1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * MPU3050 gyroscope driver
4 *
5 * Copyright (C) 2016 Linaro Ltd.
6 * Author: Linus Walleij <linus.walleij@linaro.org>
7 *
8 * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
9 * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
10 * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
11 * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
12 *
13 * TODO: add support for setting up the low pass 3dB frequency.
14 */
15
16#include <linux/bitops.h>
17#include <linux/delay.h>
18#include <linux/err.h>
19#include <linux/iio/buffer.h>
20#include <linux/iio/iio.h>
21#include <linux/iio/sysfs.h>
22#include <linux/iio/trigger.h>
23#include <linux/iio/trigger_consumer.h>
24#include <linux/iio/triggered_buffer.h>
25#include <linux/interrupt.h>
26#include <linux/module.h>
27#include <linux/pm_runtime.h>
28#include <linux/random.h>
29#include <linux/slab.h>
30
31#include "mpu3050.h"
32
33#define MPU3050_CHIP_ID		0x68
34#define MPU3050_CHIP_ID_MASK	0x7E
35
36/*
37 * Register map: anything suffixed *_H is a big-endian high byte and always
38 * followed by the corresponding low byte (*_L) even though these are not
39 * explicitly included in the register definitions.
40 */
41#define MPU3050_CHIP_ID_REG	0x00
42#define MPU3050_PRODUCT_ID_REG	0x01
43#define MPU3050_XG_OFFS_TC	0x05
44#define MPU3050_YG_OFFS_TC	0x08
45#define MPU3050_ZG_OFFS_TC	0x0B
46#define MPU3050_X_OFFS_USR_H	0x0C
47#define MPU3050_Y_OFFS_USR_H	0x0E
48#define MPU3050_Z_OFFS_USR_H	0x10
49#define MPU3050_FIFO_EN		0x12
50#define MPU3050_AUX_VDDIO	0x13
51#define MPU3050_SLV_ADDR	0x14
52#define MPU3050_SMPLRT_DIV	0x15
53#define MPU3050_DLPF_FS_SYNC	0x16
54#define MPU3050_INT_CFG		0x17
55#define MPU3050_AUX_ADDR	0x18
56#define MPU3050_INT_STATUS	0x1A
57#define MPU3050_TEMP_H		0x1B
58#define MPU3050_XOUT_H		0x1D
59#define MPU3050_YOUT_H		0x1F
60#define MPU3050_ZOUT_H		0x21
61#define MPU3050_DMP_CFG1	0x35
62#define MPU3050_DMP_CFG2	0x36
63#define MPU3050_BANK_SEL	0x37
64#define MPU3050_MEM_START_ADDR	0x38
65#define MPU3050_MEM_R_W		0x39
66#define MPU3050_FIFO_COUNT_H	0x3A
67#define MPU3050_FIFO_R		0x3C
68#define MPU3050_USR_CTRL	0x3D
69#define MPU3050_PWR_MGM		0x3E
70
71/* MPU memory bank read options */
72#define MPU3050_MEM_PRFTCH	BIT(5)
73#define MPU3050_MEM_USER_BANK	BIT(4)
74/* Bits 8-11 select memory bank */
75#define MPU3050_MEM_RAM_BANK_0	0
76#define MPU3050_MEM_RAM_BANK_1	1
77#define MPU3050_MEM_RAM_BANK_2	2
78#define MPU3050_MEM_RAM_BANK_3	3
79#define MPU3050_MEM_OTP_BANK_0	4
80
81#define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
82
83/* Register bits */
84
85/* FIFO Enable */
86#define MPU3050_FIFO_EN_FOOTER		BIT(0)
87#define MPU3050_FIFO_EN_AUX_ZOUT	BIT(1)
88#define MPU3050_FIFO_EN_AUX_YOUT	BIT(2)
89#define MPU3050_FIFO_EN_AUX_XOUT	BIT(3)
90#define MPU3050_FIFO_EN_GYRO_ZOUT	BIT(4)
91#define MPU3050_FIFO_EN_GYRO_YOUT	BIT(5)
92#define MPU3050_FIFO_EN_GYRO_XOUT	BIT(6)
93#define MPU3050_FIFO_EN_TEMP_OUT	BIT(7)
94
95/*
96 * Digital Low Pass filter (DLPF)
97 * Full Scale (FS)
98 * and Synchronization
99 */
100#define MPU3050_EXT_SYNC_NONE		0x00
101#define MPU3050_EXT_SYNC_TEMP		0x20
102#define MPU3050_EXT_SYNC_GYROX		0x40
103#define MPU3050_EXT_SYNC_GYROY		0x60
104#define MPU3050_EXT_SYNC_GYROZ		0x80
105#define MPU3050_EXT_SYNC_ACCELX	0xA0
106#define MPU3050_EXT_SYNC_ACCELY	0xC0
107#define MPU3050_EXT_SYNC_ACCELZ	0xE0
108#define MPU3050_EXT_SYNC_MASK		0xE0
109#define MPU3050_EXT_SYNC_SHIFT		5
110
111#define MPU3050_FS_250DPS		0x00
112#define MPU3050_FS_500DPS		0x08
113#define MPU3050_FS_1000DPS		0x10
114#define MPU3050_FS_2000DPS		0x18
115#define MPU3050_FS_MASK			0x18
116#define MPU3050_FS_SHIFT		3
117
118#define MPU3050_DLPF_CFG_256HZ_NOLPF2	0x00
119#define MPU3050_DLPF_CFG_188HZ		0x01
120#define MPU3050_DLPF_CFG_98HZ		0x02
121#define MPU3050_DLPF_CFG_42HZ		0x03
122#define MPU3050_DLPF_CFG_20HZ		0x04
123#define MPU3050_DLPF_CFG_10HZ		0x05
124#define MPU3050_DLPF_CFG_5HZ		0x06
125#define MPU3050_DLPF_CFG_2100HZ_NOLPF	0x07
126#define MPU3050_DLPF_CFG_MASK		0x07
127#define MPU3050_DLPF_CFG_SHIFT		0
128
129/* Interrupt config */
130#define MPU3050_INT_RAW_RDY_EN		BIT(0)
131#define MPU3050_INT_DMP_DONE_EN		BIT(1)
132#define MPU3050_INT_MPU_RDY_EN		BIT(2)
133#define MPU3050_INT_ANYRD_2CLEAR	BIT(4)
134#define MPU3050_INT_LATCH_EN		BIT(5)
135#define MPU3050_INT_OPEN		BIT(6)
136#define MPU3050_INT_ACTL		BIT(7)
137/* Interrupt status */
138#define MPU3050_INT_STATUS_RAW_RDY	BIT(0)
139#define MPU3050_INT_STATUS_DMP_DONE	BIT(1)
140#define MPU3050_INT_STATUS_MPU_RDY	BIT(2)
141#define MPU3050_INT_STATUS_FIFO_OVFLW	BIT(7)
142/* USR_CTRL */
143#define MPU3050_USR_CTRL_FIFO_EN	BIT(6)
144#define MPU3050_USR_CTRL_AUX_IF_EN	BIT(5)
145#define MPU3050_USR_CTRL_AUX_IF_RST	BIT(3)
146#define MPU3050_USR_CTRL_FIFO_RST	BIT(1)
147#define MPU3050_USR_CTRL_GYRO_RST	BIT(0)
148/* PWR_MGM */
149#define MPU3050_PWR_MGM_PLL_X		0x01
150#define MPU3050_PWR_MGM_PLL_Y		0x02
151#define MPU3050_PWR_MGM_PLL_Z		0x03
152#define MPU3050_PWR_MGM_CLKSEL_MASK	0x07
153#define MPU3050_PWR_MGM_STBY_ZG		BIT(3)
154#define MPU3050_PWR_MGM_STBY_YG		BIT(4)
155#define MPU3050_PWR_MGM_STBY_XG		BIT(5)
156#define MPU3050_PWR_MGM_SLEEP		BIT(6)
157#define MPU3050_PWR_MGM_RESET		BIT(7)
158#define MPU3050_PWR_MGM_MASK		0xff
159
160/*
161 * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
162 * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
163 * in two's complement.
164 */
165static unsigned int mpu3050_fs_precision[] = {
166	IIO_DEGREE_TO_RAD(250),
167	IIO_DEGREE_TO_RAD(500),
168	IIO_DEGREE_TO_RAD(1000),
169	IIO_DEGREE_TO_RAD(2000)
170};
171
172/*
173 * Regulator names
174 */
175static const char mpu3050_reg_vdd[] = "vdd";
176static const char mpu3050_reg_vlogic[] = "vlogic";
177
178static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050)
179{
180	unsigned int freq;
181
182	if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2)
183		freq = 8000;
184	else
185		freq = 1000;
186	freq /= (mpu3050->divisor + 1);
187
188	return freq;
189}
190
191static int mpu3050_start_sampling(struct mpu3050 *mpu3050)
192{
193	__be16 raw_val[3];
194	int ret;
195	int i;
196
197	/* Reset */
198	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
199				 MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET);
200	if (ret)
201		return ret;
202
203	/* Turn on the Z-axis PLL */
204	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
205				 MPU3050_PWR_MGM_CLKSEL_MASK,
206				 MPU3050_PWR_MGM_PLL_Z);
207	if (ret)
208		return ret;
209
210	/* Write calibration offset registers */
211	for (i = 0; i < 3; i++)
212		raw_val[i] = cpu_to_be16(mpu3050->calibration[i]);
213
214	ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val,
215				sizeof(raw_val));
216	if (ret)
217		return ret;
218
219	/* Set low pass filter (sample rate), sync and full scale */
220	ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC,
221			   MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT |
222			   mpu3050->fullscale << MPU3050_FS_SHIFT |
223			   mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT);
224	if (ret)
225		return ret;
226
227	/* Set up sampling frequency */
228	ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor);
229	if (ret)
230		return ret;
231
232	/*
233	 * Max 50 ms start-up time after setting DLPF_FS_SYNC
234	 * according to the data sheet, then wait for the next sample
235	 * at this frequency T = 1000/f ms.
236	 */
237	msleep(50 + 1000 / mpu3050_get_freq(mpu3050));
238
239	return 0;
240}
241
242static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050)
243{
244	int ret;
245	u8 divisor;
246	enum mpu3050_lpf lpf;
247
248	lpf = mpu3050->lpf;
249	divisor = mpu3050->divisor;
250
251	mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */
252	mpu3050->divisor = 0; /* Divide by 1 */
253	ret = mpu3050_start_sampling(mpu3050);
254
255	mpu3050->lpf = lpf;
256	mpu3050->divisor = divisor;
257
258	return ret;
259}
260
261static int mpu3050_read_raw(struct iio_dev *indio_dev,
262			    struct iio_chan_spec const *chan,
263			    int *val, int *val2,
264			    long mask)
265{
266	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
267	int ret;
268	__be16 raw_val;
269
270	switch (mask) {
271	case IIO_CHAN_INFO_OFFSET:
272		switch (chan->type) {
273		case IIO_TEMP:
274			/*
275			 * The temperature scaling is (x+23000)/280 Celsius
276			 * for the "best fit straight line" temperature range
277			 * of -30C..85C.  The 23000 includes room temperature
278			 * offset of +35C, 280 is the precision scale and x is
279			 * the 16-bit signed integer reported by hardware.
280			 *
281			 * Temperature value itself represents temperature of
282			 * the sensor die.
283			 */
284			*val = 23000;
285			return IIO_VAL_INT;
286		default:
287			return -EINVAL;
288		}
289	case IIO_CHAN_INFO_CALIBBIAS:
290		switch (chan->type) {
291		case IIO_ANGL_VEL:
292			*val = mpu3050->calibration[chan->scan_index-1];
293			return IIO_VAL_INT;
294		default:
295			return -EINVAL;
296		}
297	case IIO_CHAN_INFO_SAMP_FREQ:
298		*val = mpu3050_get_freq(mpu3050);
299		return IIO_VAL_INT;
300	case IIO_CHAN_INFO_SCALE:
301		switch (chan->type) {
302		case IIO_TEMP:
303			/* Millidegrees, see about temperature scaling above */
304			*val = 1000;
305			*val2 = 280;
306			return IIO_VAL_FRACTIONAL;
307		case IIO_ANGL_VEL:
308			/*
309			 * Convert to the corresponding full scale in
310			 * radians. All 16 bits are used with sign to
311			 * span the available scale: to account for the one
312			 * missing value if we multiply by 1/S16_MAX, instead
313			 * multiply with 2/U16_MAX.
314			 */
315			*val = mpu3050_fs_precision[mpu3050->fullscale] * 2;
316			*val2 = U16_MAX;
317			return IIO_VAL_FRACTIONAL;
318		default:
319			return -EINVAL;
320		}
321	case IIO_CHAN_INFO_RAW:
322		/* Resume device */
323		pm_runtime_get_sync(mpu3050->dev);
324		mutex_lock(&mpu3050->lock);
325
326		ret = mpu3050_set_8khz_samplerate(mpu3050);
327		if (ret)
328			goto out_read_raw_unlock;
329
330		switch (chan->type) {
331		case IIO_TEMP:
332			ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H,
333					       &raw_val, sizeof(raw_val));
334			if (ret) {
335				dev_err(mpu3050->dev,
336					"error reading temperature\n");
337				goto out_read_raw_unlock;
338			}
339
340			*val = (s16)be16_to_cpu(raw_val);
341			ret = IIO_VAL_INT;
342
343			goto out_read_raw_unlock;
344		case IIO_ANGL_VEL:
345			ret = regmap_bulk_read(mpu3050->map,
346				       MPU3050_AXIS_REGS(chan->scan_index-1),
347				       &raw_val,
348				       sizeof(raw_val));
349			if (ret) {
350				dev_err(mpu3050->dev,
351					"error reading axis data\n");
352				goto out_read_raw_unlock;
353			}
354
355			*val = be16_to_cpu(raw_val);
356			ret = IIO_VAL_INT;
357
358			goto out_read_raw_unlock;
359		default:
360			ret = -EINVAL;
361			goto out_read_raw_unlock;
362		}
363	default:
364		break;
365	}
366
367	return -EINVAL;
368
369out_read_raw_unlock:
370	mutex_unlock(&mpu3050->lock);
371	pm_runtime_mark_last_busy(mpu3050->dev);
372	pm_runtime_put_autosuspend(mpu3050->dev);
373
374	return ret;
375}
376
377static int mpu3050_write_raw(struct iio_dev *indio_dev,
378			     const struct iio_chan_spec *chan,
379			     int val, int val2, long mask)
380{
381	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
382	/*
383	 * Couldn't figure out a way to precalculate these at compile time.
384	 */
385	unsigned int fs250 =
386		DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2,
387				  U16_MAX);
388	unsigned int fs500 =
389		DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2,
390				  U16_MAX);
391	unsigned int fs1000 =
392		DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2,
393				  U16_MAX);
394	unsigned int fs2000 =
395		DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2,
396				  U16_MAX);
397
398	switch (mask) {
399	case IIO_CHAN_INFO_CALIBBIAS:
400		if (chan->type != IIO_ANGL_VEL)
401			return -EINVAL;
402		mpu3050->calibration[chan->scan_index-1] = val;
403		return 0;
404	case IIO_CHAN_INFO_SAMP_FREQ:
405		/*
406		 * The max samplerate is 8000 Hz, the minimum
407		 * 1000 / 256 ~= 4 Hz
408		 */
409		if (val < 4 || val > 8000)
410			return -EINVAL;
411
412		/*
413		 * Above 1000 Hz we must turn off the digital low pass filter
414		 * so we get a base frequency of 8kHz to the divider
415		 */
416		if (val > 1000) {
417			mpu3050->lpf = LPF_256_HZ_NOLPF;
418			mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1;
419			return 0;
420		}
421
422		mpu3050->lpf = LPF_188_HZ;
423		mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1;
424		return 0;
425	case IIO_CHAN_INFO_SCALE:
426		if (chan->type != IIO_ANGL_VEL)
427			return -EINVAL;
428		/*
429		 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
430		 * which means we need to round to the closest radians
431		 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
432		 * rad/s. The scale is then for the 16 bits used to cover
433		 * it 2/(2^16) of that.
434		 */
435
436		/* Just too large, set the max range */
437		if (val != 0) {
438			mpu3050->fullscale = FS_2000_DPS;
439			return 0;
440		}
441
442		/*
443		 * Now we're dealing with fractions below zero in millirad/s
444		 * do some integer interpolation and match with the closest
445		 * fullscale in the table.
446		 */
447		if (val2 <= fs250 ||
448		    val2 < ((fs500 + fs250) / 2))
449			mpu3050->fullscale = FS_250_DPS;
450		else if (val2 <= fs500 ||
451			 val2 < ((fs1000 + fs500) / 2))
452			mpu3050->fullscale = FS_500_DPS;
453		else if (val2 <= fs1000 ||
454			 val2 < ((fs2000 + fs1000) / 2))
455			mpu3050->fullscale = FS_1000_DPS;
456		else
457			/* Catch-all */
458			mpu3050->fullscale = FS_2000_DPS;
459		return 0;
460	default:
461		break;
462	}
463
464	return -EINVAL;
465}
466
467static irqreturn_t mpu3050_trigger_handler(int irq, void *p)
468{
469	const struct iio_poll_func *pf = p;
470	struct iio_dev *indio_dev = pf->indio_dev;
471	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
472	int ret;
473	/*
474	 * Temperature 1*16 bits
475	 * Three axes 3*16 bits
476	 * Timestamp 64 bits (4*16 bits)
477	 * Sum total 8*16 bits
478	 */
479	__be16 hw_values[8];
480	s64 timestamp;
481	unsigned int datums_from_fifo = 0;
482
483	/*
484	 * If we're using the hardware trigger, get the precise timestamp from
485	 * the top half of the threaded IRQ handler. Otherwise get the
486	 * timestamp here so it will be close in time to the actual values
487	 * read from the registers.
488	 */
489	if (iio_trigger_using_own(indio_dev))
490		timestamp = mpu3050->hw_timestamp;
491	else
492		timestamp = iio_get_time_ns(indio_dev);
493
494	mutex_lock(&mpu3050->lock);
495
496	/* Using the hardware IRQ trigger? Check the buffer then. */
497	if (mpu3050->hw_irq_trigger) {
498		__be16 raw_fifocnt;
499		u16 fifocnt;
500		/* X, Y, Z + temperature */
501		unsigned int bytes_per_datum = 8;
502		bool fifo_overflow = false;
503
504		ret = regmap_bulk_read(mpu3050->map,
505				       MPU3050_FIFO_COUNT_H,
506				       &raw_fifocnt,
507				       sizeof(raw_fifocnt));
508		if (ret)
509			goto out_trigger_unlock;
510		fifocnt = be16_to_cpu(raw_fifocnt);
511
512		if (fifocnt == 512) {
513			dev_info(mpu3050->dev,
514				 "FIFO overflow! Emptying and resetting FIFO\n");
515			fifo_overflow = true;
516			/* Reset and enable the FIFO */
517			ret = regmap_update_bits(mpu3050->map,
518						 MPU3050_USR_CTRL,
519						 MPU3050_USR_CTRL_FIFO_EN |
520						 MPU3050_USR_CTRL_FIFO_RST,
521						 MPU3050_USR_CTRL_FIFO_EN |
522						 MPU3050_USR_CTRL_FIFO_RST);
523			if (ret) {
524				dev_info(mpu3050->dev, "error resetting FIFO\n");
525				goto out_trigger_unlock;
526			}
527			mpu3050->pending_fifo_footer = false;
528		}
529
530		if (fifocnt)
531			dev_dbg(mpu3050->dev,
532				"%d bytes in the FIFO\n",
533				fifocnt);
534
535		while (!fifo_overflow && fifocnt > bytes_per_datum) {
536			unsigned int toread;
537			unsigned int offset;
538			__be16 fifo_values[5];
539
540			/*
541			 * If there is a FIFO footer in the pipe, first clear
542			 * that out. This follows the complex algorithm in the
543			 * datasheet that states that you may never leave the
544			 * FIFO empty after the first reading: you have to
545			 * always leave two footer bytes in it. The footer is
546			 * in practice just two zero bytes.
547			 */
548			if (mpu3050->pending_fifo_footer) {
549				toread = bytes_per_datum + 2;
550				offset = 0;
551			} else {
552				toread = bytes_per_datum;
553				offset = 1;
554				/* Put in some dummy value */
555				fifo_values[0] = cpu_to_be16(0xAAAA);
556			}
557
558			ret = regmap_bulk_read(mpu3050->map,
559					       MPU3050_FIFO_R,
560					       &fifo_values[offset],
561					       toread);
562			if (ret)
563				goto out_trigger_unlock;
564
565			dev_dbg(mpu3050->dev,
566				"%04x %04x %04x %04x %04x\n",
567				fifo_values[0],
568				fifo_values[1],
569				fifo_values[2],
570				fifo_values[3],
571				fifo_values[4]);
572
573			/* Index past the footer (fifo_values[0]) and push */
574			iio_push_to_buffers_with_timestamp(indio_dev,
575							   &fifo_values[1],
576							   timestamp);
577
578			fifocnt -= toread;
579			datums_from_fifo++;
580			mpu3050->pending_fifo_footer = true;
581
582			/*
583			 * If we're emptying the FIFO, just make sure to
584			 * check if something new appeared.
585			 */
586			if (fifocnt < bytes_per_datum) {
587				ret = regmap_bulk_read(mpu3050->map,
588						       MPU3050_FIFO_COUNT_H,
589						       &raw_fifocnt,
590						       sizeof(raw_fifocnt));
591				if (ret)
592					goto out_trigger_unlock;
593				fifocnt = be16_to_cpu(raw_fifocnt);
594			}
595
596			if (fifocnt < bytes_per_datum)
597				dev_dbg(mpu3050->dev,
598					"%d bytes left in the FIFO\n",
599					fifocnt);
600
601			/*
602			 * At this point, the timestamp that triggered the
603			 * hardware interrupt is no longer valid for what
604			 * we are reading (the interrupt likely fired for
605			 * the value on the top of the FIFO), so set the
606			 * timestamp to zero and let userspace deal with it.
607			 */
608			timestamp = 0;
609		}
610	}
611
612	/*
613	 * If we picked some datums from the FIFO that's enough, else
614	 * fall through and just read from the current value registers.
615	 * This happens in two cases:
616	 *
617	 * - We are using some other trigger (external, like an HRTimer)
618	 *   than the sensor's own sample generator. In this case the
619	 *   sensor is just set to the max sampling frequency and we give
620	 *   the trigger a copy of the latest value every time we get here.
621	 *
622	 * - The hardware trigger is active but unused and we actually use
623	 *   another trigger which calls here with a frequency higher
624	 *   than what the device provides data. We will then just read
625	 *   duplicate values directly from the hardware registers.
626	 */
627	if (datums_from_fifo) {
628		dev_dbg(mpu3050->dev,
629			"read %d datums from the FIFO\n",
630			datums_from_fifo);
631		goto out_trigger_unlock;
632	}
633
634	ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, &hw_values,
635			       sizeof(hw_values));
636	if (ret) {
637		dev_err(mpu3050->dev,
638			"error reading axis data\n");
639		goto out_trigger_unlock;
640	}
641
642	iio_push_to_buffers_with_timestamp(indio_dev, hw_values, timestamp);
643
644out_trigger_unlock:
645	mutex_unlock(&mpu3050->lock);
646	iio_trigger_notify_done(indio_dev->trig);
647
648	return IRQ_HANDLED;
649}
650
651static int mpu3050_buffer_preenable(struct iio_dev *indio_dev)
652{
653	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
654
655	pm_runtime_get_sync(mpu3050->dev);
656
657	/* Unless we have OUR trigger active, run at full speed */
658	if (!mpu3050->hw_irq_trigger)
659		return mpu3050_set_8khz_samplerate(mpu3050);
660
661	return 0;
662}
663
664static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev)
665{
666	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
667
668	pm_runtime_mark_last_busy(mpu3050->dev);
669	pm_runtime_put_autosuspend(mpu3050->dev);
670
671	return 0;
672}
673
674static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = {
675	.preenable = mpu3050_buffer_preenable,
676	.postdisable = mpu3050_buffer_postdisable,
677};
678
679static const struct iio_mount_matrix *
680mpu3050_get_mount_matrix(const struct iio_dev *indio_dev,
681			 const struct iio_chan_spec *chan)
682{
683	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
684
685	return &mpu3050->orientation;
686}
687
688static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = {
689	IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix),
690	{ },
691};
692
693#define MPU3050_AXIS_CHANNEL(axis, index)				\
694	{								\
695		.type = IIO_ANGL_VEL,					\
696		.modified = 1,						\
697		.channel2 = IIO_MOD_##axis,				\
698		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
699			BIT(IIO_CHAN_INFO_CALIBBIAS),			\
700		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
701		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
702		.ext_info = mpu3050_ext_info,				\
703		.scan_index = index,					\
704		.scan_type = {						\
705			.sign = 's',					\
706			.realbits = 16,					\
707			.storagebits = 16,				\
708			.endianness = IIO_BE,				\
709		},							\
710	}
711
712static const struct iio_chan_spec mpu3050_channels[] = {
713	{
714		.type = IIO_TEMP,
715		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
716				      BIT(IIO_CHAN_INFO_SCALE) |
717				      BIT(IIO_CHAN_INFO_OFFSET),
718		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
719		.scan_index = 0,
720		.scan_type = {
721			.sign = 's',
722			.realbits = 16,
723			.storagebits = 16,
724			.endianness = IIO_BE,
725		},
726	},
727	MPU3050_AXIS_CHANNEL(X, 1),
728	MPU3050_AXIS_CHANNEL(Y, 2),
729	MPU3050_AXIS_CHANNEL(Z, 3),
730	IIO_CHAN_SOFT_TIMESTAMP(4),
731};
732
733/* Four channels apart from timestamp, scan mask = 0x0f */
734static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 };
735
736/*
737 * These are just the hardcoded factors resulting from the more elaborate
738 * calculations done with fractions in the scale raw get/set functions.
739 */
740static IIO_CONST_ATTR(anglevel_scale_available,
741		      "0.000122070 "
742		      "0.000274658 "
743		      "0.000518798 "
744		      "0.001068115");
745
746static struct attribute *mpu3050_attributes[] = {
747	&iio_const_attr_anglevel_scale_available.dev_attr.attr,
748	NULL,
749};
750
751static const struct attribute_group mpu3050_attribute_group = {
752	.attrs = mpu3050_attributes,
753};
754
755static const struct iio_info mpu3050_info = {
756	.read_raw = mpu3050_read_raw,
757	.write_raw = mpu3050_write_raw,
758	.attrs = &mpu3050_attribute_group,
759};
760
761/**
762 * mpu3050_read_mem() - read MPU-3050 internal memory
763 * @mpu3050: device to read from
764 * @bank: target bank
765 * @addr: target address
766 * @len: number of bytes
767 * @buf: the buffer to store the read bytes in
768 */
769static int mpu3050_read_mem(struct mpu3050 *mpu3050,
770			    u8 bank,
771			    u8 addr,
772			    u8 len,
773			    u8 *buf)
774{
775	int ret;
776
777	ret = regmap_write(mpu3050->map,
778			   MPU3050_BANK_SEL,
779			   bank);
780	if (ret)
781		return ret;
782
783	ret = regmap_write(mpu3050->map,
784			   MPU3050_MEM_START_ADDR,
785			   addr);
786	if (ret)
787		return ret;
788
789	return regmap_bulk_read(mpu3050->map,
790				MPU3050_MEM_R_W,
791				buf,
792				len);
793}
794
795static int mpu3050_hw_init(struct mpu3050 *mpu3050)
796{
797	int ret;
798	u8 otp[8];
799
800	/* Reset */
801	ret = regmap_update_bits(mpu3050->map,
802				 MPU3050_PWR_MGM,
803				 MPU3050_PWR_MGM_RESET,
804				 MPU3050_PWR_MGM_RESET);
805	if (ret)
806		return ret;
807
808	/* Turn on the PLL */
809	ret = regmap_update_bits(mpu3050->map,
810				 MPU3050_PWR_MGM,
811				 MPU3050_PWR_MGM_CLKSEL_MASK,
812				 MPU3050_PWR_MGM_PLL_Z);
813	if (ret)
814		return ret;
815
816	/* Disable IRQs */
817	ret = regmap_write(mpu3050->map,
818			   MPU3050_INT_CFG,
819			   0);
820	if (ret)
821		return ret;
822
823	/* Read out the 8 bytes of OTP (one-time-programmable) memory */
824	ret = mpu3050_read_mem(mpu3050,
825			       (MPU3050_MEM_PRFTCH |
826				MPU3050_MEM_USER_BANK |
827				MPU3050_MEM_OTP_BANK_0),
828			       0,
829			       sizeof(otp),
830			       otp);
831	if (ret)
832		return ret;
833
834	/* This is device-unique data so it goes into the entropy pool */
835	add_device_randomness(otp, sizeof(otp));
836
837	dev_info(mpu3050->dev,
838		 "die ID: %04X, wafer ID: %02X, A lot ID: %04X, "
839		 "W lot ID: %03X, WP ID: %01X, rev ID: %02X\n",
840		 /* Die ID, bits 0-12 */
841		 (otp[1] << 8 | otp[0]) & 0x1fff,
842		 /* Wafer ID, bits 13-17 */
843		 ((otp[2] << 8 | otp[1]) & 0x03e0) >> 5,
844		 /* A lot ID, bits 18-33 */
845		 ((otp[4] << 16 | otp[3] << 8 | otp[2]) & 0x3fffc) >> 2,
846		 /* W lot ID, bits 34-45 */
847		 ((otp[5] << 8 | otp[4]) & 0x3ffc) >> 2,
848		 /* WP ID, bits 47-49 */
849		 ((otp[6] << 8 | otp[5]) & 0x0380) >> 7,
850		 /* rev ID, bits 50-55 */
851		 otp[6] >> 2);
852
853	return 0;
854}
855
856static int mpu3050_power_up(struct mpu3050 *mpu3050)
857{
858	int ret;
859
860	ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
861	if (ret) {
862		dev_err(mpu3050->dev, "cannot enable regulators\n");
863		return ret;
864	}
865	/*
866	 * 20-100 ms start-up time for register read/write according to
867	 * the datasheet, be on the safe side and wait 200 ms.
868	 */
869	msleep(200);
870
871	/* Take device out of sleep mode */
872	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
873				 MPU3050_PWR_MGM_SLEEP, 0);
874	if (ret) {
875		regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
876		dev_err(mpu3050->dev, "error setting power mode\n");
877		return ret;
878	}
879	usleep_range(10000, 20000);
880
881	return 0;
882}
883
884static int mpu3050_power_down(struct mpu3050 *mpu3050)
885{
886	int ret;
887
888	/*
889	 * Put MPU-3050 into sleep mode before cutting regulators.
890	 * This is important, because we may not be the sole user
891	 * of the regulator so the power may stay on after this, and
892	 * then we would be wasting power unless we go to sleep mode
893	 * first.
894	 */
895	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
896				 MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP);
897	if (ret)
898		dev_err(mpu3050->dev, "error putting to sleep\n");
899
900	ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
901	if (ret)
902		dev_err(mpu3050->dev, "error disabling regulators\n");
903
904	return 0;
905}
906
907static irqreturn_t mpu3050_irq_handler(int irq, void *p)
908{
909	struct iio_trigger *trig = p;
910	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
911	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
912
913	if (!mpu3050->hw_irq_trigger)
914		return IRQ_NONE;
915
916	/* Get the time stamp as close in time as possible */
917	mpu3050->hw_timestamp = iio_get_time_ns(indio_dev);
918
919	return IRQ_WAKE_THREAD;
920}
921
922static irqreturn_t mpu3050_irq_thread(int irq, void *p)
923{
924	struct iio_trigger *trig = p;
925	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
926	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
927	unsigned int val;
928	int ret;
929
930	/* ACK IRQ and check if it was from us */
931	ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
932	if (ret) {
933		dev_err(mpu3050->dev, "error reading IRQ status\n");
934		return IRQ_HANDLED;
935	}
936	if (!(val & MPU3050_INT_STATUS_RAW_RDY))
937		return IRQ_NONE;
938
939	iio_trigger_poll_chained(p);
940
941	return IRQ_HANDLED;
942}
943
944/**
945 * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
946 * @trig: trigger instance
947 * @enable: true if trigger should be enabled, false to disable
948 */
949static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig,
950					  bool enable)
951{
952	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
953	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
954	unsigned int val;
955	int ret;
956
957	/* Disabling trigger: disable interrupt and return */
958	if (!enable) {
959		/* Disable all interrupts */
960		ret = regmap_write(mpu3050->map,
961				   MPU3050_INT_CFG,
962				   0);
963		if (ret)
964			dev_err(mpu3050->dev, "error disabling IRQ\n");
965
966		/* Clear IRQ flag */
967		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
968		if (ret)
969			dev_err(mpu3050->dev, "error clearing IRQ status\n");
970
971		/* Disable all things in the FIFO and reset it */
972		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
973		if (ret)
974			dev_err(mpu3050->dev, "error disabling FIFO\n");
975
976		ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL,
977				   MPU3050_USR_CTRL_FIFO_RST);
978		if (ret)
979			dev_err(mpu3050->dev, "error resetting FIFO\n");
980
981		pm_runtime_mark_last_busy(mpu3050->dev);
982		pm_runtime_put_autosuspend(mpu3050->dev);
983		mpu3050->hw_irq_trigger = false;
984
985		return 0;
986	} else {
987		/* Else we're enabling the trigger from this point */
988		pm_runtime_get_sync(mpu3050->dev);
989		mpu3050->hw_irq_trigger = true;
990
991		/* Disable all things in the FIFO */
992		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
993		if (ret)
994			return ret;
995
996		/* Reset and enable the FIFO */
997		ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL,
998					 MPU3050_USR_CTRL_FIFO_EN |
999					 MPU3050_USR_CTRL_FIFO_RST,
1000					 MPU3050_USR_CTRL_FIFO_EN |
1001					 MPU3050_USR_CTRL_FIFO_RST);
1002		if (ret)
1003			return ret;
1004
1005		mpu3050->pending_fifo_footer = false;
1006
1007		/* Turn on the FIFO for temp+X+Y+Z */
1008		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN,
1009				   MPU3050_FIFO_EN_TEMP_OUT |
1010				   MPU3050_FIFO_EN_GYRO_XOUT |
1011				   MPU3050_FIFO_EN_GYRO_YOUT |
1012				   MPU3050_FIFO_EN_GYRO_ZOUT |
1013				   MPU3050_FIFO_EN_FOOTER);
1014		if (ret)
1015			return ret;
1016
1017		/* Configure the sample engine */
1018		ret = mpu3050_start_sampling(mpu3050);
1019		if (ret)
1020			return ret;
1021
1022		/* Clear IRQ flag */
1023		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
1024		if (ret)
1025			dev_err(mpu3050->dev, "error clearing IRQ status\n");
1026
1027		/* Give us interrupts whenever there is new data ready */
1028		val = MPU3050_INT_RAW_RDY_EN;
1029
1030		if (mpu3050->irq_actl)
1031			val |= MPU3050_INT_ACTL;
1032		if (mpu3050->irq_latch)
1033			val |= MPU3050_INT_LATCH_EN;
1034		if (mpu3050->irq_opendrain)
1035			val |= MPU3050_INT_OPEN;
1036
1037		ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val);
1038		if (ret)
1039			return ret;
1040	}
1041
1042	return 0;
1043}
1044
1045static const struct iio_trigger_ops mpu3050_trigger_ops = {
1046	.set_trigger_state = mpu3050_drdy_trigger_set_state,
1047};
1048
1049static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq)
1050{
1051	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1052	unsigned long irq_trig;
1053	int ret;
1054
1055	mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev,
1056					       "%s-dev%d",
1057					       indio_dev->name,
1058					       indio_dev->id);
1059	if (!mpu3050->trig)
1060		return -ENOMEM;
1061
1062	/* Check if IRQ is open drain */
1063	if (of_property_read_bool(mpu3050->dev->of_node, "drive-open-drain"))
1064		mpu3050->irq_opendrain = true;
1065
1066	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1067	/*
1068	 * Configure the interrupt generator hardware to supply whatever
1069	 * the interrupt is configured for, edges low/high level low/high,
1070	 * we can provide it all.
1071	 */
1072	switch (irq_trig) {
1073	case IRQF_TRIGGER_RISING:
1074		dev_info(&indio_dev->dev,
1075			 "pulse interrupts on the rising edge\n");
1076		break;
1077	case IRQF_TRIGGER_FALLING:
1078		mpu3050->irq_actl = true;
1079		dev_info(&indio_dev->dev,
1080			 "pulse interrupts on the falling edge\n");
1081		break;
1082	case IRQF_TRIGGER_HIGH:
1083		mpu3050->irq_latch = true;
1084		dev_info(&indio_dev->dev,
1085			 "interrupts active high level\n");
1086		/*
1087		 * With level IRQs, we mask the IRQ until it is processed,
1088		 * but with edge IRQs (pulses) we can queue several interrupts
1089		 * in the top half.
1090		 */
1091		irq_trig |= IRQF_ONESHOT;
1092		break;
1093	case IRQF_TRIGGER_LOW:
1094		mpu3050->irq_latch = true;
1095		mpu3050->irq_actl = true;
1096		irq_trig |= IRQF_ONESHOT;
1097		dev_info(&indio_dev->dev,
1098			 "interrupts active low level\n");
1099		break;
1100	default:
1101		/* This is the most preferred mode, if possible */
1102		dev_err(&indio_dev->dev,
1103			"unsupported IRQ trigger specified (%lx), enforce "
1104			"rising edge\n", irq_trig);
1105		irq_trig = IRQF_TRIGGER_RISING;
1106		break;
1107	}
1108
1109	/* An open drain line can be shared with several devices */
1110	if (mpu3050->irq_opendrain)
1111		irq_trig |= IRQF_SHARED;
1112
1113	ret = request_threaded_irq(irq,
1114				   mpu3050_irq_handler,
1115				   mpu3050_irq_thread,
1116				   irq_trig,
1117				   mpu3050->trig->name,
1118				   mpu3050->trig);
1119	if (ret) {
1120		dev_err(mpu3050->dev,
1121			"can't get IRQ %d, error %d\n", irq, ret);
1122		return ret;
1123	}
1124
1125	mpu3050->irq = irq;
1126	mpu3050->trig->dev.parent = mpu3050->dev;
1127	mpu3050->trig->ops = &mpu3050_trigger_ops;
1128	iio_trigger_set_drvdata(mpu3050->trig, indio_dev);
1129
1130	ret = iio_trigger_register(mpu3050->trig);
1131	if (ret)
1132		return ret;
1133
1134	indio_dev->trig = iio_trigger_get(mpu3050->trig);
1135
1136	return 0;
1137}
1138
1139int mpu3050_common_probe(struct device *dev,
1140			 struct regmap *map,
1141			 int irq,
1142			 const char *name)
1143{
1144	struct iio_dev *indio_dev;
1145	struct mpu3050 *mpu3050;
1146	unsigned int val;
1147	int ret;
1148
1149	indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050));
1150	if (!indio_dev)
1151		return -ENOMEM;
1152	mpu3050 = iio_priv(indio_dev);
1153
1154	mpu3050->dev = dev;
1155	mpu3050->map = map;
1156	mutex_init(&mpu3050->lock);
1157	/* Default fullscale: 2000 degrees per second */
1158	mpu3050->fullscale = FS_2000_DPS;
1159	/* 1 kHz, divide by 100, default frequency = 10 Hz */
1160	mpu3050->lpf = MPU3050_DLPF_CFG_188HZ;
1161	mpu3050->divisor = 99;
1162
1163	/* Read the mounting matrix, if present */
1164	ret = iio_read_mount_matrix(dev, "mount-matrix", &mpu3050->orientation);
1165	if (ret)
1166		return ret;
1167
1168	/* Fetch and turn on regulators */
1169	mpu3050->regs[0].supply = mpu3050_reg_vdd;
1170	mpu3050->regs[1].supply = mpu3050_reg_vlogic;
1171	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs),
1172				      mpu3050->regs);
1173	if (ret) {
1174		dev_err(dev, "Cannot get regulators\n");
1175		return ret;
1176	}
1177
1178	ret = mpu3050_power_up(mpu3050);
1179	if (ret)
1180		return ret;
1181
1182	ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val);
1183	if (ret) {
1184		dev_err(dev, "could not read device ID\n");
1185		ret = -ENODEV;
1186
1187		goto err_power_down;
1188	}
1189
1190	if ((val & MPU3050_CHIP_ID_MASK) != MPU3050_CHIP_ID) {
1191		dev_err(dev, "unsupported chip id %02x\n",
1192				(u8)(val & MPU3050_CHIP_ID_MASK));
1193		ret = -ENODEV;
1194		goto err_power_down;
1195	}
1196
1197	ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val);
1198	if (ret) {
1199		dev_err(dev, "could not read device ID\n");
1200		ret = -ENODEV;
1201
1202		goto err_power_down;
1203	}
1204	dev_info(dev, "found MPU-3050 part no: %d, version: %d\n",
1205		 ((val >> 4) & 0xf), (val & 0xf));
1206
1207	ret = mpu3050_hw_init(mpu3050);
1208	if (ret)
1209		goto err_power_down;
1210
1211	indio_dev->channels = mpu3050_channels;
1212	indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels);
1213	indio_dev->info = &mpu3050_info;
1214	indio_dev->available_scan_masks = mpu3050_scan_masks;
1215	indio_dev->modes = INDIO_DIRECT_MODE;
1216	indio_dev->name = name;
1217
1218	ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,
1219					 mpu3050_trigger_handler,
1220					 &mpu3050_buffer_setup_ops);
1221	if (ret) {
1222		dev_err(dev, "triggered buffer setup failed\n");
1223		goto err_power_down;
1224	}
1225
1226	ret = iio_device_register(indio_dev);
1227	if (ret) {
1228		dev_err(dev, "device register failed\n");
1229		goto err_cleanup_buffer;
1230	}
1231
1232	dev_set_drvdata(dev, indio_dev);
1233
1234	/* Check if we have an assigned IRQ to use as trigger */
1235	if (irq) {
1236		ret = mpu3050_trigger_probe(indio_dev, irq);
1237		if (ret)
1238			dev_err(dev, "failed to register trigger\n");
1239	}
1240
1241	/* Enable runtime PM */
1242	pm_runtime_get_noresume(dev);
1243	pm_runtime_set_active(dev);
1244	pm_runtime_enable(dev);
1245	/*
1246	 * Set autosuspend to two orders of magnitude larger than the
1247	 * start-up time. 100ms start-up time means 10000ms autosuspend,
1248	 * i.e. 10 seconds.
1249	 */
1250	pm_runtime_set_autosuspend_delay(dev, 10000);
1251	pm_runtime_use_autosuspend(dev);
1252	pm_runtime_put(dev);
1253
1254	return 0;
1255
1256err_cleanup_buffer:
1257	iio_triggered_buffer_cleanup(indio_dev);
1258err_power_down:
1259	mpu3050_power_down(mpu3050);
1260
1261	return ret;
1262}
1263EXPORT_SYMBOL(mpu3050_common_probe);
1264
1265int mpu3050_common_remove(struct device *dev)
1266{
1267	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1268	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1269
1270	pm_runtime_get_sync(dev);
1271	pm_runtime_put_noidle(dev);
1272	pm_runtime_disable(dev);
1273	iio_triggered_buffer_cleanup(indio_dev);
1274	if (mpu3050->irq)
1275		free_irq(mpu3050->irq, mpu3050);
1276	iio_device_unregister(indio_dev);
1277	mpu3050_power_down(mpu3050);
1278
1279	return 0;
1280}
1281EXPORT_SYMBOL(mpu3050_common_remove);
1282
1283#ifdef CONFIG_PM
1284static int mpu3050_runtime_suspend(struct device *dev)
1285{
1286	return mpu3050_power_down(iio_priv(dev_get_drvdata(dev)));
1287}
1288
1289static int mpu3050_runtime_resume(struct device *dev)
1290{
1291	return mpu3050_power_up(iio_priv(dev_get_drvdata(dev)));
1292}
1293#endif /* CONFIG_PM */
1294
1295const struct dev_pm_ops mpu3050_dev_pm_ops = {
1296	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1297				pm_runtime_force_resume)
1298	SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend,
1299			   mpu3050_runtime_resume, NULL)
1300};
1301EXPORT_SYMBOL(mpu3050_dev_pm_ops);
1302
1303MODULE_AUTHOR("Linus Walleij");
1304MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1305MODULE_LICENSE("GPL");
1306