1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for the Asahi Kasei EMD Corporation AK8974
4 * and Aichi Steel AMI305 magnetometer chips.
5 * Based on a patch from Samu Onkalo and the AK8975 IIO driver.
6 *
7 * Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
8 * Copyright (c) 2010 NVIDIA Corporation.
9 * Copyright (C) 2016 Linaro Ltd.
10 *
11 * Author: Samu Onkalo <samu.p.onkalo@nokia.com>
12 * Author: Linus Walleij <linus.walleij@linaro.org>
13 */
14#include <linux/module.h>
15#include <linux/mod_devicetable.h>
16#include <linux/kernel.h>
17#include <linux/i2c.h>
18#include <linux/interrupt.h>
19#include <linux/irq.h> /* For irq_get_irq_data() */
20#include <linux/completion.h>
21#include <linux/err.h>
22#include <linux/mutex.h>
23#include <linux/delay.h>
24#include <linux/bitops.h>
25#include <linux/random.h>
26#include <linux/regmap.h>
27#include <linux/regulator/consumer.h>
28#include <linux/pm_runtime.h>
29
30#include <linux/iio/iio.h>
31#include <linux/iio/sysfs.h>
32#include <linux/iio/buffer.h>
33#include <linux/iio/trigger.h>
34#include <linux/iio/trigger_consumer.h>
35#include <linux/iio/triggered_buffer.h>
36
37/*
38 * 16-bit registers are little-endian. LSB is at the address defined below
39 * and MSB is at the next higher address.
40 */
41
42/* These registers are common for AK8974 and AMI30x */
43#define AK8974_SELFTEST		0x0C
44#define AK8974_SELFTEST_IDLE	0x55
45#define AK8974_SELFTEST_OK	0xAA
46
47#define AK8974_INFO		0x0D
48
49#define AK8974_WHOAMI		0x0F
50#define AK8974_WHOAMI_VALUE_AMI306 0x46
51#define AK8974_WHOAMI_VALUE_AMI305 0x47
52#define AK8974_WHOAMI_VALUE_AK8974 0x48
53#define AK8974_WHOAMI_VALUE_HSCDTD008A 0x49
54
55#define AK8974_DATA_X		0x10
56#define AK8974_DATA_Y		0x12
57#define AK8974_DATA_Z		0x14
58#define AK8974_INT_SRC		0x16
59#define AK8974_STATUS		0x18
60#define AK8974_INT_CLEAR	0x1A
61#define AK8974_CTRL1		0x1B
62#define AK8974_CTRL2		0x1C
63#define AK8974_CTRL3		0x1D
64#define AK8974_INT_CTRL		0x1E
65#define AK8974_INT_THRES	0x26  /* Absolute any axis value threshold */
66#define AK8974_PRESET		0x30
67
68/* AK8974-specific offsets */
69#define AK8974_OFFSET_X		0x20
70#define AK8974_OFFSET_Y		0x22
71#define AK8974_OFFSET_Z		0x24
72/* AMI305-specific offsets */
73#define AMI305_OFFSET_X		0x6C
74#define AMI305_OFFSET_Y		0x72
75#define AMI305_OFFSET_Z		0x78
76
77/* Different temperature registers */
78#define AK8974_TEMP		0x31
79#define AMI305_TEMP		0x60
80
81/* AMI306-specific control register */
82#define AMI306_CTRL4		0x5C
83
84/* AMI306 factory calibration data */
85
86/* fine axis sensitivity */
87#define AMI306_FINEOUTPUT_X	0x90
88#define AMI306_FINEOUTPUT_Y	0x92
89#define AMI306_FINEOUTPUT_Z	0x94
90
91/* axis sensitivity */
92#define AMI306_SENS_X		0x96
93#define AMI306_SENS_Y		0x98
94#define AMI306_SENS_Z		0x9A
95
96/* axis cross-interference */
97#define AMI306_GAIN_PARA_XZ	0x9C
98#define AMI306_GAIN_PARA_XY	0x9D
99#define AMI306_GAIN_PARA_YZ	0x9E
100#define AMI306_GAIN_PARA_YX	0x9F
101#define AMI306_GAIN_PARA_ZY	0xA0
102#define AMI306_GAIN_PARA_ZX	0xA1
103
104/* offset at ZERO magnetic field */
105#define AMI306_OFFZERO_X	0xF8
106#define AMI306_OFFZERO_Y	0xFA
107#define AMI306_OFFZERO_Z	0xFC
108
109
110#define AK8974_INT_X_HIGH	BIT(7) /* Axis over +threshold  */
111#define AK8974_INT_Y_HIGH	BIT(6)
112#define AK8974_INT_Z_HIGH	BIT(5)
113#define AK8974_INT_X_LOW	BIT(4) /* Axis below -threshold	*/
114#define AK8974_INT_Y_LOW	BIT(3)
115#define AK8974_INT_Z_LOW	BIT(2)
116#define AK8974_INT_RANGE	BIT(1) /* Range overflow (any axis) */
117
118#define AK8974_STATUS_DRDY	BIT(6) /* Data ready */
119#define AK8974_STATUS_OVERRUN	BIT(5) /* Data overrun */
120#define AK8974_STATUS_INT	BIT(4) /* Interrupt occurred */
121
122#define AK8974_CTRL1_POWER	BIT(7) /* 0 = standby; 1 = active */
123#define AK8974_CTRL1_RATE	BIT(4) /* 0 = 10 Hz; 1 = 20 Hz	 */
124#define AK8974_CTRL1_FORCE_EN	BIT(1) /* 0 = normal; 1 = force	 */
125#define AK8974_CTRL1_MODE2	BIT(0) /* 0 */
126
127#define AK8974_CTRL2_INT_EN	BIT(4)  /* 1 = enable interrupts	      */
128#define AK8974_CTRL2_DRDY_EN	BIT(3)  /* 1 = enable data ready signal */
129#define AK8974_CTRL2_DRDY_POL	BIT(2)  /* 1 = data ready active high   */
130#define AK8974_CTRL2_RESDEF	(AK8974_CTRL2_DRDY_POL)
131
132#define AK8974_CTRL3_RESET	BIT(7) /* Software reset		  */
133#define AK8974_CTRL3_FORCE	BIT(6) /* Start forced measurement */
134#define AK8974_CTRL3_SELFTEST	BIT(4) /* Set selftest register	  */
135#define AK8974_CTRL3_RESDEF	0x00
136
137#define AK8974_INT_CTRL_XEN	BIT(7) /* Enable interrupt for this axis */
138#define AK8974_INT_CTRL_YEN	BIT(6)
139#define AK8974_INT_CTRL_ZEN	BIT(5)
140#define AK8974_INT_CTRL_XYZEN	(BIT(7)|BIT(6)|BIT(5))
141#define AK8974_INT_CTRL_POL	BIT(3) /* 0 = active low; 1 = active high */
142#define AK8974_INT_CTRL_PULSE	BIT(1) /* 0 = latched; 1 = pulse (50 usec) */
143#define AK8974_INT_CTRL_RESDEF	(AK8974_INT_CTRL_XYZEN | AK8974_INT_CTRL_POL)
144
145/* HSCDTD008A-specific control register */
146#define HSCDTD008A_CTRL4	0x1E
147#define HSCDTD008A_CTRL4_MMD	BIT(7)	/* must be set to 1 */
148#define HSCDTD008A_CTRL4_RANGE	BIT(4)	/* 0 = 14-bit output; 1 = 15-bit output */
149#define HSCDTD008A_CTRL4_RESDEF	(HSCDTD008A_CTRL4_MMD | HSCDTD008A_CTRL4_RANGE)
150
151/* The AMI305 has elaborate FW version and serial number registers */
152#define AMI305_VER		0xE8
153#define AMI305_SN		0xEA
154
155#define AK8974_MAX_RANGE	2048
156
157#define AK8974_POWERON_DELAY	50
158#define AK8974_ACTIVATE_DELAY	1
159#define AK8974_SELFTEST_DELAY	1
160/*
161 * Set the autosuspend to two orders of magnitude larger than the poweron
162 * delay to make sane reasonable power tradeoff savings (5 seconds in
163 * this case).
164 */
165#define AK8974_AUTOSUSPEND_DELAY 5000
166
167#define AK8974_MEASTIME		3
168
169#define AK8974_PWR_ON		1
170#define AK8974_PWR_OFF		0
171
172/**
173 * struct ak8974 - state container for the AK8974 driver
174 * @i2c: parent I2C client
175 * @orientation: mounting matrix, flipped axis etc
176 * @map: regmap to access the AK8974 registers over I2C
177 * @regs: the avdd and dvdd power regulators
178 * @name: the name of the part
179 * @variant: the whoami ID value (for selecting code paths)
180 * @lock: locks the magnetometer for exclusive use during a measurement
181 * @drdy_irq: uses the DRDY IRQ line
182 * @drdy_complete: completion for DRDY
183 * @drdy_active_low: the DRDY IRQ is active low
184 * @scan: timestamps
185 */
186struct ak8974 {
187	struct i2c_client *i2c;
188	struct iio_mount_matrix orientation;
189	struct regmap *map;
190	struct regulator_bulk_data regs[2];
191	const char *name;
192	u8 variant;
193	struct mutex lock;
194	bool drdy_irq;
195	struct completion drdy_complete;
196	bool drdy_active_low;
197	/* Ensure timestamp is naturally aligned */
198	struct {
199		__le16 channels[3];
200		s64 ts __aligned(8);
201	} scan;
202};
203
204static const char ak8974_reg_avdd[] = "avdd";
205static const char ak8974_reg_dvdd[] = "dvdd";
206
207static int ak8974_get_u16_val(struct ak8974 *ak8974, u8 reg, u16 *val)
208{
209	int ret;
210	__le16 bulk;
211
212	ret = regmap_bulk_read(ak8974->map, reg, &bulk, 2);
213	if (ret)
214		return ret;
215	*val = le16_to_cpu(bulk);
216
217	return 0;
218}
219
220static int ak8974_set_u16_val(struct ak8974 *ak8974, u8 reg, u16 val)
221{
222	__le16 bulk = cpu_to_le16(val);
223
224	return regmap_bulk_write(ak8974->map, reg, &bulk, 2);
225}
226
227static int ak8974_set_power(struct ak8974 *ak8974, bool mode)
228{
229	int ret;
230	u8 val;
231
232	val = mode ? AK8974_CTRL1_POWER : 0;
233	val |= AK8974_CTRL1_FORCE_EN;
234	ret = regmap_write(ak8974->map, AK8974_CTRL1, val);
235	if (ret < 0)
236		return ret;
237
238	if (mode)
239		msleep(AK8974_ACTIVATE_DELAY);
240
241	return 0;
242}
243
244static int ak8974_reset(struct ak8974 *ak8974)
245{
246	int ret;
247
248	/* Power on to get register access. Sets CTRL1 reg to reset state */
249	ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
250	if (ret)
251		return ret;
252	ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_RESDEF);
253	if (ret)
254		return ret;
255	ret = regmap_write(ak8974->map, AK8974_CTRL3, AK8974_CTRL3_RESDEF);
256	if (ret)
257		return ret;
258	if (ak8974->variant != AK8974_WHOAMI_VALUE_HSCDTD008A) {
259		ret = regmap_write(ak8974->map, AK8974_INT_CTRL,
260				   AK8974_INT_CTRL_RESDEF);
261		if (ret)
262			return ret;
263	} else {
264		ret = regmap_write(ak8974->map, HSCDTD008A_CTRL4,
265				   HSCDTD008A_CTRL4_RESDEF);
266		if (ret)
267			return ret;
268	}
269
270	/* After reset, power off is default state */
271	return ak8974_set_power(ak8974, AK8974_PWR_OFF);
272}
273
274static int ak8974_configure(struct ak8974 *ak8974)
275{
276	int ret;
277
278	ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_DRDY_EN |
279			   AK8974_CTRL2_INT_EN);
280	if (ret)
281		return ret;
282	ret = regmap_write(ak8974->map, AK8974_CTRL3, 0);
283	if (ret)
284		return ret;
285	if (ak8974->variant == AK8974_WHOAMI_VALUE_AMI306) {
286		/* magic from datasheet: set high-speed measurement mode */
287		ret = ak8974_set_u16_val(ak8974, AMI306_CTRL4, 0xA07E);
288		if (ret)
289			return ret;
290	}
291	if (ak8974->variant == AK8974_WHOAMI_VALUE_HSCDTD008A)
292		return 0;
293	ret = regmap_write(ak8974->map, AK8974_INT_CTRL, AK8974_INT_CTRL_POL);
294	if (ret)
295		return ret;
296
297	return regmap_write(ak8974->map, AK8974_PRESET, 0);
298}
299
300static int ak8974_trigmeas(struct ak8974 *ak8974)
301{
302	unsigned int clear;
303	u8 mask;
304	u8 val;
305	int ret;
306
307	/* Clear any previous measurement overflow status */
308	ret = regmap_read(ak8974->map, AK8974_INT_CLEAR, &clear);
309	if (ret)
310		return ret;
311
312	/* If we have a DRDY IRQ line, use it */
313	if (ak8974->drdy_irq) {
314		mask = AK8974_CTRL2_INT_EN |
315			AK8974_CTRL2_DRDY_EN |
316			AK8974_CTRL2_DRDY_POL;
317		val = AK8974_CTRL2_DRDY_EN;
318
319		if (!ak8974->drdy_active_low)
320			val |= AK8974_CTRL2_DRDY_POL;
321
322		init_completion(&ak8974->drdy_complete);
323		ret = regmap_update_bits(ak8974->map, AK8974_CTRL2,
324					 mask, val);
325		if (ret)
326			return ret;
327	}
328
329	/* Force a measurement */
330	return regmap_update_bits(ak8974->map,
331				  AK8974_CTRL3,
332				  AK8974_CTRL3_FORCE,
333				  AK8974_CTRL3_FORCE);
334}
335
336static int ak8974_await_drdy(struct ak8974 *ak8974)
337{
338	int timeout = 2;
339	unsigned int val;
340	int ret;
341
342	if (ak8974->drdy_irq) {
343		ret = wait_for_completion_timeout(&ak8974->drdy_complete,
344					1 + msecs_to_jiffies(1000));
345		if (!ret) {
346			dev_err(&ak8974->i2c->dev,
347				"timeout waiting for DRDY IRQ\n");
348			return -ETIMEDOUT;
349		}
350		return 0;
351	}
352
353	/* Default delay-based poll loop */
354	do {
355		msleep(AK8974_MEASTIME);
356		ret = regmap_read(ak8974->map, AK8974_STATUS, &val);
357		if (ret < 0)
358			return ret;
359		if (val & AK8974_STATUS_DRDY)
360			return 0;
361	} while (--timeout);
362
363	dev_err(&ak8974->i2c->dev, "timeout waiting for DRDY\n");
364	return -ETIMEDOUT;
365}
366
367static int ak8974_getresult(struct ak8974 *ak8974, __le16 *result)
368{
369	unsigned int src;
370	int ret;
371
372	ret = ak8974_await_drdy(ak8974);
373	if (ret)
374		return ret;
375	ret = regmap_read(ak8974->map, AK8974_INT_SRC, &src);
376	if (ret < 0)
377		return ret;
378
379	/* Out of range overflow! Strong magnet close? */
380	if (src & AK8974_INT_RANGE) {
381		dev_err(&ak8974->i2c->dev,
382			"range overflow in sensor\n");
383		return -ERANGE;
384	}
385
386	ret = regmap_bulk_read(ak8974->map, AK8974_DATA_X, result, 6);
387	if (ret)
388		return ret;
389
390	return ret;
391}
392
393static irqreturn_t ak8974_drdy_irq(int irq, void *d)
394{
395	struct ak8974 *ak8974 = d;
396
397	if (!ak8974->drdy_irq)
398		return IRQ_NONE;
399
400	/* TODO: timestamp here to get good measurement stamps */
401	return IRQ_WAKE_THREAD;
402}
403
404static irqreturn_t ak8974_drdy_irq_thread(int irq, void *d)
405{
406	struct ak8974 *ak8974 = d;
407	unsigned int val;
408	int ret;
409
410	/* Check if this was a DRDY from us */
411	ret = regmap_read(ak8974->map, AK8974_STATUS, &val);
412	if (ret < 0) {
413		dev_err(&ak8974->i2c->dev, "error reading DRDY status\n");
414		return IRQ_HANDLED;
415	}
416	if (val & AK8974_STATUS_DRDY) {
417		/* Yes this was our IRQ */
418		complete(&ak8974->drdy_complete);
419		return IRQ_HANDLED;
420	}
421
422	/* We may be on a shared IRQ, let the next client check */
423	return IRQ_NONE;
424}
425
426static int ak8974_selftest(struct ak8974 *ak8974)
427{
428	struct device *dev = &ak8974->i2c->dev;
429	unsigned int val;
430	int ret;
431
432	ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
433	if (ret)
434		return ret;
435	if (val != AK8974_SELFTEST_IDLE) {
436		dev_err(dev, "selftest not idle before test\n");
437		return -EIO;
438	}
439
440	/* Trigger self-test */
441	ret = regmap_update_bits(ak8974->map,
442			AK8974_CTRL3,
443			AK8974_CTRL3_SELFTEST,
444			AK8974_CTRL3_SELFTEST);
445	if (ret) {
446		dev_err(dev, "could not write CTRL3\n");
447		return ret;
448	}
449
450	msleep(AK8974_SELFTEST_DELAY);
451
452	ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
453	if (ret)
454		return ret;
455	if (val != AK8974_SELFTEST_OK) {
456		dev_err(dev, "selftest result NOT OK (%02x)\n", val);
457		return -EIO;
458	}
459
460	ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
461	if (ret)
462		return ret;
463	if (val != AK8974_SELFTEST_IDLE) {
464		dev_err(dev, "selftest not idle after test (%02x)\n", val);
465		return -EIO;
466	}
467	dev_dbg(dev, "passed self-test\n");
468
469	return 0;
470}
471
472static void ak8974_read_calib_data(struct ak8974 *ak8974, unsigned int reg,
473				   __le16 *tab, size_t tab_size)
474{
475	int ret = regmap_bulk_read(ak8974->map, reg, tab, tab_size);
476	if (ret) {
477		memset(tab, 0xFF, tab_size);
478		dev_warn(&ak8974->i2c->dev,
479			 "can't read calibration data (regs %u..%zu): %d\n",
480			 reg, reg + tab_size - 1, ret);
481	} else {
482		add_device_randomness(tab, tab_size);
483	}
484}
485
486static int ak8974_detect(struct ak8974 *ak8974)
487{
488	unsigned int whoami;
489	const char *name;
490	int ret;
491	unsigned int fw;
492	u16 sn;
493
494	ret = regmap_read(ak8974->map, AK8974_WHOAMI, &whoami);
495	if (ret)
496		return ret;
497
498	name = "ami305";
499
500	switch (whoami) {
501	case AK8974_WHOAMI_VALUE_AMI306:
502		name = "ami306";
503		fallthrough;
504	case AK8974_WHOAMI_VALUE_AMI305:
505		ret = regmap_read(ak8974->map, AMI305_VER, &fw);
506		if (ret)
507			return ret;
508		fw &= 0x7f; /* only bits 0 thru 6 valid */
509		ret = ak8974_get_u16_val(ak8974, AMI305_SN, &sn);
510		if (ret)
511			return ret;
512		add_device_randomness(&sn, sizeof(sn));
513		dev_info(&ak8974->i2c->dev,
514			 "detected %s, FW ver %02x, S/N: %04x\n",
515			 name, fw, sn);
516		break;
517	case AK8974_WHOAMI_VALUE_AK8974:
518		name = "ak8974";
519		dev_info(&ak8974->i2c->dev, "detected AK8974\n");
520		break;
521	case AK8974_WHOAMI_VALUE_HSCDTD008A:
522		name = "hscdtd008a";
523		dev_info(&ak8974->i2c->dev, "detected hscdtd008a\n");
524		break;
525	default:
526		dev_err(&ak8974->i2c->dev, "unsupported device (%02x) ",
527			whoami);
528		return -ENODEV;
529	}
530
531	ak8974->name = name;
532	ak8974->variant = whoami;
533
534	if (whoami == AK8974_WHOAMI_VALUE_AMI306) {
535		__le16 fab_data1[9], fab_data2[3];
536		int i;
537
538		ak8974_read_calib_data(ak8974, AMI306_FINEOUTPUT_X,
539				       fab_data1, sizeof(fab_data1));
540		ak8974_read_calib_data(ak8974, AMI306_OFFZERO_X,
541				       fab_data2, sizeof(fab_data2));
542
543		for (i = 0; i < 3; ++i) {
544			static const char axis[3] = "XYZ";
545			static const char pgaxis[6] = "ZYZXYX";
546			unsigned offz = le16_to_cpu(fab_data2[i]) & 0x7F;
547			unsigned fine = le16_to_cpu(fab_data1[i]);
548			unsigned sens = le16_to_cpu(fab_data1[i + 3]);
549			unsigned pgain1 = le16_to_cpu(fab_data1[i + 6]);
550			unsigned pgain2 = pgain1 >> 8;
551
552			pgain1 &= 0xFF;
553
554			dev_info(&ak8974->i2c->dev,
555				 "factory calibration for axis %c: offz=%u sens=%u fine=%u pga%c=%u pga%c=%u\n",
556				 axis[i], offz, sens, fine, pgaxis[i * 2],
557				 pgain1, pgaxis[i * 2 + 1], pgain2);
558		}
559	}
560
561	return 0;
562}
563
564static int ak8974_measure_channel(struct ak8974 *ak8974, unsigned long address,
565				  int *val)
566{
567	__le16 hw_values[3];
568	int ret;
569
570	pm_runtime_get_sync(&ak8974->i2c->dev);
571	mutex_lock(&ak8974->lock);
572
573	/*
574	 * We read all axes and discard all but one, for optimized
575	 * reading, use the triggered buffer.
576	 */
577	ret = ak8974_trigmeas(ak8974);
578	if (ret)
579		goto out_unlock;
580	ret = ak8974_getresult(ak8974, hw_values);
581	if (ret)
582		goto out_unlock;
583	/*
584	 * This explicit cast to (s16) is necessary as the measurement
585	 * is done in 2's complement with positive and negative values.
586	 * The follwing assignment to *val will then convert the signed
587	 * s16 value to a signed int value.
588	 */
589	*val = (s16)le16_to_cpu(hw_values[address]);
590out_unlock:
591	mutex_unlock(&ak8974->lock);
592	pm_runtime_mark_last_busy(&ak8974->i2c->dev);
593	pm_runtime_put_autosuspend(&ak8974->i2c->dev);
594
595	return ret;
596}
597
598static int ak8974_read_raw(struct iio_dev *indio_dev,
599			   struct iio_chan_spec const *chan,
600			   int *val, int *val2,
601			   long mask)
602{
603	struct ak8974 *ak8974 = iio_priv(indio_dev);
604	int ret;
605
606	switch (mask) {
607	case IIO_CHAN_INFO_RAW:
608		if (chan->address > 2) {
609			dev_err(&ak8974->i2c->dev, "faulty channel address\n");
610			return -EIO;
611		}
612		ret = ak8974_measure_channel(ak8974, chan->address, val);
613		if (ret)
614			return ret;
615		return IIO_VAL_INT;
616	case IIO_CHAN_INFO_SCALE:
617		switch (ak8974->variant) {
618		case AK8974_WHOAMI_VALUE_AMI306:
619		case AK8974_WHOAMI_VALUE_AMI305:
620			/*
621			 * The datasheet for AMI305 and AMI306, page 6
622			 * specifies the range of the sensor to be
623			 * +/- 12 Gauss.
624			 */
625			*val = 12;
626			/*
627			 * 12 bits are used, +/- 2^11
628			 * [ -2048 .. 2047 ] (manual page 20)
629			 * [ 0xf800 .. 0x07ff ]
630			 */
631			*val2 = 11;
632			return IIO_VAL_FRACTIONAL_LOG2;
633		case AK8974_WHOAMI_VALUE_HSCDTD008A:
634			/*
635			 * The datasheet for HSCDTF008A, page 3 specifies the
636			 * range of the sensor as +/- 2.4 mT per axis, which
637			 * corresponds to +/- 2400 uT = +/- 24 Gauss.
638			 */
639			*val = 24;
640			/*
641			 * 15 bits are used (set up in CTRL4), +/- 2^14
642			 * [ -16384 .. 16383 ] (manual page 24)
643			 * [ 0xc000 .. 0x3fff ]
644			 */
645			*val2 = 14;
646			return IIO_VAL_FRACTIONAL_LOG2;
647		default:
648			/* GUESSING +/- 12 Gauss */
649			*val = 12;
650			/* GUESSING 12 bits ADC +/- 2^11 */
651			*val2 = 11;
652			return IIO_VAL_FRACTIONAL_LOG2;
653		}
654		break;
655	default:
656		/* Unknown request */
657		break;
658	}
659
660	return -EINVAL;
661}
662
663static void ak8974_fill_buffer(struct iio_dev *indio_dev)
664{
665	struct ak8974 *ak8974 = iio_priv(indio_dev);
666	int ret;
667
668	pm_runtime_get_sync(&ak8974->i2c->dev);
669	mutex_lock(&ak8974->lock);
670
671	ret = ak8974_trigmeas(ak8974);
672	if (ret) {
673		dev_err(&ak8974->i2c->dev, "error triggering measure\n");
674		goto out_unlock;
675	}
676	ret = ak8974_getresult(ak8974, ak8974->scan.channels);
677	if (ret) {
678		dev_err(&ak8974->i2c->dev, "error getting measures\n");
679		goto out_unlock;
680	}
681
682	iio_push_to_buffers_with_timestamp(indio_dev, &ak8974->scan,
683					   iio_get_time_ns(indio_dev));
684
685 out_unlock:
686	mutex_unlock(&ak8974->lock);
687	pm_runtime_mark_last_busy(&ak8974->i2c->dev);
688	pm_runtime_put_autosuspend(&ak8974->i2c->dev);
689}
690
691static irqreturn_t ak8974_handle_trigger(int irq, void *p)
692{
693	const struct iio_poll_func *pf = p;
694	struct iio_dev *indio_dev = pf->indio_dev;
695
696	ak8974_fill_buffer(indio_dev);
697	iio_trigger_notify_done(indio_dev->trig);
698
699	return IRQ_HANDLED;
700}
701
702static const struct iio_mount_matrix *
703ak8974_get_mount_matrix(const struct iio_dev *indio_dev,
704			const struct iio_chan_spec *chan)
705{
706	struct ak8974 *ak8974 = iio_priv(indio_dev);
707
708	return &ak8974->orientation;
709}
710
711static const struct iio_chan_spec_ext_info ak8974_ext_info[] = {
712	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8974_get_mount_matrix),
713	{ },
714};
715
716#define AK8974_AXIS_CHANNEL(axis, index, bits)				\
717	{								\
718		.type = IIO_MAGN,					\
719		.modified = 1,						\
720		.channel2 = IIO_MOD_##axis,				\
721		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
722			BIT(IIO_CHAN_INFO_SCALE),			\
723		.ext_info = ak8974_ext_info,				\
724		.address = index,					\
725		.scan_index = index,					\
726		.scan_type = {						\
727			.sign = 's',					\
728			.realbits = bits,				\
729			.storagebits = 16,				\
730			.endianness = IIO_LE				\
731		},							\
732	}
733
734/*
735 * We have no datasheet for the AK8974 but we guess that its
736 * ADC is 12 bits. The AMI305 and AMI306 certainly has 12bit
737 * ADC.
738 */
739static const struct iio_chan_spec ak8974_12_bits_channels[] = {
740	AK8974_AXIS_CHANNEL(X, 0, 12),
741	AK8974_AXIS_CHANNEL(Y, 1, 12),
742	AK8974_AXIS_CHANNEL(Z, 2, 12),
743	IIO_CHAN_SOFT_TIMESTAMP(3),
744};
745
746/*
747 * The HSCDTD008A has 15 bits resolution the way we set it up
748 * in CTRL4.
749 */
750static const struct iio_chan_spec ak8974_15_bits_channels[] = {
751	AK8974_AXIS_CHANNEL(X, 0, 15),
752	AK8974_AXIS_CHANNEL(Y, 1, 15),
753	AK8974_AXIS_CHANNEL(Z, 2, 15),
754	IIO_CHAN_SOFT_TIMESTAMP(3),
755};
756
757static const unsigned long ak8974_scan_masks[] = { 0x7, 0 };
758
759static const struct iio_info ak8974_info = {
760	.read_raw = &ak8974_read_raw,
761};
762
763static bool ak8974_writeable_reg(struct device *dev, unsigned int reg)
764{
765	struct i2c_client *i2c = to_i2c_client(dev);
766	struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
767	struct ak8974 *ak8974 = iio_priv(indio_dev);
768
769	switch (reg) {
770	case AK8974_CTRL1:
771	case AK8974_CTRL2:
772	case AK8974_CTRL3:
773	case AK8974_INT_CTRL:
774	case AK8974_INT_THRES:
775	case AK8974_INT_THRES + 1:
776		return true;
777	case AK8974_PRESET:
778	case AK8974_PRESET + 1:
779		return ak8974->variant != AK8974_WHOAMI_VALUE_HSCDTD008A;
780	case AK8974_OFFSET_X:
781	case AK8974_OFFSET_X + 1:
782	case AK8974_OFFSET_Y:
783	case AK8974_OFFSET_Y + 1:
784	case AK8974_OFFSET_Z:
785	case AK8974_OFFSET_Z + 1:
786		return ak8974->variant == AK8974_WHOAMI_VALUE_AK8974 ||
787		       ak8974->variant == AK8974_WHOAMI_VALUE_HSCDTD008A;
788	case AMI305_OFFSET_X:
789	case AMI305_OFFSET_X + 1:
790	case AMI305_OFFSET_Y:
791	case AMI305_OFFSET_Y + 1:
792	case AMI305_OFFSET_Z:
793	case AMI305_OFFSET_Z + 1:
794		return ak8974->variant == AK8974_WHOAMI_VALUE_AMI305 ||
795		       ak8974->variant == AK8974_WHOAMI_VALUE_AMI306;
796	case AMI306_CTRL4:
797	case AMI306_CTRL4 + 1:
798		return ak8974->variant == AK8974_WHOAMI_VALUE_AMI306;
799	default:
800		return false;
801	}
802}
803
804static bool ak8974_precious_reg(struct device *dev, unsigned int reg)
805{
806	return reg == AK8974_INT_CLEAR;
807}
808
809static const struct regmap_config ak8974_regmap_config = {
810	.reg_bits = 8,
811	.val_bits = 8,
812	.max_register = 0xff,
813	.writeable_reg = ak8974_writeable_reg,
814	.precious_reg = ak8974_precious_reg,
815};
816
817static int ak8974_probe(struct i2c_client *i2c,
818			const struct i2c_device_id *id)
819{
820	struct iio_dev *indio_dev;
821	struct ak8974 *ak8974;
822	unsigned long irq_trig;
823	int irq = i2c->irq;
824	int ret;
825
826	/* Register with IIO */
827	indio_dev = devm_iio_device_alloc(&i2c->dev, sizeof(*ak8974));
828	if (indio_dev == NULL)
829		return -ENOMEM;
830
831	ak8974 = iio_priv(indio_dev);
832	i2c_set_clientdata(i2c, indio_dev);
833	ak8974->i2c = i2c;
834	mutex_init(&ak8974->lock);
835
836	ret = iio_read_mount_matrix(&i2c->dev, "mount-matrix",
837				    &ak8974->orientation);
838	if (ret)
839		return ret;
840
841	ak8974->regs[0].supply = ak8974_reg_avdd;
842	ak8974->regs[1].supply = ak8974_reg_dvdd;
843
844	ret = devm_regulator_bulk_get(&i2c->dev,
845				      ARRAY_SIZE(ak8974->regs),
846				      ak8974->regs);
847	if (ret < 0)
848		return dev_err_probe(&i2c->dev, ret, "cannot get regulators\n");
849
850	ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
851	if (ret < 0) {
852		dev_err(&i2c->dev, "cannot enable regulators\n");
853		return ret;
854	}
855
856	/* Take runtime PM online */
857	pm_runtime_get_noresume(&i2c->dev);
858	pm_runtime_set_active(&i2c->dev);
859	pm_runtime_enable(&i2c->dev);
860
861	ak8974->map = devm_regmap_init_i2c(i2c, &ak8974_regmap_config);
862	if (IS_ERR(ak8974->map)) {
863		dev_err(&i2c->dev, "failed to allocate register map\n");
864		pm_runtime_put_noidle(&i2c->dev);
865		pm_runtime_disable(&i2c->dev);
866		return PTR_ERR(ak8974->map);
867	}
868
869	ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
870	if (ret) {
871		dev_err(&i2c->dev, "could not power on\n");
872		goto disable_pm;
873	}
874
875	ret = ak8974_detect(ak8974);
876	if (ret) {
877		dev_err(&i2c->dev, "neither AK8974 nor AMI30x found\n");
878		goto disable_pm;
879	}
880
881	ret = ak8974_selftest(ak8974);
882	if (ret)
883		dev_err(&i2c->dev, "selftest failed (continuing anyway)\n");
884
885	ret = ak8974_reset(ak8974);
886	if (ret) {
887		dev_err(&i2c->dev, "AK8974 reset failed\n");
888		goto disable_pm;
889	}
890
891	switch (ak8974->variant) {
892	case AK8974_WHOAMI_VALUE_AMI306:
893	case AK8974_WHOAMI_VALUE_AMI305:
894		indio_dev->channels = ak8974_12_bits_channels;
895		indio_dev->num_channels = ARRAY_SIZE(ak8974_12_bits_channels);
896		break;
897	case AK8974_WHOAMI_VALUE_HSCDTD008A:
898		indio_dev->channels = ak8974_15_bits_channels;
899		indio_dev->num_channels = ARRAY_SIZE(ak8974_15_bits_channels);
900		break;
901	default:
902		indio_dev->channels = ak8974_12_bits_channels;
903		indio_dev->num_channels = ARRAY_SIZE(ak8974_12_bits_channels);
904		break;
905	}
906	indio_dev->info = &ak8974_info;
907	indio_dev->available_scan_masks = ak8974_scan_masks;
908	indio_dev->modes = INDIO_DIRECT_MODE;
909	indio_dev->name = ak8974->name;
910
911	ret = iio_triggered_buffer_setup(indio_dev, NULL,
912					 ak8974_handle_trigger,
913					 NULL);
914	if (ret) {
915		dev_err(&i2c->dev, "triggered buffer setup failed\n");
916		goto disable_pm;
917	}
918
919	/* If we have a valid DRDY IRQ, make use of it */
920	if (irq > 0) {
921		irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
922		if (irq_trig == IRQF_TRIGGER_RISING) {
923			dev_info(&i2c->dev, "enable rising edge DRDY IRQ\n");
924		} else if (irq_trig == IRQF_TRIGGER_FALLING) {
925			ak8974->drdy_active_low = true;
926			dev_info(&i2c->dev, "enable falling edge DRDY IRQ\n");
927		} else {
928			irq_trig = IRQF_TRIGGER_RISING;
929		}
930		irq_trig |= IRQF_ONESHOT;
931		irq_trig |= IRQF_SHARED;
932
933		ret = devm_request_threaded_irq(&i2c->dev,
934						irq,
935						ak8974_drdy_irq,
936						ak8974_drdy_irq_thread,
937						irq_trig,
938						ak8974->name,
939						ak8974);
940		if (ret) {
941			dev_err(&i2c->dev, "unable to request DRDY IRQ "
942				"- proceeding without IRQ\n");
943			goto no_irq;
944		}
945		ak8974->drdy_irq = true;
946	}
947
948no_irq:
949	ret = iio_device_register(indio_dev);
950	if (ret) {
951		dev_err(&i2c->dev, "device register failed\n");
952		goto cleanup_buffer;
953	}
954
955	pm_runtime_set_autosuspend_delay(&i2c->dev,
956					 AK8974_AUTOSUSPEND_DELAY);
957	pm_runtime_use_autosuspend(&i2c->dev);
958	pm_runtime_put(&i2c->dev);
959
960	return 0;
961
962cleanup_buffer:
963	iio_triggered_buffer_cleanup(indio_dev);
964disable_pm:
965	pm_runtime_put_noidle(&i2c->dev);
966	pm_runtime_disable(&i2c->dev);
967	ak8974_set_power(ak8974, AK8974_PWR_OFF);
968	regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
969
970	return ret;
971}
972
973static int ak8974_remove(struct i2c_client *i2c)
974{
975	struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
976	struct ak8974 *ak8974 = iio_priv(indio_dev);
977
978	iio_device_unregister(indio_dev);
979	iio_triggered_buffer_cleanup(indio_dev);
980	pm_runtime_get_sync(&i2c->dev);
981	pm_runtime_put_noidle(&i2c->dev);
982	pm_runtime_disable(&i2c->dev);
983	ak8974_set_power(ak8974, AK8974_PWR_OFF);
984	regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
985
986	return 0;
987}
988
989static int __maybe_unused ak8974_runtime_suspend(struct device *dev)
990{
991	struct ak8974 *ak8974 =
992		iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
993
994	ak8974_set_power(ak8974, AK8974_PWR_OFF);
995	regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
996
997	return 0;
998}
999
1000static int __maybe_unused ak8974_runtime_resume(struct device *dev)
1001{
1002	struct ak8974 *ak8974 =
1003		iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
1004	int ret;
1005
1006	ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
1007	if (ret)
1008		return ret;
1009	msleep(AK8974_POWERON_DELAY);
1010	ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
1011	if (ret)
1012		goto out_regulator_disable;
1013
1014	ret = ak8974_configure(ak8974);
1015	if (ret)
1016		goto out_disable_power;
1017
1018	return 0;
1019
1020out_disable_power:
1021	ak8974_set_power(ak8974, AK8974_PWR_OFF);
1022out_regulator_disable:
1023	regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
1024
1025	return ret;
1026}
1027
1028static const struct dev_pm_ops ak8974_dev_pm_ops = {
1029	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1030				pm_runtime_force_resume)
1031	SET_RUNTIME_PM_OPS(ak8974_runtime_suspend,
1032			   ak8974_runtime_resume, NULL)
1033};
1034
1035static const struct i2c_device_id ak8974_id[] = {
1036	{"ami305", 0 },
1037	{"ami306", 0 },
1038	{"ak8974", 0 },
1039	{"hscdtd008a", 0 },
1040	{}
1041};
1042MODULE_DEVICE_TABLE(i2c, ak8974_id);
1043
1044static const struct of_device_id ak8974_of_match[] = {
1045	{ .compatible = "asahi-kasei,ak8974", },
1046	{ .compatible = "alps,hscdtd008a", },
1047	{}
1048};
1049MODULE_DEVICE_TABLE(of, ak8974_of_match);
1050
1051static struct i2c_driver ak8974_driver = {
1052	.driver	 = {
1053		.name	= "ak8974",
1054		.pm = &ak8974_dev_pm_ops,
1055		.of_match_table = ak8974_of_match,
1056	},
1057	.probe	  = ak8974_probe,
1058	.remove	  = ak8974_remove,
1059	.id_table = ak8974_id,
1060};
1061module_i2c_driver(ak8974_driver);
1062
1063MODULE_DESCRIPTION("AK8974 and AMI30x 3-axis magnetometer driver");
1064MODULE_AUTHOR("Samu Onkalo");
1065MODULE_AUTHOR("Linus Walleij");
1066MODULE_LICENSE("GPL v2");
1067