18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * DHT11/DHT22 bit banging GPIO driver 48c2ecf20Sopenharmony_ci * 58c2ecf20Sopenharmony_ci * Copyright (c) Harald Geyer <harald@ccbib.org> 68c2ecf20Sopenharmony_ci */ 78c2ecf20Sopenharmony_ci 88c2ecf20Sopenharmony_ci#include <linux/err.h> 98c2ecf20Sopenharmony_ci#include <linux/interrupt.h> 108c2ecf20Sopenharmony_ci#include <linux/device.h> 118c2ecf20Sopenharmony_ci#include <linux/kernel.h> 128c2ecf20Sopenharmony_ci#include <linux/printk.h> 138c2ecf20Sopenharmony_ci#include <linux/slab.h> 148c2ecf20Sopenharmony_ci#include <linux/of.h> 158c2ecf20Sopenharmony_ci#include <linux/of_device.h> 168c2ecf20Sopenharmony_ci#include <linux/sysfs.h> 178c2ecf20Sopenharmony_ci#include <linux/io.h> 188c2ecf20Sopenharmony_ci#include <linux/module.h> 198c2ecf20Sopenharmony_ci#include <linux/platform_device.h> 208c2ecf20Sopenharmony_ci#include <linux/wait.h> 218c2ecf20Sopenharmony_ci#include <linux/bitops.h> 228c2ecf20Sopenharmony_ci#include <linux/completion.h> 238c2ecf20Sopenharmony_ci#include <linux/mutex.h> 248c2ecf20Sopenharmony_ci#include <linux/delay.h> 258c2ecf20Sopenharmony_ci#include <linux/gpio/consumer.h> 268c2ecf20Sopenharmony_ci#include <linux/timekeeping.h> 278c2ecf20Sopenharmony_ci 288c2ecf20Sopenharmony_ci#include <linux/iio/iio.h> 298c2ecf20Sopenharmony_ci 308c2ecf20Sopenharmony_ci#define DRIVER_NAME "dht11" 318c2ecf20Sopenharmony_ci 328c2ecf20Sopenharmony_ci#define DHT11_DATA_VALID_TIME 2000000000 /* 2s in ns */ 338c2ecf20Sopenharmony_ci 348c2ecf20Sopenharmony_ci#define DHT11_EDGES_PREAMBLE 2 358c2ecf20Sopenharmony_ci#define DHT11_BITS_PER_READ 40 368c2ecf20Sopenharmony_ci/* 378c2ecf20Sopenharmony_ci * Note that when reading the sensor actually 84 edges are detected, but 388c2ecf20Sopenharmony_ci * since the last edge is not significant, we only store 83: 398c2ecf20Sopenharmony_ci */ 408c2ecf20Sopenharmony_ci#define DHT11_EDGES_PER_READ (2 * DHT11_BITS_PER_READ + \ 418c2ecf20Sopenharmony_ci DHT11_EDGES_PREAMBLE + 1) 428c2ecf20Sopenharmony_ci 438c2ecf20Sopenharmony_ci/* 448c2ecf20Sopenharmony_ci * Data transmission timing: 458c2ecf20Sopenharmony_ci * Data bits are encoded as pulse length (high time) on the data line. 468c2ecf20Sopenharmony_ci * 0-bit: 22-30uS -- typically 26uS (AM2302) 478c2ecf20Sopenharmony_ci * 1-bit: 68-75uS -- typically 70uS (AM2302) 488c2ecf20Sopenharmony_ci * The acutal timings also depend on the properties of the cable, with 498c2ecf20Sopenharmony_ci * longer cables typically making pulses shorter. 508c2ecf20Sopenharmony_ci * 518c2ecf20Sopenharmony_ci * Our decoding depends on the time resolution of the system: 528c2ecf20Sopenharmony_ci * timeres > 34uS ... don't know what a 1-tick pulse is 538c2ecf20Sopenharmony_ci * 34uS > timeres > 30uS ... no problem (30kHz and 32kHz clocks) 548c2ecf20Sopenharmony_ci * 30uS > timeres > 23uS ... don't know what a 2-tick pulse is 558c2ecf20Sopenharmony_ci * timeres < 23uS ... no problem 568c2ecf20Sopenharmony_ci * 578c2ecf20Sopenharmony_ci * Luckily clocks in the 33-44kHz range are quite uncommon, so we can 588c2ecf20Sopenharmony_ci * support most systems if the threshold for decoding a pulse as 1-bit 598c2ecf20Sopenharmony_ci * is chosen carefully. If somebody really wants to support clocks around 608c2ecf20Sopenharmony_ci * 40kHz, where this driver is most unreliable, there are two options. 618c2ecf20Sopenharmony_ci * a) select an implementation using busy loop polling on those systems 628c2ecf20Sopenharmony_ci * b) use the checksum to do some probabilistic decoding 638c2ecf20Sopenharmony_ci */ 648c2ecf20Sopenharmony_ci#define DHT11_START_TRANSMISSION_MIN 18000 /* us */ 658c2ecf20Sopenharmony_ci#define DHT11_START_TRANSMISSION_MAX 20000 /* us */ 668c2ecf20Sopenharmony_ci#define DHT11_MIN_TIMERES 34000 /* ns */ 678c2ecf20Sopenharmony_ci#define DHT11_THRESHOLD 49000 /* ns */ 688c2ecf20Sopenharmony_ci#define DHT11_AMBIG_LOW 23000 /* ns */ 698c2ecf20Sopenharmony_ci#define DHT11_AMBIG_HIGH 30000 /* ns */ 708c2ecf20Sopenharmony_ci 718c2ecf20Sopenharmony_cistruct dht11 { 728c2ecf20Sopenharmony_ci struct device *dev; 738c2ecf20Sopenharmony_ci 748c2ecf20Sopenharmony_ci struct gpio_desc *gpiod; 758c2ecf20Sopenharmony_ci int irq; 768c2ecf20Sopenharmony_ci 778c2ecf20Sopenharmony_ci struct completion completion; 788c2ecf20Sopenharmony_ci /* The iio sysfs interface doesn't prevent concurrent reads: */ 798c2ecf20Sopenharmony_ci struct mutex lock; 808c2ecf20Sopenharmony_ci 818c2ecf20Sopenharmony_ci s64 timestamp; 828c2ecf20Sopenharmony_ci int temperature; 838c2ecf20Sopenharmony_ci int humidity; 848c2ecf20Sopenharmony_ci 858c2ecf20Sopenharmony_ci /* num_edges: -1 means "no transmission in progress" */ 868c2ecf20Sopenharmony_ci int num_edges; 878c2ecf20Sopenharmony_ci struct {s64 ts; int value; } edges[DHT11_EDGES_PER_READ]; 888c2ecf20Sopenharmony_ci}; 898c2ecf20Sopenharmony_ci 908c2ecf20Sopenharmony_ci#ifdef CONFIG_DYNAMIC_DEBUG 918c2ecf20Sopenharmony_ci/* 928c2ecf20Sopenharmony_ci * dht11_edges_print: show the data as actually received by the 938c2ecf20Sopenharmony_ci * driver. 948c2ecf20Sopenharmony_ci */ 958c2ecf20Sopenharmony_cistatic void dht11_edges_print(struct dht11 *dht11) 968c2ecf20Sopenharmony_ci{ 978c2ecf20Sopenharmony_ci int i; 988c2ecf20Sopenharmony_ci 998c2ecf20Sopenharmony_ci dev_dbg(dht11->dev, "%d edges detected:\n", dht11->num_edges); 1008c2ecf20Sopenharmony_ci for (i = 1; i < dht11->num_edges; ++i) { 1018c2ecf20Sopenharmony_ci dev_dbg(dht11->dev, "%d: %lld ns %s\n", i, 1028c2ecf20Sopenharmony_ci dht11->edges[i].ts - dht11->edges[i - 1].ts, 1038c2ecf20Sopenharmony_ci dht11->edges[i - 1].value ? "high" : "low"); 1048c2ecf20Sopenharmony_ci } 1058c2ecf20Sopenharmony_ci} 1068c2ecf20Sopenharmony_ci#endif /* CONFIG_DYNAMIC_DEBUG */ 1078c2ecf20Sopenharmony_ci 1088c2ecf20Sopenharmony_cistatic unsigned char dht11_decode_byte(char *bits) 1098c2ecf20Sopenharmony_ci{ 1108c2ecf20Sopenharmony_ci unsigned char ret = 0; 1118c2ecf20Sopenharmony_ci int i; 1128c2ecf20Sopenharmony_ci 1138c2ecf20Sopenharmony_ci for (i = 0; i < 8; ++i) { 1148c2ecf20Sopenharmony_ci ret <<= 1; 1158c2ecf20Sopenharmony_ci if (bits[i]) 1168c2ecf20Sopenharmony_ci ++ret; 1178c2ecf20Sopenharmony_ci } 1188c2ecf20Sopenharmony_ci 1198c2ecf20Sopenharmony_ci return ret; 1208c2ecf20Sopenharmony_ci} 1218c2ecf20Sopenharmony_ci 1228c2ecf20Sopenharmony_cistatic int dht11_decode(struct dht11 *dht11, int offset) 1238c2ecf20Sopenharmony_ci{ 1248c2ecf20Sopenharmony_ci int i, t; 1258c2ecf20Sopenharmony_ci char bits[DHT11_BITS_PER_READ]; 1268c2ecf20Sopenharmony_ci unsigned char temp_int, temp_dec, hum_int, hum_dec, checksum; 1278c2ecf20Sopenharmony_ci 1288c2ecf20Sopenharmony_ci for (i = 0; i < DHT11_BITS_PER_READ; ++i) { 1298c2ecf20Sopenharmony_ci t = dht11->edges[offset + 2 * i + 2].ts - 1308c2ecf20Sopenharmony_ci dht11->edges[offset + 2 * i + 1].ts; 1318c2ecf20Sopenharmony_ci if (!dht11->edges[offset + 2 * i + 1].value) { 1328c2ecf20Sopenharmony_ci dev_dbg(dht11->dev, 1338c2ecf20Sopenharmony_ci "lost synchronisation at edge %d\n", 1348c2ecf20Sopenharmony_ci offset + 2 * i + 1); 1358c2ecf20Sopenharmony_ci return -EIO; 1368c2ecf20Sopenharmony_ci } 1378c2ecf20Sopenharmony_ci bits[i] = t > DHT11_THRESHOLD; 1388c2ecf20Sopenharmony_ci } 1398c2ecf20Sopenharmony_ci 1408c2ecf20Sopenharmony_ci hum_int = dht11_decode_byte(bits); 1418c2ecf20Sopenharmony_ci hum_dec = dht11_decode_byte(&bits[8]); 1428c2ecf20Sopenharmony_ci temp_int = dht11_decode_byte(&bits[16]); 1438c2ecf20Sopenharmony_ci temp_dec = dht11_decode_byte(&bits[24]); 1448c2ecf20Sopenharmony_ci checksum = dht11_decode_byte(&bits[32]); 1458c2ecf20Sopenharmony_ci 1468c2ecf20Sopenharmony_ci if (((hum_int + hum_dec + temp_int + temp_dec) & 0xff) != checksum) { 1478c2ecf20Sopenharmony_ci dev_dbg(dht11->dev, "invalid checksum\n"); 1488c2ecf20Sopenharmony_ci return -EIO; 1498c2ecf20Sopenharmony_ci } 1508c2ecf20Sopenharmony_ci 1518c2ecf20Sopenharmony_ci dht11->timestamp = ktime_get_boottime_ns(); 1528c2ecf20Sopenharmony_ci if (hum_int < 4) { /* DHT22: 100000 = (3*256+232)*100 */ 1538c2ecf20Sopenharmony_ci dht11->temperature = (((temp_int & 0x7f) << 8) + temp_dec) * 1548c2ecf20Sopenharmony_ci ((temp_int & 0x80) ? -100 : 100); 1558c2ecf20Sopenharmony_ci dht11->humidity = ((hum_int << 8) + hum_dec) * 100; 1568c2ecf20Sopenharmony_ci } else if (temp_dec == 0 && hum_dec == 0) { /* DHT11 */ 1578c2ecf20Sopenharmony_ci dht11->temperature = temp_int * 1000; 1588c2ecf20Sopenharmony_ci dht11->humidity = hum_int * 1000; 1598c2ecf20Sopenharmony_ci } else { 1608c2ecf20Sopenharmony_ci dev_err(dht11->dev, 1618c2ecf20Sopenharmony_ci "Don't know how to decode data: %d %d %d %d\n", 1628c2ecf20Sopenharmony_ci hum_int, hum_dec, temp_int, temp_dec); 1638c2ecf20Sopenharmony_ci return -EIO; 1648c2ecf20Sopenharmony_ci } 1658c2ecf20Sopenharmony_ci 1668c2ecf20Sopenharmony_ci return 0; 1678c2ecf20Sopenharmony_ci} 1688c2ecf20Sopenharmony_ci 1698c2ecf20Sopenharmony_ci/* 1708c2ecf20Sopenharmony_ci * IRQ handler called on GPIO edges 1718c2ecf20Sopenharmony_ci */ 1728c2ecf20Sopenharmony_cistatic irqreturn_t dht11_handle_irq(int irq, void *data) 1738c2ecf20Sopenharmony_ci{ 1748c2ecf20Sopenharmony_ci struct iio_dev *iio = data; 1758c2ecf20Sopenharmony_ci struct dht11 *dht11 = iio_priv(iio); 1768c2ecf20Sopenharmony_ci 1778c2ecf20Sopenharmony_ci if (dht11->num_edges < DHT11_EDGES_PER_READ && dht11->num_edges >= 0) { 1788c2ecf20Sopenharmony_ci dht11->edges[dht11->num_edges].ts = ktime_get_boottime_ns(); 1798c2ecf20Sopenharmony_ci dht11->edges[dht11->num_edges++].value = 1808c2ecf20Sopenharmony_ci gpiod_get_value(dht11->gpiod); 1818c2ecf20Sopenharmony_ci 1828c2ecf20Sopenharmony_ci if (dht11->num_edges >= DHT11_EDGES_PER_READ) 1838c2ecf20Sopenharmony_ci complete(&dht11->completion); 1848c2ecf20Sopenharmony_ci } 1858c2ecf20Sopenharmony_ci 1868c2ecf20Sopenharmony_ci return IRQ_HANDLED; 1878c2ecf20Sopenharmony_ci} 1888c2ecf20Sopenharmony_ci 1898c2ecf20Sopenharmony_cistatic int dht11_read_raw(struct iio_dev *iio_dev, 1908c2ecf20Sopenharmony_ci const struct iio_chan_spec *chan, 1918c2ecf20Sopenharmony_ci int *val, int *val2, long m) 1928c2ecf20Sopenharmony_ci{ 1938c2ecf20Sopenharmony_ci struct dht11 *dht11 = iio_priv(iio_dev); 1948c2ecf20Sopenharmony_ci int ret, timeres, offset; 1958c2ecf20Sopenharmony_ci 1968c2ecf20Sopenharmony_ci mutex_lock(&dht11->lock); 1978c2ecf20Sopenharmony_ci if (dht11->timestamp + DHT11_DATA_VALID_TIME < ktime_get_boottime_ns()) { 1988c2ecf20Sopenharmony_ci timeres = ktime_get_resolution_ns(); 1998c2ecf20Sopenharmony_ci dev_dbg(dht11->dev, "current timeresolution: %dns\n", timeres); 2008c2ecf20Sopenharmony_ci if (timeres > DHT11_MIN_TIMERES) { 2018c2ecf20Sopenharmony_ci dev_err(dht11->dev, "timeresolution %dns too low\n", 2028c2ecf20Sopenharmony_ci timeres); 2038c2ecf20Sopenharmony_ci /* In theory a better clock could become available 2048c2ecf20Sopenharmony_ci * at some point ... and there is no error code 2058c2ecf20Sopenharmony_ci * that really fits better. 2068c2ecf20Sopenharmony_ci */ 2078c2ecf20Sopenharmony_ci ret = -EAGAIN; 2088c2ecf20Sopenharmony_ci goto err; 2098c2ecf20Sopenharmony_ci } 2108c2ecf20Sopenharmony_ci if (timeres > DHT11_AMBIG_LOW && timeres < DHT11_AMBIG_HIGH) 2118c2ecf20Sopenharmony_ci dev_warn(dht11->dev, 2128c2ecf20Sopenharmony_ci "timeresolution: %dns - decoding ambiguous\n", 2138c2ecf20Sopenharmony_ci timeres); 2148c2ecf20Sopenharmony_ci 2158c2ecf20Sopenharmony_ci reinit_completion(&dht11->completion); 2168c2ecf20Sopenharmony_ci 2178c2ecf20Sopenharmony_ci dht11->num_edges = 0; 2188c2ecf20Sopenharmony_ci ret = gpiod_direction_output(dht11->gpiod, 0); 2198c2ecf20Sopenharmony_ci if (ret) 2208c2ecf20Sopenharmony_ci goto err; 2218c2ecf20Sopenharmony_ci usleep_range(DHT11_START_TRANSMISSION_MIN, 2228c2ecf20Sopenharmony_ci DHT11_START_TRANSMISSION_MAX); 2238c2ecf20Sopenharmony_ci ret = gpiod_direction_input(dht11->gpiod); 2248c2ecf20Sopenharmony_ci if (ret) 2258c2ecf20Sopenharmony_ci goto err; 2268c2ecf20Sopenharmony_ci 2278c2ecf20Sopenharmony_ci ret = request_irq(dht11->irq, dht11_handle_irq, 2288c2ecf20Sopenharmony_ci IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, 2298c2ecf20Sopenharmony_ci iio_dev->name, iio_dev); 2308c2ecf20Sopenharmony_ci if (ret) 2318c2ecf20Sopenharmony_ci goto err; 2328c2ecf20Sopenharmony_ci 2338c2ecf20Sopenharmony_ci ret = wait_for_completion_killable_timeout(&dht11->completion, 2348c2ecf20Sopenharmony_ci HZ); 2358c2ecf20Sopenharmony_ci 2368c2ecf20Sopenharmony_ci free_irq(dht11->irq, iio_dev); 2378c2ecf20Sopenharmony_ci 2388c2ecf20Sopenharmony_ci#ifdef CONFIG_DYNAMIC_DEBUG 2398c2ecf20Sopenharmony_ci dht11_edges_print(dht11); 2408c2ecf20Sopenharmony_ci#endif 2418c2ecf20Sopenharmony_ci 2428c2ecf20Sopenharmony_ci if (ret == 0 && dht11->num_edges < DHT11_EDGES_PER_READ - 1) { 2438c2ecf20Sopenharmony_ci dev_err(dht11->dev, "Only %d signal edges detected\n", 2448c2ecf20Sopenharmony_ci dht11->num_edges); 2458c2ecf20Sopenharmony_ci ret = -ETIMEDOUT; 2468c2ecf20Sopenharmony_ci } 2478c2ecf20Sopenharmony_ci if (ret < 0) 2488c2ecf20Sopenharmony_ci goto err; 2498c2ecf20Sopenharmony_ci 2508c2ecf20Sopenharmony_ci offset = DHT11_EDGES_PREAMBLE + 2518c2ecf20Sopenharmony_ci dht11->num_edges - DHT11_EDGES_PER_READ; 2528c2ecf20Sopenharmony_ci for (; offset >= 0; --offset) { 2538c2ecf20Sopenharmony_ci ret = dht11_decode(dht11, offset); 2548c2ecf20Sopenharmony_ci if (!ret) 2558c2ecf20Sopenharmony_ci break; 2568c2ecf20Sopenharmony_ci } 2578c2ecf20Sopenharmony_ci 2588c2ecf20Sopenharmony_ci if (ret) 2598c2ecf20Sopenharmony_ci goto err; 2608c2ecf20Sopenharmony_ci } 2618c2ecf20Sopenharmony_ci 2628c2ecf20Sopenharmony_ci ret = IIO_VAL_INT; 2638c2ecf20Sopenharmony_ci if (chan->type == IIO_TEMP) 2648c2ecf20Sopenharmony_ci *val = dht11->temperature; 2658c2ecf20Sopenharmony_ci else if (chan->type == IIO_HUMIDITYRELATIVE) 2668c2ecf20Sopenharmony_ci *val = dht11->humidity; 2678c2ecf20Sopenharmony_ci else 2688c2ecf20Sopenharmony_ci ret = -EINVAL; 2698c2ecf20Sopenharmony_cierr: 2708c2ecf20Sopenharmony_ci dht11->num_edges = -1; 2718c2ecf20Sopenharmony_ci mutex_unlock(&dht11->lock); 2728c2ecf20Sopenharmony_ci return ret; 2738c2ecf20Sopenharmony_ci} 2748c2ecf20Sopenharmony_ci 2758c2ecf20Sopenharmony_cistatic const struct iio_info dht11_iio_info = { 2768c2ecf20Sopenharmony_ci .read_raw = dht11_read_raw, 2778c2ecf20Sopenharmony_ci}; 2788c2ecf20Sopenharmony_ci 2798c2ecf20Sopenharmony_cistatic const struct iio_chan_spec dht11_chan_spec[] = { 2808c2ecf20Sopenharmony_ci { .type = IIO_TEMP, 2818c2ecf20Sopenharmony_ci .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), }, 2828c2ecf20Sopenharmony_ci { .type = IIO_HUMIDITYRELATIVE, 2838c2ecf20Sopenharmony_ci .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), } 2848c2ecf20Sopenharmony_ci}; 2858c2ecf20Sopenharmony_ci 2868c2ecf20Sopenharmony_cistatic const struct of_device_id dht11_dt_ids[] = { 2878c2ecf20Sopenharmony_ci { .compatible = "dht11", }, 2888c2ecf20Sopenharmony_ci { } 2898c2ecf20Sopenharmony_ci}; 2908c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(of, dht11_dt_ids); 2918c2ecf20Sopenharmony_ci 2928c2ecf20Sopenharmony_cistatic int dht11_probe(struct platform_device *pdev) 2938c2ecf20Sopenharmony_ci{ 2948c2ecf20Sopenharmony_ci struct device *dev = &pdev->dev; 2958c2ecf20Sopenharmony_ci struct dht11 *dht11; 2968c2ecf20Sopenharmony_ci struct iio_dev *iio; 2978c2ecf20Sopenharmony_ci 2988c2ecf20Sopenharmony_ci iio = devm_iio_device_alloc(dev, sizeof(*dht11)); 2998c2ecf20Sopenharmony_ci if (!iio) { 3008c2ecf20Sopenharmony_ci dev_err(dev, "Failed to allocate IIO device\n"); 3018c2ecf20Sopenharmony_ci return -ENOMEM; 3028c2ecf20Sopenharmony_ci } 3038c2ecf20Sopenharmony_ci 3048c2ecf20Sopenharmony_ci dht11 = iio_priv(iio); 3058c2ecf20Sopenharmony_ci dht11->dev = dev; 3068c2ecf20Sopenharmony_ci dht11->gpiod = devm_gpiod_get(dev, NULL, GPIOD_IN); 3078c2ecf20Sopenharmony_ci if (IS_ERR(dht11->gpiod)) 3088c2ecf20Sopenharmony_ci return PTR_ERR(dht11->gpiod); 3098c2ecf20Sopenharmony_ci 3108c2ecf20Sopenharmony_ci dht11->irq = gpiod_to_irq(dht11->gpiod); 3118c2ecf20Sopenharmony_ci if (dht11->irq < 0) { 3128c2ecf20Sopenharmony_ci dev_err(dev, "GPIO %d has no interrupt\n", desc_to_gpio(dht11->gpiod)); 3138c2ecf20Sopenharmony_ci return -EINVAL; 3148c2ecf20Sopenharmony_ci } 3158c2ecf20Sopenharmony_ci 3168c2ecf20Sopenharmony_ci dht11->timestamp = ktime_get_boottime_ns() - DHT11_DATA_VALID_TIME - 1; 3178c2ecf20Sopenharmony_ci dht11->num_edges = -1; 3188c2ecf20Sopenharmony_ci 3198c2ecf20Sopenharmony_ci platform_set_drvdata(pdev, iio); 3208c2ecf20Sopenharmony_ci 3218c2ecf20Sopenharmony_ci init_completion(&dht11->completion); 3228c2ecf20Sopenharmony_ci mutex_init(&dht11->lock); 3238c2ecf20Sopenharmony_ci iio->name = pdev->name; 3248c2ecf20Sopenharmony_ci iio->info = &dht11_iio_info; 3258c2ecf20Sopenharmony_ci iio->modes = INDIO_DIRECT_MODE; 3268c2ecf20Sopenharmony_ci iio->channels = dht11_chan_spec; 3278c2ecf20Sopenharmony_ci iio->num_channels = ARRAY_SIZE(dht11_chan_spec); 3288c2ecf20Sopenharmony_ci 3298c2ecf20Sopenharmony_ci return devm_iio_device_register(dev, iio); 3308c2ecf20Sopenharmony_ci} 3318c2ecf20Sopenharmony_ci 3328c2ecf20Sopenharmony_cistatic struct platform_driver dht11_driver = { 3338c2ecf20Sopenharmony_ci .driver = { 3348c2ecf20Sopenharmony_ci .name = DRIVER_NAME, 3358c2ecf20Sopenharmony_ci .of_match_table = dht11_dt_ids, 3368c2ecf20Sopenharmony_ci }, 3378c2ecf20Sopenharmony_ci .probe = dht11_probe, 3388c2ecf20Sopenharmony_ci}; 3398c2ecf20Sopenharmony_ci 3408c2ecf20Sopenharmony_cimodule_platform_driver(dht11_driver); 3418c2ecf20Sopenharmony_ci 3428c2ecf20Sopenharmony_ciMODULE_AUTHOR("Harald Geyer <harald@ccbib.org>"); 3438c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("DHT11 humidity/temperature sensor driver"); 3448c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL v2"); 345