1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Bosch BMC150 three-axis magnetic field sensor driver
4 *
5 * Copyright (c) 2015, Intel Corporation.
6 *
7 * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
8 *
9 * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
10 */
11
12#include <linux/module.h>
13#include <linux/i2c.h>
14#include <linux/interrupt.h>
15#include <linux/delay.h>
16#include <linux/slab.h>
17#include <linux/acpi.h>
18#include <linux/pm.h>
19#include <linux/pm_runtime.h>
20#include <linux/iio/iio.h>
21#include <linux/iio/sysfs.h>
22#include <linux/iio/buffer.h>
23#include <linux/iio/events.h>
24#include <linux/iio/trigger.h>
25#include <linux/iio/trigger_consumer.h>
26#include <linux/iio/triggered_buffer.h>
27#include <linux/regmap.h>
28
29#include "bmc150_magn.h"
30
31#define BMC150_MAGN_DRV_NAME			"bmc150_magn"
32#define BMC150_MAGN_IRQ_NAME			"bmc150_magn_event"
33
34#define BMC150_MAGN_REG_CHIP_ID			0x40
35#define BMC150_MAGN_CHIP_ID_VAL			0x32
36
37#define BMC150_MAGN_REG_X_L			0x42
38#define BMC150_MAGN_REG_X_M			0x43
39#define BMC150_MAGN_REG_Y_L			0x44
40#define BMC150_MAGN_REG_Y_M			0x45
41#define BMC150_MAGN_SHIFT_XY_L			3
42#define BMC150_MAGN_REG_Z_L			0x46
43#define BMC150_MAGN_REG_Z_M			0x47
44#define BMC150_MAGN_SHIFT_Z_L			1
45#define BMC150_MAGN_REG_RHALL_L			0x48
46#define BMC150_MAGN_REG_RHALL_M			0x49
47#define BMC150_MAGN_SHIFT_RHALL_L		2
48
49#define BMC150_MAGN_REG_INT_STATUS		0x4A
50
51#define BMC150_MAGN_REG_POWER			0x4B
52#define BMC150_MAGN_MASK_POWER_CTL		BIT(0)
53
54#define BMC150_MAGN_REG_OPMODE_ODR		0x4C
55#define BMC150_MAGN_MASK_OPMODE			GENMASK(2, 1)
56#define BMC150_MAGN_SHIFT_OPMODE		1
57#define BMC150_MAGN_MODE_NORMAL			0x00
58#define BMC150_MAGN_MODE_FORCED			0x01
59#define BMC150_MAGN_MODE_SLEEP			0x03
60#define BMC150_MAGN_MASK_ODR			GENMASK(5, 3)
61#define BMC150_MAGN_SHIFT_ODR			3
62
63#define BMC150_MAGN_REG_INT			0x4D
64
65#define BMC150_MAGN_REG_INT_DRDY		0x4E
66#define BMC150_MAGN_MASK_DRDY_EN		BIT(7)
67#define BMC150_MAGN_SHIFT_DRDY_EN		7
68#define BMC150_MAGN_MASK_DRDY_INT3		BIT(6)
69#define BMC150_MAGN_MASK_DRDY_Z_EN		BIT(5)
70#define BMC150_MAGN_MASK_DRDY_Y_EN		BIT(4)
71#define BMC150_MAGN_MASK_DRDY_X_EN		BIT(3)
72#define BMC150_MAGN_MASK_DRDY_DR_POLARITY	BIT(2)
73#define BMC150_MAGN_MASK_DRDY_LATCHING		BIT(1)
74#define BMC150_MAGN_MASK_DRDY_INT3_POLARITY	BIT(0)
75
76#define BMC150_MAGN_REG_LOW_THRESH		0x4F
77#define BMC150_MAGN_REG_HIGH_THRESH		0x50
78#define BMC150_MAGN_REG_REP_XY			0x51
79#define BMC150_MAGN_REG_REP_Z			0x52
80#define BMC150_MAGN_REG_REP_DATAMASK		GENMASK(7, 0)
81
82#define BMC150_MAGN_REG_TRIM_START		0x5D
83#define BMC150_MAGN_REG_TRIM_END		0x71
84
85#define BMC150_MAGN_XY_OVERFLOW_VAL		-4096
86#define BMC150_MAGN_Z_OVERFLOW_VAL		-16384
87
88/* Time from SUSPEND to SLEEP */
89#define BMC150_MAGN_START_UP_TIME_MS		3
90
91#define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS	2000
92
93#define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
94#define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
95#define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
96#define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
97
98enum bmc150_magn_axis {
99	AXIS_X,
100	AXIS_Y,
101	AXIS_Z,
102	RHALL,
103	AXIS_XYZ_MAX = RHALL,
104	AXIS_XYZR_MAX,
105};
106
107enum bmc150_magn_power_modes {
108	BMC150_MAGN_POWER_MODE_SUSPEND,
109	BMC150_MAGN_POWER_MODE_SLEEP,
110	BMC150_MAGN_POWER_MODE_NORMAL,
111};
112
113struct bmc150_magn_trim_regs {
114	s8 x1;
115	s8 y1;
116	__le16 reserved1;
117	u8 reserved2;
118	__le16 z4;
119	s8 x2;
120	s8 y2;
121	__le16 reserved3;
122	__le16 z2;
123	__le16 z1;
124	__le16 xyz1;
125	__le16 z3;
126	s8 xy2;
127	u8 xy1;
128} __packed;
129
130struct bmc150_magn_data {
131	struct device *dev;
132	/*
133	 * 1. Protect this structure.
134	 * 2. Serialize sequences that power on/off the device and access HW.
135	 */
136	struct mutex mutex;
137	struct regmap *regmap;
138	struct iio_mount_matrix orientation;
139	/* Ensure timestamp is naturally aligned */
140	struct {
141		s32 chans[3];
142		s64 timestamp __aligned(8);
143	} scan;
144	struct iio_trigger *dready_trig;
145	bool dready_trigger_on;
146	int max_odr;
147	int irq;
148};
149
150static const struct {
151	int freq;
152	u8 reg_val;
153} bmc150_magn_samp_freq_table[] = { {2, 0x01},
154				    {6, 0x02},
155				    {8, 0x03},
156				    {10, 0x00},
157				    {15, 0x04},
158				    {20, 0x05},
159				    {25, 0x06},
160				    {30, 0x07} };
161
162enum bmc150_magn_presets {
163	LOW_POWER_PRESET,
164	REGULAR_PRESET,
165	ENHANCED_REGULAR_PRESET,
166	HIGH_ACCURACY_PRESET
167};
168
169static const struct bmc150_magn_preset {
170	u8 rep_xy;
171	u8 rep_z;
172	u8 odr;
173} bmc150_magn_presets_table[] = {
174	[LOW_POWER_PRESET] = {3, 3, 10},
175	[REGULAR_PRESET] =  {9, 15, 10},
176	[ENHANCED_REGULAR_PRESET] =  {15, 27, 10},
177	[HIGH_ACCURACY_PRESET] =  {47, 83, 20},
178};
179
180#define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
181
182static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
183{
184	switch (reg) {
185	case BMC150_MAGN_REG_POWER:
186	case BMC150_MAGN_REG_OPMODE_ODR:
187	case BMC150_MAGN_REG_INT:
188	case BMC150_MAGN_REG_INT_DRDY:
189	case BMC150_MAGN_REG_LOW_THRESH:
190	case BMC150_MAGN_REG_HIGH_THRESH:
191	case BMC150_MAGN_REG_REP_XY:
192	case BMC150_MAGN_REG_REP_Z:
193		return true;
194	default:
195		return false;
196	};
197}
198
199static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
200{
201	switch (reg) {
202	case BMC150_MAGN_REG_X_L:
203	case BMC150_MAGN_REG_X_M:
204	case BMC150_MAGN_REG_Y_L:
205	case BMC150_MAGN_REG_Y_M:
206	case BMC150_MAGN_REG_Z_L:
207	case BMC150_MAGN_REG_Z_M:
208	case BMC150_MAGN_REG_RHALL_L:
209	case BMC150_MAGN_REG_RHALL_M:
210	case BMC150_MAGN_REG_INT_STATUS:
211		return true;
212	default:
213		return false;
214	}
215}
216
217const struct regmap_config bmc150_magn_regmap_config = {
218	.reg_bits = 8,
219	.val_bits = 8,
220
221	.max_register = BMC150_MAGN_REG_TRIM_END,
222	.cache_type = REGCACHE_RBTREE,
223
224	.writeable_reg = bmc150_magn_is_writeable_reg,
225	.volatile_reg = bmc150_magn_is_volatile_reg,
226};
227EXPORT_SYMBOL(bmc150_magn_regmap_config);
228
229static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
230				      enum bmc150_magn_power_modes mode,
231				      bool state)
232{
233	int ret;
234
235	switch (mode) {
236	case BMC150_MAGN_POWER_MODE_SUSPEND:
237		ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
238					 BMC150_MAGN_MASK_POWER_CTL, !state);
239		if (ret < 0)
240			return ret;
241		usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
242		return 0;
243	case BMC150_MAGN_POWER_MODE_SLEEP:
244		return regmap_update_bits(data->regmap,
245					  BMC150_MAGN_REG_OPMODE_ODR,
246					  BMC150_MAGN_MASK_OPMODE,
247					  BMC150_MAGN_MODE_SLEEP <<
248					  BMC150_MAGN_SHIFT_OPMODE);
249	case BMC150_MAGN_POWER_MODE_NORMAL:
250		return regmap_update_bits(data->regmap,
251					  BMC150_MAGN_REG_OPMODE_ODR,
252					  BMC150_MAGN_MASK_OPMODE,
253					  BMC150_MAGN_MODE_NORMAL <<
254					  BMC150_MAGN_SHIFT_OPMODE);
255	}
256
257	return -EINVAL;
258}
259
260static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
261{
262#ifdef CONFIG_PM
263	int ret;
264
265	if (on) {
266		ret = pm_runtime_resume_and_get(data->dev);
267	} else {
268		pm_runtime_mark_last_busy(data->dev);
269		ret = pm_runtime_put_autosuspend(data->dev);
270	}
271
272	if (ret < 0) {
273		dev_err(data->dev,
274			"failed to change power state to %d\n", on);
275		return ret;
276	}
277#endif
278
279	return 0;
280}
281
282static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
283{
284	int ret, reg_val;
285	u8 i, odr_val;
286
287	ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
288	if (ret < 0)
289		return ret;
290	odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
291
292	for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
293		if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
294			*val = bmc150_magn_samp_freq_table[i].freq;
295			return 0;
296		}
297
298	return -EINVAL;
299}
300
301static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
302{
303	int ret;
304	u8 i;
305
306	for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
307		if (bmc150_magn_samp_freq_table[i].freq == val) {
308			ret = regmap_update_bits(data->regmap,
309						 BMC150_MAGN_REG_OPMODE_ODR,
310						 BMC150_MAGN_MASK_ODR,
311						 bmc150_magn_samp_freq_table[i].
312						 reg_val <<
313						 BMC150_MAGN_SHIFT_ODR);
314			if (ret < 0)
315				return ret;
316			return 0;
317		}
318	}
319
320	return -EINVAL;
321}
322
323static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
324				   int rep_z, int odr)
325{
326	int ret, reg_val, max_odr;
327
328	if (rep_xy <= 0) {
329		ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
330				  &reg_val);
331		if (ret < 0)
332			return ret;
333		rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
334	}
335	if (rep_z <= 0) {
336		ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
337				  &reg_val);
338		if (ret < 0)
339			return ret;
340		rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
341	}
342	if (odr <= 0) {
343		ret = bmc150_magn_get_odr(data, &odr);
344		if (ret < 0)
345			return ret;
346	}
347	/* the maximum selectable read-out frequency from datasheet */
348	max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
349	if (odr > max_odr) {
350		dev_err(data->dev,
351			"Can't set oversampling with sampling freq %d\n",
352			odr);
353		return -EINVAL;
354	}
355	data->max_odr = max_odr;
356
357	return 0;
358}
359
360static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
361				    u16 rhall)
362{
363	s16 val;
364	u16 xyz1 = le16_to_cpu(tregs->xyz1);
365
366	if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
367		return S32_MIN;
368
369	if (!rhall)
370		rhall = xyz1;
371
372	val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
373	val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
374	      ((s32)val)) >> 7)) + (((s32)val) *
375	      ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
376	      ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
377	      (((s16)tregs->x1) << 3);
378
379	return (s32)val;
380}
381
382static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
383				    u16 rhall)
384{
385	s16 val;
386	u16 xyz1 = le16_to_cpu(tregs->xyz1);
387
388	if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
389		return S32_MIN;
390
391	if (!rhall)
392		rhall = xyz1;
393
394	val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
395	val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
396	      ((s32)val)) >> 7)) + (((s32)val) *
397	      ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
398	      ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
399	      (((s16)tregs->y1) << 3);
400
401	return (s32)val;
402}
403
404static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
405				    u16 rhall)
406{
407	s32 val;
408	u16 xyz1 = le16_to_cpu(tregs->xyz1);
409	u16 z1 = le16_to_cpu(tregs->z1);
410	s16 z2 = le16_to_cpu(tregs->z2);
411	s16 z3 = le16_to_cpu(tregs->z3);
412	s16 z4 = le16_to_cpu(tregs->z4);
413
414	if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
415		return S32_MIN;
416
417	val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
418	      ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
419	      ((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
420
421	return val;
422}
423
424static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
425{
426	int ret;
427	__le16 values[AXIS_XYZR_MAX];
428	s16 raw_x, raw_y, raw_z;
429	u16 rhall;
430	struct bmc150_magn_trim_regs tregs;
431
432	ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
433			       values, sizeof(values));
434	if (ret < 0)
435		return ret;
436
437	raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
438	raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
439	raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
440	rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
441
442	ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
443			       &tregs, sizeof(tregs));
444	if (ret < 0)
445		return ret;
446
447	buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
448	buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
449	buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
450
451	return 0;
452}
453
454static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
455				struct iio_chan_spec const *chan,
456				int *val, int *val2, long mask)
457{
458	struct bmc150_magn_data *data = iio_priv(indio_dev);
459	int ret, tmp;
460	s32 values[AXIS_XYZ_MAX];
461
462	switch (mask) {
463	case IIO_CHAN_INFO_RAW:
464		if (iio_buffer_enabled(indio_dev))
465			return -EBUSY;
466		mutex_lock(&data->mutex);
467
468		ret = bmc150_magn_set_power_state(data, true);
469		if (ret < 0) {
470			mutex_unlock(&data->mutex);
471			return ret;
472		}
473
474		ret = bmc150_magn_read_xyz(data, values);
475		if (ret < 0) {
476			bmc150_magn_set_power_state(data, false);
477			mutex_unlock(&data->mutex);
478			return ret;
479		}
480		*val = values[chan->scan_index];
481
482		ret = bmc150_magn_set_power_state(data, false);
483		if (ret < 0) {
484			mutex_unlock(&data->mutex);
485			return ret;
486		}
487
488		mutex_unlock(&data->mutex);
489		return IIO_VAL_INT;
490	case IIO_CHAN_INFO_SCALE:
491		/*
492		 * The API/driver performs an off-chip temperature
493		 * compensation and outputs x/y/z magnetic field data in
494		 * 16 LSB/uT to the upper application layer.
495		 */
496		*val = 0;
497		*val2 = 625;
498		return IIO_VAL_INT_PLUS_MICRO;
499	case IIO_CHAN_INFO_SAMP_FREQ:
500		ret = bmc150_magn_get_odr(data, val);
501		if (ret < 0)
502			return ret;
503		return IIO_VAL_INT;
504	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
505		switch (chan->channel2) {
506		case IIO_MOD_X:
507		case IIO_MOD_Y:
508			ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
509					  &tmp);
510			if (ret < 0)
511				return ret;
512			*val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
513			return IIO_VAL_INT;
514		case IIO_MOD_Z:
515			ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
516					  &tmp);
517			if (ret < 0)
518				return ret;
519			*val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
520			return IIO_VAL_INT;
521		default:
522			return -EINVAL;
523		}
524	default:
525		return -EINVAL;
526	}
527}
528
529static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
530				 struct iio_chan_spec const *chan,
531				 int val, int val2, long mask)
532{
533	struct bmc150_magn_data *data = iio_priv(indio_dev);
534	int ret;
535
536	switch (mask) {
537	case IIO_CHAN_INFO_SAMP_FREQ:
538		if (val > data->max_odr)
539			return -EINVAL;
540		mutex_lock(&data->mutex);
541		ret = bmc150_magn_set_odr(data, val);
542		mutex_unlock(&data->mutex);
543		return ret;
544	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
545		switch (chan->channel2) {
546		case IIO_MOD_X:
547		case IIO_MOD_Y:
548			if (val < 1 || val > 511)
549				return -EINVAL;
550			mutex_lock(&data->mutex);
551			ret = bmc150_magn_set_max_odr(data, val, 0, 0);
552			if (ret < 0) {
553				mutex_unlock(&data->mutex);
554				return ret;
555			}
556			ret = regmap_update_bits(data->regmap,
557						 BMC150_MAGN_REG_REP_XY,
558						 BMC150_MAGN_REG_REP_DATAMASK,
559						 BMC150_MAGN_REPXY_TO_REGVAL
560						 (val));
561			mutex_unlock(&data->mutex);
562			return ret;
563		case IIO_MOD_Z:
564			if (val < 1 || val > 256)
565				return -EINVAL;
566			mutex_lock(&data->mutex);
567			ret = bmc150_magn_set_max_odr(data, 0, val, 0);
568			if (ret < 0) {
569				mutex_unlock(&data->mutex);
570				return ret;
571			}
572			ret = regmap_update_bits(data->regmap,
573						 BMC150_MAGN_REG_REP_Z,
574						 BMC150_MAGN_REG_REP_DATAMASK,
575						 BMC150_MAGN_REPZ_TO_REGVAL
576						 (val));
577			mutex_unlock(&data->mutex);
578			return ret;
579		default:
580			return -EINVAL;
581		}
582	default:
583		return -EINVAL;
584	}
585}
586
587static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
588						struct device_attribute *attr,
589						char *buf)
590{
591	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
592	struct bmc150_magn_data *data = iio_priv(indio_dev);
593	size_t len = 0;
594	u8 i;
595
596	for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
597		if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
598			break;
599		len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
600				 bmc150_magn_samp_freq_table[i].freq);
601	}
602	/* replace last space with a newline */
603	buf[len - 1] = '\n';
604
605	return len;
606}
607
608static const struct iio_mount_matrix *
609bmc150_magn_get_mount_matrix(const struct iio_dev *indio_dev,
610			      const struct iio_chan_spec *chan)
611{
612	struct bmc150_magn_data *data = iio_priv(indio_dev);
613
614	return &data->orientation;
615}
616
617static const struct iio_chan_spec_ext_info bmc150_magn_ext_info[] = {
618	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_magn_get_mount_matrix),
619	{ }
620};
621
622static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
623
624static struct attribute *bmc150_magn_attributes[] = {
625	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
626	NULL,
627};
628
629static const struct attribute_group bmc150_magn_attrs_group = {
630	.attrs = bmc150_magn_attributes,
631};
632
633#define BMC150_MAGN_CHANNEL(_axis) {					\
634	.type = IIO_MAGN,						\
635	.modified = 1,							\
636	.channel2 = IIO_MOD_##_axis,					\
637	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
638			      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
639	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
640				    BIT(IIO_CHAN_INFO_SCALE),		\
641	.scan_index = AXIS_##_axis,					\
642	.scan_type = {							\
643		.sign = 's',						\
644		.realbits = 32,						\
645		.storagebits = 32,					\
646		.endianness = IIO_LE					\
647	},								\
648	.ext_info = bmc150_magn_ext_info,				\
649}
650
651static const struct iio_chan_spec bmc150_magn_channels[] = {
652	BMC150_MAGN_CHANNEL(X),
653	BMC150_MAGN_CHANNEL(Y),
654	BMC150_MAGN_CHANNEL(Z),
655	IIO_CHAN_SOFT_TIMESTAMP(3),
656};
657
658static const struct iio_info bmc150_magn_info = {
659	.attrs = &bmc150_magn_attrs_group,
660	.read_raw = bmc150_magn_read_raw,
661	.write_raw = bmc150_magn_write_raw,
662};
663
664static const unsigned long bmc150_magn_scan_masks[] = {
665					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
666					0};
667
668static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
669{
670	struct iio_poll_func *pf = p;
671	struct iio_dev *indio_dev = pf->indio_dev;
672	struct bmc150_magn_data *data = iio_priv(indio_dev);
673	int ret;
674
675	mutex_lock(&data->mutex);
676	ret = bmc150_magn_read_xyz(data, data->scan.chans);
677	if (ret < 0)
678		goto err;
679
680	iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
681					   pf->timestamp);
682
683err:
684	mutex_unlock(&data->mutex);
685	iio_trigger_notify_done(indio_dev->trig);
686
687	return IRQ_HANDLED;
688}
689
690static int bmc150_magn_init(struct bmc150_magn_data *data)
691{
692	int ret, chip_id;
693	struct bmc150_magn_preset preset;
694
695	ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
696					 false);
697	if (ret < 0) {
698		dev_err(data->dev,
699			"Failed to bring up device from suspend mode\n");
700		return ret;
701	}
702
703	ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
704	if (ret < 0) {
705		dev_err(data->dev, "Failed reading chip id\n");
706		goto err_poweroff;
707	}
708	if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
709		dev_err(data->dev, "Invalid chip id 0x%x\n", chip_id);
710		ret = -ENODEV;
711		goto err_poweroff;
712	}
713	dev_dbg(data->dev, "Chip id %x\n", chip_id);
714
715	preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
716	ret = bmc150_magn_set_odr(data, preset.odr);
717	if (ret < 0) {
718		dev_err(data->dev, "Failed to set ODR to %d\n",
719			preset.odr);
720		goto err_poweroff;
721	}
722
723	ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
724			   BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
725	if (ret < 0) {
726		dev_err(data->dev, "Failed to set REP XY to %d\n",
727			preset.rep_xy);
728		goto err_poweroff;
729	}
730
731	ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
732			   BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
733	if (ret < 0) {
734		dev_err(data->dev, "Failed to set REP Z to %d\n",
735			preset.rep_z);
736		goto err_poweroff;
737	}
738
739	ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
740				      preset.odr);
741	if (ret < 0)
742		goto err_poweroff;
743
744	ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
745					 true);
746	if (ret < 0) {
747		dev_err(data->dev, "Failed to power on device\n");
748		goto err_poweroff;
749	}
750
751	return 0;
752
753err_poweroff:
754	bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
755	return ret;
756}
757
758static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
759{
760	int tmp;
761
762	/*
763	 * Data Ready (DRDY) is always cleared after
764	 * readout of data registers ends.
765	 */
766	return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
767}
768
769static int bmc150_magn_trig_try_reen(struct iio_trigger *trig)
770{
771	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
772	struct bmc150_magn_data *data = iio_priv(indio_dev);
773	int ret;
774
775	if (!data->dready_trigger_on)
776		return 0;
777
778	mutex_lock(&data->mutex);
779	ret = bmc150_magn_reset_intr(data);
780	mutex_unlock(&data->mutex);
781
782	return ret;
783}
784
785static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
786						  bool state)
787{
788	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
789	struct bmc150_magn_data *data = iio_priv(indio_dev);
790	int ret = 0;
791
792	mutex_lock(&data->mutex);
793	if (state == data->dready_trigger_on)
794		goto err_unlock;
795
796	ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
797				 BMC150_MAGN_MASK_DRDY_EN,
798				 state << BMC150_MAGN_SHIFT_DRDY_EN);
799	if (ret < 0)
800		goto err_unlock;
801
802	data->dready_trigger_on = state;
803
804	if (state) {
805		ret = bmc150_magn_reset_intr(data);
806		if (ret < 0)
807			goto err_unlock;
808	}
809	mutex_unlock(&data->mutex);
810
811	return 0;
812
813err_unlock:
814	mutex_unlock(&data->mutex);
815	return ret;
816}
817
818static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
819	.set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
820	.try_reenable = bmc150_magn_trig_try_reen,
821};
822
823static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev)
824{
825	struct bmc150_magn_data *data = iio_priv(indio_dev);
826
827	return bmc150_magn_set_power_state(data, true);
828}
829
830static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev)
831{
832	struct bmc150_magn_data *data = iio_priv(indio_dev);
833
834	return bmc150_magn_set_power_state(data, false);
835}
836
837static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = {
838	.preenable = bmc150_magn_buffer_preenable,
839	.postdisable = bmc150_magn_buffer_postdisable,
840};
841
842static const char *bmc150_magn_match_acpi_device(struct device *dev)
843{
844	const struct acpi_device_id *id;
845
846	id = acpi_match_device(dev->driver->acpi_match_table, dev);
847	if (!id)
848		return NULL;
849
850	return dev_name(dev);
851}
852
853int bmc150_magn_probe(struct device *dev, struct regmap *regmap,
854		      int irq, const char *name)
855{
856	struct bmc150_magn_data *data;
857	struct iio_dev *indio_dev;
858	int ret;
859
860	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
861	if (!indio_dev)
862		return -ENOMEM;
863
864	data = iio_priv(indio_dev);
865	dev_set_drvdata(dev, indio_dev);
866	data->regmap = regmap;
867	data->irq = irq;
868	data->dev = dev;
869
870	ret = iio_read_mount_matrix(dev, "mount-matrix",
871				&data->orientation);
872	if (ret)
873		return ret;
874
875	if (!name && ACPI_HANDLE(dev))
876		name = bmc150_magn_match_acpi_device(dev);
877
878	mutex_init(&data->mutex);
879
880	ret = bmc150_magn_init(data);
881	if (ret < 0)
882		return ret;
883
884	indio_dev->channels = bmc150_magn_channels;
885	indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
886	indio_dev->available_scan_masks = bmc150_magn_scan_masks;
887	indio_dev->name = name;
888	indio_dev->modes = INDIO_DIRECT_MODE;
889	indio_dev->info = &bmc150_magn_info;
890
891	if (irq > 0) {
892		data->dready_trig = devm_iio_trigger_alloc(dev,
893							   "%s-dev%d",
894							   indio_dev->name,
895							   indio_dev->id);
896		if (!data->dready_trig) {
897			ret = -ENOMEM;
898			dev_err(dev, "iio trigger alloc failed\n");
899			goto err_poweroff;
900		}
901
902		data->dready_trig->dev.parent = dev;
903		data->dready_trig->ops = &bmc150_magn_trigger_ops;
904		iio_trigger_set_drvdata(data->dready_trig, indio_dev);
905		ret = iio_trigger_register(data->dready_trig);
906		if (ret) {
907			dev_err(dev, "iio trigger register failed\n");
908			goto err_poweroff;
909		}
910
911		ret = request_threaded_irq(irq,
912					   iio_trigger_generic_data_rdy_poll,
913					   NULL,
914					   IRQF_TRIGGER_RISING | IRQF_ONESHOT,
915					   BMC150_MAGN_IRQ_NAME,
916					   data->dready_trig);
917		if (ret < 0) {
918			dev_err(dev, "request irq %d failed\n", irq);
919			goto err_trigger_unregister;
920		}
921	}
922
923	ret = iio_triggered_buffer_setup(indio_dev,
924					 iio_pollfunc_store_time,
925					 bmc150_magn_trigger_handler,
926					 &bmc150_magn_buffer_setup_ops);
927	if (ret < 0) {
928		dev_err(dev, "iio triggered buffer setup failed\n");
929		goto err_free_irq;
930	}
931
932	ret = pm_runtime_set_active(dev);
933	if (ret)
934		goto err_buffer_cleanup;
935
936	pm_runtime_enable(dev);
937	pm_runtime_set_autosuspend_delay(dev,
938					 BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
939	pm_runtime_use_autosuspend(dev);
940
941	ret = iio_device_register(indio_dev);
942	if (ret < 0) {
943		dev_err(dev, "unable to register iio device\n");
944		goto err_pm_cleanup;
945	}
946
947	dev_dbg(dev, "Registered device %s\n", name);
948	return 0;
949
950err_pm_cleanup:
951	pm_runtime_dont_use_autosuspend(dev);
952	pm_runtime_disable(dev);
953err_buffer_cleanup:
954	iio_triggered_buffer_cleanup(indio_dev);
955err_free_irq:
956	if (irq > 0)
957		free_irq(irq, data->dready_trig);
958err_trigger_unregister:
959	if (data->dready_trig)
960		iio_trigger_unregister(data->dready_trig);
961err_poweroff:
962	bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
963	return ret;
964}
965EXPORT_SYMBOL(bmc150_magn_probe);
966
967int bmc150_magn_remove(struct device *dev)
968{
969	struct iio_dev *indio_dev = dev_get_drvdata(dev);
970	struct bmc150_magn_data *data = iio_priv(indio_dev);
971
972	iio_device_unregister(indio_dev);
973
974	pm_runtime_disable(dev);
975	pm_runtime_set_suspended(dev);
976
977	iio_triggered_buffer_cleanup(indio_dev);
978
979	if (data->irq > 0)
980		free_irq(data->irq, data->dready_trig);
981
982	if (data->dready_trig)
983		iio_trigger_unregister(data->dready_trig);
984
985	mutex_lock(&data->mutex);
986	bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
987	mutex_unlock(&data->mutex);
988
989	return 0;
990}
991EXPORT_SYMBOL(bmc150_magn_remove);
992
993#ifdef CONFIG_PM
994static int bmc150_magn_runtime_suspend(struct device *dev)
995{
996	struct iio_dev *indio_dev = dev_get_drvdata(dev);
997	struct bmc150_magn_data *data = iio_priv(indio_dev);
998	int ret;
999
1000	mutex_lock(&data->mutex);
1001	ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1002					 true);
1003	mutex_unlock(&data->mutex);
1004	if (ret < 0) {
1005		dev_err(dev, "powering off device failed\n");
1006		return ret;
1007	}
1008	return 0;
1009}
1010
1011/*
1012 * Should be called with data->mutex held.
1013 */
1014static int bmc150_magn_runtime_resume(struct device *dev)
1015{
1016	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1017	struct bmc150_magn_data *data = iio_priv(indio_dev);
1018
1019	return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1020					  true);
1021}
1022#endif
1023
1024#ifdef CONFIG_PM_SLEEP
1025static int bmc150_magn_suspend(struct device *dev)
1026{
1027	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1028	struct bmc150_magn_data *data = iio_priv(indio_dev);
1029	int ret;
1030
1031	mutex_lock(&data->mutex);
1032	ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1033					 true);
1034	mutex_unlock(&data->mutex);
1035
1036	return ret;
1037}
1038
1039static int bmc150_magn_resume(struct device *dev)
1040{
1041	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1042	struct bmc150_magn_data *data = iio_priv(indio_dev);
1043	int ret;
1044
1045	mutex_lock(&data->mutex);
1046	ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1047					 true);
1048	mutex_unlock(&data->mutex);
1049
1050	return ret;
1051}
1052#endif
1053
1054const struct dev_pm_ops bmc150_magn_pm_ops = {
1055	SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
1056	SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
1057			   bmc150_magn_runtime_resume, NULL)
1058};
1059EXPORT_SYMBOL(bmc150_magn_pm_ops);
1060
1061MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
1062MODULE_LICENSE("GPL v2");
1063MODULE_DESCRIPTION("BMC150 magnetometer core driver");
1064