), 5164[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11), 5165[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13), 5166[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15), 5167[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17), 5168[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19), 5169[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21), 5170[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23), 5171[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25), 5172[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27), 5173[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29), 5174[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31), 5175[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33), 5176[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35), 5177[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37), 5178[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39), 5179[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41), 5180[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43), 5181[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45), 5182[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47), 5183[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49), 5184[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51), 5185[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53), 5186[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55), 5187[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57), 5188[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59), 5189[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61), 5190[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63), 5191[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65), 5192[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67), 5193[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69), 5194[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71), 5195[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73), 5196[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75), 5197[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77), 5198[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79), 5199[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81), 5200[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83), 5201[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85), 5202[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87), 5203[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89), 5204[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91), 5205[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93), 5206[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95), 5207[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97), 5208[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99), 5209[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101), 5210[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103), 5211[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105), 5212[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107), 5213[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109), 5214[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111), 5215[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113), 5216[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115), 5217[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117), 5218[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119), 5219[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121), 5220[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123), 5221[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125), 5222[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127), 5223[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129), 5224[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131), 5225[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133), 5226[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135), 5227[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137), 5228[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139), 5229[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141), 5230[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143), 5231[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145), 5232[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147), 5233[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149), 5234[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151), 5235[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153), 5236[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155), 5237[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157), 5238[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159), 5239}; 5240 5241/* ======================================================================== */ 5242 5243/* return true if this is chip revision revision a */ 5244int is_ax(struct hfi1_devdata *dd) 5245{ 5246 u8 chip_rev_minor = 5247 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5248 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5249 return (chip_rev_minor & 0xf0) == 0; 5250} 5251 5252/* return true if this is chip revision revision b */ 5253int is_bx(struct hfi1_devdata *dd) 5254{ 5255 u8 chip_rev_minor = 5256 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5257 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5258 return (chip_rev_minor & 0xF0) == 0x10; 5259} 5260 5261/* return true is kernel urg disabled for rcd */ 5262bool is_urg_masked(struct hfi1_ctxtdata *rcd) 5263{ 5264 u64 mask; 5265 u32 is = IS_RCVURGENT_START + rcd->ctxt; 5266 u8 bit = is % 64; 5267 5268 mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64))); 5269 return !(mask & BIT_ULL(bit)); 5270} 5271 5272/* 5273 * Append string s to buffer buf. Arguments curp and len are the current 5274 * position and remaining length, respectively. 5275 * 5276 * return 0 on success, 1 on out of room 5277 */ 5278static int append_str(char *buf, char **curp, int *lenp, const char *s) 5279{ 5280 char *p = *curp; 5281 int len = *lenp; 5282 int result = 0; /* success */ 5283 char c; 5284 5285 /* add a comma, if first in the buffer */ 5286 if (p != buf) { 5287 if (len == 0) { 5288 result = 1; /* out of room */ 5289 goto done; 5290 } 5291 *p++ = ','; 5292 len--; 5293 } 5294 5295 /* copy the string */ 5296 while ((c = *s++) != 0) { 5297 if (len == 0) { 5298 result = 1; /* out of room */ 5299 goto done; 5300 } 5301 *p++ = c; 5302 len--; 5303 } 5304 5305done: 5306 /* write return values */ 5307 *curp = p; 5308 *lenp = len; 5309 5310 return result; 5311} 5312 5313/* 5314 * Using the given flag table, print a comma separated string into 5315 * the buffer. End in '*' if the buffer is too short. 5316 */ 5317static char *flag_string(char *buf, int buf_len, u64 flags, 5318 struct flag_table *table, int table_size) 5319{ 5320 char extra[32]; 5321 char *p = buf; 5322 int len = buf_len; 5323 int no_room = 0; 5324 int i; 5325 5326 /* make sure there is at least 2 so we can form "*" */ 5327 if (len < 2) 5328 return ""; 5329 5330 len--; /* leave room for a nul */ 5331 for (i = 0; i < table_size; i++) { 5332 if (flags & table[i].flag) { 5333 no_room = append_str(buf, &p, &len, table[i].str); 5334 if (no_room) 5335 break; 5336 flags &= ~table[i].flag; 5337 } 5338 } 5339 5340 /* any undocumented bits left? */ 5341 if (!no_room && flags) { 5342 snprintf(extra, sizeof(extra), "bits 0x%llx", flags); 5343 no_room = append_str(buf, &p, &len, extra); 5344 } 5345 5346 /* add * if ran out of room */ 5347 if (no_room) { 5348 /* may need to back up to add space for a '*' */ 5349 if (len == 0) 5350 --p; 5351 *p++ = '*'; 5352 } 5353 5354 /* add final nul - space already allocated above */ 5355 *p = 0; 5356 return buf; 5357} 5358 5359/* first 8 CCE error interrupt source names */ 5360static const char * const cce_misc_names[] = { 5361 "CceErrInt", /* 0 */ 5362 "RxeErrInt", /* 1 */ 5363 "MiscErrInt", /* 2 */ 5364 "Reserved3", /* 3 */ 5365 "PioErrInt", /* 4 */ 5366 "SDmaErrInt", /* 5 */ 5367 "EgressErrInt", /* 6 */ 5368 "TxeErrInt" /* 7 */ 5369}; 5370 5371/* 5372 * Return the miscellaneous error interrupt name. 5373 */ 5374static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source) 5375{ 5376 if (source < ARRAY_SIZE(cce_misc_names)) 5377 strncpy(buf, cce_misc_names[source], bsize); 5378 else 5379 snprintf(buf, bsize, "Reserved%u", 5380 source + IS_GENERAL_ERR_START); 5381 5382 return buf; 5383} 5384 5385/* 5386 * Return the SDMA engine error interrupt name. 5387 */ 5388static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source) 5389{ 5390 snprintf(buf, bsize, "SDmaEngErrInt%u", source); 5391 return buf; 5392} 5393 5394/* 5395 * Return the send context error interrupt name. 5396 */ 5397static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source) 5398{ 5399 snprintf(buf, bsize, "SendCtxtErrInt%u", source); 5400 return buf; 5401} 5402 5403static const char * const various_names[] = { 5404 "PbcInt", 5405 "GpioAssertInt", 5406 "Qsfp1Int", 5407 "Qsfp2Int", 5408 "TCritInt" 5409}; 5410 5411/* 5412 * Return the various interrupt name. 5413 */ 5414static char *is_various_name(char *buf, size_t bsize, unsigned int source) 5415{ 5416 if (source < ARRAY_SIZE(various_names)) 5417 strncpy(buf, various_names[source], bsize); 5418 else 5419 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START); 5420 return buf; 5421} 5422 5423/* 5424 * Return the DC interrupt name. 5425 */ 5426static char *is_dc_name(char *buf, size_t bsize, unsigned int source) 5427{ 5428 static const char * const dc_int_names[] = { 5429 "common", 5430 "lcb", 5431 "8051", 5432 "lbm" /* local block merge */ 5433 }; 5434 5435 if (source < ARRAY_SIZE(dc_int_names)) 5436 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]); 5437 else 5438 snprintf(buf, bsize, "DCInt%u", source); 5439 return buf; 5440} 5441 5442static const char * const sdma_int_names[] = { 5443 "SDmaInt", 5444 "SdmaIdleInt", 5445 "SdmaProgressInt", 5446}; 5447 5448/* 5449 * Return the SDMA engine interrupt name. 5450 */ 5451static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source) 5452{ 5453 /* what interrupt */ 5454 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 5455 /* which engine */ 5456 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 5457 5458 if (likely(what < 3)) 5459 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which); 5460 else 5461 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source); 5462 return buf; 5463} 5464 5465/* 5466 * Return the receive available interrupt name. 5467 */ 5468static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source) 5469{ 5470 snprintf(buf, bsize, "RcvAvailInt%u", source); 5471 return buf; 5472} 5473 5474/* 5475 * Return the receive urgent interrupt name. 5476 */ 5477static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source) 5478{ 5479 snprintf(buf, bsize, "RcvUrgentInt%u", source); 5480 return buf; 5481} 5482 5483/* 5484 * Return the send credit interrupt name. 5485 */ 5486static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source) 5487{ 5488 snprintf(buf, bsize, "SendCreditInt%u", source); 5489 return buf; 5490} 5491 5492/* 5493 * Return the reserved interrupt name. 5494 */ 5495static char *is_reserved_name(char *buf, size_t bsize, unsigned int source) 5496{ 5497 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START); 5498 return buf; 5499} 5500 5501static char *cce_err_status_string(char *buf, int buf_len, u64 flags) 5502{ 5503 return flag_string(buf, buf_len, flags, 5504 cce_err_status_flags, 5505 ARRAY_SIZE(cce_err_status_flags)); 5506} 5507 5508static char *rxe_err_status_string(char *buf, int buf_len, u64 flags) 5509{ 5510 return flag_string(buf, buf_len, flags, 5511 rxe_err_status_flags, 5512 ARRAY_SIZE(rxe_err_status_flags)); 5513} 5514 5515static char *misc_err_status_string(char *buf, int buf_len, u64 flags) 5516{ 5517 return flag_string(buf, buf_len, flags, misc_err_status_flags, 5518 ARRAY_SIZE(misc_err_status_flags)); 5519} 5520 5521static char *pio_err_status_string(char *buf, int buf_len, u64 flags) 5522{ 5523 return flag_string(buf, buf_len, flags, 5524 pio_err_status_flags, 5525 ARRAY_SIZE(pio_err_status_flags)); 5526} 5527 5528static char *sdma_err_status_string(char *buf, int buf_len, u64 flags) 5529{ 5530 return flag_string(buf, buf_len, flags, 5531 sdma_err_status_flags, 5532 ARRAY_SIZE(sdma_err_status_flags)); 5533} 5534 5535static char *egress_err_status_string(char *buf, int buf_len, u64 flags) 5536{ 5537 return flag_string(buf, buf_len, flags, 5538 egress_err_status_flags, 5539 ARRAY_SIZE(egress_err_status_flags)); 5540} 5541 5542static char *egress_err_info_string(char *buf, int buf_len, u64 flags) 5543{ 5544 return flag_string(buf, buf_len, flags, 5545 egress_err_info_flags, 5546 ARRAY_SIZE(egress_err_info_flags)); 5547} 5548 5549static char *send_err_status_string(char *buf, int buf_len, u64 flags) 5550{ 5551 return flag_string(buf, buf_len, flags, 5552 send_err_status_flags, 5553 ARRAY_SIZE(send_err_status_flags)); 5554} 5555 5556static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5557{ 5558 char buf[96]; 5559 int i = 0; 5560 5561 /* 5562 * For most these errors, there is nothing that can be done except 5563 * report or record it. 5564 */ 5565 dd_dev_info(dd, "CCE Error: %s\n", 5566 cce_err_status_string(buf, sizeof(buf), reg)); 5567 5568 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) && 5569 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) { 5570 /* this error requires a manual drop into SPC freeze mode */ 5571 /* then a fix up */ 5572 start_freeze_handling(dd->pport, FREEZE_SELF); 5573 } 5574 5575 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) { 5576 if (reg & (1ull << i)) { 5577 incr_cntr64(&dd->cce_err_status_cnt[i]); 5578 /* maintain a counter over all cce_err_status errors */ 5579 incr_cntr64(&dd->sw_cce_err_status_aggregate); 5580 } 5581 } 5582} 5583 5584/* 5585 * Check counters for receive errors that do not have an interrupt 5586 * associated with them. 5587 */ 5588#define RCVERR_CHECK_TIME 10 5589static void update_rcverr_timer(struct timer_list *t) 5590{ 5591 struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer); 5592 struct hfi1_pportdata *ppd = dd->pport; 5593 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL); 5594 5595 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt && 5596 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) { 5597 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__); 5598 set_link_down_reason( 5599 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0, 5600 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN); 5601 queue_work(ppd->link_wq, &ppd->link_bounce_work); 5602 } 5603 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt; 5604 5605 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5606} 5607 5608static int init_rcverr(struct hfi1_devdata *dd) 5609{ 5610 timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0); 5611 /* Assume the hardware counter has been reset */ 5612 dd->rcv_ovfl_cnt = 0; 5613 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5614} 5615 5616static void free_rcverr(struct hfi1_devdata *dd) 5617{ 5618 if (dd->rcverr_timer.function) 5619 del_timer_sync(&dd->rcverr_timer); 5620} 5621 5622static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5623{ 5624 char buf[96]; 5625 int i = 0; 5626 5627 dd_dev_info(dd, "Receive Error: %s\n", 5628 rxe_err_status_string(buf, sizeof(buf), reg)); 5629 5630 if (reg & ALL_RXE_FREEZE_ERR) { 5631 int flags = 0; 5632 5633 /* 5634 * Freeze mode recovery is disabled for the errors 5635 * in RXE_FREEZE_ABORT_MASK 5636 */ 5637 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK)) 5638 flags = FREEZE_ABORT; 5639 5640 start_freeze_handling(dd->pport, flags); 5641 } 5642 5643 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) { 5644 if (reg & (1ull << i)) 5645 incr_cntr64(&dd->rcv_err_status_cnt[i]); 5646 } 5647} 5648 5649static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5650{ 5651 char buf[96]; 5652 int i = 0; 5653 5654 dd_dev_info(dd, "Misc Error: %s", 5655 misc_err_status_string(buf, sizeof(buf), reg)); 5656 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) { 5657 if (reg & (1ull << i)) 5658 incr_cntr64(&dd->misc_err_status_cnt[i]); 5659 } 5660} 5661 5662static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5663{ 5664 char buf[96]; 5665 int i = 0; 5666 5667 dd_dev_info(dd, "PIO Error: %s\n", 5668 pio_err_status_string(buf, sizeof(buf), reg)); 5669 5670 if (reg & ALL_PIO_FREEZE_ERR) 5671 start_freeze_handling(dd->pport, 0); 5672 5673 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) { 5674 if (reg & (1ull << i)) 5675 incr_cntr64(&dd->send_pio_err_status_cnt[i]); 5676 } 5677} 5678 5679static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5680{ 5681 char buf[96]; 5682 int i = 0; 5683 5684 dd_dev_info(dd, "SDMA Error: %s\n", 5685 sdma_err_status_string(buf, sizeof(buf), reg)); 5686 5687 if (reg & ALL_SDMA_FREEZE_ERR) 5688 start_freeze_handling(dd->pport, 0); 5689 5690 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) { 5691 if (reg & (1ull << i)) 5692 incr_cntr64(&dd->send_dma_err_status_cnt[i]); 5693 } 5694} 5695 5696static inline void __count_port_discards(struct hfi1_pportdata *ppd) 5697{ 5698 incr_cntr64(&ppd->port_xmit_discards); 5699} 5700 5701static void count_port_inactive(struct hfi1_devdata *dd) 5702{ 5703 __count_port_discards(dd->pport); 5704} 5705 5706/* 5707 * We have had a "disallowed packet" error during egress. Determine the 5708 * integrity check which failed, and update relevant error counter, etc. 5709 * 5710 * Note that the SEND_EGRESS_ERR_INFO register has only a single 5711 * bit of state per integrity check, and so we can miss the reason for an 5712 * egress error if more than one packet fails the same integrity check 5713 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO. 5714 */ 5715static void handle_send_egress_err_info(struct hfi1_devdata *dd, 5716 int vl) 5717{ 5718 struct hfi1_pportdata *ppd = dd->pport; 5719 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */ 5720 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO); 5721 char buf[96]; 5722 5723 /* clear down all observed info as quickly as possible after read */ 5724 write_csr(dd, SEND_EGRESS_ERR_INFO, info); 5725 5726 dd_dev_info(dd, 5727 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n", 5728 info, egress_err_info_string(buf, sizeof(buf), info), src); 5729 5730 /* Eventually add other counters for each bit */ 5731 if (info & PORT_DISCARD_EGRESS_ERRS) { 5732 int weight, i; 5733 5734 /* 5735 * Count all applicable bits as individual errors and 5736 * attribute them to the packet that triggered this handler. 5737 * This may not be completely accurate due to limitations 5738 * on the available hardware error information. There is 5739 * a single information register and any number of error 5740 * packets may have occurred and contributed to it before 5741 * this routine is called. This means that: 5742 * a) If multiple packets with the same error occur before 5743 * this routine is called, earlier packets are missed. 5744 * There is only a single bit for each error type. 5745 * b) Errors may not be attributed to the correct VL. 5746 * The driver is attributing all bits in the info register 5747 * to the packet that triggered this call, but bits 5748 * could be an accumulation of different packets with 5749 * different VLs. 5750 * c) A single error packet may have multiple counts attached 5751 * to it. There is no way for the driver to know if 5752 * multiple bits set in the info register are due to a 5753 * single packet or multiple packets. The driver assumes 5754 * multiple packets. 5755 */ 5756 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS); 5757 for (i = 0; i < weight; i++) { 5758 __count_port_discards(ppd); 5759 if (vl >= 0 && vl < TXE_NUM_DATA_VL) 5760 incr_cntr64(&ppd->port_xmit_discards_vl[vl]); 5761 else if (vl == 15) 5762 incr_cntr64(&ppd->port_xmit_discards_vl 5763 [C_VL_15]); 5764 } 5765 } 5766} 5767 5768/* 5769 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5770 * register. Does it represent a 'port inactive' error? 5771 */ 5772static inline int port_inactive_err(u64 posn) 5773{ 5774 return (posn >= SEES(TX_LINKDOWN) && 5775 posn <= SEES(TX_INCORRECT_LINK_STATE)); 5776} 5777 5778/* 5779 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5780 * register. Does it represent a 'disallowed packet' error? 5781 */ 5782static inline int disallowed_pkt_err(int posn) 5783{ 5784 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) && 5785 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET)); 5786} 5787 5788/* 5789 * Input value is a bit position of one of the SDMA engine disallowed 5790 * packet errors. Return which engine. Use of this must be guarded by 5791 * disallowed_pkt_err(). 5792 */ 5793static inline int disallowed_pkt_engine(int posn) 5794{ 5795 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET); 5796} 5797 5798/* 5799 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot 5800 * be done. 5801 */ 5802static int engine_to_vl(struct hfi1_devdata *dd, int engine) 5803{ 5804 struct sdma_vl_map *m; 5805 int vl; 5806 5807 /* range check */ 5808 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES) 5809 return -1; 5810 5811 rcu_read_lock(); 5812 m = rcu_dereference(dd->sdma_map); 5813 vl = m->engine_to_vl[engine]; 5814 rcu_read_unlock(); 5815 5816 return vl; 5817} 5818 5819/* 5820 * Translate the send context (sofware index) into a VL. Return -1 if the 5821 * translation cannot be done. 5822 */ 5823static int sc_to_vl(struct hfi1_devdata *dd, int sw_index) 5824{ 5825 struct send_context_info *sci; 5826 struct send_context *sc; 5827 int i; 5828 5829 sci = &dd->send_contexts[sw_index]; 5830 5831 /* there is no information for user (PSM) and ack contexts */ 5832 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15)) 5833 return -1; 5834 5835 sc = sci->sc; 5836 if (!sc) 5837 return -1; 5838 if (dd->vld[15].sc == sc) 5839 return 15; 5840 for (i = 0; i < num_vls; i++) 5841 if (dd->vld[i].sc == sc) 5842 return i; 5843 5844 return -1; 5845} 5846 5847static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5848{ 5849 u64 reg_copy = reg, handled = 0; 5850 char buf[96]; 5851 int i = 0; 5852 5853 if (reg & ALL_TXE_EGRESS_FREEZE_ERR) 5854 start_freeze_handling(dd->pport, 0); 5855 else if (is_ax(dd) && 5856 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) && 5857 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) 5858 start_freeze_handling(dd->pport, 0); 5859 5860 while (reg_copy) { 5861 int posn = fls64(reg_copy); 5862 /* fls64() returns a 1-based offset, we want it zero based */ 5863 int shift = posn - 1; 5864 u64 mask = 1ULL << shift; 5865 5866 if (port_inactive_err(shift)) { 5867 count_port_inactive(dd); 5868 handled |= mask; 5869 } else if (disallowed_pkt_err(shift)) { 5870 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift)); 5871 5872 handle_send_egress_err_info(dd, vl); 5873 handled |= mask; 5874 } 5875 reg_copy &= ~mask; 5876 } 5877 5878 reg &= ~handled; 5879 5880 if (reg) 5881 dd_dev_info(dd, "Egress Error: %s\n", 5882 egress_err_status_string(buf, sizeof(buf), reg)); 5883 5884 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) { 5885 if (reg & (1ull << i)) 5886 incr_cntr64(&dd->send_egress_err_status_cnt[i]); 5887 } 5888} 5889 5890static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5891{ 5892 char buf[96]; 5893 int i = 0; 5894 5895 dd_dev_info(dd, "Send Error: %s\n", 5896 send_err_status_string(buf, sizeof(buf), reg)); 5897 5898 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) { 5899 if (reg & (1ull << i)) 5900 incr_cntr64(&dd->send_err_status_cnt[i]); 5901 } 5902} 5903 5904/* 5905 * The maximum number of times the error clear down will loop before 5906 * blocking a repeating error. This value is arbitrary. 5907 */ 5908#define MAX_CLEAR_COUNT 20 5909 5910/* 5911 * Clear and handle an error register. All error interrupts are funneled 5912 * through here to have a central location to correctly handle single- 5913 * or multi-shot errors. 5914 * 5915 * For non per-context registers, call this routine with a context value 5916 * of 0 so the per-context offset is zero. 5917 * 5918 * If the handler loops too many times, assume that something is wrong 5919 * and can't be fixed, so mask the error bits. 5920 */ 5921static void interrupt_clear_down(struct hfi1_devdata *dd, 5922 u32 context, 5923 const struct err_reg_info *eri) 5924{ 5925 u64 reg; 5926 u32 count; 5927 5928 /* read in a loop until no more errors are seen */ 5929 count = 0; 5930 while (1) { 5931 reg = read_kctxt_csr(dd, context, eri->status); 5932 if (reg == 0) 5933 break; 5934 write_kctxt_csr(dd, context, eri->clear, reg); 5935 if (likely(eri->handler)) 5936 eri->handler(dd, context, reg); 5937 count++; 5938 if (count > MAX_CLEAR_COUNT) { 5939 u64 mask; 5940 5941 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n", 5942 eri->desc, reg); 5943 /* 5944 * Read-modify-write so any other masked bits 5945 * remain masked. 5946 */ 5947 mask = read_kctxt_csr(dd, context, eri->mask); 5948 mask &= ~reg; 5949 write_kctxt_csr(dd, context, eri->mask, mask); 5950 break; 5951 } 5952 } 5953} 5954 5955/* 5956 * CCE block "misc" interrupt. Source is < 16. 5957 */ 5958static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source) 5959{ 5960 const struct err_reg_info *eri = &misc_errs[source]; 5961 5962 if (eri->handler) { 5963 interrupt_clear_down(dd, 0, eri); 5964 } else { 5965 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n", 5966 source); 5967 } 5968} 5969 5970static char *send_context_err_status_string(char *buf, int buf_len, u64 flags) 5971{ 5972 return flag_string(buf, buf_len, flags, 5973 sc_err_status_flags, 5974 ARRAY_SIZE(sc_err_status_flags)); 5975} 5976 5977/* 5978 * Send context error interrupt. Source (hw_context) is < 160. 5979 * 5980 * All send context errors cause the send context to halt. The normal 5981 * clear-down mechanism cannot be used because we cannot clear the 5982 * error bits until several other long-running items are done first. 5983 * This is OK because with the context halted, nothing else is going 5984 * to happen on it anyway. 5985 */ 5986static void is_sendctxt_err_int(struct hfi1_devdata *dd, 5987 unsigned int hw_context) 5988{ 5989 struct send_context_info *sci; 5990 struct send_context *sc; 5991 char flags[96]; 5992 u64 status; 5993 u32 sw_index; 5994 int i = 0; 5995 unsigned long irq_flags; 5996 5997 sw_index = dd->hw_to_sw[hw_context]; 5998 if (sw_index >= dd->num_send_contexts) { 5999 dd_dev_err(dd, 6000 "out of range sw index %u for send context %u\n", 6001 sw_index, hw_context); 6002 return; 6003 } 6004 sci = &dd->send_contexts[sw_index]; 6005 spin_lock_irqsave(&dd->sc_lock, irq_flags); 6006 sc = sci->sc; 6007 if (!sc) { 6008 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__, 6009 sw_index, hw_context); 6010 spin_unlock_irqrestore(&dd->sc_lock, irq_flags); 6011 return; 6012 } 6013 6014 /* tell the software that a halt has begun */ 6015 sc_stop(sc, SCF_HALTED); 6016 6017 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS); 6018 6019 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context, 6020 send_context_err_status_string(flags, sizeof(flags), 6021 status)); 6022 6023 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK) 6024 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index)); 6025 6026 /* 6027 * Automatically restart halted kernel contexts out of interrupt 6028 * context. User contexts must ask the driver to restart the context. 6029 */ 6030 if (sc->type != SC_USER) 6031 queue_work(dd->pport->hfi1_wq, &sc->halt_work); 6032 spin_unlock_irqrestore(&dd->sc_lock, irq_flags); 6033 6034 /* 6035 * Update the counters for the corresponding status bits. 6036 * Note that these particular counters are aggregated over all 6037 * 160 contexts. 6038 */ 6039 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) { 6040 if (status & (1ull << i)) 6041 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]); 6042 } 6043} 6044 6045static void handle_sdma_eng_err(struct hfi1_devdata *dd, 6046 unsigned int source, u64 status) 6047{ 6048 struct sdma_engine *sde; 6049 int i = 0; 6050 6051 sde = &dd->per_sdma[source]; 6052#ifdef CONFIG_SDMA_VERBOSITY 6053 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 6054 slashstrip(__FILE__), __LINE__, __func__); 6055 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n", 6056 sde->this_idx, source, (unsigned long long)status); 6057#endif 6058 sde->err_cnt++; 6059 sdma_engine_error(sde, status); 6060 6061 /* 6062 * Update the counters for the corresponding status bits. 6063 * Note that these particular counters are aggregated over 6064 * all 16 DMA engines. 6065 */ 6066 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) { 6067 if (status & (1ull << i)) 6068 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]); 6069 } 6070} 6071 6072/* 6073 * CCE block SDMA error interrupt. Source is < 16. 6074 */ 6075static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source) 6076{ 6077#ifdef CONFIG_SDMA_VERBOSITY 6078 struct sdma_engine *sde = &dd->per_sdma[source]; 6079 6080 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 6081 slashstrip(__FILE__), __LINE__, __func__); 6082 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx, 6083 source); 6084 sdma_dumpstate(sde); 6085#endif 6086 interrupt_clear_down(dd, source, &sdma_eng_err); 6087} 6088 6089/* 6090 * CCE block "various" interrupt. Source is < 8. 6091 */ 6092static void is_various_int(struct hfi1_devdata *dd, unsigned int source) 6093{ 6094 const struct err_reg_info *eri = &various_err[source]; 6095 6096 /* 6097 * TCritInt cannot go through interrupt_clear_down() 6098 * because it is not a second tier interrupt. The handler 6099 * should be called directly. 6100 */ 6101 if (source == TCRIT_INT_SOURCE) 6102 handle_temp_err(dd); 6103 else if (eri->handler) 6104 interrupt_clear_down(dd, 0, eri); 6105 else 6106 dd_dev_info(dd, 6107 "%s: Unimplemented/reserved interrupt %d\n", 6108 __func__, source); 6109} 6110 6111static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg) 6112{ 6113 /* src_ctx is always zero */ 6114 struct hfi1_pportdata *ppd = dd->pport; 6115 unsigned long flags; 6116 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 6117 6118 if (reg & QSFP_HFI0_MODPRST_N) { 6119 if (!qsfp_mod_present(ppd)) { 6120 dd_dev_info(dd, "%s: QSFP module removed\n", 6121 __func__); 6122 6123 ppd->driver_link_ready = 0; 6124 /* 6125 * Cable removed, reset all our information about the 6126 * cache and cable capabilities 6127 */ 6128 6129 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6130 /* 6131 * We don't set cache_refresh_required here as we expect 6132 * an interrupt when a cable is inserted 6133 */ 6134 ppd->qsfp_info.cache_valid = 0; 6135 ppd->qsfp_info.reset_needed = 0; 6136 ppd->qsfp_info.limiting_active = 0; 6137 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6138 flags); 6139 /* Invert the ModPresent pin now to detect plug-in */ 6140 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6141 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6142 6143 if ((ppd->offline_disabled_reason > 6144 HFI1_ODR_MASK( 6145 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) || 6146 (ppd->offline_disabled_reason == 6147 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))) 6148 ppd->offline_disabled_reason = 6149 HFI1_ODR_MASK( 6150 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED); 6151 6152 if (ppd->host_link_state == HLS_DN_POLL) { 6153 /* 6154 * The link is still in POLL. This means 6155 * that the normal link down processing 6156 * will not happen. We have to do it here 6157 * before turning the DC off. 6158 */ 6159 queue_work(ppd->link_wq, &ppd->link_down_work); 6160 } 6161 } else { 6162 dd_dev_info(dd, "%s: QSFP module inserted\n", 6163 __func__); 6164 6165 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6166 ppd->qsfp_info.cache_valid = 0; 6167 ppd->qsfp_info.cache_refresh_required = 1; 6168 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6169 flags); 6170 6171 /* 6172 * Stop inversion of ModPresent pin to detect 6173 * removal of the cable 6174 */ 6175 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N; 6176 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6177 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6178 6179 ppd->offline_disabled_reason = 6180 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 6181 } 6182 } 6183 6184 if (reg & QSFP_HFI0_INT_N) { 6185 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n", 6186 __func__); 6187 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6188 ppd->qsfp_info.check_interrupt_flags = 1; 6189 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags); 6190 } 6191 6192 /* Schedule the QSFP work only if there is a cable attached. */ 6193 if (qsfp_mod_present(ppd)) 6194 queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work); 6195} 6196 6197static int request_host_lcb_access(struct hfi1_devdata *dd) 6198{ 6199 int ret; 6200 6201 ret = do_8051_command(dd, HCMD_MISC, 6202 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << 6203 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6204 if (ret != HCMD_SUCCESS) { 6205 dd_dev_err(dd, "%s: command failed with error %d\n", 6206 __func__, ret); 6207 } 6208 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6209} 6210 6211static int request_8051_lcb_access(struct hfi1_devdata *dd) 6212{ 6213 int ret; 6214 6215 ret = do_8051_command(dd, HCMD_MISC, 6216 (u64)HCMD_MISC_GRANT_LCB_ACCESS << 6217 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6218 if (ret != HCMD_SUCCESS) { 6219 dd_dev_err(dd, "%s: command failed with error %d\n", 6220 __func__, ret); 6221 } 6222 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6223} 6224 6225/* 6226 * Set the LCB selector - allow host access. The DCC selector always 6227 * points to the host. 6228 */ 6229static inline void set_host_lcb_access(struct hfi1_devdata *dd) 6230{ 6231 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6232 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK | 6233 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK); 6234} 6235 6236/* 6237 * Clear the LCB selector - allow 8051 access. The DCC selector always 6238 * points to the host. 6239 */ 6240static inline void set_8051_lcb_access(struct hfi1_devdata *dd) 6241{ 6242 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6243 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK); 6244} 6245 6246/* 6247 * Acquire LCB access from the 8051. If the host already has access, 6248 * just increment a counter. Otherwise, inform the 8051 that the 6249 * host is taking access. 6250 * 6251 * Returns: 6252 * 0 on success 6253 * -EBUSY if the 8051 has control and cannot be disturbed 6254 * -errno if unable to acquire access from the 8051 6255 */ 6256int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6257{ 6258 struct hfi1_pportdata *ppd = dd->pport; 6259 int ret = 0; 6260 6261 /* 6262 * Use the host link state lock so the operation of this routine 6263 * { link state check, selector change, count increment } can occur 6264 * as a unit against a link state change. Otherwise there is a 6265 * race between the state change and the count increment. 6266 */ 6267 if (sleep_ok) { 6268 mutex_lock(&ppd->hls_lock); 6269 } else { 6270 while (!mutex_trylock(&ppd->hls_lock)) 6271 udelay(1); 6272 } 6273 6274 /* this access is valid only when the link is up */ 6275 if (ppd->host_link_state & HLS_DOWN) { 6276 dd_dev_info(dd, "%s: link state %s not up\n", 6277 __func__, link_state_name(ppd->host_link_state)); 6278 ret = -EBUSY; 6279 goto done; 6280 } 6281 6282 if (dd->lcb_access_count == 0) { 6283 ret = request_host_lcb_access(dd); 6284 if (ret) { 6285 dd_dev_err(dd, 6286 "%s: unable to acquire LCB access, err %d\n", 6287 __func__, ret); 6288 goto done; 6289 } 6290 set_host_lcb_access(dd); 6291 } 6292 dd->lcb_access_count++; 6293done: 6294 mutex_unlock(&ppd->hls_lock); 6295 return ret; 6296} 6297 6298/* 6299 * Release LCB access by decrementing the use count. If the count is moving 6300 * from 1 to 0, inform 8051 that it has control back. 6301 * 6302 * Returns: 6303 * 0 on success 6304 * -errno if unable to release access to the 8051 6305 */ 6306int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6307{ 6308 int ret = 0; 6309 6310 /* 6311 * Use the host link state lock because the acquire needed it. 6312 * Here, we only need to keep { selector change, count decrement } 6313 * as a unit. 6314 */ 6315 if (sleep_ok) { 6316 mutex_lock(&dd->pport->hls_lock); 6317 } else { 6318 while (!mutex_trylock(&dd->pport->hls_lock)) 6319 udelay(1); 6320 } 6321 6322 if (dd->lcb_access_count == 0) { 6323 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n", 6324 __func__); 6325 goto done; 6326 } 6327 6328 if (dd->lcb_access_count == 1) { 6329 set_8051_lcb_access(dd); 6330 ret = request_8051_lcb_access(dd); 6331 if (ret) { 6332 dd_dev_err(dd, 6333 "%s: unable to release LCB access, err %d\n", 6334 __func__, ret); 6335 /* restore host access if the grant didn't work */ 6336 set_host_lcb_access(dd); 6337 goto done; 6338 } 6339 } 6340 dd->lcb_access_count--; 6341done: 6342 mutex_unlock(&dd->pport->hls_lock); 6343 return ret; 6344} 6345 6346/* 6347 * Initialize LCB access variables and state. Called during driver load, 6348 * after most of the initialization is finished. 6349 * 6350 * The DC default is LCB access on for the host. The driver defaults to 6351 * leaving access to the 8051. Assign access now - this constrains the call 6352 * to this routine to be after all LCB set-up is done. In particular, after 6353 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts() 6354 */ 6355static void init_lcb_access(struct hfi1_devdata *dd) 6356{ 6357 dd->lcb_access_count = 0; 6358} 6359 6360/* 6361 * Write a response back to a 8051 request. 6362 */ 6363static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data) 6364{ 6365 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 6366 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK | 6367 (u64)return_code << 6368 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT | 6369 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 6370} 6371 6372/* 6373 * Handle host requests from the 8051. 6374 */ 6375static void handle_8051_request(struct hfi1_pportdata *ppd) 6376{ 6377 struct hfi1_devdata *dd = ppd->dd; 6378 u64 reg; 6379 u16 data = 0; 6380 u8 type; 6381 6382 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1); 6383 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0) 6384 return; /* no request */ 6385 6386 /* zero out COMPLETED so the response is seen */ 6387 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0); 6388 6389 /* extract request details */ 6390 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT) 6391 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK; 6392 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT) 6393 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK; 6394 6395 switch (type) { 6396 case HREQ_LOAD_CONFIG: 6397 case HREQ_SAVE_CONFIG: 6398 case HREQ_READ_CONFIG: 6399 case HREQ_SET_TX_EQ_ABS: 6400 case HREQ_SET_TX_EQ_REL: 6401 case HREQ_ENABLE: 6402 dd_dev_info(dd, "8051 request: request 0x%x not supported\n", 6403 type); 6404 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6405 break; 6406 case HREQ_LCB_RESET: 6407 /* Put the LCB, RX FPE and TX FPE into reset */ 6408 write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET); 6409 /* Make sure the write completed */ 6410 (void)read_csr(dd, DCC_CFG_RESET); 6411 /* Hold the reset long enough to take effect */ 6412 udelay(1); 6413 /* Take the LCB, RX FPE and TX FPE out of reset */ 6414 write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET); 6415 hreq_response(dd, HREQ_SUCCESS, 0); 6416 6417 break; 6418 case HREQ_CONFIG_DONE: 6419 hreq_response(dd, HREQ_SUCCESS, 0); 6420 break; 6421 6422 case HREQ_INTERFACE_TEST: 6423 hreq_response(dd, HREQ_SUCCESS, data); 6424 break; 6425 default: 6426 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type); 6427 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6428 break; 6429 } 6430} 6431 6432/* 6433 * Set up allocation unit vaulue. 6434 */ 6435void set_up_vau(struct hfi1_devdata *dd, u8 vau) 6436{ 6437 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 6438 6439 /* do not modify other values in the register */ 6440 reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK; 6441 reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT; 6442 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 6443} 6444 6445/* 6446 * Set up initial VL15 credits of the remote. Assumes the rest of 6447 * the CM credit registers are zero from a previous global or credit reset. 6448 * Shared limit for VL15 will always be 0. 6449 */ 6450void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf) 6451{ 6452 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 6453 6454 /* set initial values for total and shared credit limit */ 6455 reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK | 6456 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK); 6457 6458 /* 6459 * Set total limit to be equal to VL15 credits. 6460 * Leave shared limit at 0. 6461 */ 6462 reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT; 6463 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 6464 6465 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf 6466 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT); 6467} 6468 6469/* 6470 * Zero all credit details from the previous connection and 6471 * reset the CM manager's internal counters. 6472 */ 6473void reset_link_credits(struct hfi1_devdata *dd) 6474{ 6475 int i; 6476 6477 /* remove all previous VL credit limits */ 6478 for (i = 0; i < TXE_NUM_DATA_VL; i++) 6479 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 6480 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 6481 write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0); 6482 /* reset the CM block */ 6483 pio_send_control(dd, PSC_CM_RESET); 6484 /* reset cached value */ 6485 dd->vl15buf_cached = 0; 6486} 6487 6488/* convert a vCU to a CU */ 6489static u32 vcu_to_cu(u8 vcu) 6490{ 6491 return 1 << vcu; 6492} 6493 6494/* convert a CU to a vCU */ 6495static u8 cu_to_vcu(u32 cu) 6496{ 6497 return ilog2(cu); 6498} 6499 6500/* convert a vAU to an AU */ 6501static u32 vau_to_au(u8 vau) 6502{ 6503 return 8 * (1 << vau); 6504} 6505 6506static void set_linkup_defaults(struct hfi1_pportdata *ppd) 6507{ 6508 ppd->sm_trap_qp = 0x0; 6509 ppd->sa_qp = 0x1; 6510} 6511 6512/* 6513 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset. 6514 */ 6515static void lcb_shutdown(struct hfi1_devdata *dd, int abort) 6516{ 6517 u64 reg; 6518 6519 /* clear lcb run: LCB_CFG_RUN.EN = 0 */ 6520 write_csr(dd, DC_LCB_CFG_RUN, 0); 6521 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */ 6522 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 6523 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT); 6524 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */ 6525 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN); 6526 reg = read_csr(dd, DCC_CFG_RESET); 6527 write_csr(dd, DCC_CFG_RESET, reg | 6528 DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE); 6529 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */ 6530 if (!abort) { 6531 udelay(1); /* must hold for the longer of 16cclks or 20ns */ 6532 write_csr(dd, DCC_CFG_RESET, reg); 6533 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6534 } 6535} 6536 6537/* 6538 * This routine should be called after the link has been transitioned to 6539 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into 6540 * reset). 6541 * 6542 * The expectation is that the caller of this routine would have taken 6543 * care of properly transitioning the link into the correct state. 6544 * NOTE: the caller needs to acquire the dd->dc8051_lock lock 6545 * before calling this function. 6546 */ 6547static void _dc_shutdown(struct hfi1_devdata *dd) 6548{ 6549 lockdep_assert_held(&dd->dc8051_lock); 6550 6551 if (dd->dc_shutdown) 6552 return; 6553 6554 dd->dc_shutdown = 1; 6555 /* Shutdown the LCB */ 6556 lcb_shutdown(dd, 1); 6557 /* 6558 * Going to OFFLINE would have causes the 8051 to put the 6559 * SerDes into reset already. Just need to shut down the 8051, 6560 * itself. 6561 */ 6562 write_csr(dd, DC_DC8051_CFG_RST, 0x1); 6563} 6564 6565static void dc_shutdown(struct hfi1_devdata *dd) 6566{ 6567 mutex_lock(&dd->dc8051_lock); 6568 _dc_shutdown(dd); 6569 mutex_unlock(&dd->dc8051_lock); 6570} 6571 6572/* 6573 * Calling this after the DC has been brought out of reset should not 6574 * do any damage. 6575 * NOTE: the caller needs to acquire the dd->dc8051_lock lock 6576 * before calling this function. 6577 */ 6578static void _dc_start(struct hfi1_devdata *dd) 6579{ 6580 lockdep_assert_held(&dd->dc8051_lock); 6581 6582 if (!dd->dc_shutdown) 6583 return; 6584 6585 /* Take the 8051 out of reset */ 6586 write_csr(dd, DC_DC8051_CFG_RST, 0ull); 6587 /* Wait until 8051 is ready */ 6588 if (wait_fm_ready(dd, TIMEOUT_8051_START)) 6589 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n", 6590 __func__); 6591 6592 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */ 6593 write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET); 6594 /* lcb_shutdown() with abort=1 does not restore these */ 6595 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6596 dd->dc_shutdown = 0; 6597} 6598 6599static void dc_start(struct hfi1_devdata *dd) 6600{ 6601 mutex_lock(&dd->dc8051_lock); 6602 _dc_start(dd); 6603 mutex_unlock(&dd->dc8051_lock); 6604} 6605 6606/* 6607 * These LCB adjustments are for the Aurora SerDes core in the FPGA. 6608 */ 6609static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd) 6610{ 6611 u64 rx_radr, tx_radr; 6612 u32 version; 6613 6614 if (dd->icode != ICODE_FPGA_EMULATION) 6615 return; 6616 6617 /* 6618 * These LCB defaults on emulator _s are good, nothing to do here: 6619 * LCB_CFG_TX_FIFOS_RADR 6620 * LCB_CFG_RX_FIFOS_RADR 6621 * LCB_CFG_LN_DCLK 6622 * LCB_CFG_IGNORE_LOST_RCLK 6623 */ 6624 if (is_emulator_s(dd)) 6625 return; 6626 /* else this is _p */ 6627 6628 version = emulator_rev(dd); 6629 if (!is_ax(dd)) 6630 version = 0x2d; /* all B0 use 0x2d or higher settings */ 6631 6632 if (version <= 0x12) { 6633 /* release 0x12 and below */ 6634 6635 /* 6636 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9 6637 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9 6638 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa 6639 */ 6640 rx_radr = 6641 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6642 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6643 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6644 /* 6645 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default) 6646 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6 6647 */ 6648 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6649 } else if (version <= 0x18) { 6650 /* release 0x13 up to 0x18 */ 6651 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6652 rx_radr = 6653 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6654 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6655 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6656 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6657 } else if (version == 0x19) { 6658 /* release 0x19 */ 6659 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */ 6660 rx_radr = 6661 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6662 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6663 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6664 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6665 } else if (version == 0x1a) { 6666 /* release 0x1a */ 6667 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6668 rx_radr = 6669 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6670 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6671 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6672 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6673 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull); 6674 } else { 6675 /* release 0x1b and higher */ 6676 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */ 6677 rx_radr = 6678 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6679 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6680 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6681 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6682 } 6683 6684 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr); 6685 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */ 6686 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 6687 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK); 6688 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr); 6689} 6690 6691/* 6692 * Handle a SMA idle message 6693 * 6694 * This is a work-queue function outside of the interrupt. 6695 */ 6696void handle_sma_message(struct work_struct *work) 6697{ 6698 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6699 sma_message_work); 6700 struct hfi1_devdata *dd = ppd->dd; 6701 u64 msg; 6702 int ret; 6703 6704 /* 6705 * msg is bytes 1-4 of the 40-bit idle message - the command code 6706 * is stripped off 6707 */ 6708 ret = read_idle_sma(dd, &msg); 6709 if (ret) 6710 return; 6711 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg); 6712 /* 6713 * React to the SMA message. Byte[1] (0 for us) is the command. 6714 */ 6715 switch (msg & 0xff) { 6716 case SMA_IDLE_ARM: 6717 /* 6718 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6719 * State Transitions 6720 * 6721 * Only expected in INIT or ARMED, discard otherwise. 6722 */ 6723 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED)) 6724 ppd->neighbor_normal = 1; 6725 break; 6726 case SMA_IDLE_ACTIVE: 6727 /* 6728 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6729 * State Transitions 6730 * 6731 * Can activate the node. Discard otherwise. 6732 */ 6733 if (ppd->host_link_state == HLS_UP_ARMED && 6734 ppd->is_active_optimize_enabled) { 6735 ppd->neighbor_normal = 1; 6736 ret = set_link_state(ppd, HLS_UP_ACTIVE); 6737 if (ret) 6738 dd_dev_err( 6739 dd, 6740 "%s: received Active SMA idle message, couldn't set link to Active\n", 6741 __func__); 6742 } 6743 break; 6744 default: 6745 dd_dev_err(dd, 6746 "%s: received unexpected SMA idle message 0x%llx\n", 6747 __func__, msg); 6748 break; 6749 } 6750} 6751 6752static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear) 6753{ 6754 u64 rcvctrl; 6755 unsigned long flags; 6756 6757 spin_lock_irqsave(&dd->rcvctrl_lock, flags); 6758 rcvctrl = read_csr(dd, RCV_CTRL); 6759 rcvctrl |= add; 6760 rcvctrl &= ~clear; 6761 write_csr(dd, RCV_CTRL, rcvctrl); 6762 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags); 6763} 6764 6765static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add) 6766{ 6767 adjust_rcvctrl(dd, add, 0); 6768} 6769 6770static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear) 6771{ 6772 adjust_rcvctrl(dd, 0, clear); 6773} 6774 6775/* 6776 * Called from all interrupt handlers to start handling an SPC freeze. 6777 */ 6778void start_freeze_handling(struct hfi1_pportdata *ppd, int flags) 6779{ 6780 struct hfi1_devdata *dd = ppd->dd; 6781 struct send_context *sc; 6782 int i; 6783 int sc_flags; 6784 6785 if (flags & FREEZE_SELF) 6786 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6787 6788 /* enter frozen mode */ 6789 dd->flags |= HFI1_FROZEN; 6790 6791 /* notify all SDMA engines that they are going into a freeze */ 6792 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN)); 6793 6794 sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ? 6795 SCF_LINK_DOWN : 0); 6796 /* do halt pre-handling on all enabled send contexts */ 6797 for (i = 0; i < dd->num_send_contexts; i++) { 6798 sc = dd->send_contexts[i].sc; 6799 if (sc && (sc->flags & SCF_ENABLED)) 6800 sc_stop(sc, sc_flags); 6801 } 6802 6803 /* Send context are frozen. Notify user space */ 6804 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT); 6805 6806 if (flags & FREEZE_ABORT) { 6807 dd_dev_err(dd, 6808 "Aborted freeze recovery. Please REBOOT system\n"); 6809 return; 6810 } 6811 /* queue non-interrupt handler */ 6812 queue_work(ppd->hfi1_wq, &ppd->freeze_work); 6813} 6814 6815/* 6816 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen, 6817 * depending on the "freeze" parameter. 6818 * 6819 * No need to return an error if it times out, our only option 6820 * is to proceed anyway. 6821 */ 6822static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze) 6823{ 6824 unsigned long timeout; 6825 u64 reg; 6826 6827 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT); 6828 while (1) { 6829 reg = read_csr(dd, CCE_STATUS); 6830 if (freeze) { 6831 /* waiting until all indicators are set */ 6832 if ((reg & ALL_FROZE) == ALL_FROZE) 6833 return; /* all done */ 6834 } else { 6835 /* waiting until all indicators are clear */ 6836 if ((reg & ALL_FROZE) == 0) 6837 return; /* all done */ 6838 } 6839 6840 if (time_after(jiffies, timeout)) { 6841 dd_dev_err(dd, 6842 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing", 6843 freeze ? "" : "un", reg & ALL_FROZE, 6844 freeze ? ALL_FROZE : 0ull); 6845 return; 6846 } 6847 usleep_range(80, 120); 6848 } 6849} 6850 6851/* 6852 * Do all freeze handling for the RXE block. 6853 */ 6854static void rxe_freeze(struct hfi1_devdata *dd) 6855{ 6856 int i; 6857 struct hfi1_ctxtdata *rcd; 6858 6859 /* disable port */ 6860 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6861 6862 /* disable all receive contexts */ 6863 for (i = 0; i < dd->num_rcv_contexts; i++) { 6864 rcd = hfi1_rcd_get_by_index(dd, i); 6865 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd); 6866 hfi1_rcd_put(rcd); 6867 } 6868} 6869 6870/* 6871 * Unfreeze handling for the RXE block - kernel contexts only. 6872 * This will also enable the port. User contexts will do unfreeze 6873 * handling on a per-context basis as they call into the driver. 6874 * 6875 */ 6876static void rxe_kernel_unfreeze(struct hfi1_devdata *dd) 6877{ 6878 u32 rcvmask; 6879 u16 i; 6880 struct hfi1_ctxtdata *rcd; 6881 6882 /* enable all kernel contexts */ 6883 for (i = 0; i < dd->num_rcv_contexts; i++) { 6884 rcd = hfi1_rcd_get_by_index(dd, i); 6885 6886 /* Ensure all non-user contexts(including vnic) are enabled */ 6887 if (!rcd || 6888 (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) { 6889 hfi1_rcd_put(rcd); 6890 continue; 6891 } 6892 rcvmask = HFI1_RCVCTRL_CTXT_ENB; 6893 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */ 6894 rcvmask |= hfi1_rcvhdrtail_kvaddr(rcd) ? 6895 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 6896 hfi1_rcvctrl(dd, rcvmask, rcd); 6897 hfi1_rcd_put(rcd); 6898 } 6899 6900 /* enable port */ 6901 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6902} 6903 6904/* 6905 * Non-interrupt SPC freeze handling. 6906 * 6907 * This is a work-queue function outside of the triggering interrupt. 6908 */ 6909void handle_freeze(struct work_struct *work) 6910{ 6911 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6912 freeze_work); 6913 struct hfi1_devdata *dd = ppd->dd; 6914 6915 /* wait for freeze indicators on all affected blocks */ 6916 wait_for_freeze_status(dd, 1); 6917 6918 /* SPC is now frozen */ 6919 6920 /* do send PIO freeze steps */ 6921 pio_freeze(dd); 6922 6923 /* do send DMA freeze steps */ 6924 sdma_freeze(dd); 6925 6926 /* do send egress freeze steps - nothing to do */ 6927 6928 /* do receive freeze steps */ 6929 rxe_freeze(dd); 6930 6931 /* 6932 * Unfreeze the hardware - clear the freeze, wait for each 6933 * block's frozen bit to clear, then clear the frozen flag. 6934 */ 6935 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6936 wait_for_freeze_status(dd, 0); 6937 6938 if (is_ax(dd)) { 6939 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6940 wait_for_freeze_status(dd, 1); 6941 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6942 wait_for_freeze_status(dd, 0); 6943 } 6944 6945 /* do send PIO unfreeze steps for kernel contexts */ 6946 pio_kernel_unfreeze(dd); 6947 6948 /* do send DMA unfreeze steps */ 6949 sdma_unfreeze(dd); 6950 6951 /* do send egress unfreeze steps - nothing to do */ 6952 6953 /* do receive unfreeze steps for kernel contexts */ 6954 rxe_kernel_unfreeze(dd); 6955 6956 /* 6957 * The unfreeze procedure touches global device registers when 6958 * it disables and re-enables RXE. Mark the device unfrozen 6959 * after all that is done so other parts of the driver waiting 6960 * for the device to unfreeze don't do things out of order. 6961 * 6962 * The above implies that the meaning of HFI1_FROZEN flag is 6963 * "Device has gone into freeze mode and freeze mode handling 6964 * is still in progress." 6965 * 6966 * The flag will be removed when freeze mode processing has 6967 * completed. 6968 */ 6969 dd->flags &= ~HFI1_FROZEN; 6970 wake_up(&dd->event_queue); 6971 6972 /* no longer frozen */ 6973} 6974 6975/** 6976 * update_xmit_counters - update PortXmitWait/PortVlXmitWait 6977 * counters. 6978 * @ppd: info of physical Hfi port 6979 * @link_width: new link width after link up or downgrade 6980 * 6981 * Update the PortXmitWait and PortVlXmitWait counters after 6982 * a link up or downgrade event to reflect a link width change. 6983 */ 6984static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width) 6985{ 6986 int i; 6987 u16 tx_width; 6988 u16 link_speed; 6989 6990 tx_width = tx_link_width(link_width); 6991 link_speed = get_link_speed(ppd->link_speed_active); 6992 6993 /* 6994 * There are C_VL_COUNT number of PortVLXmitWait counters. 6995 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter. 6996 */ 6997 for (i = 0; i < C_VL_COUNT + 1; i++) 6998 get_xmit_wait_counters(ppd, tx_width, link_speed, i); 6999} 7000 7001/* 7002 * Handle a link up interrupt from the 8051. 7003 * 7004 * This is a work-queue function outside of the interrupt. 7005 */ 7006void handle_link_up(struct work_struct *work) 7007{ 7008 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7009 link_up_work); 7010 struct hfi1_devdata *dd = ppd->dd; 7011 7012 set_link_state(ppd, HLS_UP_INIT); 7013 7014 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */ 7015 read_ltp_rtt(dd); 7016 /* 7017 * OPA specifies that certain counters are cleared on a transition 7018 * to link up, so do that. 7019 */ 7020 clear_linkup_counters(dd); 7021 /* 7022 * And (re)set link up default values. 7023 */ 7024 set_linkup_defaults(ppd); 7025 7026 /* 7027 * Set VL15 credits. Use cached value from verify cap interrupt. 7028 * In case of quick linkup or simulator, vl15 value will be set by 7029 * handle_linkup_change. VerifyCap interrupt handler will not be 7030 * called in those scenarios. 7031 */ 7032 if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) 7033 set_up_vl15(dd, dd->vl15buf_cached); 7034 7035 /* enforce link speed enabled */ 7036 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) { 7037 /* oops - current speed is not enabled, bounce */ 7038 dd_dev_err(dd, 7039 "Link speed active 0x%x is outside enabled 0x%x, downing link\n", 7040 ppd->link_speed_active, ppd->link_speed_enabled); 7041 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0, 7042 OPA_LINKDOWN_REASON_SPEED_POLICY); 7043 set_link_state(ppd, HLS_DN_OFFLINE); 7044 start_link(ppd); 7045 } 7046} 7047 7048/* 7049 * Several pieces of LNI information were cached for SMA in ppd. 7050 * Reset these on link down 7051 */ 7052static void reset_neighbor_info(struct hfi1_pportdata *ppd) 7053{ 7054 ppd->neighbor_guid = 0; 7055 ppd->neighbor_port_number = 0; 7056 ppd->neighbor_type = 0; 7057 ppd->neighbor_fm_security = 0; 7058} 7059 7060static const char * const link_down_reason_strs[] = { 7061 [OPA_LINKDOWN_REASON_NONE] = "None", 7062 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0", 7063 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length", 7064 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long", 7065 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short", 7066 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID", 7067 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID", 7068 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2", 7069 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC", 7070 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8", 7071 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail", 7072 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10", 7073 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error", 7074 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15", 7075 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker", 7076 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14", 7077 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15", 7078 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance", 7079 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance", 7080 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance", 7081 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack", 7082 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker", 7083 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt", 7084 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit", 7085 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit", 7086 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24", 7087 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25", 7088 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26", 7089 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27", 7090 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28", 7091 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29", 7092 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30", 7093 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] = 7094 "Excessive buffer overrun", 7095 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown", 7096 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot", 7097 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown", 7098 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce", 7099 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy", 7100 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy", 7101 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected", 7102 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] = 7103 "Local media not installed", 7104 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed", 7105 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config", 7106 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] = 7107 "End to end not installed", 7108 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy", 7109 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy", 7110 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy", 7111 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management", 7112 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled", 7113 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient" 7114}; 7115 7116/* return the neighbor link down reason string */ 7117static const char *link_down_reason_str(u8 reason) 7118{ 7119 const char *str = NULL; 7120 7121 if (reason < ARRAY_SIZE(link_down_reason_strs)) 7122 str = link_down_reason_strs[reason]; 7123 if (!str) 7124 str = "(invalid)"; 7125 7126 return str; 7127} 7128 7129/* 7130 * Handle a link down interrupt from the 8051. 7131 * 7132 * This is a work-queue function outside of the interrupt. 7133 */ 7134void handle_link_down(struct work_struct *work) 7135{ 7136 u8 lcl_reason, neigh_reason = 0; 7137 u8 link_down_reason; 7138 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7139 link_down_work); 7140 int was_up; 7141 static const char ldr_str[] = "Link down reason: "; 7142 7143 if ((ppd->host_link_state & 7144 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) && 7145 ppd->port_type == PORT_TYPE_FIXED) 7146 ppd->offline_disabled_reason = 7147 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED); 7148 7149 /* Go offline first, then deal with reading/writing through 8051 */ 7150 was_up = !!(ppd->host_link_state & HLS_UP); 7151 set_link_state(ppd, HLS_DN_OFFLINE); 7152 xchg(&ppd->is_link_down_queued, 0); 7153 7154 if (was_up) { 7155 lcl_reason = 0; 7156 /* link down reason is only valid if the link was up */ 7157 read_link_down_reason(ppd->dd, &link_down_reason); 7158 switch (link_down_reason) { 7159 case LDR_LINK_TRANSFER_ACTIVE_LOW: 7160 /* the link went down, no idle message reason */ 7161 dd_dev_info(ppd->dd, "%sUnexpected link down\n", 7162 ldr_str); 7163 break; 7164 case LDR_RECEIVED_LINKDOWN_IDLE_MSG: 7165 /* 7166 * The neighbor reason is only valid if an idle message 7167 * was received for it. 7168 */ 7169 read_planned_down_reason_code(ppd->dd, &neigh_reason); 7170 dd_dev_info(ppd->dd, 7171 "%sNeighbor link down message %d, %s\n", 7172 ldr_str, neigh_reason, 7173 link_down_reason_str(neigh_reason)); 7174 break; 7175 case LDR_RECEIVED_HOST_OFFLINE_REQ: 7176 dd_dev_info(ppd->dd, 7177 "%sHost requested link to go offline\n", 7178 ldr_str); 7179 break; 7180 default: 7181 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n", 7182 ldr_str, link_down_reason); 7183 break; 7184 } 7185 7186 /* 7187 * If no reason, assume peer-initiated but missed 7188 * LinkGoingDown idle flits. 7189 */ 7190 if (neigh_reason == 0) 7191 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN; 7192 } else { 7193 /* went down while polling or going up */ 7194 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT; 7195 } 7196 7197 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0); 7198 7199 /* inform the SMA when the link transitions from up to down */ 7200 if (was_up && ppd->local_link_down_reason.sma == 0 && 7201 ppd->neigh_link_down_reason.sma == 0) { 7202 ppd->local_link_down_reason.sma = 7203 ppd->local_link_down_reason.latest; 7204 ppd->neigh_link_down_reason.sma = 7205 ppd->neigh_link_down_reason.latest; 7206 } 7207 7208 reset_neighbor_info(ppd); 7209 7210 /* disable the port */ 7211 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 7212 7213 /* 7214 * If there is no cable attached, turn the DC off. Otherwise, 7215 * start the link bring up. 7216 */ 7217 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd)) 7218 dc_shutdown(ppd->dd); 7219 else 7220 start_link(ppd); 7221} 7222 7223void handle_link_bounce(struct work_struct *work) 7224{ 7225 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7226 link_bounce_work); 7227 7228 /* 7229 * Only do something if the link is currently up. 7230 */ 7231 if (ppd->host_link_state & HLS_UP) { 7232 set_link_state(ppd, HLS_DN_OFFLINE); 7233 start_link(ppd); 7234 } else { 7235 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n", 7236 __func__, link_state_name(ppd->host_link_state)); 7237 } 7238} 7239 7240/* 7241 * Mask conversion: Capability exchange to Port LTP. The capability 7242 * exchange has an implicit 16b CRC that is mandatory. 7243 */ 7244static int cap_to_port_ltp(int cap) 7245{ 7246 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */ 7247 7248 if (cap & CAP_CRC_14B) 7249 port_ltp |= PORT_LTP_CRC_MODE_14; 7250 if (cap & CAP_CRC_48B) 7251 port_ltp |= PORT_LTP_CRC_MODE_48; 7252 if (cap & CAP_CRC_12B_16B_PER_LANE) 7253 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE; 7254 7255 return port_ltp; 7256} 7257 7258/* 7259 * Convert an OPA Port LTP mask to capability mask 7260 */ 7261int port_ltp_to_cap(int port_ltp) 7262{ 7263 int cap_mask = 0; 7264 7265 if (port_ltp & PORT_LTP_CRC_MODE_14) 7266 cap_mask |= CAP_CRC_14B; 7267 if (port_ltp & PORT_LTP_CRC_MODE_48) 7268 cap_mask |= CAP_CRC_48B; 7269 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE) 7270 cap_mask |= CAP_CRC_12B_16B_PER_LANE; 7271 7272 return cap_mask; 7273} 7274 7275/* 7276 * Convert a single DC LCB CRC mode to an OPA Port LTP mask. 7277 */ 7278static int lcb_to_port_ltp(int lcb_crc) 7279{ 7280 int port_ltp = 0; 7281 7282 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE) 7283 port_ltp = PORT_LTP_CRC_MODE_PER_LANE; 7284 else if (lcb_crc == LCB_CRC_48B) 7285 port_ltp = PORT_LTP_CRC_MODE_48; 7286 else if (lcb_crc == LCB_CRC_14B) 7287 port_ltp = PORT_LTP_CRC_MODE_14; 7288 else 7289 port_ltp = PORT_LTP_CRC_MODE_16; 7290 7291 return port_ltp; 7292} 7293 7294static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd) 7295{ 7296 if (ppd->pkeys[2] != 0) { 7297 ppd->pkeys[2] = 0; 7298 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 7299 hfi1_event_pkey_change(ppd->dd, ppd->port); 7300 } 7301} 7302 7303/* 7304 * Convert the given link width to the OPA link width bitmask. 7305 */ 7306static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width) 7307{ 7308 switch (width) { 7309 case 0: 7310 /* 7311 * Simulator and quick linkup do not set the width. 7312 * Just set it to 4x without complaint. 7313 */ 7314 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup) 7315 return OPA_LINK_WIDTH_4X; 7316 return 0; /* no lanes up */ 7317 case 1: return OPA_LINK_WIDTH_1X; 7318 case 2: return OPA_LINK_WIDTH_2X; 7319 case 3: return OPA_LINK_WIDTH_3X; 7320 case 4: return OPA_LINK_WIDTH_4X; 7321 default: 7322 dd_dev_info(dd, "%s: invalid width %d, using 4\n", 7323 __func__, width); 7324 return OPA_LINK_WIDTH_4X; 7325 } 7326} 7327 7328/* 7329 * Do a population count on the bottom nibble. 7330 */ 7331static const u8 bit_counts[16] = { 7332 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 7333}; 7334 7335static inline u8 nibble_to_count(u8 nibble) 7336{ 7337 return bit_counts[nibble & 0xf]; 7338} 7339 7340/* 7341 * Read the active lane information from the 8051 registers and return 7342 * their widths. 7343 * 7344 * Active lane information is found in these 8051 registers: 7345 * enable_lane_tx 7346 * enable_lane_rx 7347 */ 7348static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width, 7349 u16 *rx_width) 7350{ 7351 u16 tx, rx; 7352 u8 enable_lane_rx; 7353 u8 enable_lane_tx; 7354 u8 tx_polarity_inversion; 7355 u8 rx_polarity_inversion; 7356 u8 max_rate; 7357 7358 /* read the active lanes */ 7359 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 7360 &rx_polarity_inversion, &max_rate); 7361 read_local_lni(dd, &enable_lane_rx); 7362 7363 /* convert to counts */ 7364 tx = nibble_to_count(enable_lane_tx); 7365 rx = nibble_to_count(enable_lane_rx); 7366 7367 /* 7368 * Set link_speed_active here, overriding what was set in 7369 * handle_verify_cap(). The ASIC 8051 firmware does not correctly 7370 * set the max_rate field in handle_verify_cap until v0.19. 7371 */ 7372 if ((dd->icode == ICODE_RTL_SILICON) && 7373 (dd->dc8051_ver < dc8051_ver(0, 19, 0))) { 7374 /* max_rate: 0 = 12.5G, 1 = 25G */ 7375 switch (max_rate) { 7376 case 0: 7377 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G; 7378 break; 7379 case 1: 7380 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G; 7381 break; 7382 default: 7383 dd_dev_err(dd, 7384 "%s: unexpected max rate %d, using 25Gb\n", 7385 __func__, (int)max_rate); 7386 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G; 7387 break; 7388 } 7389 } 7390 7391 dd_dev_info(dd, 7392 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n", 7393 enable_lane_tx, tx, enable_lane_rx, rx); 7394 *tx_width = link_width_to_bits(dd, tx); 7395 *rx_width = link_width_to_bits(dd, rx); 7396} 7397 7398/* 7399 * Read verify_cap_local_fm_link_width[1] to obtain the link widths. 7400 * Valid after the end of VerifyCap and during LinkUp. Does not change 7401 * after link up. I.e. look elsewhere for downgrade information. 7402 * 7403 * Bits are: 7404 * + bits [7:4] contain the number of active transmitters 7405 * + bits [3:0] contain the number of active receivers 7406 * These are numbers 1 through 4 and can be different values if the 7407 * link is asymmetric. 7408 * 7409 * verify_cap_local_fm_link_width[0] retains its original value. 7410 */ 7411static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width, 7412 u16 *rx_width) 7413{ 7414 u16 widths, tx, rx; 7415 u8 misc_bits, local_flags; 7416 u16 active_tx, active_rx; 7417 7418 read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths); 7419 tx = widths >> 12; 7420 rx = (widths >> 8) & 0xf; 7421 7422 *tx_width = link_width_to_bits(dd, tx); 7423 *rx_width = link_width_to_bits(dd, rx); 7424 7425 /* print the active widths */ 7426 get_link_widths(dd, &active_tx, &active_rx); 7427} 7428 7429/* 7430 * Set ppd->link_width_active and ppd->link_width_downgrade_active using 7431 * hardware information when the link first comes up. 7432 * 7433 * The link width is not available until after VerifyCap.AllFramesReceived 7434 * (the trigger for handle_verify_cap), so this is outside that routine 7435 * and should be called when the 8051 signals linkup. 7436 */ 7437void get_linkup_link_widths(struct hfi1_pportdata *ppd) 7438{ 7439 u16 tx_width, rx_width; 7440 7441 /* get end-of-LNI link widths */ 7442 get_linkup_widths(ppd->dd, &tx_width, &rx_width); 7443 7444 /* use tx_width as the link is supposed to be symmetric on link up */ 7445 ppd->link_width_active = tx_width; 7446 /* link width downgrade active (LWD.A) starts out matching LW.A */ 7447 ppd->link_width_downgrade_tx_active = ppd->link_width_active; 7448 ppd->link_width_downgrade_rx_active = ppd->link_width_active; 7449 /* per OPA spec, on link up LWD.E resets to LWD.S */ 7450 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported; 7451 /* cache the active egress rate (units {10^6 bits/sec]) */ 7452 ppd->current_egress_rate = active_egress_rate(ppd); 7453} 7454 7455/* 7456 * Handle a verify capabilities interrupt from the 8051. 7457 * 7458 * This is a work-queue function outside of the interrupt. 7459 */ 7460void handle_verify_cap(struct work_struct *work) 7461{ 7462 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7463 link_vc_work); 7464 struct hfi1_devdata *dd = ppd->dd; 7465 u64 reg; 7466 u8 power_management; 7467 u8 continuous; 7468 u8 vcu; 7469 u8 vau; 7470 u8 z; 7471 u16 vl15buf; 7472 u16 link_widths; 7473 u16 crc_mask; 7474 u16 crc_val; 7475 u16 device_id; 7476 u16 active_tx, active_rx; 7477 u8 partner_supported_crc; 7478 u8 remote_tx_rate; 7479 u8 device_rev; 7480 7481 set_link_state(ppd, HLS_VERIFY_CAP); 7482 7483 lcb_shutdown(dd, 0); 7484 adjust_lcb_for_fpga_serdes(dd); 7485 7486 read_vc_remote_phy(dd, &power_management, &continuous); 7487 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf, 7488 &partner_supported_crc); 7489 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths); 7490 read_remote_device_id(dd, &device_id, &device_rev); 7491 7492 /* print the active widths */ 7493 get_link_widths(dd, &active_tx, &active_rx); 7494 dd_dev_info(dd, 7495 "Peer PHY: power management 0x%x, continuous updates 0x%x\n", 7496 (int)power_management, (int)continuous); 7497 dd_dev_info(dd, 7498 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n", 7499 (int)vau, (int)z, (int)vcu, (int)vl15buf, 7500 (int)partner_supported_crc); 7501 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n", 7502 (u32)remote_tx_rate, (u32)link_widths); 7503 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n", 7504 (u32)device_id, (u32)device_rev); 7505 /* 7506 * The peer vAU value just read is the peer receiver value. HFI does 7507 * not support a transmit vAU of 0 (AU == 8). We advertised that 7508 * with Z=1 in the fabric capabilities sent to the peer. The peer 7509 * will see our Z=1, and, if it advertised a vAU of 0, will move its 7510 * receive to vAU of 1 (AU == 16). Do the same here. We do not care 7511 * about the peer Z value - our sent vAU is 3 (hardwired) and is not 7512 * subject to the Z value exception. 7513 */ 7514 if (vau == 0) 7515 vau = 1; 7516 set_up_vau(dd, vau); 7517 7518 /* 7519 * Set VL15 credits to 0 in global credit register. Cache remote VL15 7520 * credits value and wait for link-up interrupt ot set it. 7521 */ 7522 set_up_vl15(dd, 0); 7523 dd->vl15buf_cached = vl15buf; 7524 7525 /* set up the LCB CRC mode */ 7526 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc; 7527 7528 /* order is important: use the lowest bit in common */ 7529 if (crc_mask & CAP_CRC_14B) 7530 crc_val = LCB_CRC_14B; 7531 else if (crc_mask & CAP_CRC_48B) 7532 crc_val = LCB_CRC_48B; 7533 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE) 7534 crc_val = LCB_CRC_12B_16B_PER_LANE; 7535 else 7536 crc_val = LCB_CRC_16B; 7537 7538 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val); 7539 write_csr(dd, DC_LCB_CFG_CRC_MODE, 7540 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT); 7541 7542 /* set (14b only) or clear sideband credit */ 7543 reg = read_csr(dd, SEND_CM_CTRL); 7544 if (crc_val == LCB_CRC_14B && crc_14b_sideband) { 7545 write_csr(dd, SEND_CM_CTRL, 7546 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7547 } else { 7548 write_csr(dd, SEND_CM_CTRL, 7549 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7550 } 7551 7552 ppd->link_speed_active = 0; /* invalid value */ 7553 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) { 7554 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */ 7555 switch (remote_tx_rate) { 7556 case 0: 7557 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7558 break; 7559 case 1: 7560 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7561 break; 7562 } 7563 } else { 7564 /* actual rate is highest bit of the ANDed rates */ 7565 u8 rate = remote_tx_rate & ppd->local_tx_rate; 7566 7567 if (rate & 2) 7568 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7569 else if (rate & 1) 7570 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7571 } 7572 if (ppd->link_speed_active == 0) { 7573 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n", 7574 __func__, (int)remote_tx_rate); 7575 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7576 } 7577 7578 /* 7579 * Cache the values of the supported, enabled, and active 7580 * LTP CRC modes to return in 'portinfo' queries. But the bit 7581 * flags that are returned in the portinfo query differ from 7582 * what's in the link_crc_mask, crc_sizes, and crc_val 7583 * variables. Convert these here. 7584 */ 7585 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 7586 /* supported crc modes */ 7587 ppd->port_ltp_crc_mode |= 7588 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4; 7589 /* enabled crc modes */ 7590 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val); 7591 /* active crc mode */ 7592 7593 /* set up the remote credit return table */ 7594 assign_remote_cm_au_table(dd, vcu); 7595 7596 /* 7597 * The LCB is reset on entry to handle_verify_cap(), so this must 7598 * be applied on every link up. 7599 * 7600 * Adjust LCB error kill enable to kill the link if 7601 * these RBUF errors are seen: 7602 * REPLAY_BUF_MBE_SMASK 7603 * FLIT_INPUT_BUF_MBE_SMASK 7604 */ 7605 if (is_ax(dd)) { /* fixed in B0 */ 7606 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN); 7607 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK 7608 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK; 7609 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg); 7610 } 7611 7612 /* pull LCB fifos out of reset - all fifo clocks must be stable */ 7613 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 7614 7615 /* give 8051 access to the LCB CSRs */ 7616 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 7617 set_8051_lcb_access(dd); 7618 7619 /* tell the 8051 to go to LinkUp */ 7620 set_link_state(ppd, HLS_GOING_UP); 7621} 7622 7623/** 7624 * apply_link_downgrade_policy - Apply the link width downgrade enabled 7625 * policy against the current active link widths. 7626 * @ppd: info of physical Hfi port 7627 * @refresh_widths: True indicates link downgrade event 7628 * @return: True indicates a successful link downgrade. False indicates 7629 * link downgrade event failed and the link will bounce back to 7630 * default link width. 7631 * 7632 * Called when the enabled policy changes or the active link widths 7633 * change. 7634 * Refresh_widths indicates that a link downgrade occurred. The 7635 * link_downgraded variable is set by refresh_widths and 7636 * determines the success/failure of the policy application. 7637 */ 7638bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd, 7639 bool refresh_widths) 7640{ 7641 int do_bounce = 0; 7642 int tries; 7643 u16 lwde; 7644 u16 tx, rx; 7645 bool link_downgraded = refresh_widths; 7646 7647 /* use the hls lock to avoid a race with actual link up */ 7648 tries = 0; 7649retry: 7650 mutex_lock(&ppd->hls_lock); 7651 /* only apply if the link is up */ 7652 if (ppd->host_link_state & HLS_DOWN) { 7653 /* still going up..wait and retry */ 7654 if (ppd->host_link_state & HLS_GOING_UP) { 7655 if (++tries < 1000) { 7656 mutex_unlock(&ppd->hls_lock); 7657 usleep_range(100, 120); /* arbitrary */ 7658 goto retry; 7659 } 7660 dd_dev_err(ppd->dd, 7661 "%s: giving up waiting for link state change\n", 7662 __func__); 7663 } 7664 goto done; 7665 } 7666 7667 lwde = ppd->link_width_downgrade_enabled; 7668 7669 if (refresh_widths) { 7670 get_link_widths(ppd->dd, &tx, &rx); 7671 ppd->link_width_downgrade_tx_active = tx; 7672 ppd->link_width_downgrade_rx_active = rx; 7673 } 7674 7675 if (ppd->link_width_downgrade_tx_active == 0 || 7676 ppd->link_width_downgrade_rx_active == 0) { 7677 /* the 8051 reported a dead link as a downgrade */ 7678 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n"); 7679 link_downgraded = false; 7680 } else if (lwde == 0) { 7681 /* downgrade is disabled */ 7682 7683 /* bounce if not at starting active width */ 7684 if ((ppd->link_width_active != 7685 ppd->link_width_downgrade_tx_active) || 7686 (ppd->link_width_active != 7687 ppd->link_width_downgrade_rx_active)) { 7688 dd_dev_err(ppd->dd, 7689 "Link downgrade is disabled and link has downgraded, downing link\n"); 7690 dd_dev_err(ppd->dd, 7691 " original 0x%x, tx active 0x%x, rx active 0x%x\n", 7692 ppd->link_width_active, 7693 ppd->link_width_downgrade_tx_active, 7694 ppd->link_width_downgrade_rx_active); 7695 do_bounce = 1; 7696 link_downgraded = false; 7697 } 7698 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 || 7699 (lwde & ppd->link_width_downgrade_rx_active) == 0) { 7700 /* Tx or Rx is outside the enabled policy */ 7701 dd_dev_err(ppd->dd, 7702 "Link is outside of downgrade allowed, downing link\n"); 7703 dd_dev_err(ppd->dd, 7704 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n", 7705 lwde, ppd->link_width_downgrade_tx_active, 7706 ppd->link_width_downgrade_rx_active); 7707 do_bounce = 1; 7708 link_downgraded = false; 7709 } 7710 7711done: 7712 mutex_unlock(&ppd->hls_lock); 7713 7714 if (do_bounce) { 7715 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0, 7716 OPA_LINKDOWN_REASON_WIDTH_POLICY); 7717 set_link_state(ppd, HLS_DN_OFFLINE); 7718 start_link(ppd); 7719 } 7720 7721 return link_downgraded; 7722} 7723 7724/* 7725 * Handle a link downgrade interrupt from the 8051. 7726 * 7727 * This is a work-queue function outside of the interrupt. 7728 */ 7729void handle_link_downgrade(struct work_struct *work) 7730{ 7731 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7732 link_downgrade_work); 7733 7734 dd_dev_info(ppd->dd, "8051: Link width downgrade\n"); 7735 if (apply_link_downgrade_policy(ppd, true)) 7736 update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active); 7737} 7738 7739static char *dcc_err_string(char *buf, int buf_len, u64 flags) 7740{ 7741 return flag_string(buf, buf_len, flags, dcc_err_flags, 7742 ARRAY_SIZE(dcc_err_flags)); 7743} 7744 7745static char *lcb_err_string(char *buf, int buf_len, u64 flags) 7746{ 7747 return flag_string(buf, buf_len, flags, lcb_err_flags, 7748 ARRAY_SIZE(lcb_err_flags)); 7749} 7750 7751static char *dc8051_err_string(char *buf, int buf_len, u64 flags) 7752{ 7753 return flag_string(buf, buf_len, flags, dc8051_err_flags, 7754 ARRAY_SIZE(dc8051_err_flags)); 7755} 7756 7757static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags) 7758{ 7759 return flag_string(buf, buf_len, flags, dc8051_info_err_flags, 7760 ARRAY_SIZE(dc8051_info_err_flags)); 7761} 7762 7763static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags) 7764{ 7765 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags, 7766 ARRAY_SIZE(dc8051_info_host_msg_flags)); 7767} 7768 7769static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg) 7770{ 7771 struct hfi1_pportdata *ppd = dd->pport; 7772 u64 info, err, host_msg; 7773 int queue_link_down = 0; 7774 char buf[96]; 7775 7776 /* look at the flags */ 7777 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) { 7778 /* 8051 information set by firmware */ 7779 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */ 7780 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051); 7781 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT) 7782 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK; 7783 host_msg = (info >> 7784 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT) 7785 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK; 7786 7787 /* 7788 * Handle error flags. 7789 */ 7790 if (err & FAILED_LNI) { 7791 /* 7792 * LNI error indications are cleared by the 8051 7793 * only when starting polling. Only pay attention 7794 * to them when in the states that occur during 7795 * LNI. 7796 */ 7797 if (ppd->host_link_state 7798 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 7799 queue_link_down = 1; 7800 dd_dev_info(dd, "Link error: %s\n", 7801 dc8051_info_err_string(buf, 7802 sizeof(buf), 7803 err & 7804 FAILED_LNI)); 7805 } 7806 err &= ~(u64)FAILED_LNI; 7807 } 7808 /* unknown frames can happen durning LNI, just count */ 7809 if (err & UNKNOWN_FRAME) { 7810 ppd->unknown_frame_count++; 7811 err &= ~(u64)UNKNOWN_FRAME; 7812 } 7813 if (err) { 7814 /* report remaining errors, but do not do anything */ 7815 dd_dev_err(dd, "8051 info error: %s\n", 7816 dc8051_info_err_string(buf, sizeof(buf), 7817 err)); 7818 } 7819 7820 /* 7821 * Handle host message flags. 7822 */ 7823 if (host_msg & HOST_REQ_DONE) { 7824 /* 7825 * Presently, the driver does a busy wait for 7826 * host requests to complete. This is only an 7827 * informational message. 7828 * NOTE: The 8051 clears the host message 7829 * information *on the next 8051 command*. 7830 * Therefore, when linkup is achieved, 7831 * this flag will still be set. 7832 */ 7833 host_msg &= ~(u64)HOST_REQ_DONE; 7834 } 7835 if (host_msg & BC_SMA_MSG) { 7836 queue_work(ppd->link_wq, &ppd->sma_message_work); 7837 host_msg &= ~(u64)BC_SMA_MSG; 7838 } 7839 if (host_msg & LINKUP_ACHIEVED) { 7840 dd_dev_info(dd, "8051: Link up\n"); 7841 queue_work(ppd->link_wq, &ppd->link_up_work); 7842 host_msg &= ~(u64)LINKUP_ACHIEVED; 7843 } 7844 if (host_msg & EXT_DEVICE_CFG_REQ) { 7845 handle_8051_request(ppd); 7846 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ; 7847 } 7848 if (host_msg & VERIFY_CAP_FRAME) { 7849 queue_work(ppd->link_wq, &ppd->link_vc_work); 7850 host_msg &= ~(u64)VERIFY_CAP_FRAME; 7851 } 7852 if (host_msg & LINK_GOING_DOWN) { 7853 const char *extra = ""; 7854 /* no downgrade action needed if going down */ 7855 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7856 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7857 extra = " (ignoring downgrade)"; 7858 } 7859 dd_dev_info(dd, "8051: Link down%s\n", extra); 7860 queue_link_down = 1; 7861 host_msg &= ~(u64)LINK_GOING_DOWN; 7862 } 7863 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7864 queue_work(ppd->link_wq, &ppd->link_downgrade_work); 7865 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7866 } 7867 if (host_msg) { 7868 /* report remaining messages, but do not do anything */ 7869 dd_dev_info(dd, "8051 info host message: %s\n", 7870 dc8051_info_host_msg_string(buf, 7871 sizeof(buf), 7872 host_msg)); 7873 } 7874 7875 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK; 7876 } 7877 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) { 7878 /* 7879 * Lost the 8051 heartbeat. If this happens, we 7880 * receive constant interrupts about it. Disable 7881 * the interrupt after the first. 7882 */ 7883 dd_dev_err(dd, "Lost 8051 heartbeat\n"); 7884 write_csr(dd, DC_DC8051_ERR_EN, 7885 read_csr(dd, DC_DC8051_ERR_EN) & 7886 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK); 7887 7888 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK; 7889 } 7890 if (reg) { 7891 /* report the error, but do not do anything */ 7892 dd_dev_err(dd, "8051 error: %s\n", 7893 dc8051_err_string(buf, sizeof(buf), reg)); 7894 } 7895 7896 if (queue_link_down) { 7897 /* 7898 * if the link is already going down or disabled, do not 7899 * queue another. If there's a link down entry already 7900 * queued, don't queue another one. 7901 */ 7902 if ((ppd->host_link_state & 7903 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) || 7904 ppd->link_enabled == 0) { 7905 dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n", 7906 __func__, ppd->host_link_state, 7907 ppd->link_enabled); 7908 } else { 7909 if (xchg(&ppd->is_link_down_queued, 1) == 1) 7910 dd_dev_info(dd, 7911 "%s: link down request already queued\n", 7912 __func__); 7913 else 7914 queue_work(ppd->link_wq, &ppd->link_down_work); 7915 } 7916 } 7917} 7918 7919static const char * const fm_config_txt[] = { 7920[0] = 7921 "BadHeadDist: Distance violation between two head flits", 7922[1] = 7923 "BadTailDist: Distance violation between two tail flits", 7924[2] = 7925 "BadCtrlDist: Distance violation between two credit control flits", 7926[3] = 7927 "BadCrdAck: Credits return for unsupported VL", 7928[4] = 7929 "UnsupportedVLMarker: Received VL Marker", 7930[5] = 7931 "BadPreempt: Exceeded the preemption nesting level", 7932[6] = 7933 "BadControlFlit: Received unsupported control flit", 7934/* no 7 */ 7935[8] = 7936 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL", 7937}; 7938 7939static const char * const port_rcv_txt[] = { 7940[1] = 7941 "BadPktLen: Illegal PktLen", 7942[2] = 7943 "PktLenTooLong: Packet longer than PktLen", 7944[3] = 7945 "PktLenTooShort: Packet shorter than PktLen", 7946[4] = 7947 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)", 7948[5] = 7949 "BadDLID: Illegal DLID (0, doesn't match HFI)", 7950[6] = 7951 "BadL2: Illegal L2 opcode", 7952[7] = 7953 "BadSC: Unsupported SC", 7954[9] = 7955 "BadRC: Illegal RC", 7956[11] = 7957 "PreemptError: Preempting with same VL", 7958[12] = 7959 "PreemptVL15: Preempting a VL15 packet", 7960}; 7961 7962#define OPA_LDR_FMCONFIG_OFFSET 16 7963#define OPA_LDR_PORTRCV_OFFSET 0 7964static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 7965{ 7966 u64 info, hdr0, hdr1; 7967 const char *extra; 7968 char buf[96]; 7969 struct hfi1_pportdata *ppd = dd->pport; 7970 u8 lcl_reason = 0; 7971 int do_bounce = 0; 7972 7973 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) { 7974 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) { 7975 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE); 7976 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK; 7977 /* set status bit */ 7978 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK; 7979 } 7980 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK; 7981 } 7982 7983 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) { 7984 struct hfi1_pportdata *ppd = dd->pport; 7985 /* this counter saturates at (2^32) - 1 */ 7986 if (ppd->link_downed < (u32)UINT_MAX) 7987 ppd->link_downed++; 7988 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK; 7989 } 7990 7991 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) { 7992 u8 reason_valid = 1; 7993 7994 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG); 7995 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) { 7996 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK; 7997 /* set status bit */ 7998 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK; 7999 } 8000 switch (info) { 8001 case 0: 8002 case 1: 8003 case 2: 8004 case 3: 8005 case 4: 8006 case 5: 8007 case 6: 8008 extra = fm_config_txt[info]; 8009 break; 8010 case 8: 8011 extra = fm_config_txt[info]; 8012 if (ppd->port_error_action & 8013 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) { 8014 do_bounce = 1; 8015 /* 8016 * lcl_reason cannot be derived from info 8017 * for this error 8018 */ 8019 lcl_reason = 8020 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER; 8021 } 8022 break; 8023 default: 8024 reason_valid = 0; 8025 snprintf(buf, sizeof(buf), "reserved%lld", info); 8026 extra = buf; 8027 break; 8028 } 8029 8030 if (reason_valid && !do_bounce) { 8031 do_bounce = ppd->port_error_action & 8032 (1 << (OPA_LDR_FMCONFIG_OFFSET + info)); 8033 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST; 8034 } 8035 8036 /* just report this */ 8037 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n", 8038 extra); 8039 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK; 8040 } 8041 8042 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) { 8043 u8 reason_valid = 1; 8044 8045 info = read_csr(dd, DCC_ERR_INFO_PORTRCV); 8046 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0); 8047 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1); 8048 if (!(dd->err_info_rcvport.status_and_code & 8049 OPA_EI_STATUS_SMASK)) { 8050 dd->err_info_rcvport.status_and_code = 8051 info & OPA_EI_CODE_SMASK; 8052 /* set status bit */ 8053 dd->err_info_rcvport.status_and_code |= 8054 OPA_EI_STATUS_SMASK; 8055 /* 8056 * save first 2 flits in the packet that caused 8057 * the error 8058 */ 8059 dd->err_info_rcvport.packet_flit1 = hdr0; 8060 dd->err_info_rcvport.packet_flit2 = hdr1; 8061 } 8062 switch (info) { 8063 case 1: 8064 case 2: 8065 case 3: 8066 case 4: 8067 case 5: 8068 case 6: 8069 case 7: 8070 case 9: 8071 case 11: 8072 case 12: 8073 extra = port_rcv_txt[info]; 8074 break; 8075 default: 8076 reason_valid = 0; 8077 snprintf(buf, sizeof(buf), "reserved%lld", info); 8078 extra = buf; 8079 break; 8080 } 8081 8082 if (reason_valid && !do_bounce) { 8083 do_bounce = ppd->port_error_action & 8084 (1 << (OPA_LDR_PORTRCV_OFFSET + info)); 8085 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0; 8086 } 8087 8088 /* just report this */ 8089 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n" 8090 " hdr0 0x%llx, hdr1 0x%llx\n", 8091 extra, hdr0, hdr1); 8092 8093 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK; 8094 } 8095 8096 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) { 8097 /* informative only */ 8098 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n"); 8099 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK; 8100 } 8101 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) { 8102 /* informative only */ 8103 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n"); 8104 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK; 8105 } 8106 8107 if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev))) 8108 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK; 8109 8110 /* report any remaining errors */ 8111 if (reg) 8112 dd_dev_info_ratelimited(dd, "DCC Error: %s\n", 8113 dcc_err_string(buf, sizeof(buf), reg)); 8114 8115 if (lcl_reason == 0) 8116 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN; 8117 8118 if (do_bounce) { 8119 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n", 8120 __func__); 8121 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason); 8122 queue_work(ppd->link_wq, &ppd->link_bounce_work); 8123 } 8124} 8125 8126static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 8127{ 8128 char buf[96]; 8129 8130 dd_dev_info(dd, "LCB Error: %s\n", 8131 lcb_err_string(buf, sizeof(buf), reg)); 8132} 8133 8134/* 8135 * CCE block DC interrupt. Source is < 8. 8136 */ 8137static void is_dc_int(struct hfi1_devdata *dd, unsigned int source) 8138{ 8139 const struct err_reg_info *eri = &dc_errs[source]; 8140 8141 if (eri->handler) { 8142 interrupt_clear_down(dd, 0, eri); 8143 } else if (source == 3 /* dc_lbm_int */) { 8144 /* 8145 * This indicates that a parity error has occurred on the 8146 * address/control lines presented to the LBM. The error 8147 * is a single pulse, there is no associated error flag, 8148 * and it is non-maskable. This is because if a parity 8149 * error occurs on the request the request is dropped. 8150 * This should never occur, but it is nice to know if it 8151 * ever does. 8152 */ 8153 dd_dev_err(dd, "Parity error in DC LBM block\n"); 8154 } else { 8155 dd_dev_err(dd, "Invalid DC interrupt %u\n", source); 8156 } 8157} 8158 8159/* 8160 * TX block send credit interrupt. Source is < 160. 8161 */ 8162static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source) 8163{ 8164 sc_group_release_update(dd, source); 8165} 8166 8167/* 8168 * TX block SDMA interrupt. Source is < 48. 8169 * 8170 * SDMA interrupts are grouped by type: 8171 * 8172 * 0 - N-1 = SDma 8173 * N - 2N-1 = SDmaProgress 8174 * 2N - 3N-1 = SDmaIdle 8175 */ 8176static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source) 8177{ 8178 /* what interrupt */ 8179 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 8180 /* which engine */ 8181 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 8182 8183#ifdef CONFIG_SDMA_VERBOSITY 8184 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which, 8185 slashstrip(__FILE__), __LINE__, __func__); 8186 sdma_dumpstate(&dd->per_sdma[which]); 8187#endif 8188 8189 if (likely(what < 3 && which < dd->num_sdma)) { 8190 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source); 8191 } else { 8192 /* should not happen */ 8193 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source); 8194 } 8195} 8196 8197/** 8198 * is_rcv_avail_int() - User receive context available IRQ handler 8199 * @dd: valid dd 8200 * @source: logical IRQ source (offset from IS_RCVAVAIL_START) 8201 * 8202 * RX block receive available interrupt. Source is < 160. 8203 * 8204 * This is the general interrupt handler for user (PSM) receive contexts, 8205 * and can only be used for non-threaded IRQs. 8206 */ 8207static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source) 8208{ 8209 struct hfi1_ctxtdata *rcd; 8210 char *err_detail; 8211 8212 if (likely(source < dd->num_rcv_contexts)) { 8213 rcd = hfi1_rcd_get_by_index(dd, source); 8214 if (rcd) { 8215 handle_user_interrupt(rcd); 8216 hfi1_rcd_put(rcd); 8217 return; /* OK */ 8218 } 8219 /* received an interrupt, but no rcd */ 8220 err_detail = "dataless"; 8221 } else { 8222 /* received an interrupt, but are not using that context */ 8223 err_detail = "out of range"; 8224 } 8225 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n", 8226 err_detail, source); 8227} 8228 8229/** 8230 * is_rcv_urgent_int() - User receive context urgent IRQ handler 8231 * @dd: valid dd 8232 * @source: logical IRQ source (offset from IS_RCVURGENT_START) 8233 * 8234 * RX block receive urgent interrupt. Source is < 160. 8235 * 8236 * NOTE: kernel receive contexts specifically do NOT enable this IRQ. 8237 */ 8238static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source) 8239{ 8240 struct hfi1_ctxtdata *rcd; 8241 char *err_detail; 8242 8243 if (likely(source < dd->num_rcv_contexts)) { 8244 rcd = hfi1_rcd_get_by_index(dd, source); 8245 if (rcd) { 8246 handle_user_interrupt(rcd); 8247 hfi1_rcd_put(rcd); 8248 return; /* OK */ 8249 } 8250 /* received an interrupt, but no rcd */ 8251 err_detail = "dataless"; 8252 } else { 8253 /* received an interrupt, but are not using that context */ 8254 err_detail = "out of range"; 8255 } 8256 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n", 8257 err_detail, source); 8258} 8259 8260/* 8261 * Reserved range interrupt. Should not be called in normal operation. 8262 */ 8263static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source) 8264{ 8265 char name[64]; 8266 8267 dd_dev_err(dd, "unexpected %s interrupt\n", 8268 is_reserved_name(name, sizeof(name), source)); 8269} 8270 8271static const struct is_table is_table[] = { 8272/* 8273 * start end 8274 * name func interrupt func 8275 */ 8276{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END, 8277 is_misc_err_name, is_misc_err_int }, 8278{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END, 8279 is_sdma_eng_err_name, is_sdma_eng_err_int }, 8280{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, 8281 is_sendctxt_err_name, is_sendctxt_err_int }, 8282{ IS_SDMA_START, IS_SDMA_IDLE_END, 8283 is_sdma_eng_name, is_sdma_eng_int }, 8284{ IS_VARIOUS_START, IS_VARIOUS_END, 8285 is_various_name, is_various_int }, 8286{ IS_DC_START, IS_DC_END, 8287 is_dc_name, is_dc_int }, 8288{ IS_RCVAVAIL_START, IS_RCVAVAIL_END, 8289 is_rcv_avail_name, is_rcv_avail_int }, 8290{ IS_RCVURGENT_START, IS_RCVURGENT_END, 8291 is_rcv_urgent_name, is_rcv_urgent_int }, 8292{ IS_SENDCREDIT_START, IS_SENDCREDIT_END, 8293 is_send_credit_name, is_send_credit_int}, 8294{ IS_RESERVED_START, IS_RESERVED_END, 8295 is_reserved_name, is_reserved_int}, 8296}; 8297 8298/* 8299 * Interrupt source interrupt - called when the given source has an interrupt. 8300 * Source is a bit index into an array of 64-bit integers. 8301 */ 8302static void is_interrupt(struct hfi1_devdata *dd, unsigned int source) 8303{ 8304 const struct is_table *entry; 8305 8306 /* avoids a double compare by walking the table in-order */ 8307 for (entry = &is_table[0]; entry->is_name; entry++) { 8308 if (source <= entry->end) { 8309 trace_hfi1_interrupt(dd, entry, source); 8310 entry->is_int(dd, source - entry->start); 8311 return; 8312 } 8313 } 8314 /* fell off the end */ 8315 dd_dev_err(dd, "invalid interrupt source %u\n", source); 8316} 8317 8318/** 8319 * gerneral_interrupt() - General interrupt handler 8320 * @irq: MSIx IRQ vector 8321 * @data: hfi1 devdata 8322 * 8323 * This is able to correctly handle all non-threaded interrupts. Receive 8324 * context DATA IRQs are threaded and are not supported by this handler. 8325 * 8326 */ 8327irqreturn_t general_interrupt(int irq, void *data) 8328{ 8329 struct hfi1_devdata *dd = data; 8330 u64 regs[CCE_NUM_INT_CSRS]; 8331 u32 bit; 8332 int i; 8333 irqreturn_t handled = IRQ_NONE; 8334 8335 this_cpu_inc(*dd->int_counter); 8336 8337 /* phase 1: scan and clear all handled interrupts */ 8338 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 8339 if (dd->gi_mask[i] == 0) { 8340 regs[i] = 0; /* used later */ 8341 continue; 8342 } 8343 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) & 8344 dd->gi_mask[i]; 8345 /* only clear if anything is set */ 8346 if (regs[i]) 8347 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]); 8348 } 8349 8350 /* phase 2: call the appropriate handler */ 8351 for_each_set_bit(bit, (unsigned long *)®s[0], 8352 CCE_NUM_INT_CSRS * 64) { 8353 is_interrupt(dd, bit); 8354 handled = IRQ_HANDLED; 8355 } 8356 8357 return handled; 8358} 8359 8360irqreturn_t sdma_interrupt(int irq, void *data) 8361{ 8362 struct sdma_engine *sde = data; 8363 struct hfi1_devdata *dd = sde->dd; 8364 u64 status; 8365 8366#ifdef CONFIG_SDMA_VERBOSITY 8367 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 8368 slashstrip(__FILE__), __LINE__, __func__); 8369 sdma_dumpstate(sde); 8370#endif 8371 8372 this_cpu_inc(*dd->int_counter); 8373 8374 /* This read_csr is really bad in the hot path */ 8375 status = read_csr(dd, 8376 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64))) 8377 & sde->imask; 8378 if (likely(status)) { 8379 /* clear the interrupt(s) */ 8380 write_csr(dd, 8381 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)), 8382 status); 8383 8384 /* handle the interrupt(s) */ 8385 sdma_engine_interrupt(sde, status); 8386 } else { 8387 dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n", 8388 sde->this_idx); 8389 } 8390 return IRQ_HANDLED; 8391} 8392 8393/* 8394 * Clear the receive interrupt. Use a read of the interrupt clear CSR 8395 * to insure that the write completed. This does NOT guarantee that 8396 * queued DMA writes to memory from the chip are pushed. 8397 */ 8398static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd) 8399{ 8400 struct hfi1_devdata *dd = rcd->dd; 8401 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg); 8402 8403 write_csr(dd, addr, rcd->imask); 8404 /* force the above write on the chip and get a value back */ 8405 (void)read_csr(dd, addr); 8406} 8407 8408/* force the receive interrupt */ 8409void force_recv_intr(struct hfi1_ctxtdata *rcd) 8410{ 8411 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask); 8412} 8413 8414/* 8415 * Return non-zero if a packet is present. 8416 * 8417 * This routine is called when rechecking for packets after the RcvAvail 8418 * interrupt has been cleared down. First, do a quick check of memory for 8419 * a packet present. If not found, use an expensive CSR read of the context 8420 * tail to determine the actual tail. The CSR read is necessary because there 8421 * is no method to push pending DMAs to memory other than an interrupt and we 8422 * are trying to determine if we need to force an interrupt. 8423 */ 8424static inline int check_packet_present(struct hfi1_ctxtdata *rcd) 8425{ 8426 u32 tail; 8427 8428 if (hfi1_packet_present(rcd)) 8429 return 1; 8430 8431 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */ 8432 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 8433 return hfi1_rcd_head(rcd) != tail; 8434} 8435 8436/** 8437 * Common code for receive contexts interrupt handlers. 8438 * Update traces, increment kernel IRQ counter and 8439 * setup ASPM when needed. 8440 */ 8441static void receive_interrupt_common(struct hfi1_ctxtdata *rcd) 8442{ 8443 struct hfi1_devdata *dd = rcd->dd; 8444 8445 trace_hfi1_receive_interrupt(dd, rcd); 8446 this_cpu_inc(*dd->int_counter); 8447 aspm_ctx_disable(rcd); 8448} 8449 8450/** 8451 * __hfi1_rcd_eoi_intr() - Make HW issue receive interrupt 8452 * when there are packets present in the queue. When calling 8453 * with interrupts enabled please use hfi1_rcd_eoi_intr. 8454 * 8455 * @rcd: valid receive context 8456 */ 8457static void __hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd) 8458{ 8459 if (!rcd->rcvhdrq) 8460 return; 8461 clear_recv_intr(rcd); 8462 if (check_packet_present(rcd)) 8463 force_recv_intr(rcd); 8464} 8465 8466/** 8467 * hfi1_rcd_eoi_intr() - End of Interrupt processing action 8468 * 8469 * @rcd: Ptr to hfi1_ctxtdata of receive context 8470 * 8471 * Hold IRQs so we can safely clear the interrupt and 8472 * recheck for a packet that may have arrived after the previous 8473 * check and the interrupt clear. If a packet arrived, force another 8474 * interrupt. This routine can be called at the end of receive packet 8475 * processing in interrupt service routines, interrupt service thread 8476 * and softirqs 8477 */ 8478static void hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd) 8479{ 8480 unsigned long flags; 8481 8482 local_irq_save(flags); 8483 __hfi1_rcd_eoi_intr(rcd); 8484 local_irq_restore(flags); 8485} 8486 8487/** 8488 * hfi1_netdev_rx_napi - napi poll function to move eoi inline 8489 * @napi - pointer to napi object 8490 * @budget - netdev budget 8491 */ 8492int hfi1_netdev_rx_napi(struct napi_struct *napi, int budget) 8493{ 8494 struct hfi1_netdev_rxq *rxq = container_of(napi, 8495 struct hfi1_netdev_rxq, napi); 8496 struct hfi1_ctxtdata *rcd = rxq->rcd; 8497 int work_done = 0; 8498 8499 work_done = rcd->do_interrupt(rcd, budget); 8500 8501 if (work_done < budget) { 8502 napi_complete_done(napi, work_done); 8503 hfi1_rcd_eoi_intr(rcd); 8504 } 8505 8506 return work_done; 8507} 8508 8509/* Receive packet napi handler for netdevs VNIC and AIP */ 8510irqreturn_t receive_context_interrupt_napi(int irq, void *data) 8511{ 8512 struct hfi1_ctxtdata *rcd = data; 8513 8514 receive_interrupt_common(rcd); 8515 8516 if (likely(rcd->napi)) { 8517 if (likely(napi_schedule_prep(rcd->napi))) 8518 __napi_schedule_irqoff(rcd->napi); 8519 else 8520 __hfi1_rcd_eoi_intr(rcd); 8521 } else { 8522 WARN_ONCE(1, "Napi IRQ handler without napi set up ctxt=%d\n", 8523 rcd->ctxt); 8524 __hfi1_rcd_eoi_intr(rcd); 8525 } 8526 8527 return IRQ_HANDLED; 8528} 8529 8530/* 8531 * Receive packet IRQ handler. This routine expects to be on its own IRQ. 8532 * This routine will try to handle packets immediately (latency), but if 8533 * it finds too many, it will invoke the thread handler (bandwitdh). The 8534 * chip receive interrupt is *not* cleared down until this or the thread (if 8535 * invoked) is finished. The intent is to avoid extra interrupts while we 8536 * are processing packets anyway. 8537 */ 8538irqreturn_t receive_context_interrupt(int irq, void *data) 8539{ 8540 struct hfi1_ctxtdata *rcd = data; 8541 int disposition; 8542 8543 receive_interrupt_common(rcd); 8544 8545 /* receive interrupt remains blocked while processing packets */ 8546 disposition = rcd->do_interrupt(rcd, 0); 8547 8548 /* 8549 * Too many packets were seen while processing packets in this 8550 * IRQ handler. Invoke the handler thread. The receive interrupt 8551 * remains blocked. 8552 */ 8553 if (disposition == RCV_PKT_LIMIT) 8554 return IRQ_WAKE_THREAD; 8555 8556 __hfi1_rcd_eoi_intr(rcd); 8557 return IRQ_HANDLED; 8558} 8559 8560/* 8561 * Receive packet thread handler. This expects to be invoked with the 8562 * receive interrupt still blocked. 8563 */ 8564irqreturn_t receive_context_thread(int irq, void *data) 8565{ 8566 struct hfi1_ctxtdata *rcd = data; 8567 8568 /* receive interrupt is still blocked from the IRQ handler */ 8569 (void)rcd->do_interrupt(rcd, 1); 8570 8571 hfi1_rcd_eoi_intr(rcd); 8572 8573 return IRQ_HANDLED; 8574} 8575 8576/* ========================================================================= */ 8577 8578u32 read_physical_state(struct hfi1_devdata *dd) 8579{ 8580 u64 reg; 8581 8582 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE); 8583 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT) 8584 & DC_DC8051_STS_CUR_STATE_PORT_MASK; 8585} 8586 8587u32 read_logical_state(struct hfi1_devdata *dd) 8588{ 8589 u64 reg; 8590 8591 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8592 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT) 8593 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK; 8594} 8595 8596static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate) 8597{ 8598 u64 reg; 8599 8600 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8601 /* clear current state, set new state */ 8602 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK; 8603 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT; 8604 write_csr(dd, DCC_CFG_PORT_CONFIG, reg); 8605} 8606 8607/* 8608 * Use the 8051 to read a LCB CSR. 8609 */ 8610static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data) 8611{ 8612 u32 regno; 8613 int ret; 8614 8615 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 8616 if (acquire_lcb_access(dd, 0) == 0) { 8617 *data = read_csr(dd, addr); 8618 release_lcb_access(dd, 0); 8619 return 0; 8620 } 8621 return -EBUSY; 8622 } 8623 8624 /* register is an index of LCB registers: (offset - base) / 8 */ 8625 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8626 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data); 8627 if (ret != HCMD_SUCCESS) 8628 return -EBUSY; 8629 return 0; 8630} 8631 8632/* 8633 * Provide a cache for some of the LCB registers in case the LCB is 8634 * unavailable. 8635 * (The LCB is unavailable in certain link states, for example.) 8636 */ 8637struct lcb_datum { 8638 u32 off; 8639 u64 val; 8640}; 8641 8642static struct lcb_datum lcb_cache[] = { 8643 { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0}, 8644 { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 }, 8645 { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 }, 8646}; 8647 8648static void update_lcb_cache(struct hfi1_devdata *dd) 8649{ 8650 int i; 8651 int ret; 8652 u64 val; 8653 8654 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { 8655 ret = read_lcb_csr(dd, lcb_cache[i].off, &val); 8656 8657 /* Update if we get good data */ 8658 if (likely(ret != -EBUSY)) 8659 lcb_cache[i].val = val; 8660 } 8661} 8662 8663static int read_lcb_cache(u32 off, u64 *val) 8664{ 8665 int i; 8666 8667 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { 8668 if (lcb_cache[i].off == off) { 8669 *val = lcb_cache[i].val; 8670 return 0; 8671 } 8672 } 8673 8674 pr_warn("%s bad offset 0x%x\n", __func__, off); 8675 return -1; 8676} 8677 8678/* 8679 * Read an LCB CSR. Access may not be in host control, so check. 8680 * Return 0 on success, -EBUSY on failure. 8681 */ 8682int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data) 8683{ 8684 struct hfi1_pportdata *ppd = dd->pport; 8685 8686 /* if up, go through the 8051 for the value */ 8687 if (ppd->host_link_state & HLS_UP) 8688 return read_lcb_via_8051(dd, addr, data); 8689 /* if going up or down, check the cache, otherwise, no access */ 8690 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) { 8691 if (read_lcb_cache(addr, data)) 8692 return -EBUSY; 8693 return 0; 8694 } 8695 8696 /* otherwise, host has access */ 8697 *data = read_csr(dd, addr); 8698 return 0; 8699} 8700 8701/* 8702 * Use the 8051 to write a LCB CSR. 8703 */ 8704static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data) 8705{ 8706 u32 regno; 8707 int ret; 8708 8709 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || 8710 (dd->dc8051_ver < dc8051_ver(0, 20, 0))) { 8711 if (acquire_lcb_access(dd, 0) == 0) { 8712 write_csr(dd, addr, data); 8713 release_lcb_access(dd, 0); 8714 return 0; 8715 } 8716 return -EBUSY; 8717 } 8718 8719 /* register is an index of LCB registers: (offset - base) / 8 */ 8720 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8721 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data); 8722 if (ret != HCMD_SUCCESS) 8723 return -EBUSY; 8724 return 0; 8725} 8726 8727/* 8728 * Write an LCB CSR. Access may not be in host control, so check. 8729 * Return 0 on success, -EBUSY on failure. 8730 */ 8731int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data) 8732{ 8733 struct hfi1_pportdata *ppd = dd->pport; 8734 8735 /* if up, go through the 8051 for the value */ 8736 if (ppd->host_link_state & HLS_UP) 8737 return write_lcb_via_8051(dd, addr, data); 8738 /* if going up or down, no access */ 8739 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) 8740 return -EBUSY; 8741 /* otherwise, host has access */ 8742 write_csr(dd, addr, data); 8743 return 0; 8744} 8745 8746/* 8747 * Returns: 8748 * < 0 = Linux error, not able to get access 8749 * > 0 = 8051 command RETURN_CODE 8750 */ 8751static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data, 8752 u64 *out_data) 8753{ 8754 u64 reg, completed; 8755 int return_code; 8756 unsigned long timeout; 8757 8758 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data); 8759 8760 mutex_lock(&dd->dc8051_lock); 8761 8762 /* We can't send any commands to the 8051 if it's in reset */ 8763 if (dd->dc_shutdown) { 8764 return_code = -ENODEV; 8765 goto fail; 8766 } 8767 8768 /* 8769 * If an 8051 host command timed out previously, then the 8051 is 8770 * stuck. 8771 * 8772 * On first timeout, attempt to reset and restart the entire DC 8773 * block (including 8051). (Is this too big of a hammer?) 8774 * 8775 * If the 8051 times out a second time, the reset did not bring it 8776 * back to healthy life. In that case, fail any subsequent commands. 8777 */ 8778 if (dd->dc8051_timed_out) { 8779 if (dd->dc8051_timed_out > 1) { 8780 dd_dev_err(dd, 8781 "Previous 8051 host command timed out, skipping command %u\n", 8782 type); 8783 return_code = -ENXIO; 8784 goto fail; 8785 } 8786 _dc_shutdown(dd); 8787 _dc_start(dd); 8788 } 8789 8790 /* 8791 * If there is no timeout, then the 8051 command interface is 8792 * waiting for a command. 8793 */ 8794 8795 /* 8796 * When writing a LCB CSR, out_data contains the full value to 8797 * to be written, while in_data contains the relative LCB 8798 * address in 7:0. Do the work here, rather than the caller, 8799 * of distrubting the write data to where it needs to go: 8800 * 8801 * Write data 8802 * 39:00 -> in_data[47:8] 8803 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE 8804 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA 8805 */ 8806 if (type == HCMD_WRITE_LCB_CSR) { 8807 in_data |= ((*out_data) & 0xffffffffffull) << 8; 8808 /* must preserve COMPLETED - it is tied to hardware */ 8809 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0); 8810 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK; 8811 reg |= ((((*out_data) >> 40) & 0xff) << 8812 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT) 8813 | ((((*out_data) >> 48) & 0xffff) << 8814 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 8815 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg); 8816 } 8817 8818 /* 8819 * Do two writes: the first to stabilize the type and req_data, the 8820 * second to activate. 8821 */ 8822 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK) 8823 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT 8824 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK) 8825 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT; 8826 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8827 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK; 8828 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8829 8830 /* wait for completion, alternate: interrupt */ 8831 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT); 8832 while (1) { 8833 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1); 8834 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK; 8835 if (completed) 8836 break; 8837 if (time_after(jiffies, timeout)) { 8838 dd->dc8051_timed_out++; 8839 dd_dev_err(dd, "8051 host command %u timeout\n", type); 8840 if (out_data) 8841 *out_data = 0; 8842 return_code = -ETIMEDOUT; 8843 goto fail; 8844 } 8845 udelay(2); 8846 } 8847 8848 if (out_data) { 8849 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT) 8850 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK; 8851 if (type == HCMD_READ_LCB_CSR) { 8852 /* top 16 bits are in a different register */ 8853 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1) 8854 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK) 8855 << (48 8856 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT); 8857 } 8858 } 8859 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT) 8860 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK; 8861 dd->dc8051_timed_out = 0; 8862 /* 8863 * Clear command for next user. 8864 */ 8865 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0); 8866 8867fail: 8868 mutex_unlock(&dd->dc8051_lock); 8869 return return_code; 8870} 8871 8872static int set_physical_link_state(struct hfi1_devdata *dd, u64 state) 8873{ 8874 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL); 8875} 8876 8877int load_8051_config(struct hfi1_devdata *dd, u8 field_id, 8878 u8 lane_id, u32 config_data) 8879{ 8880 u64 data; 8881 int ret; 8882 8883 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT 8884 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT 8885 | (u64)config_data << LOAD_DATA_DATA_SHIFT; 8886 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL); 8887 if (ret != HCMD_SUCCESS) { 8888 dd_dev_err(dd, 8889 "load 8051 config: field id %d, lane %d, err %d\n", 8890 (int)field_id, (int)lane_id, ret); 8891 } 8892 return ret; 8893} 8894 8895/* 8896 * Read the 8051 firmware "registers". Use the RAM directly. Always 8897 * set the result, even on error. 8898 * Return 0 on success, -errno on failure 8899 */ 8900int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id, 8901 u32 *result) 8902{ 8903 u64 big_data; 8904 u32 addr; 8905 int ret; 8906 8907 /* address start depends on the lane_id */ 8908 if (lane_id < 4) 8909 addr = (4 * NUM_GENERAL_FIELDS) 8910 + (lane_id * 4 * NUM_LANE_FIELDS); 8911 else 8912 addr = 0; 8913 addr += field_id * 4; 8914 8915 /* read is in 8-byte chunks, hardware will truncate the address down */ 8916 ret = read_8051_data(dd, addr, 8, &big_data); 8917 8918 if (ret == 0) { 8919 /* extract the 4 bytes we want */ 8920 if (addr & 0x4) 8921 *result = (u32)(big_data >> 32); 8922 else 8923 *result = (u32)big_data; 8924 } else { 8925 *result = 0; 8926 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n", 8927 __func__, lane_id, field_id); 8928 } 8929 8930 return ret; 8931} 8932 8933static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management, 8934 u8 continuous) 8935{ 8936 u32 frame; 8937 8938 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT 8939 | power_management << POWER_MANAGEMENT_SHIFT; 8940 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY, 8941 GENERAL_CONFIG, frame); 8942} 8943 8944static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu, 8945 u16 vl15buf, u8 crc_sizes) 8946{ 8947 u32 frame; 8948 8949 frame = (u32)vau << VAU_SHIFT 8950 | (u32)z << Z_SHIFT 8951 | (u32)vcu << VCU_SHIFT 8952 | (u32)vl15buf << VL15BUF_SHIFT 8953 | (u32)crc_sizes << CRC_SIZES_SHIFT; 8954 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC, 8955 GENERAL_CONFIG, frame); 8956} 8957 8958static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits, 8959 u8 *flag_bits, u16 *link_widths) 8960{ 8961 u32 frame; 8962 8963 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG, 8964 &frame); 8965 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK; 8966 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK; 8967 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 8968} 8969 8970static int write_vc_local_link_mode(struct hfi1_devdata *dd, 8971 u8 misc_bits, 8972 u8 flag_bits, 8973 u16 link_widths) 8974{ 8975 u32 frame; 8976 8977 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT 8978 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT 8979 | (u32)link_widths << LINK_WIDTH_SHIFT; 8980 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG, 8981 frame); 8982} 8983 8984static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id, 8985 u8 device_rev) 8986{ 8987 u32 frame; 8988 8989 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT) 8990 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT); 8991 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame); 8992} 8993 8994static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 8995 u8 *device_rev) 8996{ 8997 u32 frame; 8998 8999 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame); 9000 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK; 9001 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT) 9002 & REMOTE_DEVICE_REV_MASK; 9003} 9004 9005int write_host_interface_version(struct hfi1_devdata *dd, u8 version) 9006{ 9007 u32 frame; 9008 u32 mask; 9009 9010 mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT); 9011 read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame); 9012 /* Clear, then set field */ 9013 frame &= ~mask; 9014 frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT); 9015 return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, 9016 frame); 9017} 9018 9019void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor, 9020 u8 *ver_patch) 9021{ 9022 u32 frame; 9023 9024 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame); 9025 *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) & 9026 STS_FM_VERSION_MAJOR_MASK; 9027 *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) & 9028 STS_FM_VERSION_MINOR_MASK; 9029 9030 read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame); 9031 *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) & 9032 STS_FM_VERSION_PATCH_MASK; 9033} 9034 9035static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 9036 u8 *continuous) 9037{ 9038 u32 frame; 9039 9040 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame); 9041 *power_management = (frame >> POWER_MANAGEMENT_SHIFT) 9042 & POWER_MANAGEMENT_MASK; 9043 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT) 9044 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK; 9045} 9046 9047static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 9048 u8 *vcu, u16 *vl15buf, u8 *crc_sizes) 9049{ 9050 u32 frame; 9051 9052 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame); 9053 *vau = (frame >> VAU_SHIFT) & VAU_MASK; 9054 *z = (frame >> Z_SHIFT) & Z_MASK; 9055 *vcu = (frame >> VCU_SHIFT) & VCU_MASK; 9056 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK; 9057 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK; 9058} 9059 9060static void read_vc_remote_link_width(struct hfi1_devdata *dd, 9061 u8 *remote_tx_rate, 9062 u16 *link_widths) 9063{ 9064 u32 frame; 9065 9066 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG, 9067 &frame); 9068 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT) 9069 & REMOTE_TX_RATE_MASK; 9070 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 9071} 9072 9073static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx) 9074{ 9075 u32 frame; 9076 9077 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame); 9078 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK; 9079} 9080 9081static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls) 9082{ 9083 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls); 9084} 9085 9086static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs) 9087{ 9088 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs); 9089} 9090 9091void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality) 9092{ 9093 u32 frame; 9094 int ret; 9095 9096 *link_quality = 0; 9097 if (dd->pport->host_link_state & HLS_UP) { 9098 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, 9099 &frame); 9100 if (ret == 0) 9101 *link_quality = (frame >> LINK_QUALITY_SHIFT) 9102 & LINK_QUALITY_MASK; 9103 } 9104} 9105 9106static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc) 9107{ 9108 u32 frame; 9109 9110 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame); 9111 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK; 9112} 9113 9114static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr) 9115{ 9116 u32 frame; 9117 9118 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame); 9119 *ldr = (frame & 0xff); 9120} 9121 9122static int read_tx_settings(struct hfi1_devdata *dd, 9123 u8 *enable_lane_tx, 9124 u8 *tx_polarity_inversion, 9125 u8 *rx_polarity_inversion, 9126 u8 *max_rate) 9127{ 9128 u32 frame; 9129 int ret; 9130 9131 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame); 9132 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT) 9133 & ENABLE_LANE_TX_MASK; 9134 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT) 9135 & TX_POLARITY_INVERSION_MASK; 9136 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT) 9137 & RX_POLARITY_INVERSION_MASK; 9138 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK; 9139 return ret; 9140} 9141 9142static int write_tx_settings(struct hfi1_devdata *dd, 9143 u8 enable_lane_tx, 9144 u8 tx_polarity_inversion, 9145 u8 rx_polarity_inversion, 9146 u8 max_rate) 9147{ 9148 u32 frame; 9149 9150 /* no need to mask, all variable sizes match field widths */ 9151 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT 9152 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT 9153 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT 9154 | max_rate << MAX_RATE_SHIFT; 9155 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame); 9156} 9157 9158/* 9159 * Read an idle LCB message. 9160 * 9161 * Returns 0 on success, -EINVAL on error 9162 */ 9163static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out) 9164{ 9165 int ret; 9166 9167 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out); 9168 if (ret != HCMD_SUCCESS) { 9169 dd_dev_err(dd, "read idle message: type %d, err %d\n", 9170 (u32)type, ret); 9171 return -EINVAL; 9172 } 9173 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out); 9174 /* return only the payload as we already know the type */ 9175 *data_out >>= IDLE_PAYLOAD_SHIFT; 9176 return 0; 9177} 9178 9179/* 9180 * Read an idle SMA message. To be done in response to a notification from 9181 * the 8051. 9182 * 9183 * Returns 0 on success, -EINVAL on error 9184 */ 9185static int read_idle_sma(struct hfi1_devdata *dd, u64 *data) 9186{ 9187 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, 9188 data); 9189} 9190 9191/* 9192 * Send an idle LCB message. 9193 * 9194 * Returns 0 on success, -EINVAL on error 9195 */ 9196static int send_idle_message(struct hfi1_devdata *dd, u64 data) 9197{ 9198 int ret; 9199 9200 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data); 9201 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL); 9202 if (ret != HCMD_SUCCESS) { 9203 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n", 9204 data, ret); 9205 return -EINVAL; 9206 } 9207 return 0; 9208} 9209 9210/* 9211 * Send an idle SMA message. 9212 * 9213 * Returns 0 on success, -EINVAL on error 9214 */ 9215int send_idle_sma(struct hfi1_devdata *dd, u64 message) 9216{ 9217 u64 data; 9218 9219 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) | 9220 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT); 9221 return send_idle_message(dd, data); 9222} 9223 9224/* 9225 * Initialize the LCB then do a quick link up. This may or may not be 9226 * in loopback. 9227 * 9228 * return 0 on success, -errno on error 9229 */ 9230static int do_quick_linkup(struct hfi1_devdata *dd) 9231{ 9232 int ret; 9233 9234 lcb_shutdown(dd, 0); 9235 9236 if (loopback) { 9237 /* LCB_CFG_LOOPBACK.VAL = 2 */ 9238 /* LCB_CFG_LANE_WIDTH.VAL = 0 */ 9239 write_csr(dd, DC_LCB_CFG_LOOPBACK, 9240 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT); 9241 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0); 9242 } 9243 9244 /* start the LCBs */ 9245 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */ 9246 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 9247 9248 /* simulator only loopback steps */ 9249 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 9250 /* LCB_CFG_RUN.EN = 1 */ 9251 write_csr(dd, DC_LCB_CFG_RUN, 9252 1ull << DC_LCB_CFG_RUN_EN_SHIFT); 9253 9254 ret = wait_link_transfer_active(dd, 10); 9255 if (ret) 9256 return ret; 9257 9258 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 9259 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT); 9260 } 9261 9262 if (!loopback) { 9263 /* 9264 * When doing quick linkup and not in loopback, both 9265 * sides must be done with LCB set-up before either 9266 * starts the quick linkup. Put a delay here so that 9267 * both sides can be started and have a chance to be 9268 * done with LCB set up before resuming. 9269 */ 9270 dd_dev_err(dd, 9271 "Pausing for peer to be finished with LCB set up\n"); 9272 msleep(5000); 9273 dd_dev_err(dd, "Continuing with quick linkup\n"); 9274 } 9275 9276 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 9277 set_8051_lcb_access(dd); 9278 9279 /* 9280 * State "quick" LinkUp request sets the physical link state to 9281 * LinkUp without a verify capability sequence. 9282 * This state is in simulator v37 and later. 9283 */ 9284 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP); 9285 if (ret != HCMD_SUCCESS) { 9286 dd_dev_err(dd, 9287 "%s: set physical link state to quick LinkUp failed with return %d\n", 9288 __func__, ret); 9289 9290 set_host_lcb_access(dd); 9291 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 9292 9293 if (ret >= 0) 9294 ret = -EINVAL; 9295 return ret; 9296 } 9297 9298 return 0; /* success */ 9299} 9300 9301/* 9302 * Do all special steps to set up loopback. 9303 */ 9304static int init_loopback(struct hfi1_devdata *dd) 9305{ 9306 dd_dev_info(dd, "Entering loopback mode\n"); 9307 9308 /* all loopbacks should disable self GUID check */ 9309 write_csr(dd, DC_DC8051_CFG_MODE, 9310 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK)); 9311 9312 /* 9313 * The simulator has only one loopback option - LCB. Switch 9314 * to that option, which includes quick link up. 9315 * 9316 * Accept all valid loopback values. 9317 */ 9318 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) && 9319 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB || 9320 loopback == LOOPBACK_CABLE)) { 9321 loopback = LOOPBACK_LCB; 9322 quick_linkup = 1; 9323 return 0; 9324 } 9325 9326 /* 9327 * SerDes loopback init sequence is handled in set_local_link_attributes 9328 */ 9329 if (loopback == LOOPBACK_SERDES) 9330 return 0; 9331 9332 /* LCB loopback - handled at poll time */ 9333 if (loopback == LOOPBACK_LCB) { 9334 quick_linkup = 1; /* LCB is always quick linkup */ 9335 9336 /* not supported in emulation due to emulation RTL changes */ 9337 if (dd->icode == ICODE_FPGA_EMULATION) { 9338 dd_dev_err(dd, 9339 "LCB loopback not supported in emulation\n"); 9340 return -EINVAL; 9341 } 9342 return 0; 9343 } 9344 9345 /* external cable loopback requires no extra steps */ 9346 if (loopback == LOOPBACK_CABLE) 9347 return 0; 9348 9349 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback); 9350 return -EINVAL; 9351} 9352 9353/* 9354 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits 9355 * used in the Verify Capability link width attribute. 9356 */ 9357static u16 opa_to_vc_link_widths(u16 opa_widths) 9358{ 9359 int i; 9360 u16 result = 0; 9361 9362 static const struct link_bits { 9363 u16 from; 9364 u16 to; 9365 } opa_link_xlate[] = { 9366 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) }, 9367 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) }, 9368 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) }, 9369 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) }, 9370 }; 9371 9372 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) { 9373 if (opa_widths & opa_link_xlate[i].from) 9374 result |= opa_link_xlate[i].to; 9375 } 9376 return result; 9377} 9378 9379/* 9380 * Set link attributes before moving to polling. 9381 */ 9382static int set_local_link_attributes(struct hfi1_pportdata *ppd) 9383{ 9384 struct hfi1_devdata *dd = ppd->dd; 9385 u8 enable_lane_tx; 9386 u8 tx_polarity_inversion; 9387 u8 rx_polarity_inversion; 9388 int ret; 9389 u32 misc_bits = 0; 9390 /* reset our fabric serdes to clear any lingering problems */ 9391 fabric_serdes_reset(dd); 9392 9393 /* set the local tx rate - need to read-modify-write */ 9394 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 9395 &rx_polarity_inversion, &ppd->local_tx_rate); 9396 if (ret) 9397 goto set_local_link_attributes_fail; 9398 9399 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) { 9400 /* set the tx rate to the fastest enabled */ 9401 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9402 ppd->local_tx_rate = 1; 9403 else 9404 ppd->local_tx_rate = 0; 9405 } else { 9406 /* set the tx rate to all enabled */ 9407 ppd->local_tx_rate = 0; 9408 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9409 ppd->local_tx_rate |= 2; 9410 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G) 9411 ppd->local_tx_rate |= 1; 9412 } 9413 9414 enable_lane_tx = 0xF; /* enable all four lanes */ 9415 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion, 9416 rx_polarity_inversion, ppd->local_tx_rate); 9417 if (ret != HCMD_SUCCESS) 9418 goto set_local_link_attributes_fail; 9419 9420 ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION); 9421 if (ret != HCMD_SUCCESS) { 9422 dd_dev_err(dd, 9423 "Failed to set host interface version, return 0x%x\n", 9424 ret); 9425 goto set_local_link_attributes_fail; 9426 } 9427 9428 /* 9429 * DC supports continuous updates. 9430 */ 9431 ret = write_vc_local_phy(dd, 9432 0 /* no power management */, 9433 1 /* continuous updates */); 9434 if (ret != HCMD_SUCCESS) 9435 goto set_local_link_attributes_fail; 9436 9437 /* z=1 in the next call: AU of 0 is not supported by the hardware */ 9438 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init, 9439 ppd->port_crc_mode_enabled); 9440 if (ret != HCMD_SUCCESS) 9441 goto set_local_link_attributes_fail; 9442 9443 /* 9444 * SerDes loopback init sequence requires 9445 * setting bit 0 of MISC_CONFIG_BITS 9446 */ 9447 if (loopback == LOOPBACK_SERDES) 9448 misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT; 9449 9450 /* 9451 * An external device configuration request is used to reset the LCB 9452 * to retry to obtain operational lanes when the first attempt is 9453 * unsuccesful. 9454 */ 9455 if (dd->dc8051_ver >= dc8051_ver(1, 25, 0)) 9456 misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT; 9457 9458 ret = write_vc_local_link_mode(dd, misc_bits, 0, 9459 opa_to_vc_link_widths( 9460 ppd->link_width_enabled)); 9461 if (ret != HCMD_SUCCESS) 9462 goto set_local_link_attributes_fail; 9463 9464 /* let peer know who we are */ 9465 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev); 9466 if (ret == HCMD_SUCCESS) 9467 return 0; 9468 9469set_local_link_attributes_fail: 9470 dd_dev_err(dd, 9471 "Failed to set local link attributes, return 0x%x\n", 9472 ret); 9473 return ret; 9474} 9475 9476/* 9477 * Call this to start the link. 9478 * Do not do anything if the link is disabled. 9479 * Returns 0 if link is disabled, moved to polling, or the driver is not ready. 9480 */ 9481int start_link(struct hfi1_pportdata *ppd) 9482{ 9483 /* 9484 * Tune the SerDes to a ballpark setting for optimal signal and bit 9485 * error rate. Needs to be done before starting the link. 9486 */ 9487 tune_serdes(ppd); 9488 9489 if (!ppd->driver_link_ready) { 9490 dd_dev_info(ppd->dd, 9491 "%s: stopping link start because driver is not ready\n", 9492 __func__); 9493 return 0; 9494 } 9495 9496 /* 9497 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the 9498 * pkey table can be configured properly if the HFI unit is connected 9499 * to switch port with MgmtAllowed=NO 9500 */ 9501 clear_full_mgmt_pkey(ppd); 9502 9503 return set_link_state(ppd, HLS_DN_POLL); 9504} 9505 9506static void wait_for_qsfp_init(struct hfi1_pportdata *ppd) 9507{ 9508 struct hfi1_devdata *dd = ppd->dd; 9509 u64 mask; 9510 unsigned long timeout; 9511 9512 /* 9513 * Some QSFP cables have a quirk that asserts the IntN line as a side 9514 * effect of power up on plug-in. We ignore this false positive 9515 * interrupt until the module has finished powering up by waiting for 9516 * a minimum timeout of the module inrush initialization time of 9517 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the 9518 * module have stabilized. 9519 */ 9520 msleep(500); 9521 9522 /* 9523 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1) 9524 */ 9525 timeout = jiffies + msecs_to_jiffies(2000); 9526 while (1) { 9527 mask = read_csr(dd, dd->hfi1_id ? 9528 ASIC_QSFP2_IN : ASIC_QSFP1_IN); 9529 if (!(mask & QSFP_HFI0_INT_N)) 9530 break; 9531 if (time_after(jiffies, timeout)) { 9532 dd_dev_info(dd, "%s: No IntN detected, reset complete\n", 9533 __func__); 9534 break; 9535 } 9536 udelay(2); 9537 } 9538} 9539 9540static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable) 9541{ 9542 struct hfi1_devdata *dd = ppd->dd; 9543 u64 mask; 9544 9545 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK); 9546 if (enable) { 9547 /* 9548 * Clear the status register to avoid an immediate interrupt 9549 * when we re-enable the IntN pin 9550 */ 9551 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9552 QSFP_HFI0_INT_N); 9553 mask |= (u64)QSFP_HFI0_INT_N; 9554 } else { 9555 mask &= ~(u64)QSFP_HFI0_INT_N; 9556 } 9557 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask); 9558} 9559 9560int reset_qsfp(struct hfi1_pportdata *ppd) 9561{ 9562 struct hfi1_devdata *dd = ppd->dd; 9563 u64 mask, qsfp_mask; 9564 9565 /* Disable INT_N from triggering QSFP interrupts */ 9566 set_qsfp_int_n(ppd, 0); 9567 9568 /* Reset the QSFP */ 9569 mask = (u64)QSFP_HFI0_RESET_N; 9570 9571 qsfp_mask = read_csr(dd, 9572 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT); 9573 qsfp_mask &= ~mask; 9574 write_csr(dd, 9575 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9576 9577 udelay(10); 9578 9579 qsfp_mask |= mask; 9580 write_csr(dd, 9581 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9582 9583 wait_for_qsfp_init(ppd); 9584 9585 /* 9586 * Allow INT_N to trigger the QSFP interrupt to watch 9587 * for alarms and warnings 9588 */ 9589 set_qsfp_int_n(ppd, 1); 9590 9591 /* 9592 * After the reset, AOC transmitters are enabled by default. They need 9593 * to be turned off to complete the QSFP setup before they can be 9594 * enabled again. 9595 */ 9596 return set_qsfp_tx(ppd, 0); 9597} 9598 9599static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd, 9600 u8 *qsfp_interrupt_status) 9601{ 9602 struct hfi1_devdata *dd = ppd->dd; 9603 9604 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) || 9605 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING)) 9606 dd_dev_err(dd, "%s: QSFP cable temperature too high\n", 9607 __func__); 9608 9609 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) || 9610 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING)) 9611 dd_dev_err(dd, "%s: QSFP cable temperature too low\n", 9612 __func__); 9613 9614 /* 9615 * The remaining alarms/warnings don't matter if the link is down. 9616 */ 9617 if (ppd->host_link_state & HLS_DOWN) 9618 return 0; 9619 9620 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) || 9621 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING)) 9622 dd_dev_err(dd, "%s: QSFP supply voltage too high\n", 9623 __func__); 9624 9625 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) || 9626 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING)) 9627 dd_dev_err(dd, "%s: QSFP supply voltage too low\n", 9628 __func__); 9629 9630 /* Byte 2 is vendor specific */ 9631 9632 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) || 9633 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING)) 9634 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n", 9635 __func__); 9636 9637 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) || 9638 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING)) 9639 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n", 9640 __func__); 9641 9642 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) || 9643 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING)) 9644 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n", 9645 __func__); 9646 9647 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) || 9648 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING)) 9649 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n", 9650 __func__); 9651 9652 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) || 9653 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING)) 9654 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n", 9655 __func__); 9656 9657 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) || 9658 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING)) 9659 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n", 9660 __func__); 9661 9662 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) || 9663 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING)) 9664 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n", 9665 __func__); 9666 9667 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) || 9668 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING)) 9669 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n", 9670 __func__); 9671 9672 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) || 9673 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING)) 9674 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n", 9675 __func__); 9676 9677 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) || 9678 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING)) 9679 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n", 9680 __func__); 9681 9682 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) || 9683 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING)) 9684 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n", 9685 __func__); 9686 9687 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) || 9688 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING)) 9689 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n", 9690 __func__); 9691 9692 /* Bytes 9-10 and 11-12 are reserved */ 9693 /* Bytes 13-15 are vendor specific */ 9694 9695 return 0; 9696} 9697 9698/* This routine will only be scheduled if the QSFP module present is asserted */ 9699void qsfp_event(struct work_struct *work) 9700{ 9701 struct qsfp_data *qd; 9702 struct hfi1_pportdata *ppd; 9703 struct hfi1_devdata *dd; 9704 9705 qd = container_of(work, struct qsfp_data, qsfp_work); 9706 ppd = qd->ppd; 9707 dd = ppd->dd; 9708 9709 /* Sanity check */ 9710 if (!qsfp_mod_present(ppd)) 9711 return; 9712 9713 if (ppd->host_link_state == HLS_DN_DISABLE) { 9714 dd_dev_info(ppd->dd, 9715 "%s: stopping link start because link is disabled\n", 9716 __func__); 9717 return; 9718 } 9719 9720 /* 9721 * Turn DC back on after cable has been re-inserted. Up until 9722 * now, the DC has been in reset to save power. 9723 */ 9724 dc_start(dd); 9725 9726 if (qd->cache_refresh_required) { 9727 set_qsfp_int_n(ppd, 0); 9728 9729 wait_for_qsfp_init(ppd); 9730 9731 /* 9732 * Allow INT_N to trigger the QSFP interrupt to watch 9733 * for alarms and warnings 9734 */ 9735 set_qsfp_int_n(ppd, 1); 9736 9737 start_link(ppd); 9738 } 9739 9740 if (qd->check_interrupt_flags) { 9741 u8 qsfp_interrupt_status[16] = {0,}; 9742 9743 if (one_qsfp_read(ppd, dd->hfi1_id, 6, 9744 &qsfp_interrupt_status[0], 16) != 16) { 9745 dd_dev_info(dd, 9746 "%s: Failed to read status of QSFP module\n", 9747 __func__); 9748 } else { 9749 unsigned long flags; 9750 9751 handle_qsfp_error_conditions( 9752 ppd, qsfp_interrupt_status); 9753 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 9754 ppd->qsfp_info.check_interrupt_flags = 0; 9755 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 9756 flags); 9757 } 9758 } 9759} 9760 9761void init_qsfp_int(struct hfi1_devdata *dd) 9762{ 9763 struct hfi1_pportdata *ppd = dd->pport; 9764 u64 qsfp_mask; 9765 9766 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 9767 /* Clear current status to avoid spurious interrupts */ 9768 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9769 qsfp_mask); 9770 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, 9771 qsfp_mask); 9772 9773 set_qsfp_int_n(ppd, 0); 9774 9775 /* Handle active low nature of INT_N and MODPRST_N pins */ 9776 if (qsfp_mod_present(ppd)) 9777 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N; 9778 write_csr(dd, 9779 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT, 9780 qsfp_mask); 9781 9782 /* Enable the appropriate QSFP IRQ source */ 9783 if (!dd->hfi1_id) 9784 set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true); 9785 else 9786 set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true); 9787} 9788 9789/* 9790 * Do a one-time initialize of the LCB block. 9791 */ 9792static void init_lcb(struct hfi1_devdata *dd) 9793{ 9794 /* simulator does not correctly handle LCB cclk loopback, skip */ 9795 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 9796 return; 9797 9798 /* the DC has been reset earlier in the driver load */ 9799 9800 /* set LCB for cclk loopback on the port */ 9801 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01); 9802 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00); 9803 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00); 9804 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110); 9805 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08); 9806 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02); 9807 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00); 9808} 9809 9810/* 9811 * Perform a test read on the QSFP. Return 0 on success, -ERRNO 9812 * on error. 9813 */ 9814static int test_qsfp_read(struct hfi1_pportdata *ppd) 9815{ 9816 int ret; 9817 u8 status; 9818 9819 /* 9820 * Report success if not a QSFP or, if it is a QSFP, but the cable is 9821 * not present 9822 */ 9823 if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd)) 9824 return 0; 9825 9826 /* read byte 2, the status byte */ 9827 ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1); 9828 if (ret < 0) 9829 return ret; 9830 if (ret != 1) 9831 return -EIO; 9832 9833 return 0; /* success */ 9834} 9835 9836/* 9837 * Values for QSFP retry. 9838 * 9839 * Give up after 10s (20 x 500ms). The overall timeout was empirically 9840 * arrived at from experience on a large cluster. 9841 */ 9842#define MAX_QSFP_RETRIES 20 9843#define QSFP_RETRY_WAIT 500 /* msec */ 9844 9845/* 9846 * Try a QSFP read. If it fails, schedule a retry for later. 9847 * Called on first link activation after driver load. 9848 */ 9849static void try_start_link(struct hfi1_pportdata *ppd) 9850{ 9851 if (test_qsfp_read(ppd)) { 9852 /* read failed */ 9853 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) { 9854 dd_dev_err(ppd->dd, "QSFP not responding, giving up\n"); 9855 return; 9856 } 9857 dd_dev_info(ppd->dd, 9858 "QSFP not responding, waiting and retrying %d\n", 9859 (int)ppd->qsfp_retry_count); 9860 ppd->qsfp_retry_count++; 9861 queue_delayed_work(ppd->link_wq, &ppd->start_link_work, 9862 msecs_to_jiffies(QSFP_RETRY_WAIT)); 9863 return; 9864 } 9865 ppd->qsfp_retry_count = 0; 9866 9867 start_link(ppd); 9868} 9869 9870/* 9871 * Workqueue function to start the link after a delay. 9872 */ 9873void handle_start_link(struct work_struct *work) 9874{ 9875 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 9876 start_link_work.work); 9877 try_start_link(ppd); 9878} 9879 9880int bringup_serdes(struct hfi1_pportdata *ppd) 9881{ 9882 struct hfi1_devdata *dd = ppd->dd; 9883 u64 guid; 9884 int ret; 9885 9886 if (HFI1_CAP_IS_KSET(EXTENDED_PSN)) 9887 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK); 9888 9889 guid = ppd->guids[HFI1_PORT_GUID_INDEX]; 9890 if (!guid) { 9891 if (dd->base_guid) 9892 guid = dd->base_guid + ppd->port - 1; 9893 ppd->guids[HFI1_PORT_GUID_INDEX] = guid; 9894 } 9895 9896 /* Set linkinit_reason on power up per OPA spec */ 9897 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP; 9898 9899 /* one-time init of the LCB */ 9900 init_lcb(dd); 9901 9902 if (loopback) { 9903 ret = init_loopback(dd); 9904 if (ret < 0) 9905 return ret; 9906 } 9907 9908 get_port_type(ppd); 9909 if (ppd->port_type == PORT_TYPE_QSFP) { 9910 set_qsfp_int_n(ppd, 0); 9911 wait_for_qsfp_init(ppd); 9912 set_qsfp_int_n(ppd, 1); 9913 } 9914 9915 try_start_link(ppd); 9916 return 0; 9917} 9918 9919void hfi1_quiet_serdes(struct hfi1_pportdata *ppd) 9920{ 9921 struct hfi1_devdata *dd = ppd->dd; 9922 9923 /* 9924 * Shut down the link and keep it down. First turn off that the 9925 * driver wants to allow the link to be up (driver_link_ready). 9926 * Then make sure the link is not automatically restarted 9927 * (link_enabled). Cancel any pending restart. And finally 9928 * go offline. 9929 */ 9930 ppd->driver_link_ready = 0; 9931 ppd->link_enabled = 0; 9932 9933 ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */ 9934 flush_delayed_work(&ppd->start_link_work); 9935 cancel_delayed_work_sync(&ppd->start_link_work); 9936 9937 ppd->offline_disabled_reason = 9938 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT); 9939 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0, 9940 OPA_LINKDOWN_REASON_REBOOT); 9941 set_link_state(ppd, HLS_DN_OFFLINE); 9942 9943 /* disable the port */ 9944 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 9945 cancel_work_sync(&ppd->freeze_work); 9946} 9947 9948static inline int init_cpu_counters(struct hfi1_devdata *dd) 9949{ 9950 struct hfi1_pportdata *ppd; 9951 int i; 9952 9953 ppd = (struct hfi1_pportdata *)(dd + 1); 9954 for (i = 0; i < dd->num_pports; i++, ppd++) { 9955 ppd->ibport_data.rvp.rc_acks = NULL; 9956 ppd->ibport_data.rvp.rc_qacks = NULL; 9957 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64); 9958 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64); 9959 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64); 9960 if (!ppd->ibport_data.rvp.rc_acks || 9961 !ppd->ibport_data.rvp.rc_delayed_comp || 9962 !ppd->ibport_data.rvp.rc_qacks) 9963 return -ENOMEM; 9964 } 9965 9966 return 0; 9967} 9968 9969/* 9970 * index is the index into the receive array 9971 */ 9972void hfi1_put_tid(struct hfi1_devdata *dd, u32 index, 9973 u32 type, unsigned long pa, u16 order) 9974{ 9975 u64 reg; 9976 9977 if (!(dd->flags & HFI1_PRESENT)) 9978 goto done; 9979 9980 if (type == PT_INVALID || type == PT_INVALID_FLUSH) { 9981 pa = 0; 9982 order = 0; 9983 } else if (type > PT_INVALID) { 9984 dd_dev_err(dd, 9985 "unexpected receive array type %u for index %u, not handled\n", 9986 type, index); 9987 goto done; 9988 } 9989 trace_hfi1_put_tid(dd, index, type, pa, order); 9990 9991#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */ 9992 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK 9993 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT 9994 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK) 9995 << RCV_ARRAY_RT_ADDR_SHIFT; 9996 trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg); 9997 writeq(reg, dd->rcvarray_wc + (index * 8)); 9998 9999 if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3) 10000 /* 10001 * Eager entries are written and flushed 10002 * 10003 * Expected entries are flushed every 4 writes 10004 */ 10005 flush_wc(); 10006done: 10007 return; 10008} 10009 10010void hfi1_clear_tids(struct hfi1_ctxtdata *rcd) 10011{ 10012 struct hfi1_devdata *dd = rcd->dd; 10013 u32 i; 10014 10015 /* this could be optimized */ 10016 for (i = rcd->eager_base; i < rcd->eager_base + 10017 rcd->egrbufs.alloced; i++) 10018 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 10019 10020 for (i = rcd->expected_base; 10021 i < rcd->expected_base + rcd->expected_count; i++) 10022 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 10023} 10024 10025static const char * const ib_cfg_name_strings[] = { 10026 "HFI1_IB_CFG_LIDLMC", 10027 "HFI1_IB_CFG_LWID_DG_ENB", 10028 "HFI1_IB_CFG_LWID_ENB", 10029 "HFI1_IB_CFG_LWID", 10030 "HFI1_IB_CFG_SPD_ENB", 10031 "HFI1_IB_CFG_SPD", 10032 "HFI1_IB_CFG_RXPOL_ENB", 10033 "HFI1_IB_CFG_LREV_ENB", 10034 "HFI1_IB_CFG_LINKLATENCY", 10035 "HFI1_IB_CFG_HRTBT", 10036 "HFI1_IB_CFG_OP_VLS", 10037 "HFI1_IB_CFG_VL_HIGH_CAP", 10038 "HFI1_IB_CFG_VL_LOW_CAP", 10039 "HFI1_IB_CFG_OVERRUN_THRESH", 10040 "HFI1_IB_CFG_PHYERR_THRESH", 10041 "HFI1_IB_CFG_LINKDEFAULT", 10042 "HFI1_IB_CFG_PKEYS", 10043 "HFI1_IB_CFG_MTU", 10044 "HFI1_IB_CFG_LSTATE", 10045 "HFI1_IB_CFG_VL_HIGH_LIMIT", 10046 "HFI1_IB_CFG_PMA_TICKS", 10047 "HFI1_IB_CFG_PORT" 10048}; 10049 10050static const char *ib_cfg_name(int which) 10051{ 10052 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings)) 10053 return "invalid"; 10054 return ib_cfg_name_strings[which]; 10055} 10056 10057int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which) 10058{ 10059 struct hfi1_devdata *dd = ppd->dd; 10060 int val = 0; 10061 10062 switch (which) { 10063 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */ 10064 val = ppd->link_width_enabled; 10065 break; 10066 case HFI1_IB_CFG_LWID: /* currently active Link-width */ 10067 val = ppd->link_width_active; 10068 break; 10069 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 10070 val = ppd->link_speed_enabled; 10071 break; 10072 case HFI1_IB_CFG_SPD: /* current Link speed */ 10073 val = ppd->link_speed_active; 10074 break; 10075 10076 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */ 10077 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */ 10078 case HFI1_IB_CFG_LINKLATENCY: 10079 goto unimplemented; 10080 10081 case HFI1_IB_CFG_OP_VLS: 10082 val = ppd->actual_vls_operational; 10083 break; 10084 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */ 10085 val = VL_ARB_HIGH_PRIO_TABLE_SIZE; 10086 break; 10087 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */ 10088 val = VL_ARB_LOW_PRIO_TABLE_SIZE; 10089 break; 10090 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 10091 val = ppd->overrun_threshold; 10092 break; 10093 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 10094 val = ppd->phy_error_threshold; 10095 break; 10096 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 10097 val = HLS_DEFAULT; 10098 break; 10099 10100 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */ 10101 case HFI1_IB_CFG_PMA_TICKS: 10102 default: 10103unimplemented: 10104 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 10105 dd_dev_info( 10106 dd, 10107 "%s: which %s: not implemented\n", 10108 __func__, 10109 ib_cfg_name(which)); 10110 break; 10111 } 10112 10113 return val; 10114} 10115 10116/* 10117 * The largest MAD packet size. 10118 */ 10119#define MAX_MAD_PACKET 2048 10120 10121/* 10122 * Return the maximum header bytes that can go on the _wire_ 10123 * for this device. This count includes the ICRC which is 10124 * not part of the packet held in memory but it is appended 10125 * by the HW. 10126 * This is dependent on the device's receive header entry size. 10127 * HFI allows this to be set per-receive context, but the 10128 * driver presently enforces a global value. 10129 */ 10130u32 lrh_max_header_bytes(struct hfi1_devdata *dd) 10131{ 10132 /* 10133 * The maximum non-payload (MTU) bytes in LRH.PktLen are 10134 * the Receive Header Entry Size minus the PBC (or RHF) size 10135 * plus one DW for the ICRC appended by HW. 10136 * 10137 * dd->rcd[0].rcvhdrqentsize is in DW. 10138 * We use rcd[0] as all context will have the same value. Also, 10139 * the first kernel context would have been allocated by now so 10140 * we are guaranteed a valid value. 10141 */ 10142 return (get_hdrqentsize(dd->rcd[0]) - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2; 10143} 10144 10145/* 10146 * Set Send Length 10147 * @ppd - per port data 10148 * 10149 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck* 10150 * registers compare against LRH.PktLen, so use the max bytes included 10151 * in the LRH. 10152 * 10153 * This routine changes all VL values except VL15, which it maintains at 10154 * the same value. 10155 */ 10156static void set_send_length(struct hfi1_pportdata *ppd) 10157{ 10158 struct hfi1_devdata *dd = ppd->dd; 10159 u32 max_hb = lrh_max_header_bytes(dd), dcmtu; 10160 u32 maxvlmtu = dd->vld[15].mtu; 10161 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2) 10162 & SEND_LEN_CHECK1_LEN_VL15_MASK) << 10163 SEND_LEN_CHECK1_LEN_VL15_SHIFT; 10164 int i, j; 10165 u32 thres; 10166 10167 for (i = 0; i < ppd->vls_supported; i++) { 10168 if (dd->vld[i].mtu > maxvlmtu) 10169 maxvlmtu = dd->vld[i].mtu; 10170 if (i <= 3) 10171 len1 |= (((dd->vld[i].mtu + max_hb) >> 2) 10172 & SEND_LEN_CHECK0_LEN_VL0_MASK) << 10173 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT); 10174 else 10175 len2 |= (((dd->vld[i].mtu + max_hb) >> 2) 10176 & SEND_LEN_CHECK1_LEN_VL4_MASK) << 10177 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT); 10178 } 10179 write_csr(dd, SEND_LEN_CHECK0, len1); 10180 write_csr(dd, SEND_LEN_CHECK1, len2); 10181 /* adjust kernel credit return thresholds based on new MTUs */ 10182 /* all kernel receive contexts have the same hdrqentsize */ 10183 for (i = 0; i < ppd->vls_supported; i++) { 10184 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50), 10185 sc_mtu_to_threshold(dd->vld[i].sc, 10186 dd->vld[i].mtu, 10187 get_hdrqentsize(dd->rcd[0]))); 10188 for (j = 0; j < INIT_SC_PER_VL; j++) 10189 sc_set_cr_threshold( 10190 pio_select_send_context_vl(dd, j, i), 10191 thres); 10192 } 10193 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50), 10194 sc_mtu_to_threshold(dd->vld[15].sc, 10195 dd->vld[15].mtu, 10196 dd->rcd[0]->rcvhdrqentsize)); 10197 sc_set_cr_threshold(dd->vld[15].sc, thres); 10198 10199 /* Adjust maximum MTU for the port in DC */ 10200 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 : 10201 (ilog2(maxvlmtu >> 8) + 1); 10202 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG); 10203 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK; 10204 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) << 10205 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT; 10206 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1); 10207} 10208 10209static void set_lidlmc(struct hfi1_pportdata *ppd) 10210{ 10211 int i; 10212 u64 sreg = 0; 10213 struct hfi1_devdata *dd = ppd->dd; 10214 u32 mask = ~((1U << ppd->lmc) - 1); 10215 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1); 10216 u32 lid; 10217 10218 /* 10219 * Program 0 in CSR if port lid is extended. This prevents 10220 * 9B packets being sent out for large lids. 10221 */ 10222 lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid; 10223 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK 10224 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK); 10225 c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK) 10226 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) | 10227 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK) 10228 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT); 10229 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1); 10230 10231 /* 10232 * Iterate over all the send contexts and set their SLID check 10233 */ 10234 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) << 10235 SEND_CTXT_CHECK_SLID_MASK_SHIFT) | 10236 (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) << 10237 SEND_CTXT_CHECK_SLID_VALUE_SHIFT); 10238 10239 for (i = 0; i < chip_send_contexts(dd); i++) { 10240 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x", 10241 i, (u32)sreg); 10242 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg); 10243 } 10244 10245 /* Now we have to do the same thing for the sdma engines */ 10246 sdma_update_lmc(dd, mask, lid); 10247} 10248 10249static const char *state_completed_string(u32 completed) 10250{ 10251 static const char * const state_completed[] = { 10252 "EstablishComm", 10253 "OptimizeEQ", 10254 "VerifyCap" 10255 }; 10256 10257 if (completed < ARRAY_SIZE(state_completed)) 10258 return state_completed[completed]; 10259 10260 return "unknown"; 10261} 10262 10263static const char all_lanes_dead_timeout_expired[] = 10264 "All lanes were inactive – was the interconnect media removed?"; 10265static const char tx_out_of_policy[] = 10266 "Passing lanes on local port do not meet the local link width policy"; 10267static const char no_state_complete[] = 10268 "State timeout occurred before link partner completed the state"; 10269static const char * const state_complete_reasons[] = { 10270 [0x00] = "Reason unknown", 10271 [0x01] = "Link was halted by driver, refer to LinkDownReason", 10272 [0x02] = "Link partner reported failure", 10273 [0x10] = "Unable to achieve frame sync on any lane", 10274 [0x11] = 10275 "Unable to find a common bit rate with the link partner", 10276 [0x12] = 10277 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy", 10278 [0x13] = 10279 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy", 10280 [0x14] = no_state_complete, 10281 [0x15] = 10282 "State timeout occurred before link partner identified equalization presets", 10283 [0x16] = 10284 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy", 10285 [0x17] = tx_out_of_policy, 10286 [0x20] = all_lanes_dead_timeout_expired, 10287 [0x21] = 10288 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy", 10289 [0x22] = no_state_complete, 10290 [0x23] = 10291 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy", 10292 [0x24] = tx_out_of_policy, 10293 [0x30] = all_lanes_dead_timeout_expired, 10294 [0x31] = 10295 "State timeout occurred waiting for host to process received frames", 10296 [0x32] = no_state_complete, 10297 [0x33] = 10298 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy", 10299 [0x34] = tx_out_of_policy, 10300 [0x35] = "Negotiated link width is mutually exclusive", 10301 [0x36] = 10302 "Timed out before receiving verifycap frames in VerifyCap.Exchange", 10303 [0x37] = "Unable to resolve secure data exchange", 10304}; 10305 10306static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd, 10307 u32 code) 10308{ 10309 const char *str = NULL; 10310 10311 if (code < ARRAY_SIZE(state_complete_reasons)) 10312 str = state_complete_reasons[code]; 10313 10314 if (str) 10315 return str; 10316 return "Reserved"; 10317} 10318 10319/* describe the given last state complete frame */ 10320static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame, 10321 const char *prefix) 10322{ 10323 struct hfi1_devdata *dd = ppd->dd; 10324 u32 success; 10325 u32 state; 10326 u32 reason; 10327 u32 lanes; 10328 10329 /* 10330 * Decode frame: 10331 * [ 0: 0] - success 10332 * [ 3: 1] - state 10333 * [ 7: 4] - next state timeout 10334 * [15: 8] - reason code 10335 * [31:16] - lanes 10336 */ 10337 success = frame & 0x1; 10338 state = (frame >> 1) & 0x7; 10339 reason = (frame >> 8) & 0xff; 10340 lanes = (frame >> 16) & 0xffff; 10341 10342 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n", 10343 prefix, frame); 10344 dd_dev_err(dd, " last reported state state: %s (0x%x)\n", 10345 state_completed_string(state), state); 10346 dd_dev_err(dd, " state successfully completed: %s\n", 10347 success ? "yes" : "no"); 10348 dd_dev_err(dd, " fail reason 0x%x: %s\n", 10349 reason, state_complete_reason_code_string(ppd, reason)); 10350 dd_dev_err(dd, " passing lane mask: 0x%x", lanes); 10351} 10352 10353/* 10354 * Read the last state complete frames and explain them. This routine 10355 * expects to be called if the link went down during link negotiation 10356 * and initialization (LNI). That is, anywhere between polling and link up. 10357 */ 10358static void check_lni_states(struct hfi1_pportdata *ppd) 10359{ 10360 u32 last_local_state; 10361 u32 last_remote_state; 10362 10363 read_last_local_state(ppd->dd, &last_local_state); 10364 read_last_remote_state(ppd->dd, &last_remote_state); 10365 10366 /* 10367 * Don't report anything if there is nothing to report. A value of 10368 * 0 means the link was taken down while polling and there was no 10369 * training in-process. 10370 */ 10371 if (last_local_state == 0 && last_remote_state == 0) 10372 return; 10373 10374 decode_state_complete(ppd, last_local_state, "transmitted"); 10375 decode_state_complete(ppd, last_remote_state, "received"); 10376} 10377 10378/* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */ 10379static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms) 10380{ 10381 u64 reg; 10382 unsigned long timeout; 10383 10384 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */ 10385 timeout = jiffies + msecs_to_jiffies(wait_ms); 10386 while (1) { 10387 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE); 10388 if (reg) 10389 break; 10390 if (time_after(jiffies, timeout)) { 10391 dd_dev_err(dd, 10392 "timeout waiting for LINK_TRANSFER_ACTIVE\n"); 10393 return -ETIMEDOUT; 10394 } 10395 udelay(2); 10396 } 10397 return 0; 10398} 10399 10400/* called when the logical link state is not down as it should be */ 10401static void force_logical_link_state_down(struct hfi1_pportdata *ppd) 10402{ 10403 struct hfi1_devdata *dd = ppd->dd; 10404 10405 /* 10406 * Bring link up in LCB loopback 10407 */ 10408 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1); 10409 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 10410 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK); 10411 10412 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0); 10413 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0); 10414 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110); 10415 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2); 10416 10417 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 10418 (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET); 10419 udelay(3); 10420 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1); 10421 write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT); 10422 10423 wait_link_transfer_active(dd, 100); 10424 10425 /* 10426 * Bring the link down again. 10427 */ 10428 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1); 10429 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0); 10430 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0); 10431 10432 dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n"); 10433} 10434 10435/* 10436 * Helper for set_link_state(). Do not call except from that routine. 10437 * Expects ppd->hls_mutex to be held. 10438 * 10439 * @rem_reason value to be sent to the neighbor 10440 * 10441 * LinkDownReasons only set if transition succeeds. 10442 */ 10443static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason) 10444{ 10445 struct hfi1_devdata *dd = ppd->dd; 10446 u32 previous_state; 10447 int offline_state_ret; 10448 int ret; 10449 10450 update_lcb_cache(dd); 10451 10452 previous_state = ppd->host_link_state; 10453 ppd->host_link_state = HLS_GOING_OFFLINE; 10454 10455 /* start offline transition */ 10456 ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE); 10457 10458 if (ret != HCMD_SUCCESS) { 10459 dd_dev_err(dd, 10460 "Failed to transition to Offline link state, return %d\n", 10461 ret); 10462 return -EINVAL; 10463 } 10464 if (ppd->offline_disabled_reason == 10465 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)) 10466 ppd->offline_disabled_reason = 10467 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 10468 10469 offline_state_ret = wait_phys_link_offline_substates(ppd, 10000); 10470 if (offline_state_ret < 0) 10471 return offline_state_ret; 10472 10473 /* Disabling AOC transmitters */ 10474 if (ppd->port_type == PORT_TYPE_QSFP && 10475 ppd->qsfp_info.limiting_active && 10476 qsfp_mod_present(ppd)) { 10477 int ret; 10478 10479 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT); 10480 if (ret == 0) { 10481 set_qsfp_tx(ppd, 0); 10482 release_chip_resource(dd, qsfp_resource(dd)); 10483 } else { 10484 /* not fatal, but should warn */ 10485 dd_dev_err(dd, 10486 "Unable to acquire lock to turn off QSFP TX\n"); 10487 } 10488 } 10489 10490 /* 10491 * Wait for the offline.Quiet transition if it hasn't happened yet. It 10492 * can take a while for the link to go down. 10493 */ 10494 if (offline_state_ret != PLS_OFFLINE_QUIET) { 10495 ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000); 10496 if (ret < 0) 10497 return ret; 10498 } 10499 10500 /* 10501 * Now in charge of LCB - must be after the physical state is 10502 * offline.quiet and before host_link_state is changed. 10503 */ 10504 set_host_lcb_access(dd); 10505 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 10506 10507 /* make sure the logical state is also down */ 10508 ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000); 10509 if (ret) 10510 force_logical_link_state_down(ppd); 10511 10512 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */ 10513 update_statusp(ppd, IB_PORT_DOWN); 10514 10515 /* 10516 * The LNI has a mandatory wait time after the physical state 10517 * moves to Offline.Quiet. The wait time may be different 10518 * depending on how the link went down. The 8051 firmware 10519 * will observe the needed wait time and only move to ready 10520 * when that is completed. The largest of the quiet timeouts 10521 * is 6s, so wait that long and then at least 0.5s more for 10522 * other transitions, and another 0.5s for a buffer. 10523 */ 10524 ret = wait_fm_ready(dd, 7000); 10525 if (ret) { 10526 dd_dev_err(dd, 10527 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n"); 10528 /* state is really offline, so make it so */ 10529 ppd->host_link_state = HLS_DN_OFFLINE; 10530 return ret; 10531 } 10532 10533 /* 10534 * The state is now offline and the 8051 is ready to accept host 10535 * requests. 10536 * - change our state 10537 * - notify others if we were previously in a linkup state 10538 */ 10539 ppd->host_link_state = HLS_DN_OFFLINE; 10540 if (previous_state & HLS_UP) { 10541 /* went down while link was up */ 10542 handle_linkup_change(dd, 0); 10543 } else if (previous_state 10544 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 10545 /* went down while attempting link up */ 10546 check_lni_states(ppd); 10547 10548 /* The QSFP doesn't need to be reset on LNI failure */ 10549 ppd->qsfp_info.reset_needed = 0; 10550 } 10551 10552 /* the active link width (downgrade) is 0 on link down */ 10553 ppd->link_width_active = 0; 10554 ppd->link_width_downgrade_tx_active = 0; 10555 ppd->link_width_downgrade_rx_active = 0; 10556 ppd->current_egress_rate = 0; 10557 return 0; 10558} 10559 10560/* return the link state name */ 10561static const char *link_state_name(u32 state) 10562{ 10563 const char *name; 10564 int n = ilog2(state); 10565 static const char * const names[] = { 10566 [__HLS_UP_INIT_BP] = "INIT", 10567 [__HLS_UP_ARMED_BP] = "ARMED", 10568 [__HLS_UP_ACTIVE_BP] = "ACTIVE", 10569 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF", 10570 [__HLS_DN_POLL_BP] = "POLL", 10571 [__HLS_DN_DISABLE_BP] = "DISABLE", 10572 [__HLS_DN_OFFLINE_BP] = "OFFLINE", 10573 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP", 10574 [__HLS_GOING_UP_BP] = "GOING_UP", 10575 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE", 10576 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN" 10577 }; 10578 10579 name = n < ARRAY_SIZE(names) ? names[n] : NULL; 10580 return name ? name : "unknown"; 10581} 10582 10583/* return the link state reason name */ 10584static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state) 10585{ 10586 if (state == HLS_UP_INIT) { 10587 switch (ppd->linkinit_reason) { 10588 case OPA_LINKINIT_REASON_LINKUP: 10589 return "(LINKUP)"; 10590 case OPA_LINKINIT_REASON_FLAPPING: 10591 return "(FLAPPING)"; 10592 case OPA_LINKINIT_OUTSIDE_POLICY: 10593 return "(OUTSIDE_POLICY)"; 10594 case OPA_LINKINIT_QUARANTINED: 10595 return "(QUARANTINED)"; 10596 case OPA_LINKINIT_INSUFIC_CAPABILITY: 10597 return "(INSUFIC_CAPABILITY)"; 10598 default: 10599 break; 10600 } 10601 } 10602 return ""; 10603} 10604 10605/* 10606 * driver_pstate - convert the driver's notion of a port's 10607 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*). 10608 * Return -1 (converted to a u32) to indicate error. 10609 */ 10610u32 driver_pstate(struct hfi1_pportdata *ppd) 10611{ 10612 switch (ppd->host_link_state) { 10613 case HLS_UP_INIT: 10614 case HLS_UP_ARMED: 10615 case HLS_UP_ACTIVE: 10616 return IB_PORTPHYSSTATE_LINKUP; 10617 case HLS_DN_POLL: 10618 return IB_PORTPHYSSTATE_POLLING; 10619 case HLS_DN_DISABLE: 10620 return IB_PORTPHYSSTATE_DISABLED; 10621 case HLS_DN_OFFLINE: 10622 return OPA_PORTPHYSSTATE_OFFLINE; 10623 case HLS_VERIFY_CAP: 10624 return IB_PORTPHYSSTATE_TRAINING; 10625 case HLS_GOING_UP: 10626 return IB_PORTPHYSSTATE_TRAINING; 10627 case HLS_GOING_OFFLINE: 10628 return OPA_PORTPHYSSTATE_OFFLINE; 10629 case HLS_LINK_COOLDOWN: 10630 return OPA_PORTPHYSSTATE_OFFLINE; 10631 case HLS_DN_DOWNDEF: 10632 default: 10633 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10634 ppd->host_link_state); 10635 return -1; 10636 } 10637} 10638 10639/* 10640 * driver_lstate - convert the driver's notion of a port's 10641 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1 10642 * (converted to a u32) to indicate error. 10643 */ 10644u32 driver_lstate(struct hfi1_pportdata *ppd) 10645{ 10646 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN)) 10647 return IB_PORT_DOWN; 10648 10649 switch (ppd->host_link_state & HLS_UP) { 10650 case HLS_UP_INIT: 10651 return IB_PORT_INIT; 10652 case HLS_UP_ARMED: 10653 return IB_PORT_ARMED; 10654 case HLS_UP_ACTIVE: 10655 return IB_PORT_ACTIVE; 10656 default: 10657 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10658 ppd->host_link_state); 10659 return -1; 10660 } 10661} 10662 10663void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason, 10664 u8 neigh_reason, u8 rem_reason) 10665{ 10666 if (ppd->local_link_down_reason.latest == 0 && 10667 ppd->neigh_link_down_reason.latest == 0) { 10668 ppd->local_link_down_reason.latest = lcl_reason; 10669 ppd->neigh_link_down_reason.latest = neigh_reason; 10670 ppd->remote_link_down_reason = rem_reason; 10671 } 10672} 10673 10674/** 10675 * data_vls_operational() - Verify if data VL BCT credits and MTU 10676 * are both set. 10677 * @ppd: pointer to hfi1_pportdata structure 10678 * 10679 * Return: true - Ok, false -otherwise. 10680 */ 10681static inline bool data_vls_operational(struct hfi1_pportdata *ppd) 10682{ 10683 int i; 10684 u64 reg; 10685 10686 if (!ppd->actual_vls_operational) 10687 return false; 10688 10689 for (i = 0; i < ppd->vls_supported; i++) { 10690 reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i)); 10691 if ((reg && !ppd->dd->vld[i].mtu) || 10692 (!reg && ppd->dd->vld[i].mtu)) 10693 return false; 10694 } 10695 10696 return true; 10697} 10698 10699/* 10700 * Change the physical and/or logical link state. 10701 * 10702 * Do not call this routine while inside an interrupt. It contains 10703 * calls to routines that can take multiple seconds to finish. 10704 * 10705 * Returns 0 on success, -errno on failure. 10706 */ 10707int set_link_state(struct hfi1_pportdata *ppd, u32 state) 10708{ 10709 struct hfi1_devdata *dd = ppd->dd; 10710 struct ib_event event = {.device = NULL}; 10711 int ret1, ret = 0; 10712 int orig_new_state, poll_bounce; 10713 10714 mutex_lock(&ppd->hls_lock); 10715 10716 orig_new_state = state; 10717 if (state == HLS_DN_DOWNDEF) 10718 state = HLS_DEFAULT; 10719 10720 /* interpret poll -> poll as a link bounce */ 10721 poll_bounce = ppd->host_link_state == HLS_DN_POLL && 10722 state == HLS_DN_POLL; 10723 10724 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__, 10725 link_state_name(ppd->host_link_state), 10726 link_state_name(orig_new_state), 10727 poll_bounce ? "(bounce) " : "", 10728 link_state_reason_name(ppd, state)); 10729 10730 /* 10731 * If we're going to a (HLS_*) link state that implies the logical 10732 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then 10733 * reset is_sm_config_started to 0. 10734 */ 10735 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE))) 10736 ppd->is_sm_config_started = 0; 10737 10738 /* 10739 * Do nothing if the states match. Let a poll to poll link bounce 10740 * go through. 10741 */ 10742 if (ppd->host_link_state == state && !poll_bounce) 10743 goto done; 10744 10745 switch (state) { 10746 case HLS_UP_INIT: 10747 if (ppd->host_link_state == HLS_DN_POLL && 10748 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) { 10749 /* 10750 * Quick link up jumps from polling to here. 10751 * 10752 * Whether in normal or loopback mode, the 10753 * simulator jumps from polling to link up. 10754 * Accept that here. 10755 */ 10756 /* OK */ 10757 } else if (ppd->host_link_state != HLS_GOING_UP) { 10758 goto unexpected; 10759 } 10760 10761 /* 10762 * Wait for Link_Up physical state. 10763 * Physical and Logical states should already be 10764 * be transitioned to LinkUp and LinkInit respectively. 10765 */ 10766 ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000); 10767 if (ret) { 10768 dd_dev_err(dd, 10769 "%s: physical state did not change to LINK-UP\n", 10770 __func__); 10771 break; 10772 } 10773 10774 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000); 10775 if (ret) { 10776 dd_dev_err(dd, 10777 "%s: logical state did not change to INIT\n", 10778 __func__); 10779 break; 10780 } 10781 10782 /* clear old transient LINKINIT_REASON code */ 10783 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR) 10784 ppd->linkinit_reason = 10785 OPA_LINKINIT_REASON_LINKUP; 10786 10787 /* enable the port */ 10788 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 10789 10790 handle_linkup_change(dd, 1); 10791 pio_kernel_linkup(dd); 10792 10793 /* 10794 * After link up, a new link width will have been set. 10795 * Update the xmit counters with regards to the new 10796 * link width. 10797 */ 10798 update_xmit_counters(ppd, ppd->link_width_active); 10799 10800 ppd->host_link_state = HLS_UP_INIT; 10801 update_statusp(ppd, IB_PORT_INIT); 10802 break; 10803 case HLS_UP_ARMED: 10804 if (ppd->host_link_state != HLS_UP_INIT) 10805 goto unexpected; 10806 10807 if (!data_vls_operational(ppd)) { 10808 dd_dev_err(dd, 10809 "%s: Invalid data VL credits or mtu\n", 10810 __func__); 10811 ret = -EINVAL; 10812 break; 10813 } 10814 10815 set_logical_state(dd, LSTATE_ARMED); 10816 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000); 10817 if (ret) { 10818 dd_dev_err(dd, 10819 "%s: logical state did not change to ARMED\n", 10820 __func__); 10821 break; 10822 } 10823 ppd->host_link_state = HLS_UP_ARMED; 10824 update_statusp(ppd, IB_PORT_ARMED); 10825 /* 10826 * The simulator does not currently implement SMA messages, 10827 * so neighbor_normal is not set. Set it here when we first 10828 * move to Armed. 10829 */ 10830 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 10831 ppd->neighbor_normal = 1; 10832 break; 10833 case HLS_UP_ACTIVE: 10834 if (ppd->host_link_state != HLS_UP_ARMED) 10835 goto unexpected; 10836 10837 set_logical_state(dd, LSTATE_ACTIVE); 10838 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000); 10839 if (ret) { 10840 dd_dev_err(dd, 10841 "%s: logical state did not change to ACTIVE\n", 10842 __func__); 10843 } else { 10844 /* tell all engines to go running */ 10845 sdma_all_running(dd); 10846 ppd->host_link_state = HLS_UP_ACTIVE; 10847 update_statusp(ppd, IB_PORT_ACTIVE); 10848 10849 /* Signal the IB layer that the port has went active */ 10850 event.device = &dd->verbs_dev.rdi.ibdev; 10851 event.element.port_num = ppd->port; 10852 event.event = IB_EVENT_PORT_ACTIVE; 10853 } 10854 break; 10855 case HLS_DN_POLL: 10856 if ((ppd->host_link_state == HLS_DN_DISABLE || 10857 ppd->host_link_state == HLS_DN_OFFLINE) && 10858 dd->dc_shutdown) 10859 dc_start(dd); 10860 /* Hand LED control to the DC */ 10861 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 10862 10863 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10864 u8 tmp = ppd->link_enabled; 10865 10866 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10867 if (ret) { 10868 ppd->link_enabled = tmp; 10869 break; 10870 } 10871 ppd->remote_link_down_reason = 0; 10872 10873 if (ppd->driver_link_ready) 10874 ppd->link_enabled = 1; 10875 } 10876 10877 set_all_slowpath(ppd->dd); 10878 ret = set_local_link_attributes(ppd); 10879 if (ret) 10880 break; 10881 10882 ppd->port_error_action = 0; 10883 10884 if (quick_linkup) { 10885 /* quick linkup does not go into polling */ 10886 ret = do_quick_linkup(dd); 10887 } else { 10888 ret1 = set_physical_link_state(dd, PLS_POLLING); 10889 if (!ret1) 10890 ret1 = wait_phys_link_out_of_offline(ppd, 10891 3000); 10892 if (ret1 != HCMD_SUCCESS) { 10893 dd_dev_err(dd, 10894 "Failed to transition to Polling link state, return 0x%x\n", 10895 ret1); 10896 ret = -EINVAL; 10897 } 10898 } 10899 10900 /* 10901 * Change the host link state after requesting DC8051 to 10902 * change its physical state so that we can ignore any 10903 * interrupt with stale LNI(XX) error, which will not be 10904 * cleared until DC8051 transitions to Polling state. 10905 */ 10906 ppd->host_link_state = HLS_DN_POLL; 10907 ppd->offline_disabled_reason = 10908 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE); 10909 /* 10910 * If an error occurred above, go back to offline. The 10911 * caller may reschedule another attempt. 10912 */ 10913 if (ret) 10914 goto_offline(ppd, 0); 10915 else 10916 log_physical_state(ppd, PLS_POLLING); 10917 break; 10918 case HLS_DN_DISABLE: 10919 /* link is disabled */ 10920 ppd->link_enabled = 0; 10921 10922 /* allow any state to transition to disabled */ 10923 10924 /* must transition to offline first */ 10925 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10926 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10927 if (ret) 10928 break; 10929 ppd->remote_link_down_reason = 0; 10930 } 10931 10932 if (!dd->dc_shutdown) { 10933 ret1 = set_physical_link_state(dd, PLS_DISABLED); 10934 if (ret1 != HCMD_SUCCESS) { 10935 dd_dev_err(dd, 10936 "Failed to transition to Disabled link state, return 0x%x\n", 10937 ret1); 10938 ret = -EINVAL; 10939 break; 10940 } 10941 ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000); 10942 if (ret) { 10943 dd_dev_err(dd, 10944 "%s: physical state did not change to DISABLED\n", 10945 __func__); 10946 break; 10947 } 10948 dc_shutdown(dd); 10949 } 10950 ppd->host_link_state = HLS_DN_DISABLE; 10951 break; 10952 case HLS_DN_OFFLINE: 10953 if (ppd->host_link_state == HLS_DN_DISABLE) 10954 dc_start(dd); 10955 10956 /* allow any state to transition to offline */ 10957 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10958 if (!ret) 10959 ppd->remote_link_down_reason = 0; 10960 break; 10961 case HLS_VERIFY_CAP: 10962 if (ppd->host_link_state != HLS_DN_POLL) 10963 goto unexpected; 10964 ppd->host_link_state = HLS_VERIFY_CAP; 10965 log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP); 10966 break; 10967 case HLS_GOING_UP: 10968 if (ppd->host_link_state != HLS_VERIFY_CAP) 10969 goto unexpected; 10970 10971 ret1 = set_physical_link_state(dd, PLS_LINKUP); 10972 if (ret1 != HCMD_SUCCESS) { 10973 dd_dev_err(dd, 10974 "Failed to transition to link up state, return 0x%x\n", 10975 ret1); 10976 ret = -EINVAL; 10977 break; 10978 } 10979 ppd->host_link_state = HLS_GOING_UP; 10980 break; 10981 10982 case HLS_GOING_OFFLINE: /* transient within goto_offline() */ 10983 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */ 10984 default: 10985 dd_dev_info(dd, "%s: state 0x%x: not supported\n", 10986 __func__, state); 10987 ret = -EINVAL; 10988 break; 10989 } 10990 10991 goto done; 10992 10993unexpected: 10994 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n", 10995 __func__, link_state_name(ppd->host_link_state), 10996 link_state_name(state)); 10997 ret = -EINVAL; 10998 10999done: 11000 mutex_unlock(&ppd->hls_lock); 11001 11002 if (event.device) 11003 ib_dispatch_event(&event); 11004 11005 return ret; 11006} 11007 11008int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val) 11009{ 11010 u64 reg; 11011 int ret = 0; 11012 11013 switch (which) { 11014 case HFI1_IB_CFG_LIDLMC: 11015 set_lidlmc(ppd); 11016 break; 11017 case HFI1_IB_CFG_VL_HIGH_LIMIT: 11018 /* 11019 * The VL Arbitrator high limit is sent in units of 4k 11020 * bytes, while HFI stores it in units of 64 bytes. 11021 */ 11022 val *= 4096 / 64; 11023 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK) 11024 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT; 11025 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg); 11026 break; 11027 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 11028 /* HFI only supports POLL as the default link down state */ 11029 if (val != HLS_DN_POLL) 11030 ret = -EINVAL; 11031 break; 11032 case HFI1_IB_CFG_OP_VLS: 11033 if (ppd->vls_operational != val) { 11034 ppd->vls_operational = val; 11035 if (!ppd->port) 11036 ret = -EINVAL; 11037 } 11038 break; 11039 /* 11040 * For link width, link width downgrade, and speed enable, always AND 11041 * the setting with what is actually supported. This has two benefits. 11042 * First, enabled can't have unsupported values, no matter what the 11043 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean 11044 * "fill in with your supported value" have all the bits in the 11045 * field set, so simply ANDing with supported has the desired result. 11046 */ 11047 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */ 11048 ppd->link_width_enabled = val & ppd->link_width_supported; 11049 break; 11050 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */ 11051 ppd->link_width_downgrade_enabled = 11052 val & ppd->link_width_downgrade_supported; 11053 break; 11054 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 11055 ppd->link_speed_enabled = val & ppd->link_speed_supported; 11056 break; 11057 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 11058 /* 11059 * HFI does not follow IB specs, save this value 11060 * so we can report it, if asked. 11061 */ 11062 ppd->overrun_threshold = val; 11063 break; 11064 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 11065 /* 11066 * HFI does not follow IB specs, save this value 11067 * so we can report it, if asked. 11068 */ 11069 ppd->phy_error_threshold = val; 11070 break; 11071 11072 case HFI1_IB_CFG_MTU: 11073 set_send_length(ppd); 11074 break; 11075 11076 case HFI1_IB_CFG_PKEYS: 11077 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 11078 set_partition_keys(ppd); 11079 break; 11080 11081 default: 11082 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 11083 dd_dev_info(ppd->dd, 11084 "%s: which %s, val 0x%x: not implemented\n", 11085 __func__, ib_cfg_name(which), val); 11086 break; 11087 } 11088 return ret; 11089} 11090 11091/* begin functions related to vl arbitration table caching */ 11092static void init_vl_arb_caches(struct hfi1_pportdata *ppd) 11093{ 11094 int i; 11095 11096 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 11097 VL_ARB_LOW_PRIO_TABLE_SIZE); 11098 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 11099 VL_ARB_HIGH_PRIO_TABLE_SIZE); 11100 11101 /* 11102 * Note that we always return values directly from the 11103 * 'vl_arb_cache' (and do no CSR reads) in response to a 11104 * 'Get(VLArbTable)'. This is obviously correct after a 11105 * 'Set(VLArbTable)', since the cache will then be up to 11106 * date. But it's also correct prior to any 'Set(VLArbTable)' 11107 * since then both the cache, and the relevant h/w registers 11108 * will be zeroed. 11109 */ 11110 11111 for (i = 0; i < MAX_PRIO_TABLE; i++) 11112 spin_lock_init(&ppd->vl_arb_cache[i].lock); 11113} 11114 11115/* 11116 * vl_arb_lock_cache 11117 * 11118 * All other vl_arb_* functions should be called only after locking 11119 * the cache. 11120 */ 11121static inline struct vl_arb_cache * 11122vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx) 11123{ 11124 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE) 11125 return NULL; 11126 spin_lock(&ppd->vl_arb_cache[idx].lock); 11127 return &ppd->vl_arb_cache[idx]; 11128} 11129 11130static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx) 11131{ 11132 spin_unlock(&ppd->vl_arb_cache[idx].lock); 11133} 11134 11135static void vl_arb_get_cache(struct vl_arb_cache *cache, 11136 struct ib_vl_weight_elem *vl) 11137{ 11138 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl)); 11139} 11140 11141static void vl_arb_set_cache(struct vl_arb_cache *cache, 11142 struct ib_vl_weight_elem *vl) 11143{ 11144 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 11145} 11146 11147static int vl_arb_match_cache(struct vl_arb_cache *cache, 11148 struct ib_vl_weight_elem *vl) 11149{ 11150 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 11151} 11152 11153/* end functions related to vl arbitration table caching */ 11154 11155static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target, 11156 u32 size, struct ib_vl_weight_elem *vl) 11157{ 11158 struct hfi1_devdata *dd = ppd->dd; 11159 u64 reg; 11160 unsigned int i, is_up = 0; 11161 int drain, ret = 0; 11162 11163 mutex_lock(&ppd->hls_lock); 11164 11165 if (ppd->host_link_state & HLS_UP) 11166 is_up = 1; 11167 11168 drain = !is_ax(dd) && is_up; 11169 11170 if (drain) 11171 /* 11172 * Before adjusting VL arbitration weights, empty per-VL 11173 * FIFOs, otherwise a packet whose VL weight is being 11174 * set to 0 could get stuck in a FIFO with no chance to 11175 * egress. 11176 */ 11177 ret = stop_drain_data_vls(dd); 11178 11179 if (ret) { 11180 dd_dev_err( 11181 dd, 11182 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n", 11183 __func__); 11184 goto err; 11185 } 11186 11187 for (i = 0; i < size; i++, vl++) { 11188 /* 11189 * NOTE: The low priority shift and mask are used here, but 11190 * they are the same for both the low and high registers. 11191 */ 11192 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK) 11193 << SEND_LOW_PRIORITY_LIST_VL_SHIFT) 11194 | (((u64)vl->weight 11195 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK) 11196 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT); 11197 write_csr(dd, target + (i * 8), reg); 11198 } 11199 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE); 11200 11201 if (drain) 11202 open_fill_data_vls(dd); /* reopen all VLs */ 11203 11204err: 11205 mutex_unlock(&ppd->hls_lock); 11206 11207 return ret; 11208} 11209 11210/* 11211 * Read one credit merge VL register. 11212 */ 11213static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr, 11214 struct vl_limit *vll) 11215{ 11216 u64 reg = read_csr(dd, csr); 11217 11218 vll->dedicated = cpu_to_be16( 11219 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT) 11220 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK); 11221 vll->shared = cpu_to_be16( 11222 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT) 11223 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK); 11224} 11225 11226/* 11227 * Read the current credit merge limits. 11228 */ 11229static int get_buffer_control(struct hfi1_devdata *dd, 11230 struct buffer_control *bc, u16 *overall_limit) 11231{ 11232 u64 reg; 11233 int i; 11234 11235 /* not all entries are filled in */ 11236 memset(bc, 0, sizeof(*bc)); 11237 11238 /* OPA and HFI have a 1-1 mapping */ 11239 for (i = 0; i < TXE_NUM_DATA_VL; i++) 11240 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]); 11241 11242 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */ 11243 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]); 11244 11245 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 11246 bc->overall_shared_limit = cpu_to_be16( 11247 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) 11248 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK); 11249 if (overall_limit) 11250 *overall_limit = (reg 11251 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) 11252 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK; 11253 return sizeof(struct buffer_control); 11254} 11255 11256static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 11257{ 11258 u64 reg; 11259 int i; 11260 11261 /* each register contains 16 SC->VLnt mappings, 4 bits each */ 11262 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0); 11263 for (i = 0; i < sizeof(u64); i++) { 11264 u8 byte = *(((u8 *)®) + i); 11265 11266 dp->vlnt[2 * i] = byte & 0xf; 11267 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4; 11268 } 11269 11270 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16); 11271 for (i = 0; i < sizeof(u64); i++) { 11272 u8 byte = *(((u8 *)®) + i); 11273 11274 dp->vlnt[16 + (2 * i)] = byte & 0xf; 11275 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4; 11276 } 11277 return sizeof(struct sc2vlnt); 11278} 11279 11280static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems, 11281 struct ib_vl_weight_elem *vl) 11282{ 11283 unsigned int i; 11284 11285 for (i = 0; i < nelems; i++, vl++) { 11286 vl->vl = 0xf; 11287 vl->weight = 0; 11288 } 11289} 11290 11291static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 11292{ 11293 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, 11294 DC_SC_VL_VAL(15_0, 11295 0, dp->vlnt[0] & 0xf, 11296 1, dp->vlnt[1] & 0xf, 11297 2, dp->vlnt[2] & 0xf, 11298 3, dp->vlnt[3] & 0xf, 11299 4, dp->vlnt[4] & 0xf, 11300 5, dp->vlnt[5] & 0xf, 11301 6, dp->vlnt[6] & 0xf, 11302 7, dp->vlnt[7] & 0xf, 11303 8, dp->vlnt[8] & 0xf, 11304 9, dp->vlnt[9] & 0xf, 11305 10, dp->vlnt[10] & 0xf, 11306 11, dp->vlnt[11] & 0xf, 11307 12, dp->vlnt[12] & 0xf, 11308 13, dp->vlnt[13] & 0xf, 11309 14, dp->vlnt[14] & 0xf, 11310 15, dp->vlnt[15] & 0xf)); 11311 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, 11312 DC_SC_VL_VAL(31_16, 11313 16, dp->vlnt[16] & 0xf, 11314 17, dp->vlnt[17] & 0xf, 11315 18, dp->vlnt[18] & 0xf, 11316 19, dp->vlnt[19] & 0xf, 11317 20, dp->vlnt[20] & 0xf, 11318 21, dp->vlnt[21] & 0xf, 11319 22, dp->vlnt[22] & 0xf, 11320 23, dp->vlnt[23] & 0xf, 11321 24, dp->vlnt[24] & 0xf, 11322 25, dp->vlnt[25] & 0xf, 11323 26, dp->vlnt[26] & 0xf, 11324 27, dp->vlnt[27] & 0xf, 11325 28, dp->vlnt[28] & 0xf, 11326 29, dp->vlnt[29] & 0xf, 11327 30, dp->vlnt[30] & 0xf, 11328 31, dp->vlnt[31] & 0xf)); 11329} 11330 11331static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what, 11332 u16 limit) 11333{ 11334 if (limit != 0) 11335 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n", 11336 what, (int)limit, idx); 11337} 11338 11339/* change only the shared limit portion of SendCmGLobalCredit */ 11340static void set_global_shared(struct hfi1_devdata *dd, u16 limit) 11341{ 11342 u64 reg; 11343 11344 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 11345 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK; 11346 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT; 11347 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 11348} 11349 11350/* change only the total credit limit portion of SendCmGLobalCredit */ 11351static void set_global_limit(struct hfi1_devdata *dd, u16 limit) 11352{ 11353 u64 reg; 11354 11355 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 11356 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK; 11357 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT; 11358 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 11359} 11360 11361/* set the given per-VL shared limit */ 11362static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit) 11363{ 11364 u64 reg; 11365 u32 addr; 11366 11367 if (vl < TXE_NUM_DATA_VL) 11368 addr = SEND_CM_CREDIT_VL + (8 * vl); 11369 else 11370 addr = SEND_CM_CREDIT_VL15; 11371 11372 reg = read_csr(dd, addr); 11373 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK; 11374 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT; 11375 write_csr(dd, addr, reg); 11376} 11377 11378/* set the given per-VL dedicated limit */ 11379static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit) 11380{ 11381 u64 reg; 11382 u32 addr; 11383 11384 if (vl < TXE_NUM_DATA_VL) 11385 addr = SEND_CM_CREDIT_VL + (8 * vl); 11386 else 11387 addr = SEND_CM_CREDIT_VL15; 11388 11389 reg = read_csr(dd, addr); 11390 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK; 11391 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT; 11392 write_csr(dd, addr, reg); 11393} 11394 11395/* spin until the given per-VL status mask bits clear */ 11396static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask, 11397 const char *which) 11398{ 11399 unsigned long timeout; 11400 u64 reg; 11401 11402 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT); 11403 while (1) { 11404 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask; 11405 11406 if (reg == 0) 11407 return; /* success */ 11408 if (time_after(jiffies, timeout)) 11409 break; /* timed out */ 11410 udelay(1); 11411 } 11412 11413 dd_dev_err(dd, 11414 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n", 11415 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg); 11416 /* 11417 * If this occurs, it is likely there was a credit loss on the link. 11418 * The only recovery from that is a link bounce. 11419 */ 11420 dd_dev_err(dd, 11421 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n"); 11422} 11423 11424/* 11425 * The number of credits on the VLs may be changed while everything 11426 * is "live", but the following algorithm must be followed due to 11427 * how the hardware is actually implemented. In particular, 11428 * Return_Credit_Status[] is the only correct status check. 11429 * 11430 * if (reducing Global_Shared_Credit_Limit or any shared limit changing) 11431 * set Global_Shared_Credit_Limit = 0 11432 * use_all_vl = 1 11433 * mask0 = all VLs that are changing either dedicated or shared limits 11434 * set Shared_Limit[mask0] = 0 11435 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0 11436 * if (changing any dedicated limit) 11437 * mask1 = all VLs that are lowering dedicated limits 11438 * lower Dedicated_Limit[mask1] 11439 * spin until Return_Credit_Status[mask1] == 0 11440 * raise Dedicated_Limits 11441 * raise Shared_Limits 11442 * raise Global_Shared_Credit_Limit 11443 * 11444 * lower = if the new limit is lower, set the limit to the new value 11445 * raise = if the new limit is higher than the current value (may be changed 11446 * earlier in the algorithm), set the new limit to the new value 11447 */ 11448int set_buffer_control(struct hfi1_pportdata *ppd, 11449 struct buffer_control *new_bc) 11450{ 11451 struct hfi1_devdata *dd = ppd->dd; 11452 u64 changing_mask, ld_mask, stat_mask; 11453 int change_count; 11454 int i, use_all_mask; 11455 int this_shared_changing; 11456 int vl_count = 0, ret; 11457 /* 11458 * A0: add the variable any_shared_limit_changing below and in the 11459 * algorithm above. If removing A0 support, it can be removed. 11460 */ 11461 int any_shared_limit_changing; 11462 struct buffer_control cur_bc; 11463 u8 changing[OPA_MAX_VLS]; 11464 u8 lowering_dedicated[OPA_MAX_VLS]; 11465 u16 cur_total; 11466 u32 new_total = 0; 11467 const u64 all_mask = 11468 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK 11469 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK 11470 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK 11471 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK 11472 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK 11473 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK 11474 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK 11475 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK 11476 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK; 11477 11478#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15) 11479#define NUM_USABLE_VLS 16 /* look at VL15 and less */ 11480 11481 /* find the new total credits, do sanity check on unused VLs */ 11482 for (i = 0; i < OPA_MAX_VLS; i++) { 11483 if (valid_vl(i)) { 11484 new_total += be16_to_cpu(new_bc->vl[i].dedicated); 11485 continue; 11486 } 11487 nonzero_msg(dd, i, "dedicated", 11488 be16_to_cpu(new_bc->vl[i].dedicated)); 11489 nonzero_msg(dd, i, "shared", 11490 be16_to_cpu(new_bc->vl[i].shared)); 11491 new_bc->vl[i].dedicated = 0; 11492 new_bc->vl[i].shared = 0; 11493 } 11494 new_total += be16_to_cpu(new_bc->overall_shared_limit); 11495 11496 /* fetch the current values */ 11497 get_buffer_control(dd, &cur_bc, &cur_total); 11498 11499 /* 11500 * Create the masks we will use. 11501 */ 11502 memset(changing, 0, sizeof(changing)); 11503 memset(lowering_dedicated, 0, sizeof(lowering_dedicated)); 11504 /* 11505 * NOTE: Assumes that the individual VL bits are adjacent and in 11506 * increasing order 11507 */ 11508 stat_mask = 11509 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK; 11510 changing_mask = 0; 11511 ld_mask = 0; 11512 change_count = 0; 11513 any_shared_limit_changing = 0; 11514 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) { 11515 if (!valid_vl(i)) 11516 continue; 11517 this_shared_changing = new_bc->vl[i].shared 11518 != cur_bc.vl[i].shared; 11519 if (this_shared_changing) 11520 any_shared_limit_changing = 1; 11521 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated || 11522 this_shared_changing) { 11523 changing[i] = 1; 11524 changing_mask |= stat_mask; 11525 change_count++; 11526 } 11527 if (be16_to_cpu(new_bc->vl[i].dedicated) < 11528 be16_to_cpu(cur_bc.vl[i].dedicated)) { 11529 lowering_dedicated[i] = 1; 11530 ld_mask |= stat_mask; 11531 } 11532 } 11533 11534 /* bracket the credit change with a total adjustment */ 11535 if (new_total > cur_total) 11536 set_global_limit(dd, new_total); 11537 11538 /* 11539 * Start the credit change algorithm. 11540 */ 11541 use_all_mask = 0; 11542 if ((be16_to_cpu(new_bc->overall_shared_limit) < 11543 be16_to_cpu(cur_bc.overall_shared_limit)) || 11544 (is_ax(dd) && any_shared_limit_changing)) { 11545 set_global_shared(dd, 0); 11546 cur_bc.overall_shared_limit = 0; 11547 use_all_mask = 1; 11548 } 11549 11550 for (i = 0; i < NUM_USABLE_VLS; i++) { 11551 if (!valid_vl(i)) 11552 continue; 11553 11554 if (changing[i]) { 11555 set_vl_shared(dd, i, 0); 11556 cur_bc.vl[i].shared = 0; 11557 } 11558 } 11559 11560 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask, 11561 "shared"); 11562 11563 if (change_count > 0) { 11564 for (i = 0; i < NUM_USABLE_VLS; i++) { 11565 if (!valid_vl(i)) 11566 continue; 11567 11568 if (lowering_dedicated[i]) { 11569 set_vl_dedicated(dd, i, 11570 be16_to_cpu(new_bc-> 11571 vl[i].dedicated)); 11572 cur_bc.vl[i].dedicated = 11573 new_bc->vl[i].dedicated; 11574 } 11575 } 11576 11577 wait_for_vl_status_clear(dd, ld_mask, "dedicated"); 11578 11579 /* now raise all dedicated that are going up */ 11580 for (i = 0; i < NUM_USABLE_VLS; i++) { 11581 if (!valid_vl(i)) 11582 continue; 11583 11584 if (be16_to_cpu(new_bc->vl[i].dedicated) > 11585 be16_to_cpu(cur_bc.vl[i].dedicated)) 11586 set_vl_dedicated(dd, i, 11587 be16_to_cpu(new_bc-> 11588 vl[i].dedicated)); 11589 } 11590 } 11591 11592 /* next raise all shared that are going up */ 11593 for (i = 0; i < NUM_USABLE_VLS; i++) { 11594 if (!valid_vl(i)) 11595 continue; 11596 11597 if (be16_to_cpu(new_bc->vl[i].shared) > 11598 be16_to_cpu(cur_bc.vl[i].shared)) 11599 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared)); 11600 } 11601 11602 /* finally raise the global shared */ 11603 if (be16_to_cpu(new_bc->overall_shared_limit) > 11604 be16_to_cpu(cur_bc.overall_shared_limit)) 11605 set_global_shared(dd, 11606 be16_to_cpu(new_bc->overall_shared_limit)); 11607 11608 /* bracket the credit change with a total adjustment */ 11609 if (new_total < cur_total) 11610 set_global_limit(dd, new_total); 11611 11612 /* 11613 * Determine the actual number of operational VLS using the number of 11614 * dedicated and shared credits for each VL. 11615 */ 11616 if (change_count > 0) { 11617 for (i = 0; i < TXE_NUM_DATA_VL; i++) 11618 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 || 11619 be16_to_cpu(new_bc->vl[i].shared) > 0) 11620 vl_count++; 11621 ppd->actual_vls_operational = vl_count; 11622 ret = sdma_map_init(dd, ppd->port - 1, vl_count ? 11623 ppd->actual_vls_operational : 11624 ppd->vls_operational, 11625 NULL); 11626 if (ret == 0) 11627 ret = pio_map_init(dd, ppd->port - 1, vl_count ? 11628 ppd->actual_vls_operational : 11629 ppd->vls_operational, NULL); 11630 if (ret) 11631 return ret; 11632 } 11633 return 0; 11634} 11635 11636/* 11637 * Read the given fabric manager table. Return the size of the 11638 * table (in bytes) on success, and a negative error code on 11639 * failure. 11640 */ 11641int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t) 11642 11643{ 11644 int size; 11645 struct vl_arb_cache *vlc; 11646 11647 switch (which) { 11648 case FM_TBL_VL_HIGH_ARB: 11649 size = 256; 11650 /* 11651 * OPA specifies 128 elements (of 2 bytes each), though 11652 * HFI supports only 16 elements in h/w. 11653 */ 11654 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11655 vl_arb_get_cache(vlc, t); 11656 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11657 break; 11658 case FM_TBL_VL_LOW_ARB: 11659 size = 256; 11660 /* 11661 * OPA specifies 128 elements (of 2 bytes each), though 11662 * HFI supports only 16 elements in h/w. 11663 */ 11664 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11665 vl_arb_get_cache(vlc, t); 11666 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11667 break; 11668 case FM_TBL_BUFFER_CONTROL: 11669 size = get_buffer_control(ppd->dd, t, NULL); 11670 break; 11671 case FM_TBL_SC2VLNT: 11672 size = get_sc2vlnt(ppd->dd, t); 11673 break; 11674 case FM_TBL_VL_PREEMPT_ELEMS: 11675 size = 256; 11676 /* OPA specifies 128 elements, of 2 bytes each */ 11677 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t); 11678 break; 11679 case FM_TBL_VL_PREEMPT_MATRIX: 11680 size = 256; 11681 /* 11682 * OPA specifies that this is the same size as the VL 11683 * arbitration tables (i.e., 256 bytes). 11684 */ 11685 break; 11686 default: 11687 return -EINVAL; 11688 } 11689 return size; 11690} 11691 11692/* 11693 * Write the given fabric manager table. 11694 */ 11695int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t) 11696{ 11697 int ret = 0; 11698 struct vl_arb_cache *vlc; 11699 11700 switch (which) { 11701 case FM_TBL_VL_HIGH_ARB: 11702 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11703 if (vl_arb_match_cache(vlc, t)) { 11704 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11705 break; 11706 } 11707 vl_arb_set_cache(vlc, t); 11708 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11709 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST, 11710 VL_ARB_HIGH_PRIO_TABLE_SIZE, t); 11711 break; 11712 case FM_TBL_VL_LOW_ARB: 11713 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11714 if (vl_arb_match_cache(vlc, t)) { 11715 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11716 break; 11717 } 11718 vl_arb_set_cache(vlc, t); 11719 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11720 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST, 11721 VL_ARB_LOW_PRIO_TABLE_SIZE, t); 11722 break; 11723 case FM_TBL_BUFFER_CONTROL: 11724 ret = set_buffer_control(ppd, t); 11725 break; 11726 case FM_TBL_SC2VLNT: 11727 set_sc2vlnt(ppd->dd, t); 11728 break; 11729 default: 11730 ret = -EINVAL; 11731 } 11732 return ret; 11733} 11734 11735/* 11736 * Disable all data VLs. 11737 * 11738 * Return 0 if disabled, non-zero if the VLs cannot be disabled. 11739 */ 11740static int disable_data_vls(struct hfi1_devdata *dd) 11741{ 11742 if (is_ax(dd)) 11743 return 1; 11744 11745 pio_send_control(dd, PSC_DATA_VL_DISABLE); 11746 11747 return 0; 11748} 11749 11750/* 11751 * open_fill_data_vls() - the counterpart to stop_drain_data_vls(). 11752 * Just re-enables all data VLs (the "fill" part happens 11753 * automatically - the name was chosen for symmetry with 11754 * stop_drain_data_vls()). 11755 * 11756 * Return 0 if successful, non-zero if the VLs cannot be enabled. 11757 */ 11758int open_fill_data_vls(struct hfi1_devdata *dd) 11759{ 11760 if (is_ax(dd)) 11761 return 1; 11762 11763 pio_send_control(dd, PSC_DATA_VL_ENABLE); 11764 11765 return 0; 11766} 11767 11768/* 11769 * drain_data_vls() - assumes that disable_data_vls() has been called, 11770 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA 11771 * engines to drop to 0. 11772 */ 11773static void drain_data_vls(struct hfi1_devdata *dd) 11774{ 11775 sc_wait(dd); 11776 sdma_wait(dd); 11777 pause_for_credit_return(dd); 11778} 11779 11780/* 11781 * stop_drain_data_vls() - disable, then drain all per-VL fifos. 11782 * 11783 * Use open_fill_data_vls() to resume using data VLs. This pair is 11784 * meant to be used like this: 11785 * 11786 * stop_drain_data_vls(dd); 11787 * // do things with per-VL resources 11788 * open_fill_data_vls(dd); 11789 */ 11790int stop_drain_data_vls(struct hfi1_devdata *dd) 11791{ 11792 int ret; 11793 11794 ret = disable_data_vls(dd); 11795 if (ret == 0) 11796 drain_data_vls(dd); 11797 11798 return ret; 11799} 11800 11801/* 11802 * Convert a nanosecond time to a cclock count. No matter how slow 11803 * the cclock, a non-zero ns will always have a non-zero result. 11804 */ 11805u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns) 11806{ 11807 u32 cclocks; 11808 11809 if (dd->icode == ICODE_FPGA_EMULATION) 11810 cclocks = (ns * 1000) / FPGA_CCLOCK_PS; 11811 else /* simulation pretends to be ASIC */ 11812 cclocks = (ns * 1000) / ASIC_CCLOCK_PS; 11813 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */ 11814 cclocks = 1; 11815 return cclocks; 11816} 11817 11818/* 11819 * Convert a cclock count to nanoseconds. Not matter how slow 11820 * the cclock, a non-zero cclocks will always have a non-zero result. 11821 */ 11822u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks) 11823{ 11824 u32 ns; 11825 11826 if (dd->icode == ICODE_FPGA_EMULATION) 11827 ns = (cclocks * FPGA_CCLOCK_PS) / 1000; 11828 else /* simulation pretends to be ASIC */ 11829 ns = (cclocks * ASIC_CCLOCK_PS) / 1000; 11830 if (cclocks && !ns) 11831 ns = 1; 11832 return ns; 11833} 11834 11835/* 11836 * Dynamically adjust the receive interrupt timeout for a context based on 11837 * incoming packet rate. 11838 * 11839 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero. 11840 */ 11841static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts) 11842{ 11843 struct hfi1_devdata *dd = rcd->dd; 11844 u32 timeout = rcd->rcvavail_timeout; 11845 11846 /* 11847 * This algorithm doubles or halves the timeout depending on whether 11848 * the number of packets received in this interrupt were less than or 11849 * greater equal the interrupt count. 11850 * 11851 * The calculations below do not allow a steady state to be achieved. 11852 * Only at the endpoints it is possible to have an unchanging 11853 * timeout. 11854 */ 11855 if (npkts < rcv_intr_count) { 11856 /* 11857 * Not enough packets arrived before the timeout, adjust 11858 * timeout downward. 11859 */ 11860 if (timeout < 2) /* already at minimum? */ 11861 return; 11862 timeout >>= 1; 11863 } else { 11864 /* 11865 * More than enough packets arrived before the timeout, adjust 11866 * timeout upward. 11867 */ 11868 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */ 11869 return; 11870 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr); 11871 } 11872 11873 rcd->rcvavail_timeout = timeout; 11874 /* 11875 * timeout cannot be larger than rcv_intr_timeout_csr which has already 11876 * been verified to be in range 11877 */ 11878 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT, 11879 (u64)timeout << 11880 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 11881} 11882 11883void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd, 11884 u32 intr_adjust, u32 npkts) 11885{ 11886 struct hfi1_devdata *dd = rcd->dd; 11887 u64 reg; 11888 u32 ctxt = rcd->ctxt; 11889 11890 /* 11891 * Need to write timeout register before updating RcvHdrHead to ensure 11892 * that a new value is used when the HW decides to restart counting. 11893 */ 11894 if (intr_adjust) 11895 adjust_rcv_timeout(rcd, npkts); 11896 if (updegr) { 11897 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK) 11898 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT; 11899 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg); 11900 } 11901 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) | 11902 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK) 11903 << RCV_HDR_HEAD_HEAD_SHIFT); 11904 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 11905} 11906 11907u32 hdrqempty(struct hfi1_ctxtdata *rcd) 11908{ 11909 u32 head, tail; 11910 11911 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) 11912 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT; 11913 11914 if (hfi1_rcvhdrtail_kvaddr(rcd)) 11915 tail = get_rcvhdrtail(rcd); 11916 else 11917 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 11918 11919 return head == tail; 11920} 11921 11922/* 11923 * Context Control and Receive Array encoding for buffer size: 11924 * 0x0 invalid 11925 * 0x1 4 KB 11926 * 0x2 8 KB 11927 * 0x3 16 KB 11928 * 0x4 32 KB 11929 * 0x5 64 KB 11930 * 0x6 128 KB 11931 * 0x7 256 KB 11932 * 0x8 512 KB (Receive Array only) 11933 * 0x9 1 MB (Receive Array only) 11934 * 0xa 2 MB (Receive Array only) 11935 * 11936 * 0xB-0xF - reserved (Receive Array only) 11937 * 11938 * 11939 * This routine assumes that the value has already been sanity checked. 11940 */ 11941static u32 encoded_size(u32 size) 11942{ 11943 switch (size) { 11944 case 4 * 1024: return 0x1; 11945 case 8 * 1024: return 0x2; 11946 case 16 * 1024: return 0x3; 11947 case 32 * 1024: return 0x4; 11948 case 64 * 1024: return 0x5; 11949 case 128 * 1024: return 0x6; 11950 case 256 * 1024: return 0x7; 11951 case 512 * 1024: return 0x8; 11952 case 1 * 1024 * 1024: return 0x9; 11953 case 2 * 1024 * 1024: return 0xa; 11954 } 11955 return 0x1; /* if invalid, go with the minimum size */ 11956} 11957 11958/** 11959 * encode_rcv_header_entry_size - return chip specific encoding for size 11960 * @size: size in dwords 11961 * 11962 * Convert a receive header entry size that to the encoding used in the CSR. 11963 * 11964 * Return a zero if the given size is invalid, otherwise the encoding. 11965 */ 11966u8 encode_rcv_header_entry_size(u8 size) 11967{ 11968 /* there are only 3 valid receive header entry sizes */ 11969 if (size == 2) 11970 return 1; 11971 if (size == 16) 11972 return 2; 11973 if (size == 32) 11974 return 4; 11975 return 0; /* invalid */ 11976} 11977 11978/** 11979 * hfi1_validate_rcvhdrcnt - validate hdrcnt 11980 * @dd: the device data 11981 * @thecnt: the header count 11982 */ 11983int hfi1_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt) 11984{ 11985 if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) { 11986 dd_dev_err(dd, "Receive header queue count too small\n"); 11987 return -EINVAL; 11988 } 11989 11990 if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) { 11991 dd_dev_err(dd, 11992 "Receive header queue count cannot be greater than %u\n", 11993 HFI1_MAX_HDRQ_EGRBUF_CNT); 11994 return -EINVAL; 11995 } 11996 11997 if (thecnt % HDRQ_INCREMENT) { 11998 dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n", 11999 thecnt, HDRQ_INCREMENT); 12000 return -EINVAL; 12001 } 12002 12003 return 0; 12004} 12005 12006/** 12007 * set_hdrq_regs - set header queue registers for context 12008 * @dd: the device data 12009 * @ctxt: the context 12010 * @entsize: the dword entry size 12011 * @hdrcnt: the number of header entries 12012 */ 12013void set_hdrq_regs(struct hfi1_devdata *dd, u8 ctxt, u8 entsize, u16 hdrcnt) 12014{ 12015 u64 reg; 12016 12017 reg = (((u64)hdrcnt >> HDRQ_SIZE_SHIFT) & RCV_HDR_CNT_CNT_MASK) << 12018 RCV_HDR_CNT_CNT_SHIFT; 12019 write_kctxt_csr(dd, ctxt, RCV_HDR_CNT, reg); 12020 reg = ((u64)encode_rcv_header_entry_size(entsize) & 12021 RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) << 12022 RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT; 12023 write_kctxt_csr(dd, ctxt, RCV_HDR_ENT_SIZE, reg); 12024 reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK) << 12025 RCV_HDR_SIZE_HDR_SIZE_SHIFT; 12026 write_kctxt_csr(dd, ctxt, RCV_HDR_SIZE, reg); 12027 12028 /* 12029 * Program dummy tail address for every receive context 12030 * before enabling any receive context 12031 */ 12032 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 12033 dd->rcvhdrtail_dummy_dma); 12034} 12035 12036void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, 12037 struct hfi1_ctxtdata *rcd) 12038{ 12039 u64 rcvctrl, reg; 12040 int did_enable = 0; 12041 u16 ctxt; 12042 12043 if (!rcd) 12044 return; 12045 12046 ctxt = rcd->ctxt; 12047 12048 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op); 12049 12050 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL); 12051 /* if the context already enabled, don't do the extra steps */ 12052 if ((op & HFI1_RCVCTRL_CTXT_ENB) && 12053 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) { 12054 /* reset the tail and hdr addresses, and sequence count */ 12055 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR, 12056 rcd->rcvhdrq_dma); 12057 if (hfi1_rcvhdrtail_kvaddr(rcd)) 12058 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 12059 rcd->rcvhdrqtailaddr_dma); 12060 hfi1_set_seq_cnt(rcd, 1); 12061 12062 /* reset the cached receive header queue head value */ 12063 hfi1_set_rcd_head(rcd, 0); 12064 12065 /* 12066 * Zero the receive header queue so we don't get false 12067 * positives when checking the sequence number. The 12068 * sequence numbers could land exactly on the same spot. 12069 * E.g. a rcd restart before the receive header wrapped. 12070 */ 12071 memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd)); 12072 12073 /* starting timeout */ 12074 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr; 12075 12076 /* enable the context */ 12077 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK; 12078 12079 /* clean the egr buffer size first */ 12080 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 12081 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size) 12082 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK) 12083 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT; 12084 12085 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */ 12086 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0); 12087 did_enable = 1; 12088 12089 /* zero RcvEgrIndexHead */ 12090 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0); 12091 12092 /* set eager count and base index */ 12093 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT) 12094 & RCV_EGR_CTRL_EGR_CNT_MASK) 12095 << RCV_EGR_CTRL_EGR_CNT_SHIFT) | 12096 (((rcd->eager_base >> RCV_SHIFT) 12097 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK) 12098 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT); 12099 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg); 12100 12101 /* 12102 * Set TID (expected) count and base index. 12103 * rcd->expected_count is set to individual RcvArray entries, 12104 * not pairs, and the CSR takes a pair-count in groups of 12105 * four, so divide by 8. 12106 */ 12107 reg = (((rcd->expected_count >> RCV_SHIFT) 12108 & RCV_TID_CTRL_TID_PAIR_CNT_MASK) 12109 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) | 12110 (((rcd->expected_base >> RCV_SHIFT) 12111 & RCV_TID_CTRL_TID_BASE_INDEX_MASK) 12112 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT); 12113 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg); 12114 if (ctxt == HFI1_CTRL_CTXT) 12115 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT); 12116 } 12117 if (op & HFI1_RCVCTRL_CTXT_DIS) { 12118 write_csr(dd, RCV_VL15, 0); 12119 /* 12120 * When receive context is being disabled turn on tail 12121 * update with a dummy tail address and then disable 12122 * receive context. 12123 */ 12124 if (dd->rcvhdrtail_dummy_dma) { 12125 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 12126 dd->rcvhdrtail_dummy_dma); 12127 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */ 12128 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 12129 } 12130 12131 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK; 12132 } 12133 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) { 12134 set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt, 12135 IS_RCVAVAIL_START + rcd->ctxt, true); 12136 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 12137 } 12138 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) { 12139 set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt, 12140 IS_RCVAVAIL_START + rcd->ctxt, false); 12141 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 12142 } 12143 if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && hfi1_rcvhdrtail_kvaddr(rcd)) 12144 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 12145 if (op & HFI1_RCVCTRL_TAILUPD_DIS) { 12146 /* See comment on RcvCtxtCtrl.TailUpd above */ 12147 if (!(op & HFI1_RCVCTRL_CTXT_DIS)) 12148 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK; 12149 } 12150 if (op & HFI1_RCVCTRL_TIDFLOW_ENB) 12151 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 12152 if (op & HFI1_RCVCTRL_TIDFLOW_DIS) 12153 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 12154 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) { 12155 /* 12156 * In one-packet-per-eager mode, the size comes from 12157 * the RcvArray entry. 12158 */ 12159 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 12160 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 12161 } 12162 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS) 12163 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 12164 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB) 12165 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 12166 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS) 12167 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 12168 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB) 12169 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 12170 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS) 12171 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 12172 if (op & HFI1_RCVCTRL_URGENT_ENB) 12173 set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt, 12174 IS_RCVURGENT_START + rcd->ctxt, true); 12175 if (op & HFI1_RCVCTRL_URGENT_DIS) 12176 set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt, 12177 IS_RCVURGENT_START + rcd->ctxt, false); 12178 12179 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl); 12180 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl); 12181 12182 /* work around sticky RcvCtxtStatus.BlockedRHQFull */ 12183 if (did_enable && 12184 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) { 12185 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 12186 if (reg != 0) { 12187 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n", 12188 ctxt, reg); 12189 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 12190 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10); 12191 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00); 12192 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 12193 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 12194 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n", 12195 ctxt, reg, reg == 0 ? "not" : "still"); 12196 } 12197 } 12198 12199 if (did_enable) { 12200 /* 12201 * The interrupt timeout and count must be set after 12202 * the context is enabled to take effect. 12203 */ 12204 /* set interrupt timeout */ 12205 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT, 12206 (u64)rcd->rcvavail_timeout << 12207 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 12208 12209 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */ 12210 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT; 12211 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 12212 } 12213 12214 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS)) 12215 /* 12216 * If the context has been disabled and the Tail Update has 12217 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address 12218 * so it doesn't contain an address that is invalid. 12219 */ 12220 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 12221 dd->rcvhdrtail_dummy_dma); 12222} 12223 12224u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp) 12225{ 12226 int ret; 12227 u64 val = 0; 12228 12229 if (namep) { 12230 ret = dd->cntrnameslen; 12231 *namep = dd->cntrnames; 12232 } else { 12233 const struct cntr_entry *entry; 12234 int i, j; 12235 12236 ret = (dd->ndevcntrs) * sizeof(u64); 12237 12238 /* Get the start of the block of counters */ 12239 *cntrp = dd->cntrs; 12240 12241 /* 12242 * Now go and fill in each counter in the block. 12243 */ 12244 for (i = 0; i < DEV_CNTR_LAST; i++) { 12245 entry = &dev_cntrs[i]; 12246 hfi1_cdbg(CNTR, "reading %s", entry->name); 12247 if (entry->flags & CNTR_DISABLED) { 12248 /* Nothing */ 12249 hfi1_cdbg(CNTR, "\tDisabled\n"); 12250 } else { 12251 if (entry->flags & CNTR_VL) { 12252 hfi1_cdbg(CNTR, "\tPer VL\n"); 12253 for (j = 0; j < C_VL_COUNT; j++) { 12254 val = entry->rw_cntr(entry, 12255 dd, j, 12256 CNTR_MODE_R, 12257 0); 12258 hfi1_cdbg( 12259 CNTR, 12260 "\t\tRead 0x%llx for %d\n", 12261 val, j); 12262 dd->cntrs[entry->offset + j] = 12263 val; 12264 } 12265 } else if (entry->flags & CNTR_SDMA) { 12266 hfi1_cdbg(CNTR, 12267 "\t Per SDMA Engine\n"); 12268 for (j = 0; j < chip_sdma_engines(dd); 12269 j++) { 12270 val = 12271 entry->rw_cntr(entry, dd, j, 12272 CNTR_MODE_R, 0); 12273 hfi1_cdbg(CNTR, 12274 "\t\tRead 0x%llx for %d\n", 12275 val, j); 12276 dd->cntrs[entry->offset + j] = 12277 val; 12278 } 12279 } else { 12280 val = entry->rw_cntr(entry, dd, 12281 CNTR_INVALID_VL, 12282 CNTR_MODE_R, 0); 12283 dd->cntrs[entry->offset] = val; 12284 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 12285 } 12286 } 12287 } 12288 } 12289 return ret; 12290} 12291 12292/* 12293 * Used by sysfs to create files for hfi stats to read 12294 */ 12295u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp) 12296{ 12297 int ret; 12298 u64 val = 0; 12299 12300 if (namep) { 12301 ret = ppd->dd->portcntrnameslen; 12302 *namep = ppd->dd->portcntrnames; 12303 } else { 12304 const struct cntr_entry *entry; 12305 int i, j; 12306 12307 ret = ppd->dd->nportcntrs * sizeof(u64); 12308 *cntrp = ppd->cntrs; 12309 12310 for (i = 0; i < PORT_CNTR_LAST; i++) { 12311 entry = &port_cntrs[i]; 12312 hfi1_cdbg(CNTR, "reading %s", entry->name); 12313 if (entry->flags & CNTR_DISABLED) { 12314 /* Nothing */ 12315 hfi1_cdbg(CNTR, "\tDisabled\n"); 12316 continue; 12317 } 12318 12319 if (entry->flags & CNTR_VL) { 12320 hfi1_cdbg(CNTR, "\tPer VL"); 12321 for (j = 0; j < C_VL_COUNT; j++) { 12322 val = entry->rw_cntr(entry, ppd, j, 12323 CNTR_MODE_R, 12324 0); 12325 hfi1_cdbg( 12326 CNTR, 12327 "\t\tRead 0x%llx for %d", 12328 val, j); 12329 ppd->cntrs[entry->offset + j] = val; 12330 } 12331 } else { 12332 val = entry->rw_cntr(entry, ppd, 12333 CNTR_INVALID_VL, 12334 CNTR_MODE_R, 12335 0); 12336 ppd->cntrs[entry->offset] = val; 12337 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 12338 } 12339 } 12340 } 12341 return ret; 12342} 12343 12344static void free_cntrs(struct hfi1_devdata *dd) 12345{ 12346 struct hfi1_pportdata *ppd; 12347 int i; 12348 12349 if (dd->synth_stats_timer.function) 12350 del_timer_sync(&dd->synth_stats_timer); 12351 cancel_work_sync(&dd->update_cntr_work); 12352 ppd = (struct hfi1_pportdata *)(dd + 1); 12353 for (i = 0; i < dd->num_pports; i++, ppd++) { 12354 kfree(ppd->cntrs); 12355 kfree(ppd->scntrs); 12356 free_percpu(ppd->ibport_data.rvp.rc_acks); 12357 free_percpu(ppd->ibport_data.rvp.rc_qacks); 12358 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp); 12359 ppd->cntrs = NULL; 12360 ppd->scntrs = NULL; 12361 ppd->ibport_data.rvp.rc_acks = NULL; 12362 ppd->ibport_data.rvp.rc_qacks = NULL; 12363 ppd->ibport_data.rvp.rc_delayed_comp = NULL; 12364 } 12365 kfree(dd->portcntrnames); 12366 dd->portcntrnames = NULL; 12367 kfree(dd->cntrs); 12368 dd->cntrs = NULL; 12369 kfree(dd->scntrs); 12370 dd->scntrs = NULL; 12371 kfree(dd->cntrnames); 12372 dd->cntrnames = NULL; 12373 if (dd->update_cntr_wq) { 12374 destroy_workqueue(dd->update_cntr_wq); 12375 dd->update_cntr_wq = NULL; 12376 } 12377} 12378 12379static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry, 12380 u64 *psval, void *context, int vl) 12381{ 12382 u64 val; 12383 u64 sval = *psval; 12384 12385 if (entry->flags & CNTR_DISABLED) { 12386 dd_dev_err(dd, "Counter %s not enabled", entry->name); 12387 return 0; 12388 } 12389 12390 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 12391 12392 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0); 12393 12394 /* If its a synthetic counter there is more work we need to do */ 12395 if (entry->flags & CNTR_SYNTH) { 12396 if (sval == CNTR_MAX) { 12397 /* No need to read already saturated */ 12398 return CNTR_MAX; 12399 } 12400 12401 if (entry->flags & CNTR_32BIT) { 12402 /* 32bit counters can wrap multiple times */ 12403 u64 upper = sval >> 32; 12404 u64 lower = (sval << 32) >> 32; 12405 12406 if (lower > val) { /* hw wrapped */ 12407 if (upper == CNTR_32BIT_MAX) 12408 val = CNTR_MAX; 12409 else 12410 upper++; 12411 } 12412 12413 if (val != CNTR_MAX) 12414 val = (upper << 32) | val; 12415 12416 } else { 12417 /* If we rolled we are saturated */ 12418 if ((val < sval) || (val > CNTR_MAX)) 12419 val = CNTR_MAX; 12420 } 12421 } 12422 12423 *psval = val; 12424 12425 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 12426 12427 return val; 12428} 12429 12430static u64 write_dev_port_cntr(struct hfi1_devdata *dd, 12431 struct cntr_entry *entry, 12432 u64 *psval, void *context, int vl, u64 data) 12433{ 12434 u64 val; 12435 12436 if (entry->flags & CNTR_DISABLED) { 12437 dd_dev_err(dd, "Counter %s not enabled", entry->name); 12438 return 0; 12439 } 12440 12441 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 12442 12443 if (entry->flags & CNTR_SYNTH) { 12444 *psval = data; 12445 if (entry->flags & CNTR_32BIT) { 12446 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 12447 (data << 32) >> 32); 12448 val = data; /* return the full 64bit value */ 12449 } else { 12450 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 12451 data); 12452 } 12453 } else { 12454 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data); 12455 } 12456 12457 *psval = val; 12458 12459 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 12460 12461 return val; 12462} 12463 12464u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl) 12465{ 12466 struct cntr_entry *entry; 12467 u64 *sval; 12468 12469 entry = &dev_cntrs[index]; 12470 sval = dd->scntrs + entry->offset; 12471 12472 if (vl != CNTR_INVALID_VL) 12473 sval += vl; 12474 12475 return read_dev_port_cntr(dd, entry, sval, dd, vl); 12476} 12477 12478u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data) 12479{ 12480 struct cntr_entry *entry; 12481 u64 *sval; 12482 12483 entry = &dev_cntrs[index]; 12484 sval = dd->scntrs + entry->offset; 12485 12486 if (vl != CNTR_INVALID_VL) 12487 sval += vl; 12488 12489 return write_dev_port_cntr(dd, entry, sval, dd, vl, data); 12490} 12491 12492u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl) 12493{ 12494 struct cntr_entry *entry; 12495 u64 *sval; 12496 12497 entry = &port_cntrs[index]; 12498 sval = ppd->scntrs + entry->offset; 12499 12500 if (vl != CNTR_INVALID_VL) 12501 sval += vl; 12502 12503 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 12504 (index <= C_RCV_HDR_OVF_LAST)) { 12505 /* We do not want to bother for disabled contexts */ 12506 return 0; 12507 } 12508 12509 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl); 12510} 12511 12512u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data) 12513{ 12514 struct cntr_entry *entry; 12515 u64 *sval; 12516 12517 entry = &port_cntrs[index]; 12518 sval = ppd->scntrs + entry->offset; 12519 12520 if (vl != CNTR_INVALID_VL) 12521 sval += vl; 12522 12523 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 12524 (index <= C_RCV_HDR_OVF_LAST)) { 12525 /* We do not want to bother for disabled contexts */ 12526 return 0; 12527 } 12528 12529 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data); 12530} 12531 12532static void do_update_synth_timer(struct work_struct *work) 12533{ 12534 u64 cur_tx; 12535 u64 cur_rx; 12536 u64 total_flits; 12537 u8 update = 0; 12538 int i, j, vl; 12539 struct hfi1_pportdata *ppd; 12540 struct cntr_entry *entry; 12541 struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata, 12542 update_cntr_work); 12543 12544 /* 12545 * Rather than keep beating on the CSRs pick a minimal set that we can 12546 * check to watch for potential roll over. We can do this by looking at 12547 * the number of flits sent/recv. If the total flits exceeds 32bits then 12548 * we have to iterate all the counters and update. 12549 */ 12550 entry = &dev_cntrs[C_DC_RCV_FLITS]; 12551 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 12552 12553 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 12554 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 12555 12556 hfi1_cdbg( 12557 CNTR, 12558 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n", 12559 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx); 12560 12561 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) { 12562 /* 12563 * May not be strictly necessary to update but it won't hurt and 12564 * simplifies the logic here. 12565 */ 12566 update = 1; 12567 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating", 12568 dd->unit); 12569 } else { 12570 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx); 12571 hfi1_cdbg(CNTR, 12572 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit, 12573 total_flits, (u64)CNTR_32BIT_MAX); 12574 if (total_flits >= CNTR_32BIT_MAX) { 12575 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating", 12576 dd->unit); 12577 update = 1; 12578 } 12579 } 12580 12581 if (update) { 12582 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit); 12583 for (i = 0; i < DEV_CNTR_LAST; i++) { 12584 entry = &dev_cntrs[i]; 12585 if (entry->flags & CNTR_VL) { 12586 for (vl = 0; vl < C_VL_COUNT; vl++) 12587 read_dev_cntr(dd, i, vl); 12588 } else { 12589 read_dev_cntr(dd, i, CNTR_INVALID_VL); 12590 } 12591 } 12592 ppd = (struct hfi1_pportdata *)(dd + 1); 12593 for (i = 0; i < dd->num_pports; i++, ppd++) { 12594 for (j = 0; j < PORT_CNTR_LAST; j++) { 12595 entry = &port_cntrs[j]; 12596 if (entry->flags & CNTR_VL) { 12597 for (vl = 0; vl < C_VL_COUNT; vl++) 12598 read_port_cntr(ppd, j, vl); 12599 } else { 12600 read_port_cntr(ppd, j, CNTR_INVALID_VL); 12601 } 12602 } 12603 } 12604 12605 /* 12606 * We want the value in the register. The goal is to keep track 12607 * of the number of "ticks" not the counter value. In other 12608 * words if the register rolls we want to notice it and go ahead 12609 * and force an update. 12610 */ 12611 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 12612 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12613 CNTR_MODE_R, 0); 12614 12615 entry = &dev_cntrs[C_DC_RCV_FLITS]; 12616 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12617 CNTR_MODE_R, 0); 12618 12619 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx", 12620 dd->unit, dd->last_tx, dd->last_rx); 12621 12622 } else { 12623 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit); 12624 } 12625} 12626 12627static void update_synth_timer(struct timer_list *t) 12628{ 12629 struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer); 12630 12631 queue_work(dd->update_cntr_wq, &dd->update_cntr_work); 12632 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12633} 12634 12635#define C_MAX_NAME 16 /* 15 chars + one for /0 */ 12636static int init_cntrs(struct hfi1_devdata *dd) 12637{ 12638 int i, rcv_ctxts, j; 12639 size_t sz; 12640 char *p; 12641 char name[C_MAX_NAME]; 12642 struct hfi1_pportdata *ppd; 12643 const char *bit_type_32 = ",32"; 12644 const int bit_type_32_sz = strlen(bit_type_32); 12645 u32 sdma_engines = chip_sdma_engines(dd); 12646 12647 /* set up the stats timer; the add_timer is done at the end */ 12648 timer_setup(&dd->synth_stats_timer, update_synth_timer, 0); 12649 12650 /***********************/ 12651 /* per device counters */ 12652 /***********************/ 12653 12654 /* size names and determine how many we have*/ 12655 dd->ndevcntrs = 0; 12656 sz = 0; 12657 12658 for (i = 0; i < DEV_CNTR_LAST; i++) { 12659 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12660 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name); 12661 continue; 12662 } 12663 12664 if (dev_cntrs[i].flags & CNTR_VL) { 12665 dev_cntrs[i].offset = dd->ndevcntrs; 12666 for (j = 0; j < C_VL_COUNT; j++) { 12667 snprintf(name, C_MAX_NAME, "%s%d", 12668 dev_cntrs[i].name, vl_from_idx(j)); 12669 sz += strlen(name); 12670 /* Add ",32" for 32-bit counters */ 12671 if (dev_cntrs[i].flags & CNTR_32BIT) 12672 sz += bit_type_32_sz; 12673 sz++; 12674 dd->ndevcntrs++; 12675 } 12676 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12677 dev_cntrs[i].offset = dd->ndevcntrs; 12678 for (j = 0; j < sdma_engines; j++) { 12679 snprintf(name, C_MAX_NAME, "%s%d", 12680 dev_cntrs[i].name, j); 12681 sz += strlen(name); 12682 /* Add ",32" for 32-bit counters */ 12683 if (dev_cntrs[i].flags & CNTR_32BIT) 12684 sz += bit_type_32_sz; 12685 sz++; 12686 dd->ndevcntrs++; 12687 } 12688 } else { 12689 /* +1 for newline. */ 12690 sz += strlen(dev_cntrs[i].name) + 1; 12691 /* Add ",32" for 32-bit counters */ 12692 if (dev_cntrs[i].flags & CNTR_32BIT) 12693 sz += bit_type_32_sz; 12694 dev_cntrs[i].offset = dd->ndevcntrs; 12695 dd->ndevcntrs++; 12696 } 12697 } 12698 12699 /* allocate space for the counter values */ 12700 dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64), 12701 GFP_KERNEL); 12702 if (!dd->cntrs) 12703 goto bail; 12704 12705 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL); 12706 if (!dd->scntrs) 12707 goto bail; 12708 12709 /* allocate space for the counter names */ 12710 dd->cntrnameslen = sz; 12711 dd->cntrnames = kmalloc(sz, GFP_KERNEL); 12712 if (!dd->cntrnames) 12713 goto bail; 12714 12715 /* fill in the names */ 12716 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) { 12717 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12718 /* Nothing */ 12719 } else if (dev_cntrs[i].flags & CNTR_VL) { 12720 for (j = 0; j < C_VL_COUNT; j++) { 12721 snprintf(name, C_MAX_NAME, "%s%d", 12722 dev_cntrs[i].name, 12723 vl_from_idx(j)); 12724 memcpy(p, name, strlen(name)); 12725 p += strlen(name); 12726 12727 /* Counter is 32 bits */ 12728 if (dev_cntrs[i].flags & CNTR_32BIT) { 12729 memcpy(p, bit_type_32, bit_type_32_sz); 12730 p += bit_type_32_sz; 12731 } 12732 12733 *p++ = '\n'; 12734 } 12735 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12736 for (j = 0; j < sdma_engines; j++) { 12737 snprintf(name, C_MAX_NAME, "%s%d", 12738 dev_cntrs[i].name, j); 12739 memcpy(p, name, strlen(name)); 12740 p += strlen(name); 12741 12742 /* Counter is 32 bits */ 12743 if (dev_cntrs[i].flags & CNTR_32BIT) { 12744 memcpy(p, bit_type_32, bit_type_32_sz); 12745 p += bit_type_32_sz; 12746 } 12747 12748 *p++ = '\n'; 12749 } 12750 } else { 12751 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name)); 12752 p += strlen(dev_cntrs[i].name); 12753 12754 /* Counter is 32 bits */ 12755 if (dev_cntrs[i].flags & CNTR_32BIT) { 12756 memcpy(p, bit_type_32, bit_type_32_sz); 12757 p += bit_type_32_sz; 12758 } 12759 12760 *p++ = '\n'; 12761 } 12762 } 12763 12764 /*********************/ 12765 /* per port counters */ 12766 /*********************/ 12767 12768 /* 12769 * Go through the counters for the overflows and disable the ones we 12770 * don't need. This varies based on platform so we need to do it 12771 * dynamically here. 12772 */ 12773 rcv_ctxts = dd->num_rcv_contexts; 12774 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts; 12775 i <= C_RCV_HDR_OVF_LAST; i++) { 12776 port_cntrs[i].flags |= CNTR_DISABLED; 12777 } 12778 12779 /* size port counter names and determine how many we have*/ 12780 sz = 0; 12781 dd->nportcntrs = 0; 12782 for (i = 0; i < PORT_CNTR_LAST; i++) { 12783 if (port_cntrs[i].flags & CNTR_DISABLED) { 12784 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name); 12785 continue; 12786 } 12787 12788 if (port_cntrs[i].flags & CNTR_VL) { 12789 port_cntrs[i].offset = dd->nportcntrs; 12790 for (j = 0; j < C_VL_COUNT; j++) { 12791 snprintf(name, C_MAX_NAME, "%s%d", 12792 port_cntrs[i].name, vl_from_idx(j)); 12793 sz += strlen(name); 12794 /* Add ",32" for 32-bit counters */ 12795 if (port_cntrs[i].flags & CNTR_32BIT) 12796 sz += bit_type_32_sz; 12797 sz++; 12798 dd->nportcntrs++; 12799 } 12800 } else { 12801 /* +1 for newline */ 12802 sz += strlen(port_cntrs[i].name) + 1; 12803 /* Add ",32" for 32-bit counters */ 12804 if (port_cntrs[i].flags & CNTR_32BIT) 12805 sz += bit_type_32_sz; 12806 port_cntrs[i].offset = dd->nportcntrs; 12807 dd->nportcntrs++; 12808 } 12809 } 12810 12811 /* allocate space for the counter names */ 12812 dd->portcntrnameslen = sz; 12813 dd->portcntrnames = kmalloc(sz, GFP_KERNEL); 12814 if (!dd->portcntrnames) 12815 goto bail; 12816 12817 /* fill in port cntr names */ 12818 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) { 12819 if (port_cntrs[i].flags & CNTR_DISABLED) 12820 continue; 12821 12822 if (port_cntrs[i].flags & CNTR_VL) { 12823 for (j = 0; j < C_VL_COUNT; j++) { 12824 snprintf(name, C_MAX_NAME, "%s%d", 12825 port_cntrs[i].name, vl_from_idx(j)); 12826 memcpy(p, name, strlen(name)); 12827 p += strlen(name); 12828 12829 /* Counter is 32 bits */ 12830 if (port_cntrs[i].flags & CNTR_32BIT) { 12831 memcpy(p, bit_type_32, bit_type_32_sz); 12832 p += bit_type_32_sz; 12833 } 12834 12835 *p++ = '\n'; 12836 } 12837 } else { 12838 memcpy(p, port_cntrs[i].name, 12839 strlen(port_cntrs[i].name)); 12840 p += strlen(port_cntrs[i].name); 12841 12842 /* Counter is 32 bits */ 12843 if (port_cntrs[i].flags & CNTR_32BIT) { 12844 memcpy(p, bit_type_32, bit_type_32_sz); 12845 p += bit_type_32_sz; 12846 } 12847 12848 *p++ = '\n'; 12849 } 12850 } 12851 12852 /* allocate per port storage for counter values */ 12853 ppd = (struct hfi1_pportdata *)(dd + 1); 12854 for (i = 0; i < dd->num_pports; i++, ppd++) { 12855 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12856 if (!ppd->cntrs) 12857 goto bail; 12858 12859 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12860 if (!ppd->scntrs) 12861 goto bail; 12862 } 12863 12864 /* CPU counters need to be allocated and zeroed */ 12865 if (init_cpu_counters(dd)) 12866 goto bail; 12867 12868 dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d", 12869 WQ_MEM_RECLAIM, dd->unit); 12870 if (!dd->update_cntr_wq) 12871 goto bail; 12872 12873 INIT_WORK(&dd->update_cntr_work, do_update_synth_timer); 12874 12875 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12876 return 0; 12877bail: 12878 free_cntrs(dd); 12879 return -ENOMEM; 12880} 12881 12882static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate) 12883{ 12884 switch (chip_lstate) { 12885 case LSTATE_DOWN: 12886 return IB_PORT_DOWN; 12887 case LSTATE_INIT: 12888 return IB_PORT_INIT; 12889 case LSTATE_ARMED: 12890 return IB_PORT_ARMED; 12891 case LSTATE_ACTIVE: 12892 return IB_PORT_ACTIVE; 12893 default: 12894 dd_dev_err(dd, 12895 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n", 12896 chip_lstate); 12897 return IB_PORT_DOWN; 12898 } 12899} 12900 12901u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate) 12902{ 12903 /* look at the HFI meta-states only */ 12904 switch (chip_pstate & 0xf0) { 12905 case PLS_DISABLED: 12906 return IB_PORTPHYSSTATE_DISABLED; 12907 case PLS_OFFLINE: 12908 return OPA_PORTPHYSSTATE_OFFLINE; 12909 case PLS_POLLING: 12910 return IB_PORTPHYSSTATE_POLLING; 12911 case PLS_CONFIGPHY: 12912 return IB_PORTPHYSSTATE_TRAINING; 12913 case PLS_LINKUP: 12914 return IB_PORTPHYSSTATE_LINKUP; 12915 case PLS_PHYTEST: 12916 return IB_PORTPHYSSTATE_PHY_TEST; 12917 default: 12918 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n", 12919 chip_pstate); 12920 return IB_PORTPHYSSTATE_DISABLED; 12921 } 12922} 12923 12924/* return the OPA port logical state name */ 12925const char *opa_lstate_name(u32 lstate) 12926{ 12927 static const char * const port_logical_names[] = { 12928 "PORT_NOP", 12929 "PORT_DOWN", 12930 "PORT_INIT", 12931 "PORT_ARMED", 12932 "PORT_ACTIVE", 12933 "PORT_ACTIVE_DEFER", 12934 }; 12935 if (lstate < ARRAY_SIZE(port_logical_names)) 12936 return port_logical_names[lstate]; 12937 return "unknown"; 12938} 12939 12940/* return the OPA port physical state name */ 12941const char *opa_pstate_name(u32 pstate) 12942{ 12943 static const char * const port_physical_names[] = { 12944 "PHYS_NOP", 12945 "reserved1", 12946 "PHYS_POLL", 12947 "PHYS_DISABLED", 12948 "PHYS_TRAINING", 12949 "PHYS_LINKUP", 12950 "PHYS_LINK_ERR_RECOVER", 12951 "PHYS_PHY_TEST", 12952 "reserved8", 12953 "PHYS_OFFLINE", 12954 "PHYS_GANGED", 12955 "PHYS_TEST", 12956 }; 12957 if (pstate < ARRAY_SIZE(port_physical_names)) 12958 return port_physical_names[pstate]; 12959 return "unknown"; 12960} 12961 12962/** 12963 * update_statusp - Update userspace status flag 12964 * @ppd: Port data structure 12965 * @state: port state information 12966 * 12967 * Actual port status is determined by the host_link_state value 12968 * in the ppd. 12969 * 12970 * host_link_state MUST be updated before updating the user space 12971 * statusp. 12972 */ 12973static void update_statusp(struct hfi1_pportdata *ppd, u32 state) 12974{ 12975 /* 12976 * Set port status flags in the page mapped into userspace 12977 * memory. Do it here to ensure a reliable state - this is 12978 * the only function called by all state handling code. 12979 * Always set the flags due to the fact that the cache value 12980 * might have been changed explicitly outside of this 12981 * function. 12982 */ 12983 if (ppd->statusp) { 12984 switch (state) { 12985 case IB_PORT_DOWN: 12986 case IB_PORT_INIT: 12987 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 12988 HFI1_STATUS_IB_READY); 12989 break; 12990 case IB_PORT_ARMED: 12991 *ppd->statusp |= HFI1_STATUS_IB_CONF; 12992 break; 12993 case IB_PORT_ACTIVE: 12994 *ppd->statusp |= HFI1_STATUS_IB_READY; 12995 break; 12996 } 12997 } 12998 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n", 12999 opa_lstate_name(state), state); 13000} 13001 13002/** 13003 * wait_logical_linkstate - wait for an IB link state change to occur 13004 * @ppd: port device 13005 * @state: the state to wait for 13006 * @msecs: the number of milliseconds to wait 13007 * 13008 * Wait up to msecs milliseconds for IB link state change to occur. 13009 * For now, take the easy polling route. 13010 * Returns 0 if state reached, otherwise -ETIMEDOUT. 13011 */ 13012static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 13013 int msecs) 13014{ 13015 unsigned long timeout; 13016 u32 new_state; 13017 13018 timeout = jiffies + msecs_to_jiffies(msecs); 13019 while (1) { 13020 new_state = chip_to_opa_lstate(ppd->dd, 13021 read_logical_state(ppd->dd)); 13022 if (new_state == state) 13023 break; 13024 if (time_after(jiffies, timeout)) { 13025 dd_dev_err(ppd->dd, 13026 "timeout waiting for link state 0x%x\n", 13027 state); 13028 return -ETIMEDOUT; 13029 } 13030 msleep(20); 13031 } 13032 13033 return 0; 13034} 13035 13036static void log_state_transition(struct hfi1_pportdata *ppd, u32 state) 13037{ 13038 u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state); 13039 13040 dd_dev_info(ppd->dd, 13041 "physical state changed to %s (0x%x), phy 0x%x\n", 13042 opa_pstate_name(ib_pstate), ib_pstate, state); 13043} 13044 13045/* 13046 * Read the physical hardware link state and check if it matches host 13047 * drivers anticipated state. 13048 */ 13049static void log_physical_state(struct hfi1_pportdata *ppd, u32 state) 13050{ 13051 u32 read_state = read_physical_state(ppd->dd); 13052 13053 if (read_state == state) { 13054 log_state_transition(ppd, state); 13055 } else { 13056 dd_dev_err(ppd->dd, 13057 "anticipated phy link state 0x%x, read 0x%x\n", 13058 state, read_state); 13059 } 13060} 13061 13062/* 13063 * wait_physical_linkstate - wait for an physical link state change to occur 13064 * @ppd: port device 13065 * @state: the state to wait for 13066 * @msecs: the number of milliseconds to wait 13067 * 13068 * Wait up to msecs milliseconds for physical link state change to occur. 13069 * Returns 0 if state reached, otherwise -ETIMEDOUT. 13070 */ 13071static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state, 13072 int msecs) 13073{ 13074 u32 read_state; 13075 unsigned long timeout; 13076 13077 timeout = jiffies + msecs_to_jiffies(msecs); 13078 while (1) { 13079 read_state = read_physical_state(ppd->dd); 13080 if (read_state == state) 13081 break; 13082 if (time_after(jiffies, timeout)) { 13083 dd_dev_err(ppd->dd, 13084 "timeout waiting for phy link state 0x%x\n", 13085 state); 13086 return -ETIMEDOUT; 13087 } 13088 usleep_range(1950, 2050); /* sleep 2ms-ish */ 13089 } 13090 13091 log_state_transition(ppd, state); 13092 return 0; 13093} 13094 13095/* 13096 * wait_phys_link_offline_quiet_substates - wait for any offline substate 13097 * @ppd: port device 13098 * @msecs: the number of milliseconds to wait 13099 * 13100 * Wait up to msecs milliseconds for any offline physical link 13101 * state change to occur. 13102 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT. 13103 */ 13104static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd, 13105 int msecs) 13106{ 13107 u32 read_state; 13108 unsigned long timeout; 13109 13110 timeout = jiffies + msecs_to_jiffies(msecs); 13111 while (1) { 13112 read_state = read_physical_state(ppd->dd); 13113 if ((read_state & 0xF0) == PLS_OFFLINE) 13114 break; 13115 if (time_after(jiffies, timeout)) { 13116 dd_dev_err(ppd->dd, 13117 "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n", 13118 read_state, msecs); 13119 return -ETIMEDOUT; 13120 } 13121 usleep_range(1950, 2050); /* sleep 2ms-ish */ 13122 } 13123 13124 log_state_transition(ppd, read_state); 13125 return read_state; 13126} 13127 13128/* 13129 * wait_phys_link_out_of_offline - wait for any out of offline state 13130 * @ppd: port device 13131 * @msecs: the number of milliseconds to wait 13132 * 13133 * Wait up to msecs milliseconds for any out of offline physical link 13134 * state change to occur. 13135 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT. 13136 */ 13137static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd, 13138 int msecs) 13139{ 13140 u32 read_state; 13141 unsigned long timeout; 13142 13143 timeout = jiffies + msecs_to_jiffies(msecs); 13144 while (1) { 13145 read_state = read_physical_state(ppd->dd); 13146 if ((read_state & 0xF0) != PLS_OFFLINE) 13147 break; 13148 if (time_after(jiffies, timeout)) { 13149 dd_dev_err(ppd->dd, 13150 "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n", 13151 read_state, msecs); 13152 return -ETIMEDOUT; 13153 } 13154 usleep_range(1950, 2050); /* sleep 2ms-ish */ 13155 } 13156 13157 log_state_transition(ppd, read_state); 13158 return read_state; 13159} 13160 13161#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \ 13162(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 13163 13164#define SET_STATIC_RATE_CONTROL_SMASK(r) \ 13165(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 13166 13167void hfi1_init_ctxt(struct send_context *sc) 13168{ 13169 if (sc) { 13170 struct hfi1_devdata *dd = sc->dd; 13171 u64 reg; 13172 u8 set = (sc->type == SC_USER ? 13173 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) : 13174 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)); 13175 reg = read_kctxt_csr(dd, sc->hw_context, 13176 SEND_CTXT_CHECK_ENABLE); 13177 if (set) 13178 CLEAR_STATIC_RATE_CONTROL_SMASK(reg); 13179 else 13180 SET_STATIC_RATE_CONTROL_SMASK(reg); 13181 write_kctxt_csr(dd, sc->hw_context, 13182 SEND_CTXT_CHECK_ENABLE, reg); 13183 } 13184} 13185 13186int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp) 13187{ 13188 int ret = 0; 13189 u64 reg; 13190 13191 if (dd->icode != ICODE_RTL_SILICON) { 13192 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 13193 dd_dev_info(dd, "%s: tempsense not supported by HW\n", 13194 __func__); 13195 return -EINVAL; 13196 } 13197 reg = read_csr(dd, ASIC_STS_THERM); 13198 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) & 13199 ASIC_STS_THERM_CURR_TEMP_MASK); 13200 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) & 13201 ASIC_STS_THERM_LO_TEMP_MASK); 13202 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) & 13203 ASIC_STS_THERM_HI_TEMP_MASK); 13204 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) & 13205 ASIC_STS_THERM_CRIT_TEMP_MASK); 13206 /* triggers is a 3-bit value - 1 bit per trigger. */ 13207 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7); 13208 13209 return ret; 13210} 13211 13212/* ========================================================================= */ 13213 13214/** 13215 * read_mod_write() - Calculate the IRQ register index and set/clear the bits 13216 * @dd: valid devdata 13217 * @src: IRQ source to determine register index from 13218 * @bits: the bits to set or clear 13219 * @set: true == set the bits, false == clear the bits 13220 * 13221 */ 13222static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits, 13223 bool set) 13224{ 13225 u64 reg; 13226 u16 idx = src / BITS_PER_REGISTER; 13227 13228 spin_lock(&dd->irq_src_lock); 13229 reg = read_csr(dd, CCE_INT_MASK + (8 * idx)); 13230 if (set) 13231 reg |= bits; 13232 else 13233 reg &= ~bits; 13234 write_csr(dd, CCE_INT_MASK + (8 * idx), reg); 13235 spin_unlock(&dd->irq_src_lock); 13236} 13237 13238/** 13239 * set_intr_bits() - Enable/disable a range (one or more) IRQ sources 13240 * @dd: valid devdata 13241 * @first: first IRQ source to set/clear 13242 * @last: last IRQ source (inclusive) to set/clear 13243 * @set: true == set the bits, false == clear the bits 13244 * 13245 * If first == last, set the exact source. 13246 */ 13247int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set) 13248{ 13249 u64 bits = 0; 13250 u64 bit; 13251 u16 src; 13252 13253 if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES) 13254 return -EINVAL; 13255 13256 if (last < first) 13257 return -ERANGE; 13258 13259 for (src = first; src <= last; src++) { 13260 bit = src % BITS_PER_REGISTER; 13261 /* wrapped to next register? */ 13262 if (!bit && bits) { 13263 read_mod_write(dd, src - 1, bits, set); 13264 bits = 0; 13265 } 13266 bits |= BIT_ULL(bit); 13267 } 13268 read_mod_write(dd, last, bits, set); 13269 13270 return 0; 13271} 13272 13273/* 13274 * Clear all interrupt sources on the chip. 13275 */ 13276void clear_all_interrupts(struct hfi1_devdata *dd) 13277{ 13278 int i; 13279 13280 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 13281 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0); 13282 13283 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0); 13284 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0); 13285 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0); 13286 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0); 13287 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0); 13288 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0); 13289 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0); 13290 for (i = 0; i < chip_send_contexts(dd); i++) 13291 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0); 13292 for (i = 0; i < chip_sdma_engines(dd); i++) 13293 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0); 13294 13295 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0); 13296 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0); 13297 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0); 13298} 13299 13300/* 13301 * Remap the interrupt source from the general handler to the given MSI-X 13302 * interrupt. 13303 */ 13304void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr) 13305{ 13306 u64 reg; 13307 int m, n; 13308 13309 /* clear from the handled mask of the general interrupt */ 13310 m = isrc / 64; 13311 n = isrc % 64; 13312 if (likely(m < CCE_NUM_INT_CSRS)) { 13313 dd->gi_mask[m] &= ~((u64)1 << n); 13314 } else { 13315 dd_dev_err(dd, "remap interrupt err\n"); 13316 return; 13317 } 13318 13319 /* direct the chip source to the given MSI-X interrupt */ 13320 m = isrc / 8; 13321 n = isrc % 8; 13322 reg = read_csr(dd, CCE_INT_MAP + (8 * m)); 13323 reg &= ~((u64)0xff << (8 * n)); 13324 reg |= ((u64)msix_intr & 0xff) << (8 * n); 13325 write_csr(dd, CCE_INT_MAP + (8 * m), reg); 13326} 13327 13328void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr) 13329{ 13330 /* 13331 * SDMA engine interrupt sources grouped by type, rather than 13332 * engine. Per-engine interrupts are as follows: 13333 * SDMA 13334 * SDMAProgress 13335 * SDMAIdle 13336 */ 13337 remap_intr(dd, IS_SDMA_START + engine, msix_intr); 13338 remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr); 13339 remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr); 13340} 13341 13342/* 13343 * Set the general handler to accept all interrupts, remap all 13344 * chip interrupts back to MSI-X 0. 13345 */ 13346void reset_interrupts(struct hfi1_devdata *dd) 13347{ 13348 int i; 13349 13350 /* all interrupts handled by the general handler */ 13351 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 13352 dd->gi_mask[i] = ~(u64)0; 13353 13354 /* all chip interrupts map to MSI-X 0 */ 13355 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13356 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 13357} 13358 13359/** 13360 * set_up_interrupts() - Initialize the IRQ resources and state 13361 * @dd: valid devdata 13362 * 13363 */ 13364static int set_up_interrupts(struct hfi1_devdata *dd) 13365{ 13366 int ret; 13367 13368 /* mask all interrupts */ 13369 set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false); 13370 13371 /* clear all pending interrupts */ 13372 clear_all_interrupts(dd); 13373 13374 /* reset general handler mask, chip MSI-X mappings */ 13375 reset_interrupts(dd); 13376 13377 /* ask for MSI-X interrupts */ 13378 ret = msix_initialize(dd); 13379 if (ret) 13380 return ret; 13381 13382 ret = msix_request_irqs(dd); 13383 if (ret) 13384 msix_clean_up_interrupts(dd); 13385 13386 return ret; 13387} 13388 13389/* 13390 * Set up context values in dd. Sets: 13391 * 13392 * num_rcv_contexts - number of contexts being used 13393 * n_krcv_queues - number of kernel contexts 13394 * first_dyn_alloc_ctxt - first dynamically allocated context 13395 * in array of contexts 13396 * freectxts - number of free user contexts 13397 * num_send_contexts - number of PIO send contexts being used 13398 * num_netdev_contexts - number of contexts reserved for netdev 13399 */ 13400static int set_up_context_variables(struct hfi1_devdata *dd) 13401{ 13402 unsigned long num_kernel_contexts; 13403 u16 num_netdev_contexts; 13404 int ret; 13405 unsigned ngroups; 13406 int rmt_count; 13407 u32 n_usr_ctxts; 13408 u32 send_contexts = chip_send_contexts(dd); 13409 u32 rcv_contexts = chip_rcv_contexts(dd); 13410 13411 /* 13412 * Kernel receive contexts: 13413 * - Context 0 - control context (VL15/multicast/error) 13414 * - Context 1 - first kernel context 13415 * - Context 2 - second kernel context 13416 * ... 13417 */ 13418 if (n_krcvqs) 13419 /* 13420 * n_krcvqs is the sum of module parameter kernel receive 13421 * contexts, krcvqs[]. It does not include the control 13422 * context, so add that. 13423 */ 13424 num_kernel_contexts = n_krcvqs + 1; 13425 else 13426 num_kernel_contexts = DEFAULT_KRCVQS + 1; 13427 /* 13428 * Every kernel receive context needs an ACK send context. 13429 * one send context is allocated for each VL{0-7} and VL15 13430 */ 13431 if (num_kernel_contexts > (send_contexts - num_vls - 1)) { 13432 dd_dev_err(dd, 13433 "Reducing # kernel rcv contexts to: %d, from %lu\n", 13434 send_contexts - num_vls - 1, 13435 num_kernel_contexts); 13436 num_kernel_contexts = send_contexts - num_vls - 1; 13437 } 13438 13439 /* 13440 * User contexts: 13441 * - default to 1 user context per real (non-HT) CPU core if 13442 * num_user_contexts is negative 13443 */ 13444 if (num_user_contexts < 0) 13445 n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask); 13446 else 13447 n_usr_ctxts = num_user_contexts; 13448 /* 13449 * Adjust the counts given a global max. 13450 */ 13451 if (num_kernel_contexts + n_usr_ctxts > rcv_contexts) { 13452 dd_dev_err(dd, 13453 "Reducing # user receive contexts to: %u, from %u\n", 13454 (u32)(rcv_contexts - num_kernel_contexts), 13455 n_usr_ctxts); 13456 /* recalculate */ 13457 n_usr_ctxts = rcv_contexts - num_kernel_contexts; 13458 } 13459 13460 num_netdev_contexts = 13461 hfi1_num_netdev_contexts(dd, rcv_contexts - 13462 (num_kernel_contexts + n_usr_ctxts), 13463 &node_affinity.real_cpu_mask); 13464 /* 13465 * RMT entries are allocated as follows: 13466 * 1. QOS (0 to 128 entries) 13467 * 2. FECN (num_kernel_context - 1 [a] + num_user_contexts + 13468 * num_netdev_contexts [b]) 13469 * 3. netdev (NUM_NETDEV_MAP_ENTRIES) 13470 * 13471 * Notes: 13472 * [a] Kernel contexts (except control) are included in FECN if kernel 13473 * TID_RDMA is active. 13474 * [b] Netdev and user contexts are randomly allocated from the same 13475 * context pool, so FECN must cover all contexts in the pool. 13476 */ 13477 rmt_count = qos_rmt_entries(num_kernel_contexts - 1, NULL, NULL) 13478 + (HFI1_CAP_IS_KSET(TID_RDMA) ? num_kernel_contexts - 1 13479 : 0) 13480 + n_usr_ctxts 13481 + num_netdev_contexts 13482 + NUM_NETDEV_MAP_ENTRIES; 13483 if (rmt_count > NUM_MAP_ENTRIES) { 13484 int over = rmt_count - NUM_MAP_ENTRIES; 13485 /* try to squish user contexts, minimum of 1 */ 13486 if (over >= n_usr_ctxts) { 13487 dd_dev_err(dd, "RMT overflow: reduce the requested number of contexts\n"); 13488 return -EINVAL; 13489 } 13490 dd_dev_err(dd, "RMT overflow: reducing # user contexts from %u to %u\n", 13491 n_usr_ctxts, n_usr_ctxts - over); 13492 n_usr_ctxts -= over; 13493 } 13494 13495 /* the first N are kernel contexts, the rest are user/netdev contexts */ 13496 dd->num_rcv_contexts = 13497 num_kernel_contexts + n_usr_ctxts + num_netdev_contexts; 13498 dd->n_krcv_queues = num_kernel_contexts; 13499 dd->first_dyn_alloc_ctxt = num_kernel_contexts; 13500 dd->num_netdev_contexts = num_netdev_contexts; 13501 dd->num_user_contexts = n_usr_ctxts; 13502 dd->freectxts = n_usr_ctxts; 13503 dd_dev_info(dd, 13504 "rcv contexts: chip %d, used %d (kernel %d, netdev %u, user %u)\n", 13505 rcv_contexts, 13506 (int)dd->num_rcv_contexts, 13507 (int)dd->n_krcv_queues, 13508 dd->num_netdev_contexts, 13509 dd->num_user_contexts); 13510 13511 /* 13512 * Receive array allocation: 13513 * All RcvArray entries are divided into groups of 8. This 13514 * is required by the hardware and will speed up writes to 13515 * consecutive entries by using write-combining of the entire 13516 * cacheline. 13517 * 13518 * The number of groups are evenly divided among all contexts. 13519 * any left over groups will be given to the first N user 13520 * contexts. 13521 */ 13522 dd->rcv_entries.group_size = RCV_INCREMENT; 13523 ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size; 13524 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts; 13525 dd->rcv_entries.nctxt_extra = ngroups - 13526 (dd->num_rcv_contexts * dd->rcv_entries.ngroups); 13527 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n", 13528 dd->rcv_entries.ngroups, 13529 dd->rcv_entries.nctxt_extra); 13530 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size > 13531 MAX_EAGER_ENTRIES * 2) { 13532 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) / 13533 dd->rcv_entries.group_size; 13534 dd_dev_info(dd, 13535 "RcvArray group count too high, change to %u\n", 13536 dd->rcv_entries.ngroups); 13537 dd->rcv_entries.nctxt_extra = 0; 13538 } 13539 /* 13540 * PIO send contexts 13541 */ 13542 ret = init_sc_pools_and_sizes(dd); 13543 if (ret >= 0) { /* success */ 13544 dd->num_send_contexts = ret; 13545 dd_dev_info( 13546 dd, 13547 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n", 13548 send_contexts, 13549 dd->num_send_contexts, 13550 dd->sc_sizes[SC_KERNEL].count, 13551 dd->sc_sizes[SC_ACK].count, 13552 dd->sc_sizes[SC_USER].count, 13553 dd->sc_sizes[SC_VL15].count); 13554 ret = 0; /* success */ 13555 } 13556 13557 return ret; 13558} 13559 13560/* 13561 * Set the device/port partition key table. The MAD code 13562 * will ensure that, at least, the partial management 13563 * partition key is present in the table. 13564 */ 13565static void set_partition_keys(struct hfi1_pportdata *ppd) 13566{ 13567 struct hfi1_devdata *dd = ppd->dd; 13568 u64 reg = 0; 13569 int i; 13570 13571 dd_dev_info(dd, "Setting partition keys\n"); 13572 for (i = 0; i < hfi1_get_npkeys(dd); i++) { 13573 reg |= (ppd->pkeys[i] & 13574 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) << 13575 ((i % 4) * 13576 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT); 13577 /* Each register holds 4 PKey values. */ 13578 if ((i % 4) == 3) { 13579 write_csr(dd, RCV_PARTITION_KEY + 13580 ((i - 3) * 2), reg); 13581 reg = 0; 13582 } 13583 } 13584 13585 /* Always enable HW pkeys check when pkeys table is set */ 13586 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK); 13587} 13588 13589/* 13590 * These CSRs and memories are uninitialized on reset and must be 13591 * written before reading to set the ECC/parity bits. 13592 * 13593 * NOTE: All user context CSRs that are not mmaped write-only 13594 * (e.g. the TID flows) must be initialized even if the driver never 13595 * reads them. 13596 */ 13597static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd) 13598{ 13599 int i, j; 13600 13601 /* CceIntMap */ 13602 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13603 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 13604 13605 /* SendCtxtCreditReturnAddr */ 13606 for (i = 0; i < chip_send_contexts(dd); i++) 13607 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13608 13609 /* PIO Send buffers */ 13610 /* SDMA Send buffers */ 13611 /* 13612 * These are not normally read, and (presently) have no method 13613 * to be read, so are not pre-initialized 13614 */ 13615 13616 /* RcvHdrAddr */ 13617 /* RcvHdrTailAddr */ 13618 /* RcvTidFlowTable */ 13619 for (i = 0; i < chip_rcv_contexts(dd); i++) { 13620 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13621 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13622 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) 13623 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0); 13624 } 13625 13626 /* RcvArray */ 13627 for (i = 0; i < chip_rcv_array_count(dd); i++) 13628 hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0); 13629 13630 /* RcvQPMapTable */ 13631 for (i = 0; i < 32; i++) 13632 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13633} 13634 13635/* 13636 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus. 13637 */ 13638static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits, 13639 u64 ctrl_bits) 13640{ 13641 unsigned long timeout; 13642 u64 reg; 13643 13644 /* is the condition present? */ 13645 reg = read_csr(dd, CCE_STATUS); 13646 if ((reg & status_bits) == 0) 13647 return; 13648 13649 /* clear the condition */ 13650 write_csr(dd, CCE_CTRL, ctrl_bits); 13651 13652 /* wait for the condition to clear */ 13653 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT); 13654 while (1) { 13655 reg = read_csr(dd, CCE_STATUS); 13656 if ((reg & status_bits) == 0) 13657 return; 13658 if (time_after(jiffies, timeout)) { 13659 dd_dev_err(dd, 13660 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n", 13661 status_bits, reg & status_bits); 13662 return; 13663 } 13664 udelay(1); 13665 } 13666} 13667 13668/* set CCE CSRs to chip reset defaults */ 13669static void reset_cce_csrs(struct hfi1_devdata *dd) 13670{ 13671 int i; 13672 13673 /* CCE_REVISION read-only */ 13674 /* CCE_REVISION2 read-only */ 13675 /* CCE_CTRL - bits clear automatically */ 13676 /* CCE_STATUS read-only, use CceCtrl to clear */ 13677 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK); 13678 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK); 13679 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK); 13680 for (i = 0; i < CCE_NUM_SCRATCH; i++) 13681 write_csr(dd, CCE_SCRATCH + (8 * i), 0); 13682 /* CCE_ERR_STATUS read-only */ 13683 write_csr(dd, CCE_ERR_MASK, 0); 13684 write_csr(dd, CCE_ERR_CLEAR, ~0ull); 13685 /* CCE_ERR_FORCE leave alone */ 13686 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++) 13687 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0); 13688 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR); 13689 /* CCE_PCIE_CTRL leave alone */ 13690 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) { 13691 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0); 13692 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i), 13693 CCE_MSIX_TABLE_UPPER_RESETCSR); 13694 } 13695 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) { 13696 /* CCE_MSIX_PBA read-only */ 13697 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull); 13698 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull); 13699 } 13700 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13701 write_csr(dd, CCE_INT_MAP, 0); 13702 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 13703 /* CCE_INT_STATUS read-only */ 13704 write_csr(dd, CCE_INT_MASK + (8 * i), 0); 13705 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull); 13706 /* CCE_INT_FORCE leave alone */ 13707 /* CCE_INT_BLOCKED read-only */ 13708 } 13709 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++) 13710 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0); 13711} 13712 13713/* set MISC CSRs to chip reset defaults */ 13714static void reset_misc_csrs(struct hfi1_devdata *dd) 13715{ 13716 int i; 13717 13718 for (i = 0; i < 32; i++) { 13719 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0); 13720 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0); 13721 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0); 13722 } 13723 /* 13724 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can 13725 * only be written 128-byte chunks 13726 */ 13727 /* init RSA engine to clear lingering errors */ 13728 write_csr(dd, MISC_CFG_RSA_CMD, 1); 13729 write_csr(dd, MISC_CFG_RSA_MU, 0); 13730 write_csr(dd, MISC_CFG_FW_CTRL, 0); 13731 /* MISC_STS_8051_DIGEST read-only */ 13732 /* MISC_STS_SBM_DIGEST read-only */ 13733 /* MISC_STS_PCIE_DIGEST read-only */ 13734 /* MISC_STS_FAB_DIGEST read-only */ 13735 /* MISC_ERR_STATUS read-only */ 13736 write_csr(dd, MISC_ERR_MASK, 0); 13737 write_csr(dd, MISC_ERR_CLEAR, ~0ull); 13738 /* MISC_ERR_FORCE leave alone */ 13739} 13740 13741/* set TXE CSRs to chip reset defaults */ 13742static void reset_txe_csrs(struct hfi1_devdata *dd) 13743{ 13744 int i; 13745 13746 /* 13747 * TXE Kernel CSRs 13748 */ 13749 write_csr(dd, SEND_CTRL, 0); 13750 __cm_reset(dd, 0); /* reset CM internal state */ 13751 /* SEND_CONTEXTS read-only */ 13752 /* SEND_DMA_ENGINES read-only */ 13753 /* SEND_PIO_MEM_SIZE read-only */ 13754 /* SEND_DMA_MEM_SIZE read-only */ 13755 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0); 13756 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */ 13757 /* SEND_PIO_ERR_STATUS read-only */ 13758 write_csr(dd, SEND_PIO_ERR_MASK, 0); 13759 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull); 13760 /* SEND_PIO_ERR_FORCE leave alone */ 13761 /* SEND_DMA_ERR_STATUS read-only */ 13762 write_csr(dd, SEND_DMA_ERR_MASK, 0); 13763 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull); 13764 /* SEND_DMA_ERR_FORCE leave alone */ 13765 /* SEND_EGRESS_ERR_STATUS read-only */ 13766 write_csr(dd, SEND_EGRESS_ERR_MASK, 0); 13767 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull); 13768 /* SEND_EGRESS_ERR_FORCE leave alone */ 13769 write_csr(dd, SEND_BTH_QP, 0); 13770 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0); 13771 write_csr(dd, SEND_SC2VLT0, 0); 13772 write_csr(dd, SEND_SC2VLT1, 0); 13773 write_csr(dd, SEND_SC2VLT2, 0); 13774 write_csr(dd, SEND_SC2VLT3, 0); 13775 write_csr(dd, SEND_LEN_CHECK0, 0); 13776 write_csr(dd, SEND_LEN_CHECK1, 0); 13777 /* SEND_ERR_STATUS read-only */ 13778 write_csr(dd, SEND_ERR_MASK, 0); 13779 write_csr(dd, SEND_ERR_CLEAR, ~0ull); 13780 /* SEND_ERR_FORCE read-only */ 13781 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++) 13782 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0); 13783 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++) 13784 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0); 13785 for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++) 13786 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0); 13787 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++) 13788 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0); 13789 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++) 13790 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0); 13791 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR); 13792 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR); 13793 /* SEND_CM_CREDIT_USED_STATUS read-only */ 13794 write_csr(dd, SEND_CM_TIMER_CTRL, 0); 13795 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0); 13796 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0); 13797 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0); 13798 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0); 13799 for (i = 0; i < TXE_NUM_DATA_VL; i++) 13800 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 13801 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 13802 /* SEND_CM_CREDIT_USED_VL read-only */ 13803 /* SEND_CM_CREDIT_USED_VL15 read-only */ 13804 /* SEND_EGRESS_CTXT_STATUS read-only */ 13805 /* SEND_EGRESS_SEND_DMA_STATUS read-only */ 13806 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull); 13807 /* SEND_EGRESS_ERR_INFO read-only */ 13808 /* SEND_EGRESS_ERR_SOURCE read-only */ 13809 13810 /* 13811 * TXE Per-Context CSRs 13812 */ 13813 for (i = 0; i < chip_send_contexts(dd); i++) { 13814 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 13815 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0); 13816 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13817 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0); 13818 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0); 13819 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull); 13820 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0); 13821 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0); 13822 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0); 13823 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0); 13824 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0); 13825 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0); 13826 } 13827 13828 /* 13829 * TXE Per-SDMA CSRs 13830 */ 13831 for (i = 0; i < chip_sdma_engines(dd); i++) { 13832 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 13833 /* SEND_DMA_STATUS read-only */ 13834 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0); 13835 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0); 13836 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0); 13837 /* SEND_DMA_HEAD read-only */ 13838 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0); 13839 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0); 13840 /* SEND_DMA_IDLE_CNT read-only */ 13841 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0); 13842 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0); 13843 /* SEND_DMA_DESC_FETCHED_CNT read-only */ 13844 /* SEND_DMA_ENG_ERR_STATUS read-only */ 13845 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0); 13846 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull); 13847 /* SEND_DMA_ENG_ERR_FORCE leave alone */ 13848 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0); 13849 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0); 13850 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0); 13851 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0); 13852 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0); 13853 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0); 13854 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0); 13855 } 13856} 13857 13858/* 13859 * Expect on entry: 13860 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0 13861 */ 13862static void init_rbufs(struct hfi1_devdata *dd) 13863{ 13864 u64 reg; 13865 int count; 13866 13867 /* 13868 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are 13869 * clear. 13870 */ 13871 count = 0; 13872 while (1) { 13873 reg = read_csr(dd, RCV_STATUS); 13874 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK 13875 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0) 13876 break; 13877 /* 13878 * Give up after 1ms - maximum wait time. 13879 * 13880 * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at 13881 * 250MB/s bandwidth. Lower rate to 66% for overhead to get: 13882 * 136 KB / (66% * 250MB/s) = 844us 13883 */ 13884 if (count++ > 500) { 13885 dd_dev_err(dd, 13886 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n", 13887 __func__, reg); 13888 break; 13889 } 13890 udelay(2); /* do not busy-wait the CSR */ 13891 } 13892 13893 /* start the init - expect RcvCtrl to be 0 */ 13894 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK); 13895 13896 /* 13897 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief 13898 * period after the write before RcvStatus.RxRbufInitDone is valid. 13899 * The delay in the first run through the loop below is sufficient and 13900 * required before the first read of RcvStatus.RxRbufInintDone. 13901 */ 13902 read_csr(dd, RCV_CTRL); 13903 13904 /* wait for the init to finish */ 13905 count = 0; 13906 while (1) { 13907 /* delay is required first time through - see above */ 13908 udelay(2); /* do not busy-wait the CSR */ 13909 reg = read_csr(dd, RCV_STATUS); 13910 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK)) 13911 break; 13912 13913 /* give up after 100us - slowest possible at 33MHz is 73us */ 13914 if (count++ > 50) { 13915 dd_dev_err(dd, 13916 "%s: RcvStatus.RxRbufInit not set, continuing\n", 13917 __func__); 13918 break; 13919 } 13920 } 13921} 13922 13923/* set RXE CSRs to chip reset defaults */ 13924static void reset_rxe_csrs(struct hfi1_devdata *dd) 13925{ 13926 int i, j; 13927 13928 /* 13929 * RXE Kernel CSRs 13930 */ 13931 write_csr(dd, RCV_CTRL, 0); 13932 init_rbufs(dd); 13933 /* RCV_STATUS read-only */ 13934 /* RCV_CONTEXTS read-only */ 13935 /* RCV_ARRAY_CNT read-only */ 13936 /* RCV_BUF_SIZE read-only */ 13937 write_csr(dd, RCV_BTH_QP, 0); 13938 write_csr(dd, RCV_MULTICAST, 0); 13939 write_csr(dd, RCV_BYPASS, 0); 13940 write_csr(dd, RCV_VL15, 0); 13941 /* this is a clear-down */ 13942 write_csr(dd, RCV_ERR_INFO, 13943 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK); 13944 /* RCV_ERR_STATUS read-only */ 13945 write_csr(dd, RCV_ERR_MASK, 0); 13946 write_csr(dd, RCV_ERR_CLEAR, ~0ull); 13947 /* RCV_ERR_FORCE leave alone */ 13948 for (i = 0; i < 32; i++) 13949 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13950 for (i = 0; i < 4; i++) 13951 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0); 13952 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++) 13953 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0); 13954 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++) 13955 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0); 13956 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) 13957 clear_rsm_rule(dd, i); 13958 for (i = 0; i < 32; i++) 13959 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0); 13960 13961 /* 13962 * RXE Kernel and User Per-Context CSRs 13963 */ 13964 for (i = 0; i < chip_rcv_contexts(dd); i++) { 13965 /* kernel */ 13966 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0); 13967 /* RCV_CTXT_STATUS read-only */ 13968 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0); 13969 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0); 13970 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0); 13971 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13972 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0); 13973 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0); 13974 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0); 13975 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13976 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0); 13977 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0); 13978 13979 /* user */ 13980 /* RCV_HDR_TAIL read-only */ 13981 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0); 13982 /* RCV_EGR_INDEX_TAIL read-only */ 13983 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0); 13984 /* RCV_EGR_OFFSET_TAIL read-only */ 13985 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) { 13986 write_uctxt_csr(dd, i, 13987 RCV_TID_FLOW_TABLE + (8 * j), 0); 13988 } 13989 } 13990} 13991 13992/* 13993 * Set sc2vl tables. 13994 * 13995 * They power on to zeros, so to avoid send context errors 13996 * they need to be set: 13997 * 13998 * SC 0-7 -> VL 0-7 (respectively) 13999 * SC 15 -> VL 15 14000 * otherwise 14001 * -> VL 0 14002 */ 14003static void init_sc2vl_tables(struct hfi1_devdata *dd) 14004{ 14005 int i; 14006 /* init per architecture spec, constrained by hardware capability */ 14007 14008 /* HFI maps sent packets */ 14009 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL( 14010 0, 14011 0, 0, 1, 1, 14012 2, 2, 3, 3, 14013 4, 4, 5, 5, 14014 6, 6, 7, 7)); 14015 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL( 14016 1, 14017 8, 0, 9, 0, 14018 10, 0, 11, 0, 14019 12, 0, 13, 0, 14020 14, 0, 15, 15)); 14021 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL( 14022 2, 14023 16, 0, 17, 0, 14024 18, 0, 19, 0, 14025 20, 0, 21, 0, 14026 22, 0, 23, 0)); 14027 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL( 14028 3, 14029 24, 0, 25, 0, 14030 26, 0, 27, 0, 14031 28, 0, 29, 0, 14032 30, 0, 31, 0)); 14033 14034 /* DC maps received packets */ 14035 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL( 14036 15_0, 14037 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 14038 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15)); 14039 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL( 14040 31_16, 14041 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 14042 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0)); 14043 14044 /* initialize the cached sc2vl values consistently with h/w */ 14045 for (i = 0; i < 32; i++) { 14046 if (i < 8 || i == 15) 14047 *((u8 *)(dd->sc2vl) + i) = (u8)i; 14048 else 14049 *((u8 *)(dd->sc2vl) + i) = 0; 14050 } 14051} 14052 14053/* 14054 * Read chip sizes and then reset parts to sane, disabled, values. We cannot 14055 * depend on the chip going through a power-on reset - a driver may be loaded 14056 * and unloaded many times. 14057 * 14058 * Do not write any CSR values to the chip in this routine - there may be 14059 * a reset following the (possible) FLR in this routine. 14060 * 14061 */ 14062static int init_chip(struct hfi1_devdata *dd) 14063{ 14064 int i; 14065 int ret = 0; 14066 14067 /* 14068 * Put the HFI CSRs in a known state. 14069 * Combine this with a DC reset. 14070 * 14071 * Stop the device from doing anything while we do a 14072 * reset. We know there are no other active users of 14073 * the device since we are now in charge. Turn off 14074 * off all outbound and inbound traffic and make sure 14075 * the device does not generate any interrupts. 14076 */ 14077 14078 /* disable send contexts and SDMA engines */ 14079 write_csr(dd, SEND_CTRL, 0); 14080 for (i = 0; i < chip_send_contexts(dd); i++) 14081 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 14082 for (i = 0; i < chip_sdma_engines(dd); i++) 14083 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 14084 /* disable port (turn off RXE inbound traffic) and contexts */ 14085 write_csr(dd, RCV_CTRL, 0); 14086 for (i = 0; i < chip_rcv_contexts(dd); i++) 14087 write_csr(dd, RCV_CTXT_CTRL, 0); 14088 /* mask all interrupt sources */ 14089 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 14090 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull); 14091 14092 /* 14093 * DC Reset: do a full DC reset before the register clear. 14094 * A recommended length of time to hold is one CSR read, 14095 * so reread the CceDcCtrl. Then, hold the DC in reset 14096 * across the clear. 14097 */ 14098 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK); 14099 (void)read_csr(dd, CCE_DC_CTRL); 14100 14101 if (use_flr) { 14102 /* 14103 * A FLR will reset the SPC core and part of the PCIe. 14104 * The parts that need to be restored have already been 14105 * saved. 14106 */ 14107 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 14108 14109 /* do the FLR, the DC reset will remain */ 14110 pcie_flr(dd->pcidev); 14111 14112 /* restore command and BARs */ 14113 ret = restore_pci_variables(dd); 14114 if (ret) { 14115 dd_dev_err(dd, "%s: Could not restore PCI variables\n", 14116 __func__); 14117 return ret; 14118 } 14119 14120 if (is_ax(dd)) { 14121 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 14122 pcie_flr(dd->pcidev); 14123 ret = restore_pci_variables(dd); 14124 if (ret) { 14125 dd_dev_err(dd, "%s: Could not restore PCI variables\n", 14126 __func__); 14127 return ret; 14128 } 14129 } 14130 } else { 14131 dd_dev_info(dd, "Resetting CSRs with writes\n"); 14132 reset_cce_csrs(dd); 14133 reset_txe_csrs(dd); 14134 reset_rxe_csrs(dd); 14135 reset_misc_csrs(dd); 14136 } 14137 /* clear the DC reset */ 14138 write_csr(dd, CCE_DC_CTRL, 0); 14139 14140 /* Set the LED off */ 14141 setextled(dd, 0); 14142 14143 /* 14144 * Clear the QSFP reset. 14145 * An FLR enforces a 0 on all out pins. The driver does not touch 14146 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and 14147 * anything plugged constantly in reset, if it pays attention 14148 * to RESET_N. 14149 * Prime examples of this are optical cables. Set all pins high. 14150 * I2CCLK and I2CDAT will change per direction, and INT_N and 14151 * MODPRS_N are input only and their value is ignored. 14152 */ 14153 write_csr(dd, ASIC_QSFP1_OUT, 0x1f); 14154 write_csr(dd, ASIC_QSFP2_OUT, 0x1f); 14155 init_chip_resources(dd); 14156 return ret; 14157} 14158 14159static void init_early_variables(struct hfi1_devdata *dd) 14160{ 14161 int i; 14162 14163 /* assign link credit variables */ 14164 dd->vau = CM_VAU; 14165 dd->link_credits = CM_GLOBAL_CREDITS; 14166 if (is_ax(dd)) 14167 dd->link_credits--; 14168 dd->vcu = cu_to_vcu(hfi1_cu); 14169 /* enough room for 8 MAD packets plus header - 17K */ 14170 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau); 14171 if (dd->vl15_init > dd->link_credits) 14172 dd->vl15_init = dd->link_credits; 14173 14174 write_uninitialized_csrs_and_memories(dd); 14175 14176 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 14177 for (i = 0; i < dd->num_pports; i++) { 14178 struct hfi1_pportdata *ppd = &dd->pport[i]; 14179 14180 set_partition_keys(ppd); 14181 } 14182 init_sc2vl_tables(dd); 14183} 14184 14185static void init_kdeth_qp(struct hfi1_devdata *dd) 14186{ 14187 write_csr(dd, SEND_BTH_QP, 14188 (RVT_KDETH_QP_PREFIX & SEND_BTH_QP_KDETH_QP_MASK) << 14189 SEND_BTH_QP_KDETH_QP_SHIFT); 14190 14191 write_csr(dd, RCV_BTH_QP, 14192 (RVT_KDETH_QP_PREFIX & RCV_BTH_QP_KDETH_QP_MASK) << 14193 RCV_BTH_QP_KDETH_QP_SHIFT); 14194} 14195 14196/** 14197 * hfi1_get_qp_map 14198 * @dd: device data 14199 * @idx: index to read 14200 */ 14201u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx) 14202{ 14203 u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8); 14204 14205 reg >>= (idx % 8) * 8; 14206 return reg; 14207} 14208 14209/** 14210 * init_qpmap_table 14211 * @dd - device data 14212 * @first_ctxt - first context 14213 * @last_ctxt - first context 14214 * 14215 * This return sets the qpn mapping table that 14216 * is indexed by qpn[8:1]. 14217 * 14218 * The routine will round robin the 256 settings 14219 * from first_ctxt to last_ctxt. 14220 * 14221 * The first/last looks ahead to having specialized 14222 * receive contexts for mgmt and bypass. Normal 14223 * verbs traffic will assumed to be on a range 14224 * of receive contexts. 14225 */ 14226static void init_qpmap_table(struct hfi1_devdata *dd, 14227 u32 first_ctxt, 14228 u32 last_ctxt) 14229{ 14230 u64 reg = 0; 14231 u64 regno = RCV_QP_MAP_TABLE; 14232 int i; 14233 u64 ctxt = first_ctxt; 14234 14235 for (i = 0; i < 256; i++) { 14236 reg |= ctxt << (8 * (i % 8)); 14237 ctxt++; 14238 if (ctxt > last_ctxt) 14239 ctxt = first_ctxt; 14240 if (i % 8 == 7) { 14241 write_csr(dd, regno, reg); 14242 reg = 0; 14243 regno += 8; 14244 } 14245 } 14246 14247 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK 14248 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK); 14249} 14250 14251struct rsm_map_table { 14252 u64 map[NUM_MAP_REGS]; 14253 unsigned int used; 14254}; 14255 14256struct rsm_rule_data { 14257 u8 offset; 14258 u8 pkt_type; 14259 u32 field1_off; 14260 u32 field2_off; 14261 u32 index1_off; 14262 u32 index1_width; 14263 u32 index2_off; 14264 u32 index2_width; 14265 u32 mask1; 14266 u32 value1; 14267 u32 mask2; 14268 u32 value2; 14269}; 14270 14271/* 14272 * Return an initialized RMT map table for users to fill in. OK if it 14273 * returns NULL, indicating no table. 14274 */ 14275static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd) 14276{ 14277 struct rsm_map_table *rmt; 14278 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */ 14279 14280 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL); 14281 if (rmt) { 14282 memset(rmt->map, rxcontext, sizeof(rmt->map)); 14283 rmt->used = 0; 14284 } 14285 14286 return rmt; 14287} 14288 14289/* 14290 * Write the final RMT map table to the chip and free the table. OK if 14291 * table is NULL. 14292 */ 14293static void complete_rsm_map_table(struct hfi1_devdata *dd, 14294 struct rsm_map_table *rmt) 14295{ 14296 int i; 14297 14298 if (rmt) { 14299 /* write table to chip */ 14300 for (i = 0; i < NUM_MAP_REGS; i++) 14301 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]); 14302 14303 /* enable RSM */ 14304 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK); 14305 } 14306} 14307 14308/* Is a receive side mapping rule */ 14309static bool has_rsm_rule(struct hfi1_devdata *dd, u8 rule_index) 14310{ 14311 return read_csr(dd, RCV_RSM_CFG + (8 * rule_index)) != 0; 14312} 14313 14314/* 14315 * Add a receive side mapping rule. 14316 */ 14317static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index, 14318 struct rsm_rule_data *rrd) 14319{ 14320 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 14321 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT | 14322 1ull << rule_index | /* enable bit */ 14323 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT); 14324 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 14325 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT | 14326 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT | 14327 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT | 14328 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT | 14329 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT | 14330 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT); 14331 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 14332 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT | 14333 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT | 14334 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT | 14335 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT); 14336} 14337 14338/* 14339 * Clear a receive side mapping rule. 14340 */ 14341static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index) 14342{ 14343 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0); 14344 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0); 14345 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0); 14346} 14347 14348/* return the number of RSM map table entries that will be used for QOS */ 14349static int qos_rmt_entries(unsigned int n_krcv_queues, unsigned int *mp, 14350 unsigned int *np) 14351{ 14352 int i; 14353 unsigned int m, n; 14354 uint max_by_vl = 0; 14355 14356 /* is QOS active at all? */ 14357 if (n_krcv_queues < MIN_KERNEL_KCTXTS || 14358 num_vls == 1 || 14359 krcvqsset <= 1) 14360 goto no_qos; 14361 14362 /* determine bits for qpn */ 14363 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++) 14364 if (krcvqs[i] > max_by_vl) 14365 max_by_vl = krcvqs[i]; 14366 if (max_by_vl > 32) 14367 goto no_qos; 14368 m = ilog2(__roundup_pow_of_two(max_by_vl)); 14369 14370 /* determine bits for vl */ 14371 n = ilog2(__roundup_pow_of_two(num_vls)); 14372 14373 /* reject if too much is used */ 14374 if ((m + n) > 7) 14375 goto no_qos; 14376 14377 if (mp) 14378 *mp = m; 14379 if (np) 14380 *np = n; 14381 14382 return 1 << (m + n); 14383 14384no_qos: 14385 if (mp) 14386 *mp = 0; 14387 if (np) 14388 *np = 0; 14389 return 0; 14390} 14391 14392/** 14393 * init_qos - init RX qos 14394 * @dd - device data 14395 * @rmt - RSM map table 14396 * 14397 * This routine initializes Rule 0 and the RSM map table to implement 14398 * quality of service (qos). 14399 * 14400 * If all of the limit tests succeed, qos is applied based on the array 14401 * interpretation of krcvqs where entry 0 is VL0. 14402 * 14403 * The number of vl bits (n) and the number of qpn bits (m) are computed to 14404 * feed both the RSM map table and the single rule. 14405 */ 14406static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt) 14407{ 14408 struct rsm_rule_data rrd; 14409 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m; 14410 unsigned int rmt_entries; 14411 u64 reg; 14412 14413 if (!rmt) 14414 goto bail; 14415 rmt_entries = qos_rmt_entries(dd->n_krcv_queues - 1, &m, &n); 14416 if (rmt_entries == 0) 14417 goto bail; 14418 qpns_per_vl = 1 << m; 14419 14420 /* enough room in the map table? */ 14421 rmt_entries = 1 << (m + n); 14422 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES) 14423 goto bail; 14424 14425 /* add qos entries to the the RSM map table */ 14426 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) { 14427 unsigned tctxt; 14428 14429 for (qpn = 0, tctxt = ctxt; 14430 krcvqs[i] && qpn < qpns_per_vl; qpn++) { 14431 unsigned idx, regoff, regidx; 14432 14433 /* generate the index the hardware will produce */ 14434 idx = rmt->used + ((qpn << n) ^ i); 14435 regoff = (idx % 8) * 8; 14436 regidx = idx / 8; 14437 /* replace default with context number */ 14438 reg = rmt->map[regidx]; 14439 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK 14440 << regoff); 14441 reg |= (u64)(tctxt++) << regoff; 14442 rmt->map[regidx] = reg; 14443 if (tctxt == ctxt + krcvqs[i]) 14444 tctxt = ctxt; 14445 } 14446 ctxt += krcvqs[i]; 14447 } 14448 14449 rrd.offset = rmt->used; 14450 rrd.pkt_type = 2; 14451 rrd.field1_off = LRH_BTH_MATCH_OFFSET; 14452 rrd.field2_off = LRH_SC_MATCH_OFFSET; 14453 rrd.index1_off = LRH_SC_SELECT_OFFSET; 14454 rrd.index1_width = n; 14455 rrd.index2_off = QPN_SELECT_OFFSET; 14456 rrd.index2_width = m + n; 14457 rrd.mask1 = LRH_BTH_MASK; 14458 rrd.value1 = LRH_BTH_VALUE; 14459 rrd.mask2 = LRH_SC_MASK; 14460 rrd.value2 = LRH_SC_VALUE; 14461 14462 /* add rule 0 */ 14463 add_rsm_rule(dd, RSM_INS_VERBS, &rrd); 14464 14465 /* mark RSM map entries as used */ 14466 rmt->used += rmt_entries; 14467 /* map everything else to the mcast/err/vl15 context */ 14468 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT); 14469 dd->qos_shift = n + 1; 14470 return; 14471bail: 14472 dd->qos_shift = 1; 14473 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1); 14474} 14475 14476static void init_fecn_handling(struct hfi1_devdata *dd, 14477 struct rsm_map_table *rmt) 14478{ 14479 struct rsm_rule_data rrd; 14480 u64 reg; 14481 int i, idx, regoff, regidx, start; 14482 u8 offset; 14483 u32 total_cnt; 14484 14485 if (HFI1_CAP_IS_KSET(TID_RDMA)) 14486 /* Exclude context 0 */ 14487 start = 1; 14488 else 14489 start = dd->first_dyn_alloc_ctxt; 14490 14491 total_cnt = dd->num_rcv_contexts - start; 14492 14493 /* there needs to be enough room in the map table */ 14494 if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) { 14495 dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n"); 14496 return; 14497 } 14498 14499 /* 14500 * RSM will extract the destination context as an index into the 14501 * map table. The destination contexts are a sequential block 14502 * in the range start...num_rcv_contexts-1 (inclusive). 14503 * Map entries are accessed as offset + extracted value. Adjust 14504 * the added offset so this sequence can be placed anywhere in 14505 * the table - as long as the entries themselves do not wrap. 14506 * There are only enough bits in offset for the table size, so 14507 * start with that to allow for a "negative" offset. 14508 */ 14509 offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start); 14510 14511 for (i = start, idx = rmt->used; i < dd->num_rcv_contexts; 14512 i++, idx++) { 14513 /* replace with identity mapping */ 14514 regoff = (idx % 8) * 8; 14515 regidx = idx / 8; 14516 reg = rmt->map[regidx]; 14517 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff); 14518 reg |= (u64)i << regoff; 14519 rmt->map[regidx] = reg; 14520 } 14521 14522 /* 14523 * For RSM intercept of Expected FECN packets: 14524 * o packet type 0 - expected 14525 * o match on F (bit 95), using select/match 1, and 14526 * o match on SH (bit 133), using select/match 2. 14527 * 14528 * Use index 1 to extract the 8-bit receive context from DestQP 14529 * (start at bit 64). Use that as the RSM map table index. 14530 */ 14531 rrd.offset = offset; 14532 rrd.pkt_type = 0; 14533 rrd.field1_off = 95; 14534 rrd.field2_off = 133; 14535 rrd.index1_off = 64; 14536 rrd.index1_width = 8; 14537 rrd.index2_off = 0; 14538 rrd.index2_width = 0; 14539 rrd.mask1 = 1; 14540 rrd.value1 = 1; 14541 rrd.mask2 = 1; 14542 rrd.value2 = 1; 14543 14544 /* add rule 1 */ 14545 add_rsm_rule(dd, RSM_INS_FECN, &rrd); 14546 14547 rmt->used += total_cnt; 14548} 14549 14550static inline bool hfi1_is_rmt_full(int start, int spare) 14551{ 14552 return (start + spare) > NUM_MAP_ENTRIES; 14553} 14554 14555static bool hfi1_netdev_update_rmt(struct hfi1_devdata *dd) 14556{ 14557 u8 i, j; 14558 u8 ctx_id = 0; 14559 u64 reg; 14560 u32 regoff; 14561 int rmt_start = hfi1_netdev_get_free_rmt_idx(dd); 14562 int ctxt_count = hfi1_netdev_ctxt_count(dd); 14563 14564 /* We already have contexts mapped in RMT */ 14565 if (has_rsm_rule(dd, RSM_INS_VNIC) || has_rsm_rule(dd, RSM_INS_AIP)) { 14566 dd_dev_info(dd, "Contexts are already mapped in RMT\n"); 14567 return true; 14568 } 14569 14570 if (hfi1_is_rmt_full(rmt_start, NUM_NETDEV_MAP_ENTRIES)) { 14571 dd_dev_err(dd, "Not enough RMT entries used = %d\n", 14572 rmt_start); 14573 return false; 14574 } 14575 14576 dev_dbg(&(dd)->pcidev->dev, "RMT start = %d, end %d\n", 14577 rmt_start, 14578 rmt_start + NUM_NETDEV_MAP_ENTRIES); 14579 14580 /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */ 14581 regoff = RCV_RSM_MAP_TABLE + (rmt_start / 8) * 8; 14582 reg = read_csr(dd, regoff); 14583 for (i = 0; i < NUM_NETDEV_MAP_ENTRIES; i++) { 14584 /* Update map register with netdev context */ 14585 j = (rmt_start + i) % 8; 14586 reg &= ~(0xffllu << (j * 8)); 14587 reg |= (u64)hfi1_netdev_get_ctxt(dd, ctx_id++)->ctxt << (j * 8); 14588 /* Wrap up netdev ctx index */ 14589 ctx_id %= ctxt_count; 14590 /* Write back map register */ 14591 if (j == 7 || ((i + 1) == NUM_NETDEV_MAP_ENTRIES)) { 14592 dev_dbg(&(dd)->pcidev->dev, 14593 "RMT[%d] =0x%llx\n", 14594 regoff - RCV_RSM_MAP_TABLE, reg); 14595 14596 write_csr(dd, regoff, reg); 14597 regoff += 8; 14598 if (i < (NUM_NETDEV_MAP_ENTRIES - 1)) 14599 reg = read_csr(dd, regoff); 14600 } 14601 } 14602 14603 return true; 14604} 14605 14606static void hfi1_enable_rsm_rule(struct hfi1_devdata *dd, 14607 int rule, struct rsm_rule_data *rrd) 14608{ 14609 if (!hfi1_netdev_update_rmt(dd)) { 14610 dd_dev_err(dd, "Failed to update RMT for RSM%d rule\n", rule); 14611 return; 14612 } 14613 14614 add_rsm_rule(dd, rule, rrd); 14615 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK); 14616} 14617 14618void hfi1_init_aip_rsm(struct hfi1_devdata *dd) 14619{ 14620 /* 14621 * go through with the initialisation only if this rule actually doesn't 14622 * exist yet 14623 */ 14624 if (atomic_fetch_inc(&dd->ipoib_rsm_usr_num) == 0) { 14625 int rmt_start = hfi1_netdev_get_free_rmt_idx(dd); 14626 struct rsm_rule_data rrd = { 14627 .offset = rmt_start, 14628 .pkt_type = IB_PACKET_TYPE, 14629 .field1_off = LRH_BTH_MATCH_OFFSET, 14630 .mask1 = LRH_BTH_MASK, 14631 .value1 = LRH_BTH_VALUE, 14632 .field2_off = BTH_DESTQP_MATCH_OFFSET, 14633 .mask2 = BTH_DESTQP_MASK, 14634 .value2 = BTH_DESTQP_VALUE, 14635 .index1_off = DETH_AIP_SQPN_SELECT_OFFSET + 14636 ilog2(NUM_NETDEV_MAP_ENTRIES), 14637 .index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES), 14638 .index2_off = DETH_AIP_SQPN_SELECT_OFFSET, 14639 .index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES) 14640 }; 14641 14642 hfi1_enable_rsm_rule(dd, RSM_INS_AIP, &rrd); 14643 } 14644} 14645 14646/* Initialize RSM for VNIC */ 14647void hfi1_init_vnic_rsm(struct hfi1_devdata *dd) 14648{ 14649 int rmt_start = hfi1_netdev_get_free_rmt_idx(dd); 14650 struct rsm_rule_data rrd = { 14651 /* Add rule for vnic */ 14652 .offset = rmt_start, 14653 .pkt_type = 4, 14654 /* Match 16B packets */ 14655 .field1_off = L2_TYPE_MATCH_OFFSET, 14656 .mask1 = L2_TYPE_MASK, 14657 .value1 = L2_16B_VALUE, 14658 /* Match ETH L4 packets */ 14659 .field2_off = L4_TYPE_MATCH_OFFSET, 14660 .mask2 = L4_16B_TYPE_MASK, 14661 .value2 = L4_16B_ETH_VALUE, 14662 /* Calc context from veswid and entropy */ 14663 .index1_off = L4_16B_HDR_VESWID_OFFSET, 14664 .index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES), 14665 .index2_off = L2_16B_ENTROPY_OFFSET, 14666 .index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES) 14667 }; 14668 14669 hfi1_enable_rsm_rule(dd, RSM_INS_VNIC, &rrd); 14670} 14671 14672void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd) 14673{ 14674 clear_rsm_rule(dd, RSM_INS_VNIC); 14675} 14676 14677void hfi1_deinit_aip_rsm(struct hfi1_devdata *dd) 14678{ 14679 /* only actually clear the rule if it's the last user asking to do so */ 14680 if (atomic_fetch_add_unless(&dd->ipoib_rsm_usr_num, -1, 0) == 1) 14681 clear_rsm_rule(dd, RSM_INS_AIP); 14682} 14683 14684static int init_rxe(struct hfi1_devdata *dd) 14685{ 14686 struct rsm_map_table *rmt; 14687 u64 val; 14688 14689 /* enable all receive errors */ 14690 write_csr(dd, RCV_ERR_MASK, ~0ull); 14691 14692 rmt = alloc_rsm_map_table(dd); 14693 if (!rmt) 14694 return -ENOMEM; 14695 14696 /* set up QOS, including the QPN map table */ 14697 init_qos(dd, rmt); 14698 init_fecn_handling(dd, rmt); 14699 complete_rsm_map_table(dd, rmt); 14700 /* record number of used rsm map entries for netdev */ 14701 hfi1_netdev_set_free_rmt_idx(dd, rmt->used); 14702 kfree(rmt); 14703 14704 /* 14705 * make sure RcvCtrl.RcvWcb <= PCIe Device Control 14706 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config 14707 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one 14708 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and 14709 * Max_PayLoad_Size set to its minimum of 128. 14710 * 14711 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0 14712 * (64 bytes). Max_Payload_Size is possibly modified upward in 14713 * tune_pcie_caps() which is called after this routine. 14714 */ 14715 14716 /* Have 16 bytes (4DW) of bypass header available in header queue */ 14717 val = read_csr(dd, RCV_BYPASS); 14718 val &= ~RCV_BYPASS_HDR_SIZE_SMASK; 14719 val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) << 14720 RCV_BYPASS_HDR_SIZE_SHIFT); 14721 write_csr(dd, RCV_BYPASS, val); 14722 return 0; 14723} 14724 14725static void init_other(struct hfi1_devdata *dd) 14726{ 14727 /* enable all CCE errors */ 14728 write_csr(dd, CCE_ERR_MASK, ~0ull); 14729 /* enable *some* Misc errors */ 14730 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK); 14731 /* enable all DC errors, except LCB */ 14732 write_csr(dd, DCC_ERR_FLG_EN, ~0ull); 14733 write_csr(dd, DC_DC8051_ERR_EN, ~0ull); 14734} 14735 14736/* 14737 * Fill out the given AU table using the given CU. A CU is defined in terms 14738 * AUs. The table is a an encoding: given the index, how many AUs does that 14739 * represent? 14740 * 14741 * NOTE: Assumes that the register layout is the same for the 14742 * local and remote tables. 14743 */ 14744static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu, 14745 u32 csr0to3, u32 csr4to7) 14746{ 14747 write_csr(dd, csr0to3, 14748 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT | 14749 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT | 14750 2ull * cu << 14751 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT | 14752 4ull * cu << 14753 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT); 14754 write_csr(dd, csr4to7, 14755 8ull * cu << 14756 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT | 14757 16ull * cu << 14758 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT | 14759 32ull * cu << 14760 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT | 14761 64ull * cu << 14762 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT); 14763} 14764 14765static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14766{ 14767 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3, 14768 SEND_CM_LOCAL_AU_TABLE4_TO7); 14769} 14770 14771void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14772{ 14773 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3, 14774 SEND_CM_REMOTE_AU_TABLE4_TO7); 14775} 14776 14777static void init_txe(struct hfi1_devdata *dd) 14778{ 14779 int i; 14780 14781 /* enable all PIO, SDMA, general, and Egress errors */ 14782 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull); 14783 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull); 14784 write_csr(dd, SEND_ERR_MASK, ~0ull); 14785 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull); 14786 14787 /* enable all per-context and per-SDMA engine errors */ 14788 for (i = 0; i < chip_send_contexts(dd); i++) 14789 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull); 14790 for (i = 0; i < chip_sdma_engines(dd); i++) 14791 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull); 14792 14793 /* set the local CU to AU mapping */ 14794 assign_local_cm_au_table(dd, dd->vcu); 14795 14796 /* 14797 * Set reasonable default for Credit Return Timer 14798 * Don't set on Simulator - causes it to choke. 14799 */ 14800 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR) 14801 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE); 14802} 14803 14804int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd, 14805 u16 jkey) 14806{ 14807 u8 hw_ctxt; 14808 u64 reg; 14809 14810 if (!rcd || !rcd->sc) 14811 return -EINVAL; 14812 14813 hw_ctxt = rcd->sc->hw_context; 14814 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */ 14815 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) << 14816 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT); 14817 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */ 14818 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY)) 14819 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK; 14820 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg); 14821 /* 14822 * Enable send-side J_KEY integrity check, unless this is A0 h/w 14823 */ 14824 if (!is_ax(dd)) { 14825 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE); 14826 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14827 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg); 14828 } 14829 14830 /* Enable J_KEY check on receive context. */ 14831 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK | 14832 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) << 14833 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT); 14834 write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg); 14835 14836 return 0; 14837} 14838 14839int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 14840{ 14841 u8 hw_ctxt; 14842 u64 reg; 14843 14844 if (!rcd || !rcd->sc) 14845 return -EINVAL; 14846 14847 hw_ctxt = rcd->sc->hw_context; 14848 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0); 14849 /* 14850 * Disable send-side J_KEY integrity check, unless this is A0 h/w. 14851 * This check would not have been enabled for A0 h/w, see 14852 * set_ctxt_jkey(). 14853 */ 14854 if (!is_ax(dd)) { 14855 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE); 14856 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14857 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg); 14858 } 14859 /* Turn off the J_KEY on the receive side */ 14860 write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0); 14861 14862 return 0; 14863} 14864 14865int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd, 14866 u16 pkey) 14867{ 14868 u8 hw_ctxt; 14869 u64 reg; 14870 14871 if (!rcd || !rcd->sc) 14872 return -EINVAL; 14873 14874 hw_ctxt = rcd->sc->hw_context; 14875 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) << 14876 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT; 14877 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg); 14878 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE); 14879 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14880 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK; 14881 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg); 14882 14883 return 0; 14884} 14885 14886int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt) 14887{ 14888 u8 hw_ctxt; 14889 u64 reg; 14890 14891 if (!ctxt || !ctxt->sc) 14892 return -EINVAL; 14893 14894 hw_ctxt = ctxt->sc->hw_context; 14895 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE); 14896 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14897 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg); 14898 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0); 14899 14900 return 0; 14901} 14902 14903/* 14904 * Start doing the clean up the the chip. Our clean up happens in multiple 14905 * stages and this is just the first. 14906 */ 14907void hfi1_start_cleanup(struct hfi1_devdata *dd) 14908{ 14909 aspm_exit(dd); 14910 free_cntrs(dd); 14911 free_rcverr(dd); 14912 finish_chip_resources(dd); 14913} 14914 14915#define HFI_BASE_GUID(dev) \ 14916 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT)) 14917 14918/* 14919 * Information can be shared between the two HFIs on the same ASIC 14920 * in the same OS. This function finds the peer device and sets 14921 * up a shared structure. 14922 */ 14923static int init_asic_data(struct hfi1_devdata *dd) 14924{ 14925 unsigned long index; 14926 struct hfi1_devdata *peer; 14927 struct hfi1_asic_data *asic_data; 14928 int ret = 0; 14929 14930 /* pre-allocate the asic structure in case we are the first device */ 14931 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL); 14932 if (!asic_data) 14933 return -ENOMEM; 14934 14935 xa_lock_irq(&hfi1_dev_table); 14936 /* Find our peer device */ 14937 xa_for_each(&hfi1_dev_table, index, peer) { 14938 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) && 14939 dd->unit != peer->unit) 14940 break; 14941 } 14942 14943 if (peer) { 14944 /* use already allocated structure */ 14945 dd->asic_data = peer->asic_data; 14946 kfree(asic_data); 14947 } else { 14948 dd->asic_data = asic_data; 14949 mutex_init(&dd->asic_data->asic_resource_mutex); 14950 } 14951 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */ 14952 xa_unlock_irq(&hfi1_dev_table); 14953 14954 /* first one through - set up i2c devices */ 14955 if (!peer) 14956 ret = set_up_i2c(dd, dd->asic_data); 14957 14958 return ret; 14959} 14960 14961/* 14962 * Set dd->boardname. Use a generic name if a name is not returned from 14963 * EFI variable space. 14964 * 14965 * Return 0 on success, -ENOMEM if space could not be allocated. 14966 */ 14967static int obtain_boardname(struct hfi1_devdata *dd) 14968{ 14969 /* generic board description */ 14970 const char generic[] = 14971 "Intel Omni-Path Host Fabric Interface Adapter 100 Series"; 14972 unsigned long size; 14973 int ret; 14974 14975 ret = read_hfi1_efi_var(dd, "description", &size, 14976 (void **)&dd->boardname); 14977 if (ret) { 14978 dd_dev_info(dd, "Board description not found\n"); 14979 /* use generic description */ 14980 dd->boardname = kstrdup(generic, GFP_KERNEL); 14981 if (!dd->boardname) 14982 return -ENOMEM; 14983 } 14984 return 0; 14985} 14986 14987/* 14988 * Check the interrupt registers to make sure that they are mapped correctly. 14989 * It is intended to help user identify any mismapping by VMM when the driver 14990 * is running in a VM. This function should only be called before interrupt 14991 * is set up properly. 14992 * 14993 * Return 0 on success, -EINVAL on failure. 14994 */ 14995static int check_int_registers(struct hfi1_devdata *dd) 14996{ 14997 u64 reg; 14998 u64 all_bits = ~(u64)0; 14999 u64 mask; 15000 15001 /* Clear CceIntMask[0] to avoid raising any interrupts */ 15002 mask = read_csr(dd, CCE_INT_MASK); 15003 write_csr(dd, CCE_INT_MASK, 0ull); 15004 reg = read_csr(dd, CCE_INT_MASK); 15005 if (reg) 15006 goto err_exit; 15007 15008 /* Clear all interrupt status bits */ 15009 write_csr(dd, CCE_INT_CLEAR, all_bits); 15010 reg = read_csr(dd, CCE_INT_STATUS); 15011 if (reg) 15012 goto err_exit; 15013 15014 /* Set all interrupt status bits */ 15015 write_csr(dd, CCE_INT_FORCE, all_bits); 15016 reg = read_csr(dd, CCE_INT_STATUS); 15017 if (reg != all_bits) 15018 goto err_exit; 15019 15020 /* Restore the interrupt mask */ 15021 write_csr(dd, CCE_INT_CLEAR, all_bits); 15022 write_csr(dd, CCE_INT_MASK, mask); 15023 15024 return 0; 15025err_exit: 15026 write_csr(dd, CCE_INT_MASK, mask); 15027 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n"); 15028 return -EINVAL; 15029} 15030 15031/** 15032 * hfi1_init_dd() - Initialize most of the dd structure. 15033 * @dev: the pci_dev for hfi1_ib device 15034 * @ent: pci_device_id struct for this dev 15035 * 15036 * This is global, and is called directly at init to set up the 15037 * chip-specific function pointers for later use. 15038 */ 15039int hfi1_init_dd(struct hfi1_devdata *dd) 15040{ 15041 struct pci_dev *pdev = dd->pcidev; 15042 struct hfi1_pportdata *ppd; 15043 u64 reg; 15044 int i, ret; 15045 static const char * const inames[] = { /* implementation names */ 15046 "RTL silicon", 15047 "RTL VCS simulation", 15048 "RTL FPGA emulation", 15049 "Functional simulator" 15050 }; 15051 struct pci_dev *parent = pdev->bus->self; 15052 u32 sdma_engines = chip_sdma_engines(dd); 15053 15054 ppd = dd->pport; 15055 for (i = 0; i < dd->num_pports; i++, ppd++) { 15056 int vl; 15057 /* init common fields */ 15058 hfi1_init_pportdata(pdev, ppd, dd, 0, 1); 15059 /* DC supports 4 link widths */ 15060 ppd->link_width_supported = 15061 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X | 15062 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X; 15063 ppd->link_width_downgrade_supported = 15064 ppd->link_width_supported; 15065 /* start out enabling only 4X */ 15066 ppd->link_width_enabled = OPA_LINK_WIDTH_4X; 15067 ppd->link_width_downgrade_enabled = 15068 ppd->link_width_downgrade_supported; 15069 /* link width active is 0 when link is down */ 15070 /* link width downgrade active is 0 when link is down */ 15071 15072 if (num_vls < HFI1_MIN_VLS_SUPPORTED || 15073 num_vls > HFI1_MAX_VLS_SUPPORTED) { 15074 dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n", 15075 num_vls, HFI1_MAX_VLS_SUPPORTED); 15076 num_vls = HFI1_MAX_VLS_SUPPORTED; 15077 } 15078 ppd->vls_supported = num_vls; 15079 ppd->vls_operational = ppd->vls_supported; 15080 /* Set the default MTU. */ 15081 for (vl = 0; vl < num_vls; vl++) 15082 dd->vld[vl].mtu = hfi1_max_mtu; 15083 dd->vld[15].mtu = MAX_MAD_PACKET; 15084 /* 15085 * Set the initial values to reasonable default, will be set 15086 * for real when link is up. 15087 */ 15088 ppd->overrun_threshold = 0x4; 15089 ppd->phy_error_threshold = 0xf; 15090 ppd->port_crc_mode_enabled = link_crc_mask; 15091 /* initialize supported LTP CRC mode */ 15092 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 15093 /* initialize enabled LTP CRC mode */ 15094 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4; 15095 /* start in offline */ 15096 ppd->host_link_state = HLS_DN_OFFLINE; 15097 init_vl_arb_caches(ppd); 15098 } 15099 15100 /* 15101 * Do remaining PCIe setup and save PCIe values in dd. 15102 * Any error printing is already done by the init code. 15103 * On return, we have the chip mapped. 15104 */ 15105 ret = hfi1_pcie_ddinit(dd, pdev); 15106 if (ret < 0) 15107 goto bail_free; 15108 15109 /* Save PCI space registers to rewrite after device reset */ 15110 ret = save_pci_variables(dd); 15111 if (ret < 0) 15112 goto bail_cleanup; 15113 15114 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT) 15115 & CCE_REVISION_CHIP_REV_MAJOR_MASK; 15116 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT) 15117 & CCE_REVISION_CHIP_REV_MINOR_MASK; 15118 15119 /* 15120 * Check interrupt registers mapping if the driver has no access to 15121 * the upstream component. In this case, it is likely that the driver 15122 * is running in a VM. 15123 */ 15124 if (!parent) { 15125 ret = check_int_registers(dd); 15126 if (ret) 15127 goto bail_cleanup; 15128 } 15129 15130 /* 15131 * obtain the hardware ID - NOT related to unit, which is a 15132 * software enumeration 15133 */ 15134 reg = read_csr(dd, CCE_REVISION2); 15135 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT) 15136 & CCE_REVISION2_HFI_ID_MASK; 15137 /* the variable size will remove unwanted bits */ 15138 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT; 15139 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT; 15140 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n", 15141 dd->icode < ARRAY_SIZE(inames) ? 15142 inames[dd->icode] : "unknown", (int)dd->irev); 15143 15144 /* speeds the hardware can support */ 15145 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G; 15146 /* speeds allowed to run at */ 15147 dd->pport->link_speed_enabled = dd->pport->link_speed_supported; 15148 /* give a reasonable active value, will be set on link up */ 15149 dd->pport->link_speed_active = OPA_LINK_SPEED_25G; 15150 15151 /* fix up link widths for emulation _p */ 15152 ppd = dd->pport; 15153 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) { 15154 ppd->link_width_supported = 15155 ppd->link_width_enabled = 15156 ppd->link_width_downgrade_supported = 15157 ppd->link_width_downgrade_enabled = 15158 OPA_LINK_WIDTH_1X; 15159 } 15160 /* insure num_vls isn't larger than number of sdma engines */ 15161 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) { 15162 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n", 15163 num_vls, sdma_engines); 15164 num_vls = sdma_engines; 15165 ppd->vls_supported = sdma_engines; 15166 ppd->vls_operational = ppd->vls_supported; 15167 } 15168 15169 /* 15170 * Convert the ns parameter to the 64 * cclocks used in the CSR. 15171 * Limit the max if larger than the field holds. If timeout is 15172 * non-zero, then the calculated field will be at least 1. 15173 * 15174 * Must be after icode is set up - the cclock rate depends 15175 * on knowing the hardware being used. 15176 */ 15177 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64; 15178 if (dd->rcv_intr_timeout_csr > 15179 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK) 15180 dd->rcv_intr_timeout_csr = 15181 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK; 15182 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout) 15183 dd->rcv_intr_timeout_csr = 1; 15184 15185 /* needs to be done before we look for the peer device */ 15186 read_guid(dd); 15187 15188 /* set up shared ASIC data with peer device */ 15189 ret = init_asic_data(dd); 15190 if (ret) 15191 goto bail_cleanup; 15192 15193 /* obtain chip sizes, reset chip CSRs */ 15194 ret = init_chip(dd); 15195 if (ret) 15196 goto bail_cleanup; 15197 15198 /* read in the PCIe link speed information */ 15199 ret = pcie_speeds(dd); 15200 if (ret) 15201 goto bail_cleanup; 15202 15203 /* call before get_platform_config(), after init_chip_resources() */ 15204 ret = eprom_init(dd); 15205 if (ret) 15206 goto bail_free_rcverr; 15207 15208 /* Needs to be called before hfi1_firmware_init */ 15209 get_platform_config(dd); 15210 15211 /* read in firmware */ 15212 ret = hfi1_firmware_init(dd); 15213 if (ret) 15214 goto bail_cleanup; 15215 15216 /* 15217 * In general, the PCIe Gen3 transition must occur after the 15218 * chip has been idled (so it won't initiate any PCIe transactions 15219 * e.g. an interrupt) and before the driver changes any registers 15220 * (the transition will reset the registers). 15221 * 15222 * In particular, place this call after: 15223 * - init_chip() - the chip will not initiate any PCIe transactions 15224 * - pcie_speeds() - reads the current link speed 15225 * - hfi1_firmware_init() - the needed firmware is ready to be 15226 * downloaded 15227 */ 15228 ret = do_pcie_gen3_transition(dd); 15229 if (ret) 15230 goto bail_cleanup; 15231 15232 /* 15233 * This should probably occur in hfi1_pcie_init(), but historically 15234 * occurs after the do_pcie_gen3_transition() code. 15235 */ 15236 tune_pcie_caps(dd); 15237 15238 /* start setting dd values and adjusting CSRs */ 15239 init_early_variables(dd); 15240 15241 parse_platform_config(dd); 15242 15243 ret = obtain_boardname(dd); 15244 if (ret) 15245 goto bail_cleanup; 15246 15247 snprintf(dd->boardversion, BOARD_VERS_MAX, 15248 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n", 15249 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN, 15250 (u32)dd->majrev, 15251 (u32)dd->minrev, 15252 (dd->revision >> CCE_REVISION_SW_SHIFT) 15253 & CCE_REVISION_SW_MASK); 15254 15255 /* alloc netdev data */ 15256 ret = hfi1_netdev_alloc(dd); 15257 if (ret) 15258 goto bail_cleanup; 15259 15260 ret = set_up_context_variables(dd); 15261 if (ret) 15262 goto bail_cleanup; 15263 15264 /* set initial RXE CSRs */ 15265 ret = init_rxe(dd); 15266 if (ret) 15267 goto bail_cleanup; 15268 15269 /* set initial TXE CSRs */ 15270 init_txe(dd); 15271 /* set initial non-RXE, non-TXE CSRs */ 15272 init_other(dd); 15273 /* set up KDETH QP prefix in both RX and TX CSRs */ 15274 init_kdeth_qp(dd); 15275 15276 ret = hfi1_dev_affinity_init(dd); 15277 if (ret) 15278 goto bail_cleanup; 15279 15280 /* send contexts must be set up before receive contexts */ 15281 ret = init_send_contexts(dd); 15282 if (ret) 15283 goto bail_cleanup; 15284 15285 ret = hfi1_create_kctxts(dd); 15286 if (ret) 15287 goto bail_cleanup; 15288 15289 /* 15290 * Initialize aspm, to be done after gen3 transition and setting up 15291 * contexts and before enabling interrupts 15292 */ 15293 aspm_init(dd); 15294 15295 ret = init_pervl_scs(dd); 15296 if (ret) 15297 goto bail_cleanup; 15298 15299 /* sdma init */ 15300 for (i = 0; i < dd->num_pports; ++i) { 15301 ret = sdma_init(dd, i); 15302 if (ret) 15303 goto bail_cleanup; 15304 } 15305 15306 /* use contexts created by hfi1_create_kctxts */ 15307 ret = set_up_interrupts(dd); 15308 if (ret) 15309 goto bail_cleanup; 15310 15311 ret = hfi1_comp_vectors_set_up(dd); 15312 if (ret) 15313 goto bail_clear_intr; 15314 15315 /* set up LCB access - must be after set_up_interrupts() */ 15316 init_lcb_access(dd); 15317 15318 /* 15319 * Serial number is created from the base guid: 15320 * [27:24] = base guid [38:35] 15321 * [23: 0] = base guid [23: 0] 15322 */ 15323 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n", 15324 (dd->base_guid & 0xFFFFFF) | 15325 ((dd->base_guid >> 11) & 0xF000000)); 15326 15327 dd->oui1 = dd->base_guid >> 56 & 0xFF; 15328 dd->oui2 = dd->base_guid >> 48 & 0xFF; 15329 dd->oui3 = dd->base_guid >> 40 & 0xFF; 15330 15331 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */ 15332 if (ret) 15333 goto bail_clear_intr; 15334 15335 thermal_init(dd); 15336 15337 ret = init_cntrs(dd); 15338 if (ret) 15339 goto bail_clear_intr; 15340 15341 ret = init_rcverr(dd); 15342 if (ret) 15343 goto bail_free_cntrs; 15344 15345 init_completion(&dd->user_comp); 15346 15347 /* The user refcount starts with one to inidicate an active device */ 15348 atomic_set(&dd->user_refcount, 1); 15349 15350 goto bail; 15351 15352bail_free_rcverr: 15353 free_rcverr(dd); 15354bail_free_cntrs: 15355 free_cntrs(dd); 15356bail_clear_intr: 15357 hfi1_comp_vectors_clean_up(dd); 15358 msix_clean_up_interrupts(dd); 15359bail_cleanup: 15360 hfi1_netdev_free(dd); 15361 hfi1_pcie_ddcleanup(dd); 15362bail_free: 15363 hfi1_free_devdata(dd); 15364bail: 15365 return ret; 15366} 15367 15368static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate, 15369 u32 dw_len) 15370{ 15371 u32 delta_cycles; 15372 u32 current_egress_rate = ppd->current_egress_rate; 15373 /* rates here are in units of 10^6 bits/sec */ 15374 15375 if (desired_egress_rate == -1) 15376 return 0; /* shouldn't happen */ 15377 15378 if (desired_egress_rate >= current_egress_rate) 15379 return 0; /* we can't help go faster, only slower */ 15380 15381 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) - 15382 egress_cycles(dw_len * 4, current_egress_rate); 15383 15384 return (u16)delta_cycles; 15385} 15386 15387/** 15388 * create_pbc - build a pbc for transmission 15389 * @flags: special case flags or-ed in built pbc 15390 * @srate: static rate 15391 * @vl: vl 15392 * @dwlen: dword length (header words + data words + pbc words) 15393 * 15394 * Create a PBC with the given flags, rate, VL, and length. 15395 * 15396 * NOTE: The PBC created will not insert any HCRC - all callers but one are 15397 * for verbs, which does not use this PSM feature. The lone other caller 15398 * is for the diagnostic interface which calls this if the user does not 15399 * supply their own PBC. 15400 */ 15401u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl, 15402 u32 dw_len) 15403{ 15404 u64 pbc, delay = 0; 15405 15406 if (unlikely(srate_mbs)) 15407 delay = delay_cycles(ppd, srate_mbs, dw_len); 15408 15409 pbc = flags 15410 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT) 15411 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT) 15412 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT 15413 | (dw_len & PBC_LENGTH_DWS_MASK) 15414 << PBC_LENGTH_DWS_SHIFT; 15415 15416 return pbc; 15417} 15418 15419#define SBUS_THERMAL 0x4f 15420#define SBUS_THERM_MONITOR_MODE 0x1 15421 15422#define THERM_FAILURE(dev, ret, reason) \ 15423 dd_dev_err((dd), \ 15424 "Thermal sensor initialization failed: %s (%d)\n", \ 15425 (reason), (ret)) 15426 15427/* 15428 * Initialize the thermal sensor. 15429 * 15430 * After initialization, enable polling of thermal sensor through 15431 * SBus interface. In order for this to work, the SBus Master 15432 * firmware has to be loaded due to the fact that the HW polling 15433 * logic uses SBus interrupts, which are not supported with 15434 * default firmware. Otherwise, no data will be returned through 15435 * the ASIC_STS_THERM CSR. 15436 */ 15437static int thermal_init(struct hfi1_devdata *dd) 15438{ 15439 int ret = 0; 15440 15441 if (dd->icode != ICODE_RTL_SILICON || 15442 check_chip_resource(dd, CR_THERM_INIT, NULL)) 15443 return ret; 15444 15445 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); 15446 if (ret) { 15447 THERM_FAILURE(dd, ret, "Acquire SBus"); 15448 return ret; 15449 } 15450 15451 dd_dev_info(dd, "Initializing thermal sensor\n"); 15452 /* Disable polling of thermal readings */ 15453 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0); 15454 msleep(100); 15455 /* Thermal Sensor Initialization */ 15456 /* Step 1: Reset the Thermal SBus Receiver */ 15457 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 15458 RESET_SBUS_RECEIVER, 0); 15459 if (ret) { 15460 THERM_FAILURE(dd, ret, "Bus Reset"); 15461 goto done; 15462 } 15463 /* Step 2: Set Reset bit in Thermal block */ 15464 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 15465 WRITE_SBUS_RECEIVER, 0x1); 15466 if (ret) { 15467 THERM_FAILURE(dd, ret, "Therm Block Reset"); 15468 goto done; 15469 } 15470 /* Step 3: Write clock divider value (100MHz -> 2MHz) */ 15471 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1, 15472 WRITE_SBUS_RECEIVER, 0x32); 15473 if (ret) { 15474 THERM_FAILURE(dd, ret, "Write Clock Div"); 15475 goto done; 15476 } 15477 /* Step 4: Select temperature mode */ 15478 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3, 15479 WRITE_SBUS_RECEIVER, 15480 SBUS_THERM_MONITOR_MODE); 15481 if (ret) { 15482 THERM_FAILURE(dd, ret, "Write Mode Sel"); 15483 goto done; 15484 } 15485 /* Step 5: De-assert block reset and start conversion */ 15486 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 15487 WRITE_SBUS_RECEIVER, 0x2); 15488 if (ret) { 15489 THERM_FAILURE(dd, ret, "Write Reset Deassert"); 15490 goto done; 15491 } 15492 /* Step 5.1: Wait for first conversion (21.5ms per spec) */ 15493 msleep(22); 15494 15495 /* Enable polling of thermal readings */ 15496 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1); 15497 15498 /* Set initialized flag */ 15499 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0); 15500 if (ret) 15501 THERM_FAILURE(dd, ret, "Unable to set thermal init flag"); 15502 15503done: 15504 release_chip_resource(dd, CR_SBUS); 15505 return ret; 15506} 15507 15508static void handle_temp_err(struct hfi1_devdata *dd) 15509{ 15510 struct hfi1_pportdata *ppd = &dd->pport[0]; 15511 /* 15512 * Thermal Critical Interrupt 15513 * Put the device into forced freeze mode, take link down to 15514 * offline, and put DC into reset. 15515 */ 15516 dd_dev_emerg(dd, 15517 "Critical temperature reached! Forcing device into freeze mode!\n"); 15518 dd->flags |= HFI1_FORCED_FREEZE; 15519 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT); 15520 /* 15521 * Shut DC down as much and as quickly as possible. 15522 * 15523 * Step 1: Take the link down to OFFLINE. This will cause the 15524 * 8051 to put the Serdes in reset. However, we don't want to 15525 * go through the entire link state machine since we want to 15526 * shutdown ASAP. Furthermore, this is not a graceful shutdown 15527 * but rather an attempt to save the chip. 15528 * Code below is almost the same as quiet_serdes() but avoids 15529 * all the extra work and the sleeps. 15530 */ 15531 ppd->driver_link_ready = 0; 15532 ppd->link_enabled = 0; 15533 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) | 15534 PLS_OFFLINE); 15535 /* 15536 * Step 2: Shutdown LCB and 8051 15537 * After shutdown, do not restore DC_CFG_RESET value. 15538 */ 15539 dc_shutdown(dd); 15540} 15541