18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * mcp4922.c
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Driver for Microchip Digital to Analog Converters.
68c2ecf20Sopenharmony_ci * Supports MCP4902, MCP4912, and MCP4922.
78c2ecf20Sopenharmony_ci *
88c2ecf20Sopenharmony_ci * Copyright (c) 2014 EMAC Inc.
98c2ecf20Sopenharmony_ci */
108c2ecf20Sopenharmony_ci
118c2ecf20Sopenharmony_ci#include <linux/module.h>
128c2ecf20Sopenharmony_ci#include <linux/init.h>
138c2ecf20Sopenharmony_ci#include <linux/spi/spi.h>
148c2ecf20Sopenharmony_ci#include <linux/iio/iio.h>
158c2ecf20Sopenharmony_ci#include <linux/iio/sysfs.h>
168c2ecf20Sopenharmony_ci#include <linux/regulator/consumer.h>
178c2ecf20Sopenharmony_ci#include <linux/bitops.h>
188c2ecf20Sopenharmony_ci
198c2ecf20Sopenharmony_ci#define MCP4922_NUM_CHANNELS	2
208c2ecf20Sopenharmony_ci
218c2ecf20Sopenharmony_cienum mcp4922_supported_device_ids {
228c2ecf20Sopenharmony_ci	ID_MCP4902,
238c2ecf20Sopenharmony_ci	ID_MCP4912,
248c2ecf20Sopenharmony_ci	ID_MCP4922,
258c2ecf20Sopenharmony_ci};
268c2ecf20Sopenharmony_ci
278c2ecf20Sopenharmony_cistruct mcp4922_state {
288c2ecf20Sopenharmony_ci	struct spi_device *spi;
298c2ecf20Sopenharmony_ci	unsigned int value[MCP4922_NUM_CHANNELS];
308c2ecf20Sopenharmony_ci	unsigned int vref_mv;
318c2ecf20Sopenharmony_ci	struct regulator *vref_reg;
328c2ecf20Sopenharmony_ci	u8 mosi[2] ____cacheline_aligned;
338c2ecf20Sopenharmony_ci};
348c2ecf20Sopenharmony_ci
358c2ecf20Sopenharmony_ci#define MCP4922_CHAN(chan, bits) {			\
368c2ecf20Sopenharmony_ci	.type = IIO_VOLTAGE,				\
378c2ecf20Sopenharmony_ci	.output = 1,					\
388c2ecf20Sopenharmony_ci	.indexed = 1,					\
398c2ecf20Sopenharmony_ci	.channel = chan,				\
408c2ecf20Sopenharmony_ci	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
418c2ecf20Sopenharmony_ci	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
428c2ecf20Sopenharmony_ci	.scan_type = {					\
438c2ecf20Sopenharmony_ci		.sign = 'u',				\
448c2ecf20Sopenharmony_ci		.realbits = (bits),			\
458c2ecf20Sopenharmony_ci		.storagebits = 16,			\
468c2ecf20Sopenharmony_ci		.shift = 12 - (bits),			\
478c2ecf20Sopenharmony_ci	},						\
488c2ecf20Sopenharmony_ci}
498c2ecf20Sopenharmony_ci
508c2ecf20Sopenharmony_cistatic int mcp4922_spi_write(struct mcp4922_state *state, u8 addr, u32 val)
518c2ecf20Sopenharmony_ci{
528c2ecf20Sopenharmony_ci	state->mosi[1] = val & 0xff;
538c2ecf20Sopenharmony_ci	state->mosi[0] = (addr == 0) ? 0x00 : 0x80;
548c2ecf20Sopenharmony_ci	state->mosi[0] |= 0x30 | ((val >> 8) & 0x0f);
558c2ecf20Sopenharmony_ci
568c2ecf20Sopenharmony_ci	return spi_write(state->spi, state->mosi, 2);
578c2ecf20Sopenharmony_ci}
588c2ecf20Sopenharmony_ci
598c2ecf20Sopenharmony_cistatic int mcp4922_read_raw(struct iio_dev *indio_dev,
608c2ecf20Sopenharmony_ci		struct iio_chan_spec const *chan,
618c2ecf20Sopenharmony_ci		int *val,
628c2ecf20Sopenharmony_ci		int *val2,
638c2ecf20Sopenharmony_ci		long mask)
648c2ecf20Sopenharmony_ci{
658c2ecf20Sopenharmony_ci	struct mcp4922_state *state = iio_priv(indio_dev);
668c2ecf20Sopenharmony_ci
678c2ecf20Sopenharmony_ci	switch (mask) {
688c2ecf20Sopenharmony_ci	case IIO_CHAN_INFO_RAW:
698c2ecf20Sopenharmony_ci		*val = state->value[chan->channel];
708c2ecf20Sopenharmony_ci		return IIO_VAL_INT;
718c2ecf20Sopenharmony_ci	case IIO_CHAN_INFO_SCALE:
728c2ecf20Sopenharmony_ci		*val = state->vref_mv;
738c2ecf20Sopenharmony_ci		*val2 = chan->scan_type.realbits;
748c2ecf20Sopenharmony_ci		return IIO_VAL_FRACTIONAL_LOG2;
758c2ecf20Sopenharmony_ci	default:
768c2ecf20Sopenharmony_ci		return -EINVAL;
778c2ecf20Sopenharmony_ci	}
788c2ecf20Sopenharmony_ci}
798c2ecf20Sopenharmony_ci
808c2ecf20Sopenharmony_cistatic int mcp4922_write_raw(struct iio_dev *indio_dev,
818c2ecf20Sopenharmony_ci		struct iio_chan_spec const *chan,
828c2ecf20Sopenharmony_ci		int val,
838c2ecf20Sopenharmony_ci		int val2,
848c2ecf20Sopenharmony_ci		long mask)
858c2ecf20Sopenharmony_ci{
868c2ecf20Sopenharmony_ci	struct mcp4922_state *state = iio_priv(indio_dev);
878c2ecf20Sopenharmony_ci	int ret;
888c2ecf20Sopenharmony_ci
898c2ecf20Sopenharmony_ci	if (val2 != 0)
908c2ecf20Sopenharmony_ci		return -EINVAL;
918c2ecf20Sopenharmony_ci
928c2ecf20Sopenharmony_ci	switch (mask) {
938c2ecf20Sopenharmony_ci	case IIO_CHAN_INFO_RAW:
948c2ecf20Sopenharmony_ci		if (val < 0 || val > GENMASK(chan->scan_type.realbits - 1, 0))
958c2ecf20Sopenharmony_ci			return -EINVAL;
968c2ecf20Sopenharmony_ci		val <<= chan->scan_type.shift;
978c2ecf20Sopenharmony_ci
988c2ecf20Sopenharmony_ci		ret = mcp4922_spi_write(state, chan->channel, val);
998c2ecf20Sopenharmony_ci		if (!ret)
1008c2ecf20Sopenharmony_ci			state->value[chan->channel] = val;
1018c2ecf20Sopenharmony_ci		return ret;
1028c2ecf20Sopenharmony_ci
1038c2ecf20Sopenharmony_ci	default:
1048c2ecf20Sopenharmony_ci		return -EINVAL;
1058c2ecf20Sopenharmony_ci	}
1068c2ecf20Sopenharmony_ci}
1078c2ecf20Sopenharmony_ci
1088c2ecf20Sopenharmony_cistatic const struct iio_chan_spec mcp4922_channels[3][MCP4922_NUM_CHANNELS] = {
1098c2ecf20Sopenharmony_ci	[ID_MCP4902] = { MCP4922_CHAN(0, 8),	MCP4922_CHAN(1, 8) },
1108c2ecf20Sopenharmony_ci	[ID_MCP4912] = { MCP4922_CHAN(0, 10),	MCP4922_CHAN(1, 10) },
1118c2ecf20Sopenharmony_ci	[ID_MCP4922] = { MCP4922_CHAN(0, 12),	MCP4922_CHAN(1, 12) },
1128c2ecf20Sopenharmony_ci};
1138c2ecf20Sopenharmony_ci
1148c2ecf20Sopenharmony_cistatic const struct iio_info mcp4922_info = {
1158c2ecf20Sopenharmony_ci	.read_raw = &mcp4922_read_raw,
1168c2ecf20Sopenharmony_ci	.write_raw = &mcp4922_write_raw,
1178c2ecf20Sopenharmony_ci};
1188c2ecf20Sopenharmony_ci
1198c2ecf20Sopenharmony_cistatic int mcp4922_probe(struct spi_device *spi)
1208c2ecf20Sopenharmony_ci{
1218c2ecf20Sopenharmony_ci	struct iio_dev *indio_dev;
1228c2ecf20Sopenharmony_ci	struct mcp4922_state *state;
1238c2ecf20Sopenharmony_ci	const struct spi_device_id *id;
1248c2ecf20Sopenharmony_ci	int ret;
1258c2ecf20Sopenharmony_ci
1268c2ecf20Sopenharmony_ci	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*state));
1278c2ecf20Sopenharmony_ci	if (indio_dev == NULL)
1288c2ecf20Sopenharmony_ci		return -ENOMEM;
1298c2ecf20Sopenharmony_ci
1308c2ecf20Sopenharmony_ci	state = iio_priv(indio_dev);
1318c2ecf20Sopenharmony_ci	state->spi = spi;
1328c2ecf20Sopenharmony_ci	state->vref_reg = devm_regulator_get(&spi->dev, "vref");
1338c2ecf20Sopenharmony_ci	if (IS_ERR(state->vref_reg)) {
1348c2ecf20Sopenharmony_ci		dev_err(&spi->dev, "Vref regulator not specified\n");
1358c2ecf20Sopenharmony_ci		return PTR_ERR(state->vref_reg);
1368c2ecf20Sopenharmony_ci	}
1378c2ecf20Sopenharmony_ci
1388c2ecf20Sopenharmony_ci	ret = regulator_enable(state->vref_reg);
1398c2ecf20Sopenharmony_ci	if (ret) {
1408c2ecf20Sopenharmony_ci		dev_err(&spi->dev, "Failed to enable vref regulator: %d\n",
1418c2ecf20Sopenharmony_ci				ret);
1428c2ecf20Sopenharmony_ci		return ret;
1438c2ecf20Sopenharmony_ci	}
1448c2ecf20Sopenharmony_ci
1458c2ecf20Sopenharmony_ci	ret = regulator_get_voltage(state->vref_reg);
1468c2ecf20Sopenharmony_ci	if (ret < 0) {
1478c2ecf20Sopenharmony_ci		dev_err(&spi->dev, "Failed to read vref regulator: %d\n",
1488c2ecf20Sopenharmony_ci				ret);
1498c2ecf20Sopenharmony_ci		goto error_disable_reg;
1508c2ecf20Sopenharmony_ci	}
1518c2ecf20Sopenharmony_ci	state->vref_mv = ret / 1000;
1528c2ecf20Sopenharmony_ci
1538c2ecf20Sopenharmony_ci	spi_set_drvdata(spi, indio_dev);
1548c2ecf20Sopenharmony_ci	id = spi_get_device_id(spi);
1558c2ecf20Sopenharmony_ci	indio_dev->info = &mcp4922_info;
1568c2ecf20Sopenharmony_ci	indio_dev->modes = INDIO_DIRECT_MODE;
1578c2ecf20Sopenharmony_ci	indio_dev->channels = mcp4922_channels[id->driver_data];
1588c2ecf20Sopenharmony_ci	indio_dev->num_channels = MCP4922_NUM_CHANNELS;
1598c2ecf20Sopenharmony_ci	indio_dev->name = id->name;
1608c2ecf20Sopenharmony_ci
1618c2ecf20Sopenharmony_ci	ret = iio_device_register(indio_dev);
1628c2ecf20Sopenharmony_ci	if (ret) {
1638c2ecf20Sopenharmony_ci		dev_err(&spi->dev, "Failed to register iio device: %d\n",
1648c2ecf20Sopenharmony_ci				ret);
1658c2ecf20Sopenharmony_ci		goto error_disable_reg;
1668c2ecf20Sopenharmony_ci	}
1678c2ecf20Sopenharmony_ci
1688c2ecf20Sopenharmony_ci	return 0;
1698c2ecf20Sopenharmony_ci
1708c2ecf20Sopenharmony_cierror_disable_reg:
1718c2ecf20Sopenharmony_ci	regulator_disable(state->vref_reg);
1728c2ecf20Sopenharmony_ci
1738c2ecf20Sopenharmony_ci	return ret;
1748c2ecf20Sopenharmony_ci}
1758c2ecf20Sopenharmony_ci
1768c2ecf20Sopenharmony_cistatic int mcp4922_remove(struct spi_device *spi)
1778c2ecf20Sopenharmony_ci{
1788c2ecf20Sopenharmony_ci	struct iio_dev *indio_dev = spi_get_drvdata(spi);
1798c2ecf20Sopenharmony_ci	struct mcp4922_state *state;
1808c2ecf20Sopenharmony_ci
1818c2ecf20Sopenharmony_ci	iio_device_unregister(indio_dev);
1828c2ecf20Sopenharmony_ci	state = iio_priv(indio_dev);
1838c2ecf20Sopenharmony_ci	regulator_disable(state->vref_reg);
1848c2ecf20Sopenharmony_ci
1858c2ecf20Sopenharmony_ci	return 0;
1868c2ecf20Sopenharmony_ci}
1878c2ecf20Sopenharmony_ci
1888c2ecf20Sopenharmony_cistatic const struct spi_device_id mcp4922_id[] = {
1898c2ecf20Sopenharmony_ci	{"mcp4902", ID_MCP4902},
1908c2ecf20Sopenharmony_ci	{"mcp4912", ID_MCP4912},
1918c2ecf20Sopenharmony_ci	{"mcp4922", ID_MCP4922},
1928c2ecf20Sopenharmony_ci	{}
1938c2ecf20Sopenharmony_ci};
1948c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(spi, mcp4922_id);
1958c2ecf20Sopenharmony_ci
1968c2ecf20Sopenharmony_cistatic struct spi_driver mcp4922_driver = {
1978c2ecf20Sopenharmony_ci	.driver = {
1988c2ecf20Sopenharmony_ci		   .name = "mcp4922",
1998c2ecf20Sopenharmony_ci		   },
2008c2ecf20Sopenharmony_ci	.probe = mcp4922_probe,
2018c2ecf20Sopenharmony_ci	.remove = mcp4922_remove,
2028c2ecf20Sopenharmony_ci	.id_table = mcp4922_id,
2038c2ecf20Sopenharmony_ci};
2048c2ecf20Sopenharmony_cimodule_spi_driver(mcp4922_driver);
2058c2ecf20Sopenharmony_ci
2068c2ecf20Sopenharmony_ciMODULE_AUTHOR("Michael Welling <mwelling@ieee.org>");
2078c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("Microchip MCP4902, MCP4912, MCP4922 DAC");
2088c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL v2");
209