1/*
2 * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3 * Copyright (c) 2005 Intel Corporation. All rights reserved.
4 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
5 * Copyright (c) 2005 Voltaire, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses.  You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 *     Redistribution and use in source and binary forms, with or
14 *     without modification, are permitted provided that the following
15 *     conditions are met:
16 *
17 *      - Redistributions of source code must retain the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer.
20 *
21 *      - Redistributions in binary form must reproduce the above
22 *        copyright notice, this list of conditions and the following
23 *        disclaimer in the documentation and/or other materials
24 *        provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/module.h>
37#include <linux/errno.h>
38#include <linux/slab.h>
39#include <linux/workqueue.h>
40#include <linux/netdevice.h>
41#include <net/addrconf.h>
42
43#include <rdma/ib_cache.h>
44
45#include "core_priv.h"
46
47struct ib_pkey_cache {
48	int             table_len;
49	u16             table[];
50};
51
52struct ib_update_work {
53	struct work_struct work;
54	struct ib_event event;
55	bool enforce_security;
56};
57
58union ib_gid zgid;
59EXPORT_SYMBOL(zgid);
60
61enum gid_attr_find_mask {
62	GID_ATTR_FIND_MASK_GID          = 1UL << 0,
63	GID_ATTR_FIND_MASK_NETDEV	= 1UL << 1,
64	GID_ATTR_FIND_MASK_DEFAULT	= 1UL << 2,
65	GID_ATTR_FIND_MASK_GID_TYPE	= 1UL << 3,
66};
67
68enum gid_table_entry_state {
69	GID_TABLE_ENTRY_INVALID		= 1,
70	GID_TABLE_ENTRY_VALID		= 2,
71	/*
72	 * Indicates that entry is pending to be removed, there may
73	 * be active users of this GID entry.
74	 * When last user of the GID entry releases reference to it,
75	 * GID entry is detached from the table.
76	 */
77	GID_TABLE_ENTRY_PENDING_DEL	= 3,
78};
79
80struct roce_gid_ndev_storage {
81	struct rcu_head rcu_head;
82	struct net_device *ndev;
83};
84
85struct ib_gid_table_entry {
86	struct kref			kref;
87	struct work_struct		del_work;
88	struct ib_gid_attr		attr;
89	void				*context;
90	/* Store the ndev pointer to release reference later on in
91	 * call_rcu context because by that time gid_table_entry
92	 * and attr might be already freed. So keep a copy of it.
93	 * ndev_storage is freed by rcu callback.
94	 */
95	struct roce_gid_ndev_storage	*ndev_storage;
96	enum gid_table_entry_state	state;
97};
98
99struct ib_gid_table {
100	int				sz;
101	/* In RoCE, adding a GID to the table requires:
102	 * (a) Find if this GID is already exists.
103	 * (b) Find a free space.
104	 * (c) Write the new GID
105	 *
106	 * Delete requires different set of operations:
107	 * (a) Find the GID
108	 * (b) Delete it.
109	 *
110	 **/
111	/* Any writer to data_vec must hold this lock and the write side of
112	 * rwlock. Readers must hold only rwlock. All writers must be in a
113	 * sleepable context.
114	 */
115	struct mutex			lock;
116	/* rwlock protects data_vec[ix]->state and entry pointer.
117	 */
118	rwlock_t			rwlock;
119	struct ib_gid_table_entry	**data_vec;
120	/* bit field, each bit indicates the index of default GID */
121	u32				default_gid_indices;
122};
123
124static void dispatch_gid_change_event(struct ib_device *ib_dev, u8 port)
125{
126	struct ib_event event;
127
128	event.device		= ib_dev;
129	event.element.port_num	= port;
130	event.event		= IB_EVENT_GID_CHANGE;
131
132	ib_dispatch_event_clients(&event);
133}
134
135static const char * const gid_type_str[] = {
136	/* IB/RoCE v1 value is set for IB_GID_TYPE_IB and IB_GID_TYPE_ROCE for
137	 * user space compatibility reasons.
138	 */
139	[IB_GID_TYPE_IB]	= "IB/RoCE v1",
140	[IB_GID_TYPE_ROCE]	= "IB/RoCE v1",
141	[IB_GID_TYPE_ROCE_UDP_ENCAP]	= "RoCE v2",
142};
143
144const char *ib_cache_gid_type_str(enum ib_gid_type gid_type)
145{
146	if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type])
147		return gid_type_str[gid_type];
148
149	return "Invalid GID type";
150}
151EXPORT_SYMBOL(ib_cache_gid_type_str);
152
153/** rdma_is_zero_gid - Check if given GID is zero or not.
154 * @gid:	GID to check
155 * Returns true if given GID is zero, returns false otherwise.
156 */
157bool rdma_is_zero_gid(const union ib_gid *gid)
158{
159	return !memcmp(gid, &zgid, sizeof(*gid));
160}
161EXPORT_SYMBOL(rdma_is_zero_gid);
162
163/** is_gid_index_default - Check if a given index belongs to
164 * reserved default GIDs or not.
165 * @table:	GID table pointer
166 * @index:	Index to check in GID table
167 * Returns true if index is one of the reserved default GID index otherwise
168 * returns false.
169 */
170static bool is_gid_index_default(const struct ib_gid_table *table,
171				 unsigned int index)
172{
173	return index < 32 && (BIT(index) & table->default_gid_indices);
174}
175
176int ib_cache_gid_parse_type_str(const char *buf)
177{
178	unsigned int i;
179	size_t len;
180	int err = -EINVAL;
181
182	len = strlen(buf);
183	if (len == 0)
184		return -EINVAL;
185
186	if (buf[len - 1] == '\n')
187		len--;
188
189	for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i)
190		if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) &&
191		    len == strlen(gid_type_str[i])) {
192			err = i;
193			break;
194		}
195
196	return err;
197}
198EXPORT_SYMBOL(ib_cache_gid_parse_type_str);
199
200static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u8 port)
201{
202	return device->port_data[port].cache.gid;
203}
204
205static bool is_gid_entry_free(const struct ib_gid_table_entry *entry)
206{
207	return !entry;
208}
209
210static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry)
211{
212	return entry && entry->state == GID_TABLE_ENTRY_VALID;
213}
214
215static void schedule_free_gid(struct kref *kref)
216{
217	struct ib_gid_table_entry *entry =
218			container_of(kref, struct ib_gid_table_entry, kref);
219
220	queue_work(ib_wq, &entry->del_work);
221}
222
223static void put_gid_ndev(struct rcu_head *head)
224{
225	struct roce_gid_ndev_storage *storage =
226		container_of(head, struct roce_gid_ndev_storage, rcu_head);
227
228	WARN_ON(!storage->ndev);
229	/* At this point its safe to release netdev reference,
230	 * as all callers working on gid_attr->ndev are done
231	 * using this netdev.
232	 */
233	dev_put(storage->ndev);
234	kfree(storage);
235}
236
237static void free_gid_entry_locked(struct ib_gid_table_entry *entry)
238{
239	struct ib_device *device = entry->attr.device;
240	u8 port_num = entry->attr.port_num;
241	struct ib_gid_table *table = rdma_gid_table(device, port_num);
242
243	dev_dbg(&device->dev, "%s port=%d index=%d gid %pI6\n", __func__,
244		port_num, entry->attr.index, entry->attr.gid.raw);
245
246	write_lock_irq(&table->rwlock);
247
248	/*
249	 * The only way to avoid overwriting NULL in table is
250	 * by comparing if it is same entry in table or not!
251	 * If new entry in table is added by the time we free here,
252	 * don't overwrite the table entry.
253	 */
254	if (entry == table->data_vec[entry->attr.index])
255		table->data_vec[entry->attr.index] = NULL;
256	/* Now this index is ready to be allocated */
257	write_unlock_irq(&table->rwlock);
258
259	if (entry->ndev_storage)
260		call_rcu(&entry->ndev_storage->rcu_head, put_gid_ndev);
261	kfree(entry);
262}
263
264static void free_gid_entry(struct kref *kref)
265{
266	struct ib_gid_table_entry *entry =
267			container_of(kref, struct ib_gid_table_entry, kref);
268
269	free_gid_entry_locked(entry);
270}
271
272/**
273 * free_gid_work - Release reference to the GID entry
274 * @work: Work structure to refer to GID entry which needs to be
275 * deleted.
276 *
277 * free_gid_work() frees the entry from the HCA's hardware table
278 * if provider supports it. It releases reference to netdevice.
279 */
280static void free_gid_work(struct work_struct *work)
281{
282	struct ib_gid_table_entry *entry =
283		container_of(work, struct ib_gid_table_entry, del_work);
284	struct ib_device *device = entry->attr.device;
285	u8 port_num = entry->attr.port_num;
286	struct ib_gid_table *table = rdma_gid_table(device, port_num);
287
288	mutex_lock(&table->lock);
289	free_gid_entry_locked(entry);
290	mutex_unlock(&table->lock);
291}
292
293static struct ib_gid_table_entry *
294alloc_gid_entry(const struct ib_gid_attr *attr)
295{
296	struct ib_gid_table_entry *entry;
297	struct net_device *ndev;
298
299	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
300	if (!entry)
301		return NULL;
302
303	ndev = rcu_dereference_protected(attr->ndev, 1);
304	if (ndev) {
305		entry->ndev_storage = kzalloc(sizeof(*entry->ndev_storage),
306					      GFP_KERNEL);
307		if (!entry->ndev_storage) {
308			kfree(entry);
309			return NULL;
310		}
311		dev_hold(ndev);
312		entry->ndev_storage->ndev = ndev;
313	}
314	kref_init(&entry->kref);
315	memcpy(&entry->attr, attr, sizeof(*attr));
316	INIT_WORK(&entry->del_work, free_gid_work);
317	entry->state = GID_TABLE_ENTRY_INVALID;
318	return entry;
319}
320
321static void store_gid_entry(struct ib_gid_table *table,
322			    struct ib_gid_table_entry *entry)
323{
324	entry->state = GID_TABLE_ENTRY_VALID;
325
326	dev_dbg(&entry->attr.device->dev, "%s port=%d index=%d gid %pI6\n",
327		__func__, entry->attr.port_num, entry->attr.index,
328		entry->attr.gid.raw);
329
330	lockdep_assert_held(&table->lock);
331	write_lock_irq(&table->rwlock);
332	table->data_vec[entry->attr.index] = entry;
333	write_unlock_irq(&table->rwlock);
334}
335
336static void get_gid_entry(struct ib_gid_table_entry *entry)
337{
338	kref_get(&entry->kref);
339}
340
341static void put_gid_entry(struct ib_gid_table_entry *entry)
342{
343	kref_put(&entry->kref, schedule_free_gid);
344}
345
346static void put_gid_entry_locked(struct ib_gid_table_entry *entry)
347{
348	kref_put(&entry->kref, free_gid_entry);
349}
350
351static int add_roce_gid(struct ib_gid_table_entry *entry)
352{
353	const struct ib_gid_attr *attr = &entry->attr;
354	int ret;
355
356	if (!attr->ndev) {
357		dev_err(&attr->device->dev, "%s NULL netdev port=%d index=%d\n",
358			__func__, attr->port_num, attr->index);
359		return -EINVAL;
360	}
361	if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) {
362		ret = attr->device->ops.add_gid(attr, &entry->context);
363		if (ret) {
364			dev_err(&attr->device->dev,
365				"%s GID add failed port=%d index=%d\n",
366				__func__, attr->port_num, attr->index);
367			return ret;
368		}
369	}
370	return 0;
371}
372
373/**
374 * del_gid - Delete GID table entry
375 *
376 * @ib_dev:	IB device whose GID entry to be deleted
377 * @port:	Port number of the IB device
378 * @table:	GID table of the IB device for a port
379 * @ix:		GID entry index to delete
380 *
381 */
382static void del_gid(struct ib_device *ib_dev, u8 port,
383		    struct ib_gid_table *table, int ix)
384{
385	struct roce_gid_ndev_storage *ndev_storage;
386	struct ib_gid_table_entry *entry;
387
388	lockdep_assert_held(&table->lock);
389
390	dev_dbg(&ib_dev->dev, "%s port=%d index=%d gid %pI6\n", __func__, port,
391		ix, table->data_vec[ix]->attr.gid.raw);
392
393	write_lock_irq(&table->rwlock);
394	entry = table->data_vec[ix];
395	entry->state = GID_TABLE_ENTRY_PENDING_DEL;
396	/*
397	 * For non RoCE protocol, GID entry slot is ready to use.
398	 */
399	if (!rdma_protocol_roce(ib_dev, port))
400		table->data_vec[ix] = NULL;
401	write_unlock_irq(&table->rwlock);
402
403	ndev_storage = entry->ndev_storage;
404	if (ndev_storage) {
405		entry->ndev_storage = NULL;
406		rcu_assign_pointer(entry->attr.ndev, NULL);
407		call_rcu(&ndev_storage->rcu_head, put_gid_ndev);
408	}
409
410	if (rdma_cap_roce_gid_table(ib_dev, port))
411		ib_dev->ops.del_gid(&entry->attr, &entry->context);
412
413	put_gid_entry_locked(entry);
414}
415
416/**
417 * add_modify_gid - Add or modify GID table entry
418 *
419 * @table:	GID table in which GID to be added or modified
420 * @attr:	Attributes of the GID
421 *
422 * Returns 0 on success or appropriate error code. It accepts zero
423 * GID addition for non RoCE ports for HCA's who report them as valid
424 * GID. However such zero GIDs are not added to the cache.
425 */
426static int add_modify_gid(struct ib_gid_table *table,
427			  const struct ib_gid_attr *attr)
428{
429	struct ib_gid_table_entry *entry;
430	int ret = 0;
431
432	/*
433	 * Invalidate any old entry in the table to make it safe to write to
434	 * this index.
435	 */
436	if (is_gid_entry_valid(table->data_vec[attr->index]))
437		del_gid(attr->device, attr->port_num, table, attr->index);
438
439	/*
440	 * Some HCA's report multiple GID entries with only one valid GID, and
441	 * leave other unused entries as the zero GID. Convert zero GIDs to
442	 * empty table entries instead of storing them.
443	 */
444	if (rdma_is_zero_gid(&attr->gid))
445		return 0;
446
447	entry = alloc_gid_entry(attr);
448	if (!entry)
449		return -ENOMEM;
450
451	if (rdma_protocol_roce(attr->device, attr->port_num)) {
452		ret = add_roce_gid(entry);
453		if (ret)
454			goto done;
455	}
456
457	store_gid_entry(table, entry);
458	return 0;
459
460done:
461	put_gid_entry(entry);
462	return ret;
463}
464
465/* rwlock should be read locked, or lock should be held */
466static int find_gid(struct ib_gid_table *table, const union ib_gid *gid,
467		    const struct ib_gid_attr *val, bool default_gid,
468		    unsigned long mask, int *pempty)
469{
470	int i = 0;
471	int found = -1;
472	int empty = pempty ? -1 : 0;
473
474	while (i < table->sz && (found < 0 || empty < 0)) {
475		struct ib_gid_table_entry *data = table->data_vec[i];
476		struct ib_gid_attr *attr;
477		int curr_index = i;
478
479		i++;
480
481		/* find_gid() is used during GID addition where it is expected
482		 * to return a free entry slot which is not duplicate.
483		 * Free entry slot is requested and returned if pempty is set,
484		 * so lookup free slot only if requested.
485		 */
486		if (pempty && empty < 0) {
487			if (is_gid_entry_free(data) &&
488			    default_gid ==
489				is_gid_index_default(table, curr_index)) {
490				/*
491				 * Found an invalid (free) entry; allocate it.
492				 * If default GID is requested, then our
493				 * found slot must be one of the DEFAULT
494				 * reserved slots or we fail.
495				 * This ensures that only DEFAULT reserved
496				 * slots are used for default property GIDs.
497				 */
498				empty = curr_index;
499			}
500		}
501
502		/*
503		 * Additionally find_gid() is used to find valid entry during
504		 * lookup operation; so ignore the entries which are marked as
505		 * pending for removal and the entries which are marked as
506		 * invalid.
507		 */
508		if (!is_gid_entry_valid(data))
509			continue;
510
511		if (found >= 0)
512			continue;
513
514		attr = &data->attr;
515		if (mask & GID_ATTR_FIND_MASK_GID_TYPE &&
516		    attr->gid_type != val->gid_type)
517			continue;
518
519		if (mask & GID_ATTR_FIND_MASK_GID &&
520		    memcmp(gid, &data->attr.gid, sizeof(*gid)))
521			continue;
522
523		if (mask & GID_ATTR_FIND_MASK_NETDEV &&
524		    attr->ndev != val->ndev)
525			continue;
526
527		if (mask & GID_ATTR_FIND_MASK_DEFAULT &&
528		    is_gid_index_default(table, curr_index) != default_gid)
529			continue;
530
531		found = curr_index;
532	}
533
534	if (pempty)
535		*pempty = empty;
536
537	return found;
538}
539
540static void make_default_gid(struct  net_device *dev, union ib_gid *gid)
541{
542	gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL);
543	addrconf_ifid_eui48(&gid->raw[8], dev);
544}
545
546static int __ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
547			      union ib_gid *gid, struct ib_gid_attr *attr,
548			      unsigned long mask, bool default_gid)
549{
550	struct ib_gid_table *table;
551	int ret = 0;
552	int empty;
553	int ix;
554
555	/* Do not allow adding zero GID in support of
556	 * IB spec version 1.3 section 4.1.1 point (6) and
557	 * section 12.7.10 and section 12.7.20
558	 */
559	if (rdma_is_zero_gid(gid))
560		return -EINVAL;
561
562	table = rdma_gid_table(ib_dev, port);
563
564	mutex_lock(&table->lock);
565
566	ix = find_gid(table, gid, attr, default_gid, mask, &empty);
567	if (ix >= 0)
568		goto out_unlock;
569
570	if (empty < 0) {
571		ret = -ENOSPC;
572		goto out_unlock;
573	}
574	attr->device = ib_dev;
575	attr->index = empty;
576	attr->port_num = port;
577	attr->gid = *gid;
578	ret = add_modify_gid(table, attr);
579	if (!ret)
580		dispatch_gid_change_event(ib_dev, port);
581
582out_unlock:
583	mutex_unlock(&table->lock);
584	if (ret)
585		pr_warn("%s: unable to add gid %pI6 error=%d\n",
586			__func__, gid->raw, ret);
587	return ret;
588}
589
590int ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
591		     union ib_gid *gid, struct ib_gid_attr *attr)
592{
593	unsigned long mask = GID_ATTR_FIND_MASK_GID |
594			     GID_ATTR_FIND_MASK_GID_TYPE |
595			     GID_ATTR_FIND_MASK_NETDEV;
596
597	return __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false);
598}
599
600static int
601_ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
602		  union ib_gid *gid, struct ib_gid_attr *attr,
603		  unsigned long mask, bool default_gid)
604{
605	struct ib_gid_table *table;
606	int ret = 0;
607	int ix;
608
609	table = rdma_gid_table(ib_dev, port);
610
611	mutex_lock(&table->lock);
612
613	ix = find_gid(table, gid, attr, default_gid, mask, NULL);
614	if (ix < 0) {
615		ret = -EINVAL;
616		goto out_unlock;
617	}
618
619	del_gid(ib_dev, port, table, ix);
620	dispatch_gid_change_event(ib_dev, port);
621
622out_unlock:
623	mutex_unlock(&table->lock);
624	if (ret)
625		pr_debug("%s: can't delete gid %pI6 error=%d\n",
626			 __func__, gid->raw, ret);
627	return ret;
628}
629
630int ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
631		     union ib_gid *gid, struct ib_gid_attr *attr)
632{
633	unsigned long mask = GID_ATTR_FIND_MASK_GID	  |
634			     GID_ATTR_FIND_MASK_GID_TYPE |
635			     GID_ATTR_FIND_MASK_DEFAULT  |
636			     GID_ATTR_FIND_MASK_NETDEV;
637
638	return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false);
639}
640
641int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port,
642				     struct net_device *ndev)
643{
644	struct ib_gid_table *table;
645	int ix;
646	bool deleted = false;
647
648	table = rdma_gid_table(ib_dev, port);
649
650	mutex_lock(&table->lock);
651
652	for (ix = 0; ix < table->sz; ix++) {
653		if (is_gid_entry_valid(table->data_vec[ix]) &&
654		    table->data_vec[ix]->attr.ndev == ndev) {
655			del_gid(ib_dev, port, table, ix);
656			deleted = true;
657		}
658	}
659
660	mutex_unlock(&table->lock);
661
662	if (deleted)
663		dispatch_gid_change_event(ib_dev, port);
664
665	return 0;
666}
667
668/**
669 * rdma_find_gid_by_port - Returns the GID entry attributes when it finds
670 * a valid GID entry for given search parameters. It searches for the specified
671 * GID value in the local software cache.
672 * @device: The device to query.
673 * @gid: The GID value to search for.
674 * @gid_type: The GID type to search for.
675 * @port_num: The port number of the device where the GID value should be
676 *   searched.
677 * @ndev: In RoCE, the net device of the device. NULL means ignore.
678 *
679 * Returns sgid attributes if the GID is found with valid reference or
680 * returns ERR_PTR for the error.
681 * The caller must invoke rdma_put_gid_attr() to release the reference.
682 */
683const struct ib_gid_attr *
684rdma_find_gid_by_port(struct ib_device *ib_dev,
685		      const union ib_gid *gid,
686		      enum ib_gid_type gid_type,
687		      u8 port, struct net_device *ndev)
688{
689	int local_index;
690	struct ib_gid_table *table;
691	unsigned long mask = GID_ATTR_FIND_MASK_GID |
692			     GID_ATTR_FIND_MASK_GID_TYPE;
693	struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type};
694	const struct ib_gid_attr *attr;
695	unsigned long flags;
696
697	if (!rdma_is_port_valid(ib_dev, port))
698		return ERR_PTR(-ENOENT);
699
700	table = rdma_gid_table(ib_dev, port);
701
702	if (ndev)
703		mask |= GID_ATTR_FIND_MASK_NETDEV;
704
705	read_lock_irqsave(&table->rwlock, flags);
706	local_index = find_gid(table, gid, &val, false, mask, NULL);
707	if (local_index >= 0) {
708		get_gid_entry(table->data_vec[local_index]);
709		attr = &table->data_vec[local_index]->attr;
710		read_unlock_irqrestore(&table->rwlock, flags);
711		return attr;
712	}
713
714	read_unlock_irqrestore(&table->rwlock, flags);
715	return ERR_PTR(-ENOENT);
716}
717EXPORT_SYMBOL(rdma_find_gid_by_port);
718
719/**
720 * rdma_find_gid_by_filter - Returns the GID table attribute where a
721 * specified GID value occurs
722 * @device: The device to query.
723 * @gid: The GID value to search for.
724 * @port: The port number of the device where the GID value could be
725 *   searched.
726 * @filter: The filter function is executed on any matching GID in the table.
727 *   If the filter function returns true, the corresponding index is returned,
728 *   otherwise, we continue searching the GID table. It's guaranteed that
729 *   while filter is executed, ndev field is valid and the structure won't
730 *   change. filter is executed in an atomic context. filter must not be NULL.
731 *
732 * rdma_find_gid_by_filter() searches for the specified GID value
733 * of which the filter function returns true in the port's GID table.
734 *
735 */
736const struct ib_gid_attr *rdma_find_gid_by_filter(
737	struct ib_device *ib_dev, const union ib_gid *gid, u8 port,
738	bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *,
739		       void *),
740	void *context)
741{
742	const struct ib_gid_attr *res = ERR_PTR(-ENOENT);
743	struct ib_gid_table *table;
744	unsigned long flags;
745	unsigned int i;
746
747	if (!rdma_is_port_valid(ib_dev, port))
748		return ERR_PTR(-EINVAL);
749
750	table = rdma_gid_table(ib_dev, port);
751
752	read_lock_irqsave(&table->rwlock, flags);
753	for (i = 0; i < table->sz; i++) {
754		struct ib_gid_table_entry *entry = table->data_vec[i];
755
756		if (!is_gid_entry_valid(entry))
757			continue;
758
759		if (memcmp(gid, &entry->attr.gid, sizeof(*gid)))
760			continue;
761
762		if (filter(gid, &entry->attr, context)) {
763			get_gid_entry(entry);
764			res = &entry->attr;
765			break;
766		}
767	}
768	read_unlock_irqrestore(&table->rwlock, flags);
769	return res;
770}
771
772static struct ib_gid_table *alloc_gid_table(int sz)
773{
774	struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL);
775
776	if (!table)
777		return NULL;
778
779	table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL);
780	if (!table->data_vec)
781		goto err_free_table;
782
783	mutex_init(&table->lock);
784
785	table->sz = sz;
786	rwlock_init(&table->rwlock);
787	return table;
788
789err_free_table:
790	kfree(table);
791	return NULL;
792}
793
794static void release_gid_table(struct ib_device *device,
795			      struct ib_gid_table *table)
796{
797	bool leak = false;
798	int i;
799
800	if (!table)
801		return;
802
803	for (i = 0; i < table->sz; i++) {
804		if (is_gid_entry_free(table->data_vec[i]))
805			continue;
806		if (kref_read(&table->data_vec[i]->kref) > 1) {
807			dev_err(&device->dev,
808				"GID entry ref leak for index %d ref=%d\n", i,
809				kref_read(&table->data_vec[i]->kref));
810			leak = true;
811		}
812	}
813	if (leak)
814		return;
815
816	mutex_destroy(&table->lock);
817	kfree(table->data_vec);
818	kfree(table);
819}
820
821static void cleanup_gid_table_port(struct ib_device *ib_dev, u8 port,
822				   struct ib_gid_table *table)
823{
824	int i;
825
826	if (!table)
827		return;
828
829	mutex_lock(&table->lock);
830	for (i = 0; i < table->sz; ++i) {
831		if (is_gid_entry_valid(table->data_vec[i]))
832			del_gid(ib_dev, port, table, i);
833	}
834	mutex_unlock(&table->lock);
835}
836
837void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port,
838				  struct net_device *ndev,
839				  unsigned long gid_type_mask,
840				  enum ib_cache_gid_default_mode mode)
841{
842	union ib_gid gid = { };
843	struct ib_gid_attr gid_attr;
844	unsigned int gid_type;
845	unsigned long mask;
846
847	mask = GID_ATTR_FIND_MASK_GID_TYPE |
848	       GID_ATTR_FIND_MASK_DEFAULT |
849	       GID_ATTR_FIND_MASK_NETDEV;
850	memset(&gid_attr, 0, sizeof(gid_attr));
851	gid_attr.ndev = ndev;
852
853	for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) {
854		if (1UL << gid_type & ~gid_type_mask)
855			continue;
856
857		gid_attr.gid_type = gid_type;
858
859		if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) {
860			make_default_gid(ndev, &gid);
861			__ib_cache_gid_add(ib_dev, port, &gid,
862					   &gid_attr, mask, true);
863		} else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) {
864			_ib_cache_gid_del(ib_dev, port, &gid,
865					  &gid_attr, mask, true);
866		}
867	}
868}
869
870static void gid_table_reserve_default(struct ib_device *ib_dev, u8 port,
871				      struct ib_gid_table *table)
872{
873	unsigned int i;
874	unsigned long roce_gid_type_mask;
875	unsigned int num_default_gids;
876
877	roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port);
878	num_default_gids = hweight_long(roce_gid_type_mask);
879	/* Reserve starting indices for default GIDs */
880	for (i = 0; i < num_default_gids && i < table->sz; i++)
881		table->default_gid_indices |= BIT(i);
882}
883
884
885static void gid_table_release_one(struct ib_device *ib_dev)
886{
887	unsigned int p;
888
889	rdma_for_each_port (ib_dev, p) {
890		release_gid_table(ib_dev, ib_dev->port_data[p].cache.gid);
891		ib_dev->port_data[p].cache.gid = NULL;
892	}
893}
894
895static int _gid_table_setup_one(struct ib_device *ib_dev)
896{
897	struct ib_gid_table *table;
898	unsigned int rdma_port;
899
900	rdma_for_each_port (ib_dev, rdma_port) {
901		table = alloc_gid_table(
902			ib_dev->port_data[rdma_port].immutable.gid_tbl_len);
903		if (!table)
904			goto rollback_table_setup;
905
906		gid_table_reserve_default(ib_dev, rdma_port, table);
907		ib_dev->port_data[rdma_port].cache.gid = table;
908	}
909	return 0;
910
911rollback_table_setup:
912	gid_table_release_one(ib_dev);
913	return -ENOMEM;
914}
915
916static void gid_table_cleanup_one(struct ib_device *ib_dev)
917{
918	unsigned int p;
919
920	rdma_for_each_port (ib_dev, p)
921		cleanup_gid_table_port(ib_dev, p,
922				       ib_dev->port_data[p].cache.gid);
923}
924
925static int gid_table_setup_one(struct ib_device *ib_dev)
926{
927	int err;
928
929	err = _gid_table_setup_one(ib_dev);
930
931	if (err)
932		return err;
933
934	rdma_roce_rescan_device(ib_dev);
935
936	return err;
937}
938
939/**
940 * rdma_query_gid - Read the GID content from the GID software cache
941 * @device:		Device to query the GID
942 * @port_num:		Port number of the device
943 * @index:		Index of the GID table entry to read
944 * @gid:		Pointer to GID where to store the entry's GID
945 *
946 * rdma_query_gid() only reads the GID entry content for requested device,
947 * port and index. It reads for IB, RoCE and iWarp link layers.  It doesn't
948 * hold any reference to the GID table entry in the HCA or software cache.
949 *
950 * Returns 0 on success or appropriate error code.
951 *
952 */
953int rdma_query_gid(struct ib_device *device, u8 port_num,
954		   int index, union ib_gid *gid)
955{
956	struct ib_gid_table *table;
957	unsigned long flags;
958	int res = -EINVAL;
959
960	if (!rdma_is_port_valid(device, port_num))
961		return -EINVAL;
962
963	table = rdma_gid_table(device, port_num);
964	read_lock_irqsave(&table->rwlock, flags);
965
966	if (index < 0 || index >= table->sz ||
967	    !is_gid_entry_valid(table->data_vec[index]))
968		goto done;
969
970	memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid));
971	res = 0;
972
973done:
974	read_unlock_irqrestore(&table->rwlock, flags);
975	return res;
976}
977EXPORT_SYMBOL(rdma_query_gid);
978
979/**
980 * rdma_read_gid_hw_context - Read the HW GID context from GID attribute
981 * @attr:		Potinter to the GID attribute
982 *
983 * rdma_read_gid_hw_context() reads the drivers GID HW context corresponding
984 * to the SGID attr. Callers are required to already be holding the reference
985 * to an existing GID entry.
986 *
987 * Returns the HW GID context
988 *
989 */
990void *rdma_read_gid_hw_context(const struct ib_gid_attr *attr)
991{
992	return container_of(attr, struct ib_gid_table_entry, attr)->context;
993}
994EXPORT_SYMBOL(rdma_read_gid_hw_context);
995
996/**
997 * rdma_find_gid - Returns SGID attributes if the matching GID is found.
998 * @device: The device to query.
999 * @gid: The GID value to search for.
1000 * @gid_type: The GID type to search for.
1001 * @ndev: In RoCE, the net device of the device. NULL means ignore.
1002 *
1003 * rdma_find_gid() searches for the specified GID value in the software cache.
1004 *
1005 * Returns GID attributes if a valid GID is found or returns ERR_PTR for the
1006 * error. The caller must invoke rdma_put_gid_attr() to release the reference.
1007 *
1008 */
1009const struct ib_gid_attr *rdma_find_gid(struct ib_device *device,
1010					const union ib_gid *gid,
1011					enum ib_gid_type gid_type,
1012					struct net_device *ndev)
1013{
1014	unsigned long mask = GID_ATTR_FIND_MASK_GID |
1015			     GID_ATTR_FIND_MASK_GID_TYPE;
1016	struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type};
1017	unsigned int p;
1018
1019	if (ndev)
1020		mask |= GID_ATTR_FIND_MASK_NETDEV;
1021
1022	rdma_for_each_port(device, p) {
1023		struct ib_gid_table *table;
1024		unsigned long flags;
1025		int index;
1026
1027		table = device->port_data[p].cache.gid;
1028		read_lock_irqsave(&table->rwlock, flags);
1029		index = find_gid(table, gid, &gid_attr_val, false, mask, NULL);
1030		if (index >= 0) {
1031			const struct ib_gid_attr *attr;
1032
1033			get_gid_entry(table->data_vec[index]);
1034			attr = &table->data_vec[index]->attr;
1035			read_unlock_irqrestore(&table->rwlock, flags);
1036			return attr;
1037		}
1038		read_unlock_irqrestore(&table->rwlock, flags);
1039	}
1040
1041	return ERR_PTR(-ENOENT);
1042}
1043EXPORT_SYMBOL(rdma_find_gid);
1044
1045int ib_get_cached_pkey(struct ib_device *device,
1046		       u8                port_num,
1047		       int               index,
1048		       u16              *pkey)
1049{
1050	struct ib_pkey_cache *cache;
1051	unsigned long flags;
1052	int ret = 0;
1053
1054	if (!rdma_is_port_valid(device, port_num))
1055		return -EINVAL;
1056
1057	read_lock_irqsave(&device->cache_lock, flags);
1058
1059	cache = device->port_data[port_num].cache.pkey;
1060
1061	if (!cache || index < 0 || index >= cache->table_len)
1062		ret = -EINVAL;
1063	else
1064		*pkey = cache->table[index];
1065
1066	read_unlock_irqrestore(&device->cache_lock, flags);
1067
1068	return ret;
1069}
1070EXPORT_SYMBOL(ib_get_cached_pkey);
1071
1072int ib_get_cached_subnet_prefix(struct ib_device *device,
1073				u8                port_num,
1074				u64              *sn_pfx)
1075{
1076	unsigned long flags;
1077
1078	if (!rdma_is_port_valid(device, port_num))
1079		return -EINVAL;
1080
1081	read_lock_irqsave(&device->cache_lock, flags);
1082	*sn_pfx = device->port_data[port_num].cache.subnet_prefix;
1083	read_unlock_irqrestore(&device->cache_lock, flags);
1084
1085	return 0;
1086}
1087EXPORT_SYMBOL(ib_get_cached_subnet_prefix);
1088
1089int ib_find_cached_pkey(struct ib_device *device,
1090			u8                port_num,
1091			u16               pkey,
1092			u16              *index)
1093{
1094	struct ib_pkey_cache *cache;
1095	unsigned long flags;
1096	int i;
1097	int ret = -ENOENT;
1098	int partial_ix = -1;
1099
1100	if (!rdma_is_port_valid(device, port_num))
1101		return -EINVAL;
1102
1103	read_lock_irqsave(&device->cache_lock, flags);
1104
1105	cache = device->port_data[port_num].cache.pkey;
1106	if (!cache) {
1107		ret = -EINVAL;
1108		goto err;
1109	}
1110
1111	*index = -1;
1112
1113	for (i = 0; i < cache->table_len; ++i)
1114		if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) {
1115			if (cache->table[i] & 0x8000) {
1116				*index = i;
1117				ret = 0;
1118				break;
1119			} else
1120				partial_ix = i;
1121		}
1122
1123	if (ret && partial_ix >= 0) {
1124		*index = partial_ix;
1125		ret = 0;
1126	}
1127
1128err:
1129	read_unlock_irqrestore(&device->cache_lock, flags);
1130
1131	return ret;
1132}
1133EXPORT_SYMBOL(ib_find_cached_pkey);
1134
1135int ib_find_exact_cached_pkey(struct ib_device *device,
1136			      u8                port_num,
1137			      u16               pkey,
1138			      u16              *index)
1139{
1140	struct ib_pkey_cache *cache;
1141	unsigned long flags;
1142	int i;
1143	int ret = -ENOENT;
1144
1145	if (!rdma_is_port_valid(device, port_num))
1146		return -EINVAL;
1147
1148	read_lock_irqsave(&device->cache_lock, flags);
1149
1150	cache = device->port_data[port_num].cache.pkey;
1151	if (!cache) {
1152		ret = -EINVAL;
1153		goto err;
1154	}
1155
1156	*index = -1;
1157
1158	for (i = 0; i < cache->table_len; ++i)
1159		if (cache->table[i] == pkey) {
1160			*index = i;
1161			ret = 0;
1162			break;
1163		}
1164
1165err:
1166	read_unlock_irqrestore(&device->cache_lock, flags);
1167
1168	return ret;
1169}
1170EXPORT_SYMBOL(ib_find_exact_cached_pkey);
1171
1172int ib_get_cached_lmc(struct ib_device *device,
1173		      u8                port_num,
1174		      u8                *lmc)
1175{
1176	unsigned long flags;
1177	int ret = 0;
1178
1179	if (!rdma_is_port_valid(device, port_num))
1180		return -EINVAL;
1181
1182	read_lock_irqsave(&device->cache_lock, flags);
1183	*lmc = device->port_data[port_num].cache.lmc;
1184	read_unlock_irqrestore(&device->cache_lock, flags);
1185
1186	return ret;
1187}
1188EXPORT_SYMBOL(ib_get_cached_lmc);
1189
1190int ib_get_cached_port_state(struct ib_device   *device,
1191			     u8                  port_num,
1192			     enum ib_port_state *port_state)
1193{
1194	unsigned long flags;
1195	int ret = 0;
1196
1197	if (!rdma_is_port_valid(device, port_num))
1198		return -EINVAL;
1199
1200	read_lock_irqsave(&device->cache_lock, flags);
1201	*port_state = device->port_data[port_num].cache.port_state;
1202	read_unlock_irqrestore(&device->cache_lock, flags);
1203
1204	return ret;
1205}
1206EXPORT_SYMBOL(ib_get_cached_port_state);
1207
1208/**
1209 * rdma_get_gid_attr - Returns GID attributes for a port of a device
1210 * at a requested gid_index, if a valid GID entry exists.
1211 * @device:		The device to query.
1212 * @port_num:		The port number on the device where the GID value
1213 *			is to be queried.
1214 * @index:		Index of the GID table entry whose attributes are to
1215 *                      be queried.
1216 *
1217 * rdma_get_gid_attr() acquires reference count of gid attributes from the
1218 * cached GID table. Caller must invoke rdma_put_gid_attr() to release
1219 * reference to gid attribute regardless of link layer.
1220 *
1221 * Returns pointer to valid gid attribute or ERR_PTR for the appropriate error
1222 * code.
1223 */
1224const struct ib_gid_attr *
1225rdma_get_gid_attr(struct ib_device *device, u8 port_num, int index)
1226{
1227	const struct ib_gid_attr *attr = ERR_PTR(-ENODATA);
1228	struct ib_gid_table *table;
1229	unsigned long flags;
1230
1231	if (!rdma_is_port_valid(device, port_num))
1232		return ERR_PTR(-EINVAL);
1233
1234	table = rdma_gid_table(device, port_num);
1235	if (index < 0 || index >= table->sz)
1236		return ERR_PTR(-EINVAL);
1237
1238	read_lock_irqsave(&table->rwlock, flags);
1239	if (!is_gid_entry_valid(table->data_vec[index]))
1240		goto done;
1241
1242	get_gid_entry(table->data_vec[index]);
1243	attr = &table->data_vec[index]->attr;
1244done:
1245	read_unlock_irqrestore(&table->rwlock, flags);
1246	return attr;
1247}
1248EXPORT_SYMBOL(rdma_get_gid_attr);
1249
1250/**
1251 * rdma_query_gid_table - Reads GID table entries of all the ports of a device up to max_entries.
1252 * @device: The device to query.
1253 * @entries: Entries where GID entries are returned.
1254 * @max_entries: Maximum number of entries that can be returned.
1255 * Entries array must be allocated to hold max_entries number of entries.
1256 * @num_entries: Updated to the number of entries that were successfully read.
1257 *
1258 * Returns number of entries on success or appropriate error code.
1259 */
1260ssize_t rdma_query_gid_table(struct ib_device *device,
1261			     struct ib_uverbs_gid_entry *entries,
1262			     size_t max_entries)
1263{
1264	const struct ib_gid_attr *gid_attr;
1265	ssize_t num_entries = 0, ret;
1266	struct ib_gid_table *table;
1267	unsigned int port_num, i;
1268	struct net_device *ndev;
1269	unsigned long flags;
1270
1271	rdma_for_each_port(device, port_num) {
1272		table = rdma_gid_table(device, port_num);
1273		read_lock_irqsave(&table->rwlock, flags);
1274		for (i = 0; i < table->sz; i++) {
1275			if (!is_gid_entry_valid(table->data_vec[i]))
1276				continue;
1277			if (num_entries >= max_entries) {
1278				ret = -EINVAL;
1279				goto err;
1280			}
1281
1282			gid_attr = &table->data_vec[i]->attr;
1283
1284			memcpy(&entries->gid, &gid_attr->gid,
1285			       sizeof(gid_attr->gid));
1286			entries->gid_index = gid_attr->index;
1287			entries->port_num = gid_attr->port_num;
1288			entries->gid_type = gid_attr->gid_type;
1289			ndev = rcu_dereference_protected(
1290				gid_attr->ndev,
1291				lockdep_is_held(&table->rwlock));
1292			if (ndev)
1293				entries->netdev_ifindex = ndev->ifindex;
1294
1295			num_entries++;
1296			entries++;
1297		}
1298		read_unlock_irqrestore(&table->rwlock, flags);
1299	}
1300
1301	return num_entries;
1302err:
1303	read_unlock_irqrestore(&table->rwlock, flags);
1304	return ret;
1305}
1306EXPORT_SYMBOL(rdma_query_gid_table);
1307
1308/**
1309 * rdma_put_gid_attr - Release reference to the GID attribute
1310 * @attr:		Pointer to the GID attribute whose reference
1311 *			needs to be released.
1312 *
1313 * rdma_put_gid_attr() must be used to release reference whose
1314 * reference is acquired using rdma_get_gid_attr() or any APIs
1315 * which returns a pointer to the ib_gid_attr regardless of link layer
1316 * of IB or RoCE.
1317 *
1318 */
1319void rdma_put_gid_attr(const struct ib_gid_attr *attr)
1320{
1321	struct ib_gid_table_entry *entry =
1322		container_of(attr, struct ib_gid_table_entry, attr);
1323
1324	put_gid_entry(entry);
1325}
1326EXPORT_SYMBOL(rdma_put_gid_attr);
1327
1328/**
1329 * rdma_hold_gid_attr - Get reference to existing GID attribute
1330 *
1331 * @attr:		Pointer to the GID attribute whose reference
1332 *			needs to be taken.
1333 *
1334 * Increase the reference count to a GID attribute to keep it from being
1335 * freed. Callers are required to already be holding a reference to attribute.
1336 *
1337 */
1338void rdma_hold_gid_attr(const struct ib_gid_attr *attr)
1339{
1340	struct ib_gid_table_entry *entry =
1341		container_of(attr, struct ib_gid_table_entry, attr);
1342
1343	get_gid_entry(entry);
1344}
1345EXPORT_SYMBOL(rdma_hold_gid_attr);
1346
1347/**
1348 * rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice
1349 * which must be in UP state.
1350 *
1351 * @attr:Pointer to the GID attribute
1352 *
1353 * Returns pointer to netdevice if the netdevice was attached to GID and
1354 * netdevice is in UP state. Caller must hold RCU lock as this API
1355 * reads the netdev flags which can change while netdevice migrates to
1356 * different net namespace. Returns ERR_PTR with error code otherwise.
1357 *
1358 */
1359struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr)
1360{
1361	struct ib_gid_table_entry *entry =
1362			container_of(attr, struct ib_gid_table_entry, attr);
1363	struct ib_device *device = entry->attr.device;
1364	struct net_device *ndev = ERR_PTR(-EINVAL);
1365	u8 port_num = entry->attr.port_num;
1366	struct ib_gid_table *table;
1367	unsigned long flags;
1368	bool valid;
1369
1370	table = rdma_gid_table(device, port_num);
1371
1372	read_lock_irqsave(&table->rwlock, flags);
1373	valid = is_gid_entry_valid(table->data_vec[attr->index]);
1374	if (valid) {
1375		ndev = rcu_dereference(attr->ndev);
1376		if (!ndev)
1377			ndev = ERR_PTR(-ENODEV);
1378	}
1379	read_unlock_irqrestore(&table->rwlock, flags);
1380	return ndev;
1381}
1382EXPORT_SYMBOL(rdma_read_gid_attr_ndev_rcu);
1383
1384static int get_lower_dev_vlan(struct net_device *lower_dev,
1385			      struct netdev_nested_priv *priv)
1386{
1387	u16 *vlan_id = (u16 *)priv->data;
1388
1389	if (is_vlan_dev(lower_dev))
1390		*vlan_id = vlan_dev_vlan_id(lower_dev);
1391
1392	/* We are interested only in first level vlan device, so
1393	 * always return 1 to stop iterating over next level devices.
1394	 */
1395	return 1;
1396}
1397
1398/**
1399 * rdma_read_gid_l2_fields - Read the vlan ID and source MAC address
1400 *			     of a GID entry.
1401 *
1402 * @attr:	GID attribute pointer whose L2 fields to be read
1403 * @vlan_id:	Pointer to vlan id to fill up if the GID entry has
1404 *		vlan id. It is optional.
1405 * @smac:	Pointer to smac to fill up for a GID entry. It is optional.
1406 *
1407 * rdma_read_gid_l2_fields() returns 0 on success and returns vlan id
1408 * (if gid entry has vlan) and source MAC, or returns error.
1409 */
1410int rdma_read_gid_l2_fields(const struct ib_gid_attr *attr,
1411			    u16 *vlan_id, u8 *smac)
1412{
1413	struct netdev_nested_priv priv = {
1414		.data = (void *)vlan_id,
1415	};
1416	struct net_device *ndev;
1417
1418	rcu_read_lock();
1419	ndev = rcu_dereference(attr->ndev);
1420	if (!ndev) {
1421		rcu_read_unlock();
1422		return -ENODEV;
1423	}
1424	if (smac)
1425		ether_addr_copy(smac, ndev->dev_addr);
1426	if (vlan_id) {
1427		*vlan_id = 0xffff;
1428		if (is_vlan_dev(ndev)) {
1429			*vlan_id = vlan_dev_vlan_id(ndev);
1430		} else {
1431			/* If the netdev is upper device and if it's lower
1432			 * device is vlan device, consider vlan id of the
1433			 * the lower vlan device for this gid entry.
1434			 */
1435			netdev_walk_all_lower_dev_rcu(attr->ndev,
1436					get_lower_dev_vlan, &priv);
1437		}
1438	}
1439	rcu_read_unlock();
1440	return 0;
1441}
1442EXPORT_SYMBOL(rdma_read_gid_l2_fields);
1443
1444static int config_non_roce_gid_cache(struct ib_device *device,
1445				     u8 port, int gid_tbl_len)
1446{
1447	struct ib_gid_attr gid_attr = {};
1448	struct ib_gid_table *table;
1449	int ret = 0;
1450	int i;
1451
1452	gid_attr.device = device;
1453	gid_attr.port_num = port;
1454	table = rdma_gid_table(device, port);
1455
1456	mutex_lock(&table->lock);
1457	for (i = 0; i < gid_tbl_len; ++i) {
1458		if (!device->ops.query_gid)
1459			continue;
1460		ret = device->ops.query_gid(device, port, i, &gid_attr.gid);
1461		if (ret) {
1462			dev_warn(&device->dev,
1463				 "query_gid failed (%d) for index %d\n", ret,
1464				 i);
1465			goto err;
1466		}
1467		gid_attr.index = i;
1468		add_modify_gid(table, &gid_attr);
1469	}
1470err:
1471	mutex_unlock(&table->lock);
1472	return ret;
1473}
1474
1475static int
1476ib_cache_update(struct ib_device *device, u8 port, bool enforce_security)
1477{
1478	struct ib_port_attr       *tprops = NULL;
1479	struct ib_pkey_cache      *pkey_cache = NULL, *old_pkey_cache;
1480	int                        i;
1481	int                        ret;
1482
1483	if (!rdma_is_port_valid(device, port))
1484		return -EINVAL;
1485
1486	tprops = kmalloc(sizeof *tprops, GFP_KERNEL);
1487	if (!tprops)
1488		return -ENOMEM;
1489
1490	ret = ib_query_port(device, port, tprops);
1491	if (ret) {
1492		dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret);
1493		goto err;
1494	}
1495
1496	if (!rdma_protocol_roce(device, port)) {
1497		ret = config_non_roce_gid_cache(device, port,
1498						tprops->gid_tbl_len);
1499		if (ret)
1500			goto err;
1501	}
1502
1503	if (tprops->pkey_tbl_len) {
1504		pkey_cache = kmalloc(struct_size(pkey_cache, table,
1505						 tprops->pkey_tbl_len),
1506				     GFP_KERNEL);
1507		if (!pkey_cache) {
1508			ret = -ENOMEM;
1509			goto err;
1510		}
1511
1512		pkey_cache->table_len = tprops->pkey_tbl_len;
1513
1514		for (i = 0; i < pkey_cache->table_len; ++i) {
1515			ret = ib_query_pkey(device, port, i,
1516					    pkey_cache->table + i);
1517			if (ret) {
1518				dev_warn(&device->dev,
1519					 "ib_query_pkey failed (%d) for index %d\n",
1520					 ret, i);
1521				goto err;
1522			}
1523		}
1524	}
1525
1526	write_lock_irq(&device->cache_lock);
1527
1528	old_pkey_cache = device->port_data[port].cache.pkey;
1529
1530	device->port_data[port].cache.pkey = pkey_cache;
1531	device->port_data[port].cache.lmc = tprops->lmc;
1532	device->port_data[port].cache.port_state = tprops->state;
1533
1534	device->port_data[port].cache.subnet_prefix = tprops->subnet_prefix;
1535	write_unlock_irq(&device->cache_lock);
1536
1537	if (enforce_security)
1538		ib_security_cache_change(device,
1539					 port,
1540					 tprops->subnet_prefix);
1541
1542	kfree(old_pkey_cache);
1543	kfree(tprops);
1544	return 0;
1545
1546err:
1547	kfree(pkey_cache);
1548	kfree(tprops);
1549	return ret;
1550}
1551
1552static void ib_cache_event_task(struct work_struct *_work)
1553{
1554	struct ib_update_work *work =
1555		container_of(_work, struct ib_update_work, work);
1556	int ret;
1557
1558	/* Before distributing the cache update event, first sync
1559	 * the cache.
1560	 */
1561	ret = ib_cache_update(work->event.device, work->event.element.port_num,
1562			      work->enforce_security);
1563
1564	/* GID event is notified already for individual GID entries by
1565	 * dispatch_gid_change_event(). Hence, notifiy for rest of the
1566	 * events.
1567	 */
1568	if (!ret && work->event.event != IB_EVENT_GID_CHANGE)
1569		ib_dispatch_event_clients(&work->event);
1570
1571	kfree(work);
1572}
1573
1574static void ib_generic_event_task(struct work_struct *_work)
1575{
1576	struct ib_update_work *work =
1577		container_of(_work, struct ib_update_work, work);
1578
1579	ib_dispatch_event_clients(&work->event);
1580	kfree(work);
1581}
1582
1583static bool is_cache_update_event(const struct ib_event *event)
1584{
1585	return (event->event == IB_EVENT_PORT_ERR    ||
1586		event->event == IB_EVENT_PORT_ACTIVE ||
1587		event->event == IB_EVENT_LID_CHANGE  ||
1588		event->event == IB_EVENT_PKEY_CHANGE ||
1589		event->event == IB_EVENT_CLIENT_REREGISTER ||
1590		event->event == IB_EVENT_GID_CHANGE);
1591}
1592
1593/**
1594 * ib_dispatch_event - Dispatch an asynchronous event
1595 * @event:Event to dispatch
1596 *
1597 * Low-level drivers must call ib_dispatch_event() to dispatch the
1598 * event to all registered event handlers when an asynchronous event
1599 * occurs.
1600 */
1601void ib_dispatch_event(const struct ib_event *event)
1602{
1603	struct ib_update_work *work;
1604
1605	work = kzalloc(sizeof(*work), GFP_ATOMIC);
1606	if (!work)
1607		return;
1608
1609	if (is_cache_update_event(event))
1610		INIT_WORK(&work->work, ib_cache_event_task);
1611	else
1612		INIT_WORK(&work->work, ib_generic_event_task);
1613
1614	work->event = *event;
1615	if (event->event == IB_EVENT_PKEY_CHANGE ||
1616	    event->event == IB_EVENT_GID_CHANGE)
1617		work->enforce_security = true;
1618
1619	queue_work(ib_wq, &work->work);
1620}
1621EXPORT_SYMBOL(ib_dispatch_event);
1622
1623int ib_cache_setup_one(struct ib_device *device)
1624{
1625	unsigned int p;
1626	int err;
1627
1628	rwlock_init(&device->cache_lock);
1629
1630	err = gid_table_setup_one(device);
1631	if (err)
1632		return err;
1633
1634	rdma_for_each_port (device, p) {
1635		err = ib_cache_update(device, p, true);
1636		if (err)
1637			return err;
1638	}
1639
1640	return 0;
1641}
1642
1643void ib_cache_release_one(struct ib_device *device)
1644{
1645	unsigned int p;
1646
1647	/*
1648	 * The release function frees all the cache elements.
1649	 * This function should be called as part of freeing
1650	 * all the device's resources when the cache could no
1651	 * longer be accessed.
1652	 */
1653	rdma_for_each_port (device, p)
1654		kfree(device->port_data[p].cache.pkey);
1655
1656	gid_table_release_one(device);
1657}
1658
1659void ib_cache_cleanup_one(struct ib_device *device)
1660{
1661	/* The cleanup function waits for all in-progress workqueue
1662	 * elements and cleans up the GID cache. This function should be
1663	 * called after the device was removed from the devices list and
1664	 * all clients were removed, so the cache exists but is
1665	 * non-functional and shouldn't be updated anymore.
1666	 */
1667	flush_workqueue(ib_wq);
1668	gid_table_cleanup_one(device);
1669
1670	/*
1671	 * Flush the wq second time for any pending GID delete work.
1672	 */
1673	flush_workqueue(ib_wq);
1674}
1675