1/*
2 * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses.  You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 *     Redistribution and use in source and binary forms, with or
12 *     without modification, are permitted provided that the following
13 *     conditions are met:
14 *
15 *      - Redistributions of source code must retain the above
16 *        copyright notice, this list of conditions and the following
17 *        disclaimer.
18 *
19 *      - Redistributions in binary form must reproduce the above
20 *        copyright notice, this list of conditions and the following
21 *        disclaimer in the documentation and/or other materials
22 *        provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35#include <linux/string.h>
36#include <linux/errno.h>
37#include <linux/kernel.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/netdevice.h>
41#include <net/net_namespace.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/hashtable.h>
45#include <rdma/rdma_netlink.h>
46#include <rdma/ib_addr.h>
47#include <rdma/ib_cache.h>
48#include <rdma/rdma_counter.h>
49
50#include "core_priv.h"
51#include "restrack.h"
52
53MODULE_AUTHOR("Roland Dreier");
54MODULE_DESCRIPTION("core kernel InfiniBand API");
55MODULE_LICENSE("Dual BSD/GPL");
56
57struct workqueue_struct *ib_comp_wq;
58struct workqueue_struct *ib_comp_unbound_wq;
59struct workqueue_struct *ib_wq;
60EXPORT_SYMBOL_GPL(ib_wq);
61
62/*
63 * Each of the three rwsem locks (devices, clients, client_data) protects the
64 * xarray of the same name. Specifically it allows the caller to assert that
65 * the MARK will/will not be changing under the lock, and for devices and
66 * clients, that the value in the xarray is still a valid pointer. Change of
67 * the MARK is linked to the object state, so holding the lock and testing the
68 * MARK also asserts that the contained object is in a certain state.
69 *
70 * This is used to build a two stage register/unregister flow where objects
71 * can continue to be in the xarray even though they are still in progress to
72 * register/unregister.
73 *
74 * The xarray itself provides additional locking, and restartable iteration,
75 * which is also relied on.
76 *
77 * Locks should not be nested, with the exception of client_data, which is
78 * allowed to nest under the read side of the other two locks.
79 *
80 * The devices_rwsem also protects the device name list, any change or
81 * assignment of device name must also hold the write side to guarantee unique
82 * names.
83 */
84
85/*
86 * devices contains devices that have had their names assigned. The
87 * devices may not be registered. Users that care about the registration
88 * status need to call ib_device_try_get() on the device to ensure it is
89 * registered, and keep it registered, for the required duration.
90 *
91 */
92static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93static DECLARE_RWSEM(devices_rwsem);
94#define DEVICE_REGISTERED XA_MARK_1
95
96static u32 highest_client_id;
97#define CLIENT_REGISTERED XA_MARK_1
98static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99static DECLARE_RWSEM(clients_rwsem);
100
101static void ib_client_put(struct ib_client *client)
102{
103	if (refcount_dec_and_test(&client->uses))
104		complete(&client->uses_zero);
105}
106
107/*
108 * If client_data is registered then the corresponding client must also still
109 * be registered.
110 */
111#define CLIENT_DATA_REGISTERED XA_MARK_1
112
113unsigned int rdma_dev_net_id;
114
115/*
116 * A list of net namespaces is maintained in an xarray. This is necessary
117 * because we can't get the locking right using the existing net ns list. We
118 * would require a init_net callback after the list is updated.
119 */
120static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121/*
122 * rwsem to protect accessing the rdma_nets xarray entries.
123 */
124static DECLARE_RWSEM(rdma_nets_rwsem);
125
126bool ib_devices_shared_netns = true;
127module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128MODULE_PARM_DESC(netns_mode,
129		 "Share device among net namespaces; default=1 (shared)");
130/**
131 * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132 *			     from a specified net namespace or not.
133 * @dev:	Pointer to rdma device which needs to be checked
134 * @net:	Pointer to net namesapce for which access to be checked
135 *
136 * When the rdma device is in shared mode, it ignores the net namespace.
137 * When the rdma device is exclusive to a net namespace, rdma device net
138 * namespace is checked against the specified one.
139 */
140bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141{
142	return (ib_devices_shared_netns ||
143		net_eq(read_pnet(&dev->coredev.rdma_net), net));
144}
145EXPORT_SYMBOL(rdma_dev_access_netns);
146
147/*
148 * xarray has this behavior where it won't iterate over NULL values stored in
149 * allocated arrays.  So we need our own iterator to see all values stored in
150 * the array. This does the same thing as xa_for_each except that it also
151 * returns NULL valued entries if the array is allocating. Simplified to only
152 * work on simple xarrays.
153 */
154static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155			     xa_mark_t filter)
156{
157	XA_STATE(xas, xa, *indexp);
158	void *entry;
159
160	rcu_read_lock();
161	do {
162		entry = xas_find_marked(&xas, ULONG_MAX, filter);
163		if (xa_is_zero(entry))
164			break;
165	} while (xas_retry(&xas, entry));
166	rcu_read_unlock();
167
168	if (entry) {
169		*indexp = xas.xa_index;
170		if (xa_is_zero(entry))
171			return NULL;
172		return entry;
173	}
174	return XA_ERROR(-ENOENT);
175}
176#define xan_for_each_marked(xa, index, entry, filter)                          \
177	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
178	     !xa_is_err(entry);                                                \
179	     (index)++, entry = xan_find_marked(xa, &(index), filter))
180
181/* RCU hash table mapping netdevice pointers to struct ib_port_data */
182static DEFINE_SPINLOCK(ndev_hash_lock);
183static DECLARE_HASHTABLE(ndev_hash, 5);
184
185static void free_netdevs(struct ib_device *ib_dev);
186static void ib_unregister_work(struct work_struct *work);
187static void __ib_unregister_device(struct ib_device *device);
188static int ib_security_change(struct notifier_block *nb, unsigned long event,
189			      void *lsm_data);
190static void ib_policy_change_task(struct work_struct *work);
191static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192
193static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194			   struct va_format *vaf)
195{
196	if (ibdev && ibdev->dev.parent)
197		dev_printk_emit(level[1] - '0',
198				ibdev->dev.parent,
199				"%s %s %s: %pV",
200				dev_driver_string(ibdev->dev.parent),
201				dev_name(ibdev->dev.parent),
202				dev_name(&ibdev->dev),
203				vaf);
204	else if (ibdev)
205		printk("%s%s: %pV",
206		       level, dev_name(&ibdev->dev), vaf);
207	else
208		printk("%s(NULL ib_device): %pV", level, vaf);
209}
210
211void ibdev_printk(const char *level, const struct ib_device *ibdev,
212		  const char *format, ...)
213{
214	struct va_format vaf;
215	va_list args;
216
217	va_start(args, format);
218
219	vaf.fmt = format;
220	vaf.va = &args;
221
222	__ibdev_printk(level, ibdev, &vaf);
223
224	va_end(args);
225}
226EXPORT_SYMBOL(ibdev_printk);
227
228#define define_ibdev_printk_level(func, level)                  \
229void func(const struct ib_device *ibdev, const char *fmt, ...)  \
230{                                                               \
231	struct va_format vaf;                                   \
232	va_list args;                                           \
233								\
234	va_start(args, fmt);                                    \
235								\
236	vaf.fmt = fmt;                                          \
237	vaf.va = &args;                                         \
238								\
239	__ibdev_printk(level, ibdev, &vaf);                     \
240								\
241	va_end(args);                                           \
242}                                                               \
243EXPORT_SYMBOL(func);
244
245define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248define_ibdev_printk_level(ibdev_err, KERN_ERR);
249define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251define_ibdev_printk_level(ibdev_info, KERN_INFO);
252
253static struct notifier_block ibdev_lsm_nb = {
254	.notifier_call = ib_security_change,
255};
256
257static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258				 struct net *net);
259
260/* Pointer to the RCU head at the start of the ib_port_data array */
261struct ib_port_data_rcu {
262	struct rcu_head rcu_head;
263	struct ib_port_data pdata[];
264};
265
266static void ib_device_check_mandatory(struct ib_device *device)
267{
268#define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269	static const struct {
270		size_t offset;
271		char  *name;
272	} mandatory_table[] = {
273		IB_MANDATORY_FUNC(query_device),
274		IB_MANDATORY_FUNC(query_port),
275		IB_MANDATORY_FUNC(alloc_pd),
276		IB_MANDATORY_FUNC(dealloc_pd),
277		IB_MANDATORY_FUNC(create_qp),
278		IB_MANDATORY_FUNC(modify_qp),
279		IB_MANDATORY_FUNC(destroy_qp),
280		IB_MANDATORY_FUNC(post_send),
281		IB_MANDATORY_FUNC(post_recv),
282		IB_MANDATORY_FUNC(create_cq),
283		IB_MANDATORY_FUNC(destroy_cq),
284		IB_MANDATORY_FUNC(poll_cq),
285		IB_MANDATORY_FUNC(req_notify_cq),
286		IB_MANDATORY_FUNC(get_dma_mr),
287		IB_MANDATORY_FUNC(dereg_mr),
288		IB_MANDATORY_FUNC(get_port_immutable)
289	};
290	int i;
291
292	device->kverbs_provider = true;
293	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
294		if (!*(void **) ((void *) &device->ops +
295				 mandatory_table[i].offset)) {
296			device->kverbs_provider = false;
297			break;
298		}
299	}
300}
301
302/*
303 * Caller must perform ib_device_put() to return the device reference count
304 * when ib_device_get_by_index() returns valid device pointer.
305 */
306struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
307{
308	struct ib_device *device;
309
310	down_read(&devices_rwsem);
311	device = xa_load(&devices, index);
312	if (device) {
313		if (!rdma_dev_access_netns(device, net)) {
314			device = NULL;
315			goto out;
316		}
317
318		if (!ib_device_try_get(device))
319			device = NULL;
320	}
321out:
322	up_read(&devices_rwsem);
323	return device;
324}
325
326/**
327 * ib_device_put - Release IB device reference
328 * @device: device whose reference to be released
329 *
330 * ib_device_put() releases reference to the IB device to allow it to be
331 * unregistered and eventually free.
332 */
333void ib_device_put(struct ib_device *device)
334{
335	if (refcount_dec_and_test(&device->refcount))
336		complete(&device->unreg_completion);
337}
338EXPORT_SYMBOL(ib_device_put);
339
340static struct ib_device *__ib_device_get_by_name(const char *name)
341{
342	struct ib_device *device;
343	unsigned long index;
344
345	xa_for_each (&devices, index, device)
346		if (!strcmp(name, dev_name(&device->dev)))
347			return device;
348
349	return NULL;
350}
351
352/**
353 * ib_device_get_by_name - Find an IB device by name
354 * @name: The name to look for
355 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
356 *
357 * Find and hold an ib_device by its name. The caller must call
358 * ib_device_put() on the returned pointer.
359 */
360struct ib_device *ib_device_get_by_name(const char *name,
361					enum rdma_driver_id driver_id)
362{
363	struct ib_device *device;
364
365	down_read(&devices_rwsem);
366	device = __ib_device_get_by_name(name);
367	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
368	    device->ops.driver_id != driver_id)
369		device = NULL;
370
371	if (device) {
372		if (!ib_device_try_get(device))
373			device = NULL;
374	}
375	up_read(&devices_rwsem);
376	return device;
377}
378EXPORT_SYMBOL(ib_device_get_by_name);
379
380static int rename_compat_devs(struct ib_device *device)
381{
382	struct ib_core_device *cdev;
383	unsigned long index;
384	int ret = 0;
385
386	mutex_lock(&device->compat_devs_mutex);
387	xa_for_each (&device->compat_devs, index, cdev) {
388		ret = device_rename(&cdev->dev, dev_name(&device->dev));
389		if (ret) {
390			dev_warn(&cdev->dev,
391				 "Fail to rename compatdev to new name %s\n",
392				 dev_name(&device->dev));
393			break;
394		}
395	}
396	mutex_unlock(&device->compat_devs_mutex);
397	return ret;
398}
399
400int ib_device_rename(struct ib_device *ibdev, const char *name)
401{
402	unsigned long index;
403	void *client_data;
404	int ret;
405
406	down_write(&devices_rwsem);
407	if (!strcmp(name, dev_name(&ibdev->dev))) {
408		up_write(&devices_rwsem);
409		return 0;
410	}
411
412	if (__ib_device_get_by_name(name)) {
413		up_write(&devices_rwsem);
414		return -EEXIST;
415	}
416
417	ret = device_rename(&ibdev->dev, name);
418	if (ret) {
419		up_write(&devices_rwsem);
420		return ret;
421	}
422
423	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
424	ret = rename_compat_devs(ibdev);
425
426	downgrade_write(&devices_rwsem);
427	down_read(&ibdev->client_data_rwsem);
428	xan_for_each_marked(&ibdev->client_data, index, client_data,
429			    CLIENT_DATA_REGISTERED) {
430		struct ib_client *client = xa_load(&clients, index);
431
432		if (!client || !client->rename)
433			continue;
434
435		client->rename(ibdev, client_data);
436	}
437	up_read(&ibdev->client_data_rwsem);
438	up_read(&devices_rwsem);
439	return 0;
440}
441
442int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
443{
444	if (use_dim > 1)
445		return -EINVAL;
446	ibdev->use_cq_dim = use_dim;
447
448	return 0;
449}
450
451static int alloc_name(struct ib_device *ibdev, const char *name)
452{
453	struct ib_device *device;
454	unsigned long index;
455	struct ida inuse;
456	int rc;
457	int i;
458
459	lockdep_assert_held_write(&devices_rwsem);
460	ida_init(&inuse);
461	xa_for_each (&devices, index, device) {
462		char buf[IB_DEVICE_NAME_MAX];
463
464		if (sscanf(dev_name(&device->dev), name, &i) != 1)
465			continue;
466		if (i < 0 || i >= INT_MAX)
467			continue;
468		snprintf(buf, sizeof buf, name, i);
469		if (strcmp(buf, dev_name(&device->dev)) != 0)
470			continue;
471
472		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
473		if (rc < 0)
474			goto out;
475	}
476
477	rc = ida_alloc(&inuse, GFP_KERNEL);
478	if (rc < 0)
479		goto out;
480
481	rc = dev_set_name(&ibdev->dev, name, rc);
482out:
483	ida_destroy(&inuse);
484	return rc;
485}
486
487static void ib_device_release(struct device *device)
488{
489	struct ib_device *dev = container_of(device, struct ib_device, dev);
490
491	free_netdevs(dev);
492	WARN_ON(refcount_read(&dev->refcount));
493	if (dev->port_data) {
494		ib_cache_release_one(dev);
495		ib_security_release_port_pkey_list(dev);
496		rdma_counter_release(dev);
497		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
498				       pdata[0]),
499			  rcu_head);
500	}
501
502	mutex_destroy(&dev->unregistration_lock);
503	mutex_destroy(&dev->compat_devs_mutex);
504
505	xa_destroy(&dev->compat_devs);
506	xa_destroy(&dev->client_data);
507	kfree_rcu(dev, rcu_head);
508}
509
510static int ib_device_uevent(struct device *device,
511			    struct kobj_uevent_env *env)
512{
513	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
514		return -ENOMEM;
515
516	/*
517	 * It would be nice to pass the node GUID with the event...
518	 */
519
520	return 0;
521}
522
523static const void *net_namespace(struct device *d)
524{
525	struct ib_core_device *coredev =
526			container_of(d, struct ib_core_device, dev);
527
528	return read_pnet(&coredev->rdma_net);
529}
530
531static struct class ib_class = {
532	.name    = "infiniband",
533	.dev_release = ib_device_release,
534	.dev_uevent = ib_device_uevent,
535	.ns_type = &net_ns_type_operations,
536	.namespace = net_namespace,
537};
538
539static void rdma_init_coredev(struct ib_core_device *coredev,
540			      struct ib_device *dev, struct net *net)
541{
542	/* This BUILD_BUG_ON is intended to catch layout change
543	 * of union of ib_core_device and device.
544	 * dev must be the first element as ib_core and providers
545	 * driver uses it. Adding anything in ib_core_device before
546	 * device will break this assumption.
547	 */
548	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
549		     offsetof(struct ib_device, dev));
550
551	coredev->dev.class = &ib_class;
552	coredev->dev.groups = dev->groups;
553	device_initialize(&coredev->dev);
554	coredev->owner = dev;
555	INIT_LIST_HEAD(&coredev->port_list);
556	write_pnet(&coredev->rdma_net, net);
557}
558
559/**
560 * _ib_alloc_device - allocate an IB device struct
561 * @size:size of structure to allocate
562 *
563 * Low-level drivers should use ib_alloc_device() to allocate &struct
564 * ib_device.  @size is the size of the structure to be allocated,
565 * including any private data used by the low-level driver.
566 * ib_dealloc_device() must be used to free structures allocated with
567 * ib_alloc_device().
568 */
569struct ib_device *_ib_alloc_device(size_t size)
570{
571	struct ib_device *device;
572
573	if (WARN_ON(size < sizeof(struct ib_device)))
574		return NULL;
575
576	device = kzalloc(size, GFP_KERNEL);
577	if (!device)
578		return NULL;
579
580	if (rdma_restrack_init(device)) {
581		kfree(device);
582		return NULL;
583	}
584
585	device->groups[0] = &ib_dev_attr_group;
586	rdma_init_coredev(&device->coredev, device, &init_net);
587
588	INIT_LIST_HEAD(&device->event_handler_list);
589	spin_lock_init(&device->qp_open_list_lock);
590	init_rwsem(&device->event_handler_rwsem);
591	mutex_init(&device->unregistration_lock);
592	/*
593	 * client_data needs to be alloc because we don't want our mark to be
594	 * destroyed if the user stores NULL in the client data.
595	 */
596	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
597	init_rwsem(&device->client_data_rwsem);
598	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
599	mutex_init(&device->compat_devs_mutex);
600	init_completion(&device->unreg_completion);
601	INIT_WORK(&device->unregistration_work, ib_unregister_work);
602
603	device->uverbs_ex_cmd_mask =
604		BIT_ULL(IB_USER_VERBS_EX_CMD_CREATE_FLOW) |
605		BIT_ULL(IB_USER_VERBS_EX_CMD_CREATE_RWQ_IND_TBL) |
606		BIT_ULL(IB_USER_VERBS_EX_CMD_CREATE_WQ) |
607		BIT_ULL(IB_USER_VERBS_EX_CMD_DESTROY_FLOW) |
608		BIT_ULL(IB_USER_VERBS_EX_CMD_DESTROY_RWQ_IND_TBL) |
609		BIT_ULL(IB_USER_VERBS_EX_CMD_DESTROY_WQ) |
610		BIT_ULL(IB_USER_VERBS_EX_CMD_MODIFY_CQ) |
611		BIT_ULL(IB_USER_VERBS_EX_CMD_MODIFY_WQ) |
612		BIT_ULL(IB_USER_VERBS_EX_CMD_QUERY_DEVICE);
613
614	return device;
615}
616EXPORT_SYMBOL(_ib_alloc_device);
617
618/**
619 * ib_dealloc_device - free an IB device struct
620 * @device:structure to free
621 *
622 * Free a structure allocated with ib_alloc_device().
623 */
624void ib_dealloc_device(struct ib_device *device)
625{
626	if (device->ops.dealloc_driver)
627		device->ops.dealloc_driver(device);
628
629	/*
630	 * ib_unregister_driver() requires all devices to remain in the xarray
631	 * while their ops are callable. The last op we call is dealloc_driver
632	 * above.  This is needed to create a fence on op callbacks prior to
633	 * allowing the driver module to unload.
634	 */
635	down_write(&devices_rwsem);
636	if (xa_load(&devices, device->index) == device)
637		xa_erase(&devices, device->index);
638	up_write(&devices_rwsem);
639
640	/* Expedite releasing netdev references */
641	free_netdevs(device);
642
643	WARN_ON(!xa_empty(&device->compat_devs));
644	WARN_ON(!xa_empty(&device->client_data));
645	WARN_ON(refcount_read(&device->refcount));
646	rdma_restrack_clean(device);
647	/* Balances with device_initialize */
648	put_device(&device->dev);
649}
650EXPORT_SYMBOL(ib_dealloc_device);
651
652/*
653 * add_client_context() and remove_client_context() must be safe against
654 * parallel calls on the same device - registration/unregistration of both the
655 * device and client can be occurring in parallel.
656 *
657 * The routines need to be a fence, any caller must not return until the add
658 * or remove is fully completed.
659 */
660static int add_client_context(struct ib_device *device,
661			      struct ib_client *client)
662{
663	int ret = 0;
664
665	if (!device->kverbs_provider && !client->no_kverbs_req)
666		return 0;
667
668	down_write(&device->client_data_rwsem);
669	/*
670	 * So long as the client is registered hold both the client and device
671	 * unregistration locks.
672	 */
673	if (!refcount_inc_not_zero(&client->uses))
674		goto out_unlock;
675	refcount_inc(&device->refcount);
676
677	/*
678	 * Another caller to add_client_context got here first and has already
679	 * completely initialized context.
680	 */
681	if (xa_get_mark(&device->client_data, client->client_id,
682		    CLIENT_DATA_REGISTERED))
683		goto out;
684
685	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
686			      GFP_KERNEL));
687	if (ret)
688		goto out;
689	downgrade_write(&device->client_data_rwsem);
690	if (client->add) {
691		if (client->add(device)) {
692			/*
693			 * If a client fails to add then the error code is
694			 * ignored, but we won't call any more ops on this
695			 * client.
696			 */
697			xa_erase(&device->client_data, client->client_id);
698			up_read(&device->client_data_rwsem);
699			ib_device_put(device);
700			ib_client_put(client);
701			return 0;
702		}
703	}
704
705	/* Readers shall not see a client until add has been completed */
706	xa_set_mark(&device->client_data, client->client_id,
707		    CLIENT_DATA_REGISTERED);
708	up_read(&device->client_data_rwsem);
709	return 0;
710
711out:
712	ib_device_put(device);
713	ib_client_put(client);
714out_unlock:
715	up_write(&device->client_data_rwsem);
716	return ret;
717}
718
719static void remove_client_context(struct ib_device *device,
720				  unsigned int client_id)
721{
722	struct ib_client *client;
723	void *client_data;
724
725	down_write(&device->client_data_rwsem);
726	if (!xa_get_mark(&device->client_data, client_id,
727			 CLIENT_DATA_REGISTERED)) {
728		up_write(&device->client_data_rwsem);
729		return;
730	}
731	client_data = xa_load(&device->client_data, client_id);
732	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
733	client = xa_load(&clients, client_id);
734	up_write(&device->client_data_rwsem);
735
736	/*
737	 * Notice we cannot be holding any exclusive locks when calling the
738	 * remove callback as the remove callback can recurse back into any
739	 * public functions in this module and thus try for any locks those
740	 * functions take.
741	 *
742	 * For this reason clients and drivers should not call the
743	 * unregistration functions will holdling any locks.
744	 */
745	if (client->remove)
746		client->remove(device, client_data);
747
748	xa_erase(&device->client_data, client_id);
749	ib_device_put(device);
750	ib_client_put(client);
751}
752
753static int alloc_port_data(struct ib_device *device)
754{
755	struct ib_port_data_rcu *pdata_rcu;
756	unsigned int port;
757
758	if (device->port_data)
759		return 0;
760
761	/* This can only be called once the physical port range is defined */
762	if (WARN_ON(!device->phys_port_cnt))
763		return -EINVAL;
764
765	/*
766	 * device->port_data is indexed directly by the port number to make
767	 * access to this data as efficient as possible.
768	 *
769	 * Therefore port_data is declared as a 1 based array with potential
770	 * empty slots at the beginning.
771	 */
772	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
773					rdma_end_port(device) + 1),
774			    GFP_KERNEL);
775	if (!pdata_rcu)
776		return -ENOMEM;
777	/*
778	 * The rcu_head is put in front of the port data array and the stored
779	 * pointer is adjusted since we never need to see that member until
780	 * kfree_rcu.
781	 */
782	device->port_data = pdata_rcu->pdata;
783
784	rdma_for_each_port (device, port) {
785		struct ib_port_data *pdata = &device->port_data[port];
786
787		pdata->ib_dev = device;
788		spin_lock_init(&pdata->pkey_list_lock);
789		INIT_LIST_HEAD(&pdata->pkey_list);
790		spin_lock_init(&pdata->netdev_lock);
791		INIT_HLIST_NODE(&pdata->ndev_hash_link);
792	}
793	return 0;
794}
795
796static int verify_immutable(const struct ib_device *dev, u8 port)
797{
798	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
799			    rdma_max_mad_size(dev, port) != 0);
800}
801
802static int setup_port_data(struct ib_device *device)
803{
804	unsigned int port;
805	int ret;
806
807	ret = alloc_port_data(device);
808	if (ret)
809		return ret;
810
811	rdma_for_each_port (device, port) {
812		struct ib_port_data *pdata = &device->port_data[port];
813
814		ret = device->ops.get_port_immutable(device, port,
815						     &pdata->immutable);
816		if (ret)
817			return ret;
818
819		if (verify_immutable(device, port))
820			return -EINVAL;
821	}
822	return 0;
823}
824
825void ib_get_device_fw_str(struct ib_device *dev, char *str)
826{
827	if (dev->ops.get_dev_fw_str)
828		dev->ops.get_dev_fw_str(dev, str);
829	else
830		str[0] = '\0';
831}
832EXPORT_SYMBOL(ib_get_device_fw_str);
833
834static void ib_policy_change_task(struct work_struct *work)
835{
836	struct ib_device *dev;
837	unsigned long index;
838
839	down_read(&devices_rwsem);
840	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
841		unsigned int i;
842
843		rdma_for_each_port (dev, i) {
844			u64 sp;
845			int ret = ib_get_cached_subnet_prefix(dev,
846							      i,
847							      &sp);
848
849			WARN_ONCE(ret,
850				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
851				  ret);
852			if (!ret)
853				ib_security_cache_change(dev, i, sp);
854		}
855	}
856	up_read(&devices_rwsem);
857}
858
859static int ib_security_change(struct notifier_block *nb, unsigned long event,
860			      void *lsm_data)
861{
862	if (event != LSM_POLICY_CHANGE)
863		return NOTIFY_DONE;
864
865	schedule_work(&ib_policy_change_work);
866	ib_mad_agent_security_change();
867
868	return NOTIFY_OK;
869}
870
871static void compatdev_release(struct device *dev)
872{
873	struct ib_core_device *cdev =
874		container_of(dev, struct ib_core_device, dev);
875
876	kfree(cdev);
877}
878
879static int add_one_compat_dev(struct ib_device *device,
880			      struct rdma_dev_net *rnet)
881{
882	struct ib_core_device *cdev;
883	int ret;
884
885	lockdep_assert_held(&rdma_nets_rwsem);
886	if (!ib_devices_shared_netns)
887		return 0;
888
889	/*
890	 * Create and add compat device in all namespaces other than where it
891	 * is currently bound to.
892	 */
893	if (net_eq(read_pnet(&rnet->net),
894		   read_pnet(&device->coredev.rdma_net)))
895		return 0;
896
897	/*
898	 * The first of init_net() or ib_register_device() to take the
899	 * compat_devs_mutex wins and gets to add the device. Others will wait
900	 * for completion here.
901	 */
902	mutex_lock(&device->compat_devs_mutex);
903	cdev = xa_load(&device->compat_devs, rnet->id);
904	if (cdev) {
905		ret = 0;
906		goto done;
907	}
908	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
909	if (ret)
910		goto done;
911
912	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
913	if (!cdev) {
914		ret = -ENOMEM;
915		goto cdev_err;
916	}
917
918	cdev->dev.parent = device->dev.parent;
919	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
920	cdev->dev.release = compatdev_release;
921	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
922	if (ret)
923		goto add_err;
924
925	ret = device_add(&cdev->dev);
926	if (ret)
927		goto add_err;
928	ret = ib_setup_port_attrs(cdev);
929	if (ret)
930		goto port_err;
931
932	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
933			      cdev, GFP_KERNEL));
934	if (ret)
935		goto insert_err;
936
937	mutex_unlock(&device->compat_devs_mutex);
938	return 0;
939
940insert_err:
941	ib_free_port_attrs(cdev);
942port_err:
943	device_del(&cdev->dev);
944add_err:
945	put_device(&cdev->dev);
946cdev_err:
947	xa_release(&device->compat_devs, rnet->id);
948done:
949	mutex_unlock(&device->compat_devs_mutex);
950	return ret;
951}
952
953static void remove_one_compat_dev(struct ib_device *device, u32 id)
954{
955	struct ib_core_device *cdev;
956
957	mutex_lock(&device->compat_devs_mutex);
958	cdev = xa_erase(&device->compat_devs, id);
959	mutex_unlock(&device->compat_devs_mutex);
960	if (cdev) {
961		ib_free_port_attrs(cdev);
962		device_del(&cdev->dev);
963		put_device(&cdev->dev);
964	}
965}
966
967static void remove_compat_devs(struct ib_device *device)
968{
969	struct ib_core_device *cdev;
970	unsigned long index;
971
972	xa_for_each (&device->compat_devs, index, cdev)
973		remove_one_compat_dev(device, index);
974}
975
976static int add_compat_devs(struct ib_device *device)
977{
978	struct rdma_dev_net *rnet;
979	unsigned long index;
980	int ret = 0;
981
982	lockdep_assert_held(&devices_rwsem);
983
984	down_read(&rdma_nets_rwsem);
985	xa_for_each (&rdma_nets, index, rnet) {
986		ret = add_one_compat_dev(device, rnet);
987		if (ret)
988			break;
989	}
990	up_read(&rdma_nets_rwsem);
991	return ret;
992}
993
994static void remove_all_compat_devs(void)
995{
996	struct ib_compat_device *cdev;
997	struct ib_device *dev;
998	unsigned long index;
999
1000	down_read(&devices_rwsem);
1001	xa_for_each (&devices, index, dev) {
1002		unsigned long c_index = 0;
1003
1004		/* Hold nets_rwsem so that any other thread modifying this
1005		 * system param can sync with this thread.
1006		 */
1007		down_read(&rdma_nets_rwsem);
1008		xa_for_each (&dev->compat_devs, c_index, cdev)
1009			remove_one_compat_dev(dev, c_index);
1010		up_read(&rdma_nets_rwsem);
1011	}
1012	up_read(&devices_rwsem);
1013}
1014
1015static int add_all_compat_devs(void)
1016{
1017	struct rdma_dev_net *rnet;
1018	struct ib_device *dev;
1019	unsigned long index;
1020	int ret = 0;
1021
1022	down_read(&devices_rwsem);
1023	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1024		unsigned long net_index = 0;
1025
1026		/* Hold nets_rwsem so that any other thread modifying this
1027		 * system param can sync with this thread.
1028		 */
1029		down_read(&rdma_nets_rwsem);
1030		xa_for_each (&rdma_nets, net_index, rnet) {
1031			ret = add_one_compat_dev(dev, rnet);
1032			if (ret)
1033				break;
1034		}
1035		up_read(&rdma_nets_rwsem);
1036	}
1037	up_read(&devices_rwsem);
1038	if (ret)
1039		remove_all_compat_devs();
1040	return ret;
1041}
1042
1043int rdma_compatdev_set(u8 enable)
1044{
1045	struct rdma_dev_net *rnet;
1046	unsigned long index;
1047	int ret = 0;
1048
1049	down_write(&rdma_nets_rwsem);
1050	if (ib_devices_shared_netns == enable) {
1051		up_write(&rdma_nets_rwsem);
1052		return 0;
1053	}
1054
1055	/* enable/disable of compat devices is not supported
1056	 * when more than default init_net exists.
1057	 */
1058	xa_for_each (&rdma_nets, index, rnet) {
1059		ret++;
1060		break;
1061	}
1062	if (!ret)
1063		ib_devices_shared_netns = enable;
1064	up_write(&rdma_nets_rwsem);
1065	if (ret)
1066		return -EBUSY;
1067
1068	if (enable)
1069		ret = add_all_compat_devs();
1070	else
1071		remove_all_compat_devs();
1072	return ret;
1073}
1074
1075static void rdma_dev_exit_net(struct net *net)
1076{
1077	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1078	struct ib_device *dev;
1079	unsigned long index;
1080	int ret;
1081
1082	down_write(&rdma_nets_rwsem);
1083	/*
1084	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1085	 */
1086	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1087	WARN_ON(ret);
1088	up_write(&rdma_nets_rwsem);
1089
1090	down_read(&devices_rwsem);
1091	xa_for_each (&devices, index, dev) {
1092		get_device(&dev->dev);
1093		/*
1094		 * Release the devices_rwsem so that pontentially blocking
1095		 * device_del, doesn't hold the devices_rwsem for too long.
1096		 */
1097		up_read(&devices_rwsem);
1098
1099		remove_one_compat_dev(dev, rnet->id);
1100
1101		/*
1102		 * If the real device is in the NS then move it back to init.
1103		 */
1104		rdma_dev_change_netns(dev, net, &init_net);
1105
1106		put_device(&dev->dev);
1107		down_read(&devices_rwsem);
1108	}
1109	up_read(&devices_rwsem);
1110
1111	rdma_nl_net_exit(rnet);
1112	xa_erase(&rdma_nets, rnet->id);
1113}
1114
1115static __net_init int rdma_dev_init_net(struct net *net)
1116{
1117	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1118	unsigned long index;
1119	struct ib_device *dev;
1120	int ret;
1121
1122	write_pnet(&rnet->net, net);
1123
1124	ret = rdma_nl_net_init(rnet);
1125	if (ret)
1126		return ret;
1127
1128	/* No need to create any compat devices in default init_net. */
1129	if (net_eq(net, &init_net))
1130		return 0;
1131
1132	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1133	if (ret) {
1134		rdma_nl_net_exit(rnet);
1135		return ret;
1136	}
1137
1138	down_read(&devices_rwsem);
1139	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1140		/* Hold nets_rwsem so that netlink command cannot change
1141		 * system configuration for device sharing mode.
1142		 */
1143		down_read(&rdma_nets_rwsem);
1144		ret = add_one_compat_dev(dev, rnet);
1145		up_read(&rdma_nets_rwsem);
1146		if (ret)
1147			break;
1148	}
1149	up_read(&devices_rwsem);
1150
1151	if (ret)
1152		rdma_dev_exit_net(net);
1153
1154	return ret;
1155}
1156
1157/*
1158 * Assign the unique string device name and the unique device index. This is
1159 * undone by ib_dealloc_device.
1160 */
1161static int assign_name(struct ib_device *device, const char *name)
1162{
1163	static u32 last_id;
1164	int ret;
1165
1166	down_write(&devices_rwsem);
1167	/* Assign a unique name to the device */
1168	if (strchr(name, '%'))
1169		ret = alloc_name(device, name);
1170	else
1171		ret = dev_set_name(&device->dev, name);
1172	if (ret)
1173		goto out;
1174
1175	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1176		ret = -ENFILE;
1177		goto out;
1178	}
1179	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1180
1181	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1182			&last_id, GFP_KERNEL);
1183	if (ret > 0)
1184		ret = 0;
1185
1186out:
1187	up_write(&devices_rwsem);
1188	return ret;
1189}
1190
1191/*
1192 * setup_device() allocates memory and sets up data that requires calling the
1193 * device ops, this is the only reason these actions are not done during
1194 * ib_alloc_device. It is undone by ib_dealloc_device().
1195 */
1196static int setup_device(struct ib_device *device)
1197{
1198	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1199	int ret;
1200
1201	ib_device_check_mandatory(device);
1202
1203	ret = setup_port_data(device);
1204	if (ret) {
1205		dev_warn(&device->dev, "Couldn't create per-port data\n");
1206		return ret;
1207	}
1208
1209	memset(&device->attrs, 0, sizeof(device->attrs));
1210	ret = device->ops.query_device(device, &device->attrs, &uhw);
1211	if (ret) {
1212		dev_warn(&device->dev,
1213			 "Couldn't query the device attributes\n");
1214		return ret;
1215	}
1216
1217	return 0;
1218}
1219
1220static void disable_device(struct ib_device *device)
1221{
1222	u32 cid;
1223
1224	WARN_ON(!refcount_read(&device->refcount));
1225
1226	down_write(&devices_rwsem);
1227	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1228	up_write(&devices_rwsem);
1229
1230	/*
1231	 * Remove clients in LIFO order, see assign_client_id. This could be
1232	 * more efficient if xarray learns to reverse iterate. Since no new
1233	 * clients can be added to this ib_device past this point we only need
1234	 * the maximum possible client_id value here.
1235	 */
1236	down_read(&clients_rwsem);
1237	cid = highest_client_id;
1238	up_read(&clients_rwsem);
1239	while (cid) {
1240		cid--;
1241		remove_client_context(device, cid);
1242	}
1243
1244	ib_cq_pool_destroy(device);
1245
1246	/* Pairs with refcount_set in enable_device */
1247	ib_device_put(device);
1248	wait_for_completion(&device->unreg_completion);
1249
1250	/*
1251	 * compat devices must be removed after device refcount drops to zero.
1252	 * Otherwise init_net() may add more compatdevs after removing compat
1253	 * devices and before device is disabled.
1254	 */
1255	remove_compat_devs(device);
1256}
1257
1258/*
1259 * An enabled device is visible to all clients and to all the public facing
1260 * APIs that return a device pointer. This always returns with a new get, even
1261 * if it fails.
1262 */
1263static int enable_device_and_get(struct ib_device *device)
1264{
1265	struct ib_client *client;
1266	unsigned long index;
1267	int ret = 0;
1268
1269	/*
1270	 * One ref belongs to the xa and the other belongs to this
1271	 * thread. This is needed to guard against parallel unregistration.
1272	 */
1273	refcount_set(&device->refcount, 2);
1274	down_write(&devices_rwsem);
1275	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1276
1277	/*
1278	 * By using downgrade_write() we ensure that no other thread can clear
1279	 * DEVICE_REGISTERED while we are completing the client setup.
1280	 */
1281	downgrade_write(&devices_rwsem);
1282
1283	if (device->ops.enable_driver) {
1284		ret = device->ops.enable_driver(device);
1285		if (ret)
1286			goto out;
1287	}
1288
1289	ib_cq_pool_init(device);
1290
1291	down_read(&clients_rwsem);
1292	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1293		ret = add_client_context(device, client);
1294		if (ret)
1295			break;
1296	}
1297	up_read(&clients_rwsem);
1298	if (!ret)
1299		ret = add_compat_devs(device);
1300out:
1301	up_read(&devices_rwsem);
1302	return ret;
1303}
1304
1305static void prevent_dealloc_device(struct ib_device *ib_dev)
1306{
1307}
1308
1309/**
1310 * ib_register_device - Register an IB device with IB core
1311 * @device: Device to register
1312 * @name: unique string device name. This may include a '%' which will
1313 * 	  cause a unique index to be added to the passed device name.
1314 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1315 *	        device will be used. In this case the caller should fully
1316 *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1317 *
1318 * Low-level drivers use ib_register_device() to register their
1319 * devices with the IB core.  All registered clients will receive a
1320 * callback for each device that is added. @device must be allocated
1321 * with ib_alloc_device().
1322 *
1323 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1324 * asynchronously then the device pointer may become freed as soon as this
1325 * function returns.
1326 */
1327int ib_register_device(struct ib_device *device, const char *name,
1328		       struct device *dma_device)
1329{
1330	int ret;
1331
1332	ret = assign_name(device, name);
1333	if (ret)
1334		return ret;
1335
1336	/*
1337	 * If the caller does not provide a DMA capable device then the IB core
1338	 * will set up ib_sge and scatterlist structures that stash the kernel
1339	 * virtual address into the address field.
1340	 */
1341	WARN_ON(dma_device && !dma_device->dma_parms);
1342	device->dma_device = dma_device;
1343
1344	ret = setup_device(device);
1345	if (ret)
1346		return ret;
1347
1348	ret = ib_cache_setup_one(device);
1349	if (ret) {
1350		dev_warn(&device->dev,
1351			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1352		return ret;
1353	}
1354
1355	ib_device_register_rdmacg(device);
1356
1357	rdma_counter_init(device);
1358
1359	/*
1360	 * Ensure that ADD uevent is not fired because it
1361	 * is too early amd device is not initialized yet.
1362	 */
1363	dev_set_uevent_suppress(&device->dev, true);
1364	ret = device_add(&device->dev);
1365	if (ret)
1366		goto cg_cleanup;
1367
1368	ret = ib_device_register_sysfs(device);
1369	if (ret) {
1370		dev_warn(&device->dev,
1371			 "Couldn't register device with driver model\n");
1372		goto dev_cleanup;
1373	}
1374
1375	ret = enable_device_and_get(device);
1376	if (ret) {
1377		void (*dealloc_fn)(struct ib_device *);
1378
1379		/*
1380		 * If we hit this error flow then we don't want to
1381		 * automatically dealloc the device since the caller is
1382		 * expected to call ib_dealloc_device() after
1383		 * ib_register_device() fails. This is tricky due to the
1384		 * possibility for a parallel unregistration along with this
1385		 * error flow. Since we have a refcount here we know any
1386		 * parallel flow is stopped in disable_device and will see the
1387		 * special dealloc_driver pointer, causing the responsibility to
1388		 * ib_dealloc_device() to revert back to this thread.
1389		 */
1390		dealloc_fn = device->ops.dealloc_driver;
1391		device->ops.dealloc_driver = prevent_dealloc_device;
1392		ib_device_put(device);
1393		__ib_unregister_device(device);
1394		device->ops.dealloc_driver = dealloc_fn;
1395		dev_set_uevent_suppress(&device->dev, false);
1396		return ret;
1397	}
1398	dev_set_uevent_suppress(&device->dev, false);
1399	/* Mark for userspace that device is ready */
1400	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1401	ib_device_put(device);
1402
1403	return 0;
1404
1405dev_cleanup:
1406	device_del(&device->dev);
1407cg_cleanup:
1408	dev_set_uevent_suppress(&device->dev, false);
1409	ib_device_unregister_rdmacg(device);
1410	ib_cache_cleanup_one(device);
1411	return ret;
1412}
1413EXPORT_SYMBOL(ib_register_device);
1414
1415/* Callers must hold a get on the device. */
1416static void __ib_unregister_device(struct ib_device *ib_dev)
1417{
1418	/*
1419	 * We have a registration lock so that all the calls to unregister are
1420	 * fully fenced, once any unregister returns the device is truely
1421	 * unregistered even if multiple callers are unregistering it at the
1422	 * same time. This also interacts with the registration flow and
1423	 * provides sane semantics if register and unregister are racing.
1424	 */
1425	mutex_lock(&ib_dev->unregistration_lock);
1426	if (!refcount_read(&ib_dev->refcount))
1427		goto out;
1428
1429	disable_device(ib_dev);
1430
1431	/* Expedite removing unregistered pointers from the hash table */
1432	free_netdevs(ib_dev);
1433
1434	ib_device_unregister_sysfs(ib_dev);
1435	device_del(&ib_dev->dev);
1436	ib_device_unregister_rdmacg(ib_dev);
1437	ib_cache_cleanup_one(ib_dev);
1438
1439	/*
1440	 * Drivers using the new flow may not call ib_dealloc_device except
1441	 * in error unwind prior to registration success.
1442	 */
1443	if (ib_dev->ops.dealloc_driver &&
1444	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1445		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1446		ib_dealloc_device(ib_dev);
1447	}
1448out:
1449	mutex_unlock(&ib_dev->unregistration_lock);
1450}
1451
1452/**
1453 * ib_unregister_device - Unregister an IB device
1454 * @ib_dev: The device to unregister
1455 *
1456 * Unregister an IB device.  All clients will receive a remove callback.
1457 *
1458 * Callers should call this routine only once, and protect against races with
1459 * registration. Typically it should only be called as part of a remove
1460 * callback in an implementation of driver core's struct device_driver and
1461 * related.
1462 *
1463 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1464 * this function.
1465 */
1466void ib_unregister_device(struct ib_device *ib_dev)
1467{
1468	get_device(&ib_dev->dev);
1469	__ib_unregister_device(ib_dev);
1470	put_device(&ib_dev->dev);
1471}
1472EXPORT_SYMBOL(ib_unregister_device);
1473
1474/**
1475 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1476 * @ib_dev: The device to unregister
1477 *
1478 * This is the same as ib_unregister_device(), except it includes an internal
1479 * ib_device_put() that should match a 'get' obtained by the caller.
1480 *
1481 * It is safe to call this routine concurrently from multiple threads while
1482 * holding the 'get'. When the function returns the device is fully
1483 * unregistered.
1484 *
1485 * Drivers using this flow MUST use the driver_unregister callback to clean up
1486 * their resources associated with the device and dealloc it.
1487 */
1488void ib_unregister_device_and_put(struct ib_device *ib_dev)
1489{
1490	WARN_ON(!ib_dev->ops.dealloc_driver);
1491	get_device(&ib_dev->dev);
1492	ib_device_put(ib_dev);
1493	__ib_unregister_device(ib_dev);
1494	put_device(&ib_dev->dev);
1495}
1496EXPORT_SYMBOL(ib_unregister_device_and_put);
1497
1498/**
1499 * ib_unregister_driver - Unregister all IB devices for a driver
1500 * @driver_id: The driver to unregister
1501 *
1502 * This implements a fence for device unregistration. It only returns once all
1503 * devices associated with the driver_id have fully completed their
1504 * unregistration and returned from ib_unregister_device*().
1505 *
1506 * If device's are not yet unregistered it goes ahead and starts unregistering
1507 * them.
1508 *
1509 * This does not block creation of new devices with the given driver_id, that
1510 * is the responsibility of the caller.
1511 */
1512void ib_unregister_driver(enum rdma_driver_id driver_id)
1513{
1514	struct ib_device *ib_dev;
1515	unsigned long index;
1516
1517	down_read(&devices_rwsem);
1518	xa_for_each (&devices, index, ib_dev) {
1519		if (ib_dev->ops.driver_id != driver_id)
1520			continue;
1521
1522		get_device(&ib_dev->dev);
1523		up_read(&devices_rwsem);
1524
1525		WARN_ON(!ib_dev->ops.dealloc_driver);
1526		__ib_unregister_device(ib_dev);
1527
1528		put_device(&ib_dev->dev);
1529		down_read(&devices_rwsem);
1530	}
1531	up_read(&devices_rwsem);
1532}
1533EXPORT_SYMBOL(ib_unregister_driver);
1534
1535static void ib_unregister_work(struct work_struct *work)
1536{
1537	struct ib_device *ib_dev =
1538		container_of(work, struct ib_device, unregistration_work);
1539
1540	__ib_unregister_device(ib_dev);
1541	put_device(&ib_dev->dev);
1542}
1543
1544/**
1545 * ib_unregister_device_queued - Unregister a device using a work queue
1546 * @ib_dev: The device to unregister
1547 *
1548 * This schedules an asynchronous unregistration using a WQ for the device. A
1549 * driver should use this to avoid holding locks while doing unregistration,
1550 * such as holding the RTNL lock.
1551 *
1552 * Drivers using this API must use ib_unregister_driver before module unload
1553 * to ensure that all scheduled unregistrations have completed.
1554 */
1555void ib_unregister_device_queued(struct ib_device *ib_dev)
1556{
1557	WARN_ON(!refcount_read(&ib_dev->refcount));
1558	WARN_ON(!ib_dev->ops.dealloc_driver);
1559	get_device(&ib_dev->dev);
1560	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1561		put_device(&ib_dev->dev);
1562}
1563EXPORT_SYMBOL(ib_unregister_device_queued);
1564
1565/*
1566 * The caller must pass in a device that has the kref held and the refcount
1567 * released. If the device is in cur_net and still registered then it is moved
1568 * into net.
1569 */
1570static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1571				 struct net *net)
1572{
1573	int ret2 = -EINVAL;
1574	int ret;
1575
1576	mutex_lock(&device->unregistration_lock);
1577
1578	/*
1579	 * If a device not under ib_device_get() or if the unregistration_lock
1580	 * is not held, the namespace can be changed, or it can be unregistered.
1581	 * Check again under the lock.
1582	 */
1583	if (refcount_read(&device->refcount) == 0 ||
1584	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1585		ret = -ENODEV;
1586		goto out;
1587	}
1588
1589	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1590	disable_device(device);
1591
1592	/*
1593	 * At this point no one can be using the device, so it is safe to
1594	 * change the namespace.
1595	 */
1596	write_pnet(&device->coredev.rdma_net, net);
1597
1598	down_read(&devices_rwsem);
1599	/*
1600	 * Currently rdma devices are system wide unique. So the device name
1601	 * is guaranteed free in the new namespace. Publish the new namespace
1602	 * at the sysfs level.
1603	 */
1604	ret = device_rename(&device->dev, dev_name(&device->dev));
1605	up_read(&devices_rwsem);
1606	if (ret) {
1607		dev_warn(&device->dev,
1608			 "%s: Couldn't rename device after namespace change\n",
1609			 __func__);
1610		/* Try and put things back and re-enable the device */
1611		write_pnet(&device->coredev.rdma_net, cur_net);
1612	}
1613
1614	ret2 = enable_device_and_get(device);
1615	if (ret2) {
1616		/*
1617		 * This shouldn't really happen, but if it does, let the user
1618		 * retry at later point. So don't disable the device.
1619		 */
1620		dev_warn(&device->dev,
1621			 "%s: Couldn't re-enable device after namespace change\n",
1622			 __func__);
1623	}
1624	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1625
1626	ib_device_put(device);
1627out:
1628	mutex_unlock(&device->unregistration_lock);
1629	if (ret)
1630		return ret;
1631	return ret2;
1632}
1633
1634int ib_device_set_netns_put(struct sk_buff *skb,
1635			    struct ib_device *dev, u32 ns_fd)
1636{
1637	struct net *net;
1638	int ret;
1639
1640	net = get_net_ns_by_fd(ns_fd);
1641	if (IS_ERR(net)) {
1642		ret = PTR_ERR(net);
1643		goto net_err;
1644	}
1645
1646	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1647		ret = -EPERM;
1648		goto ns_err;
1649	}
1650
1651	/*
1652	 * Currently supported only for those providers which support
1653	 * disassociation and don't do port specific sysfs init. Once a
1654	 * port_cleanup infrastructure is implemented, this limitation will be
1655	 * removed.
1656	 */
1657	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1658	    ib_devices_shared_netns) {
1659		ret = -EOPNOTSUPP;
1660		goto ns_err;
1661	}
1662
1663	get_device(&dev->dev);
1664	ib_device_put(dev);
1665	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1666	put_device(&dev->dev);
1667
1668	put_net(net);
1669	return ret;
1670
1671ns_err:
1672	put_net(net);
1673net_err:
1674	ib_device_put(dev);
1675	return ret;
1676}
1677
1678static struct pernet_operations rdma_dev_net_ops = {
1679	.init = rdma_dev_init_net,
1680	.exit = rdma_dev_exit_net,
1681	.id = &rdma_dev_net_id,
1682	.size = sizeof(struct rdma_dev_net),
1683};
1684
1685static int assign_client_id(struct ib_client *client)
1686{
1687	int ret;
1688
1689	down_write(&clients_rwsem);
1690	/*
1691	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1692	 * achieve this we assign client_ids so they are sorted in
1693	 * registration order.
1694	 */
1695	client->client_id = highest_client_id;
1696	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1697	if (ret)
1698		goto out;
1699
1700	highest_client_id++;
1701	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1702
1703out:
1704	up_write(&clients_rwsem);
1705	return ret;
1706}
1707
1708static void remove_client_id(struct ib_client *client)
1709{
1710	down_write(&clients_rwsem);
1711	xa_erase(&clients, client->client_id);
1712	for (; highest_client_id; highest_client_id--)
1713		if (xa_load(&clients, highest_client_id - 1))
1714			break;
1715	up_write(&clients_rwsem);
1716}
1717
1718/**
1719 * ib_register_client - Register an IB client
1720 * @client:Client to register
1721 *
1722 * Upper level users of the IB drivers can use ib_register_client() to
1723 * register callbacks for IB device addition and removal.  When an IB
1724 * device is added, each registered client's add method will be called
1725 * (in the order the clients were registered), and when a device is
1726 * removed, each client's remove method will be called (in the reverse
1727 * order that clients were registered).  In addition, when
1728 * ib_register_client() is called, the client will receive an add
1729 * callback for all devices already registered.
1730 */
1731int ib_register_client(struct ib_client *client)
1732{
1733	struct ib_device *device;
1734	unsigned long index;
1735	int ret;
1736
1737	refcount_set(&client->uses, 1);
1738	init_completion(&client->uses_zero);
1739	ret = assign_client_id(client);
1740	if (ret)
1741		return ret;
1742
1743	down_read(&devices_rwsem);
1744	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1745		ret = add_client_context(device, client);
1746		if (ret) {
1747			up_read(&devices_rwsem);
1748			ib_unregister_client(client);
1749			return ret;
1750		}
1751	}
1752	up_read(&devices_rwsem);
1753	return 0;
1754}
1755EXPORT_SYMBOL(ib_register_client);
1756
1757/**
1758 * ib_unregister_client - Unregister an IB client
1759 * @client:Client to unregister
1760 *
1761 * Upper level users use ib_unregister_client() to remove their client
1762 * registration.  When ib_unregister_client() is called, the client
1763 * will receive a remove callback for each IB device still registered.
1764 *
1765 * This is a full fence, once it returns no client callbacks will be called,
1766 * or are running in another thread.
1767 */
1768void ib_unregister_client(struct ib_client *client)
1769{
1770	struct ib_device *device;
1771	unsigned long index;
1772
1773	down_write(&clients_rwsem);
1774	ib_client_put(client);
1775	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1776	up_write(&clients_rwsem);
1777
1778	/* We do not want to have locks while calling client->remove() */
1779	rcu_read_lock();
1780	xa_for_each (&devices, index, device) {
1781		if (!ib_device_try_get(device))
1782			continue;
1783		rcu_read_unlock();
1784
1785		remove_client_context(device, client->client_id);
1786
1787		ib_device_put(device);
1788		rcu_read_lock();
1789	}
1790	rcu_read_unlock();
1791
1792	/*
1793	 * remove_client_context() is not a fence, it can return even though a
1794	 * removal is ongoing. Wait until all removals are completed.
1795	 */
1796	wait_for_completion(&client->uses_zero);
1797	remove_client_id(client);
1798}
1799EXPORT_SYMBOL(ib_unregister_client);
1800
1801static int __ib_get_global_client_nl_info(const char *client_name,
1802					  struct ib_client_nl_info *res)
1803{
1804	struct ib_client *client;
1805	unsigned long index;
1806	int ret = -ENOENT;
1807
1808	down_read(&clients_rwsem);
1809	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1810		if (strcmp(client->name, client_name) != 0)
1811			continue;
1812		if (!client->get_global_nl_info) {
1813			ret = -EOPNOTSUPP;
1814			break;
1815		}
1816		ret = client->get_global_nl_info(res);
1817		if (WARN_ON(ret == -ENOENT))
1818			ret = -EINVAL;
1819		if (!ret && res->cdev)
1820			get_device(res->cdev);
1821		break;
1822	}
1823	up_read(&clients_rwsem);
1824	return ret;
1825}
1826
1827static int __ib_get_client_nl_info(struct ib_device *ibdev,
1828				   const char *client_name,
1829				   struct ib_client_nl_info *res)
1830{
1831	unsigned long index;
1832	void *client_data;
1833	int ret = -ENOENT;
1834
1835	down_read(&ibdev->client_data_rwsem);
1836	xan_for_each_marked (&ibdev->client_data, index, client_data,
1837			     CLIENT_DATA_REGISTERED) {
1838		struct ib_client *client = xa_load(&clients, index);
1839
1840		if (!client || strcmp(client->name, client_name) != 0)
1841			continue;
1842		if (!client->get_nl_info) {
1843			ret = -EOPNOTSUPP;
1844			break;
1845		}
1846		ret = client->get_nl_info(ibdev, client_data, res);
1847		if (WARN_ON(ret == -ENOENT))
1848			ret = -EINVAL;
1849
1850		/*
1851		 * The cdev is guaranteed valid as long as we are inside the
1852		 * client_data_rwsem as remove_one can't be called. Keep it
1853		 * valid for the caller.
1854		 */
1855		if (!ret && res->cdev)
1856			get_device(res->cdev);
1857		break;
1858	}
1859	up_read(&ibdev->client_data_rwsem);
1860
1861	return ret;
1862}
1863
1864/**
1865 * ib_get_client_nl_info - Fetch the nl_info from a client
1866 * @device - IB device
1867 * @client_name - Name of the client
1868 * @res - Result of the query
1869 */
1870int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1871			  struct ib_client_nl_info *res)
1872{
1873	int ret;
1874
1875	if (ibdev)
1876		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1877	else
1878		ret = __ib_get_global_client_nl_info(client_name, res);
1879#ifdef CONFIG_MODULES
1880	if (ret == -ENOENT) {
1881		request_module("rdma-client-%s", client_name);
1882		if (ibdev)
1883			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1884		else
1885			ret = __ib_get_global_client_nl_info(client_name, res);
1886	}
1887#endif
1888	if (ret) {
1889		if (ret == -ENOENT)
1890			return -EOPNOTSUPP;
1891		return ret;
1892	}
1893
1894	if (WARN_ON(!res->cdev))
1895		return -EINVAL;
1896	return 0;
1897}
1898
1899/**
1900 * ib_set_client_data - Set IB client context
1901 * @device:Device to set context for
1902 * @client:Client to set context for
1903 * @data:Context to set
1904 *
1905 * ib_set_client_data() sets client context data that can be retrieved with
1906 * ib_get_client_data(). This can only be called while the client is
1907 * registered to the device, once the ib_client remove() callback returns this
1908 * cannot be called.
1909 */
1910void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1911			void *data)
1912{
1913	void *rc;
1914
1915	if (WARN_ON(IS_ERR(data)))
1916		data = NULL;
1917
1918	rc = xa_store(&device->client_data, client->client_id, data,
1919		      GFP_KERNEL);
1920	WARN_ON(xa_is_err(rc));
1921}
1922EXPORT_SYMBOL(ib_set_client_data);
1923
1924/**
1925 * ib_register_event_handler - Register an IB event handler
1926 * @event_handler:Handler to register
1927 *
1928 * ib_register_event_handler() registers an event handler that will be
1929 * called back when asynchronous IB events occur (as defined in
1930 * chapter 11 of the InfiniBand Architecture Specification). This
1931 * callback occurs in workqueue context.
1932 */
1933void ib_register_event_handler(struct ib_event_handler *event_handler)
1934{
1935	down_write(&event_handler->device->event_handler_rwsem);
1936	list_add_tail(&event_handler->list,
1937		      &event_handler->device->event_handler_list);
1938	up_write(&event_handler->device->event_handler_rwsem);
1939}
1940EXPORT_SYMBOL(ib_register_event_handler);
1941
1942/**
1943 * ib_unregister_event_handler - Unregister an event handler
1944 * @event_handler:Handler to unregister
1945 *
1946 * Unregister an event handler registered with
1947 * ib_register_event_handler().
1948 */
1949void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1950{
1951	down_write(&event_handler->device->event_handler_rwsem);
1952	list_del(&event_handler->list);
1953	up_write(&event_handler->device->event_handler_rwsem);
1954}
1955EXPORT_SYMBOL(ib_unregister_event_handler);
1956
1957void ib_dispatch_event_clients(struct ib_event *event)
1958{
1959	struct ib_event_handler *handler;
1960
1961	down_read(&event->device->event_handler_rwsem);
1962
1963	list_for_each_entry(handler, &event->device->event_handler_list, list)
1964		handler->handler(handler, event);
1965
1966	up_read(&event->device->event_handler_rwsem);
1967}
1968
1969static int iw_query_port(struct ib_device *device,
1970			   u8 port_num,
1971			   struct ib_port_attr *port_attr)
1972{
1973	struct in_device *inetdev;
1974	struct net_device *netdev;
1975
1976	memset(port_attr, 0, sizeof(*port_attr));
1977
1978	netdev = ib_device_get_netdev(device, port_num);
1979	if (!netdev)
1980		return -ENODEV;
1981
1982	port_attr->max_mtu = IB_MTU_4096;
1983	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
1984
1985	if (!netif_carrier_ok(netdev)) {
1986		port_attr->state = IB_PORT_DOWN;
1987		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
1988	} else {
1989		rcu_read_lock();
1990		inetdev = __in_dev_get_rcu(netdev);
1991
1992		if (inetdev && inetdev->ifa_list) {
1993			port_attr->state = IB_PORT_ACTIVE;
1994			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
1995		} else {
1996			port_attr->state = IB_PORT_INIT;
1997			port_attr->phys_state =
1998				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
1999		}
2000
2001		rcu_read_unlock();
2002	}
2003
2004	dev_put(netdev);
2005	return device->ops.query_port(device, port_num, port_attr);
2006}
2007
2008static int __ib_query_port(struct ib_device *device,
2009			   u8 port_num,
2010			   struct ib_port_attr *port_attr)
2011{
2012	union ib_gid gid = {};
2013	int err;
2014
2015	memset(port_attr, 0, sizeof(*port_attr));
2016
2017	err = device->ops.query_port(device, port_num, port_attr);
2018	if (err || port_attr->subnet_prefix)
2019		return err;
2020
2021	if (rdma_port_get_link_layer(device, port_num) !=
2022	    IB_LINK_LAYER_INFINIBAND)
2023		return 0;
2024
2025	err = device->ops.query_gid(device, port_num, 0, &gid);
2026	if (err)
2027		return err;
2028
2029	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2030	return 0;
2031}
2032
2033/**
2034 * ib_query_port - Query IB port attributes
2035 * @device:Device to query
2036 * @port_num:Port number to query
2037 * @port_attr:Port attributes
2038 *
2039 * ib_query_port() returns the attributes of a port through the
2040 * @port_attr pointer.
2041 */
2042int ib_query_port(struct ib_device *device,
2043		  u8 port_num,
2044		  struct ib_port_attr *port_attr)
2045{
2046	if (!rdma_is_port_valid(device, port_num))
2047		return -EINVAL;
2048
2049	if (rdma_protocol_iwarp(device, port_num))
2050		return iw_query_port(device, port_num, port_attr);
2051	else
2052		return __ib_query_port(device, port_num, port_attr);
2053}
2054EXPORT_SYMBOL(ib_query_port);
2055
2056static void add_ndev_hash(struct ib_port_data *pdata)
2057{
2058	unsigned long flags;
2059
2060	might_sleep();
2061
2062	spin_lock_irqsave(&ndev_hash_lock, flags);
2063	if (hash_hashed(&pdata->ndev_hash_link)) {
2064		hash_del_rcu(&pdata->ndev_hash_link);
2065		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2066		/*
2067		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2068		 * grace period
2069		 */
2070		synchronize_rcu();
2071		spin_lock_irqsave(&ndev_hash_lock, flags);
2072	}
2073	if (pdata->netdev)
2074		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2075			     (uintptr_t)pdata->netdev);
2076	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2077}
2078
2079/**
2080 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2081 * @ib_dev: Device to modify
2082 * @ndev: net_device to affiliate, may be NULL
2083 * @port: IB port the net_device is connected to
2084 *
2085 * Drivers should use this to link the ib_device to a netdev so the netdev
2086 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2087 * affiliated with any port.
2088 *
2089 * The caller must ensure that the given ndev is not unregistered or
2090 * unregistering, and that either the ib_device is unregistered or
2091 * ib_device_set_netdev() is called with NULL when the ndev sends a
2092 * NETDEV_UNREGISTER event.
2093 */
2094int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2095			 unsigned int port)
2096{
2097	struct net_device *old_ndev;
2098	struct ib_port_data *pdata;
2099	unsigned long flags;
2100	int ret;
2101
2102	/*
2103	 * Drivers wish to call this before ib_register_driver, so we have to
2104	 * setup the port data early.
2105	 */
2106	ret = alloc_port_data(ib_dev);
2107	if (ret)
2108		return ret;
2109
2110	if (!rdma_is_port_valid(ib_dev, port))
2111		return -EINVAL;
2112
2113	pdata = &ib_dev->port_data[port];
2114	spin_lock_irqsave(&pdata->netdev_lock, flags);
2115	old_ndev = rcu_dereference_protected(
2116		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2117	if (old_ndev == ndev) {
2118		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2119		return 0;
2120	}
2121
2122	if (ndev)
2123		dev_hold(ndev);
2124	rcu_assign_pointer(pdata->netdev, ndev);
2125	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2126
2127	add_ndev_hash(pdata);
2128	if (old_ndev)
2129		dev_put(old_ndev);
2130
2131	return 0;
2132}
2133EXPORT_SYMBOL(ib_device_set_netdev);
2134
2135static void free_netdevs(struct ib_device *ib_dev)
2136{
2137	unsigned long flags;
2138	unsigned int port;
2139
2140	if (!ib_dev->port_data)
2141		return;
2142
2143	rdma_for_each_port (ib_dev, port) {
2144		struct ib_port_data *pdata = &ib_dev->port_data[port];
2145		struct net_device *ndev;
2146
2147		spin_lock_irqsave(&pdata->netdev_lock, flags);
2148		ndev = rcu_dereference_protected(
2149			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2150		if (ndev) {
2151			spin_lock(&ndev_hash_lock);
2152			hash_del_rcu(&pdata->ndev_hash_link);
2153			spin_unlock(&ndev_hash_lock);
2154
2155			/*
2156			 * If this is the last dev_put there is still a
2157			 * synchronize_rcu before the netdev is kfreed, so we
2158			 * can continue to rely on unlocked pointer
2159			 * comparisons after the put
2160			 */
2161			rcu_assign_pointer(pdata->netdev, NULL);
2162			dev_put(ndev);
2163		}
2164		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2165	}
2166}
2167
2168struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2169					unsigned int port)
2170{
2171	struct ib_port_data *pdata;
2172	struct net_device *res;
2173
2174	if (!rdma_is_port_valid(ib_dev, port))
2175		return NULL;
2176
2177	pdata = &ib_dev->port_data[port];
2178
2179	/*
2180	 * New drivers should use ib_device_set_netdev() not the legacy
2181	 * get_netdev().
2182	 */
2183	if (ib_dev->ops.get_netdev)
2184		res = ib_dev->ops.get_netdev(ib_dev, port);
2185	else {
2186		spin_lock(&pdata->netdev_lock);
2187		res = rcu_dereference_protected(
2188			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2189		if (res)
2190			dev_hold(res);
2191		spin_unlock(&pdata->netdev_lock);
2192	}
2193
2194	/*
2195	 * If we are starting to unregister expedite things by preventing
2196	 * propagation of an unregistering netdev.
2197	 */
2198	if (res && res->reg_state != NETREG_REGISTERED) {
2199		dev_put(res);
2200		return NULL;
2201	}
2202
2203	return res;
2204}
2205
2206/**
2207 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2208 * @ndev: netdev to locate
2209 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2210 *
2211 * Find and hold an ib_device that is associated with a netdev via
2212 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2213 * returned pointer.
2214 */
2215struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2216					  enum rdma_driver_id driver_id)
2217{
2218	struct ib_device *res = NULL;
2219	struct ib_port_data *cur;
2220
2221	rcu_read_lock();
2222	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2223				    (uintptr_t)ndev) {
2224		if (rcu_access_pointer(cur->netdev) == ndev &&
2225		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2226		     cur->ib_dev->ops.driver_id == driver_id) &&
2227		    ib_device_try_get(cur->ib_dev)) {
2228			res = cur->ib_dev;
2229			break;
2230		}
2231	}
2232	rcu_read_unlock();
2233
2234	return res;
2235}
2236EXPORT_SYMBOL(ib_device_get_by_netdev);
2237
2238/**
2239 * ib_enum_roce_netdev - enumerate all RoCE ports
2240 * @ib_dev : IB device we want to query
2241 * @filter: Should we call the callback?
2242 * @filter_cookie: Cookie passed to filter
2243 * @cb: Callback to call for each found RoCE ports
2244 * @cookie: Cookie passed back to the callback
2245 *
2246 * Enumerates all of the physical RoCE ports of ib_dev
2247 * which are related to netdevice and calls callback() on each
2248 * device for which filter() function returns non zero.
2249 */
2250void ib_enum_roce_netdev(struct ib_device *ib_dev,
2251			 roce_netdev_filter filter,
2252			 void *filter_cookie,
2253			 roce_netdev_callback cb,
2254			 void *cookie)
2255{
2256	unsigned int port;
2257
2258	rdma_for_each_port (ib_dev, port)
2259		if (rdma_protocol_roce(ib_dev, port)) {
2260			struct net_device *idev =
2261				ib_device_get_netdev(ib_dev, port);
2262
2263			if (filter(ib_dev, port, idev, filter_cookie))
2264				cb(ib_dev, port, idev, cookie);
2265
2266			if (idev)
2267				dev_put(idev);
2268		}
2269}
2270
2271/**
2272 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2273 * @filter: Should we call the callback?
2274 * @filter_cookie: Cookie passed to filter
2275 * @cb: Callback to call for each found RoCE ports
2276 * @cookie: Cookie passed back to the callback
2277 *
2278 * Enumerates all RoCE devices' physical ports which are related
2279 * to netdevices and calls callback() on each device for which
2280 * filter() function returns non zero.
2281 */
2282void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2283			      void *filter_cookie,
2284			      roce_netdev_callback cb,
2285			      void *cookie)
2286{
2287	struct ib_device *dev;
2288	unsigned long index;
2289
2290	down_read(&devices_rwsem);
2291	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2292		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2293	up_read(&devices_rwsem);
2294}
2295
2296/**
2297 * ib_enum_all_devs - enumerate all ib_devices
2298 * @cb: Callback to call for each found ib_device
2299 *
2300 * Enumerates all ib_devices and calls callback() on each device.
2301 */
2302int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2303		     struct netlink_callback *cb)
2304{
2305	unsigned long index;
2306	struct ib_device *dev;
2307	unsigned int idx = 0;
2308	int ret = 0;
2309
2310	down_read(&devices_rwsem);
2311	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2312		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2313			continue;
2314
2315		ret = nldev_cb(dev, skb, cb, idx);
2316		if (ret)
2317			break;
2318		idx++;
2319	}
2320	up_read(&devices_rwsem);
2321	return ret;
2322}
2323
2324/**
2325 * ib_query_pkey - Get P_Key table entry
2326 * @device:Device to query
2327 * @port_num:Port number to query
2328 * @index:P_Key table index to query
2329 * @pkey:Returned P_Key
2330 *
2331 * ib_query_pkey() fetches the specified P_Key table entry.
2332 */
2333int ib_query_pkey(struct ib_device *device,
2334		  u8 port_num, u16 index, u16 *pkey)
2335{
2336	if (!rdma_is_port_valid(device, port_num))
2337		return -EINVAL;
2338
2339	if (!device->ops.query_pkey)
2340		return -EOPNOTSUPP;
2341
2342	return device->ops.query_pkey(device, port_num, index, pkey);
2343}
2344EXPORT_SYMBOL(ib_query_pkey);
2345
2346/**
2347 * ib_modify_device - Change IB device attributes
2348 * @device:Device to modify
2349 * @device_modify_mask:Mask of attributes to change
2350 * @device_modify:New attribute values
2351 *
2352 * ib_modify_device() changes a device's attributes as specified by
2353 * the @device_modify_mask and @device_modify structure.
2354 */
2355int ib_modify_device(struct ib_device *device,
2356		     int device_modify_mask,
2357		     struct ib_device_modify *device_modify)
2358{
2359	if (!device->ops.modify_device)
2360		return -EOPNOTSUPP;
2361
2362	return device->ops.modify_device(device, device_modify_mask,
2363					 device_modify);
2364}
2365EXPORT_SYMBOL(ib_modify_device);
2366
2367/**
2368 * ib_modify_port - Modifies the attributes for the specified port.
2369 * @device: The device to modify.
2370 * @port_num: The number of the port to modify.
2371 * @port_modify_mask: Mask used to specify which attributes of the port
2372 *   to change.
2373 * @port_modify: New attribute values for the port.
2374 *
2375 * ib_modify_port() changes a port's attributes as specified by the
2376 * @port_modify_mask and @port_modify structure.
2377 */
2378int ib_modify_port(struct ib_device *device,
2379		   u8 port_num, int port_modify_mask,
2380		   struct ib_port_modify *port_modify)
2381{
2382	int rc;
2383
2384	if (!rdma_is_port_valid(device, port_num))
2385		return -EINVAL;
2386
2387	if (device->ops.modify_port)
2388		rc = device->ops.modify_port(device, port_num,
2389					     port_modify_mask,
2390					     port_modify);
2391	else if (rdma_protocol_roce(device, port_num) &&
2392		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2393		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2394		rc = 0;
2395	else
2396		rc = -EOPNOTSUPP;
2397	return rc;
2398}
2399EXPORT_SYMBOL(ib_modify_port);
2400
2401/**
2402 * ib_find_gid - Returns the port number and GID table index where
2403 *   a specified GID value occurs. Its searches only for IB link layer.
2404 * @device: The device to query.
2405 * @gid: The GID value to search for.
2406 * @port_num: The port number of the device where the GID value was found.
2407 * @index: The index into the GID table where the GID was found.  This
2408 *   parameter may be NULL.
2409 */
2410int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2411		u8 *port_num, u16 *index)
2412{
2413	union ib_gid tmp_gid;
2414	unsigned int port;
2415	int ret, i;
2416
2417	rdma_for_each_port (device, port) {
2418		if (!rdma_protocol_ib(device, port))
2419			continue;
2420
2421		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2422		     ++i) {
2423			ret = rdma_query_gid(device, port, i, &tmp_gid);
2424			if (ret)
2425				continue;
2426
2427			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2428				*port_num = port;
2429				if (index)
2430					*index = i;
2431				return 0;
2432			}
2433		}
2434	}
2435
2436	return -ENOENT;
2437}
2438EXPORT_SYMBOL(ib_find_gid);
2439
2440/**
2441 * ib_find_pkey - Returns the PKey table index where a specified
2442 *   PKey value occurs.
2443 * @device: The device to query.
2444 * @port_num: The port number of the device to search for the PKey.
2445 * @pkey: The PKey value to search for.
2446 * @index: The index into the PKey table where the PKey was found.
2447 */
2448int ib_find_pkey(struct ib_device *device,
2449		 u8 port_num, u16 pkey, u16 *index)
2450{
2451	int ret, i;
2452	u16 tmp_pkey;
2453	int partial_ix = -1;
2454
2455	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2456	     ++i) {
2457		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2458		if (ret)
2459			return ret;
2460		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2461			/* if there is full-member pkey take it.*/
2462			if (tmp_pkey & 0x8000) {
2463				*index = i;
2464				return 0;
2465			}
2466			if (partial_ix < 0)
2467				partial_ix = i;
2468		}
2469	}
2470
2471	/*no full-member, if exists take the limited*/
2472	if (partial_ix >= 0) {
2473		*index = partial_ix;
2474		return 0;
2475	}
2476	return -ENOENT;
2477}
2478EXPORT_SYMBOL(ib_find_pkey);
2479
2480/**
2481 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2482 * for a received CM request
2483 * @dev:	An RDMA device on which the request has been received.
2484 * @port:	Port number on the RDMA device.
2485 * @pkey:	The Pkey the request came on.
2486 * @gid:	A GID that the net_dev uses to communicate.
2487 * @addr:	Contains the IP address that the request specified as its
2488 *		destination.
2489 *
2490 */
2491struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2492					    u8 port,
2493					    u16 pkey,
2494					    const union ib_gid *gid,
2495					    const struct sockaddr *addr)
2496{
2497	struct net_device *net_dev = NULL;
2498	unsigned long index;
2499	void *client_data;
2500
2501	if (!rdma_protocol_ib(dev, port))
2502		return NULL;
2503
2504	/*
2505	 * Holding the read side guarantees that the client will not become
2506	 * unregistered while we are calling get_net_dev_by_params()
2507	 */
2508	down_read(&dev->client_data_rwsem);
2509	xan_for_each_marked (&dev->client_data, index, client_data,
2510			     CLIENT_DATA_REGISTERED) {
2511		struct ib_client *client = xa_load(&clients, index);
2512
2513		if (!client || !client->get_net_dev_by_params)
2514			continue;
2515
2516		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2517							addr, client_data);
2518		if (net_dev)
2519			break;
2520	}
2521	up_read(&dev->client_data_rwsem);
2522
2523	return net_dev;
2524}
2525EXPORT_SYMBOL(ib_get_net_dev_by_params);
2526
2527void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2528{
2529	struct ib_device_ops *dev_ops = &dev->ops;
2530#define SET_DEVICE_OP(ptr, name)                                               \
2531	do {                                                                   \
2532		if (ops->name)                                                 \
2533			if (!((ptr)->name))				       \
2534				(ptr)->name = ops->name;                       \
2535	} while (0)
2536
2537#define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2538
2539	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2540		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2541			dev_ops->driver_id != ops->driver_id);
2542		dev_ops->driver_id = ops->driver_id;
2543	}
2544	if (ops->owner) {
2545		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2546		dev_ops->owner = ops->owner;
2547	}
2548	if (ops->uverbs_abi_ver)
2549		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2550
2551	dev_ops->uverbs_no_driver_id_binding |=
2552		ops->uverbs_no_driver_id_binding;
2553
2554	SET_DEVICE_OP(dev_ops, add_gid);
2555	SET_DEVICE_OP(dev_ops, advise_mr);
2556	SET_DEVICE_OP(dev_ops, alloc_dm);
2557	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2558	SET_DEVICE_OP(dev_ops, alloc_mr);
2559	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2560	SET_DEVICE_OP(dev_ops, alloc_mw);
2561	SET_DEVICE_OP(dev_ops, alloc_pd);
2562	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2563	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2564	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2565	SET_DEVICE_OP(dev_ops, attach_mcast);
2566	SET_DEVICE_OP(dev_ops, check_mr_status);
2567	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2568	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2569	SET_DEVICE_OP(dev_ops, counter_dealloc);
2570	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2571	SET_DEVICE_OP(dev_ops, counter_update_stats);
2572	SET_DEVICE_OP(dev_ops, create_ah);
2573	SET_DEVICE_OP(dev_ops, create_counters);
2574	SET_DEVICE_OP(dev_ops, create_cq);
2575	SET_DEVICE_OP(dev_ops, create_flow);
2576	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2577	SET_DEVICE_OP(dev_ops, create_qp);
2578	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2579	SET_DEVICE_OP(dev_ops, create_srq);
2580	SET_DEVICE_OP(dev_ops, create_wq);
2581	SET_DEVICE_OP(dev_ops, dealloc_dm);
2582	SET_DEVICE_OP(dev_ops, dealloc_driver);
2583	SET_DEVICE_OP(dev_ops, dealloc_mw);
2584	SET_DEVICE_OP(dev_ops, dealloc_pd);
2585	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2586	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2587	SET_DEVICE_OP(dev_ops, del_gid);
2588	SET_DEVICE_OP(dev_ops, dereg_mr);
2589	SET_DEVICE_OP(dev_ops, destroy_ah);
2590	SET_DEVICE_OP(dev_ops, destroy_counters);
2591	SET_DEVICE_OP(dev_ops, destroy_cq);
2592	SET_DEVICE_OP(dev_ops, destroy_flow);
2593	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2594	SET_DEVICE_OP(dev_ops, destroy_qp);
2595	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2596	SET_DEVICE_OP(dev_ops, destroy_srq);
2597	SET_DEVICE_OP(dev_ops, destroy_wq);
2598	SET_DEVICE_OP(dev_ops, detach_mcast);
2599	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2600	SET_DEVICE_OP(dev_ops, drain_rq);
2601	SET_DEVICE_OP(dev_ops, drain_sq);
2602	SET_DEVICE_OP(dev_ops, enable_driver);
2603	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2604	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2605	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2606	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2607	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2608	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2609	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2610	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2611	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2612	SET_DEVICE_OP(dev_ops, get_dma_mr);
2613	SET_DEVICE_OP(dev_ops, get_hw_stats);
2614	SET_DEVICE_OP(dev_ops, get_link_layer);
2615	SET_DEVICE_OP(dev_ops, get_netdev);
2616	SET_DEVICE_OP(dev_ops, get_port_immutable);
2617	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2618	SET_DEVICE_OP(dev_ops, get_vf_config);
2619	SET_DEVICE_OP(dev_ops, get_vf_guid);
2620	SET_DEVICE_OP(dev_ops, get_vf_stats);
2621	SET_DEVICE_OP(dev_ops, init_port);
2622	SET_DEVICE_OP(dev_ops, iw_accept);
2623	SET_DEVICE_OP(dev_ops, iw_add_ref);
2624	SET_DEVICE_OP(dev_ops, iw_connect);
2625	SET_DEVICE_OP(dev_ops, iw_create_listen);
2626	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2627	SET_DEVICE_OP(dev_ops, iw_get_qp);
2628	SET_DEVICE_OP(dev_ops, iw_reject);
2629	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2630	SET_DEVICE_OP(dev_ops, map_mr_sg);
2631	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2632	SET_DEVICE_OP(dev_ops, mmap);
2633	SET_DEVICE_OP(dev_ops, mmap_free);
2634	SET_DEVICE_OP(dev_ops, modify_ah);
2635	SET_DEVICE_OP(dev_ops, modify_cq);
2636	SET_DEVICE_OP(dev_ops, modify_device);
2637	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2638	SET_DEVICE_OP(dev_ops, modify_port);
2639	SET_DEVICE_OP(dev_ops, modify_qp);
2640	SET_DEVICE_OP(dev_ops, modify_srq);
2641	SET_DEVICE_OP(dev_ops, modify_wq);
2642	SET_DEVICE_OP(dev_ops, peek_cq);
2643	SET_DEVICE_OP(dev_ops, poll_cq);
2644	SET_DEVICE_OP(dev_ops, post_recv);
2645	SET_DEVICE_OP(dev_ops, post_send);
2646	SET_DEVICE_OP(dev_ops, post_srq_recv);
2647	SET_DEVICE_OP(dev_ops, process_mad);
2648	SET_DEVICE_OP(dev_ops, query_ah);
2649	SET_DEVICE_OP(dev_ops, query_device);
2650	SET_DEVICE_OP(dev_ops, query_gid);
2651	SET_DEVICE_OP(dev_ops, query_pkey);
2652	SET_DEVICE_OP(dev_ops, query_port);
2653	SET_DEVICE_OP(dev_ops, query_qp);
2654	SET_DEVICE_OP(dev_ops, query_srq);
2655	SET_DEVICE_OP(dev_ops, query_ucontext);
2656	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2657	SET_DEVICE_OP(dev_ops, read_counters);
2658	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2659	SET_DEVICE_OP(dev_ops, reg_user_mr);
2660	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2661	SET_DEVICE_OP(dev_ops, req_notify_cq);
2662	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2663	SET_DEVICE_OP(dev_ops, resize_cq);
2664	SET_DEVICE_OP(dev_ops, set_vf_guid);
2665	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2666
2667	SET_OBJ_SIZE(dev_ops, ib_ah);
2668	SET_OBJ_SIZE(dev_ops, ib_counters);
2669	SET_OBJ_SIZE(dev_ops, ib_cq);
2670	SET_OBJ_SIZE(dev_ops, ib_mw);
2671	SET_OBJ_SIZE(dev_ops, ib_pd);
2672	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2673	SET_OBJ_SIZE(dev_ops, ib_srq);
2674	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2675	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2676}
2677EXPORT_SYMBOL(ib_set_device_ops);
2678
2679#ifdef CONFIG_INFINIBAND_VIRT_DMA
2680int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2681{
2682	struct scatterlist *s;
2683	int i;
2684
2685	for_each_sg(sg, s, nents, i) {
2686		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2687		sg_dma_len(s) = s->length;
2688	}
2689	return nents;
2690}
2691EXPORT_SYMBOL(ib_dma_virt_map_sg);
2692#endif /* CONFIG_INFINIBAND_VIRT_DMA */
2693
2694static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2695	[RDMA_NL_LS_OP_RESOLVE] = {
2696		.doit = ib_nl_handle_resolve_resp,
2697		.flags = RDMA_NL_ADMIN_PERM,
2698	},
2699	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2700		.doit = ib_nl_handle_set_timeout,
2701		.flags = RDMA_NL_ADMIN_PERM,
2702	},
2703	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2704		.doit = ib_nl_handle_ip_res_resp,
2705		.flags = RDMA_NL_ADMIN_PERM,
2706	},
2707};
2708
2709static int __init ib_core_init(void)
2710{
2711	int ret;
2712
2713	ib_wq = alloc_workqueue("infiniband", 0, 0);
2714	if (!ib_wq)
2715		return -ENOMEM;
2716
2717	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2718			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2719	if (!ib_comp_wq) {
2720		ret = -ENOMEM;
2721		goto err;
2722	}
2723
2724	ib_comp_unbound_wq =
2725		alloc_workqueue("ib-comp-unb-wq",
2726				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2727				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2728	if (!ib_comp_unbound_wq) {
2729		ret = -ENOMEM;
2730		goto err_comp;
2731	}
2732
2733	ret = class_register(&ib_class);
2734	if (ret) {
2735		pr_warn("Couldn't create InfiniBand device class\n");
2736		goto err_comp_unbound;
2737	}
2738
2739	rdma_nl_init();
2740
2741	ret = addr_init();
2742	if (ret) {
2743		pr_warn("Couldn't init IB address resolution\n");
2744		goto err_ibnl;
2745	}
2746
2747	ret = ib_mad_init();
2748	if (ret) {
2749		pr_warn("Couldn't init IB MAD\n");
2750		goto err_addr;
2751	}
2752
2753	ret = ib_sa_init();
2754	if (ret) {
2755		pr_warn("Couldn't init SA\n");
2756		goto err_mad;
2757	}
2758
2759	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2760	if (ret) {
2761		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2762		goto err_sa;
2763	}
2764
2765	ret = register_pernet_device(&rdma_dev_net_ops);
2766	if (ret) {
2767		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2768		goto err_compat;
2769	}
2770
2771	nldev_init();
2772	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2773	ret = roce_gid_mgmt_init();
2774	if (ret) {
2775		pr_warn("Couldn't init RoCE GID management\n");
2776		goto err_parent;
2777	}
2778
2779	return 0;
2780
2781err_parent:
2782	rdma_nl_unregister(RDMA_NL_LS);
2783	nldev_exit();
2784	unregister_pernet_device(&rdma_dev_net_ops);
2785err_compat:
2786	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2787err_sa:
2788	ib_sa_cleanup();
2789err_mad:
2790	ib_mad_cleanup();
2791err_addr:
2792	addr_cleanup();
2793err_ibnl:
2794	class_unregister(&ib_class);
2795err_comp_unbound:
2796	destroy_workqueue(ib_comp_unbound_wq);
2797err_comp:
2798	destroy_workqueue(ib_comp_wq);
2799err:
2800	destroy_workqueue(ib_wq);
2801	return ret;
2802}
2803
2804static void __exit ib_core_cleanup(void)
2805{
2806	roce_gid_mgmt_cleanup();
2807	rdma_nl_unregister(RDMA_NL_LS);
2808	nldev_exit();
2809	unregister_pernet_device(&rdma_dev_net_ops);
2810	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2811	ib_sa_cleanup();
2812	ib_mad_cleanup();
2813	addr_cleanup();
2814	rdma_nl_exit();
2815	class_unregister(&ib_class);
2816	destroy_workqueue(ib_comp_unbound_wq);
2817	destroy_workqueue(ib_comp_wq);
2818	/* Make sure that any pending umem accounting work is done. */
2819	destroy_workqueue(ib_wq);
2820	flush_workqueue(system_unbound_wq);
2821	WARN_ON(!xa_empty(&clients));
2822	WARN_ON(!xa_empty(&devices));
2823}
2824
2825MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2826
2827/* ib core relies on netdev stack to first register net_ns_type_operations
2828 * ns kobject type before ib_core initialization.
2829 */
2830fs_initcall(ib_core_init);
2831module_exit(ib_core_cleanup);
2832